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I 

 

Abstract: Electric vehicles (EVs) are gaining momentum across the globe as a strategy 

to combat climate change, however, uncontrolled charging of EVs can create pressure 

on electricity grid. Along with smart charging (V1G), Vehicle-to-grid (V2G) 

technology presents an opportunity for a new way of vehicle grid integration that 

enables EVs to send electricity back to the grid, creating the potential for EVs to 

provide grid services including electricity generation as well as regulation up and 

regulation down capacity. This study aims to quantify the economic value of V2G in 

the 2025 and 2030 California grid using an EV simulation model and a grid Unit 

Commitment Economic Dispatch model. Scenarios on different renewable penetration 

and battery cost are included to account for uncertainty in future energy and battery 

development. Results show a V2G-enabled EVs can generate an average of $32-$48 

more total annual net revenue than V1G, most profits come from EVs providing 

electricity and a small amount from regulation down capacity. From 2020 to 2030, the 

economic value of V1G and V2G increased, the result also shows a tradeoff exists 

between renewable deployment and V2G value. V2G can generate a moderate amount 

of economic benefit given access to electricity and ancillary service wholesale market, 

which need further policy support and third-party business cases.  
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Introduction 

The transportation and energy sectors are the biggest contributors to GHG emission in 

the U.S., together responsible for more than 55% of annual GHG emissions (EPA, 

2017). In the transportation sector, light-duty vehicles, mostly passenger vehicles, 

accounts for most (59%) of carbon emissions (EPA, 2020). Systematic 

decarbonization of passenger vehicles and energy sectors, therefore, is essential for 

climate mitigation(Edenhofer and et., 2014). One decarbonization strategy is 

combining vehicle electrification with renewable deployment. With higher renewable 

energy penetration in the electricity grid, the electrified transportation market will 

produce significantly less carbon footprint (National Renewable Energy Laboratory 

(NREL), 2012; Garcia, Freire and Clift, 2018). Additionally, electric vehicles (EVs) 

can add flexibility to the electricity grid with charging management techniques, 

helping overcome integration challenges of high wind and solar penetrations.  

To harness the various benefits of EVs, many governments in the U.S. and globally 

have passed policies requiring or incentivizing EVs. In the United States, California is 

a frontrunner in promoting EVs. In 2018, Executive Order B-48-18 set zero-emission 

vehicle (ZEV) mandates, requiring 1.5 million ZEVs be on the road by 2025 and 5 

million by 2030, with most of the ZEVs estimated to be Battery Electric Vehicles 

(BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs)(Governor Edmund G. Brown 

Jr., 2018). In 2020, Executive Order N-79-20 set more aggressive mandates, requiring 

all new cars and passenger trucks sold in California be ZEVs by 2035(Gavin 

Newsom, 2020). This fast deployment of EVs creates a great opportunity for climate 

mitigation and pollution control but also poses challenges for the electricity grid if 

EVs' charging is unmanaged.  

If uncontrolled, increasing energy demand from EVs could exacerbate peaks and 

ramps in netload, requiring greater generation investment  (Coignard, 2018). One way 

to manage charging is by changing charging time, known as “smart charging” or 

V1G. Alternatively, “Vehicle to Grid” (V2G) enables EVs to both receive energy and 

send energy back to the grid, thereby providing more flexibility to the grid (Coignard 

et al., 2018). While a single EV has limited grid-scale value, in the aggregate EV 

storage can be large. For instance, 1 million Nissan Leaf model EVs – a fifth of 

California’s 2030 ZEV mandate – can storage 40 GWh in total. A third-party 

aggregator can coordinate operations across many EVs by bidding into the power 

market for them as an intermediate agency, as shown in Figure 1. 

Since its proposal in 2002 (Letendre and Kempton, 2002), V2G has attracted interest 

from academic and industry. Intensive studies and pilot projects over the world are 

testing V2G in real-world conditions (Steward, 2017; Trahand, 2017; Black et al., 

2018). V2G has been shown to be technologically and economically feasible to 
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provide various grid services to the grid (Kempton and Tomić, 2005; Coignard et al., 

2018; Liu and Zhong, 2019). These services include demand-response, storage, and 

ancillary services in the wholesale market(Nunes and Brito, 2017; Coignard et al., 

2018; Gnann, Klingler and Kühnbach, 2018; Luo et al., 2020); renewable integration 

and reliability enhancement in mini-grid or distributed generation system(Zhu, Xia 

and Chiang, 2018; Carrión et al., 2019; Küfeoğlu and Pollitt, 2019; Chen et al., 2020); 

distribution level service like transmission congestion reduction. For the customers, 

BEVs and PHEVs that participate in V2G market would lower their electricity 

charging bills or even generate net revenue from providing grid services (Agarwal, 

Peng and Goel, 2014; Schuller et al., 2014; Luo et al., 2020).   

While these studies demonstrate potential value in V2G, existing research suffers 

from several shortcomings, including ignoring changes in future electricity prices, 

ignoring electricity price impacts of V2G, and simulating limited numbers of EVs 

with V2G. To begin to fill these gaps, we co-simulate electric grid and EV operations 

to analyze the economic value of V2G through 2030 in California. Our co-simulation 

captures future changes in the power system and EV market, as well as interactions 

between V2G and power system operations. Using this co-simulation platform, we 

quantify the future value of V2G, providing invaluable information to policymakers, 

grid operators, and V2G aggregators. 

Literature review 

Since initial work by Kemptom and Tomic in 2005(Kempton and Tomić, 2005), 

research on V2G has proceeded down many avenues, e.g. on technical aspects like 

scheduling algorithms (Bashash et al., 2011; Ortega-Vazquez, Bouffard and Silva, 

2013, 2013; Guo and Bashash, 2017; Xiong, Cao and Yu, 2018; Carrión et al., 2019; 

Yang et al., 2020) and on renewable integration (Garcia, Freire and Clift, 2018; 

Gnann, Klingler and Kühnbach, 2018; Das et al., 2020). A recent systematic review 

on 197 papers on V2G between 2015 and 2017 points out that current studies 

overemphasize technical topics, with only 3% looking at economic and social 

dimensions (Sovacool et al., 2018).  

Despite its potential value, V2G has not scaled up in the U.S. or most of the world due 

to several challenges, including difficulty to quantify the battery degradation cost of 

providing V2G, no established driver-centered business model, and inflexible energy 

market policies preventing EV participation as distributed energy resources (Steward, 

2017; Black et al., 2018). If V2G scales up, it’s likely to be at least partly driven by 

market forces, i.e. by providing value to V2G adopters. This paper aims to better 

understand the economics of V2G for light-duty passenger vehicles because they are 

the main contributor of GHG in the transportation sector (for commercial fleets, see 

e.g. (Gnann, Klingler and Kühnbach, 2018)).  
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Because V2G has not been widely commercialized, research on the potential value of 

V2G should adopt a prospective lens to quantify its potential future value. This is 

particularly important given rapid decarbonization of the power system and 

consequent market consequences like more volatile electricity prices, particularly in 

California(Seel et al., 2018; U.S. EIA, 2020). Furthermore, given rapidly growing EV 

numbers and California’s mandate for 5 million ZEVs on the road by 2030, V2G 

analyses should model large numbers of EVs(Argonne National Laboratory, 2021). 

Finally, large numbers of V2G-enabled EVs will interact with and affect electricity 

prices, which will in turn affect V2G value and revenues and drive changes in V2G 

operations.  Thus, economic analyses of V2G should capture four critical factors: (1) 

future grid changes, (2) large EV numbers, (3) V2G interactions with electricity 

prices, and (4) V2G operational responses to shifts in electricity prices. 

 Table 1 Literature Review Summary Based on Four Criteria 

 

Research that quantify the value of V2G from non-commercial EV fleets use a wide 

range of analysis methods, but none capture all four critical features identified above 

(Table 1). Many previous studies use a price unresponsive model built on static 

historical electricity or ancillary service market price data(Peterson, Whitacre and 

Apt, 2010; Agarwal, Peng and Goel, 2014; Pelzer et al., 2014; Zeng, Gibeau and 

Chow, 2015; Li et al., 2020). These price unresponsive models use historical price 

data and assume EVs have no impact on market prices.  In reality, a communication 

portal exists between the electricity market operator and EVs for EV scheduling and 

dispatch(Trahand, 2017). To avoid using historic prices, other studies use prospective 

simulations and scheduling algorithms that resemble a virtual power plant (VPP) that 

Paper Future 

grid 

changes 

V2G operational 

responses to electricity 

price changes 

V2G interactions 

with electricity 

prices 

Number of 

EVs 

analyzed 

Peterson 

2010 

No No No 1 

Pelzer 

2013 

No No No 1 

Agawral 

2014 

No No No 10,000 

Zeng 

2015 

No No No  

Vivek 

2018 

No Yes No 20 

Meisel 

2020 

Yes Yes No 1 

Donadee 

2019 Yes No Yes 

5 
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optimize EV charging and discharging decision based on electricity market price 

data(Bhandari, Sun and Homans, 2018; Meisel and Merfeld, 2020).  Among the few 

V2G analyses that consider future grid changes, Coignard looked at how much 

renewable sources V2G can help integrate in a future grid, but the research didn’t 

quantify the economic value of V2G(Coignard et al., 2018). Additionally, few studies 

of V2G integrate V2G operations with power system models to explore the value of 

V2G in future grids. Donadee used a co-optimization dispatch model to analyze the 

value of V2G in 2030 California grid under different renewable scenarios(Donadee et 

al., 2019). Yet, this study only modeled 5 EVs, so doesn’t capture the impact of large 

numbers of EV on electricity load or prices.  

Overall, no research to date has captured all four of the critical factors we identified 

for estimating the economic value of V2G. Existing research either (1)  uses a 

retrospective instead of prospective lens , (2)  ignore how V2G-enabled EVs would 

respond to market prices, (3) ignore interactions between V2G and the power system, 

including whether the grid will accept V2G bids and on how V2G affects electricity 

prices, and (4) models a significantly lower number of EVs than expected by 2030.  

To fill this gap, we co-simulate V2G and power system operations for a 2030 

California grid and 4 million EVs. Through our co-simulation platform, we capture 

interactions and price-responsive behavior between V2G and power system 

operations. Our V2G-enabled EV simulation model is bottom-up and takes into 

account EV characteristics including driving patterns, charging availability, and EV 

manufacturing technology advancement. Our power system model optimizes (or 

dispatches) generator operations to minimize system operational costs given generator 

and system constraints and V2G operations. Given future uncertainty surrounding 

EVs and the grid, we test the sensitivity of our results around future renewable 

deployment and battery technology. 

 

Methods                       

1. Co-Simulation Platform for V2G and Grid Operations  

This study is composed of two optimization problems: 1) V2G-sim optimizes the net 

revenue for individual EV. V2G-sim first simulates the driving pattern of vehicles and 

then maximize individual vehicle net revenue by making charging and discharging 

decision based on EV electricity demand, electricity prices, and regulation capacity 

price; 2) Unit Commitment and Economic Dispatch (UCED) models optimizes 

CAISO’s daily operation of the energy and ancillary services market. UCED dispatch 

generators and vehicles based on their bids and energy demand. V2G-sim outputs the 

bid from EVs fleet as well as extra electricity charge demand from the EVs, the 

demand and bid from EVs would impact the energy prices, which would in return be 
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fed back to V2G-sim. These two optimization problems would be solved through 

iterations.  

V2G-sim uses price outputs from UCED to update its input data and produce EV 

charge and discharge data. Given EV charging and discharging, generator data, and 

non-EV electricity demand, the UCED dispatches the generator fleet and produces 

new prices. Our platform iterates between these two models, updating price and 

vehicle charge and discharge decisions until the results converge, as shown by Figure 

2. The study runs on a daily basis for a year and uses daily EV economic profit as the 

convergence criteria. EV economic profit is calculated as revenues from electricity 

and regulation services minus electricity charging cost and battery cost, as follows: 

𝑝𝑟𝑜𝑓𝑖𝑡𝑖 = ∑ 𝑔𝑖,ℎ ∗ 𝑝𝑟𝑒,ℎ + 𝑟𝑒𝑔𝑢𝑝𝑖,ℎ ∗ prup,h + 𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝑖,ℎ ∗ 𝑝𝑟𝑑𝑜𝑤𝑛,ℎ − 𝑑ℎ ∗
24

ℎ=1

𝑝𝑟𝑒,ℎ − (𝑔𝑖,ℎ + 𝑟𝑒𝑔𝑢𝑝𝑖,ℎ + 𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝑖,ℎ) ∗ 𝑝𝑟𝑏𝑎𝑡𝑡               (1) 

𝑝𝑟𝑜𝑓𝑖𝑡𝑖i denotes EV, h denotes hours. 𝑝𝑟𝑜𝑓𝑖𝑡𝑖 denotes profit for EV i, 𝑔𝑖,ℎ denotes 

generation, 𝑑ℎ denotes demand, 𝑟𝑒𝑔𝑢𝑝𝑖,ℎ denotes regulation up capacity and 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝑖,ℎ denotes regulation down capacity. 𝑝𝑟 denotes price, with e for electricity, 

up for regulation up, down for regulation down, batt for battery cost. 

We set the convergence threshold to the change between iterations in daily profit for 

each EV dropping to less than $0.05. This convergence criteria balances 

computational requirements with obtaining stable and accurate results. 
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Figure 2 Interactions between V2G-sim and UCED models, price refers to electricity 

price, regulation up capacity price, and regulation down capacity price. 

 

2. V2G-Sim to optimize V2G operations 

V2G-sim simulates EV travel patterns and optimize EV charging and discharging to 

maximize net revenue. V2G-sim is a Python-based simulation tool developed by the 

Berkeley National Lab that models the driving and charging behavior of individual 

EVs (V2G-Sim, no date). With driving itineraries as input, V2G-Sim provides 

bottom-up modeling from individual EV dynamics. V2G-sim adopts a probabilistic 

model to simulate EVs interaction with chargers: when arriving at a charger, there is a 

certain probability that the charger has V2G capability (Level 2 and Level 3 charger is 

V2G compatible), and a certain probability that the driver would decide to plug in. 

We assume the EVs charge and discharge at wholesale price. Once plugged into a 

V2G capability charger, EV is connected to the grid and could choose to sell 

electricity to the grid if it’s profitable for the EV. The model is modified by this study 

to take electricity and regulation services wholesale price as input and the model 

optimizes when and how much electricity the EV will charge and discharge to 

maximize net economic profit. 
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The V2G-sim optimization problem is formulated as follows: 

𝑚𝑚𝑎𝑥 ∑ ∑ 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h(𝑃𝑟𝑒,𝑡 − 𝑃𝑟𝑏) − 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h𝑃𝑟𝑒,𝑡
𝑇
𝑡=1 +𝐼

𝑖

𝑃𝑟𝑒𝑔𝑢𝑝,𝑡,𝑖ℎ(𝑃𝑟𝑟𝑒𝑔𝑢𝑝,𝑡 − 𝑃𝑟𝑏) + 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖h(𝑃𝑟𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡 − 𝑃𝑟𝑏)                           (2) 

The optimization maximizes net revenue for EVs, it runs every 10 mins for a whole 

day in every iteration. i denotes individual vehicle,  t denotes time index; P denotes 

power, 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖 is the charge power at time t for vehicle i, h is the time step 

duration, 𝑃𝑟𝑒,𝑡 is the price of electricity,  𝑃𝑟𝑏 is the price of battery degradation, 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h(𝑃𝑟𝑒,𝑡 − 𝑃𝑟𝑏) is the electricity net revenue; 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖 is the charge 

power at time t for vehicle i, 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h𝑃𝑟𝑒,𝑡 is the cost for charging;  𝑃𝑟𝑒𝑔𝑢𝑝,𝑡 

denotes battery change from providing regulation up capacity, 𝑃𝑟𝑟𝑒𝑔𝑢𝑝,𝑡 is the price of 

regulation up capacity, 𝑃𝑟𝑒𝑔𝑢𝑝,𝑡,𝑖ℎ(𝑃𝑟𝑟𝑒𝑔𝑢𝑝,𝑡 − 𝑃𝑟𝑏) is the net revenue from providing 

regulation up capacity; 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡 denotes battery change from providing regulation 

down capacity, 𝑃𝑟𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡 is the price of regulation down capacity, 

𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖h(𝑃𝑟𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡 − 𝑃𝑟𝑏) is the net revenue from providing regulation down 

capacity. 

Energy arbitrage and frequency regulation are considered in the study. The rationale 

for including grid service other than ancillary services which are shown to be most 

suitable for V2G is that small market of ancillary services could be quickly saturated 

in the future with high EVs share(Zhou, Levin and Conzelmann, 2016; Coignard et 

al., 2018). 

In maximum this objective, the model must satisfy numerous vehicles constraints. 

The key constraint is meeting daily travel energy requirements. To obtain vehicle 

energy demand, vehicle capacity to provide generation, regulation up, and regulation 

down capacity which we feed into the UCED model, we aggregate the vehicle charge 

and discharge from these constraints. While we provide the full set of constraints in 

the SI, the daily travel energy requirement takes the form: 

∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h − 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h + 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖ℎ −𝑘
𝑡=1 𝑃𝑟𝑒𝑔𝑢𝑝,𝑡,𝑖ℎ ≥ 𝑒𝑚𝑖𝑛,𝑖,𝑡, ∀𝑘 ∈T (3) 

The aggregated energy of vehicle i, including from charging, discharging, providing 

regulation up and down capacity cannot go below the minimum energy at any given 

time. 
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3. UCED model to optimize power system operations 

From V2G-sim, we obtain electricity and regulation reserve sales to the power system 

from EVs. To optimize power system operations, we use a UCED model. The UCED 

model is a mixed-integer linear program that minimizes total system electricity, 

regulation, and startup costs subject to system and generator constraints. Our model 

includes two types of reserves procured by CAISO and crucial for grid stability: 

regulation up and regulation down. We focus on these two reserve types over others 

because of regulation requires smaller amount of charging and discharging than 

spinning reserves or peak power generation, and are shown to be the most profitable 

revenue source for V2G(Letendre and Kempton, 2002; Kempton and Tomić, 2005). 

We ignore transmission constraints, a common simplification in UCED analyses 

given the lack of public transmission data(Weis et al., 2015; Craig, Jaramillo and 

Hodge, 2018). We cap the regulation capacity by vehicles given that grid operator 

will limit the capacity provided by one source to control risks. We formulate the 

Python-based model in Pyomo and solve it using Gurobi(Hart et al., 2017; Gurobi 

Optimization, 2020).  

We use the UCED to optimize hourly generation and reserve provision decisions over 

a 48 horizon, which includes a 24-hour optimization period and a 24-hour look-ahead 

period similar to CAISO’s day-ahead market. The model’s objective function is: 

𝑚𝑖𝑛 (Electricity generation cost + Start up cost + Regulation up cost + Regulation 

down cost), ∀𝑡 ∈ 𝑇, 𝑖 ∈I                                                                                   (4) 

The objective minimize the operational electricity generation cost, start up cost, 

regulation up cost, and regulation down cost. Where i denotes generators, including 

renewable, vehicles, and other generators, and t denotes hours.  

Electricity generation cost=∑ 𝑚𝑤ℎ𝑖,𝑡 (𝑜𝑝𝑐𝑜𝑠𝑡𝑖 + 𝑣𝑎𝑟_𝑜𝑚𝑖)𝑖,𝑡                         (5) 

𝑚𝑤ℎ𝑖,𝑡 denotes energy generated by generator i in hour t (MWh), 𝑜𝑝𝑐𝑜𝑠𝑡𝑖 is the 

operational cost of generator i ($/MWh), and 𝑣𝑎𝑟_𝑜𝑚𝑖 is the variable operational and 

maintenance cost of generator i ($/MWh). 

Start up cost=∑ 𝑠𝑡_𝑐𝑜𝑠𝑡𝑖 𝑠𝑤𝑖𝑡𝑐ℎ𝑖,𝑡 𝑖,𝑡                                                                    (6) 

𝑠𝑡_𝑐𝑜𝑠𝑡𝑖 is the start up cost( $) for generator i to switch on,  𝑠𝑤𝑖𝑡𝑐ℎ𝑖,𝑡 is 1 when the 

generator i switch on at time t.  

Regulation up capacity cost=∑ 𝑟𝑒𝑔𝑢𝑝𝑖,𝑡𝑟𝑒𝑔𝑐𝑜𝑠𝑡𝑖 𝑖,𝑡                                               (7) 
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𝑟𝑒𝑔𝑢𝑝𝑖,𝑡 is the amount of regulation up capacity(MW) provided by generator i at time 

t. 𝑟𝑒𝑔𝑐𝑜𝑠𝑡𝑖  is cost for generator i to provide regulation capacity ($/MW). 

Regulation down capacity cost =∑ 𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝑖,𝑡𝑟𝑒𝑔𝑐𝑜𝑠𝑡𝑖𝑖,𝑡                                      (8) 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝑖,𝑡 is the amount of regulation down capacity(MW) provided by generator i 

at time t. 𝑟𝑒𝑔𝑐𝑜𝑠𝑡𝑖  is cost for generator i to provide regulation capacity ($/MW). 

In minimizing this objective, the model must satisfy numerous generator- and system-

level constraints. Two key constraints are balancing demand with supply and meeting 

regulation reserve requirements in each hour. Demand and supply include vehicle 

energy demand and vehicle generation, different demand and supply from vehicle will 

change the system constraints and therefore change the prices in the end. To obtain 

electricity and regulation reserve prices which we feed into the V2G-sim model, we 

extract the shadow price (or dual variable) from each of these constraints. While we 

provide the full set of constraints in the SI, the supply and demand balance constraint 

takes the form: 

∑ 𝑚𝑤ℎ𝑖,𝑡𝑖 ≥  demandt                                                                                            (9) 

Where 𝑚𝑤ℎ𝑖,𝑡 is the electricity supply generated by generator i in hour t, and 

demandt is the system electricity demand at hour t. This constraint makes sure the 

sum of electricity generation meets the system demand at any hour. 

 

4. Data and assumptions:  

Given its EV mandates, rapid expansion of charging facilities, and quick deployment 

of renewables, California is an ideal system for V2G valuations(De León, 2018; 

Governor Edmund G. Brown Jr., 2018; Gavin Newsom, 2020). Thus, we use 

California as our study system. Given ongoing decarbonization efforts and the current 

lack of V2G, we run our study through 2030. 

Table 2 shows the data sources and assumptions for UCED model and V2G-sim 

model. For UCED model, we use publicly available generator dataset for the 2019 

California generator dataset(U.S. EIA, 2020), maximum and minimum capacity, 

minimum up time, ramp up rate, operational cost, and start up cost, variable and 

maintenance cost, fixed cost, and regulation cost(US EPA, 2020), and fuel 

cost(U.S.EIA, 2019).  

For V2G-sim model, data inputs include EV numbers and types; charger numbers, 

types, and locations; and EV driving patterns. EV itinerary data comes from 

Californian residents’ 2017 National Household Travel Survey result, we assume the 

EVs have same driving pattern as today, detailed summary data is available in SI. 

According to California Executive Order B-48-18, California will achieve 5 million 

ZEV by 2030, including BEV, PHEV, and HFCV(Governor Edmund G. Brown Jr., 
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2018). this analysis assumes 30% of the ZEVs would be BEVs, consistent with 

California Energy Commission’s Transportation Energy Demand Forecast 2018-

2030(California Climate and Energy Collaborative, 2017). Tesla Model 3 with a 

battery capacity of 82 kWh is taken as an example EV model for BEV and Toyota 

Prius with a battery of 12 kWh for PHEV because they are respectively the most 

popular model in the market. We estimate the availability of charger while referring to 

previous research with V2G-sim model (Coignard et al., 2018).  

One other important aspect is battery degradation cost. It’s a common practice to use 

a flat battery degradation cost in V2G studies(Schuller et al., 2014; Guo et al., 2017). 

Battery degradation cost is calculated from battery pact cost, with the relevant 

parameters in a battery research about V2G (Escudero-Garzas, Garcia-Armada and 

Seco-Granados, 2012; Marongiu, Roscher and Sauer, 2015). For example, for 2030, 

the forecast of battery pack is at $61/kWh Battery(Bloomberg Finance LP, 2020), 

using Escudero’s research result, the battery degradation cost is $8/MWh. 

Table 2 Data sources and major model assumptions  

Model Data Data Source 2020 

baseline 

2025 

baseline 

2030 baseline 

UCED Load  OASIS 

(CAISO, 2020) 

Load stay the same; EV Demand added 

 Generator 

informati

on 

EIA, EPA 

(U.S.EIA, 

2019; O. US 

EPA, 2020; 

U.S. EIA, 2020)   

  More Natural 

Gas 

Combined 

Cycle by 2030 

 Regulatio

n 

Capacity 

Requirem

ent 

NREL report 

(Lew et al., 

2013; Denholm, 

Sun and Mai, 

2019) 

0.64% of system demand 

for regulation up capacity; 

0.72% of system demand 

for regulation down 

capacity 

1% of system 

demand for 

regulation up 

capacity and 

regulation 

down capacity 

 Cap of 

regulatio

n 

capacity 

provide 

by EVs 

 25% 

 

50% 

V2G-

sim 

EV 

Itinerary 

National 

Household 

Travel Survey 

for California 

2017(National 

Renewable 

Energy 

Vehicle travel habit won’t change (EVs 

travel an average amount of 50 miles/day) 
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Laboratory, 

2019) 

 Charging 

Infrastruc

ture 

California's 

Vehicle-Grid 

Integration 

roadmap 

(California ISO, 

2014) 

Home: L1 

17.5%; L2 

82.5%;Wor

k: no 

charger 20% 

L2 27.5%, 

DCFC 

52.5%; 

Other place: 

no charger 

20%; L2 

27.5%; 

DCFC 

52.5% 

Home: L1 

18.75%; L2 

81.25%;W

ork: no 

charger 

10% L2 

33.75%, 

DCFC 

56.25%; 

Other 

place: no 

charger 

10%; L2 

33.75%; 

DCFC 

56.25% 

Home: L1 

20%; L2 

80%;Work: 

L2 40%, 

DCFC 60%; 

Other place: 

L2 40%; 

DCFC 60% 

 EV 

numbers  

California 

Executive 

Order B-48-18, 

California 

Energy 

Commission 

Report 

(California 

Climate and 

Energy 

Collaborative, 

2017; Governor 

Edmund G. 

Brown Jr., 

2018) 

315235 

BEV, 

652662 

PHEV 

420000 

BEV,8700

00 PHEV 

1023833 

BEV, 

3172894 

PHEV 

 EV 

model 

 Tesla Model 3 for BEV; Toyota Prius for 

PHEV  

 Performa

nce 

Increase 

Using 2016 fuel 

economy 

performance as 

baseline 

1.26 for 

BEV; 1.19 

for PHEV 

1.33 for 

BEV; 1.25 

for PHEV 

1.44 for BEV; 

1.31 for 

PHEV 

 Battery 

Capacity  

Using 2016 

battery capacity 

as baseline 

82kWh; 

12kWh  

205kWh; 

30kWh 

(2.5 times 

increase) 

246kWh; 

36kWh (3 

times 

increase) 
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Scenarios analyzed: 

Table 3 Scenario Design 

 

To capture uncertainty in grid decarbonization and EV development, we construct 

three sets of scenarios for 2025 and 2030: baseline, aggressive, and conservative 

(Table 3). These scenarios differ by renewable energy penetrations and battery 

degradation cost. The baseline scenario assumes California will achieve its 

Renewable Portfolio Standard (RPS) and battery degradation costs follow Bloomberg 

forecasts. California’s RPS is 44% and 60% of generation comes from renewables by 

2025 and 2030, respectively (De León, 2018). The conservative and aggressive 

scenarios assume lower and higher renewable penetrations, respectively, in each year 

(Table 3). The conservative and aggressive scenarios also assume higher and lower 

battery degradation cost, respectively, in each year (Table 3).  

To quantify the value of V2G relative to V1G, we run our baseline scenario twice 

each year, once assuming all EVs and chargers have V2G capabilities and once 

assuming no V2G capabilities. In the latter, EVs can only receive electricity from the 

grid but can optimize charging time to minimize charging cost, i.e. engage in V1G.  

  202

0 

202

0 

202

5 

202

5 

2025 2025 203

0 

203

0 

2030 2030 

Scenari

o 

202

0 

base

line 

V1

G 

202

0 

base

line 

V2

G 

202

5 

base

line 

V1

G 

202

5 

base

line 

V2

G 

2025 

aggre

ssive 

V2G 

2025 

conser

vative 

V2G 

203

0 

base

line 

V1

G 

203

0 

base

line 

V2

G 

2030 

aggre

ssive 

V2G 

2030 

conser

vative 

V2G 

Battery 

Degrad

ation 

Cost 

($/MW

h) 

17 12 10 14 8 6 10 

Solar & 

Wind 

Retail 

Percent

age(%) 

32 44 48 40 60 64 56 
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Results 

We first present EV and power system results for our baseline scenario, then test the 

sensitivity of our results to our aggressive and conservative scenarios.  

1. Value of V2G Versus V1G in the baseline Scenario 

Fleet-Wide Results 

This section compares V1G and V2G in the baseline scenario. Total annual net 

revenues of V1G are negative in each year, but increase from 2020 to 2030. V1G total 

annual net revenue in 2020, 2025, and 2030 are $ -63.2, $-57.3, and $-45.5, 

respectively. Total annual net revenue of V2G first increased and then decreased from 

2020 to 2030. V2G total annual net revenue in 2020, 2025, and 2030 are $-23.1, $ -

9.8, and $-13.8, respectively.  

 

Figure 3: Change in annual net revenues averaged across EVs from V1G to V2G 

scenarios. Changes in ‘total’ annual net revenues (right cluster) equal the sum of 

changes in all other revenues.  

Using V2G instead of V1G increases total annual net revenue by $32-$48 on average 

across EVs from 2020-2030 (Figure 3). Total annual net revenue difference mainly 

comes from V2G generating electricity, i.e. discharging, ranging from $20.5 to $40.4, 

and the relative revenue possible from frequency regulation are smaller than 
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discharging. Total annual net revenue first increases and then drops from 2020 to 

2030 due to a large increase in discharge revenue from 2020 to 2025, which we 

further explore below. V2G net revenues from charging also increase, i.e. cost less, 

than V1G on the order of $5-10 on average across vehicles (Figure 3), the reason is 

discussed in Figure 4. V2G also enables net revenues from providing regulation 

down, but these revenues decline from roughly $8-$2 on average across vehicles from 

2020-2030.  

 

Figure 4: Change in total energy consumed or generated averaged across EVs from 

V1G to V2G scenarios.  

With V2G capability, individual EVs on average generate 0.5-1.2 MWh of electricity 

and provide 0.4-1.1 MWh of regulation down capacity from 2020-2030, respectively. 

Fleet-wide, this amounts to 5-49 TWh and 4-48 TWh of electricity and regulation 

down from 2020-2030, respectively, or 0.21-1.99% of electricity demand and 22-42% 

of regulation down requirements. Discharging and regulation down provision increase 

from 2020 through 2030 partly due to declining battery degradation costs. Net energy 

generation difference between V2G and V1G shows that V2G-enabled EVs charge 

less energy than V1G (Figure 4), because EV with V2G capacity can charge by 

providing regulation down capacity. Because charging requirement for V2G is 

smaller than V1G, charging costs for V2G are lower than V1G (Figure 3, Figure 4). 
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Despite greater discharging and regulation down provision and less charging through 

2030, total annual net revenue and discharge annual revenues increase from 2020 to 

2025 then decrease from 2025 to 2030 (Figure 3). Thus, the drop in total annual net 

revenue and discharge revenues from 2025 to 2030 does not occur due to decreased 

EV operations (Figure 4), but instead due to reduced prices (Figure 5). 

 

 

Figure 5: Annual average hourly energy price in V1G and V2G baseline scenarios, 

error bar shows the 95% confidence interval of energy prices across hours in a given 

year.  

Focusing first on V1G prices across years, electricity prices are significantly higher 

than regulation capacity prices across years (Figure 5). This explains why most 

revenue for V2G compared to V1G comes from increased discharge (Figure 3) even 

though discharged electricity and provided regulation down reserves are similar 

(Figure 4). All prices experience a decrease from 2020 to 2025 and a greater decrease 

from 2025 to 2030 (Figure 5). More renewable energy, lower EV operational cost 

(lower battery degradation cost), and added natural gas generators to integrate EVs 

and renewable generators through 2030 all contribute to the price decrease. The 

decrease in prices also explains change of discharge revenue and total annual net 

revenue from 2020 to 2030. We notice both discharge revenue and total annual net 

revenue first decreases and then increases from 2020 to 2030(Figure 3) while 

discharging and regulation capacity both increased (Figure 4). It’s because of the 

decreased in prices from 2025 to 2030 that result in the decrease of discharge revenue 

and total annual net revenue (Figure 4).  
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Regulation down capacity prices with V2G are higher than prices with V1G (Figure 

5). The operational cost for EV to provide regulation down capacity is the battery 

degradation cost. EV’s battery degradation cost ($ 8-17/MW) is higher than most 

other generators’ cost to provide regulation down capacity. For example, geothermal 

generators have an average marginal cost to provide regulation capacity at 

$0.003/MW. In all 3 years, V2G set the marginal cost for regulation down for 91% 

hours, meaning the grid system would prefer to deploy V2G to provide regulation 

down capacity and deploy other generator for regulation up capacity. 

2. Individual EV Results 

Fleet-wide average results could hide significant differences in vehicle-specific 

outcomes, so we quantify total annual net revenue across EVs for 2020 through 2030 

(Figure 6). BEVs and PHEVs have a wide range of net revenues in 2030 when 

participating in V2G. While the average total annual net revenue of V2G is $-

13.8/vehicle, some EVs makes up to $258 and others lose nearly $500 per year. BEV 

has an average net revenue of $-0.3, while PHEV has an average net revenue of $-

55.5. To understand the underlying determinants of EV net revenues, we calculated 

the Pearson correlation coefficient of individual EV characteristics with net revenue 

(Table 4). Distance travelled is negatively correlated (-0.12) with net revenue, while 

time spent at home at night is positively correlated (0.18) with net revenue. Time 

spent at Home at night (mins/day) is the length of time the vehicle spent from its last 

arrivel at home until might. Our result shows that it’s the time of day that EV is at 

home (Time spent at Home at night (mins/day)), rather than total amount of time that 

EV is at home, that correlates to the different for total annual net revenue. In our 

model, home and workplaces having higher charger coverage than other places 

(grocery stores, hospitals, shopping malls, parks). The time that EV can access 

chargers is important because most of the revenue comes from selling electricity when 

the cost of electricity is high, and electricity prices between 6-12pm are the highest 

during the day. 
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Figure 6: Total annual net revenue of individual EV in 2030 V2G baseline scenario 

Table 4 Correlation between daily average EV travel characteristics and annual net 

revenue in 2030 V2G baseline scenario. A correlation coefficient between 0.1 to 0.3 is 

considered a small association, correlation coefficient smaller than 0.1 is considered 

negligible (Schober, Boer and Schwarte, 2018). 

 Time 

spent at 

Home at 

night 

(mins/da

y) 

Distance 

Travelle

d 

(miles/da

y) 

Time spent at 

Home(mins/d

ay) 

Time Spent 

on 

Road(miles/d

ay) 

Time Spent 

at 

Work(mins/d

ay) 

Net 

Revenue($/y

ear) 

0.18 -0.12 0.01 -0.093 0.016 

 

3. Scenario Analysis 

To test the robustness of our results to uncertainty in future renewable penetrations 

and EV development, we conduct a scenario analysis. The aggressive scenario for 

each year means higher renewable and lower battery cost than baseline, while 

conservative scenario means lower renewable and higher battery cost than baseline. 
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Figure 7: Change in total annual revenues averaged across EVs from V2G aggressive 

and conservative scenarios to V2G baseline scenario. Changes in total annual net 

revenue (right cluster) equal the sum of changes in all other revenues.  

For 2025, both the conservative and aggressive scenario makes less profit than 

baseline, for $3 and $4.6, respectively. For 2030, conservative scenario is $30 more 

profitable than the baseline scenario (Figure 5). 2030 conservative scenario also is the 

only scenario with a net positive revenue of $16. Positive net revenues in the 

conservative scenario mostly arise from discharging revenues, which are $24.1 greater 

than baseline.  
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Figure 8: Change in total energy consumed or generated averaged across EVs from 

V2G aggressive and conservative scenarios to V2G baseline scenario. 

2030 conservative scenario provide significantly more discharge and regulation down 

capacity (Figure 8). We found that in three 2030 scenarios, the sum of wind, EVs, and 

solar are roughly the same. From aggressive to baseline to conservative scenario, as 

renewable decrease, EV’s percentage increase from 0.01% to 3% because EV’s 

operational cost, which equally to its battery degradation cost from operation, is more 

expensive than solar and wind but cheaper than others energy source. That explains 

why in 2030 conservative scenario, V2G creates more energy than 2030 baseline or 

2030 aggressive scenarios. In conclusion, lower renewable leaves more room for EV 

to generate energy and produce revenue. 

Conclusions 

In order to understand the future value of charge management technology, we use a 

co-simulation platform of EV and grid operations to analyze the value of V1G and 

V2G. We found the annual economic value of V2G to be around several dozen 

dollars. V2G are more profitable than V1G, but the value of V2G and V1G will 

increase from 2020 to 2030. Most V2G revenue comes from selling electricity instead 

of providing regulation capacity. V2G are valuable to the grid by providing 
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significant amount of generation capacity and regulation capacity, but higher 

renewable in the grid does not necessarily mean higher value of V2G. 

Most prior research find that the value of V2G range from hundreds to thousands of 

dollars. This difference can be explained by two key differences in methods: (1) we 

optimize future grid operations so we capture price changes (Figure 5) and (2) we 

include millions of EVs so we capture their effect on prices. Conversely, previous 

research does not consider whether the electricity or frequency regulation service 

would actually be dispatched by grid operator, does not consider how EVs will affect 

prices, and often only model 1-10 EVs(Peterson, Whitacre and Apt, 2010; Agarwal, 

Peng and Goel, 2014; Pelzer et al., 2014; Zeng, Gibeau and Chow, 2015; Li et al., 

2020). To test the effect of ignoring interactions between power market prices and EV 

operations, we run our baseline scenario for only one EV. We find the annual net 

revenue of the vehicle to be $2,190, $1,850, and $1,360 in 2020, 2025, and 2030, 

respectively, in the V2G baseline scenario. These values are in line with previously 

reported values (Peterson, Whitacre and Apt, 2010; Agarwal, Peng and Goel, 2014; 

Pelzer et al., 2014; Zeng, Gibeau and Chow, 2015; Li et al., 2020). However, these 

values are significantly greater than our average annual V2G revenues of $-23 

through $ -10 from our baseline scenario with millions of EVs. Thus, capturing 

interactions between power market prices and EV operations are the main reasons our 

economic value result is smaller than the other research. It’s essential to include 

power market prices interations with EV operations to avoid overestimating the value 

of V2G.  

While we found V2G is more profitable than V1G in all scenarios, both would cost 

less in regard to fuel consumption compared to their internal combustion engine (ICE) 

counterparts. The average annual net revenue for V1G and V2G ranges from -$9.8 to 

$63.2 from 2020 to 2030. In contrast, we estimate an ICE vehicle with the same 

driving pattern and energy consumption in California will spend roughly $2,800 for 

gas annually (AAA, 2018). This difference might be able to nudge vehicle purchase 

behavior towards EVs. On the other hand, for people who already owns EVs, there is 

a small economic incentive to participate in V2G revenue. Moreover, because V2G 

revenues vary widely among EVs, EVs with certain travel patterns can expect to 

exploit this opportunity more than the others. For example, we found EVs that arrive 

at home early in the afternoon can generate greater revenues by exploiting high prices 

in the early evening.  

V2G are valuable to the grid. Previous studies show that V2G can provide more 

flexibility to grid by providing ramping up and ramping down capacity (Coignard et 

al., 2018). Our study shows that V2G can also provide a significant amount of 

generation and regulation down capacity. However, we also found that grids with 

higher renewable penetration do not necessarily create more economic value for V2G. 

In particular, relative to the baseline scenario, V2G net revenues are higher in 2030 in 
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our conservative scenario, which has less renewables and higher battery costs than the 

baseline scenario. This suggests a trade-off exists between developing renewables and 

incentivizing EV to participate in grid operation through V2G. This poses a challenge 

to policymakers to craft policies that benefit renewables and V2G.  

This research shows the value of V2G and V1G and how the value would change in 

the future with change renewable penetration and battery degradation costs. Our 

research has several limitations. First, our co-simulation platform optimizes 

operations of the grid and V2G-sim. Future research should expand this co-simulation 

framework to endogenize generator investment decisions. Second, our research made 

certain assumptions around charger availability in the future and found it to be 

impactful in the value of V1G and V2G. Research on how accessibility of charging 

stations at home, work, and other locations would change EVs charging behavior 

would be helpful to fill in the gap. Third, our research targeted light duty passenger 

EVs but does not include commercial EVs fleet. However, the development of V2G is 

more prevalent and face less challenges for commercial EVs. Most pilot projects in 

the US for V2G are for commercial medium and heavy duty EVs fleet. They usually 

have pre-defined schedule and more certainty around when and where they will be 

able to connect to the grid and provide energy services, they also tend to have bigger 

battery pack capacity and can provide more energy with a relative small fleet (Gnann, 

Klingler and Kühnbach, 2018). More studies into the value for commercial EVs can 

be of particular interest for future research. These studies could leverage our co-

simulation platform to model EV and grid operations, thereby capturing key 

interactions between the two and properly valuing V2G in commercial EVs.  
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Supportive Information 

SI.1: Unit Commitment and Economic Dispatch Model Formulation 

This section provides the formulation of the Unit Commitment and Economic 

Dispatch Model that we used to determine vehicle dispatch and energy prices. The 

optimization used “pyomo” to formulate optimization models and used “gurobi” as 

the solver. 

 

SI.1.1: Definition of Variables, Parameters, and Sets 

 

Variables Definition 

mwhg,t Energy generated by generator g in hour t (MWh) 

𝑟𝑒𝑔𝑢𝑝g,t Amount of regulation up capacity provided by 

generator g in hour t (MW) 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛g,t Amount of regulation down capacity provided by 

generator g in hour t (MW) 

𝑜𝑛g,t Condition of generator g in hour t, 1 means the unit is 

on, 0 means the unit is off 

𝑠𝑤𝑖𝑡𝑐ℎg,t If generator g is switching on in hour t, 1 means the 

unit is switching on, 0 means otherwise 

mwh_hℎ,t Energy generated by hydro generator h in hour t 

(MWh) 

𝑟𝑒𝑔𝑢𝑝_ℎh,t Amount of regulation up capacity provided by hydro 

generator h in hour t (MW) 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛_ℎℎ,t Amount of regulation down capacity provided by 

hydro generator h in hour t (MW) 

𝑜𝑛_ℎℎ,t Condition of hydro generator h in hour t, 1 means the 

unit is on, 0 means the unit is off 

𝑠𝑤𝑖𝑡𝑐ℎ_ℎℎ,t If hydro generator h is switching on in hour t, 1 means 

the unit is switching on, 0 means otherwise 

mwh_s𝑠,t Energy generated by solar generators s in hour t 

(MWh) 

𝑟𝑒𝑔𝑢𝑝_𝑠𝑠,t Amount of regulation up capacity provided by solar 

generators s in hour t (MW) 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛_𝑠𝑠,t Amount of regulation down capacity provided by solar 

generators s in hour t (MW) 

𝑜𝑛_𝑠𝑠,t Condition of solar generators s in hour t, 1 means the 

unit is on, 0 means the unit is off 

𝑠𝑤𝑖𝑡𝑐ℎ_𝑠𝑠,t If solar generators s is switching on in hour t, 1 means 

the unit is switching on, 0 means otherwise 

mwh_w𝑤,t Energy generated by wind generators w in hour t 

(MWh) 

𝑟𝑒𝑔𝑢𝑝_𝑤𝑤,t Amount of regulation up capacity provided by wind 

generators w in hour t (MW) 
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𝑟𝑒𝑔𝑑𝑜𝑤𝑛_𝑤𝑤,t Amount of regulation down capacity provided by wind 

generators w in hour t (MW) 

𝑜𝑛_𝑤𝑤,t Condition of wind generators w in hour t, 1 means the 

unit is on, 0 means the unit is off 

𝑠𝑤𝑖𝑡𝑐ℎ_𝑤𝑤,t If wind generators w is switching on in hour t, 1 means 

the unit is switching on, 0 means otherwise 

mwh_veht Energy generated by vehicles in hour t (MWh) 

𝑟𝑒𝑔𝑢𝑝_𝑣𝑒ℎt Amount of regulation up capacity provided by 

vehicles in hour t (MW) 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛_𝑣𝑒ℎt Amount of regulation down capacity provided by 

vehicles in hour t (MW) 

 

Parameters Definition 

t Horizon Hours Range 

demand𝑡 Hourly demand during planning horizon hour range 

regup_margin Percentage of regulation up capacity requirement to 

demand 

regdown_margin Percentage of regulation down capacity requirement 

to demand 

cap The cap of regulation capacity provided by vehicle 

ini_on𝑔 Initial condition for generator g, 0 if generator is 

offline, 1 if generator is online. Initial value is 0 

ini_mwh𝑔 Initial energy provided by generator g. Initial value is 

0 

𝑚𝑎𝑥𝑐𝑎𝑝𝑔 Maximum capacity of generator g (MWh) 

𝑚𝑖𝑛𝑐𝑎𝑝𝑔 Minimum capacity of generator g (MWh) 

𝑜𝑝𝑐𝑜𝑠𝑡𝑔 Operational cost of generator g ($/MWh) 

𝑣𝑎𝑟_𝑜𝑚𝑔 Variable operational and maintenance cost of 

generator g ($/MWh) 

𝑠𝑡_𝑐𝑜𝑠𝑡𝑔 Start up cost of generator g ($) 

𝑟𝑎𝑚𝑝𝑔 Ramp rate of generator g 

𝑚𝑖𝑛𝑢𝑝𝑔 Minimum up time of generator g (hr) 

𝑟𝑒𝑔𝑐𝑜𝑠𝑡𝑔 Cost to provide regulation capacity of generator g 

($/MW) 

ini_on_hℎ Initial condition for hydro generator h, 0 if generator 

is offline, 1 if generator is online. Initial value is 0 

ini_mwh_hℎ Initial energy provided by hydro generator h. Initial 

value is 0 (MWh) 

𝑚𝑎𝑥𝑐𝑎𝑝_ℎℎ Maximum capacity of hydro generator h (MWh) 

𝑚𝑖𝑛𝑐𝑎𝑝_ℎℎ Minimum capacity of hydro generator h (MWh) 

𝑜𝑝𝑐𝑜𝑠𝑡_ℎℎ Operational cost of hydro generator h ($/MWh) 

𝑣𝑎𝑟_𝑜𝑚_ℎℎ Variable operational and maintenance cost of hydro 

generator h ($/MWh) 

𝑠𝑡_𝑐𝑜𝑠𝑡_ℎℎ Start up cost of hydro generator h ($) 

𝑟𝑎𝑚𝑝_ℎℎ Ramp rate of hydro generator h  

𝑚𝑖𝑛𝑢𝑝_ℎℎ Minimum up time of hydro generator h (hr) 
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𝑟𝑒𝑔𝑐𝑜𝑠𝑡_ℎℎ Cost to provide regulation capacity of hydro generator 

h ($/MW) 

𝑚𝑎𝑥𝑐𝑎𝑝_𝑠𝑡 Maximum capacity of solar generators in hour t 

(MWh) 

𝑜𝑝𝑐𝑜𝑠𝑡_𝑠𝑠 Operational cost of solar generators s ($/MWh) 

𝑣𝑎𝑟_𝑜𝑚_𝑠𝑠 Variable operational and maintenance cost of solar 

generators s ($/MWh) 

𝑠𝑡_𝑐𝑜𝑠𝑡_𝑠𝑠 Start up cost of solar generators s ($) 

𝑟𝑎𝑚𝑝_𝑠𝑠 Ramp rate of solar generators s 

𝑚𝑖𝑛𝑢𝑝_𝑠𝑠 Minimum up time of solar generators s (hr) 

𝑚𝑎𝑥𝑐𝑎𝑝_𝑤𝑡 Maximum capacity of wind generators in hour t 

(MWh) 

𝑜𝑝𝑐𝑜𝑠𝑡_𝑤𝑤 Operational cost of wind generators w ($/MWh) 

𝑣𝑎𝑟_𝑜𝑚_𝑤𝑤 Variable operational and maintenance cost of wind 

generators w ($/MWh) 

𝑠𝑡_𝑐𝑜𝑠𝑡_𝑤𝑤 Start up cost of wind generators w ($) 

𝑟𝑎𝑚𝑝_𝑤𝑤 Ramp rate of wind generators w 

𝑚𝑖𝑛𝑢𝑝_𝑤𝑤 Minimum up time of wind generators w (hr) 

veh_batteryCost Battery operational cost of vehicles ($/MWh) 

𝑔𝑒𝑛_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑣𝑒ℎ𝑡 Maximum energy capacity of vehicles in hour t 

(MWh) 

𝑟𝑒𝑔𝑢𝑝_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑣𝑒ℎ𝑡 Maximum regulation up capacity of vehicles in hour t 

(MW) 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑣𝑒ℎ𝑡 Maximum regulation down capacity of vehicles in 

hour t (MW) 

 

Sets Definition 

W Wind generators  

S Solar generators  

H Hydro generators 

V Vehicles  

G Other Generators 

T  Hours  

 

 

SI.1.2: Objective Function 

UCED simulates the grid operators daily economic dispatch decision, which aims to 

minimizes total operational economic cost to dispatch all generators to meet 

electricity demand. Total operational costs include costs of electricity generation, 

start-up costs, regulation up capacity, and regulation down capacity. The UCED runs 

over a 24-hour optimization horizon in hourly increments and includes an additional 

24-hour period. The second 24-hour period is a “look-ahead period” to bring 

additional information into the current 24-hour optimization horizon.  
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Electricity Generation cost= ∑ [𝑔,𝑡 𝑚𝑤ℎ𝑔,𝑡 (𝑜𝑝𝑐𝑜𝑠𝑡𝑔 + 𝑣𝑎𝑟_𝑜𝑚𝑔 )] +

∑ [𝑤,𝑡 𝑚𝑤ℎ_𝑤𝑡(𝑜𝑝𝑐𝑜𝑠𝑡_𝑤𝑤 + 𝑣𝑎𝑟_𝑜𝑚_𝑤𝑤 )]+∑ [𝑠,𝑡 𝑚𝑤ℎ_𝑠𝑡 (𝑜𝑝𝑐𝑜𝑠𝑡_𝑠𝑠 +

𝑣𝑎𝑟_𝑜𝑚_𝑠𝑠 )] + ∑ [ℎ,𝑡 𝑚𝑤ℎ_ℎ𝑡 (𝑜𝑝𝑐𝑜𝑠𝑡_ℎℎ + 𝑣𝑎𝑟_𝑜𝑚_ℎℎ )] +

∑ [𝑣,𝑡 𝑚𝑤ℎ_𝑣𝑡 (𝑜𝑝𝑐𝑜𝑠𝑡_𝑣𝑠 + 𝑣𝑎𝑟_𝑜𝑚_𝑣𝑠 )] 

, ∀𝑡 ∈ 𝑇, 𝑔 ∈G, 𝑤 ∈ W, 𝑠 ∈S, ℎ ∈H, 𝑣 ∈V 

 

Start up cost = ∑ 𝑠𝑡_𝑐𝑜𝑠𝑡𝑔 𝑠𝑤𝑖𝑡𝑐ℎ𝑔,𝑡 𝑔,𝑡  , ∀𝑡 ∈ 𝑇, 𝑔 ∈G 

 

Regulation up cost= ∑ [𝑔,𝑡 𝑟𝑒𝑔𝑢𝑝𝑔,𝑡𝑟𝑒𝑔𝑐𝑜𝑠𝑡𝑔 ] +

∑ [𝑣,𝑡 𝑟𝑒𝑔𝑢𝑝_𝑣𝑒ℎ𝑣𝑣𝑒ℎ_𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝐶𝑜𝑠𝑡] , ∀𝑡 ∈ 𝑇, 𝑔 ∈G, 𝑣 ∈V 

 

Regulation down cost= ∑ [𝑔,𝑡 𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝑔,𝑡𝑟𝑒𝑔𝑐𝑜𝑠𝑡𝑔 ] +

∑ [𝑣,𝑡 𝑟𝑒𝑔𝑑𝑜𝑤𝑛_𝑣𝑒ℎ𝑣𝑣𝑒ℎ_𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝐶𝑜𝑠𝑡] , ∀𝑡 ∈ 𝑇, 𝑔 ∈G, 𝑣 ∈V 

min (Electricity Generation cost + Start up cost + Regulation up cost + Regulation 

down cost)  , ∀𝑡 ∈ 𝑇, 𝑔 ∈G, 𝑤 ∈ W, 𝑠 ∈S, ℎ ∈H, 𝑣 ∈V 

 

SI.1.3: Logical Constraint 

Logical constraints determine that variable 𝑠𝑤𝑖𝑡𝑐ℎ𝑔,𝑡 , 𝑠𝑤𝑖𝑡𝑐ℎ_𝑤𝑡 , 𝑠𝑤𝑖𝑡𝑐ℎ_𝑠𝑡 , each 

generator can not be turned in  

𝑠𝑤𝑖𝑡𝑐ℎ𝑔,𝑡 ≥ 1 − 𝑜𝑛𝑔,𝑡−1 − (1 − 𝑜𝑛𝑔,𝑡 ) 

 

SI.1.4: Demand Supply Constraint 

 

∑ [𝑔,𝑤,𝑠,ℎ,𝑣 𝑚𝑤ℎ𝑔,𝑡+𝑚𝑤ℎ_𝑤𝑡+𝑚𝑤ℎ_𝑠𝑡+𝑚𝑤ℎ_ℎ𝑡+𝑚𝑤ℎ_𝑣𝑡] ≥  demandt 

Where 𝑚𝑤ℎ𝑔,𝑡, 𝑚𝑤ℎ_𝑤𝑡, 𝑚𝑤ℎ_𝑠𝑡, 𝑚𝑤ℎ_ℎ𝑡, 𝑚𝑤ℎ_𝑣𝑡 is the electricity supply 

generated by generator in hour t, and demandt is the system electricity demand at 

hour t. This constraint makes sure the sum of electricity generation meets the system 

demand at any hour. 

 

SI. 1.5: Regulation Up Capacity Constraint 

 

∑ [𝑔,ℎ.𝑣 𝑟𝑒𝑔𝑢𝑝𝑔,𝑡+𝑟𝑒𝑔𝑢𝑝_ℎ𝑡 + 𝑟𝑒𝑔𝑢𝑝_𝑣𝑡] ≥  demandt* regup_margin 

𝑟𝑒𝑔𝑢𝑝𝑔,𝑡 , 𝑟𝑒𝑔𝑢𝑝_ℎ𝑡 , 𝑟𝑒𝑔𝑢𝑝_𝑣𝑡 are the amount of regulation up provided by other 

generators, hydro generator, and vehicles (solar and wind  can not provide regulation 

up capacity). The system regulation up capacity demand at hour t is proportional to 

the electricity demandt, and the proportion is denoted by regup_margin. This 

constraint makes sure the sum of regulation up capacity meets the system regulation 

capacity demand at any hour. 
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𝑟𝑒𝑔𝑢𝑝_𝑣𝑡 ≤ demandt* regup_margin*cap 

This constraint caps the amount of regulation up capacity that vehicles can provide. 

 

𝑟𝑒𝑔𝑢𝑝𝑔,𝑡 ≤ 𝑜𝑛𝑔,𝑡 ∗ 𝑚𝑎𝑝𝑐𝑎𝑝𝑔 − 𝑚𝑤ℎ𝑔,𝑡 

𝑜𝑛𝑔,𝑡 is 1 when generator is online at hour t, 𝑚𝑎𝑝𝑐𝑎𝑝𝑔 is the maximum capacity 

generator g can provide. this constraint makes sure that regulation up capacity can 

only be provided by generator that’s online, and that the amount of regulation up 

capacity that vehicles can provide does not exceed the maximum capacity minuse the 

electricity generation it’s providing 

 

SI. 1.6: Regulation Down Capacity Constraint 

 

∑ [𝑔,ℎ.𝑣 𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝑔,𝑡+𝑟𝑒𝑔𝑑𝑜𝑤𝑛_ℎ𝑡 + 𝑟𝑒𝑔𝑑𝑜𝑤𝑛_𝑣𝑡] ≥  demandt* regdown_margin 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝑔,𝑡 , 𝑟𝑒𝑔𝑑𝑜𝑤𝑛_ℎ𝑡 , 𝑟𝑒𝑔𝑑𝑜𝑤𝑛_𝑣𝑡 are the amount of regulation down capacity 

provided by other generators, hydro generator, and vehicles (solar and wind  can not 

provide regulation capacity). The system regulation down capacity demand at hour t 

is proportional to the electricity demandt, and the proportion is denoted by 

regdowb_margin. This constraint makes sure the sum of regulation down capacity 

meets the system regulation capacity demand at any hour. 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛_𝑣𝑡 ≤ demandt* regdown_margin*cap 

This constraint caps the amount of regulation down capacity that vehicles can 

provide. 

 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝑔,𝑡 ≤ 𝑚𝑤ℎ𝑔,𝑡 − 𝑜𝑛𝑔,𝑡 ∗ 𝑚𝑖𝑛𝑐𝑎𝑝𝑔 

𝑜𝑛𝑔,𝑡 is 1 when generator is online at hour t, 𝑚𝑖𝑛𝑐𝑎𝑝𝑔 is the minimum stable capacity 

generator g can provide. this constraint makes sure that regulation down capacity can 

only be provided by generator that’s online, and that the amount of regulation down 

capacity that vehicles can provide does not go below the minimum stable capacity. 

 

SI 1.7: Maximum Capacity Constraint 

𝑚𝑤ℎ𝑔,𝑡 ≤ 𝑜𝑛𝑔,𝑡 ∗ 𝑚𝑎𝑝𝑐𝑎𝑝𝑔 

For each generator g, generation provided can not exceed the maximum capacity at 

any hour. 

𝑚𝑤ℎ_𝑤𝑡 ≤ 𝑜𝑛_𝑤𝑡 ∗ 𝑚𝑎𝑝𝑐𝑎𝑝_𝑤𝑡 

𝑚𝑤ℎ_𝑠𝑡 ≤ 𝑜𝑛_𝑠𝑡 ∗ 𝑚𝑎𝑝𝑐𝑎𝑝_𝑠𝑡 

𝑚𝑤ℎ_ℎ𝑡 ≤ 𝑜𝑛_ℎ𝑡 ∗ 𝑚𝑎𝑝𝑐𝑎𝑝_ℎ𝑡 

𝑚𝑤ℎ_𝑣𝑡 ≤ 𝑚𝑎𝑝𝑐𝑎𝑝_𝑣𝑡 

 

The same maximum capacity constraint applies to wind, solar, hydro, and vehicle 

generators. The constraints are slightly different because the maximum capacity of 
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wind, solar, hydro, and vehicle change across time, denoted by 

𝑚𝑎𝑝𝑐𝑎𝑝_𝑤𝑡 , 𝑚𝑎𝑝𝑐𝑎𝑝_𝑠𝑡 , 𝑚𝑎𝑝𝑐𝑎𝑝_𝑠𝑡, and 𝑚𝑎𝑝𝑐𝑎𝑝_𝑣𝑡. 

 

𝑚𝑤ℎ𝑔,𝑡+𝑟𝑒𝑔𝑢𝑝𝑔,𝑡-𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝑔,𝑡 ≤ 𝑚𝑎𝑝𝑐𝑎𝑝𝑔 

For each generator g, generation provided and capacity provided can not exceed the 

maximum capacity at any hour. 

 

SI.1.8: Minimum Capacity Constraint 

𝑚𝑤ℎ𝑔,𝑡 ≥ 𝑜𝑛𝑔,𝑡 ∗ 𝑚𝑖𝑛𝑐𝑎𝑝𝑔 

For each generator g, generation provided cannot be below the minimum capacity at 

any hour. 

  

SI.1.9: Vehicle Regulation Capacity Constraints: 

 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛_𝑣𝑡 ≤ 𝑟𝑒𝑔𝑑𝑜𝑤𝑛_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑣𝑡 

𝑟𝑒𝑔𝑢𝑝_𝑣𝑡 ≤ 𝑟𝑒𝑔𝑢𝑝_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑣𝑡 

The amount of regulation capacity provided by vehicles cannot exceed the regulation 

capacity of vehicles. Regulation up and regulation down capacity of vehicles are 

output from V2G-sim model. 

 

SI.1.10: Minimum Up Time Constraints: 

𝑜𝑛𝑔,𝑡-𝑜𝑛𝑔,𝑡−1 ≤  𝑜𝑛𝑔,𝑘 

 

∀𝑡 > 1, 𝑘 > 𝑡, 𝑘 < min (𝑡 + 𝑚𝑖𝑛𝑢𝑝𝑔 − 1,48) 

This constraint limits that each generator must meet the minimum up time constraints.  

48 is the horizon hours. 𝑜𝑛𝑔,𝑡 is 1 when the generator is on, it’s 0 when the generator 

is off.  

 

SI.1.11: Ramp Rate Constraints: 

𝑚𝑤ℎ𝑔,𝑡-𝑚𝑤ℎ𝑔,𝑡−1 ≤ 𝑟𝑎𝑚𝑝𝑔 ∗ 𝑜𝑛𝑔,𝑡 + 𝑚𝑖𝑛𝑐𝑎𝑝𝑔 ∗ 𝑠𝑤𝑖𝑡𝑐ℎ𝑔,𝑡  

 

𝑟𝑎𝑚𝑝𝑔 is the ramp rate of generator g. 𝑚𝑤ℎ𝑔,𝑡-𝑚𝑤ℎ𝑔,𝑡−1 is the difference of 

generation in two neighboring hours, which is also the rate of ramping up, this 

ramping up rate can not exceed ramp rate plus the minimum capacity when it turns 

on.   

 

𝑚𝑤ℎ𝑔,𝑡−1-𝑚𝑤ℎ𝑔,1 ≤ 𝑟𝑎𝑚𝑝𝑔 ∗ 𝑜𝑛𝑔,𝑡−1 + 𝑚𝑖𝑛𝑐𝑎𝑝𝑔 ∗ (𝑜𝑛𝑔,𝑡−1 − 𝑜𝑛𝑔,𝑡 + 𝑠𝑤𝑖𝑡𝑐ℎ𝑔,𝑡 ) 

 

This constraint is to limit the ramping down of generator g. Ramping down rate can 

not be smaller than ramp rate plus the minimum capacity when it turns off. 

 

𝑚𝑤ℎ_𝑤𝑡-𝑚𝑤ℎ_𝑤𝑡−1 ≤ 𝑟𝑎𝑚𝑝_𝑤𝑔 ∗ 𝑜𝑛_𝑤𝑡 

𝑚𝑤ℎ_𝑠𝑡-𝑚𝑤ℎ_𝑠𝑡−1 ≤ 𝑟𝑎𝑚𝑝_𝑠𝑔 ∗ 𝑜𝑛_𝑠𝑡 
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𝑚𝑤ℎ_ℎ𝑡-𝑚𝑤ℎ_ℎ𝑡−1 ≤ 𝑟𝑎𝑚𝑝_ℎ𝑔 ∗ 𝑜𝑛_ℎ𝑡 

 

𝑚𝑤ℎ_𝑤𝑡−1-𝑚𝑤ℎ_𝑤𝑡 ≤ 𝑟𝑎𝑚𝑝_𝑤𝑔 ∗ 𝑜𝑛_𝑤𝑡−1 

𝑚𝑤ℎ_𝑠𝑡−1-𝑚𝑤ℎ_𝑠𝑡 ≤ 𝑟𝑎𝑚𝑝_𝑠𝑔 ∗ 𝑜𝑛_𝑠𝑡−1 

𝑚𝑤ℎ_ℎ𝑡−1-𝑚𝑤ℎ_ℎ𝑡 ≤ 𝑟𝑎𝑚𝑝_ℎ𝑔 ∗ 𝑜𝑛_ℎ𝑡−1 

 

Similar ramping up and ramping down rate constraints also applied to wind, solar, and 

hydro generators. 

 

 

SI.2: V2G-sim Formulation 

This section provides the formulation of V2G-sim Model that we used to determine 

vehicle charge and discharge profiles. The optimization used “pyomo” to formulate 

optimization models and used “gurobi” as the solver. 

 

SI.2.1 Definition of Variables, Parameters, and Sets 

 

Variables Definition 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖 Charging power at time t from vehicle i (W) 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖 Discharging power at time t from vehicle i (W) 

𝑃𝑟𝑒𝑔𝑢𝑝,𝑡,𝑖 Power to provide regulation up capacity at time 

t from vehicle i (W) 

𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖 Power to provide regulation up capacity at time 

t from vehicle i (W) 

𝑜𝑛𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖 Binary variable, on is 1 when 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖 is 

nonzero, and on is 0 when 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖 is 0. 

𝑆𝑂𝐶𝑡,𝑖 SOC of vehicle i at time t  

 

Parameters Definition 

𝑃𝑟𝑒,𝑡 price of electricity at time t ($/MWh) 

𝑃𝑟𝑟𝑒𝑔𝑢𝑝,𝑡 price of regulation up capacity at time t 

($/MW) 

𝑃𝑟𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡 price of regulation down capacity at 

time t ($/MW) 

𝑃𝑟𝑏 price of battery degradation($/MW) 

ℎ time step duration (10mins) 

𝑒𝑚𝑖𝑛,𝑖,𝑡 Minimum energy for vehicle i at time t 

𝑒𝑚𝑎𝑥,𝑖,𝑡 Maximum energy for vehicle i at time t 

𝑒𝑓𝑖𝑛𝑎𝑙,𝑖 Final SOC for vehicle i during the time 

horizon 

𝑔𝑒𝑛𝐶𝑎𝑝𝑡 Generation cap for all vehicles at time t 
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𝑟𝑒𝑔𝑢𝑝𝐶𝑎𝑝𝑡 Regulation up cap for all vehicles at 

time t 

𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝐶𝑎𝑝𝑡 Regulation down cap for all vehicles at 

time t 

𝑃𝑚𝑎𝑥𝑡,𝑖 Maximum power for vehicle i at time t 

𝑃𝑚𝑖𝑛𝑡,𝑖 Minimum power for vehicle i at time t 

 

Set Definition 

T time 

I vehicles 

 

SI.2.2 Objective Function 

The V2G-sim optimization problem is formulated as follows: 

𝑚𝑎𝑥 ∑ ∑ 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h(𝑃𝑟𝑒,𝑡 − 𝑃𝑟𝑏) − 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h𝑃𝑟𝑒,𝑡

𝑇

𝑡=1

𝐼

𝑖

+ 𝑃𝑟𝑒𝑔𝑢𝑝,𝑡,𝑖ℎ(𝑃𝑟𝑟𝑒𝑔𝑢𝑝,𝑡 − 𝑃𝑟𝑏) + 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖h(𝑃𝑟𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡 − 𝑃𝑟𝑏) 

The optimization maximizes net revenue for EVs, it runs every 10 mins for a whole 

day in every iteration. i denotes individual vehicle,  t denotes time index; P denotes 

power, 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖 is the charge power at time t for vehicle i, h is the time step 

duration, 𝑃𝑟𝑒,𝑡 is the price of electricity,  𝑃𝑟𝑏 is the price of battery degradation, 

𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h(𝑃𝑟𝑒,𝑡 − 𝑃𝑟𝑏) is the electricity net revenue; 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖 is the charge 

power at time t for vehicle i, 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h𝑃𝑟𝑒,𝑡 is the cost for charging;  𝑃𝑟𝑒𝑔𝑢𝑝,𝑡 

denotes battery change from providing regulation up capacity, 𝑃𝑟𝑟𝑒𝑔𝑢𝑝,𝑡 is the price of 

regulation up capacity, 𝑃𝑟𝑒𝑔𝑢𝑝,𝑡,𝑖ℎ(𝑃𝑟𝑟𝑒𝑔𝑢𝑝,𝑡 − 𝑃𝑟𝑏) is the net revenue from providing 

regulation up capacity; 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡 denotes battery change from providing regulation 

down capacity, 𝑃𝑟𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡 is the price of regulation down capacity, 

𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖h(𝑃𝑟𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡 − 𝑃𝑟𝑏) is the net revenue from providing regulation down 

capacity. 

 

SI.2.3 Maximum Power Constraints 

𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖 ≤ 𝑃𝑚𝑎𝑥𝑡.𝑖 

The power to charge cannot exceed the maximum power. 
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𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖 ≥ 𝑃𝑚𝑖𝑛𝑡.𝑖 

The power to discharge cannot go below the minimum power. 

𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖 ≤ 𝑃𝑚𝑎𝑥𝑡.𝑖 ∗ 𝑜𝑛𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖 

The power for regulation down capacity cannot exceed the maximum power.  

 

𝑃𝑟𝑒𝑔𝑢𝑝,𝑡,𝑖 ≤ −𝑃𝑚𝑖𝑛𝑡.𝑖 ∗ (1 − 𝑜𝑛𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖) 

The power for regulation up capacity cannot go below the minimum power. 

Regulation up capacity also can not be provided when regulation down capacity is 

being provided. 

 

SI.2.4 Energy Constraints 

∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h − 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h + 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖ℎ −𝑘
𝑡=1 𝑃𝑟𝑒𝑔𝑢𝑝,𝑡,𝑖ℎ ≥ 𝑒𝑚𝑖𝑛,𝑖,𝑡, ∀𝑘 ∈T 

The aggregated energy of vehicle i, including from charging, discharging, providing 

regulation up and down capacity cannot go below the minimum energy at any given 

time. 

∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h − 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h + 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖ℎ −𝑘
𝑡=1 𝑃𝑟𝑒𝑔𝑢𝑝,𝑡,𝑖ℎ ≤ 𝑒𝑚𝑎𝑥,𝑖,𝑡 , ∀𝑘 ∈T 

The aggregated energy of vehicle i, including from charging, discharging, providing 

regulation up and down capacity cannot exceed the maximum energy at any given 

time. 

∑ 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h − 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖h + 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖ℎ −

𝑇

𝑡=1

𝑃𝑟𝑒𝑔𝑢𝑝,𝑡,𝑖ℎ ≥ 𝑒𝑓𝑖𝑛𝑎𝑙,𝑖 

The final aggregated energy of vehicle i, including from charging, discharging, 

providing regulation up and down capacity should be equal to or bigger than the final 

energy requirement. 
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SI.2.5 Cap Constraints 

∑ 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑡,𝑖

𝐼

𝑖=1

≤ 𝑔𝑒𝑛𝐶𝑎𝑝𝑡 

The generation from all vehicles cannot exceed the cap of generation. 

∑ 𝑃𝑟𝑒𝑔𝑑𝑜𝑤𝑛,𝑡,𝑖

𝐼

𝑖=1

≤ 𝑟𝑒𝑔𝑑𝑜𝑤𝑛𝐶𝑎𝑝𝑡 

The total of regulation down capacity from all vehicles cannot exceed the cap of 

regulation down. 

 

SI.3: Data Summary 

SI.3.1: 2017 National Household Travel Survey driving pattern summary 

Table 1 Daily driving pattern summary 

 

Distance 

travelled 

(miles) 

Time spent 

at Home at 

night 

(mins) 

Time spent at 

Home(mins) 

Time Spent at 

Work(mins) 

Time Spent on 

Road(miles) 

mean 50.37 420.21 3089.10 738.51 194.28 

std 50.97 181.21 764.77 813.75 134.23 

min 1.79 70.00 1680.00 0.00 24.00 

25% 17.39 296.75 2472.00 0.00 90.00 

50% 35.41 390.00 2986.50 0.00 165.00 

75% 64.55 534.50 3829.50 1572.75 261.00 

max 310.60 975.00 4245.00 2295.00 855.00 

 

 

SI.4: Result 
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SI.4.1: Fleet annual average net revenue for all scenarios 

 

Figure 1: Annual net revenues averaged across EVs. ‘total’ annual net revenues (right 

cluster) equal the sum of all other revenues. 

 

SI.4.2: Fleet annual average energy generation for all scenarios 

 
 

Figure 2: Annual net energy generation averaged across EVs.  
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SI.4.3: Energy prices for all scenarios 

 

Figure 3:Energy prices for all scenarios.  

 

 

SI.4.4: Individual Vehicle Result for 2020 and 2025 V2G baseline scenario 

 

Figure 4: annual net revenue of individual vehicle in 2020 V2G baseline 
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Figure 5: annual net revenue of individual vehicle in 2025 V2G baseline 

 

 

 


