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ABSTRACT 
 
 
 

The availability of computer systems is constantly being challenged by cybercriminals who 

seek to disrupt access to this indispensable technology and the data they contain as a means for 

making profit. This trend has given rise to a new form of malware that is known as ransomware, 

an invasive type of malware that is designed to appropriate compute resources in return for a 

ransom. According to the U.S. Department of Homeland Security, ransomware represents the 

fastest growing malware threat to individuals and organizations. With the cost of ransomware 

attacks projected to exceed $20 billion in the year 2021, it is imperative to explore solutions that 

can defend against such malware. 

In this study, we evaluate the effectiveness of machine learning algorithms and their suitability 

for detecting ransomware on x86 platforms. We show that dynamically extracting instruction op- 

codes from execution traces can be harnessed for training machine learning models that can used 

to perform runtime detection of ransomware. We evaluate different machine learning models 

and demonstrate that tracking a limited number of instruction opcodes commonly used crypto- 

graphic are sufficient for reliably detecting ransomware with high accuracy. We show that our 

method can achieve high detection rates above 99% while evaluating our solution against real 

ransomware available in a state-of-the-art dataset from VirusTotal. 
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CHAPTER 1 

INTRODUCTION 

 
 

The digital world around us is growing exponentially, resulting in tectonic shifts to the way 

we approach everyday computing. The ubiquity of computer systems across all industries has 

transformed this technology into a vital fabric that governs all facets of our society, including 

healthcare, manufacturing, and retail. The mobility of today’s devices, fused with advances in 

cloud computing, continue to drive new synergies in the way essential services are delivered to 

consumers, producing vast amounts of data that both individuals and organizations depend on for 

making their daily decisions. 

Unfortunately, the availability of these systems is constantly being challenged by cybercrim- 

inals who seek to disrupt access to this indispensable technology and the data they contain as 

a means for making profit. This trend has given rise to a new form of malware that is known 

as ransomware, an invasive type of malware that encrypts the victim’s data or locks their sys- 

tem. The malware then extorts the user to pay a ransom in return for decrypting their data or 

restoring access to their system [1]. According to the U.S. Department of Homeland Security, 

ransomware represents the fastest growing malware threat to individuals and organizations [2]. 

More than 112,000 unique mobile ransomware samples were found in 2018 [3], posing a threat 

to mobile users by denying them access to their personal data, in addition to locking them out 

of their devices. Moreover, a wide range of business segments incurred significant damages as 

a result of ransomware, costing the pharmaceutical, shipping services, and chip manufacturing 

industries over $850 million, $400 million, and $250 million, respectively [4; 5]. Similarly, local 
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governments have fallen victim to such attacks, including the City of Baltimore that has spent 

over $18 million to date in order to recover from ransomware that crippled various municipal 

operations [6]. Although the cost of ransomware attacks in 2018 has been estimated to exceed $8 

billion, future damages are projected to reach $20 billion by the year 2021 [7]. This trend makes 

it imperative to explore solutions that can both detect and recover from such attacks. 

In this study, we evaluate the effectiveness of machine learning algorithms and their suitabil- 

ity for detecting ransomware on x86 platforms. We show that extracting instruction opcodes from 

execution traces can be harnessed for training machine learning models that can used to perform 

runtime detection of ransomware. We examine the performance of different machine learning 

models and demonstrate that opcodes from the x86 instruction set are sufficient for reliably de- 

tecting ransomware deployed on Windows platforms. We show that this method can achieve high 

detection rates above 99%. We evaluate the robustness of our work against real ransomware from 

a comprehensive dataset from VirusTotal [8]. 

Overall, this work makes the following contributions: 

 
• Characterizes the behavior of an emerging type of malware at the instruction level. 

 
• Makes the observation that using the instruction opcodes of executed programs serve as 

reliable features for detecting ransomware at runtime. 

• Evaluates multiple machine learning algorithms and their suitability to detecting ransomware 

with high accuracy while maintaining a low false positive rate. 

• Demonstrates that a limited number of commonly used cryptographic instructions could 

be harnessed as features for distinguishing between ransomware and benign applications, a 

step towards autonomous ransomware detection through light-weight hardware-malware- 

detectors (HMD). 

 
The rest of this thesis is organized as follows: Section 2 provides background information. 
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Section 3 details related work. Section 4 discusses the methodology for evaluating the approach. 

Section 5 presents the results of our evaluation; and Section 6 concludes. 
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CHAPTER 2 

BACKGROUND 

 
 

2.1 Ransomware 

 
Ransomware is considered to be an invasive form of malware that is designed to deny its 

victims access to valuable digital resources, generally in the form of data present on computer 

systems. The malware is designed to demand a ransom from its victims in return for restoring 

access to any affected resources once a system becomes infected. Payment for such attacks are 

typically carried out through anonymous cryptocurrencies, such as Monero [9] as a way of ensur- 

ing anonymity of the cybercriminals’ identities behind such malicious campaigns. Ransomware 

can be broadly classified into one of two categories: cryptographic ransomware and locker ran- 

somware. Although the primary aim of both these types are to garner monetary benefits, each of 

them differ in their Modus Operandi. 

 
2.1.1 Cryptographic Ransomware 

 
Cryptographic ransomware is a type of malware that is designed to encrypt valuable files 

present on a victim’s system while revoking access until the specified ransom is paid. Such 

ransomware typically harnesses well established encryption algorithms that are known to be 

cryptographically strong. This includes the Advanced Encryption Standard (AES) and Rivest- 

Shamir-Adleman (RSA). This allows cyberciminals to re-purpose such algorithms for efficiently 

preventing victims from accessing their files, obviating the need to explicitly transfer hijacked 
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resources out of the infected system. One of the most notable malicious programs that belongs 

to this ransomware family is WannaCry [10; 11]. The ransomware became sensational within a 

short period of time due to the magnitude of its attack. It spread quickly across 150 countries by 

exploiting the Server Message Block (SMB) vulnerability within the Windows operating system. 

In addition to WannCry, other types of ransomware have been discovered in the wild including 

Locky, Odin, TeslaCrypt, Thanos, and Petya. 

 
2.1.2 Locker Ransomware 

 
Unlike cryptographic ransomware, this family of ransomware focuses on locking victims out 

of their user accounts. Such ransomware operates by overtaking the operating system’s module 

that is responsible for logging users into their systems and preventing further logins until the 

required ransom is paid. Unlike cryptographic ransomware that require attackers to provide a 

decryptor that can be used to decrypt encrypted files, locker-based ransomware reverts its effects 

by simply unlocking the system. Although locker ransomware can be disruptive, the data present 

on the system remains intact and can be easily recovered by extracting the disk from the affected 

system and installing it into a clean system that is known good. As a result, our study primarily 

focuses on evaluating cryptographic ransomware which are known to have far more damaging 

consequences relative to locker-based ransomware. 

 
2.2 Supervised Learning 

 
In this section, we give an overview of the different machine learning algorithms we employ 

in the evaluation section. In our study, we primarily focus on using a branch of machine learning 

algorithms that rely on a supervised learning approach, an approach that associates a set of input 

data points X(1),...,X(m) to a set of definitive outcomes Y(1),...,Y(m). 
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2.2.1 Logistic Regression (LR) 

Logistic regression, a variant of classification algorithms that is used to assign observations to 

a set of classes that are discrete. Although known for its simplicity, this model has been employed 

in a wide range of classification problems including email spam, online fraudulent transactions, 

and malignant tumor discovery. The algorithm transforms its input to an output using the logistic 

sigmoid function and returns a probability value, making it a predictive type of algorithm. A 

set of probability values can be mapped to two or more classes. Logistic regression can be 

referred to as a linear regression model that uses a complex cost function. However, instead of 

a linear function, this cost function is defined as the ’Sigmoid function’. The hypothesis of the 

algorithm tends to limit the cost function between 0 and 1. The linear function passing through 

the sigmoid results in the equation described in equation (2.1) where the sigmoid function is 

equal to [σ(z) = 1 ÷ (1 + e−z)]. 

 
wT x = w0 + w1x1 + ... + wnxn and P (y = l|x) = σ(wTx) (2.1) 

 
2.2.2 SVM-Linear (SVM-L) 

The Support Vector Machine (SVM) is a linear model that has the ability to classify prob- 

lems that are both linear and non-linear in nature. The basic idea of the model is that it creates a 

hyperplane to separate the input dataset into classes. It finds the points that are closest to the hy- 

perplane from the different classes and attempts to maximize the distance between these classes. 

In other words, the model tries to decide a boundary such that the separation between the classes 

is as wide as possible. The linear SVM classifier model can be expressed by equation (2.2) where 

[x ∈ Rn] is the input vector, y is the class label, w is the weight vector, C is a regularization 

parameter, and b is the bias. 
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|| ||   

n 

min( w 2 + C   ∑ ξi ) s.t ∀ yi(wT xi + b) > 1 - ξi and ξi > 0 (2.2) 
w,ξ 

i=1 
 
 

2.2.3 SVM-Polynomial (SVM-P) 
 

SVM-Polynomial is considered to be the polynomial version of SVM-Linear. It uses a poly- 

nomial kernel function that is used to represent the similarity of vectors in a feature space over 

polynomials of the original variables. Therefore, giving it the ability to approximate non-linear 

functions. 

A strength of the SVM-polynomial model is that it looks at a combination of features to 

determine similarities instead of treating each feature independently. Such combinations are 

known as interaction features. For degree-d polynomials, the polynomial kernel is defined as 

shown in equation (2.3) where x and y are vectors in the input space and c is a free parameter to 

trade off the influence of higher-order and lower-order terms of the polynomial. 

 
K(x, y) = (xTy + c)d (2.3) 

 
2.2.4 SVM-RBF (SVM-R) 

 
The Gaussian Radial Basis function (RBF) is another popular kernel method that is used in 

SVM models. At a high level, the RBF kernel is a function whose value depends on the distance 

from a given origin that is computed using equation (2.4). 

 
||X1 − X2|| = Euclidean distance between X1 and X2 (2.4) 

Similarities between X1 and X2 is determined based on the distance in the original space. 

In addition, the model uses a γ parameter to control overfitting. Whenever γ increases the model 

tends to overfit and whenever it is decreased, the model tends to underfits. 
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2.2.5 K-Nearest Neighbors (KNN) 
 

The K-nearest neighbors (KNN) is a classification method that is non-parametric in nature. In 

this algorithm, the input comprises of the K closest examples in the training data set. This algo- 

rithm also relies on distance computations between the points as a way of clustering vectors that 

share similar characteristics. A peculiarity of the algorithm is its sensitivity to the local structure 

of the dataset. Unlike other algorithms, KNN doesn’t require training. Instead, it learns from the 

training dataset at the time of providing providing predictions based on a given input. The algo- 

rithm has the advantage of being relatively simple to implement since it primarily requires the 

use of a distance function and the value of K to be used. A downside to this algorithm, however, 

is that the cost of calculating the distance between the different points can increase drastically as 

a function of the dataset. As a result, the KNN algorithm can introduce a non-trivial amount of 

runtime overhead when large datasets are employed. 

 
2.2.6 Random Forest (RF) 

 
Random forest is another learning algorithm that combines a multitude of decision trees dur- 

ing the training phase. Classification in this algorithm is achieved through ensemble learning 

where the final prediction is based on a majority vote of the different predictions produced by the 

individual decision trees within the ransom forest. In addition to its speed, an advantage of this 

algorithm lies in its robustness against overfitting issues. 

 
2.2.7 Naïve Bayes (NB) 

 
Naïve Bayes is a simple probabilistic model that is based on based on Bayes’ theorem. As 

such, this model is primarily concerned with learning the underlying distribution of the data. 

Despite the naive design and oversimplified assumptions, this type of classifier has been shown 

to be effective in a range of complex real-world problems. An advantage of Naïve Bayes is 

that it only requires a small number of training data to estimate the parameters necessary for 
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classification. 
 
 
2.3 Quality Metrics 

 
We evaluate our work against commonly referenced quality metrics. These include metrics 

such as accuracy, precision, F-score, and the receiver operating characteristics (ROC) curve. As 

a result, we provide a brief overview of the aforementioned metrics and how they are computed. 

The aforementioned metrics rely on quantities such as false positives (FP), and false negatives 

(FN), true positives (TP), and true negatives (TN). In our models, a false positive corresponds to 

the case where we misclassify a benign app as ransomware. A false negative is more serious 

and corresponds to the case where we classify ransomware as a benign application. On the other 

hand, a true positive refers to the case where we correctly predict ransomware whereas a true 

negative correlates to the case where we correctly predict benign applications. 
 

2.3.1 Accuracy 
 

This is a metric that provides a high level indication of a model’s ability to classify data. It is 

represented as the ratio of correct predictions relative to all tested data points. This is summarized 

by equation (2.5). 

 

Accuracy = TP + TN 
TP + FN + TN + FP 

(2.5) 
 

Here FP and FN represent the mispredictions within our test dataset and refer to false positives 

and false negatives, respectively. On the other hand, TP and TN represent the correct predictions 

and refer to true positives and true negatives respectively. 
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× 

2.3.2 Precision 
 

This metric reflects the quality of the positive predictions. In other words, it characterizes the 

ability to detect malicious apps. This is measured through equation (2.6). 

 

Precision = TP 
TP + FP 

(2.6) 

 

2.3.3 F-score 
 

This represents the harmonic mean of the precision and the true positive rate (TPR) metrics 

which is summarized by equations (2.7) and (2.8). Unlike accuracy, the F-score provides a more 

balanced measure of the precision and true positive rate. This is especially useful when assessing 

class distributions that are not balanced. In addition, define TPR’s counterpart, the false positive 

rate (FPR) as described in equation (2.9). 

 

F -score = 2 TPR × Precision
. (2.7) 

TPR + Precision 
 
 

TPR = TP 
TP + FN 

(2.8) 

 
 

FPR = FP 
TN + FP 

(2.9) 

 

2.3.4 Receiver Operating Characteristics Curve (ROC) 
 

The ROC represents a measure of the true positive rate (TPR) as a function of the false positive 

rate (FPR). It illustrates how different decision thresholds affect the TPR and FPR. Therefore, the 

closer the ROC curve is to the left, the higher the overall accuracy of the model. Another way 

to capture the ROC information is by computing the area under the ROC curve (AUC) which is 

what we employ in our study. The closer the AUC value is to 1, the higher the overall accuracy. 
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CHAPTER 3 

RELATED WORK 

 
 

A significant body of research has explored various forms of ransomware detection solutions. 

In this section, we discuss the prior work on this topic that spans: ransomware detection, ran- 

somware recovery, as well as solutions for other types of malware. 

 
3.1 Ransomware Detection 

 
Various solutions have been proposed for detecting ransomware [12; 13; 14; 15; 16; 17; 18]. 

Techniques such as [15] explore the use of a temporary artificial user environment where ran- 

somware can run and interact with the system. In addition, the solution monitors the amount 

of entropy present in I/O transactions that are destined for the disk drive as a way of detecting 

encryption activity. Other work by Scaife et al. [12] use a behavioral approach for detecting 

ransomware that is similar to [15]. Similar to [15], the proposed solution considers anomalies in 

the sequence of I/O transactions issued to the file system along with entropy of each transaction. 

Work by Moussaileb et al. [18] examined file system traversal patterns as an early mitigation 

mechanism against ransomware. Their technique employs decoy files that are located at the root 

of the file system. The decoy files are treated as canaries for detecting ransomware and preventing 

the rest of the file system from being encrypted. On the other hand, work by Pascariu et al. [19] 

take a fundamentally different approach. They propose the use a low-cost honeypot that hosts 

decoy files through a network file system that has auditing capability. This honeypot is used to 
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serve as a first line defense for users on the same network on the presence of ransomware in the 

event that the shared decoy files are encrypted. 

Additional work considered static analysis techniques in detecting ransomware. Work by 

Naik et al. [20] applies fuzzy hashing and clustering techniques on a ransomware corpus to 

demonstrate the effectiveness of their approach. Other work by Vidyarthi et al. [21] considered 

a hybrid design that combines both static and dynamic analysis techniques to further improve 

the accuracy of ransomware detection. Their work examines parameters that include the entropy 

of the file, the presence of packers in the executable, embedded strings that contain suspicious 

keywords such as ”crypt”, and code that makes changes to the Windows registry. 

In addition to desktop-based solutions, other work focused on mitigating the effects of ran- 

somware on mobile systems [22; 1; 23]. Work by Chen et al. [22] proposed a detection mecha- 

nism tailored for mobile systems known as RansomProber. The solution operates by correlating 

finger movements initiated by the user to actively running apps. The solution then classifies any 

running apps that don’t correlate to any interactions with the user as malicious. Other work by 

Lachtar et al. [1] focused on statically analyzing executables produced by the Android Run- 

time system (ART) for malicious content. The solution leverages light-weight machine learning 

algorithms to detect ransomware code and prevents them from being launched. [23] considers 

a similar approach for the Android platform while efficiently harnessing convolutional neural 

networks to classify mobile applications. Other work by Ko et al. [24] explored a design that 

considers intercepting system calls into the kernel as a way of fingerprinting ransomware activity. 

Unlike the majority of the aforementioned work that focuses on monitoring I/O transactions 

destined to the file system, our study examines ransomware at a more fundamental level. We 

investigate ransomware at the instruction level as it executes through the processor. As a result, 

our work has the potential to enable autonomous hardware malware detectors that can detect 

ransomware much earlier, as it passes through the microprocessor during the execution stage. 

This approach has the potential to preserve the file system by flagging malicious sequences of 
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instructions well before data is altered on the file system. 
 
 
3.2 Ransomware Recovery 

 
Paying a ransom for lost damaged data does not always guarantee proper restoration of one’s 

data files. This prompted several researchers to investigate solutions that can seamlessly undo the 

effects of ransomware through different mechanisms [25; 26; 27; 28; 29]. For instance, Continella 

et al. [28] proposed ShieldFS. The proposed solution examined the use of an add-on driver 

that safeguards the file system from cryptographic ransomware. The add-on driver considers 

various file system parameters that include that entropy of write operations, the frequency of 

read and write operations, folder-listing operations, and file type usage statistics in order to stop 

ransomware activity destined to the system. On the other hand, [29] explored the concept of 

creating safe zones within the file system that can later serve as a backup. With this design, users 

can mitigate the effects of ransomware by moving important documents to the aforementioned 

zone. Once files have been moved to the safe zone, file access is only granted upon authorization 

of the user. Running applications are not granted access to the safe zone in order to prevent 

malicious apps from encrypting the data. In the event that a system is infected with ransomware, 

the user can restore any damaged files from the aforementioned safe zone. Unfortunately, such 

backup solutions introduce a non-trivial amount of overhead during runtime which can impact 

the usability of the system. Such solutions also require a substantial amount of storage space in 

order to create backups that can be later used as restoration points. 

Work by Kolodenker et al. [30] developed a prototype that employs a key escrow mechanism 

for saving any encryption keys that are generated on the system. The solution then retrieves the 

saved encryption keys from the key escrow and uses them to decrypt any affected files in the 

event that the system is infected by ransomware. The solution in [30] achieves this by monitoring 

operating system services that call the cryptographic libraries used by the OS. Unfortunately, this 

solution can be evaded by ransomware that embed cryptographic functions directly within their 
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malware. Other work by Huang et al. proposed a mechanism known as FlashGuard [31]. Flash- 

Guard uses a device-level recovery mechanism that obviates the need for using backups at the 

filesystem-level. This solution operates by tracking updates made to pages within the memory 

subsystem and storing the original copies to a solid-state-drive (SSD). Original pages are flushed 

to the SSD through modifications made to the garbage collection subsystem. Unfortunately, this 

solution is limited to systems that are equipped with SSDs.   In addition, it requires duplicat- 

ing data on the drive which makes it inefficient given that SSDs typically have limited storage 

capacities. 

 
3.3 Other Malware Solutions 

 
Previous work has also investigated defenses against general malware that span mobile and 

computer systems [32; 33; 34; 35; 36; 37; 38; 39; 40]. Work by Jiang et al. [32] characterized 

various forms of Android malware providing information such malware in terms of method in- 

stallation, activation, malicious payload, permissions requests. Other work [33; 34; 35] looked 

at the malware behavior at run time to identify and detect the malicious behavior. DroidDol- 

phin [34] used API calls to identify malware. However, the speed provided by the emulation 

environment was inefficient. MalDozer [35] embodied a solution that detects malware with high 

accuracy using raw sequence of API and deep learning techniques. However, this introduces 

overhead to the overall system, in addition to being vulnerable to different forms of obfuscation 

attacks. 

As mitigation to the high overhead of software-based malware detection the research com- 

munity explored various hardware-based solutions for defending against malware threats [36; 

37; 38; 39; 40; 41; 42]. Such solutions generally rely on the usage of standard high-performance 

counters (HPCs) that can be used to identify malware by combining readings from the aforemen- 

tioned performance counters and machine learning algorithms. Work by Khasawneh et al. [43] is 

an example of such solutions. They also explored making their hardware-based malware detector 
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more resilient against obfuscation techniques that rely on reverse engineering malware detectors. 

The solution accomplishes this by stochastically switching between different detectors that are 

embedded within hardware as a way of making it difficult for attackers to reverse engineer the 

solution. 

Other work, such as [44] combined static analysis techniques with machine learning algo- 

rithms. The solution considered both the permissions requested by applications, as well as the 

system calls they use in order to distinguish between malicious and benign applications. Leeds et 

al. in [45] explored the effectiveness of using convolutional neural networks (CNN) for malware 

detection. However, the results of this approach were sub-optimal, achieving a detection rate of 

90% or less. [46] utilized a feature vector generation approach with multi-modal deep learning. 

However, similar to the aforementioned solutions, the model used in this solution can be evaded 

by obfuscation attacks. New ways are being explored to use CNN for malware detection by 

converting malware to image format. [47] converted permission files into images and fed them 

to different CNN models. This method resulted higher accuracy than previous ones. Providing 

promising results for malware dictation using image classification. 

 
3.4 Threat Model 

 
In this section, we discuss the threat model of our system and assumptions made about the at- 

tackers. We make the assumption that the ransomware programs are installed on systems through 

established mechanisms that are supported by the operating system. We also assume that the 

target system on which the solution is being executed is clean, up to date, and no authentication 

mechanisms have been compromised. We also assume that an attacker could use social engi- 

neering techniques such as phishing as a way of luring victims into executing their malicious 

programs. 
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CHAPTER 4 

METHODOLOGY 

 
 

4.1 Experimental Framework 

 
Experiments for this study were conducted on an Ubuntu 16.04 host machine that was equipped 

with Intel E5-2680 processors and two Nvidia P2000 GPUs (Pascal architecture). Since the ma- 

jority of available ransomware samples are designed for platforms equipped with the Windows 

operating system, we created a virtual machine (VM) that ran a Windows 7 image on top of the 

aforementioned host. The virtual machine (VM) was configured to model a standard PC enabled 

with sufficient compute resources that could run modern software compiled using the x86 in- 

struction set. To this end, the VM consisted of 8 CPU cores, 10GB of memory, and 30GB of disk 

storage. To ensure the consistency of the collected results across different ransomware families, 

a new VM was cloned from a pristine copy after the execution of every ransomware sample. This 

approach allowed us to eliminate any compounding effects associated with ransomware from 

previous runs and ensure a clean state of the operating system prior to the initiation of any new 

runs. 

Furthermore, we developed a framework written in Python that automatically executed and 

dynamically collected execution samples from a list of applications. In addition to executing 

programs, the framework was responsible for interacting with running programs by issuing key 

presses and mouse clicks in order to simulate a real user environment. To track the instructions 

executed by the different applications, we used Intel’s Software Development Emulator (SDE) 
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Ransomware Lock Encryption RAT Samples 
Locky  ✓  10 
Matsnu.com ✓ ✓  10 
MalPack  ✓  10 
Nanocore   ✓ 10 
Odin  ✓  10 
WannaCry  ✓  10 
Kryptik  ✓  30 
Trojan Agent E.Generic   ✓ 30 
GandCrab  ✓  180 

Table 4.1: Summary of ransomware families used in evaluation. 

 
[48]. On the other hand, our framework handled the necessary parsing of the trace logs gener- 

ated by the SDE tool and summarizing them into a Comma Separated Vector format (CSV). To 

ensure the completeness of our dataset, our framework took multiple samples of each executing 

application/ransomware. This allowed us to capture different execution phases of the running 

program. In addition to using the framework for recording execution traces, we used libraries 

from scikit-learn for implementing the machine learning models we evaluated in this study. We 

built models for each of the following machine learning algorithms previously described in sec- 

tion 2.2: Logistic Regression (LR), Support Vector Machine Linear (SVM-L), Support Vector 

Machine Polynomial (SVM-P), SVM Radial Basis Function (SVM-RBF), K-Nearest Neighbor 

(KNN), Random Forest (RF), and Naive Bayes (NB). We characterized the performance of each 

model against different feature sets in order to understand the relevance of each instruction in 

detecting ransomware. 

 
4.2 Dataset 

 
Our dataset consisted of 600 samples that were collected from popular user applications and 

ransomware running on a Windows 7 platform. We used a balanced dataset made up of 300 sam- 

ples from benign applications and the remaining from real ransomware. We dedicated 70% of 

our dataset for training, 15% for validation, and the remaining 15% for testing. Our benign sam- 
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ples within the dataset were based on execution traces collected from popular user applications 

such as Microsoft Word, Power Point, Excel, Outlook, Visual Studio, Snipping Tool, WhatsApp, 

Zoom, VirtualBox, and Google Chrome. This allowed us to profile the nature of instructions 

executed on a clean system that is free of ransomware that we used for training our detection 

algorithms. 

We used real ransomware from the Virus Total [8] repository for our malicious portion of 

the dataset. Although our study focuses on cryptographic ransomware, we also considered ran- 

somware with locking capability, such as Matsnu, as well as ransomware in the form of Re- 

mote Access Trojans (RAT), such as Nanocore that moves files off the victim’s machine to a a 

cybercriminal-owned server. A summary of the different ransomware families along with their 

capabilities are listed in Table 4.1. 
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CHAPTER 5 

EVALUATION 

 
 

Our study investigates the effectiveness of combining low level instructions with machine 

learning algorithms for detecting cryptographic malware. We analyze the performance of each 

machine learning model against different feature set configurations that include the use of the 

frequency of all recorded instruction opcodes, the frequency of a subset of recorded instructions 

determined via the principle component analysis (PCA) algorithm, and the frequency of a reduced 

set of instructions that are commonly employed in standard cryptographic algorithms to perform 

data encryption. In all cases, we consider instruction opcodes that belong to the x86 instruction 

set architecture (ISA). We first begin by discussing the performance of different machine learning 

when using the full feature set. 

 
5.1 Instructions as Features for Ransomware Detection 

 
After characterizing several ransomware and commonly used applications, we observe that 

dynamically tracking the instructions effective on the system is effective in detecting ransomware. 

Figure 5.1 summarizes the detection rate of our design across different machine learning models 

when using the full list of observed instructions as a feature set. On average, we observe a 

detection rate of 70.8% and a false positive rate of 2.8% while using our test dataset. More 

specifically, we find that with the exception of SVM-P and SVM-R, most models are able to 

detect ransomware at rate of 93.6% and above. We observe similar results for the F1-score 

metric which averaged 70.7% across the different models. Overall, our results show that when 
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Figure 5.1: Comparison of ransomware detection rates across multiple families when combining 
different machine learning models with the full set of available features. 

 
Model Accuracy TPR FPR Precision F-score AUC 
Logistic Regression 0.871 0.936 0.196 0.830 0.880 0.870 
SVM-Linear 0.989 0.979 0 1 0.989 0.989 
SVM-Polynomial 0.495 0 0 0 0 0.500 
SVM-RBF 0.516 0.043 0 1 0.082 0.521 
KNN 1 1 0 1 1 1 
Random Forest 1 1 0 1 1 1 
Naive Bayes 1 1 0 1 1 1 

Table 5.1: Summary of quality metrics under different models when using the full set of features. 

 
using the full feature set which consisted of 158 features, KNN, Random Forest, and Naive Bayes 

algorithms are able to detect all ransomware samples within our test set. Furthermore, we observe 

that all of the algorithms with the exception of Logistic Regression were able to correctly classify 

all benign samples. This underscores the effectiveness of using instruction opcodes for detecting 

ransomware at runtime. However, we note that the Logistic Regression algorithm performed 

poorly when tested with benign applications. Unlike the other algorithms, it misclassified benign 

applications at a rate of 19.6%. A summary of all machine learning models we considered in this 

study against the quality metrics described in section 2.3 is shown in Table 5.1. 

In order to better understand the performance of each model, we examine the number of false 

positives and false negatives each algorithm produces when using our test set. False positives 
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occur when a model missclassifies a benign sample as ransomware. Although the goal is to keep 

the metric as low as possible, a false positive doesn’t result in the user’s system being infected 

with ransomware. It translates falsely notifying the user of the presence of ransomware, which 

would likely be perceived a nuisance to the end user. On the other hand, a false negative has 

more serious consequences since it implies that ransomware was incorrectly misclassified as a 

benign application. Therefore, maintaining the false negative metric as low as possible is of 

utmost importance when evaluating a malware detection solution. Figure 5.2 shows the break- 

down of the false positives and false negatives observed when using different machine learning 

algorithms with the full feature set. On average, our solution produces 1.3 false positives with 

logistic regression exhibiting the highest count of 9 false positives. The remaining algorithms had 

no false positives. On the other hand, the average number of false negatives was relatively high. 

On average, 13.7 false negatives were produced. This implies that, on average, almost 14 ran- 

somware went undetected. We find that the SVM-P algorithm was the least effective in detecting 

ransomware with 47 undetected samples, followed by SVM-RBF with 45 undetected samples. 

However, unlike the aforementioned models, the KNN, Random Forest, and Naive Bayes algo- 

rithms achieved the best performance detecting all the ransomware samples present within our 

test set. Given these KNN, Random Forest, and Naive Bayes did not yield any false positives, we 

consider these to be the most suitable models for detection in the event that the full feature set is 

used. 

 
5.2 Dimensionality Reduction 

 
Although our results show that tracking the execution frequency of all instruction opcodes as 

features is effective, this approach can suffer from scalability issues. For instance, prior work 

has shown that when using other instruction sets, such as the ARM ISA, the size of the feature 

set go beyond 5,000 features [1]. Processing this many features at runtime can denigrate the 

overall performance of the system. As such, it is important to minimize the number of features 
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Figure 5.2: False positive and negative misclassifications when combining different machine 
learning models with the full set of available features. 

 
to be used in a given model. To this end, we explore dimensionality reduction techniques on our 

original feature set. We use the principle component analysis (PCA) algorithm for reducing the 

dimensions of our original feature set. 

In our study, we were able to reduce the number of features from 158 down to 18 components. 

This spanned instruction opcodes that are used for performing loads and stores, such as MOV 

and MOVX since cryptographic ransomware needs to perform several memory accesses as part 

of reading the data in plaintext form and saving the corresponding ciphertext. We also observe 

performance related instructions, such as PREFETCHW that are designed to speedup data access 

by prefetching expected data into the processor’s caches. Such instructions are likely used in 

order to achieve fast encryption of user files and outpace any human response or intervention. 

We also observe general instructions that are also commonly found in cryptographic functions, 

such as XOR. 

Figure 5.3 summarizes the detection rates of the different machine learning models when 

using the reduced feature set that we obtain from the PCA algorithm. Overall, we observe similar 

results relative to the full feature set approach with slight improvements for certain algorithms. 

On average, we observe a detection rate of 78.4% and a false positive rate of 6.5% while using 
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Figure 5.3: Comparison of detection rates of ransomware from 9 families when combining dif- 
ferent machine learning models with a reduced feature set through principle component analysis 
(PCA). 

 
our test dataset. More specifically, we find that the SVM-P, SVM-R, as well as logistic regression 

performs poorly with the reduced feature set. The other models, on the other hand, achieve 

detection rates of 97.8% and above. In general, we find that the detection rate improved by 7.6% 

when using the reduced feature set. However, the false positive rate increased by 3.7%. Overall, 

our results show that tracking a reduced set of instructions which consisted of 18 features is 

sufficient for detecting ransomware samples within our test set. 

Our results highlight that the SVM-L, KNN, Random Forest, and Naive Bayes algorithms 

are suitable algorithms for ransomware detection since they are able to correctly classify all 

malicious samples within our test set. In addition, to further demonstrating the effectiveness of 

using instruction opcodes for detecting ransomware at runtime, these results also show that it is 

not necessary to track all instructions to enable accurate detection. In other words, only a limited 

number of instructions are needed to distinguish between benign and malicious applications. A 

summary of the performance of all machine learning models with the reduced feature set against 

the quality metrics described in section 2.3 is shown in Table 5.2. 

In addition to the previously discussed metrics, we examine the number of false positives 
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Model Accuracy TPR FPR Precision F-score AUC 
Logistic Regression 0.796 0.857 0.273 0.778 0.816 0.792 
SVM-Linear 0.978 1 0.045 0.961 0.980 0.977 
SVM-Polynomial 0.452 0 0.045 0 0 0.477 
SVM-RBF 0.800 0.633 0.023 0.969 0.765 0.805 
KNN 0.978 1 0.045 0.961 0.980 0.977 
Random Forest 0.989 1 0.023 0.980 0.990 0.989 
Naive Bayes 1 1 0 1 1 1 

Table 5.2: Summary of quality metrics under different models when using a reduced feature set 
through PCA. 

 
and false negatives each algorithm produces when using a reduced feature set. Figure 5.4 shows 

the breakdown of the false positives and false negatives observed when using different machine 

learning algorithms with the PCA-reduced feature set. Overall, we observe that our detection 

solution performs better when using a PCA-reduced feature set, yielding fewer false negatives 

relative to the full feature set approach. However, the PCA-reduced feature set yields a slightly 

higher number of false positives. On average, using machine learning models with a reduced 

feature set yields 2.9 false positives with logistic regression exhibiting the highest count of 12 

false positives. The remaining algorithms yielded a range of false positives between 0 and 2. On 

the other hand, the average number of false negatives was relatively low compared to the full 

feature set approach. On average, 10.6 false negatives were produced. We find that the SVM-P 

algorithm continues to be the least effective in detecting ransomware under this configuration 

with 49 undetected samples, followed by SVM-RBF with 18 undetected samples. Furthermore, 

the Naive Bayes algorithm achieved the best performance by detecting all the ransomware sam- 

ples present within our test set and yielding no false positives. Random Forest comes at a close 

second with similar results to Naive Bayes. Random Forest produced one false positive and no 

false negatives. As such, we consider both of these models to be the most suitable for detection 

when using a reduced feature. 
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Figure 5.4: False positive and negative misclassifications when combining different machine 
learning models with a reduced feature set through principle component analysis (PCA). 

 
5.3 Harnessing Cryptographic Instructions 

 

Having the ability to reduce the number of instructions a solution needs to track during exe- 

cution is important. This is because the machine learning models require less compute resources 

when using fewer features, and therefore, execute faster. Most importantly, developing solutions 

that only track a limited set of instructions makes the required hardware support less complex, 

and therefore, more feasible for implementation in practice. To this end, we explore a different 

approach for reducing number of features used with our machine learning models. To achieve 

this, we examine the instruction types that are commonly used in cryptographic functions. Such 

instructions include rotate instructions (ROL and ROR), shift instructions (SHL and SHR), and 

the exclusive or instruction (XOR). Using this approach allowed to reduce the number of 

features by 50% relative to what we obtained with the PCA algorithm. 

Figure 5.5 summarizes the detection rates of the different machine learning models when 

using the crypto-reduced feature set which consisted of a total of 9 features. Overall, we observe 

a slightly better average in the detection rate relative to the PCA-reduced feature set approach. On 

average, we observe a detection rate of 78.6%, as well as a slightly improved false positive rate 
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Figure 5.5: Comparison of detection rates of ransomware from 9 families when combining dif- 
ferent machine learning models with a reduced feature set that consists of instructions relevant to 
cryptographic algorithms. 

 
of 4.1% while using our test dataset. We find that with the exception of SVM-P and SVM-RBF, 

most algorithms achieve a detection rate of 90% or better. More specifically, we find that the 

KNN, Random Forest, and Naive Bayes algorithms are able to classify all the malicious samples 

correctly. Such results underscore the fact that tracking instruction types that are commonly 

used in cryptographic functions which in our study was 9 features, is sufficient for detecting 

ransomware samples within our test set. We also find that two of the aforementioned algorithms, 

Random Forest and Naive Bayes, are able to correctly classify benign applications. A summary 

of the quality metrics for our machine learning models with the crypto-reduced feature set is 

shown in Table 5.3. 

To better understand the performance of each model with the crypto-reduced approach, we 

examine the number of false positives and false negatives each algorithm produces when using the 

newly reduced feature set based on cryptographic algorithms. Figure 5.6 shows the breakdown of 

the false positives and false negatives observed when using different machine learning algorithms 

with the crypto-reduced feature set. Overall, we observe that our detection solution performs 

remarkably well using a crypto-reduced feature set, yielding fewer false negatives relative to the 
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Figure 5.6: False positive and negative misclassifications when combining different machine 
learning models with a reduced feature set that consists of instructions relevant to cryptographic 
algorithms. 

 
full feature set approach. On average, using machine learning models with this reduced feature 

set yields 2 false positives with logistic regression still exhibiting the highest count of 9 false 

positives. The remaining algorithms yielded a range of false positives between 0 and 3. Similarly, 

the average number of false negatives was relatively low compared to the PCA-reduced feature 

set approach. On average, this approach yielded 9.4 false negatives, marking a 1.1% improvement 

over the PCA-reduced approach. We find that the SVM-P algorithm still continues to be the least 

effective in detecting ransomware under this configuration with 44 undetected samples, followed 

by SVM-RBF with 14 undetected samples. Furthermore, the Random Forest and Naive Bayes 

algorithms achieved the best performance by detecting all the ransomware samples present within 

our test set and producing no false positives. KNN comes at a close third with similar results for 

false negatives. However, the KNN algorithm had a slightly elevated false positive count with 

only one misclassified benign application. 

Finally, we find that using cryptographic instructions can be effective against other ran- 

somware types that are not cryptographic based. Although our study focused on evaluating cry- 

tographic ransomware, our dataset included a limited number of locker ransomware and Remote 
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Model Accuracy TPR FPR Precision F-score AUC 
Logistic Regression 0.796 0.909 0.184 0.816 0.860 0.863 
SVM-Linear 0.925 0.909 0.061 0.930 0.920 0.924 
SVM-Polynomial 0.484 0 0 0 0 0.500 
SVM-RBF 0.495 0.682 0.020 0.968 0.800 0.831 
KNN 1 1 0.020 0.978 0.989 0.990 
Random Forest 1 1 0 1 1 1 
Naive Bayes 1 1 0 1 1 1 

Table 5.3: Summary of quality metrics under different models when using a reduced feature set 
that consists of instructions that are relevant to cryptographic algorithms. 

 
Access Trojans (RAT). We believe this is due to the fact that malware in general includes en- 

crypted content such as encrypted payloads and strings. As a result, such programs make use of 

cryptographic functions during their execution. We believe this is an interesting result that we 

would like to pursue further as future work. 
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CHAPTER 6 

CONCLUSION 

 
 

In this work, we characterize the behavior of ransomware at the instruction level. We demon- 

strate that instruction opcodes of software programs are reliable features for detecting ransomware 

at runtime. Furthermore, we demonstrate that a minimal set of cryptographic instructions could 

be harnessed as features for distinguishing benign and ransomware programs. We evaluate the 

effectiveness of using machine learning models in detecting ransomware with high accuracy and 

low false positive rates. Finally, we evaluate the robustness of our approach against real ran- 

somware available in a comprehensive dataset. 
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