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ABSTRACT 

 In this thesis, an autonomous driving robot has been proposed and built based on a two-wheel 

Segway self-balancing scooter. Sensors including LiDAR, camera, encoder, and IMU were 

implemented together with digital servos as actuators. The robot was tested simultaneously with 

the functionality features including obstacle avoidance based on fuzzy logic and 2D grid map, data 

fusion based on co-calibration, 2D simultaneously localization and mapping (SLAM) and path 

planning under different scenarios both indoor and outdoor. As a result, the robot initially has the 

ability of self-exploration with avoiding obstacles and constructing 2D grid map simultaneously. 

A simulation of the robot with same functionalities except data fusion has also been tested and 

performed based on robot operating system (ROS) and Gazebo as the simple comparison of the 

robot in real world.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 Autonomous driving, as known as self-driving, is a very popular research topic in current 

which integrates several automated systems including sensing and perception, movement-

controlling, networking, artificial intelligent, and decision-making to achieve a safe and fully 

automated system with little or no human input.  The 1.1 overview section will briefly introduce 

the development history of autonomous driving, the connection and relationships between 

autonomous driving and our thesis’s topic, autonomous driving robot. 

It has been nearly half century for people on the journey of chasing the autonomous driving 

dream. The word “driving” in autonomous driving reminds that there should be something to be 

driven. It could be a car, a drone, or a robot. As the most essential transportation in our society, 

cars were the first to be associated with autonomous driving. The first “autonomous driving car” 

generally accepted is the Stanford Cart, as shown in Figure 1.1. It was a long-term project early 

from 1961 to 1980. The first Stanford Cart was built in 1961 by mechanical engineering graduate 

student James L. Adams, based on a cart with four bicycle wheels and motors, a single black and 

white camera, connected through a very long cable to a console and TV display. The original 

objective of the Stanford Cart is to research the feasibility of remotely controlling a vehicle through 

vision and radio. The control efficiency of the Cart was very limited at the beginning, but it 

provided a platform of researching and developing the autonomous driving technologies. In 1971-

80, the Stanford Cart was added on a “slider” to obtain multiple visions, a KL10 processor and 

some early AI systems to use binocular vision to navigate slowly while avoiding obstacles. In 1979, 

the cart successfully crossed a chair-filled room without human intervention in about five 

hours. Although the efficiency was still very limited, it laid the basic research direction of  
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   (a)                                                                       (b) 

 

(c) 

Figure 1.1: Three generations of Stanford Cart. (a): First generation in 1961. (b):  Third 

generation in 1964-71. (c): Fourth generation in 1979.  Image credit: Stanford Cart via Stanford 

Robotics’ Legacy, Stanford News.  

 

modern autonomous driving car, controlling, sensing from the environment, and making decisions. 

From the 1980s – 2000s, with the breakthroughs in computer, robot control and sensing 

technologies, the autonomous driving has entered a stage of rapid development. The military, 

universities and companies have expanded extensive and close cooperation, which catalyzed the 

landing of many autonomous driving cars. The Defense Advanced Research Projects Agency 

(DARPA) has developed the Strategic Computer Program (SCP), which it hopes will benefit from 
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rapid advances in Computer architecture, software, and chip design, and push AI technology to 

new heights. As one of the sponsored research institutions, Carnegie Mellon University formed 

NAVLAB in 1984, and launched the first on-road autonomous driving car NavLab-5 in 1995 (as 

shown in Figure 1.2). NavLab-5 was built based on a 1990 Pontiac Trans Sport, with a sensing 

system including a Sony RGB camera, a laser rangefinder, GPS, fiber optic damping gyro, optic 

encoder, and a computing system including a SPARCLX portable workstation and an HC11 

microcontroller. With an algorithm based on the early neural network, NavLab-5 had the ability 

of analyzing the road condition to steer autonomously from learning human driving behaviors. 

This entrusted the intelligence to the car. In this period, the foundation of sensors selection, 

algorithms and research direction of modern autonomous driving car has been set. 

 

Figure 1.2: NavLab-5 (left side) and the artificial neural network for learning human driving skills 

(right side). Image credit: NavLab 5 via Carnegie Mellon University. 

 

When it came to 21st century, an autonomous driving challenge named “DARPA Grand 

Challenge” (as shown in Figure 1.3) by DARPA has attracted ICT companies and Silicon Valley 

such as Google from all over the world to join in the research and development of autonomous 

driving cars, which also causes the "intelligent" transformation of the traditional automobile 

industry and gives birth to a trillion-dollar industry. DARPA challenge has been held for three 

times, and the “Stanley” built based on a Volkswagen Touareg from Stanford racing team won the 

second challenge in 2005 among all the 43 teams (the hardware structure of Stanley has been 

shown in Figure 1.3). 
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Figure 1.3: Poster for First DRAPA Grand Challenge (top side), and some of the hardware 

structure of Stanley, the entrant vehicle developed based on a Volkswagen Touareg. Image credit: 

The DARPA Grand Challenge: Ten Years Later via DRAPA. 

 

By this challenge, DARPA has successfully explored the potential of autonomous driving cars, 

is also the basis route of hatching it. The hardware system should be composed basically by camera, 

lidar, millimeter wave radar, wire control system and the computing cell, while the sensing and 

fusion, object detection and positioning, path and action planning algorithm should compose the 

software system. The modern autonomous driving system is the combination of the hardware and 

software systems together. What we are researching and developing currently is about carrying out 

more in-depth and refined technological iterations on this basic route. 

The series of challenges initiated by DARPA has promoted the birth of an autonomous driving 

ecosystem composed of inventors, engineers, programmers, and developers. It also contributed to 

the rise of autonomous vehicle technology entrepreneurship and investment. Google, Tesla, Uber, 

Baidu, etc. have successively announced plans to develop autonomous vehicles, making no secret 
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of their ambitions in this emerging industry. At the same time, many autonomous driving startups 

such as Velodyne and Aurora have sprung up. In the scorching outlook of Internet companies, 

even the conservative traditional automakers and the supply chain behind them are "forced" to join 

the "autonomous vehicle arms race" because this is a matter of life and death. Till now, the concept 

of autonomous driving has been divided to 5 levels from pure human driving to fully automated. 

Lots of R&D projects have landed several autonomous driving cars of different levels, and some 

companies even announced that their AV of L5 ADAS will be on the road in 2021. No matter how, 

autonomous driving technologies is evolving and will continue to evolve, and it will gain much 

more diversity as more and more companies join in. 

What is autonomy? Autonomy is the ability to make your own decisions. In humans, autonomy 

allows us to do the most meaningful, not to mention meaningless, tasks. This includes things like 

walking, talking, waving, opening doors, pushing buttons, and changing light bulbs. In robots, 

autonomy is really no different. Autonomous robots, just like humans, also have the ability to make 

their own decisions and then perform an action accordingly. A truly autonomous robot is one that 

can perceive its environment, make decisions based on what it perceives and/or has been 

programmed to recognize conditions and then actuate a movement or manipulation within that 

environment. With respect to robot mobility, for example, these decision-based actions include but 

are not limited to some basic tasks like starting, stopping, and maneuvering around obstacles that 

are in their way. 

Autonomous robot can be useful in many application scenarios. In here, we list some of the 

application of autonomous robots, and we define the robot proposed in this thesis as a research and 

education robot. 

• Delivery Robot 

• Construction Robot 

• Research and Education Robot 

At the current time, autonomous driving is not only concentrated on cars, but it can also be 

implemented on drones or robots as well. The core concept of typical autonomous driving 

technology is about sensing from the environment, controlling, and making decisions. This shows 

a huge similarity with the concept of robots, especially intelligent robots. Therefore, some 
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technologies or algorithms developed from robots can be shared and implemented with vehicles, 

while developing and testing directly on a robot is more convenient and safer than straightly put a 

test car on the road. It can be a platform for developing advanced autonomous technologies and 

algorithms. Also, autonomous driving robots have several unique features and applicable scenarios. 

Based on the thoughts and relationship of autonomous driving and robots, an autonomous driving 

robot was built and landed (as shown in Figure 1.4) 

 

Figure 1.4: Overview of the robot proposed in this thesis, taken in University of Michigan – 

Dearborn, Sep 17th 2020. 
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1.2 Main Objectives 

 The main objectives of this thesis include the following five parts as proposed: 

a). Build an autonomous driving robot based on a Segway self-balancing robot with sensors 

including a 16-channel solid LiDAR, a RGB camera, wheel encoders, a gyroscope, and 

actuator including servos and microcontrollers. 

b). Based on this robot, realize several basic functions including movement control, sensing, 

and wheel odometer. 

c). Based on these basic functions, develop and realize several autonomous driving functions 

including obstacles avoidance, 2D simultaneously localization and mapping (2D SLAM), 

camera & LiDAR data fusion and path planning. 

d). Test the performance of the robot and integrate all the autonomous driving functions 

mentioned to the robot simultaneously without decrease the response speed. 

e). Establish a simulation environment and model based on ROS and Gazebo with all of the 

autonomous driving functions mentioned in 1.2.c and implement some other algorithms to the 

simulation to validate and explore the potential and capability of some possible future research 

work underneath this robot. 

Besides, the following several technologies and algorithms will be discussed and presented 

mainly in this thesis including: 

a). Two-wheel differential kinematics model. 

b). Microcontroller and servo. 

c). Obstacle Avoidance. 

d). LiDAR and point cloud. 

e). Sensor data fusion. 

f). SLAM and filtering. 

g). Path planning. 
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Some other technologies and principle used in the simulation part will not be within the scope 

of our discussion. 

 

1.3 Thesis Outline 

 In CHAPTER 1 the history of autonomous driving and the relationship between autonomous 

driving and robots have been introduced briefly. In CHAPTER 2 some related works about the 

technologies and algorithms presented in this thesis mainly including 1.2 c, d, e, and f will be 

introduced. 

In CHAPTER 3 the approaches used through all the process of developing the autonomous 

driving robot will be presented. 

In CHAPTER 4 the overall testing process and results of the robot will be presented and 

analyzed. 

In CHAPTER 5 some summary and conclusion about the performance and practical 

application value of this thesis will be presented. In addition, we will discuss the prospects for 

future research works inspired by this thesis. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Autonomous Robot 

 According to JIRA (Japanese Industrial Robot Association), the common and general robotics 

can be classified into 6 classes: 

• Class 1: Manual Handling Device 

• Class 2: Fixed-Sequence Robot 

• Class 3: Variable Sequence Robot 

• Class 4: Playback Robot 

• Class 5: Numerical Control Robot 

• Class 6: Intelligent Robot 

Specifically, the robot proposed in this thesis can be classified into Class 6, intelligent robot 

for the reason that the robot has a certain degree of learning ability. There is actually existing 

another kind of classification of robotics based on control, as shown in Figure 2.1. Autonomous 

robot has been divided into two types including pre-programmed and self-learning robot. For the 

robot proposed in this thesis, there is no clear line of demarcation to define which type the robot 

belongs. At the most of time, the robot was guided by pre-programmed functions to take action. 

However, the robot also has the ability of environment perception and take action by itself. Thus, 

in this thesis, we define this robot as an autonomous driving robot based on the ability and 

functionality the robot can perform.
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Figure 2.1: One kind of robotics classification based on control.  

 

As mentioned before, the three most essential features of an autonomous robot include sensing, 

making decisions, and taking actions, as shown in the scheme in Figure 2.2.[35] To realize and 

fulfill the functionality requirements of autonomous robot, people usually implement several types 

of sensors, microcontrollers, and actuators. Till now, general sensors that can be implemented to 

robots, especially autonomous robots can be listed in Table 2.1. 

 

Figure 2.2: General autonomous robot scheme. [35] 
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Table 2.1: Overview of common sensors for autonomous robotics. A: active; P: passive; PC: 

proprioceptive; EC: exteroceptive. [35] 

General Classification Sensor / Sensor System PC or EC A or P 

Wheel/motor sensors 

(Speed and position) 

Brush encodes 

Potentiometers 

Optical encoders 

Magnetic encoders 

Inductive encoders 

Capacitive encoders 

PC 

PC 

PC 

PC 

PC 

PC 

P 

P 

A 

A 

A 

A 

Heading Sensors 

(Orientation of the robot 

in relation to a fixed 

reference frame) 

Compass 

Gyroscopes 

Inclinometers 

EC 

PC 

EC 

P 

P 

A/P 

Ground-based Beacons GPS 

Active optical or RF beacons 

Active ultrasonic beacons 

Reflective beacons 

EC 

EC 

EC 

EC 

A 

A 

A 

A 

Active Ranging 

(Reflectivity, time-of-

flight, and geometric 

triangulation) 

Reflectivity sensors 

Ultrasonic sensors 

Laser rangefinder (laser scanner) 

Optical triangulation (1D) 

Structured light (2D) 

EC 

EC 

EC 

EC 

EC 

A 

A 

A 

A 

A 

Motion/speed sensors 

(Speed relative to fixed or 

moving objects) 

Doppler radar 

Doppler sound 

EC 

EC 

A 

A 

Vision-based sensors 

(visual ranging, whole-

image analysis, 

segmentation, object 

recognition) 

CCD/CMOS cameras 

Visual ranging packages 

Object tracking packages 

EC 

 

P 

 

Also, people use several types of microcontrollers and actuators for autonomous robotics. In 

here we will not list them as comprehensive as for sensors, we only list some of the most common 

ones.  

Microcontrollers: 

• Single chip microcontroller: STM32, Arduino, ARM, 8051, Atmel AVR 

• Raspberry Pi 

• Nvidia Jetson 
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Actuators: 

• Servos 

• Motors 

• Artificial Muscle 

• Pumps 

• Fans 

 

Figure 2.3: General wheel configuration for rolling mobile robots. [35]  
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With the implementation of sensors, microcontrollers and actuators, the final step of building 

an autonomous robot is a carrier to hold all the hardware. There are several types of robotics 

differed in types of locomotion including crawl, sliding, walking, wheeled and so on. In this thesis, 

we chose wheeled chassis to carry the hardware. More specifically, we chose two-wheel 

differential drive mode, the arrangement has been shown in Figure 2.3. 

One of the most famous autonomous for research and education purpose is the TurtleBot. 

TurtleBot is a low-cost, personal robot kit with open-source software especially robot operating 

system (ROS). TurtleBot was created at Willow Garage by Melonee Wise and Tully Foote in 

November 2010.[44] With TurtleBot, you will be able to build a robot that can drive around your 

house, see in 3D, and have enough horsepower to create exciting applications. TurtleBot has 

evolved to the third generation till now and the features of TurtleBot is pretty much similar to our 

robot: 

• Two-wheel differential drive 

• Equipped with multiple sensors 

• Modular sensors and functions 

• Programmable 

 

Figure 2.4: Examples of TurtleBot Family. Image credit: www.TurtleBot.com 
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After introducing some related works about the overview of autonomous robots, next we will 

introduce some theoretical background about the functions proposed in our robot. 

 

2.2 Obstacle Avoidance 

 Obstacle avoidance is one of the most essential functions for an autonomous driving robot for 

the reason of keeping the robot safe at all the time. The two main concern when implementing 

obstacle avoidance to a robot includes the choose of sensor and algorithm. There are several types 

of sensor choices for different applicational scenarios as shown in Table 2.2, while the algorithm 

chosen might not vary significantly because the principle shows the same. 

Table 2.2: Advantages and limitation of various sensors within USVS. [24]  

Sensors Advantages Limitations 

Millimeter-Wave Radar • Long detecting range. 

•  Good velocity estimates. 

• All-weather and broad-

area imagery. 

• Limited small and 

dynamic target detection 

capability. 

• Motion distortion; 

LiDAR • High depth resolution and 

accuracy. 

• Suitable for both indoor 

and outdoor scenario. 

• Wide scan range. 

• Angular resolution both 

vertically and 

horizontally. 

• Sensitive to motion. 

• High cost. 

Visual Sensor • High lateral and temporal 

resolution. 

• Simplicity and low 

weight. 

• Low depth resolution and 

accuracy. 

• Challenge to real-time 

implementation. 

• Sensitive to light and 

weather. 

Infrared Sensor • Applicable for dark 

conditions. 

• Low power consumption. 

• Indoor use only. 

• Impressionable to 

interference and distance. 

  

 Algorithms for obstacle avoidance can be divided to two kinds. The traditional algorithms 

including Artificial Potential Field (APF) and Virtual Force Field (VFF) [21] usually have 

satisfactory real-time performance and high safety margin, but it cannot achieve good results in a 

dynamic environment. The opposite one is intelligent optimization algorithms including Fuzzy 

Logic Algorithm (FLA), Genetic Algorithm, Rapidly Random-exploring Trees (RRT) and so on. 
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The most notable advantage for intelligent optimization algorithms is good performance in 

dynamic environment. The response is rapid for moving obstacles, which can improve the safety. 

The completeness of these algorithms is to deal with the complex conditions of real roads and 

possible potential unknown threats. 

 There is a famous theory in artificial intelligent goes as “There’s no free lunch”. For different 

practical applicational scenarios, the choose of sensors and algorithms should be flexible to balance 

the cost and performance. A simple logic for obstacle avoidance can be described as shown in 

Figure 2.5. This kind of logic is always implemented with grid mapping. The information provided 

by grid map has lower resolution which is suitable for simple logic. [8] 

 

Figure 2.5: One example of obstacle avoidance logic (left) and guiding 2D grid map (right). [8] 

 

 There is another logic for obstacle avoidance that published recently called the clearance 

considering the uncertainly of the robot motion (CURM) as shown in Figure 2.6.[24] This 

algorithm is a kind of local obstacle avoidance that designed based on velocity control, where 

CURM is the smallest value in the uncertainty ellipse of the reference velocity. Our method shows 

similarity with both the CURM and the simple logic in Figure 2.5, and it will be presented later in 

CHAPTER 3. This kind of logic shows high performance in dynamic environment, where the 

global map is uncertain, and obstacles are moving. 
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Figure 2.6: CURM configuration. [24] 

 

 Obstacle avoidance technology is always implemented with the company of path planning 

(routing), as part of the decision-making processes. 

 

2.3 LiDAR and Point Cloud 

 As one of the most crucial sensors in autonomous driving technologies, lase radar, or LiDAR 

has the ability of sensing the environment comprehensively in stereo. It also has an extensive 

application in researching and industry. LiDAR can be divided to several different types including 

2D/3D, single/multi-channel, 360°/180° and so on, while in this thesis we focus the application of 

3D multi-channel LiDAR mainly on autonomous driving. 

 LiDAR can be useful in almost every functions of autonomous driving. A typical LiDAR for 

autonomous driving is usually a solid multi-channel one, which uses time-of-flight (TOF) [32] 

when measuring, as shown in Figure 2.7. The received optic pules will be decoded as plenty of 

points containing both position and reflection intensity information, which are called point cloud. 

A typical point cloud data after decoding is formatted as [𝑥 𝑦 𝑧   𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ].  
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Figure 2.7: FOT configuration of LiDAR. [30] 

 

 In this thesis, a 16-channel solid LiDAR will be implemented to our robot for supplying point 

cloud data of realize Occupied Grid Obstacle Avoidance, Camera & LiDAR Data Fusion and 2D 

SLAM. 

 

2.4 Sensor Data Fusion 

 Sensor data fusion is a powerful technology which can combine different type of sensors 

together, lead them to take advantages and complement disadvantages together. The application 

of sensor data fusion in autonomous driving can be simple such as object co-detection, or more 

complicated such as 3D reconstruction, and semantic map construction, as shown in Figure 2.9. 

 

Figure 2.8: One example flow chart of fusing data from LiDAR and camera. [23] 
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Figure 2.9: One typical application of data fusion, 3D object co-detection and segmentation The 

segmented parts also has semantic informations. [33] 

 

 One example of fusing LiDAR and camera together is to use machine learning, such as the 

flowchart shown in Figure 2.8. However, for precise calibration, the precondition of fusing sensors 

is to know the spatial relative relationship, which means the sensors should be calibrated in 

advance to generate the intrinsic and extrinsic matrices of both camera and LiDAR. For some 

open-source dataset such as KITTI [2], the intrinsic and extrinsic matrices have already been 

calibrated, but since this robot was built on our own, the camera and LiDAR needed to be calibrated 

from scratch.  

 

Figure 2.10: One example of fuzzy logic based data fusion. [32] 
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 The key of calibration is to extract the identical features from both image and point cloud then 

match them together. There are several existing methods for calibration as shown in Figure 2.10 

uses fuzzy logic to fuse the parsed image and point cloud together, no matter what kind of object 

is providing the features. [32] Another method is more suitable and robust for fixed position 

sensors. The key about this method is to use a checkerboard as the landmark. First it detects and 

estimate the corner of each checkers both in image and point cloud, then with the intrinsic matrix 

calibrated from camera alone, it can re-project each corner from point cloud back to image in a 

same coordinate and calculate the reprojection error. Some improvements can be implemented 

with the application of refinement and optimization algorithms. For example, in ILCC [31], an 

optimization cost function based on the constraints of the correspondence between the intensity 

and color was formulated, as shown in Figure 2.11. Our method of calibration and fusing data from 

LiDAR and camera is based on ILCC, which will be presented in CHAPTER 3 particularly. 

 

 

Figure 2.11: Hardware setup and corner extraction for ILCC. [31] 

 

2.5 SLAM and Filtering 

 Localization and mapping are one of the major focus of autonomous driving and robotics 

because it is usually the prerequisite of path planning. SLAM comprises the simultaneous 

estimation of the state of a robot equipped with sensors, and the construction of a model (map) of 
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the environment that the sensors are perceiving. The need to use a map of the environment is 

twofold. First, the map is often required to support other tasks; for instance, a map can inform path 

planning or provide an intuitive visualization for a human operator. Second, the map allows 

limiting the error committed in estimating the state of the robot. In the absence of a map, dead-

reckoning would quickly drift over time; on the other hand, using a map, e.g., a set of 

distinguishable landmarks, the robot can “reset” its localization error by re-visiting known areas 

(so-called loop closure). [40]Therefore, SLAM finds applications in all scenarios in which a prior 

map is not available and needs to be built. In autonomous driving and robotics map can be divided 

into several types depends on the usage and information contained as shown in Figure 2.12 

However, in this thesis we focus only on grid map since the primary application of the map is for 

path planning. 

 

(a)                                                                (b) 

 

(b)                                                                (d) 

Figure 2.12: Different type of map. (a): 3D point cloud map. (b): 2D semantic map. (c): 2D grid 

map. (d): 3D semantic map. [38] 
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 SLAM also can be divided into several types. People usually divided SLAM into two 

manifolds by the usage of sensor including vision SLAM and lase SLAM. Both these two 

approaches of SLAM have their advantages and disadvantages, as shown in Table 2.3. 

Table 2.3: Comparison between lase & vision SLAM in some aspects. 

 Lase SLAM Vision SLAM 

Cost High Much lower 

Application 

Scenario 

More indoor, but can do 

outdoor 

Both indoor and outdoor, 

high optic dependence 

Accuracy of 

Map 

High, can be used for 

navigation or path 

planning directly 

Lower 

Usability Collect point cloud with 

depth information 

directly 

Indirectly, more steps for 

collecting depth 

information 

Hardware 

Setup 

Relatively larger and 

heavier 

Light and portable 

 

 Compared with vision SLAM, lase SLAM is much suitable for the application of the robot 

proposed in this thesis. lase SLAM can be divided into two types including Filter-based and Graph-

based depends on the algorithm implemented. Filter-based SLAM [42] modeled the localization 

and mapping process as a probabilistic problem, which use a probabilistic filter to estimate the 

robot’s pose simultaneously in each frame with the input of lase scan and odometer. Graph-based 

SLAM [42] create sub-graphs to represent the state and map of the robot and use nonlinear least 

squares to optimize those graphs. Table 2.4 presents the development and features of lase SLAM. 

 The quality of map can be critical for affecting the performance of the robot. A poorly 

constructed map with low accuracy may provide fallacious coordinates for robots and may lead to 

a crash. Plus, the robot must know the current location of itself, which is a prerequisite of the 

overall mapping process. Based on the consideration of our robot’s practical application and 

software development environment, the Optimal RBPF 2D SLAM [21] is the most suitable 

algorithm, which is lighter than graph-based methods with high accuracy compared to other filter-

based methods. 

 The abbreviation RBPF represents Rao-Blackwellized Particle Filter.[46] As an extension of 

particle filter, RBPF is a powerful tool for solving state estimation problems. As mentioned before, 
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filter-based SLAM modeled the localization and mapping process as a probabilistic problem, 

which can be formulated as a posterior distribution over the state variables consisting of the robot 

map 𝑚 = {𝑚𝑖} and robot trajectory 𝑥1:𝑡 = {𝑥1, … , 𝑥𝑡} conditioned on the sequence 

Table 2.4: Configuration of lase SLAM through development. 

Year SLAM Sensor Feature 

1988 EKF-SLAM 2D LiDAR Only feature map built, large 

computational complexity and poor 

robustness 

2002 FastSLAM 2D LiDAR First algorithms for building grid map; 

High memory consumption and particle 

dissipation 

2007 Gmapping 2D LiDAR Less particle dissipation, high odometer 

dependency 

2010 Optimal 

RBPF 

2D LiDAR Best performance for filter-based 

SLAM, relative light-weighted 

2010 Karto SLAM 2D LiDAR First graph-based SLAM algorithm, 

high time consumption and non-real 

time 

2011 Hector-

SLAM 

2D LiDAR No odometer needed; 

Sensitive to initial value, map will drift 

when robot rotated 

2014 LOAM 3D LiDAR First 3D lase SLAM algorithm; 

Assume the robot moves in constant 

speed; 

No loop-closure 

2015 V-LOAM 3D LiDAR & 

Vision 

High accuracy and robustness; 

Fuse lase and vision sensor together; 

2016 Cartographer 2D LiDAR Graph-based 2D SLAM; 

Similar performance with Optimal 

RBPF 

2016 VELO 3D LiDAR & 

Vision 

With loop-closure; 

Less map drifting 

2018 IMLS 3D LiDAR Pure lase input, no rely on GPS, IMU, 

vision sensors with less map drifting 

 

of sensor observations 𝑧1:𝑡 = {𝑧1, … , 𝑧𝑡}  and control commands 𝑢1:𝑡 = {𝑢1, … , 𝑢𝑡} . It uses 

several numbers of particles to represent the posterior and after each interval it will update these 

particles and resample them to acquire the right location of robot and forward to the next interval. 

Based on this assumption, RBPF SLAM split localization and mapping apart, construct the map 

after the robot’s current pose was determined. The relatively simple process of particle filter causes 
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it lighter than graph-based methods while the resampling step also cause a common failing called 

particle degeneracy. Particle degeneracy means after several iterations of resampling, some 

particles carrying correct information might be dumped and the diversity of particles might 

downgrade. In terms of this problem, RBPF applied two improvements. The first one is called 

selective resampling, which set a threshold at the resampling step. This will only resample those 

particles with large weights whose distance between current distribution center is smaller. The 

second one is to use distribution of improvement proposal, which means it will consider the result 

of the most recently sensor reading when give a weighting to particles, since the observation of 

sensors are always more accurate than control commands. With these two improvements, RBPF 

has fewer times of resampling and numbers of particles to prevent the particle degeneracy problem, 

while it also gained higher accuracy. 

 The research about RBPF SLAM (or more widely the filter-based SLAM) is still ongoing. 

Many researchers proposed vary kinds of methods to improve the performance, e.g. [16] [19] [21] 

[25] . But those works will not be discussed too much since the theoretical background of our 

works is already enough. Next in CHAPTER 3, our method will be presented in detail about   how 

we implement RBPF to our robot, what kind of adjustments we have made and the way we make 

it real-time. 

 

2.6 Path Planning and Reinforcement Learning 

 In this part, the background of robot path planning will be mainly introduced since the topic of 

thesis is autonomous driving robot. Besides, the primary purpose of this thesis is to build an 

autonomous driving robot which can be also used as an algorithm development platform. Hence, 

some of the advanced technologies related to path planning will also be introduced. In here we will 

mainly focus on the most popular research direction, reinforcement learning. [38] 

 Path planning, or as known as routing, navigation technologies are well known while playing 

an essential role in autonomous driving and robotics. Generally, people describe the path planning 

problem as a process or activity to plan and direct a route or path from a position to a goal on the 

map. In fact, the three general problems of path planning include localization, mapping, and motion 

control, which has been introduced before and will be discussed in detail as the main focus of this 

thesis. Path planning research of autonomous driving and robotics has attracted attention since the 
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1970s. [37] Over the past several years and recently, research in this area has increased due to the 

reason that autonomous robots are now applied in various applications. Thus, through many years 

of development and evolution, the classification of path planning has been divided into many 

domains, as shown in Figure 2.13. In here, we focus only on 2D environment since the robot 

proposed in this thesis can be classified as a ground autonomous mobile robot. Under the 2D 

environment domain, the path planning technologies can also be divided into several domains 

according to the emphasis, as shown in Figure 2.13. 

 

Figure 2.13: General classification of robot path planning. 
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Figure 2.14: Citation of robotic path planning techniques through years. [6] 

 

 Figure 2.14 presents a survey about the impact of robotic path planning algorithms cited down 

the years. Obviously, the heyday of the path planning algorithm development began from 1980s 

and tend to stable gradually after 2000s. [6] One of the major possible reasons is the fever of 

nature-inspired algorithms. The nature-inspired algorithms for path planning have a wide 

application including Artificial Neural Networks, Ant Colony Optimization, Bee Colony, Firefly 

Algorithm, Particle Swarm Optimization, Bacteria Foraging, BAT Algorithm and so on. [6] 

However, the cited papers tend to include more on doing advancements on some prominent 

algorithms such as A star (𝐴∗) algorithm, Rapidly Exploring Random Tree and so on. Also, the 

rapid development of artificial intelligence also has an impact of path planning technologies, which 

is embodied as the implementation of Reinforcement Learning (RL). 

 Hence, in this chapter, some related works about path planning and reinforcement learning 

under in the context of this thesis will be introduced including A star (A*) algorithm, Dijsktra 

algorithm, A star Heuristic algorithm, Greedy algorithm and reinforcement learning. 

For A stat (A*) and A* Heuristic: A* is actually a kind of search algorithm, especially in graph 

traversal and path search. It can be implemented on path planning when using a grid map to 

represent the environment. More specifically, A* is an informed search algorithm, or better known 
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as best-first search, meaning that it is formulated in terms of weighted graphs. Starting from a 

specific starting node of a graph, it aims to find a path to the given destination node with the 

smallest cost (shortest path or time, etc.). This is realized by maintaining a tree of paths originating 

at the start node and extending those paths one edge at a time until its termination criterion is 

satisfied. [7] 

 At each iteration of its main loop, A* needs to determine which of its paths to extend based on 

the cost of the path and an estimate of the cost required to extend the path to the destination. This 

can be formulated as a minimization: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 

 Where 𝑛 is the next node on the path, 𝑔(𝑛) is the cost of the path from start node to 𝑛, and 

ℎ(𝑛) is a heuristic function that estimates the cost of the cheapest path from 𝑛 to destination. A* 

terminates when the path it chooses to extend is a path from start to destination or if there are no 

paths eligible to be extended. In here, since we are using grid map instead of graph, an example of 

implementing A* can be described as shown in Figure 2.15. 

 

Figure 2.15: One example of path planning based on 2D grid map. [28] 

 

For Dijsktra: Similar with A*, Dijsktra is a kind of search algorithms by minimizing the cost 

from start to destination. The method of describing the environment used by Dijsktra is the same 

as A* that, it uses nodes to define each position the robot can reach. However, the difference is, 
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Dijkstra uses labels that are positive integers or real numbers, which are totally ordered. It can be 

generalized to use any label that are partially ordered, provider the subsequent labels (a subsequent 

label is produced when traversing an edge) are monotonically non-decreasing. 

 The original algorithm uses a min-priority queue. Let the node at which we are starting to be 

called the initial node, and the distance of node 𝑌 be the distance from the initial node to 𝑌. Then 

the process of Dijkstra algorithm can be described as assigning some initial distance values and 

trying to improve them step by step: 

• Mark all nodes unvisited. Create a set of all the unvisited nodes called the unvisited set. 

• Assign to every node a tentative distance value: set it to zero for our initial node and to 

infinity for all other nodes. Set the initial node as current.[] 

• For the current node, consider all of its unvisited neighbors and calculate 

their tentative distances through the current node. Compare the newly 

calculated tentative distance to the current assigned value and assign the smaller one. For 

example, if the current node A is marked with a distance of 6, and the edge connecting it with 

a neighbor B has length 2, then the distance to B through A will be 6 + 2 = 8. If B was 

previously marked with a distance greater than 8 then change it to 8. Otherwise, the current 

value will be kept. 

• When we are done considering all of the unvisited neighbors of the current node, mark the 

current node as visited and remove it from the unvisited set. A visited node will never be 

checked again. 

• If the destination node has been marked visited (when planning a route between two 

specific nodes) or if the smallest tentative distance among the nodes in the unvisited set is 

infinity (when planning a complete traversal; occurs when there is no connection between the 

initial node and remaining unvisited nodes), then stop. The algorithm has finished. 

• Otherwise, select the unvisited node that is marked with the smallest tentative distance, set 

it as the new "current node", and go back to step 3. [7] 

For Greedy algorithm: Greedy algorithm, or as known as greedy strategy is actually a kind of 

method about solving problems, which is mostly applied in optimization problems. The algorithm 

makes the optimal choice at each step as it attempts to find the overall optimal way to solve the 
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entire problem.  The greedy algorithm can be implemented to solve the problem if both properties 

below are satisfied: 

• Greedy choice property: A global optimal solution can be reached by choosing the optimal 

choice at each step. 

• Optimal substructure: A problem has an optimal sub structure if an optimal solution to the 

entire problem contains the optimal solutions to the sub-problems. 

 For path planning problem, greedy algorithm can be applied to Dijkstra algorithm since 

Dijkstra algorithm satisfied the two properties. 

For Reinforcement Learning: The reinforcement learning is a unique classification of machine 

learning alongside from supervised and unsupervised learning, as shown in Figure 2.16. The entire 

area about reinforcement learning has already developed into a vast field and implemented to 

various theoretical or practical application scenarios. So, in here, we will only introduce the part 

of the reinforcement learning area which will be used for path planning of our robot. The primary 

process of reinforcement learning can be described as an interaction between an intelligent agent 

and the environment. The intelligent agent will take actions in an environment in order to maximize 

the notion of cumulative reward. Reinforcement learning can also be divided into many different 

classifications. We will not list and introduce all of these categories but focusing on Q-learning, a 

model-free reinforcement learning algorithm. [41] 

 Q-learning algorithm can be described as shown in the pseudocode in Figure 2.17. Before 

learning begins, 𝑄 is initialized to a possibly arbitrary fixed value (chosen by the programmer). 

Then, at each episode or time 𝑡 the agent selects an action 𝑎, observes a reward 𝑅, enters a new 

state and 𝑄 is updated. The core of the algorithm is a Bellman equation is about updating the simple 

iteration value 𝑄(𝑆, 𝐴) using the weighted average of the old value and the new information: 

• 𝑅 is the reward received when moving from state 𝑆 to 𝑆′. 

• 𝑄(𝑆, 𝐴) − 𝛼𝑄(𝑆, 𝐴)  is the current value weighted by the learning rate. Values of the 

learning rate near to 1 made faster the changes in 𝑄. 

• 𝛼𝑅 is the reward 𝑅 = 𝑅(𝑆, 𝐴) to obtain if action 𝐴 is taken when in state 𝑆. 

• 𝛼𝛾 ∙ 𝑚𝑎𝑥𝑎𝑄(𝑆′, 𝑎) is the maximum reward that can be obtained from state 𝑆′. 

• An episode of the algorithm ends when state 𝑆 is a final or terminal state. 
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(a)                                                                                  (b) 

Figure 2.16: (a): General classification of machine learning. (b): Simple representation of 

reinforcement learning. 

 

 The reason of choosing Q-learning is that one of the most classic practical application of Q-

learning is the maze puzzle problem, which is similar to path planning on a 2D grid map of this 

thesis. A typical maze puzzle problem can be described in Figure 2.18.  

 

Figure 2.17: Pseudocode of Q-learning. 

 

 The process of solving this maze problem by using Q-learning is to train an agent to find the 

optimal path starting from grid (0,0) to (6,6), given no prior knowledge of the environment. To 

encourage the robot to find the shortest path, a small penalty of 0.04 units is applied each time the 

robot moves into an empty (white) cell, and obstacles are places around the maze (marked in gray) 

which result in a larger penalty of 0.75 units if the robot enters a cell containing one of them. The 

robot can only move up, down, left or right (that is, diagonal moves are not allowed). However, a 

level of uncertainty is associate with each movement, such that there is only an 80% chance the 

robot will move in the intended direction and a 20% chance the robot moves at right angles to the 
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intended direction (split evenly between the two possibilities). The robot is unable to move outside 

the boundaries of the maze, and if it attempts to do so, bumps into the wall and its position remains 

unchanged. If the robot successfully makes it to the end of the maze, it receives a reward of 1 unit. 

Assuming a discount rate of 0.9, a learning rate of 0.3 and an epsilon greedy exploration strategy 

with (constant) epsilon equal to 0.5, after 50,000 iterations of the Q-learning algorithm we get the 

following policy. The diagram shows the optimal direction for the robot to take in each square of 

the grid. 

 Thus, the key of solving the problem through Q-learning is to keep updating the value on Q-

table and making decisions on some states for next movement according to the new value.   

 

(a)                                                                           (b) 

Figure 2.18: (a): One example of typical maze puzzle problem. (b): Local 2D grid map generated 

from our robot. This can be as similar as the maze puzzle problem. [37] 
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CHAPTER 3 

APPROACH 

3.1 Hardware Schematic of the Robot 

 The hardware setup and selection can be described in Figure 3.1 and Table 3.1. A Segway 

Ninebot S two-wheel self-balancing scooter was selected as the basic and we modified it except 

its own driving system. Instead, we installed a slope-driven pendulum mechanism to control the 

speed and a cross rod to control the steering. Once the robot was powered on, it can keep balancing 

by itself and we achieve control over the robot through two servos connected to the pendulum and 

cross rod. At the bottom of the robot there is another servo connected to a holder to keep it standing 

while power off. More detailed information about how we control the robot will be presented in 

CHAPTER 3.3.1 after the kinematic and dynamic model was introduced in CHAPTER 3.2. 

Table 3.1: Hardware configuration of the proposed robot. 

Sensor Actuator Other Hardware 

LS 16 Channel LiDAR DS3225 25kg Digital 

Servo x 3 

Arduino Uno x 2 

HIKVISION 

DS-2CD2455FWD-IW 

Network Camera 

Microsoft Surface 

WitMotion WT901C-485 

9 Axis IMU (Gyroscope) 

 

Magnets x n 

S&C 103SR13A-1 Hall 

Effect Magnetic Sensor x 2 

6105-T5 Aluminum 

T-Slotted Extrusion 
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Figure 3.1: Hardware setup for the proposed robot. 

 

 The selection of sensors has also been shown in Table 3.1. A LS 16 Channel LiDAR and a 

HIKVISION DS-2CD2455FWD-IW network camera were selected as the main environment 

perception system, while a WitMotion WT901C-485 9 Axis IMU (Gyroscope) and two S&C 

103SR13A-1 Hall Effect Magnetic Sensors formed the self-state perception system. For 

integrating those sensors and actuators together, a Microsoft Surface laptop and two Arduino Uno 

microcontrollers were selected. More detailed information about data format and acquisition will 

be introduced in CHAPTER 3.3.2. 
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3.2 Kinematic and Dynamic Model of the Robot 

3.2.1 Two-Wheel Differential Kinematic Model 

 The chasis kinematic model of the Robot can be repersented as a two-wheel differential model, 

[15] from where we can calculate the expected kinesiologies including pose (𝑋 ,𝑌  coordinate 

relative to global and azimuth) angular and linear veloceity and so on from the input of sensors. 

 

                                             (a)                                                                 (b) 

Figure 3.2: The kinematic model of the robot. (a) shows the global and robot coordanite of the 

robot, and (b) shows the decomposition of the robot’s motion. 

 

 As shown in Figure 3.2 (b), the motion of the robot can be decomposited as a kind of circular 

motion. 𝑉 and 𝜔 repersent the linear and angular velocity of the whole robot, while 𝑉𝐿  and 𝑉𝑅 are 

the linear velocity of the robot’s left and right wheel. 𝑑 is half of the spacing between left and right 

wheel. If we set 𝑉 and 𝜔 to known, then the velocity of left and right wheel can be determined as: 

𝑉𝐿 = 𝜔 × (L+D) = 𝜔 × (L+2𝑑) = 𝜔 × (R+𝑑) = 𝑉 + 𝜔𝑑                                (3.1) 

𝑉𝑅 = 𝜔 × 𝐿 = 𝜔 × (𝑅 − 𝑑) = 𝑉 − 𝜔𝑑                                                       (3.2) 

 On the contrary, 𝑉 and 𝜔 can be determined from wheel speed too: 

V = 𝜔 × 𝑅 = 𝜔 × (𝐿 + 𝑑) =
2𝜔𝐿 + 2𝜔𝑑

2
=

𝜔𝐿 + 𝜔(𝐿 + 2𝑑)

2
=

𝑉𝐿 + 𝑉𝑅

2
                     (3.3) 
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𝜔 =
𝑉𝐿-V𝑅

2𝑑
                                                                              (3.4) 

 Or we can use vectors to repersent as: 

(
𝑉
𝜔

) =  [

𝑟𝐿
2

𝑟𝑅
2

−
𝑟𝐿
2𝑑

𝑟𝑅
2𝑑

] (
𝜔𝐿

𝜔𝑅
)                                                          (3.5) 

 In (a) we use odometery model to calculate the position of the robot. Odometery model can 

integrate the position and azimuth of the robot relative to the global coordinate at any time. 𝜃 is 

the angle between any current 𝑋𝑅 and 𝑋𝑤. There’re actually two methods to calculate the position, 

the first one is to use wheel speed and integration, which has higher error: 

𝑋𝑡 = 𝑋𝑡−1 + ∆𝑥𝑤 = 𝑋𝑡−1 + ∆𝑑 ∗ cos(𝜃) =  𝑋𝑡−1 + ∆𝑡 ∗ 𝑉 ∗ cos(𝜃)              (3.6) 

𝑌𝑡 = 𝑌𝑡−1  + ∆𝑦𝑤 = 𝑌𝑡−1  + ∆𝑑 ∗ sin(𝜃) =  𝑌𝑡−1 + ∆𝑡 ∗ 𝑉 ∗ cos(𝜃)              (3.7) 

 Or it can be determined directly from the increments of the wheel encoder: 

𝑋𝑡 = 𝑋𝑡−1  + ∆𝑥𝑤 = 𝑋𝑡−1 + ∆𝑒 ∗  
2𝜋𝑟

𝑆
∗  cos(𝜃)                                (3.8) 

𝑌𝑡 = 𝑌𝑡−1  +  ∆𝑦𝑤 = 𝑌𝑡−1 + ∆𝑒 ∗ 
2𝜋𝑟

𝑆
∗ sin(𝜃)                                 (3.9) 

 ∆𝑒 is the increment of wheel encoder pluses in a unit time ∆𝑡 (∆𝑡 usually will be set as 10 or 

20ms), 𝑆 is the total number of pulses of the encoder when the wheel moves one revolution, and 𝑟 

is the radius of the wheel. 𝜃 can be read directly from the gyroscope’s yaw. In that case, from the 

odometery model we can determine the pose and trajactory of the robot. 
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3.2.2 Dynamic Model 

 

Figure 3.3: Dynamic model of the robot. 

 

 The dynamic model of the robot can be described as a slope-driven pendulum speed control 

mechanism, as shown in Figure 3.3. The velocity and orientation control of the robot were realized 

through two servos connected to a pendulum and a steering rod. The angle 𝜃 in plane 𝑋𝑂𝑍 and 𝜑 

in plane 𝑌𝑂𝑍 determine the 𝑋 direction linear acceleration 𝛼 and 𝑍 direction angular acceleration 

𝛽. The physical corresponding relationship between these two angles and accelerations can be 

formulated as: 

{
𝛼 = 𝑘𝜃2 + 𝑝𝜑 = 1.22𝜃2 + 0.17𝜑  

𝛽 = 𝑞𝜑 =  1.05𝜑
, 𝛼 & 𝛽 𝑖𝑛 𝑟𝑎𝑑                                     (3.10) 
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 The relationship and coefficients were determined through calibration. We change the 

pendulum and steering rod to different angles and read the accelerations 𝛼 and 𝛽 from the IMU 

(gyroscope) set on the plane of robot’s bed. 

 With the dynamic and kinematic model of the robot, there is one thing we still need to output 

the desired velocity and heading precisely, which is the PID controller. The PID controller can 

provide a closed-loop control system with the velocity and heading feedback from the wheel 

encoder and IMU (gyroscope). A typical PID controller, which has been implemented to our 

robot’s control system for velocity/orientation control can be described as shown in the flow chart 

Figure 3.4. 

 

Figure 3.4: The PID controller configuration for the robot. 

 

 With the input of desired speed and orientation and feedback of current kinematic state from 

IMU and encoder, the more precise control of speed and steer can be generated and output to 

servos. 

 

3.3 Controlling and Sensing 

3.3.1 Controlling the Robot 

 After CHAPTER 3.2, we already know that we need to output the angle of the two servos to 

achieve control over the robot. Hence, in this part, the method of how we output the angle 

command to the servos will be presented. 



37 

 The servo selected in this thesis is DS3225 25KG digital servo. Some useful specifications 

haven been shown in Table 3.2. 

Table 3.2: Specification of DS3225 25KG digital servo. 

Operating Voltage 4.8 – 6.8 𝑉 

Operating Speed 0.15 sec/60 degree (5.0 𝑉) 

0.13 sec/60 degree (6.8 𝑉) 

Stall Torque 21 kg/cm (5.0 𝑉) 

25 kg/cm (6.8 𝑉) 

Working Frequency 50 – 333 𝐻𝑧 

Working Period 20000 – 3003 𝜇𝑠 

Motor Type DC Motor 

 

 As we all known, the working principle of servo can be simply described in Figure 3.5. The 

angle of servo will vary according to the change of duty cycle, which is called pulse width 

modulation. In here we chose two servos with working frequency at 50𝐻𝑧, working voltage at 6𝑉. 

 

Figure 3.5: Digital servo structure and PWM working principle. 

 

 The servo proposed has three terminals including signal, power input and ground. Based on 

the specification and requirements, we chose an Arduino Uno microcontroller to control these two 

servos. The wire diagram can be simply described in Figure 3.6. Each servo has an individual 

power supply, and they share the same ground with the microcontroller. The PWM control of these 

servo can be simplified through build-in library from Arduino. The Arduino Uno is then connected 

to upper system, which is the main frame established through Python 3.6 on Surface. 

 The library PyFrimata enables the communication between Arduino and Surface. The PWM 

command was digitized to a number in two decimal places through this library and output to pin 
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#9 and #11. Thus, with the kinematic and dynamic model, we are able to realize the control of 

velocity and orientation of the robot. 

 

Figure 3.6: Wiring diagram for servos and Arduino. 

 

3.3.2 Sensing 

For LiDAR: The data acquired from LiDAR is called point cloud, which has been introduced in 

CHAPTER 2. In this thesis, the LiDAR selected is LS 16 Channel LiDAR, and the specification 

has been shown in Table 3.3 

Table 3.3: Specification of LS 16 Channel LiDAR. 

Laser Wavelength 905 𝑛𝑚 

Maximum Range 50 – 70 𝑚 

Accuracy ±3 𝑐𝑚 

Angle of Field (FOV) Vertical: ±15° 
Horizontal: 360° 

Resolution of FOV Vertical: 2° 
Horizontal: 0.09° 

Scan Rate 10 𝐻𝑧 

Data acquisition Speed 320000 points/sec maximum 

  

 The connection between LiDAR and Surface is realized through ethernet and UDP protocol. 

The origin data pack received from LiDAR has three types including main data stream output 
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protocol (MOP), device information output protocol (DIFOP) and user configuration write 

protocol (UCWP). Each type of data pack has a length in 1248 bytes and in here we can parse the 

point cloud data from MOP. After decoding the received data pack, we can collect data in format 

of {𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝐴𝑧𝑖𝑚𝑢𝑡ℎ, 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝐿𝑎𝑠𝑒𝑟 𝐼𝐷, 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝}. 

 

Figure 3.7: Vertical scan angle of LiDAR. 

 

Table 3.4: Vertical angles corresponding to laser ID. 

Laser ID Vertical Angle 

0 −15° 
1 −13° 
2 −11° 
3 −9° 
4 −7° 
5 −5° 
6 −3° 
7 −1° 
8 +1° 
9 +3° 
10 +5° 
11 +7° 
12 +9° 
13 +11° 
14 +13° 
15 +15° 

  

 Since we are using a 16 channel LiDAR, the vertical angle of each received points can be 

determined through Figure 3.7 and Table 3.4. Then we can calculate the 3D information for each 

point and generate point cloud data in format of 
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{𝑋, 𝑌, 𝑍, 𝜃, 𝜑, 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝} 

 Where 𝜃 and 𝜑 is the vertical angle and azimuth. Note that we can receive 38400 points each 

scan in scan frequency of 10𝐻𝑧. As the major environment perception mode, the collected point 

cloud data can be used for obstacle avoidance, data fusion and SLAM. A typical point cloud scan 

frame captured from LiDAR can be visualized in Figure 3.8. The points were colored by order of 

intensity. 

 

Figure 3.8: Visualization of captured point cloud data. 

  

For Camera: This part is pretty simple since the acquisition of images doesn’t need too much 

steps. The camera chose in here, HIKVISION DS-2CD2455FWD-IW is a monocular network 

camera, and the useful specification has been shown in Table 3.5. 

Table 3.5: Specification of HIKVISION DS-2CD2455FWD-IW camera. 

Focal Length 2.8 mm 

 

FOV 
Horizontal: 97° 
Vertical: 54° 
Diagonal: 113° 

Maximum Resolution 2944×1656 

Power Supply 12 𝑉 DC, 0.47 𝐴 

  

 The camera was also connected to Surface through ethernet as the same as LiDAR, and the 

open-source library OpenCV from Python has provided build-in functions to capture images. In 

this thesis, the vision information is mainly used for data fusion unlike other vision-driven robots. 
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Hence, the requirement about resolution of images is not so strict which has been chose as 

1920 × 1080. The image can be captured simultaneously with point cloud so that we can perform 

data fusion later in CHAPTER 4. 

For Wheel Encoder: The wheel encoder implemented on this robot was built on our own. The 

hardware structure and measurement principle can be described in Figure 3.9. 

 

Figure 3.9: Configuration of wheel encoder. 

 

 The selected hall effect sensor will generate a pulse when there is a magnet passing by in front 

of the detecting element of it. We crafted two aluminum plates with 32 magnets evenly and 

radiatively located on each plate according to the center of the wheel. The plate will rotate as the 

same speed as the wheel, and this simple system became our wheel encoder. Thus, the key of 

measuring the wheel speed from this encoder is detecting the rate of rising edge from hall effect 

sensor. For detecting the rising edge, we connect the hall effect sensor to another Arduino Uno 

microcontroller and use the digital interrupt pin, which will add the number of pulses detected to 

the counter automatically. The interrupt interval was set to 0.5𝑠.  

 Then with some parameters of the wheel we can calculate the wheel speed and odometry 

through the following eq.: 



42 

{
𝜔𝐿 = 60 ∙

2𝑛𝐿

32
∙
2𝜋

60
 𝑟𝑎𝑑/𝑠

𝜔𝑅 = 60 ∙
2𝑛𝑅

32
∙
2𝜋

60
 𝑟𝑎𝑑/𝑠

, {
𝑣𝐿 = 𝜔𝐿𝑟
𝑣𝑅 = 𝜔𝑅𝑟                                 (3.11) 

{
𝑂𝐿 = 

2𝜋𝑟

32
∙ 𝑛𝐿  

𝑂𝑅 = 
2𝜋𝑟

32
∙ 𝑛𝑅

                                                                       (3.12) 

 Where 𝑛𝐿 and 𝑛𝑅 is the pulses received at each interrupt interval for left and right wheel, 𝑟 is 

the radius of the wheel, 𝑂𝐿  and 𝑂𝑅  is the odometer for left and right wheel. Thus, the wheel 

rotational and linear speed can be read from this encoder directly. After a simple encapsulation, 

the information read from encode will be sent to the Surface in the form as: 

{𝑆𝐿𝑆𝜔𝐿𝑅𝑆𝜔𝑅𝐿𝑂𝑂𝐿𝑅𝑂𝑂𝑅𝐸} 

 Where 𝑆, 𝐸 means starting and ending, 𝐿𝑆, 𝑅𝑆, 𝐿𝑂, 𝑅𝑂 means rotate speed and odometer from 

left and right wheel. 

 Then we simply calibrate the odometer by setting a fixed route as the ground truth, reading the 

left and right odometer, and taking the mean of multiple tests. The accuracy performs well when 

using a straight route as it can reach about 98.72%.  However, when we try to use the odometer 

increment to localize the pose of the robot, the accuracy did not achieve the expectation. After 

many attempts, the reason was found that the rotate speed difference between left and right wheel 

caused by differential driven mode of Segway while turning must results in an odometer difference. 

In addition, when the robot is turning around in place, the encoder will still add pulses while the 

position of the robot is actually not changing. For this kind of situation, a correction factor was 

added as shown in the eq.: 

𝑂 =  
|𝑂𝐿 − 𝑂𝑅|

2⁄ ∙ 𝑘𝑜 , 𝑘𝑜 = 

{
  
 

  
 0.95,         

|𝑣𝐿 − 𝑣𝑅|

𝑣𝐿 + 𝑣𝑅
∈ (0, 0.4)

0.5,      
|𝑣𝐿 − 𝑣𝑅|

𝑣𝐿 + 𝑣𝑅
∈ [0.4, 0.75)

0.2,                
|𝑣𝐿 − 𝑣𝑅|

𝑣𝐿 + 𝑣𝑅
≥ 0.75

                         (3.13) 
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 The classification of correction factor 𝑘𝑜 represents the speed difference between left and right 

wheel, and it was determined by calibration through many tests. Thus, new odometer can be used 

to positioning the robot together with the IMU. 

For IMU: This part is pretty simple as for camera. The IMU used in here is WitMotion WT901C-

485, a 9-axis inertial measurement unit, or called gyroscope. The measurement principle of IMU 

is not under discussion of this thesis, so in here we just briefly introduce the implementation and 

how we combine the information from encoder together to determine the pose of the robot. The 

roll, pitch and yaw axis of IMU can be described in Figure 3.10. 

 

Figure 3.10: Roll, pitch, and yaw of IMU on the robot. 

 

 The IMU is connected to the Surface through USB, and we can read the linear acceleration, 

angle, and angular speed for each axis individually. Note that the yaw angle read from IMU has 

an absolute zero which corresponds to 28.40° , northeast. Then with the kinematic model 

mentioned before and odometer read from encoder simultaneously, we can determine the position 

of the robot through eq: 
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{
𝑋𝑡 = 𝑋𝑡−1 +

∆𝑂

2
∙ 𝑘𝑜 ∙ cos 𝜃

𝑌𝑡 = 𝑌𝑡−1 +
∆𝑂

2
∙ 𝑘𝑜 ∙ sin 𝜃

                                                    (3.14) 

 Where ∆𝑂 = |𝑂𝐿 − 𝑂𝑅|𝑡 − |𝑂𝐿 − 𝑂𝑅|𝑡−1  is the increment of odometer. Also, the linear 

acceleration for three axes can be used in obstacle avoidance, which will be introduced in detail in 

CHAPTER 3.5.1. 

 

3.4 Software System Framework 

 

Figure 3.11: Software system framework. 

 Instead of using robot operating system (ROS) as most of robots do, we build the whole system 

based on Python 3.6. The software system structure can be described as the flow chart in Figure 

3.11. 
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 As shown in Figure 3.11, there are three levels including higher, medium, and lower level, 

which are connected by I/O channels and a message broker. The lower level concludes the I/O 

channel, sensors, and actuators. The mission of this level is perception and action. The collected 

data from sensors will be streamed to medium level for decoding and pre-processing, while the 

action commands came from upper levels will be executed. After receiving data from lower 

level, the medium level will decode and pre-process the data such as filtering, transformation 

e.g., and publish the processed data to the message broker. Also, the command and decision sent 

from higher level will be transformed into PWM which can be executed directly by servos. In 

here, users can read the data straightly from the message broker. The higher level concludes the 

proposed four main functions, Obstacle avoidance, SLAM, path planning and data fusion. The 

main objective of this level is to realize these functions by subscribing the data published on 

message broker. This is convenient because one kind of data can be useful for different 

functions. For example, the roll-pitch-yaw angle read from IMU can be used both for SLAM and 

obstacle avoidance simultaneously. In addition, the message broker can be essential for ensuring 

the synchronism of collected data. Finally, some results and information such as global grid map, 

local occupied map, and colored point cloud will be generated by higher level and pass to 

message broker to be presented to users. Meanwhile, the robot will act autonomously such as 

self-exploring the environment. 

 

3.5 Function Realization 

3.5.1 Obstacle Avoidance (2D-LiDAR Occupied Grid Mapping) 

 The flow chart of obstacle avoidance function has been shown in Figure 3.12. The basic logic 

of this function can be described as random self-exploring with obstacle avoidance, while the 

action principle can be described as a 2D-LiDAR occupied grid mapping and kinematic driven 

fuzzy logic algorithm. 
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Figure 3.12: Flow chart for obstacle avoidance. 

 

 As shown in Figure 3.12, the input of this function includes a 2D grid map generated by LiDAR, 

wheel speed read from encoder, angles and acceleration read from IMU. After a fuzzy logic 

judgement mode, the desired control command including speed and steer will be generated and 

pass to the two servos corresponded. The implication of fuzzy language variables has been defined 

as: 

• Distance: {𝐹𝑎𝑟, 𝐶𝑙𝑜𝑠𝑒} 

• Current Speed: {𝐹𝑎𝑠𝑡, 𝑆𝑙𝑜𝑤} 

• Steering: {𝐿𝑒𝑓𝑡, 𝐹𝑟𝑜𝑛𝑡, 𝑅𝑖𝑔ℎ𝑡} 

• Acceleration: {𝐵𝑁, 𝑆𝑁, 𝑍, 𝑆𝑃, 𝐵𝑃},  {𝐵𝑖𝑔 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑆𝑚𝑎𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑍𝑒𝑟𝑜,

𝑆𝑚𝑎𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝐵𝑖𝑔 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒} 

 In there, the definition of left, right, and front distance has been shown in Figure 3.13. The grid 

size of local map has been set to 0.3𝑚, which is close to the size of the robot, and the map size has 

been set to 3 × 3𝑚. The center of the local grid map is the current position of the robot, while the 

current heading of robot was set to be the same as the north in global. With the implication of 

fuzzy language variables, we defined 50 rules as the reference for guiding the action of robot, as 

shown in Table 3.6. Thus, the next step is to generate the 2D grid map as the perception, and define 

the control amount of the robot. 
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Figure 3.13: LD, FD, RD on grid map. 

 

 Note that, to generate the 2D local grid map, there is still another data pre-processing step 

implemented in order to reduce computation load and increase running speed. As mentioned before, 

the format of point cloud data received from LiDAR is generalized as: 

{𝑋, 𝑌, 𝑍, 𝜃, 𝜑, 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝} 

 But in this function, the only useful information is the 𝑋, 𝑌  coordinates. Besides, the 

construction of local map will only focus on points within 3 × 3𝑚. Thus, we first extract the 𝑋, 𝑌 

coordinate and delete all points over 3 × 3𝑚. Then, for each grid on the map, we count the number 

of points within the coordinate and set a confidence threshold to eliminate outlies.   

 With the local grid map, wheel speed, and acceleration, we are able to determine the fuzzy 

membership of input variables. In here we chose continuous and triangle-shaped domain function 

as the membership function of each input variable, as shown in Figure 3.14 and Figure 3.15. 
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(a)                                                                          (b) 

 

(c)                                                                       (d) 

 

(e) 

Figure 3.14: Fuzzy membership functions of inputs. (a): LD. (b): FD. (c): RD. (d): 𝛼. (e): 𝑣. 
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(a)                                                                        (b) 

Figure 3.15: Fuzzy membership functions of output. (a): 𝜃. (b): 𝛼. 

 

Table 3.6: Fuzzy logic rule sets. 

Rule 

Number 

Input Output 

LD FD RD 𝑎 𝑣 𝑎 𝜃 

1 Far Far Far BN Fast SP Front 

2 Far Far Far BN Slow BP Front 

3 Far Far Far BP Fast SN Front 

4 Far Far Far BP Slow Z Front 

5 Far Far Far Z Fast Z Front 

6 Far Far Far Z Slow SP Front 

7 Far Far Far SP Fast SN Front 

8 Far Far Far SP Slow Z Front 

9 Far Far Far SN Fast Z Front 

10 Far Far Far SN Slow Z Front 

11 Close Close Close BN Fast BN Front 

12 Close Close Close BN Slow SN Front 

13 Close Close Close BP Fast BN Front 

14 Close Close Close BP Slow BN Front 

15 Close Close Close Z Fast BN Front 

16 Close Close Close Z Slow SN Front 

17 Close Close Close SP Fast BN Front 

18 Close Close Close SP Slow BN Front 

19 Close Close Close SN Fast BN Front 

20 Close Close Close SN Slow SN Front 

21 Close Far Far BN Fast SP Front 

22 Close Far Far BN Slow BP Front 

23 Close Far Far BP Fast SN Front 

24 Close Far Far BP Slow Z Front 

25 Close Far Far Z Fast Z Front 

26 Close Far Far Z Slow SP Front 



50 

27 Close Far Far SP Fast SN Front 

28 Close Far Far SP Slow Z Front 

29 Close Far Far SN Fast Z Front 

30 Close Far Far SN Slow Z Front 

31 Far Close Far BN Fast BN Right 

32 Far Close Far BN Slow SN Right 

33 Far Close Far BP Fast BN Right 

34 Far Close Far BP Slow BN Right 

35 Far Close Far Z Fast BN Right 

36 Far Close Far Z Slow SN Right 

37 Far Close Far SP Fast BN Right 

38 Far Close Far SP Slow BN Right 

39 Far Close Far SN Fast BN Right 

40 Far Close Far SN Slow SN Right 

41 Far Far Close BN Fast SP Left 

42 Far Far Close BN Slow BP Left 

43 Far Far Close BP Fast SN Left 

44 Far Far Close BP Slow Z Left 

45 Far Far Close Z Fast Z Left 

46 Far Far Close Z Slow SP Left 

47 Far Far Close SP Fast SN Left 

48 Far Far Close SP Slow Z Left 

49 Far Far Close SN Fast Z Left 

50 Far Far Close SN Slow Z Left 

 

3.5.2 Sensor Data Fusion 

 This part can be separated into two main steps, starting from LiDAR and camera, as shown in 

Figure 3.16. The first one is to co-calibrate the LiDAR and camera to obtain intrinsic and extrinsic 

matrices for both. With the extrinsic matrix, the geometric transformations (rotation R and 

translation T) can be solved to correlate the point cloud and image frame together in a same 

coordinate. 

 

Figure 3.16: Flowchart for data fusion process. [31] 
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 For calibrating the camera, the traditional method is used, which enquires a checkerboard in 

size of 6 × 9, and each checker is 10 × 10 𝑚𝑚, as shown in Figure 3.17. The resolution of images 

captured for calibration is 1920 × 1080 and one image set contains 20 images captured while the 

checkerboard was at different angles and positions. 

 The traditional camera calibration method presented in this thesis can be summarized as a 

process of establishing the relationship between the real world and the pixel coordinate which can 

be  quantified and programmed. In Figure 3.18, all the three coordinates participated in this 

 

Figure 3.17: One example scene of collecting data by the robot. 

 

process were identified in different colors. The red one is the camera coordinate, in here we use 

𝑂𝑐 − 𝑋𝑐𝑌𝑐𝑍𝑐 to represent. The green one is the image coordinate (or pixel coordinate)  𝑜 − 𝑥𝑦. 

The yellow one is the real-world coordinate 𝑂𝑤 − 𝑋𝑤𝑌𝑤𝑍𝑤 . The relationship between these 

coordinates are some translation and rotation transformations and a physical principle called 

pinhole imaging principle, as shown in Figure 3.18. Overall, the transformation from image 

coordinate to world coordinate can be represented by two matrices, which are the alleged intrinsic 

and extrinsic matrices. 

𝑍𝑐 [
𝑢
𝑣
1
] =  

[
 
 
 
 
1

𝑑𝑥
0 𝑢0

0
1

𝑑𝑦
𝑣0

0 0 1 ]
 
 
 
 

[
𝑓 0 0
0 𝑓 0
0 0 1

    
0
0
0
] [

𝑅 𝑇

0⃑ 1
] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] =  [
𝑓𝑥 0 𝑢0

0 𝑓𝑦 𝑣0

0 0 1

    
0
0
0
] [

𝑅 𝑇

0⃑ 1
] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] (3.15) 
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 Where 𝑓 is the focal length of the camera, 𝑍𝑐 is the scale factor, 𝑢0 and 𝑣0 are the principle 

point. The matrix  [
𝑓𝑥 0 𝑢0

0 𝑓𝑦 𝑣0

0 0 1

    
0
0
0
] is called the intrinsic matrix and [

𝑅 𝑇

0⃑ 1
] is called the extrinsic 

matrix. 

 Now by extracting the corner of checkers in the image set captured from our robot, we can 

obtain the coordinate of the same corner from different images. From this process the intrinsic 

matrix can be determined, which will be presented as the calibration result in CHAPTER 4. 

 

Figure 3.18: Camera, image, and real-world coordinates. 

 

 As mentioned before, the key about fusing data from camera and LiDAR is to establish the 

translation and rotation relationship between them accurately. With the calibrated image, the next 

step is to place each coordinate from the sensors itself together in a same coordinate. Given the 

LiDAR point cloud coordinate 𝑃𝐿 = (𝑋𝐿 𝑌𝐿 𝑍𝐿 )  and the camera coordinate 𝑃𝑐 =

 (𝑋𝑐 𝑌𝑐 𝑍𝑐), the geometric transformation can be determined as 

[
𝑋𝑐

𝑌𝑐

𝑍𝑐

] = 𝑅 [
𝑋𝐿

𝑌𝐿

𝑍𝐿

] + 𝑇                                                         (3.16) 
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where the 𝑅 and 𝑇 are the same as the rotation and translation matrices. The translation matrix 

𝑇 =  [𝑡𝑥, 𝑡𝑦, 𝑡𝑧]
𝑇

 is a 3 × 1 column vector, and rotation matrix 𝑅 can be determined with three 

rotation angles {𝜃𝑥, 𝜃𝑦, 𝜃𝑧} correlated to the coordinate axes: 

𝑅 = 𝑅𝑧(𝜃𝑧)𝑅𝑦(𝜃𝑦)𝑅𝑥(𝜃𝑥)                                                  (3.17) 

𝑅𝑥(𝜃𝑥) =  [

1 0 0
0 𝑐𝑜𝑠(𝜃𝑥) −sin(𝜃𝑧)

0 sin(𝜃𝑥) 𝑐𝑜𝑠(𝜃𝑥)
] 

𝑅𝑦(𝜃𝑦) =  [

𝑐𝑜𝑠(𝜃𝑦) 0 𝑠𝑖𝑛(𝜃𝑦)

0 1 0
−𝑠𝑖𝑛(𝜃𝑦) 0 𝑐𝑜𝑠(𝜃𝑦)

] 

𝑅𝑧(𝜃𝑧) =  [
𝑐𝑜𝑠(𝜃𝑧) −𝑠𝑖𝑛(𝜃𝑧) 0

𝑠𝑖𝑛(𝜃𝑧) 𝑐𝑜𝑠(𝜃𝑧) 0
0 0 1

] 

 Then the point in real world that has being three-dimensional 𝑃𝑐 = (𝑋𝑐 𝑌𝑐 𝑍𝑐) can be back 

projected onto the image plane in coordinate 𝑝 =  (𝑢, 𝑣). From the pinhole imaging principle that 

has been mentioned before, the projection equation in homogeneous coordinate can be formulated 

as: 

𝑠 [
𝑢
𝑣
1
] = 𝐾𝑃𝑐 = [

𝑓𝑥 0
0 𝑓𝑦

   
𝑢0 0
𝑣0 0

0 0     1  0

] [

𝑋𝑐

𝑌𝑐

𝑍𝑐

1

]                                       (3.18) 

 Where s is the scale factor, (𝑓𝑥, 𝑓𝑦) and (𝑢0, 𝑣0) are the same as the focal lengths and principal 

point. 

 To obtain better result of data fusion, the radial distortion caused by lens aberration should also 

be considered. Similar to [32], we use two distortion parameters 𝑘1 and 𝑘2 to characterize the 

radial distortions. Then the distortion corrected projection can be formulated as: 

𝑢̃ = 𝑢 + (𝑢 − 𝑢0)[𝑘1(𝑋𝑐
2 + 𝑌𝑐

2) + 𝑘2(𝑋𝑐
2 + 𝑌𝑐

2)2]                              (3.19) 

𝑣̃ = 𝑣 + (𝑣 − 𝑣0)[𝑘1(𝑋𝑐
2 + 𝑌𝑐

2) + 𝑘2(𝑋𝑐
2 + 𝑌𝑐

2)2]                               (3.20) 

where 𝑝 =  (𝑢̃, 𝑣̃) is a distorted point and 𝑝 =  (𝑢, 𝑣) a pixel on a un-distorted image. 
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 Now since the projection equation of placing 3D point cloud onto the image plane has been 

deduced through, the next step is to estimate the extrinsic parameters {𝜃𝑥, 𝜃𝑦, 𝜃𝑧 , 𝑡𝑥, 𝑡𝑦, 𝑡𝑧} and 

distortion parameters {𝑘1, 𝑘2}. We still use the 6 × 9 × 10 checkerboard as the landmark, and the 

corner of each checker will be the target point for projection. The corners in 3D point cloud 𝑃𝐿 

will be projected onto the 2D image points 𝑝  to calculate the absolute difference between these 

and the real corners 𝑝∗ in image. Then the estimation of extrinsic and distortion parameters can be 

derived by minimizing the cost function as followed: 

𝐶 =  ∑|𝑝𝑖
∗ − 𝑝𝑖|

𝑛

𝑖=1

                                                              (3.21) 

where 𝑖 is the point index and n is the total number of points. 

 For extracting the corners from the 3D point cloud, there are two keys insisted in this thesis. 

The first one is to use the geometrical features to find the dimension of the checkerboard in 3D 

point cloud. The second one is using the different LiDAR reflection of the white and black blocks 

on the checkerboard. 

 At last, with the estimated intrinsic and extrinsic matrices, the 3D-2D correspondences between 

the 3D point cloud and the 2D image for data fusion can be determined. 

 

3.5.3 2D SLAM 

 As mentioned before, the localization and mapping are one of the most essential part of an 

autonomous robot. In here the methodology and process of how we implement 2D SLAM function 

to our robot will be introduced in detail. 

 Based on the uncertainty of movement control and observation, the SLAM problem can be 

described as a kind of Markov Decision Process (MDP), more specifically as a Partially 

Observable Markov Decision Process (POMDP), as shown in Figure 3.19. In here, the circles 

represent: 

• 𝑥𝑡: the actual pose of robot. 

• 𝑢𝑡: the movement command sent to robot. 



55 

• 𝑧𝑡: the observation of environment from sensor. 

• 𝑚: the actual map or description of real world or environment.  

 

Figure 3.19: POMDP representation of 2D SLAM.  

  

 The theoretical structure chart of 2D SLAM has been shown in Figure 3.20. Since the SLAM 

algorithm proposed in this thesis is based on particle filter, the whole SLAM process can be 

described as a probabilistic distribution problem about solving the joint probability density of the 

probability of robot’s current position. As illustrated in eq.: 

𝑝(𝑥1:𝑡, 𝑚 | 𝑧1:𝑡, 𝑢1:𝑡−1)                                                      (3.22) 

 Where 𝑥1:𝑡 is the trajectory of robot, 𝑚 is the global map, 𝑧1:𝑡 is the observation from sensors 

(in here we use LiDAR 2D point cloud, wheel encoder odometer and IMU angles), 𝑢1:𝑡−1 is the 

movement control command. 

 Based on Rao-Blackwellized Particle Filter specifically, we split the SLAM into localization 

and mapping these two processes, so that the joint probability density can be factorized into () 

through Joint probability formula as: 

𝑝(𝑥1:𝑡, 𝑚 | 𝑧1:𝑡, 𝑢1:𝑡−1) = 𝑝( 𝑚 | 𝑥1:𝑡, 𝑢1:𝑡−1) ∙ 𝑝(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1)          (3.23) 
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Figure 3.20: Flowchart of 2D SLAM process. 

 

 Where 𝑝(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1)  is the posterior probability distribution of robot’s trajectory at 

certain known sensor observation and control command. Note that (𝑧1:𝑡, 𝑢1:𝑡−1) can be considered 

as the potential trajectories, and the particle filter can be applied in solving this posterior. By 

solving this posterior, the estimated current pose of the robot can be determined, which means the 

localization has been done. 

 The SLAM framework can be presented as a cycle with three main steps. The first one is called 

prediction or sampling. The input of this step insists the change of angle 𝑑𝜃 and pose (𝑑𝑥, 𝑑𝑦) at 

time 𝑡, which can be read directly from gyroscope and odometer. With these inputs a certain 

number of particles in form of {(𝑥𝑖, 𝑦𝑖), 𝑤𝑖}  at time 𝑡 + 1  will be generated to represent the 

estimated positions where the robot will probably appear. The weight of these particles 𝑤𝑖 , which 

represents the difference between target distribution and proposal distribution, will be given under 

the principle of importance sampling: 

𝑤𝑖 = 
𝑝(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1)

𝜋(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1)
                                                    (3.24) 

𝜋(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1) =  𝜋(𝑥𝑡 | 𝑥1:𝑡−1, 𝑧1:𝑡, 𝑢1:𝑡−1) ∙ 𝜋(𝑥1:𝑡−1 | 𝑧1:𝑡−1, 𝑢1:𝑡−2)   (3.25) 

Since the main observation sensor is LiDAR, we use proposal distribution 𝜋(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1) 

instead of target distribution because the computing amount of point cloud data is too heavy, which 
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cannot be modeled directly. In other words, the target distribution cannot be calculated even nearly. 

This proposal distribution can be determined through a recursive formulation. Then the weight is 

calculated as: 

𝑤𝑖 = 
𝑝(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1)

𝜋(𝑥1:𝑡 | 𝑧1:𝑡, 𝑢1:𝑡−1)
                                                                                      

= 
𝜂𝑝(𝑧𝑡 | 𝑥1:𝑡, 𝑧1:𝑡−1) ∙ 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡−1)

𝜋(𝑥𝑡 | 𝑥1:𝑡−1, 𝑧1:𝑡, 𝑢1:𝑡−1)
 ∙  

𝑝(𝑥1:𝑡−1 | 𝑧1:𝑡−1, 𝑢1:𝑡−2)

𝜋(𝑥1:𝑡−1 | 𝑧1:𝑡−1, 𝑢1:𝑡−2)
  

∝  
𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑡) ∙ 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡−1)

𝜋(𝑥𝑡 | 𝑥1:𝑡−1, 𝑧1:𝑡, 𝑢1:𝑡−1)
⋅ 𝑤𝑡−1                               (3.26) 

𝜂 =  
1

𝑝(𝑧𝑡 | 𝑧1:𝑡−1,𝑢1:𝑡−1)
 is a normalization factor resulting from Bayes’ rule that is equal for all 

particles. 

 

Figure 3.21: The two components of the motion model. Within the interval 𝐿(𝑖) the product of both 

functions is dominated by the observation likelihood in case an accurate sensor is used. [12] 

 

 To improve the accuracy of the localization and mapping processes, we add the most recent 

observation from sensor 𝑧𝑡 when generating the next generation of samples. This is because the 

sensor information, especially from LiDAR, is more precise than the motion estimate of the robot 

based on the odometry, as shown in Figure 3.21, where 𝐿(𝑖) is the likelihood. By integrating sensor 

observation 𝑧𝑡  into the proposal distribution, the sampling will be focused on the meaningful 

regions of the observation likelihood. The distribution after adding 𝑧𝑡 becomes: 
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𝑝(𝑥𝑡 | 𝑚𝑡−1, 𝑥𝑡−1, 𝑧𝑡 , 𝑢𝑡−1) =
𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑡)𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡−1)

𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑡−1, 𝑢𝑡−1)
               (3.27) 

 Using this optimal improved proposal distribution, the computation of weights turns into: 

𝑤𝑡 = 𝑤𝑡−1

𝜂𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑡)𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡−1)

𝑝(𝑥𝑡 | 𝑚𝑡−1, 𝑥𝑡−1, 𝑧𝑡 , 𝑢𝑡−1)
                                                       

∝   𝑤𝑡−1

𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑡)𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡−1)

𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑡)𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡−1)
𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑡−1,  𝑢𝑡−1)

⁄
         

= 𝑤𝑡−1  ∙ 𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑡−1, 𝑢𝑡−1)                                                                       

= 𝑤𝑡−1  ∙  ∫ 𝑝(𝑧𝑡 | 𝑥
′)𝑝(𝑥′ | 𝑥𝑡−1, 𝑢𝑡−1)𝑑𝑥′                                       (3.28) 

 As mentioned before, when modeling the environment with grid maps, a closed form 

approximation of an informed proposal distribution cannot be achieved directly due to the heavy 

amount of computation from laser sensor. But in here we can use sampling to reach the 

approximated form of the improved proposal. As shown in the framework in Figure 3.20, the first 

step is to sample a set of potential poses 𝑥𝑗 from the motion model 𝑝(𝑥𝑡 | 𝑥𝑡−1, 𝑢𝑡−1). Note that if 

the observation likelihood is peaked, the number of pose samples is high since a dense sampling 

is needed for covering all the small areas of high likelihood. This will lead to a high number of 

particles, which means high amount of computation. 

 The method to solve this problem is that the meaningful area of the observation likelihood will 

be determined through a scan-matcher firstly, then the sampling will occur only in this meaningful 

area. For each particle 𝑖 , the Gaussian parameters including mean 𝜇𝑡
𝑖  and variance Σ𝑡

𝑖  will be 

estimated individually for 𝐾 sampled poses {𝑥𝑗} in interval 𝐿(𝑖): 

𝜇𝑡
𝑖 = 

1

𝜂𝑖
 ∙  ∑𝑥𝑗 ∙ 𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑗)

𝐾

𝑗=1

∙ 𝑝(𝑥𝑗  | 𝑥𝑡−1, 𝑢𝑡−1)                          (3.29) 

Σ𝑡
𝑖 = 

1

𝜂𝑖
 ∙  ∑𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑗)

𝐾

𝑗=1

∙ 𝑝(𝑥𝑗  | 𝑥𝑡−1, 𝑢𝑡−1) ∙ (𝑥𝑗 − 𝜇𝑡)(𝑥𝑗 − 𝜇𝑡)
𝑇
       (3.30) 
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with the normalization factor: 

𝜂𝑖  =  ∑𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑗)

𝐾

𝑗=1

∙ 𝑝(𝑥𝑗  | 𝑥𝑡−1, 𝑢𝑡−1)                                (3.31) 

 Finally, the closed form approximation of the optimal proposal is obtained to generate the next 

generation of particles. Note that the weights will be calculated by using this proposal distribution 

as: 

𝑤𝑡 = 𝑤𝑡−1 ∙ 𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑡−1, 𝑢𝑡−1)                                                   

= 𝑤𝑡−1 ∙ ∫ 𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥
′) ∙ 𝑝(𝑥′ | 𝑥𝑡−1, 𝑢𝑡−1)𝑑𝑥                     

≃ 𝑤𝑡−1 ∙ ∑𝑝(𝑧𝑡 | 𝑚𝑡−1, 𝑥𝑗)

𝐾

𝑗=1

∙ 𝑝(𝑥𝑗  | 𝑥𝑡−1, 𝑢𝑡−1)                        

= 𝑤𝑡−1  ∙ 𝜂𝑖                                                                              (3.32) 

 These weights will also be normalized through a SoftMax and become 𝑤𝑡̃. Now with these 

weighted particles, we are able to determine the location of the robot. As shown in the framework 

in Figure 3.20, we can transform the current 2D lase hit to the mapping coordinate with the current 

pose as the center to construct the map. The transformation matrix from LiDAR to robot’s body 

frame is: 

 

𝑅𝐿−𝑏 = [

cos 𝜃𝑛 cos 𝜃ℎ −sin 𝜃𝑛

sin 𝜃𝑛 cos 𝜃ℎ cos 𝜃𝑛

cos 𝜃𝑛 sin 𝜃ℎ 0
sin 𝜃𝑛 sin 𝜃ℎ 0

sin 𝜃ℎ 0
0 0

cos 𝜃ℎ 0
0 1

]                          (3.33) 

where 𝜃𝑛 is neck angle and 𝜃ℎ is head angle. 

 The transformation matrix from robot’s body frame to global map is: 
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𝑅𝑏−𝐺 = [

1 0 0 𝑥
0 1 0 𝑦
0 0 1 𝑧
0 0 0 1

] ∙ [

cos 𝜃𝑦𝑎𝑤 −sin 𝜃𝑦𝑎𝑤     0 0

sin 𝜃𝑦𝑎𝑤 cos 𝜃𝑦𝑎𝑤     0 0

0 0    1 0
0 0    0 1

]                                                  

∙ [

cos 𝜃𝑝𝑖𝑡𝑐ℎ 0 sin 𝜃𝑝𝑖𝑡𝑐ℎ

0 1 0
− sin 𝜃𝑝𝑖𝑡𝑐ℎ 0 cos 𝜃𝑝𝑖𝑡𝑐ℎ

0 0 0

    

0
0
0
1

] [

1 0 0 0
0 cos 𝜃𝑟𝑜𝑙𝑙 −sin 𝜃𝑟𝑜𝑙𝑙 0
0 sin 𝜃𝑟𝑜𝑙𝑙 cos 𝜃𝑟𝑜𝑙𝑙 0
0 0 0 1

]               (3.34) 

where 𝜃𝑦𝑎𝑤, 𝜃𝑝𝑖𝑡ℎ, and 𝜃𝑟𝑜𝑙𝑙 correspond to the yaw, pitch and roll read from IMU, 𝑥, 𝑦, 𝑧 is the 

trajectory of the robot. 

 Also, since the equipped 16-channel LiDAR can provide 38400 points each scan, some 

operations was added to de-noise and decrease density for the point cloud data. A threshold will 

be set to remove those point cloud hit on the ground at the beginning as one of the data pre-

processing operations. 

 After each loop, there will be a judgement to assess the quality of our particles for deciding 

whether the resampling is necessary. In resampling step, those particles with low importance 

weights 𝑤𝑡 will be replaced by particles with higher weights. This step can make sure that the 

overall number of particles will remain finitely since we do not want too many particles to retard 

the running speed. On the contrary, resampling may also remove good samples from the filter 

which can lead to particle impoverishment. In that case, there is no doubt that this judgement step 

(or as people called “adaptive resampling”) is necessary to find a criterion for deciding when to 

perform the resampling step. The index representing the effective sample size to estimate how well 

the current particle set represents the target posterior was introduced, and in here this quantity was 

calculated according to the formulation of Doucet as 

𝑁𝑒𝑓𝑓 = 
1

∑ (𝑤̃𝑖)2𝑁
𝑖=1

                                                         (3.35) 

 If the sample were drawn from the target distribution, their importance weights would be equal 

to each other due to the importance sampling principle. The worse the approximation of the target 

distribution, the higher is the variance of the importance weights. The threshold of resampling was 

set at 𝑁 2⁄ , which means the resampling will occur when 𝑁𝑒𝑓𝑓  dropped below half number of 

particles at each time. 
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 Then with the transformed 2D lase hits, the occupied grid will be generated and updated 

through every circulation to ensure the whole function is real time. 

 

3.5.4. Path Planning 

 In this thesis, the scenario of implementing path planning can be described and classified as 

dynamic, global, and exact. The working principle of this function is based on a constructed global 

map, which is actually streamed from SLAM function as the output. 

 The pipeline of path planning process can be described in Figure 3.22. As mentioned before, 

the SLAM function will pass the constructed global occupied grid map to path planning function 

as a perception of the environment. The resolution of the occupied map has been set on 20 𝑐𝑒𝑙𝑙𝑠/𝑚, 

and the size of the map is 30 × 30𝑚.  

 

Figure 3.22: Flowchart of path planning process. 

 

 Then, the grid map will be transformed to another grid map on the same size and resolution  

Table 3.7: Meanings corresponding to different colors on map for path planning. 

Color Meaning 

Black Obstacle 

White Free Space 

Red Visited 

Blue Final Path 

Light Blue Save Zone 

Pink Dangerous Zone 
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for path planning according to the different colors on the map. Table 3.7 has shown the meaning 

corresponding to different colors. 

 The user will be asked to select a destination on white grids. The current location will also be 

passed from SLAM as the default start point. The save zone and dangerous zone has been set along 

the edge of the obstacles. The size of save zone is 3 grids while the size of dangerous zone is 2 

grids. Note that the purpose of setting save zone and dangerous zone is to leave enough redundancy 

for safety concern.  

 Once the path planning function has been activated, the robot will be ordered to stop and wait 

for command. Users can select the method of planning path at the beginning including:  

• A Star (A*) 

• A Star Heuristic 

• Dijkstra 

• Greedy Approach 

• Heuristic Weighted 

• Reinforcement Learning 

 The principle of these mentioned path planning method has been introduced in CHAPTER 2, 

so in here we just code them into our function. No matter the method under selected, the path will 

be translated into a set of command and send to servos to drive the robot from start to destination. 

In here, due to the time limitation, we proposed a closed-loop control to ensure the robot was led 

to the right destination with the feedback from wheel encoder (speed) and SLAM (trajectory), but 

we did not implement the closed-loop control in this part. Figure 3.23 presents an example of 

translating path to commands. The green grid is the start point, while the yellow grid is the 

destination. The current pose of robot is heading the front of the south, so that the command will 

be: 

𝐹&𝑆𝑃, 𝐿&𝑆𝑃, 𝐹&𝑆𝑃, 𝐹&𝑆𝑁, 𝐹&𝑍, 𝑅&𝑆𝑃, 𝐹&𝑆𝑃, 𝐹&𝑆𝑁, 𝐹&𝑍, 𝐿&𝑆𝑃, 𝐹&𝑆𝑃, 𝐹&𝑆𝑁, 𝐹&𝑍, 

𝐿&𝑆𝑃, 𝐹&𝑆𝑃, 𝐹&𝑆𝑁, 𝐹&𝑍, 𝑅&𝑆𝑃, 𝐹&𝑆𝑃, 𝐹&𝑆𝑁, 𝐹&𝑍 

 



63 

  

Figure 3.23: Save zone (light blue) and dangerous zone (pink) on map for path planning. 

 

 Which means turn left, go forward, brake, turn right, go forward, brake, turn left, go forward, 

brake, turn left, go forward, brake, turn right, go forward, brake, stop. Thus, the process of path 

planning and navigation has been completed. Note that, in here we use Manhattan distance from 

the start grid to destination grid, which is a standard heuristic for a grid map. 

 Note that the priority of obstacle avoidance is higher than path planning, which means if the 

local grid map is showing that a static or dynamic obstacle is within the danger distance, the path 

planning function will be interrupted to ensure the robot will not hit something.  

 

3.5.5 Simulation 

 This part is actually not under the main topic of this thesis. During the COVID-19 self-

quarantine period, the testing environment for the proposed robot in real world is not realistic. In 

that case, we launched a small project about simulating the robot with whole functionalities except 

data fusion based on robot operating system (ROS) and Gazebo. This part will not be introduced 

in detail, but the simulation environment construction and algorithms used will be introduced 

briefly. 

 Simulation Environment: The whole simulation environment is based on ROS Kinetic and 

Gazebo 8.6. The robot in this simulation was built in shape of a single cylinder with two differential 
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driving wheels and one unpowered omnidirectional wheel, which shares the same kinetic model 

as the robot proposed in this thesis in real world, as shown in Figure 3.24. The two little black 

blocks at the top of the cylinder are camera and Velodyne 3D LiDAR. The speed, heading, and 

acceleration information about the robot dynamics can be subscribed through built-in libraries with 

ROS. For controlling the robot, ROS also provides the built-in libraries to publish the control 

command to the model of robot. It can be controlled through keyboard, or we can send commands 

generated by other functions such as obstacle avoidance or navigation to it. 

 

Figure 3.24: Model of robot in simulation (right side) and visualization of LiDAR in simulation 

(left side). 

 

 Then, with the model of robot, we arranged two simulation scenarios including both indoor 

and outdoor from built-in models of objects in Gazebo, as shown in Figure 3.25 (indoor) and Figure 

3.26 (outdoor). The outdoor scenario simulates a real city with the focus on traffic, which 

concludes the trafficway, buildings, sidewalks, traffic signs and lights and so on. Note that it also 

concludes some pre-programmed dynamic objects including pedestrians and moving cars. 
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Figure 3.25: Indoor testing environment on simulation. The blue dot is our robot model, and the 

main obstacle includes wall, fire hydrant, and fast food restaurant. 
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Figure 3.26: Outdoor testing environment on simulation. Overview (bottom side) and street scene 

(top side). 
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 In this simulation, the functionalities featured in real robot including obstacle avoidance, 2D 

SLAM, and path planning have been implemented except data fusion. Besides, the 3D SLAM has 

also been implemented since the ROS provides open-source algorithm for 3D SLAM. Note that 

all these functions are supported by open-source, and the main work of this project is integrating 

them together simultaneously in the simulation robot. 

• Obstacle Avoidance: Differed from the robot proposed in this thesis, the obstacle avoidance 

in simulation is realized based on path planning. The robot will follow the path generated and 

circle around the obstacles. 

• 2D SLAM: Open-source library, Gmapping.  

• 3D SLAM: Two open-source libraries, Loam and Lego-loam. [47] 

• Path Planning: Based on the map constructed by 2D SLAM, manually select destination 

on the map. The localization algorithm is based on AMCL. 
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CHAPTER 4 

TESTING AND RESULTS 

 The performance of this proposed robot can be reflected in many aspects. Some aspects of the 

performance can be quantized through universal indicators such as accuracy of map or run time. 

However, in this thesis some functions of the robot were just tested to present that the robot has 

the ability of such autonomous driving technologies, and some further advanced algorithms can 

be developed based on this platform. Thus, in this chapter, the test environment, procedure and 

results will be introduced to accord readers an overview about how we present testing on this robot, 

while not only just implementing those functions mentioned together but also fusing functions 

together and considering it as an autonomous driving platform. 

 

4.1 Test Procedure and Environment 

 In this thesis, there is no fixed place as test environment because the robot was built to has the 

operational capability under different scenarios. On the other hand, different functions of the robot 

may need distinct environments to test the performance individually. The basic physical 

environment of testing the robot can be divided into indoor and outdoor mainly including research 

lab, university building hallway, my personal room (the robot had been tested in my room 

sometimes due to the COVID-19) and campus parking lot as shown in Figure 4.1. The 

environments will be introduced in detail together with test procedures according to different uses 

on below. 
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Figure 4.1: Pictures of several test environments. Upper left: university building hallway. Middle 

and downer left: research lab. Right: Room. 

 

For testing data fusion: The target object can be described as shown in Figure 4.2. Since the 

target of this function is to back-project pixels from images to point cloud data, we first set a few 

landmarks such as the  7 × 10 × 30 checkerboard and two rectangle planks on chairs at an indoor 

scenario (university’s building hallway). Then we put the robot outside the apartment, use a sedan 

vehicle and a walking person as the target objects, as also shown in Figure 4.2. 

For testing obstacle avoidance: The indoor environment includes research lab, university 

building hallway and my room, while the outdoor environment includes the campus parking lot. 
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Figure 4.2: Testing environment for data fusion. Left: indoor scenario. Right: outdoor scenario. 

 

 The selected obstacles in these scenarios include both static and dynamic as shown in Table 

4.1 as well as other specification. 

Table 4.1: Specification of different test environments. 

 Scenario Obstacles Size Special Feature 

Static Dynamic 

Indoor Research 

Lab 

Table, 

Chair, Wall, 

Moving 

person (me) 

Small, 

around 

5 × 5 𝑚 

Relatively low-friction 

and even ground. Narrow 

space, obstacles are 

placed randomly with 

different heights. 

University 

Building 

Hallway 

Wall, Pillar, 

Vending 

Machine 

Moving 

people 

Medium, 

around 

5 × 10 𝑚 

With carpet on the 

ground which results in 

higher friction. 

Relatively clear space, 

obstacles are placed 

orderly with same height. 

Room Wall, Bed, 

Table 

Moving 

person 

Small, 

around 

5 × 3 𝑚 

Same as hallway, carpet 

on the ground. Narrow 

space, obstacles are 

placed randomly with 

different height. 

Outdoor Campus 

Parking 

Lot 

Cars, Street 

Light, 

Moving 

people 

Large, 

around 

10 × 10 𝑚 

Cement and tarmac 

surface, relatively 

medium friction but 

uneven and rugged 

ground. Space in here is 

very clear except 

between cars, obstacles 

are placed orderly with 

same height. 



71 

For SLAM and path planning: Since the prerequisites of planning path is constructing a map for 

environment, we test these two functions simultaneously in the same scenario mostly. Also, for 

testing the autonomous driving ability of the robot, the test environments for these two functions 

are the same as for obstacle avoidance except research lab because we could not present testing in 

there due to COVID-19. Note that the complexity of the environment can affect the accuracy of 

mapping, so that we sort the complexity of these scenarios according to the number and placing of 

obstacles, as shown as followed: 

𝐶𝑎𝑚𝑝𝑢𝑠 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑙𝑜𝑡 > 𝑅𝑜𝑜𝑚 > 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟 

 Due to COVID-19, the main testing scenario for SLAM and path planning is my personal room. 

It has a medium complexity and size of 5 × 3 with obstacles including wall, bed, table, chair, 

boxes and moving person. The space in this environment is relatively not clear with a narrow 

corridor on the side. For this scenario, the performance of SLAM and path planning can be shown 

mainly as mapping accuracy and run time speed, which will be presented later in CHAPTER 4.2.3 

and 4.2.4. 

 

4.2 Test Results 

4.2.1 Obstacle Avoidance 

 There is not a specific indicator presenting the performance of obstacle avoidance. However, 

the general performance of this function can be embodied through testing at these mentioned 

scenarios. The best way to present the performance of obstacle avoidance will be using a demo 

video. But in here, we will present the result of constructed 2D local grid map, which is the 

guidance and foundation for obstacle avoidance. 

 As one of the mentioned scenarios, the raw 2D point cloud of my room has been shown in the 

right side of  Figure 4.3 below. By comparing the 2D point cloud and real picture of my room, it 

is obvious that the basic geometrical information has been reflected and restored in detail. For 

example, the door left open ajar on the side of the corridor can be identified from the 2D point 

cloud easily. The geometric specification of map has been shown in Table 4.2, which is the same 

as the size and refresh frequency mentioned in CHAPTER 3. 



72 

 

Figure 4.3: Plain view of 2D local grid map and 2D point cloud.  

 

Table 4.2: Specification of 2D local grid map. 

Grid Size 0.3𝑚 

Map Size 3 × 3𝑚 or 21 × 21 

grids 

Map Refresh 

Frequency 
More than 5𝐻𝑧 
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 However, some outlies have also been collected since the 16 channel LiDAR has a vertical 

scan range in ±15° as mentioned before. For example, the cambered curve appeared at the end of 

the corridor and near the bed is caller ground hit, which is the points reflected by the ground when 

the laser beam #0 and #1 hit the ground. The appearance of such outlies does not means that area 

is occupied by any obstacles. Hence, with the data pre-processing methods mentioned in previous 

chapter, we eliminate these outlies and set a confidence threshold to simplify the point cloud when 

transform it to grid map.  

 As the result, the 2D local grid map has been shown in Figure 4.3 next to point cloud. It is clear 

that the necessary details of real world have been mostly restored and expressed on the map such 

as the door left open ajar, while the outlies have been deleted and the whole map performs much 

more clear than raw data. A map such as this one can be passed for extracting the fuzzy language 

of {𝐿𝑒𝑓𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝐹𝑟𝑜𝑛𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑅𝑖𝑔ℎ𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒}, and it can be used to guide the robot for 

avoiding obstacles and exploring the environment. At this scenario, the robot close area of all left, 

right, and front is clear, so that the robot is free to move around but according to the fuzzy control 

rule base, the robot should go forward. 

 If there is another obstacle moving across or around the robot, which is also known as a 

dynamic obstacle, we ensure the safety of the robot by maintaining an adequate refresh frequency. 

The refresh frequency of obstacle avoidance depends on and less than the scan frequency of 

LiDAR, which is 10𝐻𝑧. Through practical testing, the 2D grid map will update less than 0.3 𝑠𝑒𝑐. 

Considering the lag from sending command to reaction of servos, and the inertia of robot motion, 

the refresh frequency satisfied the safety concern.  

 

4.2.2 Data Fusion 

 First the calibration of camera result will be presented as shown in Figure 4.4. The detected 

points, checkerboard origin, and reprojected points have been marked in Figure 4.4 above, while 

the image below has shown the result of undistorted image. 
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Figure 4.4: Upper: raw image capture from the camera. Downer: undistorted image after 

calibration. 

 

 Then with a set of 25 images, we are able to calculate the reprojection error of camera 

calibration session. The result has been shown in Figure 4.5, and the overall mean error is 

0.13 𝑝𝑖𝑥𝑒𝑙𝑠, which is acceptable. The 3D representation of checkerboard in different position at a 

camera-centric order has also been shown in Figure 4.5. 
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Figure 4.5: Left: mean error in pixels of 25 images. Right: position of checkerboards in a camera-

centric basis. 

 

 Also, some other numerical results including the intrinsic matrix has been shown as below: 

• Intrinsic matrix: [
1210.70 0 0

0 1211.87 0
969.62 541.14 1

] 

• Principal Point: [969.62 541.14] 

• Radial Distortion: [−0.3644 0.1177] 

• Mean Reprojection Error: 0.1338 

 After these, the result of detecting checkerboard corners has been shown in Figure 4.6. The 

different color on point cloud means different reflection intensity.  

 For the larger checkerboard, find the four corners of the whole checkerboard as the reference 

points, and match those points corresponding to undistorted image can also calculate the extrinsic 

parameters, as shown in Figure 4.7. 

 

Figure 4.6: Corners of checkers on point cloud. 
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Figure 4.7: Four corners of larger checkerboard with respect to image and point cloud. 

 

 Finally, the pixels of image can be back projected to point cloud as shown in Figure 4.8. 

 

Figure 4.8: Colored point cloud of indoor scenario after transformation. 

 

 With the intrinsic and extrinsic parameters, some other data captured by this robot can also be 

fused since the relative spatial position relationship between LiDAR and camera remains the same. 
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Here we illustrate this by presenting another example in outdoor scenario. The undistorted image 

captured from camera has been shown in Figure 4.9. while the 3D point cloud captured from 

LiDAR in the same scene has been shown in Figure 4.9. The result of fusing the 3D point cloud 

and 2D image together can be presented as following: 

 

Figure 4.9: Color image, point cloud, and fusion results of indoor and outdoor scenario. 

 

4.2.3 2D SLAM 

 The 2D SLAM includes two main targets, localization and mapping. In here, since we are using 

the dataset capture by our own, we did not use a fixed ground truth to verify the accuracy of the 

map constructed. Besides, we only have performed this function on a single scenario, which is my 

room.  

Table 4.3: Measurements of objects in map and reality. 

Object Map Measurement Reality Measurement 

In grids In cm 

Bed (Queen Size) 42 𝑔𝑟𝑖𝑑𝑠 210 𝑐𝑚 205 𝑐𝑚 

Wall 51 𝑔𝑟𝑖𝑑𝑠 255 𝑐𝑚 247 𝑐𝑚 

 

 However, the accuracy of map constructed can be defined as accurate since the size of some 

of the landmarks from the map generated can match the corresponding objects in actual world. In 
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here we chose the bed and wall as the landmark, and we measure the length of objects both in map 

and reality as shown in Table 4.3. 

 Here are also some results showing both the trajectory and the map. The meaning of different 

color represents: 

• Grey: Unexplored zone 

• Green: Current LiDAR hit 

• Black: Obstacles or occupied 

• White: Free zone 

• Blue: Trajectory 

 To illustrate the process of map construction, we shielded half of the scan range of LiDAR 

from 360° to 180°, and then we let the robot move and explore randomly in the environment, as 

shown in Figure 4.10. The blue grids have recorded the trajectory of the robot when moving. Also, 

we let the robot stay in place and turn it around in the same environment, and the map as shown in 

Figure 4.11.   

 

Figure 4.10: Map constructing process with current LiDAR hit (green color) before removing 

ground hit. 

 

 Obviously, the map generated when the robot is stationary has higher quality then moving. The 

possible reason can be various, but the most influential one is that the LiDAR may capture some 

outliers when the robot is moving because the vibration caused by the even ground. Although we 

have already applied filter and threshold for matching different frames capture by LiDAR, some 

outliers still appeared. Actually, this is a common phenomenon when mapping through a LiDAR 
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both in 2D and 3D. We improve something is that we removed the ground hit, and we integrate 

this function together with other functions simultaneously.    

 

Figure 4.11: Map constructing process without current LiDAR hit after removing ground hit. 

 

 At last, the real scale (30 × 30 𝑚) of the map and corresponding topographic diagram has been 

shown in Figure 4.12 

 

Figure 4.12: Left: result of global 2D grid map in scale of 30 × 30 𝑚 . Right: corresponding 

scheme of room.  
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4.2.4 Path Planning 

 As mentioned before, the input of path planning is the grid map constructed from SLAM. 

Firstly, the map for path planning converted from SLAM has been shown in Figure 4.13. The map 

for path planning still share the same scale with the original map, which is 600 × 600 𝑔𝑟𝑖𝑑𝑠, but 

the difference is that we set the save zone (light blue color) and dangerous zone (pink color) 

alongside the obstacles. 

 

Figure 4.13: 2D global grid map for path planning in scale of 600 × 600 𝑝𝑖𝑥𝑒𝑙𝑠 (left) and in detail 

(right). 

 

 Then, after setting the start (default is the current location of robot) and destination and 

selecting the method, the path will be generated as shown in Figure 4.14. The red color means the 

area that has been traversed through the planning process. It is clear that the path generated through 

different method presents the same, which means that under a simple scenario with not too much 

obstacle to circle around, the results planned by best-first search will not show too much difference. 

 



81 

Table 4.4: Path scoring time for different algorithms. 

Method Path Scoring Time 

Dijkstra 1.114𝑠 

A* 0.692𝑠 

A* Heuristic 0.094s 

Greedy 0.044s 

Heuristic Weighted 0.043s 

 

 

Figure 4.14: Path generated from different algorithm with the same start and destination. 

 

 Also, the time consumed through scoring the path under different methods has been shown in 

Table 4.4 above. Though the path generated presents the same, the time efficiency of different 

methods illustrates significant difference. The Dijkstra algorithm consumed the longest time, while 

Greedy and heuristic weighted algorithm planned the path at almost the rapidest speed. 



82 

4.2.5 Simulation Results 

 Here are some results of the simulation. The first one is the 2D map constructed in indoor 

scenario and path planning. The right side in Figure 4.15 is the model of both the building and the 

robot (blue one is the robot), while left side is the 2D map constructed and video visualization 

streamed from camera. The orange spot is the current position of robot, and the green curve is the 

path planned to the preset destination. 

 

Figure 4.15: Path planning and navigation of simulation robot. The window tagged “Image” 

presents the visualization of virtual camera set on the robot model. 

 

 Then the 2D SLAM result constructed at outdoor scenario has been shown in Figure 4.16. The 

black outline is the outer shape of several buildings. 

 The process of 3D SLAM has been shown in Figure 4.17. The robot has been circled in red 

color on the right side, and the corresponding position of the robot has also been shown on the left 

side.  
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Figure 4.16: 2D grid map generated from Gamapping of simulation. 

 

 

Figure 4.17: 3D lase map constructing process of simulation. The left is the 3D lase map, and the 

right is the corresponding real scene in simulation environment. 
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 At last, the results of 3D SLAM have been shown in Figure 4.18 and Figure 4.19. It is obvious 

that the 3D map constructed by Loam algorithm has higher density in point cloud than Lego-loam 

algorithm. But both two map has excellent quality. 

 

Figure 4.18: Result of 3D lase map generated by Loam algorithm. 



85 

 

Figure 4.19: Result of 3D lase map generated by Lego-loam algorithm. 
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CHAPTER 5 

CONCLUSION AND SCOPE 

 In this thesis, an autonomous driving robot was proposed and built based on a Segway self-

balancing scooter. The robot was designed under the principle of modern intelligent and 

autonomous robotics, which consists three main body frames including perception, decision 

making, and action. This thesis mainly described the hardware/software structure, methodologies 

for different functions, and testing environment and results. The hardware system of the robot 

includes sensors, actuators, and processors. Several sensors including a 3D LiDAR, a monocular 

network camera, an IMU, and two wheel encoders were implemented, which completed the task 

of perceptual collection and provide data to software system. Two digital servos connected with a 

pendulum and steer rod formed the actuators, which realized the control over the robot physically. 

Two Arduino Uno microcontrollers and a Microsoft Surface fulfilled the data processing and 

communication ability. The software system of the robot realized the assignments including 

collecting data from the sensors and transporting to higher levels, processing data, several 

functionalities fulfillment, and send command back to actuators to control the robot.  We proposed 

several functionalities developed under Python 3.6 including obstacle avoidance based on 2D local 

grid map and fuzzy logic, data fusion based on co-calibration, 2D SLAM based on Rao-

Blackwellized particle filter, and path planning based on 2D global grid map. In this thesis, the test 

procedure and environment has been introduced, and we performed the testing of the robot under 

several scenarios. The test results illustrated that all the functions had achieved the excepted effect. 

 Overall, the robot has the functional ability of proposed autonomous functions, which can be 

considered as an autonomous driving robot for some simple tasks. Besides, the modular hardware 

and software structure of this robot has been proven that it can be considered as a platform for 

developing further advanced autonomous driving or general algorithms.  



87 

5.1 Limitations 

 Although the robot proposed in this thesis has fulfilled all the functions, it still has some 

limitations in some respects. For example, we have not performed testing about 2D SLAM in an 

outdoor scenario, and the method chose for 2D SLAM is not suitable for big scale and open 

scenarios. Also, the path planning function can be added in a closed-loop control for retrieving the 

position of robot when following the path to destination.  

 Besides, the accuracy about some of the results was measured roughly due to the limitation of 

testing environment. Compared with other autonomous robots, the functionality of our robot is 

complete, which can be illustrated through CHAPTER 4 and demo videos. But the robot lacks 

consistent indicators to verify the performance. Hopefully, in the future the robot can be tested in 

a standardized field or scenario in order to verify the performance. 

 

5.2 Real World vs. Simulation 

 The other thing worth mentioning is that the comparison between the real world and simulation. 

From a macro perspective, the whole software frame of the robot in real world was developed 

under Python 3.6, while the robot in simulation was developed under ROS (C++). Generally, the 

running speed of ROS was considered as higher than Python, which means the robot in simulation 

should has better performance in real-time, because the main language used of ROS is C++. 

However, the test results about map refreshing frequency illustrated that the algorithms developed 

under python has a running speed comparable to that of ROS. Although we did not make a detailed 

comparison under strict control of variables, it might be expected that developing some 

autonomous driving algorithms, especially focusing on mapping, localization, and movement 

control, can be realized through Python.  

 Besides, the robot in simulation has more functions (such as 3D SLAM) than in real world, 

and the performance of 2D SLAM and navigation functions in simulation presents better as well. 

The reason is that as a well-known open-source developing environment with high maturity 

especially in robotics, ROS has integrated many developers and algorithms with better 

performance.  
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5.3 Scope 

 As mentioned before, the robot proposed in this thesis can provide a platform for developing 

autonomous driving algorithms. One example is the project performed by the other graduate 

student Xiyuan Wang in our lab. Briefly introducing, he has trained an AI model for segmenting 

the drivable area from video streamed by camera in real-time. The connection between this project 

and our thesis is that the data for training model and testing was collected through the camera in 

our robot, and the segmented image output by model can be transformed into another matrix, as 

the input of obstacle avoidance to provide the perception of environment. This has been tested in 

campus as a prototype for controlling an autonomous robot based on robot vision. 

 Besides, one other feature about the design of the robot is modularization. The hardware and 

software system are all modular, which means the robot can be added or removed with certain 

functions without affecting other functions. This can be convenient that some hardware can be 

replaced by other hardware with lower cost, or some more advanced algorithms (e.g. 3D SLAM) 

can be developed based on this robot since it has the perception both for environment and itself, 

which meets the basic requirements in autonomous driving area.  

 The pace of developing more advanced algorithms can not be stopped. As an attempt of 

autonomous robotics and algorithms, we hope that this robot does its job. Also, we sincerely hope 

that more and more excellent algorithms will be developed based on this platform in the future to 

advance the field of autonomous driving.  
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