

Capstone Final Report

Hongting Zhu

1. Introduction

ProQuest is an academic content aggregator as well as a research and learning hub, and

ProQuest Dialog has a specialty as ProQuest’s powerful search interface that provides

access to numerous Pharmaceutical and Biomedical collections to allow for advanced

research and pharmacovigilance. Students and professionals who study medicine rely on

it for literature reviews. Pharmaceutical companies use it to support regulatory

compliance, where they routinely check for any scientific findings on their products from

the academy to stay alert of updates. However, the current search platform requires

arduous work on inputting search queries. The search engine works only with

professionally composed queries that match the indexing of the database, and due to the

outdated information retrieval algorithm, the search results are less accurate as the

research topics get more complicated, and cannot respond with up-to-date findings as the

database collects more and more documents with more than 2 millions of records.

Fig 1. Sample Search Result on ProQuest Dialog Interface

Therefore, the goal is to simplify and improve the searching experience while providing

powerful tools to generate precisely and encompassing results. Intelligent computing

technology has been adapted to more and more products in the industry, ranging from

1

hardware to software. As machine learning models gain popularity in business, the

integration of Natural Language Processing (NLP) into text-based applications also has

much more professional interests. The pioneer in the search engine industry, Google, has

upgraded its search engine to Bidirectional Encoder Representations from Transformers

(BERT) and made great breakthroughs in interpreting queries and displaying better

responses. [1] Results from Google prove the feasibility of an upgrade in document

retrieval technique from the traditional method. This is good news, as the language

models mentioned in their upgrade are easy to convert and apply to the ProQuest Dialog

platform, of which a screenshot is shown in figure 1. However, the ProQuest search

engine itself uses a search technique that depends on the infrastructure of the database.

To change the search method would be a time-consuming task, hence the limitation on

time for the team could not guarantee a meaningful outcome. It is more feasible to focus

on improving search assistance functionalities that leverage the power of AI to help users

search faster and more precise on pharmaceutical and biomedical collections.

We hence aim to learn from this interface, and improve upon it, i.e. make modular

changes on parts of the interface. As the screenshot shows, after the user searches for a

query and retrieves a useful result (correct label) in hand, the platform displays the

abstract, and its relevant information including suggestions on similar documents, which

is displayed on the right sidebar. Currently, the results give flawed and irrelevant results

by human evaluation. The team decides to work on improving the document similarity,

on training a neural net model called Doc2Vec [2] on a sample of ProQuest's corpus and

then extends to the entire corpus that has 2 million records. We then integrate this model

into a prototype that can run queries, retrieve document information, and show and

compare similar documents. Due to the nature of this project, which uses unsupervised

learning and is large in the size of the training dataset, we do not have the resources to

leverage manpower to evaluate the training results. Therefore, to evaluate the

performance of our models, we use several novel evaluation methods to cluster the

vectorized documents and review its result. The methods include textual coherence and

grant-to-linkage precision-recall, as there are no universally agreed methods to evaluate

text clustering quality. We expect the Doc2Vec model to perform better in textual

2

coherence [3] than a baseline of the current algorithm, which we approximate by TF-IDF1

upon the consent of ProQuest. The other evaluation methods, grant-to-linkage

precision-recall should also provide a similar result.

As an MDP project, the team is expected to deliver an end product, which is a prototype

that suggests similar documents using the new algorithm better than ProQuest Dialog's

existing document similarity mechanism. Another solution is also embedded in ProQuest

Dialog systems. The other team works on an automated tagging system in the corpus and

since I am not involved, the other subteam will not be mentioned here.

2. Document Similarity

2.1 Document Vectorization

Fig. 2. A framework for learning paragraph vectors.

One of the major difficulties is the complexity of medical terms within the search engine

embedded in the platform. The users need to carefully construct search queries in correct

biomedical terms to retrieve the "true" documents. Our new search engine aims at giving

more insights and hands the user more meaningful information based on the search result

after the user clicks on one correct document to view. With one correct result, the system

retrieves more relevant documents for the user based on the inter-document similarity.

1 Term frequency-inverse document frequency: a numerical statistic that determines how important a word is to a
document in a collection or corpus.

3

Semantic similarity is a great indicator for the relationship between two concepts, i.e.

textual items, as suggested by Le Q., and Mikolov T. [2]. The authors suggested an

algorithm, Doc2Vec, to convert the representation of different texts to a fixed-length

vector space model. Fig 2 explains how it is done. The traditional word vector predicts a

word given the context of other words. Every word is mapped to a learned, unique vector

and represented in a column in the matrix, indexed by its position in the vocabulary

dictionary. Based on the basic framework, an additional paragraph token is added via a

vector matrix D. The concatenation or average of the four vectors gives prediction to the

fourth word. Here, the paragraph token fills out the missing information in the document

context and can be seen as a kept memory, a representation of its topic or content. This is

called the standard paragraph vector with distributed memory [2] (PV-DM) and works

well for most of the tasks.

Fig. 3. the paragraph vector is trained to predict the words in a small window

Another way is shown in Fig 3. The context is ignored and the paragraph vector is forced

to predict a word in a randomly sampled window. For example, in the context of the

given paragraph, the model needs to fill out the sampled window with any single given

word in the bag of words, "the," "cat," "sat," and "on". It is called the Distributed Bag of

Words version of Paragraph Vector (PV-DBOW). Evidence shows promising outcomes

with the two combined for Doc2Vec tasks.

The state-of-art model performs well on sentimental analysis tasks, which is essentially

proof of its applicability into our system, where we aim at analyzing difficult academic

4

texts and find the inter-associations based on sentiment. As Doc2Vec is a well-developed

model in a framework, our project takes advantage of the previously hard work of

researchers and focuses on fine-tuning the parameters to suit our case.

3. Methods

3.1 Dataset Collection

The sponsor company supplies the team with a database of 2 million records of PubMed

documents. Some of the records turn out to be inputted incorrectly and give an erroneous

reading from the given file. Some of them are too short to be meaningful, i.e. only a

single word, or contain only irrelevant information such as grant providers, personal

contact information, or website links. Those can cause potential problems to achieve

good performance on model fitting. We deem those as outliers, and cleanse, classify and

build a collection of applicable and retrievable documents from the ProQuest's corpus.

After the cleanup, a few dictionaries are extracted for easy and fast access to relevant

training data, which are 1) a map from PubMed ids to its title and abstracts, 2) a map

from PubMed ids to its grant ids. The titles and abstracts were lowered, tokenized, and

concatenated to compose the dictionary.

Due to the nature of the project being large, we provide evidence of success and

demonstrate a proof-of-concept for algorithms on a sample of the corpus and later apply

the method to the entire corpus. A guideline for future data processing is also written in

detail in the handoff document.

3.2 Training Procedure

Dov2Vec is an established model in gensim, an open-sourced library for NLP and

unsupervised topic learning. It uses hierarchical softmax and the tunable parameters

include corpus, epochs. We refer to Dynomant E et.al [4] for inspiration on parameter

tuning. From the Doc2Vec model from gensim, we have chosen three of the available

modifiable parameters for optimization of the model performance. The window size

decides how large a sliding window, a.k.a. the randomly chosen window, is used to parse

texts. The dm parameter sets the training on either PV-DM (dm=0) or PV-DBOW

5

(dm=1). The vector size changes the number of dimensions of the output vector. Other

common modifiable parameters we adjust include epochs and min_count. The min_count

sets the threshold of the highest frequency for a word to be ignored, any word with a

frequency higher than which will be put in the vocabulary. The epochs determine the

iterations our training procedure will go over the input corpus.

The final models are trained on an AWS EC2 instance provided by the sponsors. The

detailed infrastructure of the server is not revealed but we trained on roughly 128 threads

and 512GB of RAM. We do runs on the sample set of the corpus, 15k documents. The

parameters are then tested on 77k documents, and extend and apply to the entire corpus

of 2 million documents. Total training time goes from 30 minutes to up to 6 hours.

3.3 Quantitative Evaluation

Since we are dealing with a large corpus, we decide to use evaluation algorithms for

automated calculation rather than expensive and time-consuming manual evaluation.

Several algorithms are introduced for evaluating the performance of our Doc2Vec model.

To assess the quality of the document vectors, we cluster the output embeddings together

based on the vector distance and form similarity clusters with k-means clustering. We

then evaluate the similarity between documents within a cluster by calculating the textual

coherence from the textual perspective and grant-to-article linkage, from the grant

perspective, i.e., we want to see how similar the words in documents are, and how many

common grants the documents share.

3.3.1 Textual coherence

Fig. 4. brief explanation of JSD

6

Textual coherence gives a precise evaluation of how similar the texts are in a cluster. We

leverage Jensen–Shannon divergence (JSD) to evaluate the similarity between two

probability distributions. JSD is a symmetrized and smoothed version of the

Kullback–Leibler divergence (KLD), and the formula for JSD is shown in Fig 4. given

two distributions P and Q.

Before we apply JSD to our clusters, we first extract the count vector (one-hot encoding)

of the top 20k words in the corpus, normalize the vectors to serve as “word probability

vectors”.

Fig 4. Count Vector

For example in Fig. 5., say these 8 documents are in a single cluster, we normalize each

column so that they sum up to 1 and compare the term's "probability" distribution.

Instead of 1 term, or unigram, represented as the row, we can use any n-grams as well.

Then with the normalized probability vectors, we can calculate the average JSD of a

cluster by comparing the probabilities vectors of all document pairs in the cluster. We

make use of available mathematical models from scipy and rely on the existing

implementation of JSD. Once we have the average JSD of a cluster, we must normalize

the divergence since it naturally increases with cluster size. To do this, we sample a

"random cluster" within the cluster size range of the solution, and subtract the average

JSD of the chosen cluster for normalization. Then we can average the normalized JSD

from every cluster together to get the final coherence score for the corpus. For the

baseline, TF-IDF and the new method, compare their coherence score and having a

higher score than TF-IDF means it outperforms the current ProQuest's algorithm.

7

3.3.2 Grant-to-article linkage

Grant-to-article linkage (G2A) measures the concentration of NIH grants within clusters.

It is independent of the textual information and based on the fact that NIH grants sponsor

research and experiments on similar topics. We first calculate a precision Pr and a

cumulative recall score R while going through each cluster, and calculate a score s for

each cluster. We then aggregate over the clusters to generate a precision-recall curve and

then calculate the Herfindahl-Hirschman index (HHI) by taking the sum of the square of

s. The variables to collect for calculation are as follows. An example of the calculation

process is shown in table 1.

● Art – number of articles in the cluster

● ArtL – number of articles in clusters linked to grants

● Links – number of unique links to the ArtL

● Frac – ArtL/Art

● Sum* – cumulative sums

● R – recall = SumLink/TotLink

● Pr – precision = SumArtL/SumArt

● s – unique linkage present in each cluster

Table 1 by Boyack KW et. al [5]. “Example of cumulative precision-recall calculation based on
grant-to-article linkages. Assume that the total number of linkages (TotLink) available is 2000.”

4. Results

We determine that the model performs the best when we set feature vector size to be 300,

epochs to be 15, min_count to be 20, and window size to be 9. We trained with a

distributed bag of words (PV-DBOW).

8

Cluste
r

Art ArtL Links Frac SumArt SumArtL SumLink R Pr

1 100 90 150 0.90 100 90 150 0.075 0.900

2 100 80 130 0.80 200 170 280 0.140 0.850

3 100 70 120 0.70 300 240 400 0.200 0.800

4.1 Evaluation Analysis

4.1.1 Textual Coherence

We learn the numerical embedding vector for each article using fine-tuned Deep-learning

based methods Doc2Ve and TF-IDF. The output embedding is an N vector with the same

length as the training feature vector. The embeddings are clustered using K-Means and

find an optimal number of clusters, which is 125 determined by the classical elbow

method [7]. We then convert the corpus to a matrix of word counts using

unigram/bigram/trigram with a pre-set maximum token, 20000. Summing up the

averaged JSD of all 125 clusters, we have a textual coherence score for the old and new

methods shown in table 2.

Table 2. Result from JSD with unigram, bigram, and trigram count vectors.

As we can see, both the textual coherence score from bigram and trigram count vector for

Doc2Vec is higher than TF-IDF. We should consider the fact that this measure is biased

towards TF-IDF because TF-IDF inherently focuses on the singular matching words

instead of semantic analysis. Therefore it is promising to see Doc2Vec outperform

TF-IDF by 36.6% and 8.3% on the similarity of longer phrases within document clusters.

4.1.2 Grant-to-article Linkage

Using the clustering solution based on Doc2Vec embeddings, and one based on TF-IDF

embeddings, we calculate the grant-to-article linkage (G2A) and get a precision-recall

curve as shown in Fig. 5. while going through each cluster.

9

Embedding | ngram Unigram Bigram Trigram

Doc2Vec 2.18 2.09 0.26

TF-IDF 3.91 1.53 0.24

Fig 5. Comparison between the precision-recall curve for Doc2Vec(left) and

TF-IDF(right)

As shown in the precision-recall curve, while TF-IDF gets a high precision in the

beginning, the score drops down fast and eventually hits 0.184 as Doc2Vec goes up and

reaches its ends, which is 0.184 as well. It is not as informative as the

Herfindahl-Hirschman index (HHI) as there is not a noticeable difference in the precision

in the end and neither of them converges. However, Doc2Vec scores 2373.41 for HHI

while it is 2236.67 for TF-IDF. It is a significant 6.1% improvement in the concentration

of grants in Doc2Vec embedded document clusters. Doc2Vec outperforms TF-IDF in

clustering similar documents from the same grant better.

Fig 6. Screenshot of the prototype interface

10

4.2 Prototype on AWS

As a requested stretch goal by MDP, we implement a working interface host on the AWS

server to show our training results. Fig. 6. showcases the end product, where the abstract

of the article is displayed and followed by a list of similar document suggestions by

Doc2Vec, TI-IDF, and BERT. BERT is added at a late stage for the mere purpose of

presentation. The prototype presents a way of integrating the new model into the existing

ProQuest Dialog platform. When the user searches for a document and goes into one of

the documents he wants, the system automatically retrieves similar documents for the

user to view and allows the user to see the abstract on the same page, and that could save

a lot of time wasted on going back and sifting through the search results.

5. Conclusion

ProQuest Dialog is a powerful search engine for pharmaceutical and biomedical papers.

But the document retrieval algorithm is getting outdated in current days. In this paper, we

find a way to improve similar document suggestions on the Dialog interface. The NLP

model Doc2Vec PV-DBOW embeds and clusters the similar documents together, and

both evaluation methods return a better score for the baseline TF-IDF method, with

textual coherence being 36.6% higher on bigram count vectors, 8.3% higher on trigram

count vectors, and grant-to-article linkage being 6.1% higher on Herfindahl-Hirschman

index. More investigation should be carried out to prove the irreplaceable effectiveness of

Doc2Vec between other NLP embedding methods including BERT and PM25. Manual

evaluation could also be interesting to implement as a gold-standard for future evaluation

on the quality of the models.

6. Reference

1. Lan Z., Chen M., and Goodman S., et al. ALBERT: A Lite BERT for

Self-Supervised Learning of Language Representations.

https://arxiv.org/abs/1909.11942. Accessed: 19 October 2020

2. Le Q., and Mikolov T. Distributed Representations of Sentences and Documents.

https://arxiv.org/abs/1405.4053. Accessed: 19 October 2020.

11

https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1405.4053

3. Boyack KW, Newman D, Duhon RJ, Klavans R, Patek M, et al. (2011) Clustering

More than Two Million Biomedical Publications: Comparing the Accuracies of

Nine Text-Based Similarity Approaches. PLOS ONE 6(3): e18029.

https://doi.org/10.1371/journal.pone.0018029 Accessed: 18 December 2020.

4. Dynomant E., Darmoni S. J., Lejeune É., Kerdelhué G., Leroy J., Lequertier V.,

Canu S., & Grosjean J. (2019). Doc2Vec on the PubMed corpus: study of a new

approach to generate related articles. https://arxiv.org/abs/1911.11698 Accessed:

18 December 2020.

5. Boyack KW, Newman D, Duhon RJ, Klavans R, Patek M, et al. (2011) Clustering

More than Two Million Biomedical Publications: Comparing the Accuracies of

Nine Text-Based Similarity Approaches. PLOS ONE 6(3): e18029.

https://doi.org/10.1371/journal.pone.0018029 Accessed: 18 December 2020.

6. Elbow method (clustering). (2020). Retrieved 18, December, 2020, from

https://en.wikipedia.org/wiki/Elbow_method_(clustering).

12

https://doi.org/10.1371/journal.pone.0018029
https://arxiv.org/abs/1911.11698
https://doi.org/10.1371/journal.pone.0018029
https://en.wikipedia.org/wiki/Elbow_method_(clustering)

