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ABSTRACT 

Increased E-commerce and demand for contactless delivery during the COVID-19 

pandemic have fueled interest in robotic package delivery. We evaluate life cycle greenhouse gas 

(GHG) emissions for automated ground delivery systems consisting of a vehicle (last-mile) and a 

robot (final-50-feet) in a suburban setting. Small and large cargo vans (125 and 350 cubic feet; 

V125 and V350) with internal combustion engine (ICEV) and battery electric (BEV) powertrains 

were assessed for three delivery scenarios: (i) conventional, human-driven vehicle with human 

delivery; (ii) partially automated, human-driven vehicle with robot delivery; and (iii) fully 

automated: connected automated vehicle (CAV) with robot delivery. The robot’s contribution to 

life cycle GHG emissions is small (2-6%). CAV auxiliary loads offset operational benefits from 

automated driving. Compared to the conventional scenario, full automation results in 7% lower 

GHG emissions for the V350-ICEV but 5% higher for the V125-BEV. Conventional delivery 

with a V125-BEV provides the lowest GHG emissions, 160 g CO2e/package, while partially 

automated delivery with a V350-ICEV generates the most at 450 g CO2e/package. Sensitivity 

analysis shows delivery density and fuel economy are key parameters determining GHG 

emissions for all scenarios, while CAV power requirements and efficiency benefits have a 

smaller impact on automated scenario emissions. 
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1. INTRODUCTION 

Last-mile delivery, or the last leg of the supply chain moving goods from a local hub 

(distribution center) to customers, is the most expensive, most carbon intensive, and least 

energy-efficient supply chain link.1–3 Schröderet et al. estimated that fully and partially 

automated vehicles (including ground vehicles and aerial vehicles like drones) have the potential 

to reduce delivery costs by 10-40% in cities, mainly through labor cost savings.4 The automated 

last-mile delivery market has a seven-fold growth potential and expected value of $11.9 billion 

by 2030.5 Automotive, automation, logistics, and retail companies are investigating how to 

capitalize on this potential. United Parcel Service (UPS) and Waymo have partnered up for 

autonomous van delivery testing in Arizona;6 Ford is partnering with Agility Robotics to explore 

package delivery using bipedal robots;7 Amazon, Starship, Nuro and FedEx are testing drones 

and autonomous delivery robots (ADRs).8–12 While the use of drones has been the subject of 

prominent discussions, automated ground delivery using robots offers a wider service area and 

larger carrying capacity.13–15  

As automated delivery systems progress, it is important to evaluate their environmental 

performance and identify applications that lower environmental burdens. These environmental 

impacts can be quantified using Life Cycle Assessment (LCA) methods which examine all stages 

of the life cycle of a service, product, or process. Much of the prior research on last-mile delivery 

evaluated GHG emissions and energy use from an operational perspective but did not examine 

the production burden and life cycle perspective13–16.  

Production burdens must be considered to gain a comprehensive understanding of the 

difference between automated versus conventional last-mile delivery. Gawron et al. conducted 

LCA of a CAV sedan, which included the production burdens of the vehicle as well as the 
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sensing and computing subsystem.17 They concluded that CAV sedans could reduce energy use 

and GHG emissions by up to 9% relative to conventional sedans. Extending Gawron’s 

framework of the CAV subsystem, Kemp et al. conducted an LCA on the deployment of an 

automated SUV/van as a taxi.18 They showed a 1-3% increase in primary energy use and GHG 

emissions. However, the life cycle impacts of using a CAV and a robot in last-mile ground 

delivery have not been analyzed.  

Several LCA studies examined last-mile delivery systems and their results are 

summarized in Table S1. Edwards et al. reported well-to-wheels (WTW) greenhouse gas (GHG) 

emissions of 181 g CO2e per drop for delivery of small, non-food items (like books) by a 

standard delivery van (<3.5 t) which has a delivery density of 2.4 packages/mile (120 drops/50 

miles).19 They concluded that a home delivery operation is likely to generate less CO2e than 

typical customer shopping trips by car or bus. This finding that serving multiple customers (e.g., 

more than 30) over one route reduces GHG emissions compared to customer pick-up or in-store 

shopping is supported by other LCA studies.2,20 Lee et al. compared class 4-6 vehicles for urban 

delivery and found that battery electric vehicles (BEVs) have lower life cycle energy use and 

GHG emissions than their diesel counterparts.21 Marmiroli et al. confirmed this finding for light-

duty trucks.22  

Figliozzi investigated the operational GHG emissions of ADRs and demonstrated their 

potential to reduce GHG emissions in specific delivery scenarios.13 Despite the measurable 

emission benefits of ADRs, they have logistical constraints like limited range, cargo capacity, 

and the final-50-feet problem. The limited ability of autonomous delivery systems to traverse the 

distance from curb to door is known as the final-50-feet problem. In conventional delivery 

systems, the final-50-feet begins when the driver parks the vehicle to perform the out-of-vehicle 
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activities and ends when the driver leaves.23,24 Combining the connected autonomous vehicle 

(CAV) for hub-to-home delivery with a robot for the final-50-feet could eliminate the issues with 

limited range associated with the robot and final-50-feet problem of ADRs. Research on the 

final-50-feet problem is very limited.  An assessment of delivery time but not environmental 

impacts has been reported for office building delivery in Seattle.25 We seek to evaluate 

environmental impacts of the final-50-feet problem by identifying how using a robot impacts the 

GHG emissions of last-mile automated delivery systems in a suburban residential setting. 

We developed a life cycle model of the delivery vehicle and robot and identified the key 

parameters influencing their life cycle GHG emissions. The system boundary includes all life 

cycle stages of the last-mile delivery system: vehicle (for last-mile) and robot (for final-50-feet), 

as shown in Figure 1. Scenarios were developed to compare impacts for automated vs. 

conventional (non-automated) delivery. Results are reported on a per-package basis. Sensitivity 

analyses were conducted to address the uncertainties and variation in robot and CAV operation, 

delivery scenarios, and electricity carbon intensity.  
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Figure 1. Last-mile delivery LCA system boundary 

 

2. METHODS  

2.1. Goal and scope 

Our goal is to understand the GHG emissions from automation of conventional last-mile 

residential parcel delivery. We use an LCA framework to evaluate the cradle-to-grave GHG 

emissions for each delivery system, including vehicle and robot production, use, and end-of-life 

(EOL).  

We consider three delivery scenarios and four vehicle platforms, as shown in Figure 2. In 

the conventional scenario (i), a human drives the vehicle (last-mile) and delivers the package to 

the doorstep (final-50-feet). In the partially automated scenario (ii), a human drives the vehicle 

(last-mile) and a robot completes the final-50-feet delivery. The fully automated scenario (iii) 
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uses a CAV (last-mile) and a robot (final-50-feet). We note that the partially-automated scenario 

may not provide cost benefits over the conventional scenario as it adds cost for the robot but still 

requires a human driver. However, it is included to highlight the robot and the CAV 

contributions separately. It acts as a proxy of a current demo delivery system that includes a 

human-driven mothership and sidewalk autonomous delivery robots (SADRs).13 A combination 

of four different vehicle platforms are considered based on two powertrains (internal combustion 

engine vehicle [ICEV] and battery electric vehicle [BEV] and vans with two different cargo 

volumes (125 cubic feet [V125], and 350 cubic feet [V350]). A comparative analysis of three 

delivery scenarios is completed for each platform.  

 

 

Figure 2. The last-mile delivery scenarios analyzed in this study considering vehicle class, 

powertrain type, last-mile delivery vehicle, and final-50-feet delivery method. 

 

2.1.1. Functional unit  

The functional unit is a package delivered to a residential address on a multi-stop route in 

a suburban area with single family homes (similar to Ann Arbor, MI, U.S.A. population of 
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120,000 and area of 28 square-mile 26,27). The packages are assumed to weigh on average 6 kg 

using package weight distribution data from the 2012 Commodity Flow Survey (CFS). This is 

consistent with the maximum cargo weight of the vehicle (703 kg for V125 and 1,533 kg for 

V350) and the carrying capacity of the robot (30 kg).28–31 The package volume is estimated to 

range from 0.2 to 1.9 ft3 as part of our spatial modeling shown in Supporting Information (SI). 

The number of packages was determined according to spatial modeling of the cargo space (see 

2.1.3.) that was informed by personal communications with UPS in Ann Arbor, Michigan, 

United States. Our base case assumes one package per stop and a distance of 0.5 miles between 

stops. The sensitivity of route distance and delivery densities are explored. The GHG emissions 

per package are calculated by dividing the total life cycle impacts of a route by the number of 

packages delivered. Detailed formulas can be found in the SI.  

2.1.2. Vehicle and robot description  

Two light-duty delivery vehicle classes were considered, the V125 and V350 vans, 

following the delivery industry standard for cargo volume in ft3. For each vehicle class, an ICEV 

and BEV were analyzed. The V125-ICEV has a similar cargo volume and maximum payload 

capacity to the Nissan Cargo Van (122.7 ft3 and 676 kg) and the Ford Transit Connect Cargo 

Van (127.4 ft3 and 703 kg). The V350-ICEV was modeled based on the Ford Transit 150 Cargo 

(357.1 ft3 and 1,533 kg).  

We used “LDT1” and “LDT2” in Greenhouse gases, Regulated Emissions, and Energy 

use in Technologies (GREET) to model vehicle production and EOL burdens for the V125 and 

V350 vans based on similar curb weights.32,33 The BEV for both vehicle classes was modeled as 

the corresponding ICEV plus a battery. We assume that both BEVs have a 200-mile all-electric 

range (AER) to maintain a reasonable and comparable range performance to the ICEV that can 
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serve the delivery area. The CAV subsystem components were taken from the Level 4 CAV 

subsystem architecture detailed in Kemp et al. as described in section 2.2.4.18  

A bipedal robot, similar to the Digit model produced by Agility Robotics (Figure S2 in 

SI), was modeled for the final-50-feet delivery.34,35 Digit is one of the few robots designed to 

complete the final-50-feet delivery gap.31,36  

2.1.3. Modeling Parameters 

Modeling assumptions for the base case are listed in Table 1. Cargo space is the limiting 

factor for package delivery.22 Based on spatial modeling of the cargo space (see SI), we estimate 

80 packages for the V125 and 180 packages for the V350 across the three delivery scenarios. 

Using pre-COVID data from the local delivery industry, we model the delivery route for the 

V125 and V350 to be 48 and 98 miles (40 and 90 mile routes with an 8-mile round trip from hub 

to delivery zone) with 80 and 180 packages, respectively, assuming 0.5 miles between stops. 

This results in a delivery density of 1.67 and 1.84 packages per mile, higher than the 1.51 

packages per mile assumed by Stolaroff et al. and lower than the 2.7 packages per mile assumed 

by Lee et al.15,21 In addition, we explored a high delivery density case based on the V350 

delivering 180 packages for a route of 48 miles. The sensitivity of the key delivery parameters is 

also examined. The average vehicle speed between stops for suburban delivery is assumed to be 

20 miles/hour. This is comparable to the average speed of 19.6 miles/hour for the Urban 

Dynamometer Driving Schedule (UDDS).21,37  

 

Table 1. Modeling parameters for base case last-mile delivery model in this study 

Parameters Base case value 
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Packages in cargo (stops per route) 80 for V125 van, 180 for V350 van  

Distance between stops 0.5 mile 

Distance between hub and delivery 

zone 
4 miles  

Robot operating power 460 W38 

Robot standby power 150 W39 

Time spent on final-50-ft delivery  60 s for human,100 s for robot40 

Robot lifetime 30,000,000 steps7 

Vehicle lifetime 183,000 miles41 

Vehicle fuel economy 
24 mpg for V125-ICEV, 14 mpg for V350 ICEV42 

85 mpgge for V125-BEV, 47 mpgge for V350-BEV41,42 

Average Speed of vehicle 20 miles/hour21,37 

Electricity Grid - carbon intensity U.S. average - 0.43 kg CO2e/kWh41 

CAV subsystem operating power 885 W18 

CAV subsystem standby power 30 W18 

CAV operational fuel saving ratio 20% (ICEV), 15% (BEV)43 

 

2.2. Life cycle modeling  

The life cycle GHG emissions are reported in grams of carbon dioxide equivalent [g 

CO2e] on a 100-year global warming potential (GWP100) basis.44 The GREET 2020 U.S. average 

electric grid mix is used (35% natural gas, 26% coal, 20% nuclear, 8% wind, 7% hydro, and 4% 

other renewables).41 The corresponding carbon intensity of the delivered electricity is 0.43 kg 

CO2e/kWh.  
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2.2.1. Robot, vehicle, and CAV subsystem usage  

The fully automated delivery scenarios are described in the following step sequence (0-

10). Step 0 is defined as the point where the vehicle and robot are stationary at the hub. The 

vehicle moves from the hub to the delivery zone - step 1, travels to the delivery locations - step 

2, and returns from delivery zone to the hub after delivering all the packages – step 10. When the 

vehicle arrives at the delivery location(s), the robot completes the next series of steps (3-9): 3) 

unfolding itself, 4) picking up the package from the cargo area, 5) transporting the package, 6) 

dropping off the package, 7) standing up , 8) returning to the vehicle, and 9) storing itself in the 

vehicle.40 These steps, estimated to be 100 seconds to complete, were characterized by careful 

analysis of videos published by Agility Robotics (see Table S2).40  

While the vehicle is traveling the power requirement of the CAV subsystem is estimated 

to be 885 W and the robot is considered to be in standby mode (150 W).18,38,39 During driving 

cycles, the CAV realizes eco-driving and intersection connectivity operational efficiency 

benefits.17,18,43 At each delivery stop, the vehicle is shut off in accordance with possible idling 

restrictions. The CAV subsystem is assumed to be in standby mode during stops and requires 30 

W.18 The robot's operational power requirement is 460 W.38 A 90% battery discharge/charge 

efficiency is assumed.45 This results in 0.012 kWh per package delivery, equivalent to 8 g CO2e / 

package.  

We assume a fuel economy of 24 miles per gallon (mpg) for the V125-ICEV and 14 mpg 

for the V350-ICEV based on typical city fuel economy for 2020 vans in the United States 

Environmental Protection Agency (US-EPA) database.42 We also assume 85 miles per gallon 

gasoline equivalent (mpgge) [40 kWh/100 mile] for the V125-BEV based on a 353% BEV/ICEV 

fuel economy ratio in GREET, and 47 mpgge [72 kWh/100 mile] for the V350-BEV based on a 
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334% BEV/ICEV fuel economy ratio.41,46 This results in WTW GHG emissions of 443, 195, 

760, and 354 g CO2e/mile for V125-ICEV, V125-BEV, V350-ICEV, and V350-BEV, 

respectively. Delivery densities of 1.67 (= 80 / 48) and 1.84 (= 180 / 98) packages per mile for 

the V125 and V350, respectively, were used to determine GHG emissions per package. 

The CAV subsystem (i.e., computers, sensors, navigation systems, and communication 

equipment) adds to the vehicle operating load and production burden but provides operational 

efficiency benefits from eco-driving and intersection connectivity.17,18,47 We assume a 20% 

reduction in fuel consumption for ICEV and a 15% reduction for BEV from eco-driving and 

intersection connectivity.43 

2.2.2. Robot production  

The material mass data was provided by Agility Robotics for Digit V3, the latest version 

of the bipedal robot.38 The robot mass is 44.6 kg and its production energy demand and GHG 

emissions were estimated based on the material breakdown of components and material 

production burdens, as shown in Table 2. The material production burdens were derived from 

GREET 2 2019.41  We modeled “other” material as carbon fiber reinforced composite as it was 

used in previous versions of Digit.34 The EOL and manufacturing data are considered to be 

negligible.  

We assume that the robot lifetime is 30 million steps based on accelerated life testing 

performed by Agility Robotics.7 Using this value we calculated that the robot will deliver 

300,000 packages over its lifetime, assuming 100 steps for each package delivery. GHG 

emissions from robot production are estimated to be 327 kg CO2e, of which 43% are from 

aluminum production (see Figure S3). Allocating these GHG emissions to the 300,000 delivered 

packages results in 1.1 g CO2e / package.  



11 
 

  
 

 

Table 2. Robot material mass breakdown and production burden of primary energy usage and 

GHG emissions  

Materials Mass (kg)38 

Primary Energy 

from production 

(MJ/kg)41 

 GHG emissions 

from production 

(kg CO2e/kg)41 

Copper 5.53 30.2 2.5 

Battery 4.3 152 9.6 

Thermoplastic 1.45 113 5.1 

Electronics 1.72 374 23 

Steel 10.5 41.9 2.8 

Aluminum 19.66 119 7.2 

Other* 1.41 579 38 

*Carbon fiber composite values are used for other 

 

2.2.3. Vehicle Production and end-of-life  

Vehicle production GHG emission data were sourced from GREET 2019, as shown in 

Table S3.41 We modeled the V125 vehicle based on the default “LDT1” specifications for both 

the ICEV and BEV in GREET. The V350-ICEV was modeled based on the default GREET 

“LDT2” category due to similar curb weights. In addition, the V125 and V350 BEV were 

modeled from the BEV LDT parameters in GREET. These parameters include battery capacity, 

fuel economy and AER. Assuming a linear relation between AER and battery size, the battery 

capacity is estimated to be 89 and 160 kWh, respectively, for the V125 and V350 BEV (AER of 
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200 miles).41 Additional details can be found in the SI. The same method was applied to 

determine GHG emissions for production and EOL stages of the BEVs. Vehicle weights and 

production phase primary energy use and GHG emissions are given in Table S3. The vehicle 

lifetime was assumed to be 183,000 miles for all vehicle platforms to estimate per mile impacts 

from production and EOL.41 

2.2.4. CAV subsystem – production and end of life 

CAV subsystem components were obtained from the Level 4 CAV subsystem 

architecture detailed in Kemp et al., including eight cameras, five radars, one large light 

detection and ranging sensor (LiDAR), four small LiDARs, one integrated inertial navigation 

system (INS), one dedicated short-range communication (DSRC), and four computers.18 The 

CAV subsystem has a total weight of 67.1 kg, total life cycle GHG emissions of 1200 kg CO2e 

for production and 7 kg CO2e for EOL.18 

 

3. RESULTS  

Results are reported for three autonomous scenarios (conventional, partial, and full) with 

four vehicles (V125-ICEV, V125-BEV, V350-ICEV, and V350-BEV) for a total of 12 delivery 

system scenarios.  

3.1. Base case results 

The GHG emissions for the base case are shown in Error! Reference source not found.. 

The primary energy use results have similar trends and are presented in Figure S4 in the SI. For 

V125, the highest GHG emissions were for the partially automated ICEV scenario (ICEV + 

robot - 301 g CO2e / package) and the lowest for the conventional BEV scenario (BEV + human 

- 160 g CO2e / package). V350 scenarios emit 39% - 56% more GHG emissions per package 
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than the V125 scenarios, despite the slightly higher delivery density (180/98=1.84 vs. 

80/48=1.67 packages/mile) than the V125 due to the much lower fuel economy of the V350 than 

V125, i.e., 14 vs. 24 mpg (=17 vs. 10 L/100km). The number of packages in a truck has a 

relatively small impact on energy use and GHG emissions per package because the distance 

between stops is assumed 0.5 miles in the base case. V350 vehicles can deliver more packages 

than V150 per trip but also cover longer distance, thereby having a similar range of delivery 

density and miles per package. 

 

 

Figure 3. Base case life cycle GHG emissions per package for: (i) conventional, (ii) partially 

automated, and (iii) fully automated delivery scenarios. 

 

The robot life cycle results in 9 g CO2e / package, and its contribution to overall GHG 

emissions from the delivery system is relatively small (2-3% with ICEV, 3-6% with BEV), as 

shown in Error! Reference source not found.. The vehicle use-phase makes the most 
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significant contribution (59-94%) to total GHG emissions from the delivery system, followed by 

vehicle production & EOL (6-27%). The contribution of the CAV subsystem to life cycle GHG 

emissions is higher for ICEVs than BEVs, e.g., 15% for V125-ICEV vs. 8% for V125-BEV, and 

10% for V350-ICEV vs. 5% for V350-BEV. The main reason is that the internal combustion 

engine is more carbon-intensive than central powerplants in generating the electricity used by the 

CAV subsystem. Meanwhile, the CAV subsystem tends to have a smaller contribution to GHG 

emissions on larger vehicles (V350) than smaller vehicles (V125). 

3.2. Delivery automation impact 

We define the impact of automation as the difference in results between the fully 

automated scenario (iii) and the conventional scenario (i). Automation results in a 1.5% and 

5.3% increase in GHG emissions for the V125-ICEV and V125-BEV. However, for the larger 

V350 van, there is a 6.7% (ICEV) and 1.8% (BEV) decrease in GHG emissions from automation 

(as shown in Error! Reference source not found.). The 6.7% reduction in GHG emission for 

the V350-ICEV platform (see Figure 4) includes +9 g CO2e / package from the robot, +45 g 

CO2e / package from CAV subsystem, and -84 g CO2e / package from eco-driving. Results for 

V125-ICEV, V125-BEV, and V350-BEV are given in the SI (see Figure S5-S7). 
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Figure 4. Automation impacts on GHG emissions for the V350-ICEV platform, including 

increased emissions from the robot total (production and use) and CAV subsystem and 

decreased emissions from eco-driving. 

 

4. DISCUSSION  

Further insights regarding potential future development and application of robot – 

automated vehicle delivery systems are discussed below.  

The following 10 parameters were varied by ±20% in the sensitivity analysis: robot 

operating power, the distance between hub and delivery zone, the number of packages in cargo 

(stops per route), the distance between stops, robot lifetime, vehicle lifetime, vehicle fuel 

economy, electricity grid carbon intensity, CAV subsystem operating power, and CAV eco-

driving benefits. The results of their impacts on the life cycle GHG emissions per package for the 

V125 models are presented in the SI. The results for V125-ICEV (see Figure S8) show that the 

model is most sensitive to the distance between stops (±16%), meaning a 20% increase in the 

distance between stops, increased life cycle GHG emissions per package by 16%, followed by 

the vehicle fuel economy (±14%), the number of packages in cargo (stops per route) (±4%), 
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CAV eco-driving benefits (±3%), and CAV subsystem operating power (±3%). The other 

parameters such as the robot operating power, the robot and vehicle lifetime, the distance 

between hub and delivery zone, and electricity grid carbon intensity produce minimal impacts 

(<1%) for ICEV. The V125-BEV platform showed a similar trend (see Figure S9).  

These findings show that the results are sensitive to the delivery density (i.e., 

package/total distance), which is related to the distance between stops, the number of packages in 

cargo (stops per route), the distance between hub and delivery zone, and packages per stop. The 

GHG emissions per package are lower when the delivery density is higher for both conventional 

and automated scenarios. In Figure 5, we plotted high delivery density scenario results based on 

a delivery density of 3.75 packages per mile for V350 covering 48 miles to deliver 180 packages, 

which clearly shows this trend when compared to the base case results. This implies that the 

energy and GHG emissions per package will be lower in a dense urban area compared with our 

base case suburban setting if the other parameters are equal. Figure 5 also shows a comparison 

of our results with those from two previous studies that reported GHG emissions with delivery 

density. We note that Stolaroff et al.15 and Edwards et al.19 data are only for WTW GHG 

emissions of vehicles and drones. The GHG emissions estimated by Stolaroff et al.15 and 

Edwards et al.19 for parcel delivery using vans are generally consistent with our results and lie in 

the range 200-300 g CO2e/package. The emissions from delivery using class 4 trucks are much 

higher than those using vans reflecting the greater fuel consumption of the larger trucks. The 

drone data indicate that emissions associated with small drones can be much lower, but those 

from large drones can be much greater than from the V125 and V350 vehicles in our study.  
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Figure 5. GHG emissions results from our fully automated scenario (curves) for V125 (green) 

and V350 (orange) with internal combustion engine (solid) or battery electric (dashed) 

powertrains compared to results from previous studies by Stolaroff et al. (red symbols) and 

Edwards et al. (blue symbol). Note the results from Stolaroff et al.15 and Edwards et al.19 are 

operational only (well-to-wheels or well-to-wings). Our base case results and high delivery 

density results are indicated on the curves with dots. 

 

Automation results in reduced GHG emissions over the conventional delivery system in 

cases where the delivery densities are low. This can be explained by the fact that longer distances 

between stops results in greater eco-driving benefits on a per package basis, which is more likely 

to outweigh the increased burden from robot delivery at each stop. 
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The breakeven delivery densities (see Figure S10) for which automated delivery 

performs better are 0.05, 0.65, 1.9, and 2.5 packages/mile for V125-BEV, V125-ICEV, V350-

BEV, V350 -ICEV, respectively. However, these results may not apply to rural areas where 

vehicle fuel economy may increase and the eco-driving savings become smaller.  

As the use-phase is the dominant contributor to life cycle GHG emissions, increased fuel 

economy leads to reduced emissions per package. However, improved fuel economy lowers net 

automation benefits. For example, increasing the fuel economy of the V350-ICEV by 20% (from 

14 to 16.8 mpg) decreased the net automation impact on GHG emissions from -6.7% to -3.7%, 

because the energy savings from CAV eco-driving reduced with the improved fuel economy. 

Likewise, the automation energy and GHG benefits of more fuel-efficient V125 vehicles are 

smaller than those of V350 vehicles. 

The carbon intensity of electricity generation and the eco-driving benefit are important 

parameters for the BEV platform. Although our sensitivity analysis calculated the results of 

changing the grid carbon intensity by ±20%, it is noted that the grid carbon intensity can range 

from 0.20 (California Mix) to 0.94 kg CO2e/kWh (Hawaii Islands Coordinating Council), 

resulting in larger variations in GHG emissions per package.41 Future grid decarbonization 

would result in a lower usage contribution (especially for BEV), meaning the potential net 

automation benefit is likely to decrease. As such, the carbon reductions in the BEV platforms 

will primarily come from the grid decarbonization in the use phase rather than from the eco-

driving benefits. 

The operating power of the CAV subsystem is another highly sensitive parameter in the 

model. We found that if the power consumptions of CAV subsystem can be reduced from 885 W 

to 700 W (see Figure S11), the fully automated scenario for V125-ICEV achieves comparable 
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GHG emissions to the conventional scenario. For V125-BEV, the breakeven point is 50 W for 

the fully automated scenario to have a GHG emission reduction advantage, which is unlikely. 

Although we maintained the same number of packages between conventional and 

autonomous scenarios, it is reasonable to expect a conventional human delivery system to carry 

more packages than an automated system. This is because humans can handle a disorganized 

cargo space, while robots require a well-organized cargo space. However, when there are more 

packages, the route distance also increases. Thus, the per package impact does not change 

proportionally. The sensitivity analysis shows that the number of packages handled by a robot or 

human has a relatively small impact on the result than other parameters. If a human can deliver 

20% more packages per route than a robot (216 vs 180), the GHG reduction from a fully 

automated V350-ICEV will be 6.2% compared with our base case result of 6.7%. 

The results suggest that automated delivery systems could have slightly greater life cycle 

GHG emissions than conventional delivery systems for smaller sized vehicles, but there is more 

opportunity to reduce emissions for larger sized vehicles. This is because the automation system 

offers benefits of eco-driving by improving the fuel efficiency in the use-phase; the use-phase 

has a larger percentage contribution in larger vehicles with lower fuel economy compared to 

smaller vehicles with higher fuel economy. For all delivery systems, vehicles, and powertrains, 

the vehicle use-phase is the single largest contributor to GHG emissions, highlighting the need 

for low-carbon fuels for sustainable parcel delivery. It is also important to pursue low operating 

power requirements for the CAV subsystem. 

We recommend that future research examine optimal delivery performance across the 

ground and airborne systems based on package size, numbers of deliveries, customer density, 

vehicle fuel economy, weather restrictions, traffic restrictions, and contactless delivery demand. 
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Fully automated delivery with a van and a robot provides similar service to conventional delivery 

with a van and human delivery in terms of service range and carrying capacity but does not 

provide significant reductions in GHG emissions.  

No single automated delivery system is well suited for all delivery scenarios. Drones and 

SADRs are limited in delivery range, package size, and carrying capacity, making them suitable 

for short-distance and small package deliveries. However, as regulations and processes for drone 

delivery develop, we would expect drones to have shorter delivery times, potentially becoming a 

preferred method for time-sensitive deliveries especially in a heavy traffic area. SADRs are 

capable of handling larger packages than drones but their relatively slow speeds (2 km/h) may 

make them less suitable for widespread deployment.13 We note that studies of multiple delivery 

systems need to consider warehouse burden, as many evolving delivery methods, such as drones, 

require additional infrastructure.15 Although there are potential energy savings from using drones 

compared to conventional delivery, the energy savings are limited relative to the impacts of 

vehicle fuel economy.29,48 Our study focused on delivery scenarios in suburban areas with single 

family homes that are similar to Ann Arbor, MI. Future research can explore the dense urban 

delivery scenarios and include robot maintenance and backup systems that may be needed for 

automated delivery. In addition to environmental performance, life cycle costs and social 

sustainability factors such as employment impacts are examples of other determinants that can 

shape the future of automated delivery. 
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Table S1. Well-to-wheels delivery emissions per item or package from literature. 

Source Delivery Type 

Emission  

(g/item or 
package) 

Scope  

Shahmoham
madi 20201 

Tractor trailer, truck and car 65 Warehouse to store to customer 

Stolaroff et 
al. 20182 

LDT ICEV van (150 packages per 100 
mile) 

872 

Warehouse to customer 
(including warehouse energy 

usage) 

LDT BEV van (150 packages per100 
mile) 

772 

Class 4 diesel truck (151 packages per 
100 mile) 

1015 

Class 4 electric truck (151 packages 
per100 mile) 

943 

Small drone (1 package 2.2 mile) 645 

Large drone (1 package per 2.6 mile) 1264 

P. Van Loon 
et al. 20153 

Pure player, Direct van delivery 160 

Manufacturer to customer 

Pure player, parcel delivery network 755 

Drop-shipping, parcel delivery 
network 

690 

Van delivery, local shop 200 

Click and collect 230 

Delivery van, warehouse to customer 470 

Conventional retail 240 

Edwards et 
al. 20104 

Standard delivery van (<3.5t) 120 
deliveries per 50 mile trip) 

181 Warehouse to customer 

Car (dedicated shopping trip of 12.8 
miles) 

4274 

Customer to store 
Bus (dedicated shopping trip of 8.8 
miles, assuming average patronage) 

1265 

Koiwanit 
20185 

Drone delivery system 
79 (per 

package-
km) 

(Cradle to gate) 

online shopping, business to 
customer 
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Figliozzi 
20206 

ICE van N/A 

Grocery store to customer 

Sidewalk Autonomous Delivery 
Robots + mothership 

N/A 

Road Autonomous Delivery Robots N/A 

E-van N/A 

Drone N/A 

Orozco 
20197 

Drone-truck system N/A Depot to customer 
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Formulas 
 

Production and EOL burden energy allocation (per package): 

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 (𝑀𝐽/𝑝𝑘) =  
𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑀𝐽)

𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
 

For the vehicle and CAV subsystem 

= 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑀𝐽) ×
1

𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑖𝑙𝑒𝑠)
×

𝑚𝑖𝑙𝑒𝑠

𝑠𝑡𝑜𝑝
×

𝑠𝑡𝑜𝑝𝑠

𝑝𝑎𝑐𝑘𝑎𝑔𝑒
 

For the robot 

= 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑀𝐽)  ×
1

𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 
×

𝑠𝑡𝑒𝑝𝑠

𝑝𝑎𝑐𝑘𝑎𝑔𝑒 
 

 

Use phase burden energy (per package): 

For the vehicle 

𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑝𝑎𝑐𝑘𝑎𝑔𝑒(𝑀𝐽/𝑝𝑘)

=
𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑀𝐽)

𝑔𝑎𝑙𝑙𝑜𝑛
×

𝑔𝑎𝑙𝑙𝑜𝑛𝑠

𝑚𝑖𝑙𝑒

×
(8 + 𝑑𝑖𝑠𝑡. 𝑏/𝑤 𝑠𝑡𝑜𝑝𝑠 × 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠)(𝑚𝑖𝑙𝑒𝑠)

𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠
 

For the CAV subsystem and robot 

𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑝𝑎𝑐𝑘𝑎𝑔𝑒
𝑀𝐽

𝑝𝑘

=
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦(𝑊ℎ) + 𝑠𝑡𝑎𝑛𝑑𝑏𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑊ℎ)

𝑝𝑎𝑐𝑘𝑎𝑔𝑒

×
𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑀𝐽)

𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑊ℎ)
 

Where 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦(𝑊ℎ) =  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑜𝑤𝑒𝑟 (𝑊) × 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒(ℎ) 

𝑆𝑡𝑎𝑛𝑑𝑏𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑊ℎ) = 𝑆𝑡𝑎𝑛𝑑𝑏𝑦 𝑃𝑜𝑤𝑒𝑟(𝑊) ×  𝑆𝑡𝑎𝑛𝑑𝑏𝑦 𝑡𝑖𝑚𝑒(ℎ) 
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Formulas (cont.) 

 

Production and EOL burden GHG emissions allocation (per package): 

𝐺𝐻𝐺 𝑒𝑚𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 (𝑔 𝐶𝑂2𝑒/𝑝𝑘) =  
𝑇𝑜𝑡𝑎𝑙 𝐺𝐻𝐺 𝑒𝑚𝑠𝑠𝑖𝑜𝑛𝑠 (𝑔 𝐶𝑂2𝑒)

𝑃𝑎𝑐𝑘𝑎𝑔𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑖𝑛 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
 

For the vehicle and CAV subsystem 

= 𝑇𝑜𝑡𝑎𝑙 𝐺𝐻𝐺 𝑒𝑚𝑠𝑠𝑖𝑜𝑛𝑠 (𝑔 𝐶𝑂2𝑒) ×
1

𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑖𝑙𝑒𝑠)
×

𝑚𝑖𝑙𝑒𝑠

𝑠𝑡𝑜𝑝
×

𝑠𝑡𝑜𝑝𝑠

𝑝𝑎𝑐𝑘𝑎𝑔𝑒
 

For the robot 

= 𝑇𝑜𝑡𝑎𝑙 𝐺𝐻𝐺 𝑒𝑚𝑠𝑠𝑖𝑜𝑛𝑠 (𝑔 𝐶𝑂2𝑒)  ×
1

𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 
×

𝑠𝑡𝑒𝑝𝑠

𝑝𝑎𝑐𝑘𝑎𝑔𝑒 
 

 

Use phase burden GHG emissions (per package): 

For the vehicle 

𝐺𝐻𝐺 𝑒𝑚𝑠𝑠𝑖𝑜𝑛𝑠  𝑝𝑒𝑟 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 (𝑔 𝐶𝑂2𝑒/𝑝𝑘)

=
𝐺𝐻𝐺 𝑒𝑚𝑠𝑠𝑖𝑜𝑛𝑠 (𝑔 𝐶𝑂2𝑒)

𝑔𝑎𝑙𝑙𝑜𝑛
×

𝑔𝑎𝑙𝑙𝑜𝑛𝑠

𝑚𝑖𝑙𝑒

×
(8 + 𝑑𝑖𝑠𝑡. 𝑏/𝑤 𝑠𝑡𝑜𝑝𝑠 × 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠)(𝑚𝑖𝑙𝑒𝑠)

 𝑝𝑎𝑐𝑘𝑎𝑔𝑒𝑠
 

For the CAV subsystem and robot 

𝐺𝐻𝐺 𝑒𝑚𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑝𝑎𝑐𝑘𝑎𝑔𝑒
𝑔 𝐶𝑂2𝑒

𝑝𝑘

=
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦(𝑊ℎ) + 𝑠𝑡𝑎𝑛𝑑𝑏𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑊ℎ)

𝑝𝑎𝑐𝑘𝑎𝑔𝑒

×
𝐺𝐻𝐺 𝑒𝑚𝑠𝑠𝑖𝑜𝑛𝑠 (𝑔 𝐶𝑂2𝑒)

𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 (𝑊ℎ)
 

Where 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦(𝑊ℎ) =  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑃𝑜𝑤𝑒𝑟 (𝑊) × 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒(ℎ) 

𝑆𝑡𝑎𝑛𝑑𝑏𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑊ℎ) = 𝑆𝑡𝑎𝑛𝑑𝑏𝑦 𝑃𝑜𝑤𝑒𝑟(𝑊) ×  𝑆𝑡𝑎𝑛𝑑𝑏𝑦 𝑡𝑖𝑚𝑒(ℎ) 
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Spatial modeling details 

Spatial modeling was conducted for the 125 ft3 cargo (V125 van) and 350 ft3 cargo 
(V350 van) with a 20-inch-wide aisle and mixed-size packages packed on both sides of the cargo 
(shown in Figure S1). This spatial model results in an estimated effective load volume of 40% 
for the V125 van and 35% for the V350 van. The 20-inch aisle takes up 40% and 35% of the 
cargo space and the additional void space takes up 20% and 30% of the cargo space for the V125 
and V350 vans, respectively. A 40% effective load for the V125 van carries a maximum of 80 
mixed-size packages and a 35% effective load for V350 van carries up to 180 mixed-size 
packages.  

Our base case assumed 80 packages for the V125 and 180 packages for the V350 based 
on spatial modeling. We detail the effective load percentages we used to arrive at load sizes of 80 
and 180 packages (see Figure S1 b & c).  

Our spatial modeling of a typical loading scenario is based on inputs from a local 
delivery company and various package sizes. We consider a load of varied package sizes and 
void space that includes the aisle space and additional void space that are above and between the 
packages. We modeled a 20-inch wide aisle in the cargo space for humans or robots to move 
through.  

The aisle occupies 40% of the V125 cargo volume, leaving 60% for packages and 
associated additional void space. The V125 holds (15) 0.17 cu-ft boxes, (8) 0.38 cu-ft boxes, (11) 
0.96 cu-ft boxes, (3) 1.17 cu-ft boxes, and (3) 1.89 cu-ft boxes on either side of the aisle for a 
total of 40 x 2 = 80 packages. These 80 packages with their associated volume results in a 40% 
effective load for the V125 van (leaving 20% additional void space).  

The aisle occupies 35% of the V350 cargo volume, leaving 65% for packages and 
associated additional void space. The V350 holds (21) 0.17 cu-ft boxes, (26) 0.38 cu-ft boxes, 
(31) 0.96 cu-ft boxes, (7) 1.17 cu-ft boxes, and (5) 1.89 cu-ft boxes on either side of the aisle for 
a total of 90 x 2 = 180 packages. This results in a 35% effective load for the V350 van (leaving 
30% additional void space). 

As shown in Figure S1(a), the V125 can hold 26-294 packages depending on package 
sizes when considering a 20-inch aisle space (40% of V125 cargo) and additional 20% void 
space (the space that are above the packages or between the packages). We calculated that the 
V350 can hold 66 - 741 packages depending on package sizes when considering a 20-inch aisle 
(35% of V350 cargo) and additional 30% void space.  
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 (a).  

(b).  

(c).  

Figure S1. Mixed sized package modeling with a 20-inch wide isle in the cargo. (a) Personally 
received packages in five different sizes, (b) Spatial modeling for Transit connect (V125), which 
has a 40% effective load volume result with 80 packages (c) Spatial modeling for Transit 150 
(V350), which has a 35% effective load volume result with 180 packages.  
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Final-50-feet delivery robot 

Digit (See Figure S2) is a bipedal robot that’s developed by Agility Robotics.8 The V1 weighs 
42.2 kg and stands 155 cm tall.9 The V3 weighs 44.6 kg.10 It has legged mobility with perception 
and arms. It can get up off the ground, lift boxes, go outdoors and in human environments; it can 
map environments 9. 

 

Figure S2. Agility Robotics Digit models, v1 (left), v2 (center), v3 (right). [Reproduced with 
permission from Agility Robotics] 
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Table S2. Vehicle and Robot operating steps 

# step Robot Action Time, s 
Robot Power 

Usage, W 
Vehicle Action 

0 
Sitting in a vehicle 

at the hub 
- 0 (Not in use) Not in operation 

1 Sitting in vehicle  720 (one time) 150 (standby) 11 
In operation, 4 miles @20 
miles/hour from hub to the 

delivery zone. ~12 mins 

2 
Sitting in a vehicle 

between stops 
90 150 (standby) 11 

In operation, 0.5 mile at 20 
miles/hour, CAV @ 885 W12,  

~ 90 s 

3 
Unload/unfold itself 

from the vehicle 
10 

460 10(in 
operation) 

Waiting, CAV @30 W12, 

 total 100s  

[Human may use less than 60s] 

4 
Unload package 
from the vehicle 

6 

5 
Transport package 

to the doorway 
30 

6 
Put down the 

package 
8 

7 Stand up by itself 6 

8 
Walking back to the 

vehicle 
30 

9 
Load/fold itself into 

the vehicle 
10 

10 
Sitting in the 
vehicle after 

delivered all parcels 
720 (one time) 150 (standby) 11 

In operation, 4 miles @20 
miles/hour back to the hub.  

~12 mins 

*Note: Repeat step 2-9 for each stop per route. Repeat 4 – 8 if there are multiple packages at one 
stop. 
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Table S3. Vehicle, robot, and CAV subsystem weight, primary energy use and GHG emissions in 
production and EOL burden values 

 

Weight 

(kg) 

Primary energy use in 
production and EOL 

(GJ) 

GHG emissions in 
production and EOL 

(metric tons CO2eq.) 

V125-ICEV  2,040 118 7.97 

V125-BEV  2,568 197 13.1 

V350-ICEV  2,370 135 9.20 

V350-BEV 3,380 289 19.1 

Robot 44.6 5.2 0.327 (exclude EOL) 

CAV subsystem 67.1 19.8 1.20 

 

  
Figure S3. Robot weight, production burden energy, and production burden GHGs (44.6 kg, 
5,224 MJ and 327 kg CO2e, respectively) breakdown by components/materials. 
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Vehicle Life Cycle Energy Use  

The 24 mpg, 85mpgge, 14 mpg, 47mpgge fuel efficiency result in the well-to-wheels total 
primary energy use of 6.21, 3.11, 10.64, and 5.64 MJ/mile for V125-ICEV, V125-BEV, V350-
ICEV, and V350-BEV, respectively13,14. To allocate energy use and GHG emissions from per 
mile to per package, the delivery densities of 1.67 (= 80 packages / 48 miles for V125) and 1.84 
(= 180 / 98 for V350) packages per mile are considered. 

The CAV subsystem has a total weight of 67.1 kg, total primary energy of 19,700 MJ for 
production and 100 MJ for end of life (EOL). 

 

 

Figure S4. Base case life cycle energy per package for (i) conventional, (ii) partially automated, 
and (iii) fully automated delivery scenarios. 
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Figure S5. Automation impacts on GHG emissions for the V125-ICEV platform, including 
increased emissions from the robot (production and use) and CAV subsystem and decreased 
emissions due to eco-driving. 

 

 

Figure S6. Automation impacts on GHG emissions for the V125-BEV platform, including 
increased emissions from the robot (production and use) and CAV subsystem and decreased 
emissions due to eco-driving.  
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Figure S7. Automation impacts on GHG emissions for the V350-BEV platform, including 
increased emissions from the robot total (production and use) and CAV subsystem and 
decreased emissions due to eco-driving.   
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Figure S8. Sensitivity analysis on parameters with uncertainty (conducted with automated V125-
ICEV GHG emissions) 
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Figure S9. Sensitivity analysis on parameters with uncertainty (conducted with automated V125-
BEV GHG emissions) 

 

 

Figure S10. Automation impact (compared to conventional) on GHG emissions with delivery 
density in #package/mile  
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Figure S11. Life cycle GHGs result with various CAV subsystem operating power requirements  
for the V125. The breakeven point is a 700 W CAV subsystem operating power for fully 
automated V125-ICEV to have the same GHGs per package as its conventional scenario without 
changing other parameters.  
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