

NLP in Medical Document Retrieval

12/12/2020 Team: Ashwin Pothukuchi, Hongting Zhu, Joel Guo Thanks to: Brian Noble, Kevin Hastie, and Daniel Dsouza

Background

- Large database with billions of records
- Authoritative sources for students & professionals
- Powerful and efficient search for medical papers

But...

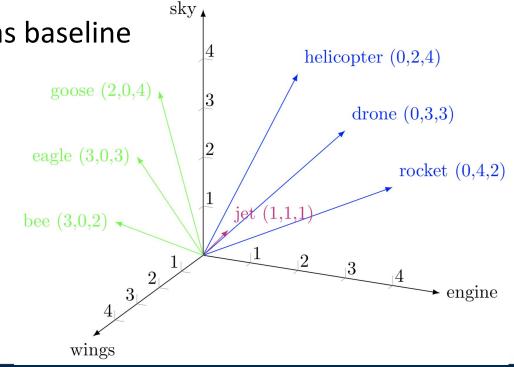
- Difficult search query composition
- Inaccurate results from outdated algorithm

How to improve?

- Similar document suggestion with user-selected result
- Unsupervised learning

Dataset collection

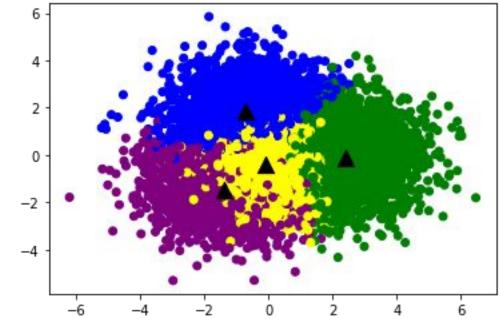
- Corpora.xml from sponsors
- Popular research databases
- Comparison and evaluation


Deep Learning in NLP

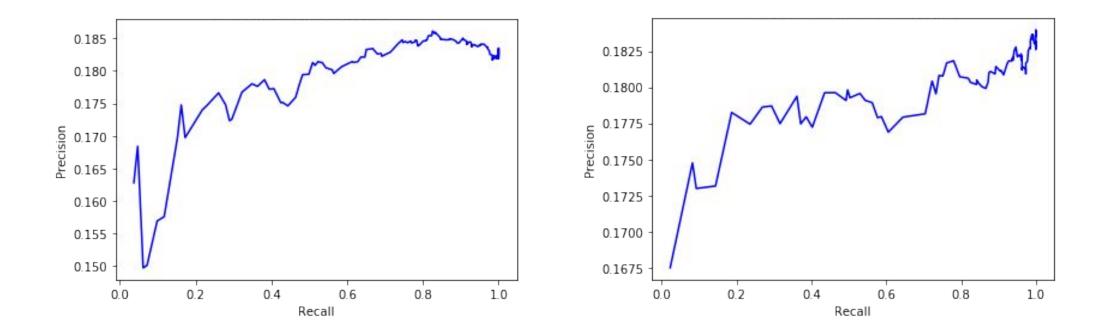
- Generally higher performance
- NLP tasks include:
 - \circ Machine translation
 - **Document summarization and classification**
 - \circ Word prediction
- Popular deep learning models for NLP include:
 - Word2Vec, GloVe, fastText
 - RNN-based: LSTM, ELMo
- Transformer-based: BERT variants, XLNet, OpenAI Transformer

Document to Vector

- Represent document as a numeric vector which best describes it characteristics
- Cluster vectors based on vector cosine similarity
- Measured accuracy
- Compared with the old algorithm in use as baseline


Performance Evaluation

- K-Means Clustering on all documents
- Textual coherence
 - calculate Jensen-Shannon Divergence (JSD) for every cluster
 - Normalize and average the JSD for the entire corpus
- Grant-to-linkage evaluation (G2A)
 - Grant-based similarity
 - \circ $\;$ How many similar articles have the same grant
 - herfindahl-hirschman index


Result - Textual coherence

- Textual Coherence of new clustering solution: 0.198
- Textual Coherence of old clustering solution: 0.194
- Biased towards old solution, still promising to see new outperform old by 2%

Result - G2A

- New vs Old
- Higher precision, faster convergence

UNIVERSITY OF MICHIGAN

Conclusion

- Better similarity from retrieved documents
- Very low cost of evaluation instead of expensive human rating
- Great scalability for large corpus

Future challenge

- Integrate query information
- Ranker on similarity results
 - \circ Telescoping
 - Learn-to-rank rankers

Thank you!

