

Towards Runtime Classification of Ransomware

by

Madhumitha Balaji

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
(Computer and Information Science)

in the University of Michigan-Dearborn
2021

Master’s Thesis Committee:

Assistant Professor Anys Bacha, Chair
Associate Professor Jinhua Guo
Assistant Professor Mohamed Abouelenien

ii

TABLE OF CONTENTS

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . vi

CHAPTER

1. INTRODUCTION .. 1

2. BACKGROUND .. 4

2.1 Ransomware .. 4

2.1.1 Cryptographic Ransomware .. 4

2.1.2 Locker Ransomware ... 5

2.2 Supervised Learning .. 5

2.2.1 Logistic Regression (LR) .. 6

2.2.2 SVM-Linear (SVM-L) .. 6

2.2.3 SVM-Polynomial (SVM-P) .. 7

2.2.4 SVM-RBF (SVM-R) ... 7

2.2.5 K-Nearest Neighbors (KNN) .. 8

2.2.6 Random Forest (RF) ... 8

2.2.7 Naïve Bayes (NB) .. 8

2.3 Quality Metrics .. 9

iii

2.3.1 Accuracy ... 9

2.3.2 Precision .. 10

2.3.3 F-score... 10

2.3.4 Receiver Operating Characteristics Curve (ROC) 10

3. RELATED WORK ... 11

3.1 Ransomware Detection .. 11

3.2 Ransomware Recovery .. 13

3.3 Other Malware Solutions ... 14

3.4 Threat Model ... 15

4. METHODOLOGY ... 16

4.1 Experimental Framework .. 16

4.2 Dataset ... 17

5. EVALUATION .. 19

5.1 Instructions as Features for Ransomware Detection 19

5.2 Dimensionality Reduction ... 21

5.3 Harnessing Cryptographic Instructions ... 25

6. CONCLUSION ... 29

REFERENCES . 30

iv

LIST OF TABLES

Table

4.1 Summary of ransomware families used in evaluation... 17

5.1 Summary of quality metrics under different models when using the full set of

features. ... 20

5.2 Summary of quality metrics under different models when using a reduced fea-
ture set through PCA. .. 24

5.3 Summary of quality metrics under different models when using a reduced fea-
ture set that consists of instructions that are relevant to cryptographic algorithms. 28

v

LIST OF FIGURES

Figure

5.1 Comparison of ransomware detection rates across multiple families when com-
bining different machine learning models with the full set of available features. 20

5.2 False positive and negative misclassifications when combining different ma-
chine learning models with the full set of available features. 22

5.3 Comparison of detection rates of ransomware from 9 families when combining
different machine learning models with a reduced feature set through principle
component analysis (PCA). .. 23

5.4 False positive and negative misclassifications when combining different ma-
chine learning models with a reduced feature set through principle component
analysis (PCA). ... 25

5.5 Comparison of detection rates of ransomware from 9 families when combining

different machine learning models with a reduced feature set that consists of
instructions relevant to cryptographic algorithms. .. 26

5.6 False positive and negative misclassifications when combining different ma-
chine learning models with a reduced feature set that consists of instructions
relevant to cryptographic algorithms. ... 27

vi

ABSTRACT

The availability of computer systems is constantly being challenged by cybercriminals who

seek to disrupt access to this indispensable technology and the data they contain as a means for

making profit. This trend has given rise to a new form of malware that is known as ransomware,

an invasive type of malware that is designed to appropriate compute resources in return for a

ransom. According to the U.S. Department of Homeland Security, ransomware represents the

fastest growing malware threat to individuals and organizations. With the cost of ransomware

attacks projected to exceed $20 billion in the year 2021, it is imperative to explore solutions that

can defend against such malware.

In this study, we evaluate the effectiveness of machine learning algorithms and their suitability

for detecting ransomware on x86 platforms. We show that dynamically extracting instruction op-

codes from execution traces can be harnessed for training machine learning models that can used

to perform runtime detection of ransomware. We evaluate different machine learning models

and demonstrate that tracking a limited number of instruction opcodes commonly used crypto-

graphic are sufficient for reliably detecting ransomware with high accuracy. We show that our

method can achieve high detection rates above 99% while evaluating our solution against real

ransomware available in a state-of-the-art dataset from VirusTotal.

1

CHAPTER 1

INTRODUCTION

The digital world around us is growing exponentially, resulting in tectonic shifts to the way

we approach everyday computing. The ubiquity of computer systems across all industries has

transformed this technology into a vital fabric that governs all facets of our society, including

healthcare, manufacturing, and retail. The mobility of today’s devices, fused with advances in

cloud computing, continue to drive new synergies in the way essential services are delivered to

consumers, producing vast amounts of data that both individuals and organizations depend on for

making their daily decisions.

Unfortunately, the availability of these systems is constantly being challenged by cybercrim-

inals who seek to disrupt access to this indispensable technology and the data they contain as

a means for making profit. This trend has given rise to a new form of malware that is known

as ransomware, an invasive type of malware that encrypts the victim’s data or locks their sys-

tem. The malware then extorts the user to pay a ransom in return for decrypting their data or

restoring access to their system [1]. According to the U.S. Department of Homeland Security,

ransomware represents the fastest growing malware threat to individuals and organizations [2].

More than 112,000 unique mobile ransomware samples were found in 2018 [3], posing a threat

to mobile users by denying them access to their personal data, in addition to locking them out

of their devices. Moreover, a wide range of business segments incurred significant damages as

a result of ransomware, costing the pharmaceutical, shipping services, and chip manufacturing

industries over $850 million, $400 million, and $250 million, respectively [4; 5]. Similarly, local

2

governments have fallen victim to such attacks, including the City of Baltimore that has spent

over $18 million to date in order to recover from ransomware that crippled various municipal

operations [6]. Although the cost of ransomware attacks in 2018 has been estimated to exceed $8

billion, future damages are projected to reach $20 billion by the year 2021 [7]. This trend makes

it imperative to explore solutions that can both detect and recover from such attacks.

In this study, we evaluate the effectiveness of machine learning algorithms and their suitabil-

ity for detecting ransomware on x86 platforms. We show that extracting instruction opcodes from

execution traces can be harnessed for training machine learning models that can used to perform

runtime detection of ransomware. We examine the performance of different machine learning

models and demonstrate that opcodes from the x86 instruction set are sufficient for reliably de-

tecting ransomware deployed on Windows platforms. We show that this method can achieve high

detection rates above 99%. We evaluate the robustness of our work against real ransomware from

a comprehensive dataset from VirusTotal [8].

Overall, this work makes the following contributions:

• Characterizes the behavior of an emerging type of malware at the instruction level.

• Makes the observation that using the instruction opcodes of executed programs serve as

reliable features for detecting ransomware at runtime.

• Evaluates multiple machine learning algorithms and their suitability to detecting ransomware

with high accuracy while maintaining a low false positive rate.

• Demonstrates that a limited number of commonly used cryptographic instructions could

be harnessed as features for distinguishing between ransomware and benign applications, a

step towards autonomous ransomware detection through light-weight hardware-malware-

detectors (HMD).

The rest of this thesis is organized as follows: Section 2 provides background information.

3

Section 3 details related work. Section 4 discusses the methodology for evaluating the approach.

Section 5 presents the results of our evaluation; and Section 6 concludes.

4

CHAPTER 2

BACKGROUND

2.1 Ransomware

Ransomware is considered to be an invasive form of malware that is designed to deny its

victims access to valuable digital resources, generally in the form of data present on computer

systems. The malware is designed to demand a ransom from its victims in return for restoring

access to any affected resources once a system becomes infected. Payment for such attacks are

typically carried out through anonymous cryptocurrencies, such as Monero [9] as a way of ensur-

ing anonymity of the cybercriminals’ identities behind such malicious campaigns. Ransomware

can be broadly classified into one of two categories: cryptographic ransomware and locker ran-

somware. Although the primary aim of both these types are to garner monetary benefits, each of

them differ in their Modus Operandi.

2.1.1 Cryptographic Ransomware

Cryptographic ransomware is a type of malware that is designed to encrypt valuable files

present on a victim’s system while revoking access until the specified ransom is paid. Such

ransomware typically harnesses well established encryption algorithms that are known to be

cryptographically strong. This includes the Advanced Encryption Standard (AES) and Rivest-

Shamir-Adleman (RSA). This allows cyberciminals to re-purpose such algorithms for efficiently

preventing victims from accessing their files, obviating the need to explicitly transfer hijacked

5

resources out of the infected system. One of the most notable malicious programs that belongs

to this ransomware family is WannaCry [10; 11]. The ransomware became sensational within a

short period of time due to the magnitude of its attack. It spread quickly across 150 countries by

exploiting the Server Message Block (SMB) vulnerability within the Windows operating system.

In addition to WannCry, other types of ransomware have been discovered in the wild including

Locky, Odin, TeslaCrypt, Thanos, and Petya.

2.1.2 Locker Ransomware

Unlike cryptographic ransomware, this family of ransomware focuses on locking victims out

of their user accounts. Such ransomware operates by overtaking the operating system’s module

that is responsible for logging users into their systems and preventing further logins until the

required ransom is paid. Unlike cryptographic ransomware that require attackers to provide a

decryptor that can be used to decrypt encrypted files, locker-based ransomware reverts its effects

by simply unlocking the system. Although locker ransomware can be disruptive, the data present

on the system remains intact and can be easily recovered by extracting the disk from the affected

system and installing it into a clean system that is known good. As a result, our study primarily

focuses on evaluating cryptographic ransomware which are known to have far more damaging

consequences relative to locker-based ransomware.

2.2 Supervised Learning

In this section, we give an overview of the different machine learning algorithms we employ

in the evaluation section. In our study, we primarily focus on using a branch of machine learning

algorithms that rely on a supervised learning approach, an approach that associates a set of input

data points X(1),...,X(m) to a set of definitive outcomes Y(1),...,Y(m).

6

2.2.1 Logistic Regression (LR)

Logistic regression, a variant of classification algorithms that is used to assign observations to

a set of classes that are discrete. Although known for its simplicity, this model has been employed

in a wide range of classification problems including email spam, online fraudulent transactions,

and malignant tumor discovery. The algorithm transforms its input to an output using the logistic

sigmoid function and returns a probability value, making it a predictive type of algorithm. A

set of probability values can be mapped to two or more classes. Logistic regression can be

referred to as a linear regression model that uses a complex cost function. However, instead of

a linear function, this cost function is defined as the ’Sigmoid function’. The hypothesis of the

algorithm tends to limit the cost function between 0 and 1. The linear function passing through

the sigmoid results in the equation described in equation (2.1) where the sigmoid function is

equal to [σ(z) = 1 ÷ (1 + e−z)].

wT x = w0 + w1x1 + ... + wnxn and P (y = l|x) = σ(wTx) (2.1)

2.2.2 SVM-Linear (SVM-L)

The Support Vector Machine (SVM) is a linear model that has the ability to classify prob-

lems that are both linear and non-linear in nature. The basic idea of the model is that it creates a

hyperplane to separate the input dataset into classes. It finds the points that are closest to the hy-

perplane from the different classes and attempts to maximize the distance between these classes.

In other words, the model tries to decide a boundary such that the separation between the classes

is as wide as possible. The linear SVM classifier model can be expressed by equation (2.2) where

[x ∈ Rn] is the input vector, y is the class label, w is the weight vector, C is a regularization

parameter, and b is the bias.

7

|| ||

n

min(w 2 + C ∑ ξi) s.t ∀ yi(wT xi + b) > 1 - ξi and ξi > 0 (2.2)
w,ξ

i=1

2.2.3 SVM-Polynomial (SVM-P)

SVM-Polynomial is considered to be the polynomial version of SVM-Linear. It uses a poly-

nomial kernel function that is used to represent the similarity of vectors in a feature space over

polynomials of the original variables. Therefore, giving it the ability to approximate non-linear

functions.

A strength of the SVM-polynomial model is that it looks at a combination of features to

determine similarities instead of treating each feature independently. Such combinations are

known as interaction features. For degree-d polynomials, the polynomial kernel is defined as

shown in equation (2.3) where x and y are vectors in the input space and c is a free parameter to

trade off the influence of higher-order and lower-order terms of the polynomial.

K(x, y) = (xTy + c)d (2.3)

2.2.4 SVM-RBF (SVM-R)

The Gaussian Radial Basis function (RBF) is another popular kernel method that is used in

SVM models. At a high level, the RBF kernel is a function whose value depends on the distance

from a given origin that is computed using equation (2.4).

||X1 − X2|| = Euclidean distance between X1 and X2 (2.4)

Similarities between X1 and X2 is determined based on the distance in the original space.

In addition, the model uses a γ parameter to control overfitting. Whenever γ increases the model

tends to overfit and whenever it is decreased, the model tends to underfits.

8

2.2.5 K-Nearest Neighbors (KNN)

The K-nearest neighbors (KNN) is a classification method that is non-parametric in nature. In

this algorithm, the input comprises of the K closest examples in the training data set. This algo-

rithm also relies on distance computations between the points as a way of clustering vectors that

share similar characteristics. A peculiarity of the algorithm is its sensitivity to the local structure

of the dataset. Unlike other algorithms, KNN doesn’t require training. Instead, it learns from the

training dataset at the time of providing providing predictions based on a given input. The algo-

rithm has the advantage of being relatively simple to implement since it primarily requires the

use of a distance function and the value of K to be used. A downside to this algorithm, however,

is that the cost of calculating the distance between the different points can increase drastically as

a function of the dataset. As a result, the KNN algorithm can introduce a non-trivial amount of

runtime overhead when large datasets are employed.

2.2.6 Random Forest (RF)

Random forest is another learning algorithm that combines a multitude of decision trees dur-

ing the training phase. Classification in this algorithm is achieved through ensemble learning

where the final prediction is based on a majority vote of the different predictions produced by the

individual decision trees within the ransom forest. In addition to its speed, an advantage of this

algorithm lies in its robustness against overfitting issues.

2.2.7 Naïve Bayes (NB)

Naïve Bayes is a simple probabilistic model that is based on based on Bayes’ theorem. As

such, this model is primarily concerned with learning the underlying distribution of the data.

Despite the naive design and oversimplified assumptions, this type of classifier has been shown

to be effective in a range of complex real-world problems. An advantage of Naïve Bayes is

that it only requires a small number of training data to estimate the parameters necessary for

9

classification.

2.3 Quality Metrics

We evaluate our work against commonly referenced quality metrics. These include metrics

such as accuracy, precision, F-score, and the receiver operating characteristics (ROC) curve. As

a result, we provide a brief overview of the aforementioned metrics and how they are computed.

The aforementioned metrics rely on quantities such as false positives (FP), and false negatives

(FN), true positives (TP), and true negatives (TN). In our models, a false positive corresponds to

the case where we misclassify a benign app as ransomware. A false negative is more serious

and corresponds to the case where we classify ransomware as a benign application. On the other

hand, a true positive refers to the case where we correctly predict ransomware whereas a true

negative correlates to the case where we correctly predict benign applications.

2.3.1 Accuracy

This is a metric that provides a high level indication of a model’s ability to classify data. It is

represented as the ratio of correct predictions relative to all tested data points. This is summarized

by equation (2.5).

Accuracy = TP + TN
TP + FN + TN + FP

(2.5)

Here FP and FN represent the mispredictions within our test dataset and refer to false positives

and false negatives, respectively. On the other hand, TP and TN represent the correct predictions

and refer to true positives and true negatives respectively.

10

×

2.3.2 Precision

This metric reflects the quality of the positive predictions. In other words, it characterizes the

ability to detect malicious apps. This is measured through equation (2.6).

Precision = TP
TP + FP

(2.6)

2.3.3 F-score

This represents the harmonic mean of the precision and the true positive rate (TPR) metrics

which is summarized by equations (2.7) and (2.8). Unlike accuracy, the F-score provides a more

balanced measure of the precision and true positive rate. This is especially useful when assessing

class distributions that are not balanced. In addition, define TPR’s counterpart, the false positive

rate (FPR) as described in equation (2.9).

F -score = 2 TPR × Precision
. (2.7)

TPR + Precision

TPR = TP
TP + FN

(2.8)

FPR = FP
TN + FP

(2.9)

2.3.4 Receiver Operating Characteristics Curve (ROC)

The ROC represents a measure of the true positive rate (TPR) as a function of the false positive

rate (FPR). It illustrates how different decision thresholds affect the TPR and FPR. Therefore, the

closer the ROC curve is to the left, the higher the overall accuracy of the model. Another way

to capture the ROC information is by computing the area under the ROC curve (AUC) which is

what we employ in our study. The closer the AUC value is to 1, the higher the overall accuracy.

11

CHAPTER 3

RELATED WORK

A significant body of research has explored various forms of ransomware detection solutions.

In this section, we discuss the prior work on this topic that spans: ransomware detection, ran-

somware recovery, as well as solutions for other types of malware.

3.1 Ransomware Detection

Various solutions have been proposed for detecting ransomware [12; 13; 14; 15; 16; 17; 18].

Techniques such as [15] explore the use of a temporary artificial user environment where ran-

somware can run and interact with the system. In addition, the solution monitors the amount

of entropy present in I/O transactions that are destined for the disk drive as a way of detecting

encryption activity. Other work by Scaife et al. [12] use a behavioral approach for detecting

ransomware that is similar to [15]. Similar to [15], the proposed solution considers anomalies in

the sequence of I/O transactions issued to the file system along with entropy of each transaction.

Work by Moussaileb et al. [18] examined file system traversal patterns as an early mitigation

mechanism against ransomware. Their technique employs decoy files that are located at the root

of the file system. The decoy files are treated as canaries for detecting ransomware and preventing

the rest of the file system from being encrypted. On the other hand, work by Pascariu et al. [19]

take a fundamentally different approach. They propose the use a low-cost honeypot that hosts

decoy files through a network file system that has auditing capability. This honeypot is used to

12

serve as a first line defense for users on the same network on the presence of ransomware in the

event that the shared decoy files are encrypted.

Additional work considered static analysis techniques in detecting ransomware. Work by

Naik et al. [20] applies fuzzy hashing and clustering techniques on a ransomware corpus to

demonstrate the effectiveness of their approach. Other work by Vidyarthi et al. [21] considered

a hybrid design that combines both static and dynamic analysis techniques to further improve

the accuracy of ransomware detection. Their work examines parameters that include the entropy

of the file, the presence of packers in the executable, embedded strings that contain suspicious

keywords such as ”crypt”, and code that makes changes to the Windows registry.

In addition to desktop-based solutions, other work focused on mitigating the effects of ran-

somware on mobile systems [22; 1; 23]. Work by Chen et al. [22] proposed a detection mecha-

nism tailored for mobile systems known as RansomProber. The solution operates by correlating

finger movements initiated by the user to actively running apps. The solution then classifies any

running apps that don’t correlate to any interactions with the user as malicious. Other work by

Lachtar et al. [1] focused on statically analyzing executables produced by the Android Run-

time system (ART) for malicious content. The solution leverages light-weight machine learning

algorithms to detect ransomware code and prevents them from being launched. [23] considers

a similar approach for the Android platform while efficiently harnessing convolutional neural

networks to classify mobile applications. Other work by Ko et al. [24] explored a design that

considers intercepting system calls into the kernel as a way of fingerprinting ransomware activity.

Unlike the majority of the aforementioned work that focuses on monitoring I/O transactions

destined to the file system, our study examines ransomware at a more fundamental level. We

investigate ransomware at the instruction level as it executes through the processor. As a result,

our work has the potential to enable autonomous hardware malware detectors that can detect

ransomware much earlier, as it passes through the microprocessor during the execution stage.

This approach has the potential to preserve the file system by flagging malicious sequences of

13

instructions well before data is altered on the file system.

3.2 Ransomware Recovery

Paying a ransom for lost damaged data does not always guarantee proper restoration of one’s

data files. This prompted several researchers to investigate solutions that can seamlessly undo the

effects of ransomware through different mechanisms [25; 26; 27; 28; 29]. For instance, Continella

et al. [28] proposed ShieldFS. The proposed solution examined the use of an add-on driver

that safeguards the file system from cryptographic ransomware. The add-on driver considers

various file system parameters that include that entropy of write operations, the frequency of

read and write operations, folder-listing operations, and file type usage statistics in order to stop

ransomware activity destined to the system. On the other hand, [29] explored the concept of

creating safe zones within the file system that can later serve as a backup. With this design, users

can mitigate the effects of ransomware by moving important documents to the aforementioned

zone. Once files have been moved to the safe zone, file access is only granted upon authorization

of the user. Running applications are not granted access to the safe zone in order to prevent

malicious apps from encrypting the data. In the event that a system is infected with ransomware,

the user can restore any damaged files from the aforementioned safe zone. Unfortunately, such

backup solutions introduce a non-trivial amount of overhead during runtime which can impact

the usability of the system. Such solutions also require a substantial amount of storage space in

order to create backups that can be later used as restoration points.

Work by Kolodenker et al. [30] developed a prototype that employs a key escrow mechanism

for saving any encryption keys that are generated on the system. The solution then retrieves the

saved encryption keys from the key escrow and uses them to decrypt any affected files in the

event that the system is infected by ransomware. The solution in [30] achieves this by monitoring

operating system services that call the cryptographic libraries used by the OS. Unfortunately, this

solution can be evaded by ransomware that embed cryptographic functions directly within their

14

malware. Other work by Huang et al. proposed a mechanism known as FlashGuard [31]. Flash-

Guard uses a device-level recovery mechanism that obviates the need for using backups at the

filesystem-level. This solution operates by tracking updates made to pages within the memory

subsystem and storing the original copies to a solid-state-drive (SSD). Original pages are flushed

to the SSD through modifications made to the garbage collection subsystem. Unfortunately, this

solution is limited to systems that are equipped with SSDs. In addition, it requires duplicat-

ing data on the drive which makes it inefficient given that SSDs typically have limited storage

capacities.

3.3 Other Malware Solutions

Previous work has also investigated defenses against general malware that span mobile and

computer systems [32; 33; 34; 35; 36; 37; 38; 39; 40]. Work by Jiang et al. [32] characterized

various forms of Android malware providing information such malware in terms of method in-

stallation, activation, malicious payload, permissions requests. Other work [33; 34; 35] looked

at the malware behavior at run time to identify and detect the malicious behavior. DroidDol-

phin [34] used API calls to identify malware. However, the speed provided by the emulation

environment was inefficient. MalDozer [35] embodied a solution that detects malware with high

accuracy using raw sequence of API and deep learning techniques. However, this introduces

overhead to the overall system, in addition to being vulnerable to different forms of obfuscation

attacks.

As mitigation to the high overhead of software-based malware detection the research com-

munity explored various hardware-based solutions for defending against malware threats [36;

37; 38; 39; 40; 41; 42]. Such solutions generally rely on the usage of standard high-performance

counters (HPCs) that can be used to identify malware by combining readings from the aforemen-

tioned performance counters and machine learning algorithms. Work by Khasawneh et al. [43] is

an example of such solutions. They also explored making their hardware-based malware detector

15

more resilient against obfuscation techniques that rely on reverse engineering malware detectors.

The solution accomplishes this by stochastically switching between different detectors that are

embedded within hardware as a way of making it difficult for attackers to reverse engineer the

solution.

Other work, such as [44] combined static analysis techniques with machine learning algo-

rithms. The solution considered both the permissions requested by applications, as well as the

system calls they use in order to distinguish between malicious and benign applications. Leeds et

al. in [45] explored the effectiveness of using convolutional neural networks (CNN) for malware

detection. However, the results of this approach were sub-optimal, achieving a detection rate of

90% or less. [46] utilized a feature vector generation approach with multi-modal deep learning.

However, similar to the aforementioned solutions, the model used in this solution can be evaded

by obfuscation attacks. New ways are being explored to use CNN for malware detection by

converting malware to image format. [47] converted permission files into images and fed them

to different CNN models. This method resulted higher accuracy than previous ones. Providing

promising results for malware dictation using image classification.

3.4 Threat Model

In this section, we discuss the threat model of our system and assumptions made about the at-

tackers. We make the assumption that the ransomware programs are installed on systems through

established mechanisms that are supported by the operating system. We also assume that the

target system on which the solution is being executed is clean, up to date, and no authentication

mechanisms have been compromised. We also assume that an attacker could use social engi-

neering techniques such as phishing as a way of luring victims into executing their malicious

programs.

16

CHAPTER 4

METHODOLOGY

4.1 Experimental Framework

Experiments for this study were conducted on an Ubuntu 16.04 host machine that was equipped

with Intel E5-2680 processors and two Nvidia P2000 GPUs (Pascal architecture). Since the ma-

jority of available ransomware samples are designed for platforms equipped with the Windows

operating system, we created a virtual machine (VM) that ran a Windows 7 image on top of the

aforementioned host. The virtual machine (VM) was configured to model a standard PC enabled

with sufficient compute resources that could run modern software compiled using the x86 in-

struction set. To this end, the VM consisted of 8 CPU cores, 10GB of memory, and 30GB of disk

storage. To ensure the consistency of the collected results across different ransomware families,

a new VM was cloned from a pristine copy after the execution of every ransomware sample. This

approach allowed us to eliminate any compounding effects associated with ransomware from

previous runs and ensure a clean state of the operating system prior to the initiation of any new

runs.

Furthermore, we developed a framework written in Python that automatically executed and

dynamically collected execution samples from a list of applications. In addition to executing

programs, the framework was responsible for interacting with running programs by issuing key

presses and mouse clicks in order to simulate a real user environment. To track the instructions

executed by the different applications, we used Intel’s Software Development Emulator (SDE)

17

Ransomware Lock Encryption RAT Samples
Locky ✓ 10
Matsnu.com ✓ ✓ 10
MalPack ✓ 10
Nanocore ✓ 10
Odin ✓ 10
WannaCry ✓ 10
Kryptik ✓ 30
Trojan Agent E.Generic ✓ 30
GandCrab ✓ 180

Table 4.1: Summary of ransomware families used in evaluation.

[48]. On the other hand, our framework handled the necessary parsing of the trace logs gener-

ated by the SDE tool and summarizing them into a Comma Separated Vector format (CSV). To

ensure the completeness of our dataset, our framework took multiple samples of each executing

application/ransomware. This allowed us to capture different execution phases of the running

program. In addition to using the framework for recording execution traces, we used libraries

from scikit-learn for implementing the machine learning models we evaluated in this study. We

built models for each of the following machine learning algorithms previously described in sec-

tion 2.2: Logistic Regression (LR), Support Vector Machine Linear (SVM-L), Support Vector

Machine Polynomial (SVM-P), SVM Radial Basis Function (SVM-RBF), K-Nearest Neighbor

(KNN), Random Forest (RF), and Naive Bayes (NB). We characterized the performance of each

model against different feature sets in order to understand the relevance of each instruction in

detecting ransomware.

4.2 Dataset

Our dataset consisted of 600 samples that were collected from popular user applications and

ransomware running on a Windows 7 platform. We used a balanced dataset made up of 300 sam-

ples from benign applications and the remaining from real ransomware. We dedicated 70% of

our dataset for training, 15% for validation, and the remaining 15% for testing. Our benign sam-

18

ples within the dataset were based on execution traces collected from popular user applications

such as Microsoft Word, Power Point, Excel, Outlook, Visual Studio, Snipping Tool, WhatsApp,

Zoom, VirtualBox, and Google Chrome. This allowed us to profile the nature of instructions

executed on a clean system that is free of ransomware that we used for training our detection

algorithms.

We used real ransomware from the Virus Total [8] repository for our malicious portion of

the dataset. Although our study focuses on cryptographic ransomware, we also considered ran-

somware with locking capability, such as Matsnu, as well as ransomware in the form of Re-

mote Access Trojans (RAT), such as Nanocore that moves files off the victim’s machine to a a

cybercriminal-owned server. A summary of the different ransomware families along with their

capabilities are listed in Table 4.1.

19

CHAPTER 5

EVALUATION

Our study investigates the effectiveness of combining low level instructions with machine

learning algorithms for detecting cryptographic malware. We analyze the performance of each

machine learning model against different feature set configurations that include the use of the

frequency of all recorded instruction opcodes, the frequency of a subset of recorded instructions

determined via the principle component analysis (PCA) algorithm, and the frequency of a reduced

set of instructions that are commonly employed in standard cryptographic algorithms to perform

data encryption. In all cases, we consider instruction opcodes that belong to the x86 instruction

set architecture (ISA). We first begin by discussing the performance of different machine learning

when using the full feature set.

5.1 Instructions as Features for Ransomware Detection

After characterizing several ransomware and commonly used applications, we observe that

dynamically tracking the instructions effective on the system is effective in detecting ransomware.

Figure 5.1 summarizes the detection rate of our design across different machine learning models

when using the full list of observed instructions as a feature set. On average, we observe a

detection rate of 70.8% and a false positive rate of 2.8% while using our test dataset. More

specifically, we find that with the exception of SVM-P and SVM-R, most models are able to

detect ransomware at rate of 93.6% and above. We observe similar results for the F1-score

metric which averaged 70.7% across the different models. Overall, our results show that when

20

1

0.8

0.6

0.4

0.2

0
LR SVM-L SVM-P SVM-R

KNN

RF NaiveB

Figure 5.1: Comparison of ransomware detection rates across multiple families when combining
different machine learning models with the full set of available features.

Model Accuracy TPR FPR Precision F-score AUC
Logistic Regression 0.871 0.936 0.196 0.830 0.880 0.870
SVM-Linear 0.989 0.979 0 1 0.989 0.989
SVM-Polynomial 0.495 0 0 0 0 0.500
SVM-RBF 0.516 0.043 0 1 0.082 0.521
KNN 1 1 0 1 1 1
Random Forest 1 1 0 1 1 1
Naive Bayes 1 1 0 1 1 1

Table 5.1: Summary of quality metrics under different models when using the full set of features.

using the full feature set which consisted of 158 features, KNN, Random Forest, and Naive Bayes

algorithms are able to detect all ransomware samples within our test set. Furthermore, we observe

that all of the algorithms with the exception of Logistic Regression were able to correctly classify

all benign samples. This underscores the effectiveness of using instruction opcodes for detecting

ransomware at runtime. However, we note that the Logistic Regression algorithm performed

poorly when tested with benign applications. Unlike the other algorithms, it misclassified benign

applications at a rate of 19.6%. A summary of all machine learning models we considered in this

study against the quality metrics described in section 2.3 is shown in Table 5.1.

In order to better understand the performance of each model, we examine the number of false

positives and false negatives each algorithm produces when using our test set. False positives

All Features

D
et

ec
tio

n
R

at
e

21

occur when a model missclassifies a benign sample as ransomware. Although the goal is to keep

the metric as low as possible, a false positive doesn’t result in the user’s system being infected

with ransomware. It translates falsely notifying the user of the presence of ransomware, which

would likely be perceived a nuisance to the end user. On the other hand, a false negative has

more serious consequences since it implies that ransomware was incorrectly misclassified as a

benign application. Therefore, maintaining the false negative metric as low as possible is of

utmost importance when evaluating a malware detection solution. Figure 5.2 shows the break-

down of the false positives and false negatives observed when using different machine learning

algorithms with the full feature set. On average, our solution produces 1.3 false positives with

logistic regression exhibiting the highest count of 9 false positives. The remaining algorithms had

no false positives. On the other hand, the average number of false negatives was relatively high.

On average, 13.7 false negatives were produced. This implies that, on average, almost 14 ran-

somware went undetected. We find that the SVM-P algorithm was the least effective in detecting

ransomware with 47 undetected samples, followed by SVM-RBF with 45 undetected samples.

However, unlike the aforementioned models, the KNN, Random Forest, and Naive Bayes algo-

rithms achieved the best performance detecting all the ransomware samples present within our

test set. Given these KNN, Random Forest, and Naive Bayes did not yield any false positives, we

consider these to be the most suitable models for detection in the event that the full feature set is

used.

5.2 Dimensionality Reduction

Although our results show that tracking the execution frequency of all instruction opcodes as

features is effective, this approach can suffer from scalability issues. For instance, prior work

has shown that when using other instruction sets, such as the ARM ISA, the size of the feature

set go beyond 5,000 features [1]. Processing this many features at runtime can denigrate the

overall performance of the system. As such, it is important to minimize the number of features

22

False Negative False Positive

10 47 45

8

6

4

2

0
LR SVM-L SVM-P SVM-R KNN RF NaiveB

Model

Figure 5.2: False positive and negative misclassifications when combining different machine
learning models with the full set of available features.

to be used in a given model. To this end, we explore dimensionality reduction techniques on our

original feature set. We use the principle component analysis (PCA) algorithm for reducing the

dimensions of our original feature set.

In our study, we were able to reduce the number of features from 158 down to 18 components.

This spanned instruction opcodes that are used for performing loads and stores, such as MOV

and MOVX since cryptographic ransomware needs to perform several memory accesses as part

of reading the data in plaintext form and saving the corresponding ciphertext. We also observe

performance related instructions, such as PREFETCHW that are designed to speedup data access

by prefetching expected data into the processor’s caches. Such instructions are likely used in

order to achieve fast encryption of user files and outpace any human response or intervention.

We also observe general instructions that are also commonly found in cryptographic functions,

such as XOR.

Figure 5.3 summarizes the detection rates of the different machine learning models when

using the reduced feature set that we obtain from the PCA algorithm. Overall, we observe similar

results relative to the full feature set approach with slight improvements for certain algorithms.

On average, we observe a detection rate of 78.4% and a false positive rate of 6.5% while using

M
is

cl
as

si
fic

at
io

n
C

ou
nt

23

1

0.8

0.6

0.4

0.2

0
LR SVM-L SVM-P SVM-R

KNN

RF NaiveB

Figure 5.3: Comparison of detection rates of ransomware from 9 families when combining dif-
ferent machine learning models with a reduced feature set through principle component analysis
(PCA).

our test dataset. More specifically, we find that the SVM-P, SVM-R, as well as logistic regression

performs poorly with the reduced feature set. The other models, on the other hand, achieve

detection rates of 97.8% and above. In general, we find that the detection rate improved by 7.6%

when using the reduced feature set. However, the false positive rate increased by 3.7%. Overall,

our results show that tracking a reduced set of instructions which consisted of 18 features is

sufficient for detecting ransomware samples within our test set.

Our results highlight that the SVM-L, KNN, Random Forest, and Naive Bayes algorithms

are suitable algorithms for ransomware detection since they are able to correctly classify all

malicious samples within our test set. In addition, to further demonstrating the effectiveness of

using instruction opcodes for detecting ransomware at runtime, these results also show that it is

not necessary to track all instructions to enable accurate detection. In other words, only a limited

number of instructions are needed to distinguish between benign and malicious applications. A

summary of the performance of all machine learning models with the reduced feature set against

the quality metrics described in section 2.3 is shown in Table 5.2.

In addition to the previously discussed metrics, we examine the number of false positives

Reduced Features - PCA

D
et

ec
tio

n
R

at
e

24

Model Accuracy TPR FPR Precision F-score AUC
Logistic Regression 0.796 0.857 0.273 0.778 0.816 0.792
SVM-Linear 0.978 1 0.045 0.961 0.980 0.977
SVM-Polynomial 0.452 0 0.045 0 0 0.477
SVM-RBF 0.800 0.633 0.023 0.969 0.765 0.805
KNN 0.978 1 0.045 0.961 0.980 0.977
Random Forest 0.989 1 0.023 0.980 0.990 0.989
Naive Bayes 1 1 0 1 1 1

Table 5.2: Summary of quality metrics under different models when using a reduced feature set
through PCA.

and false negatives each algorithm produces when using a reduced feature set. Figure 5.4 shows

the breakdown of the false positives and false negatives observed when using different machine

learning algorithms with the PCA-reduced feature set. Overall, we observe that our detection

solution performs better when using a PCA-reduced feature set, yielding fewer false negatives

relative to the full feature set approach. However, the PCA-reduced feature set yields a slightly

higher number of false positives. On average, using machine learning models with a reduced

feature set yields 2.9 false positives with logistic regression exhibiting the highest count of 12

false positives. The remaining algorithms yielded a range of false positives between 0 and 2. On

the other hand, the average number of false negatives was relatively low compared to the full

feature set approach. On average, 10.6 false negatives were produced. We find that the SVM-P

algorithm continues to be the least effective in detecting ransomware under this configuration

with 49 undetected samples, followed by SVM-RBF with 18 undetected samples. Furthermore,

the Naive Bayes algorithm achieved the best performance by detecting all the ransomware sam-

ples present within our test set and yielding no false positives. Random Forest comes at a close

second with similar results to Naive Bayes. Random Forest produced one false positive and no

false negatives. As such, we consider both of these models to be the most suitable for detection

when using a reduced feature.

25

False Negative False Positive

20 49

15

10

5

0
LR SVM-L SVM-P SVM-R KNN RF NaiveB

Model

Figure 5.4: False positive and negative misclassifications when combining different machine
learning models with a reduced feature set through principle component analysis (PCA).

5.3 Harnessing Cryptographic Instructions

Having the ability to reduce the number of instructions a solution needs to track during exe-

cution is important. This is because the machine learning models require less compute resources

when using fewer features, and therefore, execute faster. Most importantly, developing solutions

that only track a limited set of instructions makes the required hardware support less complex,

and therefore, more feasible for implementation in practice. To this end, we explore a different

approach for reducing number of features used with our machine learning models. To achieve

this, we examine the instruction types that are commonly used in cryptographic functions. Such

instructions include rotate instructions (ROL and ROR), shift instructions (SHL and SHR), and

the exclusive or instruction (XOR). Using this approach allowed to reduce the number of

features by 50% relative to what we obtained with the PCA algorithm.

Figure 5.5 summarizes the detection rates of the different machine learning models when

using the crypto-reduced feature set which consisted of a total of 9 features. Overall, we observe

a slightly better average in the detection rate relative to the PCA-reduced feature set approach. On

average, we observe a detection rate of 78.6%, as well as a slightly improved false positive rate

M
is

cl
as

si
fic

at
io

n
C

ou
nt

26

1

0.8

0.6

0.4

0.2

0
LR SVM-L SVM-P SVM-R KNN RF NaiveB

Figure 5.5: Comparison of detection rates of ransomware from 9 families when combining dif-
ferent machine learning models with a reduced feature set that consists of instructions relevant to
cryptographic algorithms.

of 4.1% while using our test dataset. We find that with the exception of SVM-P and SVM-RBF,

most algorithms achieve a detection rate of 90% or better. More specifically, we find that the

KNN, Random Forest, and Naive Bayes algorithms are able to classify all the malicious samples

correctly. Such results underscore the fact that tracking instruction types that are commonly

used in cryptographic functions which in our study was 9 features, is sufficient for detecting

ransomware samples within our test set. We also find that two of the aforementioned algorithms,

Random Forest and Naive Bayes, are able to correctly classify benign applications. A summary

of the quality metrics for our machine learning models with the crypto-reduced feature set is

shown in Table 5.3.

To better understand the performance of each model with the crypto-reduced approach, we

examine the number of false positives and false negatives each algorithm produces when using the

newly reduced feature set based on cryptographic algorithms. Figure 5.6 shows the breakdown of

the false positives and false negatives observed when using different machine learning algorithms

with the crypto-reduced feature set. Overall, we observe that our detection solution performs

remarkably well using a crypto-reduced feature set, yielding fewer false negatives relative to the

Reduced Features - Crypto

D
et

ec
tio

n
R

at
e

27

False Negative False Positive

44
14

12

10

8

6

4

2
0

LR SVM-L SVM-P SVM-R KNN RF NaiveB
Model

Figure 5.6: False positive and negative misclassifications when combining different machine
learning models with a reduced feature set that consists of instructions relevant to cryptographic
algorithms.

full feature set approach. On average, using machine learning models with this reduced feature

set yields 2 false positives with logistic regression still exhibiting the highest count of 9 false

positives. The remaining algorithms yielded a range of false positives between 0 and 3. Similarly,

the average number of false negatives was relatively low compared to the PCA-reduced feature

set approach. On average, this approach yielded 9.4 false negatives, marking a 1.1% improvement

over the PCA-reduced approach. We find that the SVM-P algorithm still continues to be the least

effective in detecting ransomware under this configuration with 44 undetected samples, followed

by SVM-RBF with 14 undetected samples. Furthermore, the Random Forest and Naive Bayes

algorithms achieved the best performance by detecting all the ransomware samples present within

our test set and producing no false positives. KNN comes at a close third with similar results for

false negatives. However, the KNN algorithm had a slightly elevated false positive count with

only one misclassified benign application.

Finally, we find that using cryptographic instructions can be effective against other ran-

somware types that are not cryptographic based. Although our study focused on evaluating cry-

tographic ransomware, our dataset included a limited number of locker ransomware and Remote

M
is

cl
as

si
fic

at
io

n
C

ou
nt

28

Model Accuracy TPR FPR Precision F-score AUC
Logistic Regression 0.796 0.909 0.184 0.816 0.860 0.863
SVM-Linear 0.925 0.909 0.061 0.930 0.920 0.924
SVM-Polynomial 0.484 0 0 0 0 0.500
SVM-RBF 0.495 0.682 0.020 0.968 0.800 0.831
KNN 1 1 0.020 0.978 0.989 0.990
Random Forest 1 1 0 1 1 1
Naive Bayes 1 1 0 1 1 1

Table 5.3: Summary of quality metrics under different models when using a reduced feature set
that consists of instructions that are relevant to cryptographic algorithms.

Access Trojans (RAT). We believe this is due to the fact that malware in general includes en-

crypted content such as encrypted payloads and strings. As a result, such programs make use of

cryptographic functions during their execution. We believe this is an interesting result that we

would like to pursue further as future work.

29

CHAPTER 6

CONCLUSION

In this work, we characterize the behavior of ransomware at the instruction level. We demon-

strate that instruction opcodes of software programs are reliable features for detecting ransomware

at runtime. Furthermore, we demonstrate that a minimal set of cryptographic instructions could

be harnessed as features for distinguishing benign and ransomware programs. We evaluate the

effectiveness of using machine learning models in detecting ransomware with high accuracy and

low false positive rates. Finally, we evaluate the robustness of our approach against real ran-

somware available in a comprehensive dataset.

30

REFERENCES

[1] N. Lachtar, D. Ibdah, and A. Bacha, “The case for native instructions in the detection of
mobile ransomware,” IEEE Letters of the Computer Society, vol. 2, no. 2, pp. 16–19, June
2019, doi: 10.1109/LOCS.2019.2918091.

[2] “How to protect your networks from ransomware.” The United States Department of Jus-
tice, https://www.justice.gov/criminal-ccips/file/872771/download (accessed Apr. 3, 2021).

[3] “2018 mobile threat landscape.” Trend Micro,
https://www.trendmicro.com/vinfo/nz/security/research-and-analysis/threat-
reports/roundup/2018-mobile-threat-landscape (accessed Oct. 15, 2020).

[4] A. Greenberg, “The untold story of notpetya, the most devastating cyberattack in his-
tory.” Wired, https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-
crashed-the-world (accessed Feb. 15, 2021).

[5] Y. Shohet, “Ransomware attacks hit manufacturing - are you vulnerable?” In-
dustryWeek, https://www.industryweek.com/technology-and-iiot/ransomware-attacks-hit-
manufacturing-are-you-vulnerable (accessed Jan. 3, 2021).

[6] G. Torbet, “Baltimore ransomware attack will cost the city over $18 million.” en-
gadget, 2019, https://www.engadget.com/2019/06/06/baltimore-ransomware-18-million-
damages (accessed Feb. 15, 2021).

[7] S. Morgan, “Global ransomware damage costs predicted to reach $20 billion (usd)
by 2021.” Cybercrime Magazine, 2019, https://cybersecurityventures.com/global-
ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-2021 (accessed Jan. 3,
2021).

[8] “Virus total.” VirusTotal, https://www.virustotal.com (accessed Apr. 5, 2021).

[9] “The monero project.” Monero, https://www.getmonero.org/ (accessed Feb. 15, 2021).

[10] C. T. U. R. Team, “Wcry ransomware analysis.” SecureWorks, May 2017,
https://www.secureworks.com/research/wcry-ransomware-analysis (accessed Jan. 3, 2021).

[11] “Wannacry ransomware attack.” Wikipedia, https://en.wikipedia.org/wiki/WannaCry (ac-
cessed Feb. 17, 2021).

http://www.justice.gov/criminal-ccips/file/872771/download
http://www.trendmicro.com/vinfo/nz/security/research-and-analysis/threat-
http://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-
http://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-
http://www.industryweek.com/technology-and-iiot/ransomware-attacks-hit-
http://www.industryweek.com/technology-and-iiot/ransomware-attacks-hit-
http://www.engadget.com/2019/06/06/baltimore-ransomware-18-million-
http://www.engadget.com/2019/06/06/baltimore-ransomware-18-million-
http://www.virustotal.com/
http://www.getmonero.org/
http://www.secureworks.com/research/wcry-ransomware-analysis
http://www.secureworks.com/research/wcry-ransomware-analysis

31

[12] N. Scaife, H. Carter, P. Traynor, and K. R. Butler, “Cryptolock (and drop it): stopping
ransomware attacks on user data,” in Distributed Computing Systems (ICDCS), 2016 IEEE
36th International Conference on. Los Alamitos, CA, USA: IEEE Computer Society,
2016, pp. 303–312, doi: 10.1109/ICDCS.2016.46.

[13] J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G.-J. Ahn, “Uncovering the face
of android ransomware: Characterization and real-time detection,” IEEE Transactions
on Information Forensics and Security, vol. 13, no. 5, pp. 1286–1300, May 2018, doi:
10.1109/TIFS.2017.2787905.

[14] Y. Takeuchi, K. Sakai, and S. Fukumoto, “Detecting ransomware using support vector ma-
chines,” in Proceedings of the 47th International Conference on Parallel Processing Com-
panion. New York, NY, USA: ACM, 2018, pp. 1–6.

[15] A. Kharraz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “UNVEIL: A large
scale, automated approach to detecting ransomware,” in 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association, 2016.

[16] O. Ami, Y. Elovici, and D. Hendler, “Ransomware prevention using application
authentication-based file access control,” in Proceedings of the 33rd Annual ACM Sym-
posium on Applied Computing. New York, NY, USA: ACM, 2018, pp. 1610–1619.

[17] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. Lupu, “Automated dynamic analysis
of ransomware: Benefits,” Limitations and use for Detection. arXiv preprint, 2016.

[18] R. Moussaileb, B. Bouget, A. Palisse, H. Le Bouder, N. Cuppens, and J.-L. Lanet, “Ran-
somware’s early mitigation mechanisms,” in Proceedings of the 13th International Con-
ference on Availability, Reliability and Security. New York, NY, USA: ACM, 2018, pp.
2:1–2:10.

[19] C. Pascariu and I. Barbu, “Ransomware honeypot: Honeypot solution designed to detect
a ransomware infection identify the ransomware family,” in 2019 11th International Con-
ference on Electronics, Computers and Artificial Intelligence (ECAI), 2019, pp. 1–4, doi:
10.1109/ECAI46879.2019.9042158.

[20] N. Naik, P. Jenkins, J. Gillett, H. Mouratidis, K. Naik, and J. Song, “Lockout-tagout ran-
somware: A detection method for ransomware using fuzzy hashing and clustering,” in 2019
IEEE Symposium Series on Computational Intelligence (SSCI), 2019, pp. 641–648, doi:
10.1109/SSCI44817.2019.9003148.

[21] D. Vidyarthi, C. R. S. Kumar, S. Rakshit, and S. Chansarkar, “Static malware analysis to
identify ransomware properties,” International journal of computer science issues, vol. 16,
no. 3, p. 10–17, 2019, doi: 10.5281/zenodo.3252963.

32

[22] J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G.-J. Ahn, “Uncovering the
face of android ransomware: Characterization and real-time detection,” IEEE transac-
tions on information forensics and security, vol. 13, no. 5, p. 1286–1300, 2018, doi:
10.1109/TIFS.2017.2787905.

[23] N. Lachtar, D. Ibdah, and A. Bacha, “Towards mobile malware detection through convolu-
tional neural networks,” in IEEE Embedded Systems Letters (ESL), vol. 19, no. 2, 2020, pp.
126–129, doi: 10.1109/LES.2020.3035875.

[24] J. Ko, J. Jo, D. Kim, S. Choi, and J. Kwak, “Real time android ransomware detection by an-
alyzed android applications,” in 2019 International Conference on Electronics, Information,
and Communication (ICEIC), 2019, pp. 1–5, doi: 10.23919/ELINFOCOM.2019.8706349.

[25] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “Paybreak: Defense against crypto-
graphic ransomware,” in Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security (Asia CCS). New York, NY, USA: ACM, 2017, pp. 599–
611.

[26] J. Lee, J. Lee, and J. Hong, “How to make efficient decoy files for ransomware detection?”
in Proceedings of the International Conference on Research in Adaptive and Convergent
Systems. ACM, 2017, pp. 208–212.

[27] J. Huang, J. Xu, X. Xing, P. Liu, and M. K. Qureshi, “Flashguard: Leveraging intrinsic
flash properties to defend against encryption ransomware,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM, 2017, pp.
2231–2244.

[28] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi, S. Zanero, and
F. Maggi, “Shieldfs: a self-healing, ransomware-aware filesystem,” in Proceedings of the
32nd Annual Conference on Computer Security Applications. New York, NY, USA: ACM,
2016, pp. 336–347.

[29] M. Baykara and B. Sekin, “A novel approach to ransomware: Designing a safe zone sys-
tem,” in 2018 6th International Symposium on Digital Forensic and Security (ISDFS).
IEEE, 2018, p. 1–5, doi: 10.1109/ISDFS.2018.8355317.

[30] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “Paybreak: Defense against crypto-
graphic ransomware,” in Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security (Asia CCS). New York, NY, USA: ACM, 2017, pp. 599–
611.

[31] J. Huang, J. Xu, X. Xing, P. Liu, and M. K. Qureshi, “Flashguard: Leveraging intrinsic
flash properties to defend against encryption ransomware,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM, 2017, pp.
2231–2244.

33

[32] X. Jiang and Y. Zhou, “Dissecting android malware: Characterization and evolution,”
in 2012 IEEE Symposium on Security and Privacy. IEEE, 2012, pp. 95–109, doi:
10.1109/SP.2012.16.

[33] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam: Effective and
efficient behavior-based android malware detection and prevention,” IEEE transac-
tions on dependable and secure computing, vol. 15, no. 1, p. 83–97, 2018, doi:
10.1109/TDSC.2016.2536605.

[34] W.-C. Wu and S.-H. Hung, “Droiddolphin: a dynamic android malware detection frame-
work using big data and machine learning,” in Proceedings of the 2014 Conference on
Research in Adaptive and Convergent Systems. New York, NY, USA: ACM, 2014, pp.
247–252.

[35] H. Cai and B. G. Ryder, “Droidfax: A toolkit for systematic characterization of android
applications,” in Software Maintenance and Evolution (ICSME), 2017 IEEE International
Conference on. IEEE, 2017, pp. 643–647, doi: 10.1109/ICSME.2017.35.

[36] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan, and
S. Stolfo, “On the feasibility of online malware detection with performance counters,” in
Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA).
New York, NY, USA: ACM, 2013, pp. 559–570, doi: 10.1145/2485922.2485970.

[37] M. Kazdagli, V. J. Reddi, and M. Tiwari, “Quantifying and improving the efficiency
of hardware-based mobile malware detectors,” in 2016 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), vol. 2016-. IEEE, 2016, p. 1–13, doi:
10.1109/MICRO.2016.7783740.

[38] B. Singh, D. Evtyushkin, J. Elwell, R. Riley, and I. Cervesato, “On the detection of kernel-
level rootkits using hardware performance counters,” in Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security. New York, NY, USA: ACM,
2017, pp. 483–493.

[39] M. Ozsoy, C. Donovick, I. Gorelic, N. Abu-Ghazaleh, and D. Ponomarev, “Malware-aware
processors: A framework for efficient online malware detection,” in International Sympo-
sium on High Performance Computer Architecture (HPCA), February 2015, pp. 651–661,
doi: 10.1109/HPCA.2015.7056070.

[40] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and D. Ponomarev, “Ensem-
ble learning for low-level hardware-supported malware detection,” in International Work-
shop on Recent Advances in Intrusion Detection. Springer, 2015, pp. 3–25.

[41] N. Lachtar, A. A. Elkhail, A. Bacha, and H. Malik, “An application agnostic defense against
the dark arts of cryptojacking,” in 51st International Conference on Dependable Systems
and Networks (DSN). Taipei: IEEE/IFIP, Jun. 2021, pp. 413–426.

34

[42] N. Lachtar, A. Abu Elkhail, A. Bacha, and H. Malik, “A cross-stack approach towards
defending against cryptojacking,” in IEEE Computer Architecture Letters (CAL), vol. 19,
no. 2. IEEE, 2020, pp. 126–129, doi: 10.1109/LCA.2020.3017457.

[43] K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and L. Yu, “Rhmd: evasion-resilient
hardware malware detectors,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. New York, NY, USA: ACM, 2017, pp. 315–327.

[44] P. P. Chan and W.-K. Song, “Static detection of android malware by using permissions and
api calls,” in Machine Learning and Cybernetics (ICMLC), 2014 International Conference
on, vol. 1. IEEE, 2014, pp. 82–87, doi: 10.1109/ICMLC.2014.7009096.

[45] M. Leeds, M. Keffeler, and T. Atkison, “A comparison of features for android malware
detection,” in Proceedings of the SouthEast Conference. New York, NY, USA: ACM,
2017, pp. 63–68, doi: http://dx.doi.org/10.1145/3077286.3077288.

[46] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep learn-
ing method for android malware detection using various features,” IEEE Transac-
tions on Information Forensics and Security, vol. 14, no. 3, pp. 773–788, 2019, doi:
10.1109/TIFS.2018.2866319.

[47] M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y. Park, and H. Jeon, “Cnn-based
android malware detection,” in 2017 International Conference on Software Security and
Assurance (ICSSA). IEEE, 2017, pp. 60–65, doi: 10.1109/ACCESS.2020.3028370.

[48] A. Tal, “Intel software development emulator.” Intel Inc., 2020,
http://www.intel.com/software/sde (accessed Apr. 5, 2021).

http://dx.doi.org/10.1145/3077286.3077288
http://www.intel.com/software/sde

	Towards Runtime Classification of Ransomware by
	A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science
	2021
	Assistant Professor Anys Bacha, Chair Associate Professor Jinhua Guo
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 BACKGROUND
	2.1 Ransomware
	2.1.1 Cryptographic Ransomware
	2.1.2 Locker Ransomware
	2.2 Supervised Learning
	2.2.1 Logistic Regression (LR)
	2.2.2 SVM-Linear (SVM-L)
	2.2.3 SVM-Polynomial (SVM-P)
	2.2.4 SVM-RBF (SVM-R)
	2.2.5 K-Nearest Neighbors (KNN)
	2.2.6 Random Forest (RF)
	2.2.7 Naïve Bayes (NB)
	2.3 Quality Metrics
	2.3.1 Accuracy
	2.3.2 Precision
	2.3.3 F-score
	2.3.4 Receiver Operating Characteristics Curve (ROC)
	CHAPTER 3 RELATED WORK
	3.1 Ransomware Detection
	3.2 Ransomware Recovery
	3.3 Other Malware Solutions
	3.4 Threat Model
	CHAPTER 4 METHODOLOGY
	4.1 Experimental Framework
	4.2 Dataset
	CHAPTER 5 EVALUATION
	5.1 Instructions as Features for Ransomware Detection
	5.2 Dimensionality Reduction
	5.3 Harnessing Cryptographic Instructions
	CHAPTER 6 CONCLUSION

