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Abstract: 

This paper is a review of the body of literature related to the implementation of 

commercial aquaponics. This review was conducted after issues with an experimental 

aquaponics system developed into an interest in the relationship between the issues identified 

with the aquaponics system in the experiment and the issues identified with commercial 

aquaponics in the literature in the literature. Previous research on the development and 

commercialization of aquaponics does exists and overs a diversity of topics. This research is 

gaining in its importance as the FAO has identified a need to improve the sustainability of the 

methods used to produce fish products. Commercial aquaponics if developed properly could fill 

this need in the food system. In this analysis the review was conducted using Citation Network 

Explorer and Visualization of Similarities Viewer which allowed the researchers to narrow in on 

the literature within the aquaponics field specifically focused on commercial aquaponics 

systems. It was found that there is broad coverage of the issues related to commercial 

aquaponics; however, the technology remains complex and expensive, there is little cross 

pollination of research within the field focused on commercialization, and there is a lack of 

understanding of both consumer and producer priorities which limits the applicability of the 

system designs in the food system. Developing solutions aimed at reducing the complexity and 

costs of commercial systems, integrating research from all of the identified areas of interest, and 

identifying consumer and producer priorities could be used to develop more appropriate system 

designs, increase ethe adoption of commercial aquaponics, and increase the resilience of the 

production systems.  
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Introduction: 

The goal of this paper is to conduct a systematic review of the body of literature on 

commercial aquaponics. Additionally, the review is aimed at providing recommendations for 

increasing the applicability of the body of knowledge and to aid in increasing the adoption of 

commercial-scale aquaponics. Aquaponics is defined as a production system that combines 

aquaculture and hydroponic food production through water recirculating between the two 

adjoined subsystems (Naegel, 1977). This creates a system where nutrients produced by the 

aquaculture component are utilized by the hydroponic component (Naegel, 1977). In the 2020 

State of Fisheries and Aquaculture Report; aquaculture is highlighted as one of the fastest-

growing agricultural fields, surpassing many aquatic capture sectors including algae, freshwater 

fish, and mollusks: with aquaculture contributing 46.0 percent of production from 2016 to 2018 

(FAO, 2020). In this same report, a need is identified for technologies and practices that “foster 

the sustainable use of resources” and reduce waste as necessary for addressing climate change 

and securing a future for the aquaculture sector (FAO, 2020).  We argue that the necessary 

developments in the field create a niche for commercial aquaponics. We also argue that 

aquaponics addresses sustainable development goal 12 (responsible consumption and 

production) as there is little to no use of agrichemicals, high efficiency of nutrient use, and 

reduced waste outputs from the production of food products in aquaponics production 

(Rackocy, 2012; Suhl, 2016; and Blidariu, 2011). 

The foundational research on aquaponics was conducted from the late 1970s to the early 

2000s with the main body of research expanding around 2010 (Junge, 2017; Figure 6). 

Aquaponics systems function through nutrient, mineral, and water flows between the 

aquaculture and hydroponic subsystem (Goddek, S.D., 2015) In these systems fish effluent and 

feed provide essential nutrients to the system which are processed by bacteria transforming 

nutrients into a bioavailable state, which is then uptaken by the plants (Goddek, S.D., 2015). This 

creates a synergy in the system where the inputs and outputs from the aquaculture sub-system 

provide the nutrients for the hydroponics sub-system, which in turn treats the water to be 

habitable for the aquaculture sub-system. In Blidariu et al. (2011) and Delaide (2016), it is 

argued that the associated reductions in effluent discharge and use of chemical pesticide and 

herbicide combined with higher water and nutrient use efficiency amounts to the creation of a 

more sustainable, aquacultural production practice. However, there is a continued push towards 

more efficient and sustainable production practices within the aquaponics field (Goddek, 2015). 

In this paper the authors argue that further improvements must be made in the energy use 

efficiency and other consumptive use efficiencies in aquaponics to achieve sustainable 

production (Goddek, 2015).  

 

In Robertson (2015) it is suggested that sustainable agriculture needs to address economic, 

social, and environmental concerns. The concerns are defined as follows:  

● Economic Sustainability: addresses the continuity of producing goods and services 

where the benefit exceeds the cost in dollar value and the externalities associated 

with production;  
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● Social Sustainability addresses justice, equity, health, and other associated welfare 

concerns;  

● Ecological Sustainability is summarized as the system’s ability to maintain ecosystem 

services essential for the continuation of life (Robertson, 2015).  

The goals of the development of aquaponics have been in line with this definition; 

however, the primary focus has been on developing economic and ecological sustainability 

(Milicic, 2017).  

Background: 

 Our interest in commercial aquaponics was driven by an interest in sustainable 

agricultural practices which developed into an experiment with aquaponics at the University of 

Michigan Matthaei botanical gardens at the University of Michigan. Understanding our 

experience with this system is essential as the recommendations for the literature review are 

influenced by the knowledge gained through this experience, and the information gathered in 

the literature review allowed for the development of recommendations for improvements to 

the experimental system. An initial experiment with aquaponics was conducted at the Matthaei 

Botanical Gardens, which was terminated due to operational issues with system operation 

related to design changes, the Covid-19 pandemic, and fish illness. After the termination of this 

experiment, we developed a desire to understand what could be done to improve the system 

that we had operated, and how our experience with the system might overlap with the gaps in 

research in the commercial aquaponics literature. 

Sustainability Without Borders Aquaponics System: 

 Sustainability Without Borders at the University of Michigan had been operating an 

aquaponics system used in research conducted by Frost (2019). The initial goal of our operation 

of this system was to conduct a life cycle assessment of the system under different management 

practices in the hydroponic component and to create an estimated return on investment for the 

experimental system. Our goal was to determine if the system was both sustainable and suited 

for public operation. The experiment with this system was unsuccessful and led to the 

development of the commercialization literature review. The operation of this system informed 

and focused our review of the literature toward understanding the commercial application 

drivers and barriers. 

System design: 
The system used a 2:1 gravel media bed to rearing tank ratio (Frost, 2019). The system 

was composed of wooden frames, with waterproof lining, vinyl pipe, gravel media, and water 

three pumps. The pumps were used as an inflow to the aquaculture tank, an inflow to the 

hydroponics grow bed, and an overflow safeguard from the aquaculture tank. The system was 

originally designed with 3-inch hard PVC drainpipes which made the system difficult to navigate 

and highly inaccessible, these pipes were replaced with 1.5-inch vinyl tubing which created 

greater accessibility around the system.  Float switches were also added to the system as a 
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method to prevent water loss due to overflow. The gravel beds were operated as a continuous 

flow system due to issues with siphons observed in Frost, 2019.  

System Management: 
 The Covid-19 pandemic interrupted standard operating procedures by reducing our 

access to the aquaponics system. Before the pandemic feeding checks were provided twice per 

day and the fish were hand-fed. Health checks occurred once daily. Water quality checks were 

provided once per day using a multimeter. Water was added daily at less than 10% of system 

volume.   Feed was added to the system as suggested by the supplier with feed consumed in 

approximately 5 minutes by the fish. Weekly water quality checks were delayed during the first 

3 weeks of the experiment due to issues with the calibration of the photometer used for 

nutrient testing. Dissolved oxygen was monitored using the multimeter.  

After the covid-19 pandemic shutdowns, feeding and health checks both occurred once daily. 

Fish were fed by an auto-feeder calibrated to provide the appropriate volume of feed. Basic 

water quality checks with a multimeter were performed once daily. Full water quality testing 

was not required to continue the experiment and the area of the campus farm used for chemical 

disposal was restricted making nutrient testing unavailable for the experiment. The hydroponics 

system was operated using an intercropped planting of hydroponic bell peppers and Salanova 

Green Butter Lettuce. The peppers were ordered from Johnny's seeds and the Salanova lettuce 

was donated by the University of Michigan campus farm.  

Management issues: 

 During system operation, multiple issues were encountered. First, the reduced flow 

capacity in the smaller pipes led to a large reduction in the system’s excess flow capacity, this 

created the conditions for 2 overflows despite preventative measures being taken. An initial 

overflow of water occurred early on in system operation, with no detrimental effects on system 

function as it was caught early. A second overflow occurred later in the summer from issues 

with algae build-up in the outflow pipes from the wooden gravel bed. We are unsure if this 

overflow was related to health issues experienced by the fish in the experiment. These 

overflows did result in significant water additions to the system which did exceed our 10% of 

system volume daily cap.  

Pest infestations were experienced (Aphid and Spider Mite) on the pepper plants. These were 

likely caused by a lack of physical barriers to the entry of insects in the greenhouses at the UM 

campus farm. Both infestations were treated successfully with integrated pest management.  

In late June and early July there were monitoring equipment malfunctions. The malfunctions 

were exacerbated by delays associated with supply chains, associated with Covid-19, resulting in 

the delivery of replacement components. Fish became ill and the system began losing 1-2 fish 

per day. Issues with identifying the cause of fish deaths occurred due to covid restrictions on 

access to the system and other areas in the campus farm. After the beginning of fish deaths, 

potential issues with ammonia, nitrite, and chloramine were identified. After the end of our 

experiment a black-grey sludge was identified in the grow bed and the sump tank which could 
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indicate issues with sulfate-reducing bacteria which create hydrogen sulfide which can be 

harmful to fish and the system operator.  

Attempted solutions: 

 After identifying two fish deaths in the systems the veterinary staff at the university was 

contacted. We continued working with veterinary staff from the time of contact to the end of 

the experiment, which ended after the loss of 50% of the fish stock. During this period the 

campus farm provided a special exemption for chemical disposal near the system so that full 

water quality testing could begin. Water treatments for Ammonia, Nitrite, and Chloramine were 

applied to reduce the potential for harm from water quality. Dissolved oxygen was identified as 

being low, aerators were added to the system to increase the DO content. The observed low DO 

was identified as a faulty sensor on the multimeter used in daily water checks. Additionally, the 

water source was changed from Ann Arbor city water to reverse osmosis water provided by the 

campus farm to prevent the addition of chloramines.  

Results from Operation: 

Due to the deaths of tilapia and the overall termination of the experiment data was not 

collected on the value of production, the mass of fish produced, the energy use, or any 

valuations from the operation. The mass of crops produced during the operation of the system 

was quantified. Lettuce was successfully harvested twice (31 heads and 41 heads respectively) 

with a total edible biomass of 15.05 lbs. The peppers were harvested continuously, with a drop 

in the rate of harvest during the attempted system recovery. The peppers produced 72.02 lbs of 

fruit biomass with 45.21 lbs being considered edible as there was loss due to overripening 

during the attempted system recovery. The initial harvest of lettuce was donated to members of 

the SEAS community and the remaining produce from the system was donated to the South-

West Detroit Environmental Vision Cadillac Urban Farm to support ongoing food security efforts 

during the Covid-19 pandemic. Through this experience we also learned that under the current 

design, the system was not suitable for public use as we could not guarantee that our 

experiences with operation would not happen again without a redesign.  

Literature Review Methods: 

    The citation network analysis software, CitNetExplorer (Citation Network Explorer) 

developed by van Eck and Waltman was used to begin our analysis of the commercial 

aquaponics literature (2014).  The developers state that the software was designed “for 

analyzing and visualizing direct citation networks”.  CitnetExplorer is intended to explore the 

citation linkages between individual publications and other associated attributes (Publication 

year, citation score, etc.) (van Eck N. a., 2014). The data analyzed in CitNetExplorer was exported 

from the Web of Science database for all papers related to the search term “aquaponics”. In this 

analysis, the network science tools offered by the software were utilized to determine the 

different groups of research within the aquaponics literature. We utilized the clustering tool 

which uses a combination of network science algorithms that determine the “relatedness” of 

papers and establishes clusters or “topics” based on the determined relatedness (van Eck N. a., 
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2014). A visual representation of the full citation network divided into groups is provided in 

figure 1 in the appendix.  

Within the clustering tool the resolution is a variable in the relatedness algorithm used 

to determine the “level of detail at which clusters are identified” with a greater number of 

clusters appearing at higher resolutions (van Eck N. a., 2014). The strength of the resolution tool 

is dependent on the number of papers included in the file used for analysis (van Eck N. a., 2014). 

Due to a relatively low number of papers in our exported Web of Science data, resolutions from 

1.00 to 2.00 were tested at a step of 0.05. A resolution of 1.50 was determined to be optimal as 

it was concluded that the five resulting groups seemed homogenous as determined by a review 

of titles and top cited publications.  

The drill down tool was utilized on the group which was most related to the goal of our 

analysis, the barriers to commercialization of aquaponics. The drill down tool enabled us to 

restrict our analysis to only the papers within this cluster. Using the clustering tool again and a 

resolution of 1.50, 5 subgroups were identified within the commercialization group. In this stage 

of our analysis, the top 6 papers within each group were analyzed for content and research 

topics along with an analysis of abstracts and titles from the rest of the group allowing us to 

identify the niches in the research within the body of literature related to commercial 

aquaponics.  

 The Web of Science file information for each sub-group was exported for analysis in 

Visualization of Similarities (VOS) viewer. VOS viewer is software that uses mathematical 

matrices to place objects into visualizations by weighting the degree of similarity to other matrix 

components with the distance between objects representing the associated relatedness (van 

Eck N. a., 2006). The function of this software is similar to CitNetExplorer; however, VOS viewer 

can be used to create clusters of components using co-occurrence data in the papers which is 

useful for analyzing keyword networks (van Eck N. a., 2006). In this review, the keywords of each 

sub-group were analyzed using full counting and 2 co-occurrences per keyword as the minimum 

threshold for inclusion in our analysis. The use of 2 co-occurrences ensured that at least 2 

papers had utilized the keyword. This helped to limit the number of keywords analyzed and 

ensure that only keywords utilized multiple times were included in the analysis. The keyword 

analysis was used to add additional depth to our understanding of the foci of each sub-group in 

the citation network.  

Results: 

Initial Analysis: 

The main groups identified in our initial analysis of the aquaponics literature are: 

Table 1: Initial Analysis Groups 

Initial Analysis Groups Identified 

Group Name Number of Publications in group 

Nutrient Cycling 137 
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Nitrogen Cycling 52 

Microbial Content 30 

Novel Improvements to system design 29 

Commercialization* 118 

*focus of our analysis. 

 The nutrient cycling group was determined to focus broadly on how nutrients are 

processed in aquaponics systems and the factors that could improve this process, primarily 

using new technologies or improving pre-existing technologies (Graber, 2009; Lennard, 2006; 

and Tyson, 2011).  The nitrogen cycling group was determined to have a major interest in the 

factors that influence the transformation and uptake of nitrogen in aquaponics systems using 

various management techniques (Hu, 2015; Zou, 2016; and Wongkiew, 2017). The microbial 

content group focused broadly on the role of microbes in aquaponics systems and how to 

improve system function as it relates to promoting beneficial microbes while managing harmful 

microbes (Goddek, S.S, 2016; Schmautz, 2017; and Pantanella, 2015). The novel improvements 

group focused broadly on technical and managerial improvements to system function analyzing 

the benefits of using alternative technologies like plant-based feed, systems modeling, and 

various species of crops (Medina, 2016; Karimanzira, 2016; and Moya, 2014). Visual 

representations of these groups are provided in the appendix, Figures 6 - 11.  

Commercialization: 

In the initial analysis, this group was identified as focusing on the scale, profitability, and 

people involved in aquaponics systems (Love D.F., 2015; Love D.C., 2014). An expanded interest 

in commercial aquaponics was identified in the CitNetExplorer visualization, beginning around 

2012 (Figure 12). This group also analyzed the technical, social, environmental, and economic 

challenges to the growth of aquaponics as a vector for sustainable food production (Goddek, 

2015). Within this group, 5 sub-groups were identified and characterized as follows:  

Table 2: Commercialization Sub-groups 

Commercialization Sub-groups Identified 

Group Name Number of Publications in Group 

Technical Improvements 43 

Factors influencing the scalability of commercial 
aquaponics 25 

Economics of Aquaponics 17 

Novel System Design 17 

Limiting Factors to social acceptance 12 

 

The technical improvements to aquaponics sub-group discussed a multitude of design 

and managerial improvements to aquaponics systems focused on increased productivity 

(Goddek S. D., 2015; Martins, 2010; Delaide, 2016; Van Rijn, 2013; Rakocy, 2012; and Goddek S. 
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E., 2016). The major foci of the technical improvements from this group were aimed at 

improving the economic efficiency; disease management; waste and nutrient loading; and 

overall productive capacity of aquaponic systems. Furthermore, the VOS viewer analysis of the 

papers within the group identified 7 keyword clusters focused on design-based solutions to 

concerns related to: energy, nutrient, and economic sustainability; different system design 

concepts; expansion of productive capacity; solids removal; negative environmental 

externalities; yield and nutrient concentrations; and the use of dynamic systems modeling 

(Figure 1). This group of literature broadly concludes that there is potential for intensification, 

but a greater understanding of the optimal operating conditions is necessary for efficient, 

successful, and sustainable intensification of aquaponics. The keyword clusters further identify 

the areas of interest in this group as heavily related to improving our understanding of the 

optimal conditions within aquaponics systems as it relates to the efficiency of the use of inputs.   

Within the focus on the internal system mechanisms, several factors were highlighted 

repeatedly as essential for improving the internal system function within this group: the feed 

conversion ratio, biofiltration and mineralization, pH, pest and disease control, energy 

consumption, and the rate of innovation. Improvements to the feed conversion ratio (FCR) are 

necessary for greater efficiency in the utilization of the feed input (Martins, 2010). Suggested 

improvements to the feed conversion ratio centered optimization of water quality for the fish, 

using optimal feeding techniques and feed composition, and fish optimal to the system design 

(Van Rijn, 2013; Martins, 2010; and Goddek S.E., 2016).  Improved biofiltration and 

mineralization are required to improve dissolved nutrient concentrations in aquaponics systems 

and reduce the loss of nutrients through sludge removal (Goddek, S.D, 2015). Recommendations 

for improving nutrient release through biofiltration and mineralization are the use of sludge 

thickening technologies, denitrification reactors, improved FCR, optimizing Biofilter design for 

the system (Martins, 2010; Van Rijn, 2013; Delaide, 2016; and Rackocy, 2010). pH balance is an 

interesting issue within this group, as fish, plants, and bacteria in the system have different 

optimal pH (Goddek, S.E., 2016). Solutions for this issue include the use of lime-beds to balance 

pH near 7 or decoupling system components so that pH can be adjusted prior to use in each sub 

system (Goddek, S.D., 2015; Goddek, S.E., 2015). Pest and disease management is difficult in 

aquaponics due to restrictions on the use of agrichemicals as the addition of these chemicals is 

likely to harm the overall health of the system and render the outputs of the system inedible 

(Rackocy, 2010). Primary recommendations for improved management biological controls, such 

as predators, and physical barriers (Rackocy, 2010 and Goddek, S.D., 2015). Recirculating 

aquaculture systems, of which aquaponic is a sub-set, are described as highly energy intensive 

systems with energy use 40-60% higher than conventional aquaculture which could make 

aquaponics inaccessible (Martins, 2010 and Goddek, S.D., 2015). In this group it is 

recommended that alternative energy sources are utilized to reduce dependency on fossil fuels 

and designing systems to flow using gravity instead of pumps (Martins, 2010 and Goddek, S.D., 

2015). 

 



9 | P a g e  
 

 

Figure 1: Keyword Network for Technical Improvements Sub-group 

 

The factors influencing the scalability of commercial aquaponics systems sub-group was 

noted to have foci on the design and environmental challenges for scaling up aquaponics, the 

ability to integrate into current aquaculture systems, and the composition of the practitioners of 

aquaponics (Love, 2015; Love D.F., 2014; Love D. U., 2015; Naegel, 1977; Blidariu, 2011; and 

Lewis, 1978).  This group discusses the role of practitioner priorities, environmental, geographic, 

and political conditions on the design and scalability of aquaponics systems. The VOS viewer 

analysis identified 5 clusters focused on scalability concerns related to: system performance 

under renewable energies; the quality of produce; the relationship between commercial 

aquaponics and food security; the sustainability of aquaponics; and bacterial diversity and water 

quality (Figure 2). The group broadly concludes that a greater understanding of the factors 

influencing the adoption of aquaponics must be developed especially with regard to the role of 

internal system function and the systemic context of system operation such as stakeholder 

priorities, markets, and environmental conditions. The keywords in this group identify a broad 

focus on improving the design of and outputs from aquaponics in ways that make easier scaling 

up the adoption of the production system. 
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     Figure 2: Keyword Network for Scalability Sub-group 

  

The economics of aquaponics systems sub-group was identified as addressing some of 

the above concerns related to the economic feasibility of the production practice (Tokunaga, 

2015; Rupasinghe, 2010; Bailey, 1997; Bosma, 2017; Vermeulen, 2013; and Bailey D. F., 2017). 

This group sought to develop an understanding of the economic feasibility of aquaponics 

production systems in both local and international contexts. The VOS viewer analysis of this 

group only identified two keyword clusters within the group, one focused on the economics of 

aquaponics and the other with a focus on aquaculture as a commercial enterprise (Figure 3). 

Within this group, papers that evaluated aquaponics on a small scale indicated that these 

production systems are profitable and have a role to play in the food system, the larger-scale 

analysis of aquaponics suggests that aquaponics is suboptimal in the context of the European 

food system (Tokunaga, 2015; Bosma, 2017; and Vermeulen, 2013). This group appears to 

suggest that aquaponics may only have a niche role to play in the food system dependent on 

external, market-based variables and not the productive capacity of the system alone. The 

keyword analysis further suggests that this group has primary interests in the external economic 

factors that influence the success or failure of commercial aquaponics systems. 
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Figure 3: Keyword Network for Economics Sub-group 

  

The novel system design sub-group was identified as discussing alternative system 

designs and management practices (Kloas, 2015; Suhl, 2016; Timmons, 2010; Villarroel, 2016; 

Sommerville, 2014; and Monsees, 2017). The papers analyzed primarily discussed aquaponics in 

a European context with a heavy discussion of the potential utility of the “aquaponics system for 

emission-free tomato and fish production in greenhouses” or “ASTAF-PRO” system design 

(Kloas, 2015; Suhl, 2016; Villarroel, 2016; and Monsees, 2017). Other papers within the group 

highlighted other alternative system designs including vertical agriculture and marine 

aquaponics. The VOS analysis identified three clusters, general system design; design for 

product quality; and interest in the sustainability and food security of urban aquaponics systems 

(Figure 4). This group broadly concludes that there is a wide variety of use-values from 

aquaponics, beyond traditional single recirculating freshwater aquaponic systems. The keyword 

analysis highlights an interest in this group related to increasing the efficiency of aquaponic 

systems generally, while also designing for specific contexts not addressed by traditional 

aquaponic system designs. 
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Figure 4: Keyword Network for Novel System Design Group 

  

The limiting factors to social acceptance sub-group was identified as focusing on issues 

related to lack of awareness that is limiting consumer interest in aquaponics products and the 

overall adoption of aquaponics as a commercial venture (Junge, 2017; Sommerville, 2014; Dos 

Santos, 2016; Milicic, 2017; Pilinszky, 2015; and Pollard, 2017). The group focuses on consumer 

concerns, an overly generalized definition of aquaponics, low consumer awareness, managerial 

difficulties, and exclusionary policy gaps. The VOS viewer analysis of the group identified 3 

clusters: aquaponics as sustainable food production, consumer perception of aquaponics, and 

consumer interest in aquaponics (Figure 5).  The group broadly concludes that greater effort 

must be applied to raising consumer awareness of aquaponics, increasing the ease of 

management for practitioners and eliminating policy gaps that are exclusionary to the 

production practice. The keyword analysis for this sub-group further identifies a heavy interest 

in consumer priorities as they relate to aquaponics as well as interest in promoting aquaponics 

as a sustainable method of food production.  
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Figure 5: Keyword Network for Social Acceptance Group 

Discussion: 

Suggested research on Commercial Aquaponics: 

Based on our analysis there is a high degree of focus on improving water quality and 

nutrient management in aquaponics systems, yet this does not address the only concerns 

related to the improvement of these production systems. A major concern related to the 

scalability of aquaponics is the ability to combat pests and diseases that may enter the system as 

there are heavy restrictions on these management practices (Goddek, 2015).  There was an 

argument in the literature that the development of aquaponics safe pesticides and disease 

management techniques are essential to reduce the barriers to entry into the field and reduce 

the complexity of management (Pilinszky, 2015). In Monsees (2017) it is argued that decoupled 

aquaponics systems present an opportunity to use pest and disease management techniques 

that might otherwise be unavailable in traditional aquaponic system designs due to the ability to 

segregate the systems during the treatment period. We recommend that further development 

of the ability to quarantine system components as it relates to pest and disease management is 

necessary. Greater ease of pest and disease management would also increase the accessibility 

of aquaponics as current pest and disease management techniques require a high capital input 

for prevention as current treatments are prohibitively expensive and can be harmful to overall 

system health (Sommerville, 2014).  
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In many of the papers analyzed the aquaponics systems are studied in a vacuum as if the 

system is independent from external influences. We argue that this is problematic because a 

greater understanding of how aquaponics functions in the broader context of the food system is 

necessary to understand what niches might exist for the production system. This is best 

represented by the disparities between the viability of aquaponics as an alternative production 

practice in the context of food systems specific to Hawaii, the Philippines, and Europe 

(Vermeulen, 2013; Tokunaga, 2015; and Bosma, 2017). To improve our understanding of the 

role of aquaponics in the food system we recommend further study of aquaponics in a systemic 

context at local, regional, national, and international scales. A greater understanding of the 

systems that affect aquaponics at various scales would aid in understanding the context in which 

aquaponics can be successful. An expanded understanding of the niches available to aquaponics 

can also aid in the development of priorities-based system design. We argue that this is useful 

due to the context dependencies of successful aquaponics systems and the role producer and 

consumer priorities play in the social acceptance and economic success of aquaponics systems 

(Sommerville, 2014; Love, D.F., 2015; and Milicic, 2017). 

Many of the above aquaponics studies analyzed commercial aquaponics in the context of a 

single owner-operator system which has high knowledge and labor burdens for practitioners, 

limits the diversity of the system and requires larger production scales to meet the needs of the 

market (Tokunaga, 2015; Bailey, 1997; Bosma, 2017). To address this assumption, alternative 

management structures including cooperative, or community management of multiple small-

scale aquaponics systems should be studied. This is recommended due to the arguments in the 

literature that aquaponics can be built out for multiple contexts and that it is uniquely suited for 

an urban environment in which small-scale production can be useful (Goddek, 2015). We argue 

that alternative management structures might improve the appropriateness of the technology 

for local production which has been discussed as desirable (Bosma, 2017 and Tokunaga, 2015). 

We also argue that these management structures would reduce the barriers to entry for system 

development through increasing access to human capital thus reducing the individual labor and 

educational requirements for operation. We also argue that these management structures could 

allow for greater specialization as it relates to knowledge of system components. Furthermore, 

developing community centered management systems could expand interest in aquaponics 

generally as consumers have been noted to have more positive associations with the practice if 

they are connected to the producers (Millicic, 2017). 

Additionally, greater attention should be paid to who is practicing aquaponics and why. The 

demographic composition and goals of aquaponics practitioners are noted to be influential in 

the design and success of aquaponics systems due to the role that practitioners play in 

establishing the priorities for production (Love, D.F. 2015; Love, D.C., 2014; and Villarroel, 2016). 

These studies indicate that there are few commercial practitioners with many individuals 

involved in aquaponics being educators, hobbyists, and NGOs. Developing a greater 

understanding of who the commercial producers are, what drives interest in commercial 

aquaponics, and what factors drive the profitability of these systems will provide necessary 

context to researchers seeking to expand the adoption of commercial aquaponics and aid in the 

further development of optimal system designs. 
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Recommendations for the SWB System at the Matthaei Botanical Gardens: 

 When addressing recommendations specific to alterations made to the Matthaei system 

our attempt at creating a physically accessible system harmed the health of the system overall. 

This harm was caused by multiple overflows despite preventative measures taken. This is likely 

caused by the reduction in excess flow capacity caused by using pipes at a significantly smaller 

diameter than the initial design. In a redesign, custom-sized flexible vinyl tubing should be 

ordered to keep the intended physical accessibility. An alternative could be the use of platforms 

and elevated surfaces which provide greater accessibility in terms of height. The operated 

system design was inaccessible to shorter individuals and proved challenging even for taller 

individuals when attempting to harvest fish and crops.  

We also recommend the integration of a mechanical filter into the current design of the 

Matthaei system. This recommendation is given due to the high labor cost of emptying effluent 

from gravel beds (Rackocy, 2012). While gravel beds can be used as a mechanical filter on their 

own the addition of a separate mechanical filter can be useful as it will separate the wastes 

before the gravel beds allowing the gravel beds to function as the biofilter and grow bed 

(Sommerville, 2014).  This alteration would increase the materials and energy cost of system 

operation by eliminating the ability to use gravity as a driver of flow in this design unless 

additional alterations were made. However, we argue that the potential to prevent the 

accumulation of effluent in the gravel beds is of greater concern. Especially in this system due to 

the likelihood of anaerobic or anoxic zones developing in the accumulated effluent potentially 

promoting the growth of sulfate-reducing bacteria.  

Our third recommendation is the integration of an activated charcoal filter as described 

in Sommerville, 2014. These filters can be used to prevent the accumulation of unwanted 

chemicals in the aquaponics system by filtering them out before addition. This recommendation 

was developed out of concern for the potential accumulation of chloramines in the system 

related to the two overflow events. A surplus tank with an activated charcoal filter could have 

allowed for greater water additions with less risk of introducing high quantities of chloramines 

found in the Ann Arbor Drinking water which can be harmful to fish health.  

Our last recommendation is to have secondary testing equipment on-site in case of 

emergency or issues with the accuracy of the primary equipment. There are cheap options for 

easy-to-use water quality testing equipment such as the API Freshwater Master Test Kit that can 

be kept as a backup in case of primary equipment malfunction. These test kits were used by 

veterinary staff when visiting the system and verified that nutrients were not out of range as 

expressed by our equipment; however, this equipment could have provided additional use-value 

as an alternative to the more noxious chemicals used in testing by the photometer, especially 

with access to the disposal site being restricted. 

Conclusions: 

Several foci were identified within the body of literature on commercial aquaponics. The 

foci were: Technical Improvements to aquaponics; Factors influencing the scalability of 

commercial aquaponics; Economics of Aquaponics; Novel System Design; Limiting Factors to 
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social acceptance. The technical improvements sub-cluster identified internal optimization as 

essential for the continued development of the production practice. The scalability sub-cluster 

identified understanding the priorities of producers and the contexts in which systems function 

optimally as necessary for further adoption of commercial systems. The economics group 

established a need to understand how various scales of both aquaponics systems and food 

systems impact the success of commercial systems. The novel systems sub-cluster identified a 

need to expand the use values for the production practice through non-traditional systems 

designs as a method for expanding the utility of the production system and increasing the role 

of commercial aquaponics in the food system beyond the scope of traditional systems. The 

social acceptance sub cluster noted that the success of commercial systems is dependent on 

public interest in the outputs of these systems, and that increased public awareness is essential 

to expand both the consumer and producer base.  

The groups identified above highlight a need to understand and optimize the internal 

and external systems affecting the successful operation of aquaponics systems. However, these 

groups generally highlight these as independent variables. Understanding the interaction 

between both the internal and external systemic factors that affect the success of aquaponics is 

essential for further improvements to system function and increased adoption of the production 

practice. Market success of commercial aquaponics requires greater improvements on the 

efficiency of the system; however, improvements to only the internal systems without 

acknowledging the external systems related to culture and the life of operators will result in 

sub-optimal performance. To develop optimal system design requires and understanding of 

both consumer and producer priorities and the success of the system in the market requires 

public interest. Furthermore, additional research should be focused on reducing barriers to 

entry to aquaponics production by working to simplify system operation. We propose that 

reductions in the costs associated with entry into the field and developing a simplified operation 

that accounts for the internal and external factors influencing success the adoption of 

aquaponics as a production practice will expand. Additionally, by accounting for both the 

internal and external pressures on aquaponics systems can be designed with greater resilience 

to these pressures. 

 As it relates to the Matthaei aquaponics system, these are all points of change that were 

identified as potential preventative measures during the attempted recovery of the failing 

system.  Our recommendations are focused on maintaining system integrity and reducing the 

potential for harm to the system. Despite a focus on the internal function of the system our 

recommendations have been developed in response to both internal and external pressures 

with the intention of preventing a similar experience with the same system design. These 

recommendations have also been made in an attempt to address these issues at low-cost and 

without increasing the complexity of operation. Our suggested improvements to the Matthaei 

system and suggestions for the advancement of commercial aquaponics research further 

improve the responsibility of the production system through focusing on improvements aimed 

at welfare for both the animals in the system and the operators. The refocus toward welfare and 

accessibility also builds on the social sustainability of commercial systems which was indicated 

to be lacking when compared with the economic and environmental sustainability of the 

systems. Furthermore, working to increase the accessibility and adoption of commercial 
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aquaponics systems can aid in addressing the broader need to increase the responsibility of 

production the aquaculture industry as described by the FAO and in addressing the sustainability 

concerns related to responsible production and consumption outlined in Sustainable 

Development Goal 12. 
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Appendix 1: Citation Networks 

Figure 6: Citation Network of Full Network 

 

Figure 7: Citation Network of Group 1: Nutrient Uptake 
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Figure 8: Citation Network of Group 2: Commercialization 

 

Figure 9: Citation Network of Group 3: Nitrogen Cycling 
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Figure 10: Citation Network of Group 4: Microbial Content 

 

Figure 11: Citation Network of Group 5: Microbial Content 

 

 



21 | P a g e  
 

Figure 12: Commercialization Group with Sub-Groups: 

 

Figure 13: Technical Improvements Sub-Group Citation Network: 
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Figure 14: Scalability Sub-Group Citation Network: 

 

 

Figure 15: Economics Sub-Group Citation Network: 
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Figure 16: Novel Systems Design Sub-Group Citation Network: 

 

 

Figure 17: Social Acceptance Sub-Group Citation Network: 

 



24 | P a g e  
 

Appendix 2: Aquaponics system harvest data 

Figure 18: Sustainability without borders aquaponics system: 

 

Description: Left is the aquaculture component of the system, Center is one design for the 

gravel-based hydroponics components, right is the alternative design for the gravel hydroponics 

component, unseen to the front is the sump tank which is inset into the ground and spans the 

tanks from left to right. 

 

Table 3: Lettuce harvest data from aquaponics experiment 

Lettuce 

First Harvest Second Harvest  

Planted Harvested Planted Harvested 

40 Plants 31 Plants 45 Plants 41 Plants 

With roots and 
Rockwool (lbs) 

Without Roots and 
Rockwool (lbs) 

With roots and 
Rockwool (lbs) 

Without Roots and 
Rockwool (lbs) 

0.4 0.2 0.1 0.04 

0.2 0.1 0.2 0.1 

0.4 0.4 0.1 0.04 

0.4 0.4 0.1 0.06 

0.4 0.2 0.2 0.1 

0.6 0.4 0.2 0.1 

0.4 0.4 0.3 0.2 
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0.6 0.4 0.4 0.2 

0.6 0.4 0.4 0.2 

0.4 0.2 0.2 0.1 

0.4 0.4 0.2 0.06 

0.4 0.2 0.3 0.1 

0.4 0.4 0.3 0.2 

0.4 0.2 0.4 0.2 

0.4 0.2 0.3 0.2 

0.4 0.4 0.3 0.2 

0.6 0.6 0.1 0.05 

0.4 0.2 0.2 0.07 

0.6 0.4 0.2 0.1 

0.6 0.4 0.2 0.1 

0.4 0.2 0.3 0.2 

0.4 0.4 0.3 0.2 

0.4 0.4 0.4 0.2 

0.4 0.4 0.2 0.1 

0.4 0.4 0.2 0.1 

0.6 0.4 0.2 0.08 

0.6 0.4 0.3 0.1 

0.4 0.4 0.2 0.1 

0.4 0.4 0.3 0.2 

0.4 0.4 0.1 0.02 

0.4 0.4 0.1 0.03 

  0.3 0.2 

  0.2 0.1 

  0.2 0.1 

  0.4 0.2 

Total 

Total Yield Weight Total Edible Yield Weight 

22.2 15.05 

 

Table 4: Pepper Harvest Data from aquaponics experiment 

Peppers 

Edible Produce (lbs) Inedible Produce (lbs) Plants (lbs) 

0.23 7.41 0.31 

0.68 19.4 0.5 

0.59  0.57 
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21.91  2.8 

21.8  7.42 

  6.5 

  3.7 

  10.9 

  8.6 

  13.9 

  12.7 

45.21 26.81 67.9 

Total Food Biomass Total Plant Biomass  

72.02 26.81  
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