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ABSTRACT 

Accelerated life testing (ALT) has been widely used to expedite the analysis of a product’s 

failure time when used under normal conditions and calculate its reliability. For engineering 

systems, ALT could be performed at two levels: component level and/or system level. Each testing 

level requires different resources to be performed and a specific approach to analyze the data of 

failure times collected in order to draw reliability conclusions. Present methodologies in ALT 

allow for the assessment of system reliability conclusions by testing at the system level. On the 

other hand, some of the available practices allows testing single components and calculate the 

component reliability. Both schools of thoughts do not take into account any dependence that 

might exist among the components of one system once put in use and the possibility of using either 

type of testing in order to calculate the system reliability.  

In addition, each of these two levels: The component level testing and the system level 

testing have their own advantages and disadvantages. Systems of multiple components undergoing 

a system level testing could be expensive, but it takes into account the dependence of the system’s 

components failure times. The component testing level consists of testing each component 

separately. Using the information collected from component level testing to assess the system 

reliability could be of great financial importance at the design level. being cheap and allowing 

testing customization. However, it does not include any of failure time correlations of components 

when assembled in one system.  

 The research aims at fusing testing information collected from component level testing 

and system level testing in order to draw system reliability conclusions. This research tackles the 



 xx

dependence between the component failure times of a system that is caused by unobservable 

factors. Two novel frameworks are proposed to analyze the reliability of systems with multiple 

components using ALT testing. The difference between the two frameworks lies in hoe we model 

the dependency between the failure times of the components. We model the dependency using a 

Copula function in conjunction with Weibull distributions in the first framework and using shared 

frailty models with extended hazard model in the second.  Both frameworks present a propagation 

of uncertainty from both testing levels: the component testing level and the system testing level to 

the system reliability. Firstly, the frameworks incorporate a model to calculate the system 

reliability using ALT component testing data, this presents a linkage method allowing uncertainty 

propagation by using ALT component failure time data in order to conclude the system reliability. 

Secondly, the latter is followed by a linkage method to show how the ALT System testing data 

could be used to calculate the system reliability with minimal uncertainty. Thirdly, we present the 

concept of information fusion a which is a method to fuse both component level testing information 

and system level ALT testing information (i.e. Failure Time Data) to calculate the system 

reliability.  This research relies heavily on different statistical concepts and Bayesian inference 

approaches.  

An optimization model that takes into consideration the cost of testing and other ALT 

parameters, namely stress levels and number of tests at each stress levels, is employed to find the 

optimal and cost-effective values of these parameters. The optimization model is applied to the 

framework that uses the Copula function as a way to model dependence.  

A sensitivity analysis has been done to analyze the effect of the variance of the frailty factor 

variance on the reliability estimate. A four-arm robots and a mixed system examples are used to 

show the effectiveness and usefulness of the proposed Copula based ALT system reliability 



 xxi

method and a circuit board of an autonomous vehicle is employed to demonstrate the proposed 

approach to estimate the system reliability using frailty model with extended hazard regression 

analysis method. For each example, we show results in a graphical format followed by an 

interpretation explaining the reduction in the uncertainty of the system reliability.  
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 Introduction 

 

In this chapter, we provide a background about accelerated life testing (ALT), we define 

the term and explain its importance in reliability analysis and product design analysis. Next, we 

present the research objectives followed by the outline of the dissertation. 

 

1.1 Background 

Engineered products are getting more complex in terms of structure and manufacturers 

are competing to keep up with new inventions and technologies. Studying the life of new 

products that integrate new technologies is an essential component in the product development 

phase. The failure of a product affects the warranty terms and safety incurred costs and 

companies need to find ways to estimate the life of their products. Additionally, the life of a 

product is considered a differentiation factor and a quality indicator to many companies which 

drives the competition against their competitors in the market of a product. As well, the quality 

of a product could very well drive the pricing strategy that a manufacturer intends to follow 

when launching the product for sale. 

Moreover, the expectation of customers placed when owning a new product is to function 

for as long as possible serving its purpose to the fullest. So, early failure of products not only 

increase the warranty cost to the manufacturer but could lead to serious loss in the customer 

satisfaction which in turn will affects the sales force and the company’s reputation.  
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An old type of testing used in the industry is called the Accelerated Life Testing. The 

aforementioned type of testing is widely used in reliability analysis in order to study the life of 

products in general [1]. ALT is considered a reliability testing procedure and various methods 

have been developed to concentrate on the study of such type of testing with the intention of 

estimating the reliability via various prediction models[2].  

ALT has gained enormous traction and attention to develop new observations in how to 

analyze the data collected from this testing and try to estimate the reliability of products and 

systems with minimum uncertainty and higher confidence. 

In ALT, products could be individual components or systems of multi-components. ALT 

entails putting the product (a component or a system) at higher than use stress[2]. Use stress is 

defined as the stress or load that the product would experience when operating in its normal 

conditions. ALT testing is done in order to expedite the failure of the product reaching its 

maximum life.  

ALT involves testing the specimen under different stress levels. At each stress level, that 

is often referred to as the accelerating factor, the specimen is tested multiple times. Figure 1-1 

below shows the concept of the accelerated life testing used in this research where each test 

specimen, which could be a component or a system, is subject to different stress levels and tested 

n times according to the number of tests (number of test specimens) at each stress levels. So, the 

output of this ALT testing is experimental failure time data which is the failure times of the 

specimen (i) at different stress levels[3]. 

Another aspect of systems and products is that they impose dependence among the failure 

modes due to a functional and/or physical connection among the components in that system. 

Systems fail under different failure modes (Fracture, Corrosion, Wear etc.). That dependence, as 
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shown in Figure 1-2, cannot be neglected or else the model could lead to a bias (i.e. 

overconfidence or under confidence) in the estimation of the product reliability. Dependence 

occurs between the different failure modes of the components of one system. This correlation 

among the components which produce different failure modes on the overall system adds 

complications to the accelerated life testing data analysis. 

 

 

Figure 1-1 Accelerated Life Testing Concept 
 

Systems can as well take multiple configurations; the components of a system could be 

mounted in different topologies making the failure of the system different for every topology. 

The system failure mode depends on the system topology. Components of a system could be 

mounted in as simple as series (Figure 1-3) and parallel (Figure 1-4) configurations or in a more 
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complex predefined structure (Figure 1-5). Considering the structure of the system in system 

reliability analysis is essential as it affects its failure mode.  

 

Figure 1-2 Dependence illustration among the components of a system of Nc components 

 

Figure 1-3 System of two components mounted in a series configuration 
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Figure 1-4 System of two components mounted in a parallel configuration 
 

 

Figure 1-5 System of four components mounted in a complex configuration 
 

A complete system reliability analysis shall consider the failure data collected from ALT. 

Also, it shall include the modelling of the existing dependence among the components of one 

system as well as it shall be applicable for the different system topographies.  

ALT data could be collected at two different testing levels: component level Component 

Level ALT Data by testing each of the components individually and System Level ALT Data by 

putting the whole system at test. So, in order to use each set of testing data collected from 

component testing or system testing and link it to the system reliability, this research target is to 

pursue meeting six objectives detailed in section 1.2 below.   
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1.2 Research Objectives 

The goal in this research is to find the reliability of systems with minimum cost and with 

high accuracy level. Reducing the uncertainty of a product reliability requires a robust prediction 

model in place. The research aims at developing a system reliability prediction model by using 

accelerated life testing data applicable for all system configurations in which components are 

configured in series, parallel, or any other specific topography decided by the product design 

engineers.  As mentioned previously, for a system with 𝑁஼ components the accelerated life 

testing data could be collected from two testing levels: Component -level ALT Data when testing 

individual components and system-level ALT Data when testing systems with multiple 

components. So, the goal is analyzing and modelling the collected ALT data from the 

aforementioned two ALT levels to minimize and estimate the system reliability with confidence.  

In order to reduce the uncertainty of the system reliability six objectives are pursued. The 

research objectives are as follows:  

The first objective is to consider the correlation between the failure time data and find a 

suitable method to consider the association between the failures and the components of a system. 

Since we are dealing with systems of multiple components connected physically or logically to 

serve a purpose under normal operating conditions, the dependence is an association of sharing a 

failure factor. Failures of components in one system can take different forms leading to multiple 

competing risks or failure modes, modelling the dependence of these failure modes that lead to a 

dependence in the failure time data is essential to remove the bias from the prediction model. 

This objective goes hand in hand with every objective listed below and is considered an integral 

part of their implementation. 
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The second objective is to develop a framework to estimate the system reliability by 

using ALT data collected from components level testing. This objective is characterized by 

finding a suitable linkage method to link the failure data (i.e. ALT data) of each component 

tested separately and to be connected in one system and integrate the dependence method in 

order to infer and reduce the uncertainty of the system reliability under normal operation. 

Mathematically, we aim at finding the likelihood and apply the Bayesian estimation method that 

takes prior information about the model parameters collected from experts and sample posterior 

distributions with reduced uncertainty then link the data of all components together to find the 

system reliability including the dependence among the failures of the components.   

The third objective is to construct a linkage method to derive and minimize the 

uncertainty in the system reliability using ALT data collected from system level ALT testing. In 

similar fashion of objective but using a different approach in allocating the model parameter, the 

research aims at finding a suitable connection to fit the ALT data and reduce the uncertainty in 

the system reliability while modelling the dependence among the failure data.  

The fourth objective of the research is referred to as information fusion which aims at 

combining ALT testing data from both testing levels when they are available in order to reduce 

the uncertainty in the system reliability. This objective is a grouping objective to combine the 

three prior objectives listed above.  

The fifth objective is to allocate the ALT resources optimally. The research aims at 

finding the optimal design parameters of the mode conditioned on the testing budget and cost. 

This objective is pursued by developing an optimization model subject to conditions of ALT 

testing cost and total budget: 

𝑓(𝑋, 𝑛) 𝑠. 𝑡.  𝐶𝑜𝑠𝑡 𝐶௧௢௧௔௟; 0 ≤ 𝜉 ≤ 1, 𝑛 ≥ 0 (1-1) 
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The last objective which is the sixth objective is to find a way to apply all of the above to 

any system of 𝑁௖ components mounted in different configuration that could be components in 

series, parallel or other topography. This objective aims at making the methods developed 

versatile and not limited in application.  

Pursuing the six objectives listed above allows to construct a comprehensive ALT 

analysis model to estimate the system reliability of product with high confidence and minimal 

uncertainty all while considering the dependence among the components that carries latent 

failure times. Finally, the model is versatile in its application to different system structures.  

 

1.3 Dissertation Outline  

The Dissertation contains eight chapters in total in order to pursue the research objectives 

detailed in section 1.2 above. Chapter 1 gives an overview background about the research and 

details the research objective.  

Chapter 2 presents the literature review for the different methods and frameworks related 

to the accelerated life testing and are in direct relation to what is used in this research. The latter 

includes: 1) Statistical methods in ALT, 2) Regression survival models, 3) Dependence 

modelling. In each of the three sections under the State of Art chapter, we detail the different 

methods available. This allows identifying the gaps and helps identifying the novelty of the ALT 

framework enclosed in this research.  

Following the literature review presented inChapter 1, the motivation of this research is 

given in Chapter 3 in which we talk about the advantages of this framework by presenting the 

intellectual merit and the broader impact of the research and its findings. The intellectual merit 



 9

taps into the new observations and the novelty of the ALT model as well as the positive impact 

that this ALT framework could present to industries and individuals.  

Chapter 4 includes the approach by which we intend to solve the problem. The chapter 

dissects the problem into its subcomponents and steps and describe the reason behind each of the 

steps we intend to follow in the following chapter. The assumptions to the model are presented, 

and illustrative example about autonomous vehicle leads to set the problem statement of the 

research. By setting the problem statement of the research which is reducing the system 

reliability uncertainty and the methods to solve the presented problem are given and explained:  

1. Log-scale parametric distribution model 

2. Copula function 

3. Extended hazard model 

4. Frailty model 

5. Bayesian Estimation method (the concept of likelihood function) 

6. Particle Filtering 

Chapter 5, the previous chapters have presented and defined the terms to be used and the 

frameworks available to be used. This piece of the research deep dive into the mathematical 

formulation of propagating the uncertainty using component level testing data, then it details the 

steps about using the system ALT testing data and the propagation of uncertainty to the system 

reliability closing with the information fusion of both ALT testing data. An optimization model 

to find the optimal design parameters of the ALT is enclosed at the end of this chapter, this part 

encloses the resource allocation bounded by an ALT budget. 

In Chapter 1 we identify the gaps of the method implemented in the previous chapter 

(Chapter 5), so the chapters suggests a novel method consisting of using distribution free 
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regression models to explain the effect of explanatory factors on the failure time and it integrates 

the frailty model to explain correlation among failure times. Numerical examples are presented, 

and the results are interpreted to obtain the statistical inference meanings and develop investigate 

new observations about the model.  

Chapter 1 aims to explain the effect of the frailty factor on the uncertainty of the system 

reliability. A sensitivity analysis is enclosed by varying the frailty factor value and the changes 

are presented graphically followed by an explanation of the changes. This part allows 

understanding the effect of using the frailty to model dependence among failure time on the 

system reliability confidence.  

 The last chapter, Chapter 7, presents the concluding remarks and proposes the future 

work, the major achievements achieved by conducting this research and the concluding remarks 

about the findings.  
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 State of Knowledge 

 

Different models have been implemented to find the optimal design and model 

accelerated life testing. The advantage of accelerated life testing is to predict the life of product 

in an expedited format under higher than use stress that allows predicting the probability of no 

failure by using translation function to translate the performance of the product in an accelerated 

environment to the normal one. Various models have been presented in the literature and the 

field has been of interest for so long, some researchers presented ALT models involving 

parametric distribution function such that the Weibull distribution, Exponential distribution and 

the Lognormal distribution, along with using specific stress- failure time translation functions. 

Others have shown the advantage of using distribution free parameters by incorporating 

regression modelling in the big picture.  

The different models tackle data censoring with its different types. Censoring is involved 

when a testing unit survives without failing at the end of the test. ALT is often timed and 

sometimes the testing unit survives the accelerating factor without any indication of a failure. 

The data for such testing units is called censored data. The most common two types of censoring 

are Type -I and Type-II which allows engineers to remove the non-failed units and at different 

times during testing.  

In what follows we present some of the available work published by peers over the years. 

We present the models according to their overarching modelling perspective with a focus on 

models with statistical distributions and models with regression analysis.  
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2.1 Accelerated Life Testing (ALT) Statistical Models 

We review in this section the different accelerated testing models available in the 

literature. Multiple statistical (parametric and non-parametric), regression and distribution free 

have been developed to estimate the system reliability using ALT data. We review some of these 

models and identify the gaps.  

 

2.1.1 Accelerated Failure Time Models 

An alternative method to regression models is the Accelerated Failure Time (AFT) that is 

classified as parametric, The method initial name is Scale-Accelerated Failure Time or SAFT [3] 

The method is often characterized by linking the logarithm of the event or failure time to 

the stress. It assumes that the covariate factors which is the stress in the ALT case act linearly on 

the logarithm of the failure time or multiplicatively on the failure time. AFT is widely used in the 

reliability field, and the disadvantage lies in their application that necessitate finding a suitable 

parametric distribution  [4]. Newby [5] mentions that the effect of covariates on the event time 

are described in the scale parameter of a parametric distribution of choice to fit the failure data.  

Stute in [6] presented a methodology to estimate linear regression parameters, the method 

could be regarded as an accelerated failure time model as referenced in [4] and it gives the 

benefit of being a distribution free so it allows making inference without fitting the failure times 

into a probability distribution function making it a promising methodology to be used in survival 

analysis making it equivalent to the hazard model presented by Cox in 1972 which we will 

review in section 3.2.1.  

AFT models have been first referenced by Pieruschka[7]. AFT models have been 

demonstrated robust against neglecting explanatory variables as shown by Hougaard in [8].. Xu 
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et al [9] used the AFT model in order to investigate a general Bayesian approach for step-stress 

accelerated life testing is investigated for the log-location-scale distribution family and 

particularly the widely used parametric lifetime distributions in ALT.  

Louis [10] presented a complement method to the regression method that uses hazard 

functions and it has the restriction of hazard rate proportionality at two different levels of the 

explanatory variable (covariate). The approach integrates the accelerated failure time whereas the 

proposed method is identified as efficient for the Weibull distribution class and does not include 

censored data in the formulation.   

In a different approach, Kuo and Mallick [11] considered a Bayesian framework by using 

parametric prior information on the regression coefficients of the AFT model. They have 

deployed Markov chain Monte Carlo (MCMC) to sample the posterior data of the model 

parameters and they have concluded their work with numerical examples including censored 

data.  

Anderson in [12] presented a non-proportional hazard Weibull accelerated failure time 

model where they do not use the standard Weibull AFT model with a standard linear location 

AFT model, instead they considered a varying location and dispersion parameters model in 

which the dispersion parameter is dependent on the location parameter, more information about 

the specifics of such model could be found in [12]. The application problem in this work is 

medical.  

The AFT models assume that for a given covariates vector Z which is the applied stress 

which follows a distribution with a location parameter 𝛼(𝑍) and a constant positive scale 

parameter 𝜎 > 0, the logarithm of the failure time equation is linked to these parameters by the 

following[13]:  
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 𝑌 = log(𝑡) =  𝛼(𝑍) +  𝜎𝜀 (2-1) 

𝜀 is a random variable that has a specific distribution, and it is assumed to be independent of Z. 

 The AFT model has been of great use in the reliability field for estimating the life of 

engineered goods. However, it requires the model to be parametrized and it is often used with 

parametric probability distribution functions, and the linkage form is limiting as it takes the form 

of linear regression between the logarithm of the event time and the applied stress. Various 

approaches and distributions have been used to go with the accelerated failure time. We review 

some of them in the next section 3.1.2.  

 

2.1.2 ALT Data Parametric Distributions 

Log-location scale distributions have been extensively studied in the accelerated life 

testing field. Weibull, exponential and lognormal distributions have been the focus of multiple 

researchers. In this section we review studies available that have used the latter distributions to 

analyze and plan ALT.  

Klein et al [14] have developed a model for a multi-component placed in series 

configuration in 1981.  The model consists of using data collected from accelerated life testing in 

order to predict parameters of a function called a stress translation function. The function is then 

used to predict the reliability of a system when operating under normal conditions. The model 

fits the component failure times collected in an accelerated environment via a 2-parameters 

Weibull distribution. The failure times of each component are assumed to be independent from 

each other. Maximum likelihood has been used as the estimation method of the different 

parameters involved in order to conclude the reliability of the system. Van Dorp et al [15] 

developed a Bayes approach to model accelerated life testing with step stress and they have used 
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the exponential distribution to fit the data collected from ALT at each stress level. They adopted 

a probabilistic approach that uses parametric prior distribution by assuming that information 

about these parameters is found by referring to expert’s judgement and that the prior distributions 

of the model parameters preserves the ordering of the failure rates into the sampled posterior 

distributions.  

Tang at al [16] developed a model to design accelerated life testing under k-step stress as 

the accelerating factor. They have presented a method to find the optimum test plans with Type I 

censoring, defined by removing the item within the testing stage if it fails, for two types of 

parametric distributions: exponential distribution and Weibull distribution. They as well use the 

accelerated tampered model that assumes the hazard function rate at high stress is the hazard rate 

function at lower stress multiplied by a modifying factor referred to as the accumulated tampered 

factor and determined by the each stress level (low and high) as well as it is assumed to be 

related to the time at which we move from a low stress level to higher level of stress.  They use 

the concept of maximum likelihood along with the fisher matrix to estimate necessary 

parameters.  

Wang at al [17] presented a model for a Weibull distributed failure data with a non-

constant shape parameter for a constant stress ALT, it is assumed that both the shape and scale of 

the 2 parameters Weibull distribution are affected by the stress applied. the research uses the EM 

(Expectation-maximization), MLE (Maximum Likelihood Estimation) and ML (Maximum 

Likelihood) as estimation methods for the parameters involved. The paper as well take into 

consideration progressive type-II censoring defined as randomly removing some of the surviving 

units every time a failure is noticed during testing so if there are 𝑛  testing units, one failure is 

noticed at time 𝑡ଵ, the remaining surviving units is 𝑛 − 1 at time 𝑡ଵ, by progressive type-II 
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censor, their model assumes 𝑟 units out of the 𝑛 − 1 units that have survived at time 𝑡ଵ when the 

first failure has been noticed and the same concept is applied at 𝑡ଶ when the second failure is 

noticed.  

 Doksum et al [18] presented the time transformed inverse Gaussian distribution model for 

variable stress ALT data to fit time to failure as a flexible alternative to the Weibull Distribution 

which is widely used to model failure times with the same shape parameters. Their model 

consists of a fatigue failure model in which the accumulated decay is covered by a Gaussian 

process considering a continuous stress increase. A failure is defined when the Gaussian process 

crosses certain limit. Time to failure is governed as a function of the accumulated decay where 

parametric functions are used to explain the effect of higher stress on the failure time and decay 

rate. The model presents how the decay under both normal and accelerated stresses could be 

found as well as the mean life under use stress.  

Meeker et al [19] used log location scale distributions to model cycles to failures of 

components and noted that the two most used distributions are the Weibull and Lognormal 

distributions as special cases. The research proposed a model to predict the system reliability in 

the use field by using ALT data and characterization of the use field. So, they suggested a model 

that relate these data sets (failure time data and field data) in order to predict the life distribution 

of a future component operating in normal conditions. In order to estimate the model parameters, 

they have used the Maximum Likelihood (ML). Zhang et al [20] described the Bayesian methods 

Accelerated life testing and planning involving a Type II censored data from a 2 parameters 

Weibull distribution, where the PDF function is expressed by:  

𝑓(𝑡|𝜂, 𝛽) =
𝛽

𝜂
 ൬

𝑡

𝜂
൰

ఉିଵ

exp ቆ− ൬
𝑡

𝜂
൰

ఉ

ቇ (2-2) 
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where 𝜂 is the unknown scale parameter and 𝛽 is the known shape parameter that is given.  

The model allows a better planning that is based on the precision of the life distribution 

quantile assuming the information about the shape parameter of the Weibull distribution is 

known.  

Miller & Nelson [21] presented a framework to obtain the optimum simple step-stress 

ALT plans when the failure time of the test units follows an Exponential distribution assuming 

they are monitored to failure without any censoring. Bai et al [22] extended the model the latter 

work of Miller & Nelson to include censored data. 

Doksum and Hbyland [23] created models for variable-stress accelerated life testing 

experiments based developing a Wiener process consisting of considering fatigue failure model 

that includes an accumulated decay that is modelled by a continuous Gaussian process with a 

variable distribution that changes with the stress change point instead of using the widely used 

distribution which is segmented Weibull-distributions for the failure time of the ALT 

experimental units at increased stress at stress change points. Chaloner and Larntz [24] studied 

the design of accelerated life testing (ALT) assuming two distribution models for the failure 

times of the experimental units, namely lognormal distributions and Weibull distributions. In 

their paper, they assume that the increased level of the testing stress has an upper limit and they 

consider Type I censoring which is based on assuming that the experiment is timed over a fixed 

period of time and samples that do not fail upon terminating the test are referred to as censored.  

Bagdonavicius et al tackled [25] special plans for the ALT design and analyzed the ALT 

data (i.e. failure times of experimental samples) using numerical methods and simulation using 

the changing shape and scale model which is a natural extension to the known Accelerated 
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Failure Time model (AFT), they also propose parametric and semiparametric estimation 

procedures for their model. 

Additionally, J. Rene et al [26] developed a general Bayes Weibull inference model for 

ALT in which they assumed that failure times follows a Weibull distribution under a constant 

stress level. They have used prior information to define prior distribution for the scale parameters 

at different stress levels and the shape parameter. Additionally, a general Bayesian exponential 

inference model for accelerated life testing has been established. I-Chen Lee [27] et al has 

presented a method to overcome the problem of guessing values for the parameters to be 

estimated by introducing ta sequential Bayesian design for planning ALT. Zhang and Meeker 

[28] described Bayesian methods for accelerated life testing planning assuming one accelerating 

variable and that the acceleration model is linear in the parameter based on censored data.  

Statistical methods in ALT are often combined with other methods like the Inverse Power 

law and the Arrhenius Relationship. In the sections below, we present available models 

developed that uses these methods in analyzing ALT data. 

Nelson and Kielpinski [29] have presented the optimal ALT design using normal and 

lognormal life distributions. The model incorporates the Arrhenius relationship and they assumed 

that the mean of the life distribution is a function of the applied stress.  

In this research, we will make use of the log-scale distribution because as it has been 

noted in the state of art, it is a widely used distribution and in more specific we will use the 

Weibull distribution with 2 parameters shape and scale and apply the AFT concept to link the 

accelerated factor to the failure of components and systems. More on the construction of the 

mathematical and statistical form could be found in Chapter 6.  
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2.1.3 Competing Risks in ALT Design  

Nelson [30] has introduced examples of product that fails under various failure modes 

and discussed the ALT analysis of such products with multiple competing risks. Examples of 

system with multiple failure modes are the semiconductor devices and insulation systems. 

Kim and Bai [31] have studied the accelerated life testing with two failure modes. They 

have presented a paper in which they have showed a framework to calculate the life distribution 

of a component at use stress when there are two failure modes: an extrinsic failure mode and an 

intrinsic one by using constant stress accelerated life testing data. They have used a location-

scale distribution to model failure times, and they have derived the equation for a 2-parameters 

Weibull distribution. In their analysis they assumed that the lifetimes of the test units are 

independent, and that the location parameter of the life time distribution is a function of the 

applied stress and it is given by:  

where 𝑠௝  designate the stress, 𝛼଴௞ and 𝛼ଵ௞ are coefficient parameters and 𝑘  is the index that 

represents the failure modes 𝑘 = {1,2} because they are considering two failure modes. They 

also use EM methods to estimate the model’s parameters by using the likelihood as a mixture pdf 

which is represented as the sum of two portion where each portion represents the pdf of a failure 

mode.  

Patra et al [32] constructed a multivariate distribution of a mix of Weibull distributions 

and they characterize the dependence among the components by a latent random variable that is 

assumed to be independently distributed of the original component. They have extended the 

model and showed how it could be applied to model competing risks which takes place when a 

component potentially could fail under different failure modes and each competing risk is a 

𝜇௝௞ =  𝛼଴௞ +  𝛼ଵ௞𝑠𝑗 
(2-3) 
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mixture of either Weibull or exponential distributions. So, for 𝑟 competing risks where each is a 

mix of 𝑘 Weibull distributions, they define the following: 

where 𝐗௜ = 𝑋௜ଵ, … , 𝑋௜௞ , 𝑖 = 1,2, … , 𝑟  is a mixture of Weibull (𝛼, 𝜃௜௝) and 𝑍 is the independent 

latent random variable that follows a Weibull distribution 𝑍 ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙 (𝛼, 𝜃଴). Next, they 

define the survival probability as:  

where 𝑎௜௝ is the mixing probability and ∑ 𝑎௜௝
௞
௝ୀଵ = 1 for all 𝑖 = 1,2 , … . 𝑟.  and by that the 

multivariate joint survival function is given by:  

Ishioka et al [33] worked on constructing the maximum likelihood parameters of a 

Weibull distribution for two components forming a series system. They assumed the mean of the 

Weibull distribution of the each of the independent failure mode to be a log-linear function of the 

applied stress. The likelihood of sample size 𝑁  for two components including censored data is 

given by:  

𝑇 = {𝐗ଵ, 𝐗ଶ, … . , 𝐗௥ , 𝑍} 
(2-4) 

𝑃(𝑇 > 𝑡) = 𝑃(𝐗ଵ > 𝑡)𝑃(𝐗ଶ > 𝑡) … . 𝑃(𝐗௥ > 𝑡)𝑃(𝑍 > 𝑡) 
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 (2-7) 
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where 𝑓(. ) Is the pdf and 𝑅(. ) is the survival function. 𝐶 is a constant and 𝛿௜ is = 1 if the system 

fails at the end of the ALT test and 0 otherwise.  In their framework they assume that regardless 

of the system configuration of the 2 components 𝑅(𝑡) = 𝑅ଵ(𝑡)𝑅ଶ(𝑡) and that the total PDF is 

𝑓(𝑡) = 𝑅ଵ(𝑡)𝑓ଵ(𝑡) + 𝑅ଶ(𝑡)𝑓ଶ(𝑡). They apply the log-likelihood and by maximizing the 

derivative of the𝐿𝑜𝑔(𝐿(𝜃)) they find the closed form of the distribution parameters.  

Bai and Chun [34] constructed a model to find the optimum simple step-stress 

accelerated life test data with competing causes of failure (i.e. competing risks) where the life 

distribution of each failure cause is assumed to follow an exponential distribution and the failure 

modes are assumed to be independent of each other. Their framework assumed that each unit has 

𝑝 statistically independent failure modes and that the failure of the unit the smallest of the 

𝑝 failure times corresponding to the 𝑝 potential failure modes. The log of the mean life of 𝑝 

failure times is a function of the applied stress. The derived likelihood for two stress levels from 

observations (𝑦௜௝ , 𝑐௜௝) representing the (failure time, cause of failure) of the test unit 𝑗 at stress 

𝑥௜ , 𝑖 = 1,2 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛௜. The likelihood includes 𝑛ఎ censored data and is given by the 

equation below: 

where 𝜆௜ =  ∑ 𝜆௜௞
௣
௞ୀଵ  is the failure rate under the failure mode 𝑘 at stress 𝑥௜ and 𝜏 is the test run 

time and 𝛼ଵ, 𝛽ଵ , … , 𝛼௣, 𝛽௣ are the parameters to be inferred.  

𝐿൫𝛼ଵ, 𝛽ଵ , … , 𝛼௣, 𝛽௣൯ =  ෑ ൥ෑ൛𝜆ଵ௞ exp൫−𝜆ଵ. 𝑦ଵ௝൯ൟ
ఋೖ൫௖భೕ൯

௣

௞ୀଵ

൩

௡ୀଵ 

௝ୀଵ

 

× ෑ ൥ෑ൛𝜆ଶ௞ 𝑒𝑥𝑝൫−𝜆ଶ. 𝑦ଶ௝൯ൟ
ఋೖ൫௖మೕ൯
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× exp(−𝜆ଶ. (𝑇 − 𝜏)𝑛ఎ − 𝜆ଵ. 𝜏 𝑛ఎ) 

(2-8) 
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Pascual Francis [35]presents method for accelerated life testing planning under 𝑘 

independent failure modes. Pascual used the lognormal distribution to derive the Fisher Matrix. 

The method is established in conjunction with the Arrhenius relationship for temperature 

acceleration.  On the other hand, Pascual in [36] derived a method for ALT planning for 

competing risks when failure times are assumed to follow a Weibull distribution. the framework 

assumed 𝑠 −independent competing risks and the minimum latent failure time corresponding to a 

failure mode or competing risk is assumed to be the minimum. Klein and Basu presented worked 

on series of papers [37] [38] in which they have presented the analysis of ALT involving more 

than one failure mode. they further assumed that the competing risks or failure modes are 

independent for each stress level, they have used the maximum likelihood estimators when the 

lifetimes follow Weibull and exponential distributions and they have considered the case of 

having a common versus varying shape parameters, as well as 3 types of censored data being 

Type I, Type II and progressive censoring.  

Additionally, Bunea and Mazzuchi [39] presented a Bayesian method for the analysis of 

ALT data with possible multiple failure modes. They have used failure rates following a Gamma 

distribution and the Arrhenius relationship to relate the failure rate due to a stress level to the 

actual failure rate under use stress.  

 

2.1.4 Inverse Power Law in ALT 

Inverse Power Law is often used in combination with the statistical models in 

accelerated life testing to relate the applied accelerated variable to the life of the testing unit 

and it has the scale-accelerated failure time form[3]. Nelson [40] developed a model using the 
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maximum likelihood estimators (MLEs) to obtain the parameters of a Weibull distribution in 

combination with the inverse power law using the breakdown time data of electrical insulation.  

The inverse power describes the relationship between the constant 𝑉 stress and the life 

of the test specimen that is assumed to follow a Weibull distribution with a constant shape 

parameter 𝛽 and the scale parameter 𝛼 takes the following form [40]: 

where 𝑉଴ and p are positive parameters.  

The latter implies that the CDF of the failure time 𝑡  of a specimen is expressed by the 

following equation [40]:  

Allegri and Zhang [41] aimed to develop a model to provide an estimation tool of  the 

relative accumulation of fatigue damage under random loading conditions and their work has 

addressed the usage of the inverse power law in accelerated fatigue testing. Escobar and Meeker 

[3] in their review paper explained the usefulness of the Inverse Power Law is describing the 

effect of some accelerating variables like voltage and pressure on the failure times of testing 

units. The Inverse Power Model is an empirical model and has been used because engineers 

emphasized its power in analyzing ALT data. Caruso et al [42] in an overview of the 

fundamental ALT methods lists the Inverse Power Relationship and the Arrhenius relationship, 

which we will review next, and describes the versatility of the different forms of these 

relationships in describing the relationship between the accelerating stress and the life of the 

testing unit.   
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𝑉଴

𝑉
൰

௣

 (2-9) 

𝐹(𝑡; 𝑉) = 1 − exp ൭− ቈ𝑡 ൬
𝑉

𝑉଴
൰

௣

቉

ఉ

൱ (2-10) 



 24

Another representation of the inverse power relationship for the characteristic life 𝜂(𝑉) is 

given by [43]:  

 For a general notation, 𝑉 in Equation (2-11 ) denotes the accelerated variant or stress. 

𝐾 and 𝑛 are referred to as characteristic parameters determined based on the material and the test 

procedure or method used to perform the ALT. Given the lifetime follows a Weibull distribution 

with shape parameter 𝛽 the PDF function is given by:  

 

2.1.5 Arrhenius Relationship in ALT 

On the same previous note of the Inverse Power Law above as a linkage method used 

with statistical distribution to link the failure time to the accelerating variable in ALT data 

analysis, the Arrhenius relationship has gained attention and has been extensively used in 

different researches where distribution parameters are a function of temperature as the 

accelerating variable. Nelson [44] present a three-part series describing statistical methods to 

model temperature accelerated life testing data by assuming all testing units are tested to 

failure. In the first part, Nelson described the Arrhenius method in combination with graphical 

methods to solve the problem of ALT when the accelerating factor is the temperature and 

highlighted that the same method could be applicable to different ALT when the accelerating 

variable is not necessarily temperature. His model is designed for single failure modes. The 

Arrhenius model has been found useful to describe the life of a component when temperature is 

𝜂(𝑉) = 1/𝐾𝑉௡  (2-11) 
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the accelerating variable. It suggests that the mean of the lifetime distribution is a function of 

temperature and that the standard deviation is constant.  However, the Arrhenius model does 

not tackle the dependence among the failure time distributions and temperature due to multiple 

failure modes and suggests that each failure mode could be represented by a separate Arrhenius 

model, but multiple failure modes is not allowed during ALT. 

The general Arrhenius reaction model is given by the following equation [43] for when 

the accelerating variable is the temperature:  

𝜐 is the rate to failure, the speed of a reaction, 𝑇 is the absolute temperature in Kelvin units. 𝐴 is 

a non- thermal constant factor whereas 𝐵 =
ாಲ

௄
=

஺௖௧௜௩௔௧௜௢௡ ா௡௘௥௚௬

୆୭୪୲୸୫ୟ୬୬’ୱ ୡ୭୬ୱ୲ୟ୬୲ 
.  

The use life and accelerated life relationship at nominal stress under use conditions and 

the accelerated conditions could be found in [43] by:  

in which 𝐿௨௦௘ ௌ௧௥௘௦௦ is the life at use temperature, 𝐿஺௅் denoted life under ALT conditions (i.e. 

accelerated conditions), 𝐸஺ is the activation energy, 𝐾 is the Boltzmann’s constant 𝐾 =

8.623 𝑥10ିହ ௘௏

௄
. 𝑇௨௦௘ and 𝑇஺௅் are respectively the use and accelerated temperature. 

Pascual [45] developed s-independent Weibull-Arrhenius competing risk model for 

accelerated life test (ALT) planning involving multiple failure modes dependent on one 

accelerating factor. The failure modes are assumed to have an unobservable failure times and 

that the minimum represents the product. The latent failure times of these failure modes are 

assumed to follow a Weibull distribution with a known common shape parameter. ML methods 

𝜐 = 𝐴𝑒𝑥𝑝 (− 
𝐵

𝑇
) (2-13) 
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are used to obtain the planning values for the model parameters. Given 𝑒𝑚𝑝 (𝐾𝑒𝑙𝑣𝑖𝑛) =

𝑡𝑒𝑚𝑝 (𝐶𝑒𝑙𝑠𝑖𝑢𝑠) + 273௢ ; the Arrhenius relationship for the location parameter when the 

failure time follows a Weibull distribution:  

The standardization of the experiment conditions is often used to generalize the test 

planning model [45], for a given accelerating factor s, with upper stress 𝑠௨ and a lower stress 𝑠௅, 

by:  

 

2.1.6 Eyring Relationship in ALT  

The Eyring model is used for cases using the temperature as the accelerating variable as 

the Arrhenius relationship. It is derived from quantum mechanics, however it is not as common 

as the Arrhenius relationship [43]. The relationship below represents the mean life as it related to 

the temperature:  

𝐿௠௘௔௡ is the mean life, 𝐴 and 𝐵 are parameters to be determined by ALT Testing and T is the 

temperature. For an exponential distribution, the mean life under use stress is given by the 

following equation:  

 

𝜇(𝑡𝑒𝑚𝑝 𝐾) =  𝛾଴ + 𝛾ଵ

11605

𝑡𝑒𝑚𝑝(𝐾)
 

(2-15) 
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𝑠 − 𝑠௅
 ; 0 < 𝑋 < 1 
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2.2 Regression Survival Data Models 

Another class of research analyzed survival data by applying different regression model 

which would explain the effect of the applied stress on the failure time or they make use of the 

accelerated failure method. Some models integrate log-scale statistical distributions with 

regression models, models like proportional hazard model, accelerated failure model and the 

extended hazard regression model. ALT data are considered survival data as it tests the life of 

products. This type of models has gained giant traction in the medical field and recently it was 

imported to the reliability analysis world. In this section, we review some of these researches 

and their findings.  

 

2.2.1 Cox-Proportional Hazard Regression Models 

Nelson [46] offered a detailed analysis of methods about regression models used in 

accelerated testing to analyze ALT data. Survival data could be very well fitted into statistical 

distribution functions as shown in section 2.1 or could be represented in terms of hazard rate 

functions. Cox regression model presented in 1972 [47] is one of the very used models with 

different variations to describe the effect of covariates (i.e. factors) on the event time that could 

be failure time. The hazard rate of an event time t with covariate X is given by:  

and the Cox regression model is given by:  

where 𝜆଴(𝑡) is defined as the baseline unspecified function which is the hazard rate when 𝐗 =

0 and 𝛃 is a regression coefficient vector acting multiplicatively on the covariates X.  

𝜆(𝑡; 𝐗) = lim
୼௧→଴

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + Δ𝑡|𝑇 ≥ 𝑡, 𝐗)/Δ𝑡 
(2-19) 

𝜆(𝑡; 𝐗) =  𝜆଴(𝑡)𝑒𝐗౐.𝛃 (2-20) 
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Ata et al studied the assumptions of that model and they showed how it can be applied to 

analyze lung cancer survival data [48]. Cox model is based on the main assumption of hazard 

rate proportionality where the hazard rate ratio at any two-event time t is constant under two 

covariates levels.  

Cox-proportional model could take a parametric form where the baseline hazard rate 

function could be chosen one of a Weibull distribution as shown in [49] and [50] where 𝜃 is a 

positive shape parameter and 𝜎 a positive scale parameter:  

Breslow in 1974 presented the application of regression models with censored data using 

[51] among the regression models, he made use of the non-parametric cox proportional model.  

Breslow is 1975 presented a method to estimate the baseline hazard function known as Breslow’s 

estimator [52] which is regarded as a step function. Different methods have been used to estimate 

the parameters of the Cox regression model like Bayesian inference methods using prior 

information as presented in [49] or like the marginal likelihood function estimation method has 

been used by Kalbfleisch and Prentice [53] to obtain the cox proportional hazard model 

parameters.  Other researchers like Anderson et al [54]used piece wise smooth estimate of the 

baseline hazard function where he assumes that 𝜆଴(𝑡) is a quadratic spline function. Campolieti 

[55] proposed a Bayesian framework used to estimate and smooth the baseline hazard in a 

discrete time hazard model.  

ElSayed et al [56]applied the proportional hazard model to find the optimal ALT design 

of a selection of constant stresses including Type-I censoring. They have assumed the baseline 

hazard to be linear with time and obtained the maximum likelihood estimates of the regression 

𝜆଴(𝑡) =
𝜃

𝜎
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coefficient as well as the baseline hazard function parameters. The reliability function is given 

by:  

ElSayed and Zhang [57]presented an approach in which they used the proportional 

hazard model to optimize the accelerated life testing design with multiple stress levels. The 

optimal stress levels are obtained based on the condition that reduces the variance in the 

reliability estimation over a specified period of time.  

Hu et al [58] obtained the upper confidence bound of the cumulative failure probability of 

a unit under operation stress under use stress by using a non-parametric proportional hazard 

model and step stress ALT data. Furthermore, The cox proportional hazard model has been given 

a preference for being non-parametric in the sense that the baseline hazard function does not 

have to take a parametric form and hence the reliability function distribution is not necessary in 

order to explain the effect of covariates (i.e. explanatory variables) on the event time[4].  

As well, Newby [5] they demonstrated in a comparison study between AFT models and 

proportional hazard model that when a Weibull distribution is picked, the distinction between the 

two methods is masked and cannot be distinguished due to the similarity in the model equation. 

Also, it has been noted in [59] that the advantage of the PH over AFT lies in being able to derive 

the partial likelihood to estimate the relative risk function which describes the effect of 

covariates on the failure time in a hazard function form without parametrizing the baseline 

hazard function unlike AFT models which is considered a valuable aspect of PH models if one is 

interested in the quantification of the effects of the covariates on the failure time.  

𝑅(𝑡; 𝐗) = exp ൭− ቆ𝛾଴𝑡 + 𝛾ଵ

𝑡ଶ

2
ቇ൱ 𝑒𝛃𝐓.𝐗 

(2-22) 
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As a conclusion of this section, one can notice that PH model has gained great attention 

and traction in applying the model to survival analysis and is observed as an alternative to the 

AFT model. However, the assumption of proportionality of the hazard rates of two event times at 

two levels of the covariates was limiting and has pushed the researchers to look into different 

models and estimation approaches to cover the possibility of having this assumption not 

satisfied.  

 

2.2.2 Extended Hazard Models 

A class of regression models known by the extended hazard models introduced by Amoli 

and Ciampi in [60]after testing the PH and AFT and their application to survival data in[61]. The 

model is versatile and takes the proportional hazard model and the accelerated failure time model 

as special cases. Authors in [60] approximated the baseline hazard function using a spline 

quadratic function and the maximum likelihood is used to approximate the regression parameters 

of the model. the importance of combining AFT and PH models in one is in the possibility of 

covering a large gamut of applications. the framework is useful to analyze survival data 

including censored data. 

Other researchers have modified the EHR model like Shyur et al in [62] presented a new 

framework that modifies the EHR model using the partial likelihood function. The approach is 

developed to analyze failure data and takes into consideration time-dependent covariates. They 

also suggest that the proposed method is easily adopted to come up with ALT plans with varying 

stress loadings (Step Stress, Cyclic etc.). The model has been verified using real testing data 

collected from lab testing of units where the specimens are subject to a time dependent load as 

the accelerating stress. Then, the data collected is used in a comparative analysis between the 
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model result and the lab data, the latter verification approach is regarded as unique to the 

development of reliability framework.  

ElSayed et al in [63] studied the extensions of AFT and PH models in order to extended 

the EHR model to an Extended Linear Regression Model to provide a new framework for 

reliability estimation. The model is regarded as an extension to both the Proportional Linear 

Hazard (PHL) and EHR model. the PHL is an extension of the Cox model presented first by 

Hastie and Tibshirani in 1993 [64]in which the regression coefficients are allowed to vary with 

other variables factor (i.e. time) but the effect of the covariates is kept a linear effect.  The PHL 

model for a single covariate where the regression coefficient 𝛽 =  𝛽଴ + 𝛽ଵ𝑡 is made dependent 

on time and is expressed by: 

The ELHR model includes the reflection of three effects as follows: the proportional-

hazards (PH)effect, the time-scale changing effect and last but not least the time-varying 

coefficients effect of the PHL. The baseline hazard function in this research is assumed a 

quadratic function. Researcher as well considered censored data in the model and when 

collecting testing data in the lab for model verification.  

Neto presented an EHR model in which the spread parameters is dependent on the 

covariates, more details about this models could be found in [65]. The model is developed for 

application to the reliability analysis and survival data. Seng et al [66] presented a 

semiparametric form of the extended hazard model and they have obtained the estimation 

equation of the regression parameters using counting processes and martingale techniques. The 

model has been tested on medical data.   

𝜆(𝑡; 𝐗) = 𝜆଴(𝑡) exp((𝛽଴ +  𝛽ଵ𝑡)𝐗) 
(2-23) 
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We can conclude from this review that the model presented great benefits to cover 

different aspects in reliability and survival analysis as it combines the assumptions of the PH and 

AFT models and expresses them as special cases. The model uses the hazard function form and it 

allows, with its extensions, studying the effect of time- dependent regression coefficients and the 

effect of covariates on event times. However, the application of this model in the reliability field 

is very limited. Conversely, some researchers applied the EHR model in the medical field to 

study survival data.  

The attractiveness of the EHR model is being a distribution free model and using the 

quadratic form for the baseline hazard allows to have different distributions as special cases 

which will then covers a wide spectrum of data types and distribution. More on the formulation 

of this model and how we will apply it to ALT data will be explained in Chapter 7. 

 

2.3 Dependence Modelling 

In this section, we focus on the dependence modelling using the copula function. We 

review the state of art and list the work for modelling competing risks via copula function. Then, 

we review another dependence model which has been widely used in the medical field known as 

frailty models.  

 

2.3.1 Competing Risks Via Copula Function 

The interaction of failure modes between two-components system was first presented by 

[67] and since then multiple studies have tackled the idea of interaction between the failures, 

referred to as competing risks or failure modes, of a system or a component. In this section, we 

review some of these findings in what follows. 
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Nelson in his book [68] defines the Copulas as functions that takes multivariate 

distribution functions as inputs and joins them to their one-dimensional margins. Studying 

Copulas and their usefulness in statistics is fairly new and it is a growing field of study. Nelsen 

presented in this book the different characteristics of various Copula functions and their 

applicability to study dependence.  

Zheng and Klein [69] talked about the difficulty of presenting the net survival function in 

engineering or in any other field in a competing risk framework, because if 𝑇 represents the time 

to failure of an equipment, it is often difficult or even impossible to measure 𝑇 because of the 

occurrence of another event at time 𝑇′. They also presented a Copula graphic estimator 

framework to estimate marginal distribution using Copulas to model dependence between 

censoring and survival times (like the failure X at time 𝑇 and event Y at time 𝑇′). They used the 

Copula function as a nonparametric function allowing to detect dependence between two random 

variables. The Copula includes all information which joins the two marginal distributions of the 

two dependent events X and Y together to give their joint distribution. 

Schweider and Skar in their book Probabilistic metric spaces [70] defined the Copula 

mathematically as follows:  

In Equation (2-24), 𝐻 is the joint distribution of two events 𝑋 and 𝑌, 𝐹 is the marginal 

distribution of 𝑋 and 𝐺 is the marginal distribution of 𝑌.  

Lo and Wilke [71] extended the model presented by Zhen and Klein in [69] to model the 

dependence between more than two competing risks using the Archimedean Copula. Rivest et al 

[72] assessed the proposal in [69] and constructed a martingale framework for the survival 

function with dependent censored times and derived a closed form expression for the copula-

𝐶(𝑦ଵ, 𝑦ଶ) = 𝐻{𝐹ିଵ(𝑦ଵ), 𝐺ିଵ(𝑦ଶ)}  ; 𝑦௜ ∈ [0,1] (𝑖 = 1,2) 
(2-24) 
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graphic estimator assuming the joint survival function using Archimedean Copula. Genest and 

Rivest [73] constructed a one dimensional empirical distribution function for two events X and Y 

and they have assessed the dependence between two variables X and Y for an Archimedean 

Copula. 

Gu et al [74] constructed a reliability framework for systems by establishing a life 

distribution model based on a correlation analysis of the failure modes of components of a 

system in conjunction with Copula function. The Copula’s parameters are obtained using the 

maximum likelihood technique. They applied the model to a crank and connecting rod 

mechanism of a diesel engine where the dependence among the failure modes of the same 

component as well as the dependence among failure modes of other components are considered 

to estimate the reliability of the system. The framework presents a calculation procedure of the 

reliability using Copula function to model dependence between failure modes.  

Zu and Lu in [75] aimed at estimating the system reliability of structural systems by 

considering the dependence among failure modes using the Copula function. They formulated 

the problem based on quantitative method and assumed the system is a series components 

system. In order to model the dependence among failure modes, they have proposed 4 copula 

functions, namely: Gaussian, Clayton, Gumbel, and Frank copula. They have made use of the 

method of moments in order to compute the reliability of a component and estimate its 

parameters.  

In a different scope, Peng et al [76] proposed a failure rate model that captures the 

dependence among the failure modes of the components. Failure rate is assumed to play a central 

role in systems maintainability analysis.  They further analyze the influence of the maintenance 

on the failure rate. Limbourg et al [77] modelled spatial dependencies (i.e. physical location of a 
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component in a system) by considering two system layouts and they have presented a framework 

that uses the Copula function as a mean to model dependency between failure modes of 

components based on their physical location in a system.  

On the other hand, the power of copula modelling dependence among competing risks 

has been demonstrated in the work of Carrière [78]. In their work applied the concept of Copula 

to capture the dependence among competing risks in the medical field. The work shows how the 

survival probabilities could be calculated by solving a set of differential equations and that how 

dependence is modelled via Copula function.  

 

2.3.2 Failure Time Dependence Via Frailty Models 

In survival studies, Frailty models are widely applied in the medical field to study 

randomness among individuals in clusters. Different researchers have tackled the frailty and 

various models have introduced where some are parametric, and others are arbitrary. As well, 

different estimation methods have been used to obtain an estimate of the parameters of the 

model. The Frailty modelling has been shown powerful explaining dependence among event 

times and many authors hinted to its usefulness in reliability analysis, however based on our 

research its use and study is still very limited. Next, we review notable researches and models of 

frailty models.  

The data in survival analysis is often a multivariate or clustered failure time data [79]. It 

was of great interest to develop a framework or a method to model the correlation among 

observations sharing certain factors appropriately. A commonly used method is the frailty that 

was named first after Vaupel et al [80], in general, if an individual is sought to be frailer in a 

population, it is more likely to die before the less frail individuals. 
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 Clayton [81] in has studied the Frailty models for bivariate data, they applied the Cox 

PH model and added the modelling of association among observation via frailty.  

It has been shown that frailty could be an extension of the PH hazard regression model. 

This modification in the model increases the precision of the study as it accounts for observable 

factors by the covariates and unobservable factors by assigning a frailty factor for each cluster of 

associated event data, such a model takes the following form provided in [82] where frailty is 

defined as unobserved covariates or variables affecting the event time:  

where 𝑧௝ is defined by log of the frailty factor (𝑧௝ = log൫𝑤௝൯), 𝛃 represents the relative risk 

factor for the variables 𝐱௜௝ and 𝜆଴(𝑡) is the baseline hazard function when 𝐱௜௝ = 0.  

It assumed that the frailty factor follows a parametric distribution as in [83] and [84] in 

which the association or frailty is allowed to be negative and following a parametric distribution 

and the framework is assumed to work for censored data.  

Multiple researchers have done extensive research to expand it to multivariate cases like 

in [85] for recurrent data and like Klein et al in[86] constructed a framework for multivariate 

data with censoring that includes correlated data using a normal distribution data.  

Sidhu in [87] talks about frailty and how it is used in medical studies. They say that the 

individuals at test are usually clustered into groups, the cluster groups are seen to have a 

common factor associated with it. Survival analysis is concerned with events time. Event times 

in the medical field could be death or healing time. Examples of these clusters include event 

times (i.e. death) of individuals life suffering from a disease and exposed to the same 

environment or event times (i.e. healing time) of individuals receiving some sort of treatment in 

𝜆൫𝑡; 𝑥௜௝ , 𝑧௝൯ = 𝜆଴(𝑡) exp൫𝐱௜௝𝛃 + 𝑧௝൯ 
(2-25) 



 37

similar conditions.  It is thought that the latter is a good reason to group these event times 

together.   

Lambert et al [88] presented a parametric accelerated failure time model with random 

effects, they used the frailty to model the randomness factors of survival data. Randomness or 

random effects are often referred to as frailty components, to use the model, hazard functions are 

widely used and often fitted via parametric forms by adapting a probability distribution function, 

however there are situations where the PDF is limiting or not concise, so their framework 

allowed a mixture hazard model which permits different forms of the hazard function.  

Balakrishnan1 et al [89] presented a generalized gamma distribution model. They 

assumed that the frailty factor follows a gamma distribution and they include other parametric 

distribution like Weibull and Lognormal as special cases. They suggested the maximum 

likelihood method to estimate the parameters of the model.  

Shared Frailty Models tackles multivariate cases and includes the randomness in the 

reaction to the applied load is characterized by the frailty factor explaining the unobservable 

factors affecting the failure. The randomness is the dependence among event times and other 

unobservable factors [90]. 

Liu in [91] presented a framework applying the frailty concept to model the dependence 

among competing risks of a system and fitted ALT data to the model in order to find the optimal 

ALT plan. The frailty is assumed parametric and following a Gamma distribution. Maximum 

Likelihood technique has been used to estimate the model parameters.  

If the frailty factor 𝒛 is shared among all latent lifetime, the model is called shared Frailty 

model. The value of 𝒛 is constant over time and is assumed common to the all components in a 
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system. In other words, all components share the same frailty which is responsible for their 

dependence[92].  

For all 𝑗 ∈ 𝐊 , the cumulative hazard functions Λ(𝑡(௝)) share an unobservable frailty factor 

𝑧, conditional on the the frailty factor 𝑧, the latent lifetimes [𝑇(ଵ), 𝑇(ଶ), … , 𝑇(௞)] are assumed 

independent and the generalized joint survival function 𝑆(. )is given by[91]: 

 𝑆൫𝑡(ଵ), 𝑡(ଶ), … , 𝑡(௞)|𝑧൯ = 𝑒ି௭ ∑ ஃ൫௧(ೕ)൯ ೖ
ೕసభ  (2-26) 

The state of art showed the effectiveness of using frailty model to model dependence or 

association among survival data or observations belonging to one cluster. However, the frailty 

application in reliability analysis is very limited. The hazard function form or PH regression 

models and AFT models combined with frailty [93] has attracted the eyes of many scientists and 

researchers to use it and apply in the medical field. Compared to Copula, the number of 

parameters to be estimated is much less in frailty models. Copula uses correlation parameters 

among the all possible correlated items, while frailty assigns a single term to model the 

dependence or association as an unseen variable. In this research we will make use of these 

models, the mathematical formulations will be illustrated and explained in the context of this 

research in subsequent chapters. 
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 Research Motivation and Merit 

The following shows the reasons this research has been carried by explaining the testing 

stages if products during the design and product development phase. Then we present the added 

value of the implemented model for statistical and engineering sciences. 

 

3.1 Research Motivation 

Often, the life of a product is a requirement established by the OEM to meet customers’ 

expectations and to dictate warranty cost and terms requirements. ALT is a common testing 

method that is used in reliability prediction. ALT take place at different stages of the product 

development cycle. Figure 3-1 shows the different testing stages in a production environment of 

industrial goods. 

The production of a product goes through different cycles and it is normally a joint effort 

between different parties called OEM (Brand manufacturer) and suppliers (supplying the OEM 

with components or services) and each of them have their own people responsible for the 

different tasks: designers, validation engineers, safety engineers, sales men, financial experts etc. 

Each of the parties involved are responsible for the delivery of materials, components (i.e. 

resistors, sensors and other), or sub-systems that are safe and that meet the quality expectations 

of the OEM. Part of quality and design verification and validation is testing. Given the cycles a 

product goes through from design to sourcing to production, a product and its original 

constituents are subject to testing.  
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Figure 3-1 Testing Stages of a System During Production Cycle 
 

Testing could be applied at each cycle to support the validation of the supplied 

components; coupons or raw materials (i.e. iron, stainless steel, zinc, aluminum and others) could 

be tested to derive their physical properties like the maximum tensile strength or hardness, and 

that is the testing stage 1. Other type of testing could be corrosion testing, fatigue testing and 

others. These types of testing identify the performance of the materials under certain load and 

their failure modes. The failure of these material is then analyzed to develop an understanding 

about their life and the characteristics of the environment (Temperature threshold, humidity 

threshold) in which they can be used and the expected life in these conditions.  
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 Raw materials are then processed to form elements (i.e. wires). Once processed, the 

material properties are affected due to material mixing, welding, etc., the industry responsible of 

turning the coupons into components usually runs testing, testing stage 2 in Figure 3-1, to 

determine the physical and performance aspects of their product and in turn they would run life 

testing to determine the life expectancy of their elements in certain operation conditions (loads 

like voltage, temperature, maximum pressure and other). The testing is supported by data and 

results accompanies the design or element delivery to the OEM.  

The cycle continues in the same fashion at each stage, the contract cost that an OEM 

would sign with a supplier to get components or service supply is often dictated by the different 

design, engineering and testing requirements to perform and execute the design. Testing occupy 

a major cost in the game and every component or product is expected to be tested to meet certain 

safety, quality and performance set of criteria. Accelerated life testing is a major component of 

every cycle and data can be collected at different stages from raw material to components and 

into subsystems, testing stage 3 in Figure 3-1, to the overall assembled system (i.e. circuit board), 

testing stages 3 and 4 , at each stage a new set of testing data is provided.  

The research develops a new methodology to integrate these data from different testing 

levels in order to ensure minimum uncertainty is being propagated to estimate the system 

reliability. On the other hand, limited by testing cost which might limit the available ALT data, 

the novel framework developed in this research allows OEMs to use the different set of data 

collected from different ALT stages to determine the most accurate system reliability prediction. 

 The state of art shows the availability of different methods that could be applied directly 

to a system of n components assuming these components are independent, or some researchers 

addressed a specific topology of systems like the series systems. On the other hand, some 
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researchers analyzed the ALT data of a single testing stage (a component or a system), so the gap 

is in building a bridge to navigate the ALT of one testing stage, as shown in Figure 3-1, to the 

next stage. Moreover, most of the time a single standalone component is manufactured to be part 

of a bigger system where it is put in a physical or a logical connection with other components of 

different or similar type to serve a sub-service within a system in order to deliver the ultimate 

purpose of a system (i.e. product) for which it has been designed and manufactured.  

This sets the motivation of the research of building a propagation method by reducing the 

uncertainty between the different stages of testing during a production cycle. This motivation 

raises other concerns as we intend to tackle it, given the fact that at the last stage the components 

are brought together in a certain system structure, the configuration or the topology in which 

these components are placed in the system creates a dependence not only in the functionality but 

in the way they fail (failure modes or competing risks) due to certain conditions. So, modelling 

the effect of these factors along with dependence among the components of a system in order to 

build the bridge to propagate ALT data from once testing stage to another or navigate and infer 

statistical investigations and observations from any of the testing stage (go backward from one 

testing stage to another, go forward from one testing stage to another).  

Additionally, given the availability of data at each testing stage raises the concern of 

fusing the ALT data collected from two different testing stages together in order to determine an 

estimate to the overall product. This testing effort is being paid for and available for the engineer 

to use, the larger the data set, the more the accuracy of the model. This is crucial at the last step 

when the system is too complex to be tested, imposes testing hardships like limited capabilities 

and limited budgets to perform the testing, limited testing results in limited available data which 

will then minimize the certainty of the resulting system reliability estimation. Accordingly, the 



 43

latter sets the motivation of how ALT data from different stages could be combined to 

complement each other in reducing the uncertainty in the system reliability. 

3.2 Research Advantages 

Starting with the testing data from both testing level and their statistical distribution, we 

can tie the parameters of interest where the uncertainty resides together into one probabilistic 

equation for each level of testing. This will allow us to see how the uncertainties in the hyper 

parameters resulted from the fitting model of the ALT failure data could result in an accuracy 

bias if used to derive the system reliability. The goal is to minimize the uncertainty in the system 

reliability and allocate the testing design parameters optimally in order to minimize the testing 

budget while avoiding any compromise of the precision of the system reliability estimation.  

Fusing the information from system level testing data and component level testing data requires 

understanding the mathematical linkages between component level and system level. These 

linkages will further detail how the uncertainty is propagated and open the door for reducing it 

step by step then use it to optimize the design parameters. A system comprising multiple 

components contains dependence of the failure times among its components. Understanding the 

dependence is crucial as it will affect the precision of the system reliability if it is neglected. To 

manage the uncertainties reduction and the information fusion, the following five challenges 

must be resolved.  

Tackling the objectives, listed above, in this research, will be of great benefit to achieve 

the coveted goal behind this research that has the following advantages:  

1. Understand the uncertainty propagation from the component level and system level 

throughout the whole approach leading to the system reliability derivation. 
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2. Develop the linkages between a system and its components that will explain the 

connections in a reliability analysis context.  

3. It allows versatility in the use of the available data that could be used to travel from a 

system level to component level or vice versa depending on the level of testing chosen 

and the corresponding failure time data: Component-Level versus System-Level. 

4. Maximizes the return of the available data via data fusion to further tune the precision of 

the system reliability. 

5. Adds value to the realm of Reliability Analysis by proposing a model that takes into 

consideration the dependence among the failure of components. 

6. Achieve optimal testing design parameters that will help getting rid of irrelevant test 

attempts which will lead to a reduction in the testing time as well as well definition of the 

targeted stress levels. This will help better the Design of Experiment plan and execution.  

7. Reduce the cost of the product development phase by reducing the cost of quality and 

reliability testing while maintaining good quality reliability assessment. 

 

3.3 Intellectual Merit and Broader Impact 

Present methodologies in the accelerated life testing allows the assessment of system 

reliability conclusions by testing at the system level. On the other hand, some of the available 

practices allows testing single components and calculate its reliability. Both schools of thoughts 

do not take into account any dependence that might exist among the components of one system 

once put in use. Using the information collected from component level testing to assess the 

system reliability could be of great financial importance at the design level. In addition, 

sometimes it is viable to use system level testing information to form reliability conclusions 
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about the components failures. This research will address these issues by showing first, new 

flexible methods allowing the use of the component level testing information with the purpose of 

calculating the system reliability once these components are assembled into one system, second, 

it presents a model to link system level testing data to the system reliability by reducing the 

uncertainty and calculating the system reliability. Third, the method versatility allows the fusion 

of both information: system level and components level in order to reduce the uncertainty in the 

system reliability. Fourth, the proposed approach in this research takes into account the 

dependence that might exist between the components. Last but not least, the research at hand 

allows the optimization of the testing design parameters to keep the development cost at 

minimum. 

Considering the current advancements in the technologies, assessing the failure times via 

testing of systems is becoming more challenging for its complexity, placing some constraint on 

the testing procedures, which in turn is increasing the cost of testing in the prototype phase in 

order to figure out the life of systems and their probability of failure. This research benefits the 

large OEMs, introducing new complex systems, to better assess the reliability of their products 

by optimizing the cost and use the testing information of components subject to an accelerated 

failure which is easier to achieve than testing the whole system.  

Beyond OEM, the research could be of great use for Engineering Quality Consulting 

companies, Quality and Reliability Engineers, Data Scientists, Statistician and Probability 

researchers. The content of this research will be communicated at engineering and educational 

conference presentations as well as peer reviewed journal papers. 
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 Proposed Model Background  

In Chapter 4, we enclose the background about the models used to develop the ALT 

models enclosed in Chapters 5 and 6. We explain the problem-solving strategy and how the 

models will help construct the linkages between the data collected from different testing stages to 

the system reliability.  

 

4.1 Problem Solving Strategy Background 

The goal of this research is to find a methodology allowing to fuse the information 

collected from system level testing and components level testing to improve the assessment of 

system reliability. As well, it aims at optimizing the accelerated testing design variables 

constrained by a budget. The outcome of this research is expected to be applied to any systems 

consisting of multiple components with testing being feasible by applying a higher than use 

stress to accelerate their failures.  

Normally, a system consists of multiple components connected together to achieve 

certain targeted operation, these components often share some environmental and stress loads 

that are not clearly observable leading to the dependence among them in how they fail, the latter 

is referred to as dependence of components failure times. The dependence forces a challenge on 

the modelling of the information gained at each level of testing 

We identify two testing levels performed at different testing stages: component-level 

ALT and system-level ALT, so this research is dealing with two types of information, one data 

set is inferred from system level testing and another is collected from component level testing 
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and each of there before mentioned two testing levels have their own advantages and 

disadvantages.  

1. The system-level testing defined as taking the whole system and apply an accelerating 

factor on the whole system. The collected data contains an implication to the 

dependence between the components because the system is tested as a whole and the 

linkage among the components functioning under this system is already established and 

thus considered in the results. Systems of multiple components undergoing a system 

level testing could be expensive, and often test customization in order to test a system 

with certain design in a specific operational method imposes additional costs and 

hardships. However, the result it takes into account the dependence of the system’s 

components failure times which is an advantage to this level of testing. 

2.  The component- level testing consists of testing each component separately before it 

becomes a part of system or linked to any other component. This level of testing is 

considered inexpensive and allows testing customization because the functionality of a 

single component or shape is regarded simpler compared to a system of multiple 

components, however it does not include any of failure time correlations of components 

when assembled together in one system.  

Using the testing design parameters, the failure time ALT data and other identified model 

parameters, the testing data could then be fitted to be used with the purpose of running a 

reliability assessment and derive the probability of no failure of the system. This analysis 

incorporates some uncertainty that propagates starting from the testing data and ending in the 

result which is the system reliability.  
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The research proposes a method to reduce the uncertainty while presenting a novel 

approach in using testing data fusion from component level and system level to reduce the 

uncertainties in the components parameters and the system level parameters and then derive the 

system reliability with high confidence. 

Figure 4-1 shows a figure of a system with two components and the associated 

parameters to be estimated in order to reduce the uncertainty carried with each parameter using 

the failure times of the two components as data from accelerated life testing as well as the system 

level testing data.  An example of such a system could be any electrical board with electronic 

components such as two resistors, or two sensors in a giant robotic system. Each of the 

components and the system, as shown in the figure, shows a set of associated statistical 

parameters that are used in the failure time statistical distribution to infer real (i.e. actual) time 

failures from accelerated life time testing.  

It is shown in Figure 4-1 that component one and component two each has its observation 

node which refers to the failure time observations collected from putting each component under a 

high stress. Alternatively, the system in the middle consists of the components 1 and 2, has its 

own observation node which is the failure time data obtained from putting the system under 

higher than use stress in order to attain an early failure. As seen in the figure, the random nodes 

from the components is directed at the nodes of the system box meaning that the information 

gained from the component level could be used to reduce uncertainty in the system level 

parameters.  

Outside the three dashed boxes in Figure 4-1 below we see three functional nodes, among 

which one is red, which represents the reliability of the whole system. As indicated in the figure, 
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the input to that node are parameters from both components and the system which means that 

there is a fusion of information in order to derive the reliability of the system.  

Figure 4-1 Connections between component-level ALT, system-level ALT, and system reliability 
(a system with two components) 

Table 4-1 Nomenclature of Parameters in Figure 4.1 
Symbol Definition 

𝐭𝟏, 𝐭𝟐, 𝐭𝐬𝐲𝐬 Testing Data – Failure Times 

𝝈𝐢, 𝛉𝐢, 𝛂𝐢, 𝛂𝐬
𝐢 , 𝛒 Statistically Inferred Hyper parameters 

𝐗𝐢 Accelerated Life Testing Design Parameter 

Referring to Figure 4-1, One node existing under the system box and does not exist under 

either of the boxes representing the components is a random node with the letter 𝜌 in it indicating 

the dependence. The dependence is not something at the component level rather it is established 

at the system level. The explanation of the latter is that, the failure of an individual component 

by itself does not depend on anything but on its specific operation. When a component is put in 

linkage with another component to form a system in order to operate together on achieving a 



 50

system targeted operation, the component establish a connection among each other due to a 

symbiotic relationship in the operation.  

The components of a system share loads that could be quantified like rotational loads, 

electrical loads and others and some other loads that are not observable and could not be 

quantified due to the non-linearity of their effect on the operation. Both types of loads could 

create dependence in the operation and the failures of the components and hence failure of the 

system. In our research we focus on the dependence in the failure and not in the operation, in the 

meaning of one component could be affected by certain type of loads leading to an effect on the 

other component due to a physical connection between them in a system and in turn flagging an 

effect on the system. The effect could lead to a failure of either the components or the system as 

a whole which leads to the idea of dependence of failure time among the components.  

The design variables indicated in Figure 4-1 above represent the variable that will be 

determined according to an optimization model and subjected to a budget in order to find the 

optimal values that would lead to an effective testing cost. Each level of testing has its own 

design parameters which are mainly two parameters in this research: The stress level and the 

number of tests (specimens) at each level of testing.  

To target the six objectives of the research and construct the methodology, the 

establishment of a relationship between component level and system level failure times is 

inevitable. This research uses two approaches: a probabilistic approach and a regression 

approach to link the probability of failures of the components and the system in order to fuse the 

failure time data and infer the parameters needed to carry on the system survival analysis.  
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4.1.1 Autonomous Vehicles Example 

The competition between OEMs towards automation and presenting new innovative 

technologies has led them to look for more ways to test the robustness of new product designs. 

Both OEMs and customers build certain expectations on the performance of these new products 

for a certain period of time which in turn has led to the birth of various prediction models and 

methodologies to estimate the life of these products [94]. As an example, we consider the 

Automated Driving has been greatly capturing the interest of the automotive industry. Countless 

hours of design efforts are being invested with the purpose of creating a robust vehicle in order 

to gain the confidence of the market. The sensing system is perhaps the most important system of 

all as it is responsible for watching the environment and command the vehicle accordingly. 

Knowing the lifetime of such system is of great importance, because the moment the sensing 

system in the vehicle dies, the vehicle is no longer safe to be driven. Reliability Engineers are 

putting enormous efforts to quantify the life of these systems especially that these systems are 

being newly invented, and the hardware designs imposes a level of technological complexity 

hindering their testing due to the increased costs and customization required to do so.  

The method proposed in this research could be put in use in order to run a survival 

analysis of these systems using ALT. Figure 4-2 below shows an Autonomous Vehicle with its 

radar or sensing system on its roof. The system is equipped with multiple cameras of high 

resolution and advanced artificial intelligence as well as multiple sensors, this system is the brain 

that commands the car and its level of design safety must be highly rated and designed. For 

confidentially purposes we would simplify the system in Figure 4-2.  



 52

The Figure below shoes multiple components (Table 4-)three sensors, two processors, a power 

source and 4 resistors. The types of stress that could lead to the failure of the system are 

numerous and it could be electrical (excess power), informational (software), physical (crash). 

Creating prototypes of the system for each type of the stresses in order to study the 

behavior of the system in various environments is very expensive yet complicated and requires 

long time of design and application as well as enormous efforts from validation engineers and 

quality engineers. So, the optimality of the testing design is key and important to achieve the 

system reliability with high confidence. 

  Also, not all components involved to create these systems are often testable (i.e. wires, 

welding). On the other hand, suppliers often test their components separately as part of the 

delivery of their products to OEM, so information could be collected for each component 

(sensor, power source, resistors etc.). The latter would create the motivation to maximize the use 

of the available information and mold a strategy to fuse the data from component level with the 

system level (if available) in order to quantify the life of the system.  

Table 4-2 Components constituting the sensing system of an autonomous vehicle 
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Figure 4-2 Autonomous Vehicle Sensing System 

With the research goal in mind and based on Figure 4-1, the overarching research need 

could be generalized to be as follows:  

Develop a framework to reduce the uncertainties in the ALT failure time data model 

parameters (𝜃, 𝜎, 𝛽, 𝛼) using the Accelerated Life Testing (ALT) failure time data 

(𝑡௖௢௠௣௢௡௘௡௧௦, 𝑡௦௬௦௧௘௠) by considering dependence (𝜌) and propagate the uncertainty to 

system reliability then integrate them into an optimization model to optimize the ALT design 

parameters: 𝑋 (𝑠𝑡𝑟𝑒𝑠𝑠 𝑙𝑒𝑣𝑒𝑙𝑠)𝑎𝑛𝑑 𝑛 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑠𝑡𝑠 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑠𝑡𝑟𝑒𝑠𝑠 𝑙𝑒𝑣𝑒𝑙). 

Problem Statement 4-1 Research problem statement 
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Accordingly, the problem-solving strategy is decomposed into two solving procedures 

the first one uses a statistical approach combined with a Copula function to model dependence 

among the failure time. The research then applies an optimization model to this approach. 

Another method is implemented which uses the EHR regression model in combination with 

frailty mode, the approach is considered a distribution free method. Both approaches could be 

applied to any system with any configuration. In each approach, we target five objectives out of 

the six. The optimization objective is applied to the statistical method only.  

In the following two sections 4.1.2 and 0 we explain how each strategy is decomposed 

and then we detail each of the strategies in terms of mathematical formulation and numerical 

examples in a separate chapter (0).   

 

4.1.2 Reliability Assessment Via Statistical Models and Copula Function  

In this problem-solving strategy, we make use of the parametric distribution approach 

combined with the Copula function to model the dependence. We use a log-scale distribution 

function given by[95] :  

where 𝛼 is the shape parameter and 𝜎  represents the scale parameter. The shape parameter is 

given by  

in which X is the normalized accelerated stress. 

𝑃𝑟[𝑇 ≤  𝑡;  𝑇] =  𝐺 ቈ
(𝑙𝑜𝑔(𝑡) −  𝛼)

𝜎
቉ 

(4-1) 

𝛼 =  𝜃଴ +  𝜃ଵ𝑋 
(4-2) 
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Figure 4-3 The three major steps of the problem solution strategy 
 

The approach targets three main objectives and comprises three steps as shown in Figure 

4-3. To illustrate the three steps better, we take the example of the autonomous vehicle radar 

system as shown in Figure 4-2. The steps as they apply to that example are as follows:  

Step 1: The use of the component level information to reduce uncertainty of the system 

failure time hyper parameters. This step consists of using testing stage 2 according to Figure 3-1, 

data and migrate the uncertainties to the system reliability by estimating the reliability of the 

product of interest (Figure 4-4).  

Step 2: The use of the system level information to reduce uncertainty of the component 

failure times hyper parameters. As shown in Figure 4-5 in this step, the research intends to make 

use of the testing stages 3 and 4 to propagate the uncertainty to the system reliability.  
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Step 3: The fusion of both component level and system level testing information to 

reduce uncertainty of the system reliability. Figure 4-6 shows the process under this step, 

merging the data collected from testing stage 2 and testing stages 3 and 4 is the scope in order to 

propagate the uncertainty to the system reliability.  

Figure 4-4 Component ALT data uncertainty propagation to system reliability 
 

 

Figure 4-5 Step 2 System ALT data uncertainty propagation to system reliability 
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Figure 4-6 Step 3 Information Fusion of Testing Stages 2 & 3,4 
 

The first challenge imposed by the first objective of this research and the first step above 

that consists of analyzing the linkage between the components and the system in order to reduce 

the uncertainty in the ALT data distribution parameters.  The reasons behind this challenge are as 

follows: 

1. Reducing the uncertainty in the parameters of the failure time distribution given 

component level testing data in order to limit the propagation of large 

uncertainties when reaching the system level reliability.  

2. Understand the linkage between the component level failure times collected as 

observations, or in other words testing data, and the system level reliability, 

allows using the data collected from a component level in order to derive the 

system reliability without testing the system itself.   
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3. Dissecting the linkage through mathematical equations allows traceability of the 

dependence and understand how it might affect the system reliability. Neglecting 

the dependence among the failure time of the component would lead to a biased 

yet unrealistic system reliability evaluation.  

The problem to be solved in this research challenge is as follows: 

 The probabilistic distribution of component failure times  

 Parameters distribution estimation 

 Dependence modelling of failure time ALT data correlation 

 Uncertainty propagation to system reliability  

 

 

Imposed by the second objective of the research and the second step that is finding an 

approach to link the system level testing data to the system reliability for the following reasons:  

1. The linkage between system ALT data and system reliability allows the use of 

failure time data collected at a system level to derive the actual system reliability. 

2. It helps figuring out how the uncertainty could be reduced at the component level 

when attempting to fuse the information later.  

3. Allows reducing the uncertainty in the dependence factor given the system level 

failure data because the dependence is not introduced at the component level and 

Problem Statement 4-2 Problem to be solved in Step 1 

 Given: Failure Times (𝑡௙௔௜௟௨௘௦)of Components at different stress 
levels higher than use stress level 

 Find: The data distribution equation: 
(𝐹(𝑡ி௔௜௟௨௥௘)𝑎𝑛𝑑 𝑓൫𝑡௙௔௜௟௨௥௘ห𝜈൯  𝑤ℎ𝑒𝑟𝑒 𝑣 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 
allowing to reduce the uncertainty in the distribution parameter  

 Find: Linkage between the component and the system reliability 
𝑅(𝑡)and propagate the uncertainties 
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the reason for that is that a component tested individually instead of being an 

integral part of a system does not involve dependence on another component 

unless brought in a system through some sort of a connection.  

According to the latter, the problem statement is as follows:  

 

This step imposes a new challenge which is understanding the load sharing scheme of the 

components within a system is crucial because it will allow the modelling of the component 

loads cascaded from the loads applied during system level testing.   Because when putting the 

whole system at test, the different components in the system receive different loads: some 

components receive the stress directly and some receive a residual stress cascaded or 

extrapolated from components receiving the loads, leading to different failure modes. The latter 

requires the use of physics methodologies combined with a statistical approach to reduce the 

uncertainty in the failure time’s parameters which will lead to a reduction in the uncertainty of 

the reliability quantification. The research integrates two different approaches to model the 

dependence and closes the analysis with optimization methodologies so as to decrease the cost of 

testing and hence the product development cost by meeting a specified testing cost budget.  

In the last step, we intend at fusing the information by using both data collected from the 

two ALT levels: component level testing data and system level data in order to reduce the 

uncertainty in the system reliability.  

Problem Statement 4-3 Problem statement of Step 2 

 Given: Failure Times (𝑡௙௔௜௟௨௘௦)of System at different stress levels 
higher than use stress 

 Find: Map stresses from boundary components to non-boundary 
components via physics-informed model 

 Find: Linkage between the system level ALT data and the system 
reliability 𝑅(𝑡)and propagation of the uncertainties 
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In every step above, we apply the Bayesian estimation method and we model the 

dependence between the failure times of a system’s components failure times using the Copula 

function.  And the last objective is to find the optimal accelerated life testing design parameters   

which are mainly the stress levels and the number of tests at each stress level subject to a testing 

budget to be spent on testing. 

 

4.1.3 Reliability Assessment Via Distribution Free Models and Shared Frailty Models 

In Section A, we explain the main concept for the distribution free models using the 

extended hazard regression model. In Section B, we explain the concept of the frailty models that 

will be used to model dependence among the ALT data.  

 

A – Distribution Free - Extended Regression Model 

While this approach uses the same decomposition of first using component level data to 

reduce the uncertainty in the system reliability and then use of system level ALT data to reduce 

the uncertainty in the system reliability and finally perform an information fusion, we do not 

apply an optimization model to find the optimal ALT design parameters.  

This approach uses EHR model as given in [63]with baseline hazard function being a 

distribution free and taking the most used parametric distribution (log-scale distributions) as 

special cases which allows a distribution free approach to be used in the ALT field: 

in which 𝜆଴(𝑡)  is the baseline hazard function. The baseline hazard function could be parametric, 

non-parametric, or semi-parametric. In this research, 𝜆଴(𝑡) is assumed a distribution free function. 

Regression methods could be used to estimate the regression coefficients 𝛂 and 𝛃 of the covariates. 

𝜆(𝑡|𝐱 ) =  𝜆଴൫𝑡𝑒𝛃೅𝐱൯ 𝑒𝛂౐𝐱. (4-3) 
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The unknowns in above model are the regression coefficients 𝛂 and 𝛃. The model suggests 

that both the time scale effect and the hazard multiplicative effect of the covariate x are contained 

in the model. Based on the hazard rate function in Equation (4-3), we can notice that when 𝛃 = 𝟎 , 

we get the PH model and when the 𝛂 = 𝛃, the AFT model is obtained [62].  

In this research, the EHR model will be used in conjunction with frailty models to model the 

complicated dependence in reliability analysis. In the next section, we first introduce the concept 

of frailty models and then discuss how the HER model is integrated with the frailty model.  

 

B – Frailty Models 

The dependence is modelled using frailty model[87]and more specifically shared frailty 

model. So, for the first three steps, the approach uses a frailty factor to model the dependence 

among the failure time.  

A class of frailty models is called shared frailty models. Shared frailty models have been 

extensively studied in various research fields as in [62] and [79].   The model is considered a shared 

frailty if the frailty factor 𝑧 is shared among all latent lifetime. The value of 𝑧 is constant over time 

and is assumed to be common to all components in a system. In other words, all components share 

the same frailty which is responsible for their dependence [92]. That is, for all components  𝑖 =

  1, 2, … , 𝑁஼  , where 𝑁஼ is the number of components in a system, the cumulative hazard functions, 

Λ൫𝑡(௜)൯, 𝑖 = 1, 2, … , 𝑁஼, share an unobservable frailty factor 𝑧.  

𝜆(𝑡; 𝑋) = 𝑧. 𝜆଴(𝑡)𝑒𝐱𝐓.𝛃 (4-4) 
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Conditioned on the frailty factor 𝑧, the latent lifetimes of the components 

[𝑇(ଵ), 𝑇(ଶ), … , 𝑇(ே಴)] are assumed independent and the generalized joint survival function 𝑆(∙) is 

given by: 

𝑆൫𝑡(ଵ), 𝑡(ଶ), … , 𝑡(௞)|𝑧൯ = 𝑒ି௭ ∑ ஃ൫௧(ೕ)൯ ೖ
ೕసభ . (4-5) 

Additionally, a widely used distribution to model the frailty factor is the gamma 

distribution. When the gamma distribution is chosen for 𝑧, the model is referred to as gamma 

shared frailty model [92,96]. 

Alternatively, shared frailty models could be used with AFT models [63] by modifying 

Equation (4-3)by adding a multiplicative frailty factor as follows: 

𝜆(𝑡|𝐱) =  𝑧 𝜆଴൫𝑡𝑒𝛃𝐓𝐱൯ 𝑒𝛃𝐓𝐱, (4-6)

where x is the covariate or accelerating stress and z is the frailty factor.  

Figure 4.7 shows how the data is used to propagate the uncertainty and reduce it and it 

shows the versatility of going from the data of a testing level to another testing level in order to 

derive the system reliability and the possibility of fusing both data from both system levels in 

order to assess the system reliability. 
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4.1.4 Bayesian Inference and Particle Filtering 

In this section we explain the Bayesian inference relationship used to sample posterior 

information given prior information of model parameters and the algorithm used to perform the 

sampling of particles which the particle filtering method used in this research. 

A – Bayesian Inference 

In this section we explain the Bayesian inference and its relation to the likelihood and the 

sampling method used in this research. Each of the main 3 steps above use the Likelihood 

function along with Bayesian method in order to sample posterior estimation of the model 

parameters. Bayesian inference and its application in the ALT field have been studied in [97] by 

Shaked et al and in 1988 by Blackwell et al in [98]. Bayesian inference allows the reduction of 

uncertainty in the parameters or variables as one gains more information through data 

analysis[99]. 

Bayesian inference is one among many statistical inference methods that is widely used 

in investigating data. Inference is a probabilistic explanatory state. So, it is a probabilistic 

approach derived from Bayes theorem. As provided with greater details in [100], the Bayes 

theorem suggests that if a set of 𝑛 observations (i.e. data) 𝐲 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௡) having a 

probability distribution 𝑝(𝐲|𝛉) depending on 𝑘 parameters noted as 𝛉 = (𝜃ଵ, 𝜃ଶ, … , 𝜃௞) and 

assuming that the parameters have a distribution 𝑝(𝜃)then:  

𝑝(. ) is the probability notation. 

Next, given the probability distribution of the observation data 𝑝(𝑦), it is implied that the 

conditional probability of 𝜃 is given by Bayes’ theorem:  

𝑝(𝐲|𝛉)𝑝(𝛉) = 𝑝(𝐲, 𝛉) = 𝑝(𝛉|𝐲)𝑝(𝐲) (4-7 ) 
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Also;  

where 𝐸[𝑝(𝐲|𝛉)] is the mathematical expectation of  𝑝(𝐲|𝛉). Based on (4-9) the theorem could 

be written as:  

To define the terms better, 𝑝(𝜃) explains what is recognized about the parameters vector 

𝜃 without any given data or observations and it is referred to as the prior distribution of the 

parameter 𝜃. Accordingly, 𝑝(𝜃|𝑦) explains the known about the set of parameters 𝜃 given the 

observations seen in 𝑦 and they are referred to as posterior distribution of 𝜃. The “c” in the 

equation (4-10) above is a normalizing constant or vector ensuring that the posterior distribution 

integrates or sums up to a total of 1.   

According to Fisher in 1922 [101], when 𝑝(𝑦|𝜃) is regarded a function of the parameters 

𝜃 rather than being a function of 𝑦, 𝑝(𝑦|𝜃) is called the likelihood function and could be noted 

as 𝑙(𝜃|𝑦) which is the likelihood of 𝜃 and the Bayes theorem becomes:  

that is the posterior distribution of 𝜃 given new knowledge is proportional to the product of the 

likelihood function of 𝜃 and the prior distribution of 𝜃 before gaining any observations.  

𝑝(𝛉|𝐲) =
𝑝(𝐲|𝛉)𝑝(𝛉)

𝑝(𝐲) 
 

(4-8 ) 

𝑝(𝐲)  = 𝐸[𝑝(𝐲|𝛉)] =  ൞
න 𝑝(𝐲|𝛉)𝑝(𝛉) ; 𝑖𝑓 𝛉 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

෍ 𝑝(𝐲|𝛉)𝑝(𝛉) ; 𝑖𝑓 𝛉 𝑖𝑠 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒
 

(4-9) 

𝑝(𝛉|𝐲) = 𝑐𝑝(𝐲|𝛉). 𝑝(𝛉) 
(4-10) 

𝑝(𝛉|𝐲) = 𝑙(𝛉|𝐲). 𝑝(𝛉) 
(4-11) 
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where ∝ stands for “proportional to”. 

 The likelihood function explains the effect in the information getting gained on the 

parameter 𝜃 as it comes from the observations or data. It is worth noting that only the relative 

value of the likelihood matters so multiplying the likelihood by a constant will not change the 

value or its effect on the posterior distribution.   

As shown in Figure 4-8, the process of the Bayesian estimation procedure is to have the 

prior information collected from experts as an input, the Bayesian estimation requires the use of 

the Bayes Law (Equation (4-11)), the theorem requires developing a likelihood function to 

conclude the parameters to be estimated or inferred, then apply an MCMC method like the 

Particle Filtering method which this research makes use of and then sample the posterior 

information of the model parameters upon gaining more information.  

 

B – Particle Filtering Sampling Method 

The idea of particle filtering is based on the Monte Carlo (MC) methods. The particle 

filtering is a sequential importance sampling method. Based on importance weights associated to 

particles or samples, the method aims at approximating the probability distribution function. 

Candy in [102] presents a good and brief definition of the MC techniques. The original 

groundwork is based on the Markov chain theory which advocates that by random sampling the 

empirical distributions is set to converge to the target posterior distribution and that distribution 

is referred to as the invariant distribution of the chain. Based on a stochastic system called the 

state-space which is governed by a transition probability, Markov chain MC techniques are based 

on sampling from probability distributions based these is a stochastic (state-space) system. A 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ∝ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑥 𝑝𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
(4-12) 
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crucial property of the technique is that as the number of particles or samples becomes larger, the 

chain is assumed to converge to the coveted posterior distribution by proper random sampling 

based on a set of assumptions.  

Particle filtering is being integrated in estimation problems and it is an attractive method 

to sample the posterior samples in the Bayes theorem. Correspondingly, the method is a 

computational algorithm and, we make use of this algorithm in this research, every time a 

posterior distribution sampling is needed as part of the problem-solving strategy.  

There are many types of particle filters, the Sequential Importance Sampling (SIS) is one 

that is considered the base of all PF MC filters constructed over the research spans[103]. The 

core concept of this technique lies in developing an implementation of Bayesian filter recursively 

through MC simulations. It is called by different names by researchers, it is referred to as 

Bootstrap filtering in [104]. 

Figure 4-8 Bayesian Estimation Process 

The method represents the posterior distribution of state variables in terms of samples 

and associated weights reflecting the importance of a samples and then estimate the posterior 

values using these samples and weights. The SIS algorithm approaches to the optimal 
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Bayesian estimate as the number of particles becomes larger and the output of the PF represents 

the posterior pdf of the parameters. 

The PF algorithm in 3 steps is enclosed below to sample a posterior belief (𝑝(𝑥)) for an 

arbitrary variable 𝑥:  

Step 1: Sample from the prior distribution (the prior distribution is assumed to be known 

parametric distributions), for illustration we use the notation 𝑞(𝑥) to represent the prior samples 

of a generic variable 𝑥. 

Step 2: calculate the importance weight: 𝑤 =
௣(௫)

௤(௫)
 calculated based on the importance 

sampling as in [105]. 

Step 3: Replace unlikely samples with low weights with more likely ones and that is 

called resampling. 

 Based on the tracking concept: 

where  𝑓௧ is often a non-linear functionof the state variable 𝑉௧ିଵ, 𝜗௧ି௧ is a process noise sequence 

or vector where {𝜗௧ି௧;  𝑡 ∈  ℕ} ;  ℕ is a set of natural numbers, and the state of variable sequence 

is denoted by {𝑉௧ି௧  ∈ 𝑡 ∈  ℕ}. To recursively estimate 𝑉௧, measurements are needed and 

denoted by:  

𝐻௧ is as well a non-linear function and 𝑛௧  ;  𝑡 ∈  ℕ is the noise terms for the measurements 

function.  

𝑉௧ = 𝑓௧(𝑉௧ିଵ, 𝜗௧ି௧) 
(4-13) 

𝐷௧ = 𝐻்(𝑉௧, 𝑛௧) 
(4-14) 
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In Bayesian inference, particle filtering is an estimation method of the belief in state 𝑉௧ at 

time 𝑡 given some data 𝐷௧  up to that time. The estimates of the states are referred to as filtered 

estimates based on available measurements. In the ALT context, these measurements are the 

failure data collected from the testing. The method is composed into two major steps: 1) 

Prediction (prediction of priors) and 2) Update (Based on importance weights). Accordingly, 𝑉௧ 

denotes the state variables at time t and 𝐷௧ the set of measurements up to time 𝑡. The SIS 

algorithm estimates the posterior distribution 𝑝(𝑉଴:௧|𝐷ଵ:௧) using a set of 𝑁 samples with 

associated weights {𝑉଴:௧
௜ ;  𝜛௧

௜}௧
ே by:  

𝛿(. ) is the Dirac delta measure at 𝑉଴:௧
௜ . At time step 𝑡, the particle 𝑉௧

௜ of 𝑉௧ is estimated based on 

the state at 𝑡 − 1 denoted by 𝑉௧ିଵ
௜  by a distribution of parameters 𝑉௧ିଵ

௜  and the measurements up 

to time 𝑡 denoted by 𝐷௧ 
௜ , meaning that the 𝑖௧௛ particle or sample 𝑉௜ are generated using a 

proposal pdf 𝑞(. ):  

and the SIS weight is obtained by the following equation:  

The initial state 𝑉଴
௜ is sampled from the prior distribution (the initial pdf of state vector 

𝑉௧) ; 𝑝(𝑉଴|𝐷଴) and 𝐷଴ is the set of no measurements available and the weight 𝜛௧ୀ଴ 
௜  is 

ଵ

ே
. more 

details could be found about MCMC in [106] and [107].  

𝑝(𝑉଴:௧|𝐷ଵ:௧) ≈  ෍  𝜛௧
௜  𝛿(𝑉଴:ଵ

ே

௜ୀଵ

− 𝑉଴:௧
௜ ) (4-15) 

𝑉௧
௜  ≈ 𝑞(𝑉௧

௜|𝑉଴:௧
௜ , 𝐷௧

௜) (4-16) 

𝜛௧
௜  ∝ 𝜛௧ିଵ

௜  
𝑝൫𝐷௧ห𝑉௧

௜൯𝑝(𝑉௧
௜|𝑉௧ିଵ

௜ )

𝑞(𝑉௧
௜|𝑉଴:௧ିଵ

௜ , 𝐷ଵ:௧)
 (4-17) 
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Subsequently, the first step in developing the algorithm to estimating a posterior 

distribution is to identify the likelihood function, to do so we use the conditional PDF or 

probability given by the product of the hazard function and the reliability function. In general 

form: 

𝑓(𝑦|𝑋) is the conditional pdf function of 𝑦 conditioned on 𝑋, 𝜆(𝑦|𝑋) is the conditional 

hazard function and 𝑅(𝑦|𝑋) is the conditional reliability function of 𝑦 conditional on 𝑋. 

Equation (4-18) will be detailed for the model in the following chapters. 

Next, deciding on the appropriate prior information about the set of parameters for which 

one intends to sample a posterior distribution. Parameters of the model are decided based on the 

form of the 𝑓(𝑦|𝑋) used.  

Now that the prior belief has been established and the likelihood function is put in a 

closed form, the posterior distributions cannot be found in parametric form to sample from. 

Hence, the particle filtering method comes into play as a non-parametric representation of the 

posterior distribution. the way it works is by sampling from the prior distribution and adjust the 

belief as it gains more knowledge from the observations using a weight function.  

 

 

𝑓(𝑦|𝑋) =  𝜆(𝑦|𝑋)  ×  𝑅(𝑦|𝑋) 
(4-18) 
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 ALT Via Log-Scale Parametric Statistical Distribution  

and Copula Function 

In Chapter 5, we develop a novel ALT model to connect component-level ALT data and 

system-level ALT data to the system reliability. We then work on fusing the information 

collected from both ALT levels together. Dependence is modelled using the copula function for 

this ALT model. The chapter includes an optimization model for the ALT parameters 

constrained by testing cost. The ALT model effectiveness is shown via numerical examples at 

the end.  

 

5.1 Uncertainty Propagation of Component Level ALT Data to System Reliability 

We start the uncertainty propagation by first analyzing the component to system linkage 

and uncertainty propagation as the first research task which is split into three main steps, the first 

one is modelling the distribution of the component failure time, the second step is estimation of 

parameters which aims at reducing the uncertainty in these parameters, and the last step uses 

Monte Carlo Simulation in order to propagate the information to a system level and derive the 

system reliability by taking into consideration the dependence between the components via 

Copula function.  

As discussed earlier, the current research task is divided into three categories:  

 The probabilistic distribution of component failure times  

 Distribution /Model parameters estimation  

 Uncertainty propagation to system reliability and dependence modelling 
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5.1.1 Framework Steps Overview 

In this section of the research, the end goal is to achieve a system reliability with minimal 

uncertainty and an optimal Accelerated Life Testing Design by optimizing the design parameters 

which are the stress levels and the number of tests at each stress level for each test specimen that 

could be a component or a system. In order to find the optimal ALT design parameters, first we 

need to investigate the uncertainty propagation. We use the probability distribution of failure 

time data collected from the Accelerated Life Testing (ALT) in order to trace and reduce the 

uncertainty propagation.  

The problem to be solved in this research section is as follows: 

 

As shown in Figure 5-1 above, the experimental data follows certain distribution. The 

experimental data is simply failure time of specimens. Each experimental data set corresponds to 

a given stress level, at each stress level we have a set of data (failure time) derived from testing a 

specimen multiple times (the red dots) at that  stress level, the data set is  then corresponding to a 

component or a system depending on the level of testing chosen(component level versus system 

level).  

 Given: Failure Times (𝑡௙௔௜௟௨௘௦)of Components at different stress levels
higher than use stress level

 Find: The data distribution equation:
(𝐹(𝑡ி௔௜௟௨௥௘)𝑎𝑛𝑑 𝑓൫𝑡௙௔௜௟௨௥௘ห𝜈൯  𝑤ℎ𝑒𝑟𝑒 𝑣 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

allowing to reduce the uncertainty in the distribution parameter
 Find: Linkage between the component and the system reliability 𝑅(𝑡)and

propagate the uncertainties

Problem Statement 5-1 Component level ALT data uncertainty propagation to system 
reliability 
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A – 2-Parameters Statistical Distribution and Inverse Power Relationship: 

For the purpose of ALT modelling, there is a need to define the parameters of interest. In 

order to achieve that, a statistical distribution approach has been chosen to model the failure 

times of the test units. In this research, the ALT model presented in [28] and [108] is employed 

and is summarized below. The probability distribution function for life time data collected from 

the ALT testing must be derived in order to capture the parameters that carries uncertainty. The 

ALT model thereafter takes the location parameter as a function of stress that is a stress 

dependent parameter and the shape parameter as stress-independent parameter.  

Figure 5-1 ALT experimental data distributions examples 

For an engineered system with 𝑁஼ components, the component-level ALT failure time 

𝑡 are supposed to have a log-location scale distribution and having the following CDF equation: 
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where 𝜎 is the scale parameters and is assumed to be stress independent and 𝛼 is the location 

parameter of the i-th component which is the stress dependent and is computed using Equation    

(5-2) shown below: 

we denote the stress on a component during ALT testing by 𝑺(𝒊) . 

The testing stress used is bounded by an upper limit and lower limit. We use these limits 

in order to normalize the actual stress used 𝑆  to test the specimen. 

We designate by 𝝃(𝒊) the normalized stress level of the i-th component, 𝑆௅ and 𝑆௎ are 

respectively the lower and upper bounds of the testing stress level of the i-th component. The 

normalized stress is then a value between 0 and 1 ൫𝟎 ≤  𝛏(𝐢) ≤ 𝟏൯. The ALT model proposed is 

valid for up to 𝑆௎, that is the validity of the model depends on the accelerated variant is falling 

within the range 𝑺(𝒊) ∈ [𝑆௅ , 𝑆௎]. 

 The following is based on if the stress goes beyond its upper limit bound, the failure 

mechanism would change so this condition preserves the failure mechanism. To accommodate 

for that, we normalize the ALT stress by:  

According to the latter, the use stress or nominal stress is the lower stress bound of the 

accelerated variant; 𝑆௡௢௠௜௡௔௟ = 𝑆௅. Which transforms Equation (5-2) to:  

𝐹்(𝑡|𝛼, 𝜎) = 𝐺 ቈ
(𝑙𝑜𝑔(𝑡) −  𝛼)

𝜎
቉ 

(5-1) 

𝜶(௜) =  𝜓଴ + 𝜓ଵ𝑺(𝒊) (5-2) 

𝛏(𝒊) =
𝐒(𝒊) − 𝑆௅

𝑆௎ −  𝑆௅
 (5-3) 
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The parameters (𝜃଴, 𝜃ଵ) are a re-parametrization of the parameters (𝜓଴, 𝜓ଵ)  given by the 

following:  

ALT Design approaches widely use the Weibull Distribution; more information about the 

distribution could be found in [109]. It is assumed that the general Weibull distribution function 

of lifetime data of units at test takes the following form [110]:  

the scale parameter 𝜆 and 𝛽 is the shape parameter of the Weibull distribution above that is 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽, 𝜆). However, to model the ALT, the scope is to use the statistical distribution with a 

relationship to the accelerated variant as it acts on the failure time. With the aim of modelling the 

life distributions, we assume that the component level failure time follows a Weibull distribution 

(i.e. 𝐺[. ]is the Type-I extreme value distribution in Equation (5-1). Based on this assumption, the 

generalized cumulative distribution function (CDF) is given by:  

 

𝜶(௜) =  𝜃଴ + 𝜃ଵ𝝃(𝒊) (5-4) 

൝
𝜃଴ =  𝜓଴ + 𝜓ଵ𝑆௎

−
𝜃ଵ =  𝜓ଵ(𝑆௎ − 𝑆௅)

 
(5-5) 

𝑓(𝑡| 𝛽, 𝜆) = ൝
𝛽𝜆𝑒ିఒఉ𝑡ఉିଵ ; 𝑡 > 0

 
0                       ; 𝑡 ≤ 0 

 
(5-6) 

𝐹்(𝑡|𝛼, 𝜎) = 1 − exp ቌ− ൬
𝑡

𝑒𝑥𝑝(𝛼)
൰

ଵ
ఙ

ቍ 
(5-7) 
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We note the reliability function based on Equation (5-7) is given by the CDF and 

reliability relationship 𝑅்(𝑡|𝛼, 𝜎) = 1 − 𝐹்(𝑡|𝛼, 𝜎) , equivalently it could be expressed by the 

following equation:  

Accordingly, the hazard function conditioned on the scale parameter and shape parameter 

of the considered Weibull Distribution is: 

And hence the probability density function (PDF) of the failure time is given by:  

Now that we have developed the PDF and the CDF of the component failure time, we 

know the parameters that requires processing for uncertainty reduction.  

The statistical distribution will be used to fit the data collected from ALT component 

level testing. And the distribution scale parameter will be used to extrapolate the results from 

ALT accelerating stress to the nominal stress which the normal stress under which a product will 

operate in its use environment. Another aspect to be modelled is the dependence, for that the 

model uses a class of Copula function. More on the Copula function and how it will be used in 

the context of this research will be found in the following section below.  

 

𝑅்(𝑡|𝛼, 𝜎) = exp ቌ− ൬
𝑡

𝑒𝑥𝑝(𝛼)
൰

ଵ
ఙ

ቍ 
(5-8) 

𝜆்(𝑡|𝛼, 𝜎) =
1

𝜎exp (𝛼)
 ൬

𝑡

exp (𝛼)
൰

ଵିఙ
ఙ

 (5-9) 

𝑓 (𝑡|𝛼, 𝜎) =
1

𝜎exp (𝛼)
 ൬

𝑡

exp (𝛼)
൰

ଵିఙ
ఙ

exp ൮ቌ− ൬
𝑡

exp (𝛼)
൰

ଵ
ఙ

 ቍ൲ 
(5-10) 
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B – Copula Function  

 In order to make a complete and realistic reliability assessment, it is necessary to model 

the dependence between the failure time distributions of different components. In this section we 

introduce two concepts to model the dependence between the failure time distributions that we 

intend to use while developing the component to system linkage framework. We present the copula 

function as a way to model the dependence. 

 The definition of an n-dimensional Copula function is given by the following [111]:  

1. The Copula function is a function from 𝐼௡ to 𝐼 :  𝐶: 𝐼௡  → 𝐼 ; 𝐼 is the unit interval [0,1] 

2. If at least one coordinate of 𝑢  is zero, (𝑢 = 0) , then 𝐶(𝑢) = 0  

3. If all coordinates of 𝑢 are one except 𝑢௞  then 𝐶(𝑢) = 𝑢௞  

4. For every 𝑎 and 𝑏 such that 𝑎 < 𝑏; 𝑉஼([𝑎, 𝑏]) ≥ 0 where 𝑉஼([𝑎, 𝑏] =  ∆௔
௕𝐶(𝑡) =

 ∆௔೙

௕೙ ∆௔೙షభ

௕೙షభ … ∆௔మ

௕మ ∆௔భ

௕భ  𝐶(𝑡) ; and  

∆௔ೖ

௕ೖ𝐶(𝑡) = 𝐶(𝑡ଵ, … , 𝑡௞ିଵ, 𝑏௞ , 𝑡௞ାଵ, … , 𝑡௡) − 𝐶(𝑡ଵ, … , 𝑡௞ିଵ, 𝑎௞ , 𝑡௞ାଵ, … , 𝑡௡). 

In order to define the equations as used in this research, first we define Sklar’s theorem and 

its corollary. The Sklar’s theorem states the following [68]:  

Let H be an n-dimensional joint distribution function with margins 𝐹ଵ, 𝐹ଶ, … , 𝐹௡ then there 

exists an n-copula 𝐶 such that for all 𝑥 ∈ 𝓡𝐧:  

If 𝐶 is an 𝑛 −Copula and  𝐹ଵ, 𝐹ଶ, … , 𝐹௡ are distribution functions, therefore 𝐻 is a 

𝑛 −dimensional distribution function with margins 𝐹ଵ, 𝐹ଶ, … , 𝐹௡ . Based on this theorem, there 

exists a failure distribution Copula corollary as follows: 

𝐻(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = 𝐶൫𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ), … , 𝐹௡(𝑥௡)൯ (5-11) 
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Let 𝐻, 𝐶, 𝐹ଵ, 𝐹ଶ, … , 𝐹௡ hold the same definition as in the theorem above, and let 

𝐹ଵ
ିଵ, 𝐹ଶ

ିଵ, … , 𝐹௡
ିଵ be the quasi-inverse functions of the 𝐹ଵ, 𝐹ଶ, … , 𝐹௡ respectively. Then for any 𝑢  

in 𝐼௡ :  

Given the fact that 𝐻 is an 𝑛 −dimensional joint distribution function with margins 

𝐹ଵ, 𝐹ଶ, … , 𝐹௡ then 𝐻 is defined as:  

Then according to the Sklar’s theorem the failure distribution Copula is the 𝑛 −Copula 

𝐶 given by: 

Let 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) denote the joint probability distribution function of 𝑋ଵ, 𝑋ଶ, … , 𝑋௡, the 

PDF is given by:  

where 𝑓௜(𝑥௜) PDF of 𝑥௜ and 𝑐(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) is given by:  

Subsequently, to put things in the research context notation and as defined previously, a 

copula function describes the dependence between random variables by connecting the marginal 

CDFs to the joint cumulative distribution function [112]. The Copula is a multivariate 

cumulative distribution function which is used to describe the dependence between random 

𝐶(𝑢ଵ, 𝑢ଶ, … , 𝑢௡) = 𝐻൫𝐹ଵ
ିଵ(𝑢ଵ), 𝐹ଶ

ିଵ(𝑢ଶ), … , 𝐹௡
ିଵ(𝑢௡)൯ (5-12) 

𝐻(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = 𝑃[𝑋ଵ < 𝑥ଵ, 𝑋ଶ < 𝑥ଶ, … , 𝑋௡ < 𝑥௡] (5-13) 

𝐻(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) = 𝐶൫𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ), … , 𝐹௡(𝑥௡)൯ = 
𝑃[𝑋ଵ < 𝑥ଵ, 𝑋ଶ < 𝑥ଶ, … , 𝑋௡ < 𝑥௡] 

(5-14) 

𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) =  𝑐(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) ෑ 𝑓௜(𝑥௜)

௡

௜ୀଵ 

 (5-15) 

𝑐(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) =  
𝜕௡𝐶(𝐹ଵ(𝑥ଵ), 𝐹ଶ(𝑥ଶ), … , 𝐹௡(𝑥௡))

𝜕𝐹ଵ(𝑥ଵ)𝜕𝐹ଶ(𝑥ଶ) … 𝜕𝐹௡(𝑥௡)
 (5-16) 
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variables in the CDF domain. There are various parametric Copula functions with a parameter 

describing the strength of dependence. Using the copula function concept to the component 

failure time distributions, the Copula function is written as:  

where Pr{. } is the probability operator, 𝐶(. ;  𝜌) is a Copula function that takes dependence 

strength parameters 𝜌 =  𝜌ଵଶ, 𝜌ଵଷ, … , 𝜌௜௝ , 𝑖, 𝑗 = 1,2,3, … . , 𝑁஼ and marginal CDF values of the 

i-th component 𝑢௜ = 𝐹்೔
(𝑡௜), 𝑖 = 1,2,3, … , 𝑁௖  as detailed in Equation (5-7). These marginal 

distributions are referred to sometimes as Copulae. 

The corresponding joint PDF of the component failure time is given by: 

where 𝑓 (. ) is the margin PDF as given in Equation (5-10) and 𝑐(. , 𝜌) is the Copula function of 

the marginal CDF 𝑢௜. 

Copula functions are well-studied for bivariate cases, except the Gaussian copula and 

student’s t copula function. Even though Vine copula approach has been developed to make it 

possible to model the high-dimensional non-linear dependences among a large number of random 

variables [113], [114]the implementation procedure is complicated. In this research, for the sake 

of illustration, the Gaussian copula is employed to model the dependence between the failure time 

distributions of different components. Using Gaussian copula, the joint CDF given in Equation       

(5-19) is rewritten as stated by: 

𝑃𝑟൛𝑇ଵ ≤ 𝑡ଵ, 𝑇ଶ ≤ 𝑡ଶ, … , 𝑇ே೎
≤ 𝑡ே೎

ൟ = 𝐶 ቀ𝐹
భ்
(𝑡ଵ), 𝐹

మ்
(𝑡ଶ), … , 𝐹்ಿ೎

൫𝑡ே಴
൯; 𝛒ቁ

                                 
                              = 𝐶൫𝑢ଵ, 𝑢ଶ, … , 𝑢ே೎

; 𝛒൯

 (5-17) 

𝑓 ൫𝑡ଵ, 𝑡ଶ, … , 𝑡ே಴
൯ = 𝑓

భ
(𝑡ଵ)𝑓

మ
(𝑡ଶ) … . 𝑓

ಿ಴
൫𝑡ே೎

൯𝑐(𝑢ଵ, 𝑢ଶ, … , 𝑢ே಴
;  𝛒) (5-18) 

𝑃𝑟൛𝑇ଵ ≤ 𝑡ଵ, 𝑇ଶ ≤ 𝑡ଶ, … , 𝑇ே೎
≤ 𝑡ே೎

ൟ =  𝛷ఘ(𝛷ିଵ(𝑢ଵ), 𝛷ିଵ(𝑢ଶ), … , 𝛷ିଵ൫𝑢ே೎
൯;  𝛒) (5-19) 
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In Equation (5-19) Φିଵ(. ) is the inverse CDF distribution of a standard normal variable 

and Φ୮(. ) is the CDF of standard multivariate normal distribution. 

The joint PDF 𝑓 ൫𝑡ଵ, 𝑡ଶ, … , 𝑡ே಴
൯ of the failure time of 𝑁௖ components is represented using 

Gaussian copula as: 

𝜙𝝆(. ) is the is the joint PDF of multivariate standard normal variables. 

In this research and in order to use the Copula function, we assume that the parameters 𝜌 

are all stress independent as argued in reference [111]. The 𝑠 −dependent factors causing the 

dependence among the components of the system are assumed to stay the same under normal 

operation stress and therefore they are assumed to hold this property under ALT stress. Hence 

the dependence among the components under test stays the same as stress varies because the 

factors causing this dependence are regarded as constant or unalterable.  

 

5.1.2 Proposed Framework Assumptions  

In this section we present the assumptions made in order to develop the ALT framework 

via parametric statistical distribution and the copula function. The main assumptions of the 

model are listed below in this separate section. Some minor assumptions are mentioned as 

needed while explaining the mathematical formulation. The main assumptions for this model are 

listed below:  

A1- The Log-Location Scale Distribution Assumption: To model the life distribution 

which is the failure time distribution we follow a widely used assumption in the ALT 

𝑓 ൫𝑡ଵ, 𝑡ଶ, … , 𝑡ே಴
൯ =  𝑓

భ
(𝑡ଵ)𝑓

మ
(𝑡ଶ) … . 𝑓

ಿ಴
൫𝑡ே೎

൯ 

× 
𝜕𝛷ିଵ(𝑢ଵ)

𝜕𝑢ଵ
 
𝜕𝛷ିଵ(𝑢ଶ)

𝜕𝑢ଶ
…

𝜕𝛷ିଵ(𝑢ே೎
)

𝜕𝑢ே಴

 

×  𝜙ఘ(𝛷ିଵ(𝑢ଵ), 𝛷ିଵ(𝑢ଶ), … , 𝛷ିଵ൫𝑢ே೎
൯;  𝛒) 

(5-20) 



 81

design, so we assume that the component-level failure time follows a Log-Location scale 

distribution, this assumption is one of the most widely used assumptions in ALT design 

and is acceptable to both academia and industry. Correspondingly, at any stress 𝜉 the 

failure time follows a Log-Location scale distribution. The distribution is then assumed to 

be a Weibull distribution with Stress dependent parameter 𝛼 and a stress independent 

parameter 𝜎. We assume that all components 𝑖 = 1,2, . . , 𝑁஼ and the system failure times 

follows a Weibull distribution.  

A2- Stress Independent Distribution Type Assumption: The distribution family does not 

change when varying the stress level. That is, the cumulative distribution probability 

function (CDF 𝐹(. ))  , the probability density function (PDF 𝑓(. )) , the reliability 

function (𝑅(𝑇)), and the failure rate function of any component 𝑖 ; 𝑖 = 1,2 … , 𝑁௖  stay the 

same for all 𝐒(𝒊) = {𝑆ଵ
(௜)

, 𝑆ଶ
(௜)

, … , 𝑆௝
(௜)

, . . 𝑆௡ೞ

(௜)
}.  

A3- Shape Parameter Assumption: The shape parameter of the distribution of choice which 

is the Weibull distribution does not vary with the stress levels 𝐒(𝒊) =

{𝑆1
(𝑖)

, 𝑆2
(𝑖)

, … , 𝑆𝑗
(𝑖)

, . . 𝑆𝑛𝑠

(𝑖)} of each unit. That assumption is based on that the failure mode 

under 𝑆ଵ
(௜)

, … , 𝑆𝑛𝑠

(𝑖) does not change and remains the same at all testing stress levels of the 

unit.  

A4- System Topography Assumption: The first assumption is in regard to the system 

configuration that explains how the components are placed in a system/ The system 

topology (i.e. components could be assembled in series, in parallel or in any different 

configuration) is pre-defined and identifiable. The system topology is important to 

identify what contributes to the system failure (which component(s) shall fail to cause a 

system failure). In addition to that, in case the system topography is a custom 
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configuration, the methodology assumes that a function representing this specific 

configuration could be identifiable and known to describe the system failure in terms of 

the components failure times.  

A5- ALT Feasibility Assumption: For the accelerated life testing to be feasible, an 

assumption about the testing of components or systems is made. Accordingly, all 

components and systems are testable and ALT testing is feasible to collect failure time 

data. That is, the product under study for which an estimation of the reliability is to be 

determined, is assumed to be testable and failure data could be collected and recorded 

followed by a data fitting in each of the models prescribed by research. System and 

component are set to fail if any one of the failure modes/competing risks takes place.  

A6- Load Transfer Function Assumption: When conducting a system level testing, we 

assume that the load distribution is identifiable and could be described mathematically 

via a parametric function that could take any form. For ALT system level testing, the 

accelerated variant (i.e. stress) that is received by components referred to as boundary 

components is assumed transferable via physics informed model to the non-boundary 

components or the components that does not receive a direct load during the ALT testing. 

The load transfer function to calculate the non-boundary stress is identified in the design 

phase or based on the component layout to form the system. Also, it could be a function 

describing the performance (Mechanical, chemical, electrical or other) by propagating the 

loads among the components.  

A7- Censoring Assumption: We assume that there is no censoring and that all testing unit 

would fail at the end of the test. Censoring could be easily incorporated in the model and 

in the likelihood function. All items are removed at the end of a timed test, that is every 
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item is assumed to fail at time 𝑡௘௡ௗ ௢௙ ௧௘௦௧. Equivalently, for right censoring that would be 

𝑡௜ = min(𝑇௜ , 𝐶௜) , as shown in [87] ,where 𝑖 is the testing unit and 𝑡௜ denotes the survival 

time and 𝐶 is the censoring time and T is the lifetime of a test unit:  

 

Accordingly, the full conditional likelihood function of 𝑀 testing units given some 

parameters denoted by a vector 𝐕 including right censoring takes the following form:  

 

So, in this research we assume that the censoring indicator 𝛿௜ = 1 at all time, that is the 

failure event of the unit is always taking place before it reaches the censoring time 𝐶.  

Many researchers have tackled different types of censoring, for an example of ALT with 

interval censoring with a statistical parametric distribution (i.e. Weibull) modelling one 

could refer to [115]. On the other hand, [116] presents an exponential distribution 

Bayesian model for step-stress ALT with progressive Type I censoring 

A8- Constant ALT Accelerated Stress Assumption: Testing units (i.e. components or 

systems) are tested using a constant stress as the accelerating factor, the stress is not a 

function of time and each testing unit is tested at the same accelerating stress multiple 

times until it reaches failure so that the failure time is not censored. 

A9- Prior Information Availability Assumption: As stated before, the Bayesian estimation 

requires defining prior information about the parameters that are to be inferred or 

estimated. Accordingly, this information is assumed accessible and available and is 

𝛿௜ = ൝
1 𝑖𝑓 𝑇௜ ≤ 𝐶௜ , 𝑇ℎ𝑎𝑡 𝑖𝑠 𝑒𝑣𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

−
0 𝑖𝑓 𝑇௜ > 𝐶௜ 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑠 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

 
(5-21) 

𝐿௖ =  ෑ[ℎ(𝑡௜|𝐕]ఋ೔

ெ 

௜ୀଵ

𝑅(𝑡௜|𝐕) 
(5-22) 
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allowed to follow a parametric distribution. Prior distributions can be found from available 

resources or by referring to experts in the field. 

A10- Extrapolation of ALT Failures to Normal Operation Assumption: The failure modes 

of the testing unit in the use field could be recreated in the ALT setting. This assumption 

allows us to predict the system reliability using the ALT data due to the same failure mode. 

It is necessary when extrapolating the information learned in ALT to make sure the failure 

modes are the same in both environment: the accelerated environment as well as the use 

environment that is the failure modes experienced by a product under normal operations 

could be emulated during the ALT allowing an apple to apple comparison.  

A11- Copula Correlation Factor Prior Info Assumption: The model in this section uses the 

Copula as the dependence modelling method among the 𝑁஼ components of the system. 

Prior information about the correlation factor 𝛒𝒊,𝒖; 𝑖, 𝑢 = (1,2, … , 𝑁௖) between any two 

components or the failure modes of the same components are available. If not in a 

distribution form, the correlation factor is assumed to be identifiable, predefined or could 

be calculated.  

 

5.1.3 Likelihood and Bayesian Inference Via Log-Scale Distribution  

The symbol 𝑡 denotes the failure time data collected from ALT component level testing 

or testing stage 2. Each component is tested at different stress levels 𝐒(𝒊) which will be 

normalized using the Equation (5-3) by setting the lower and upper limits of the testing stress, 

denoted respectively as S௅೔
 and S௎೔

. With that being said, 𝐒(𝒊) is a vector of the stress levels at 

which a component of the system, which is the test unit or specimen, is tested.  
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Additionally, at each stress level, each of the components in a system is tested multiple 

times, in other words, at each designated component accelerating stress level, we use multiple 

test units of the same component and collect the failure times accordingly. Based on that, 𝑺(𝒊) =

ቂ𝑆ଵ
(௜)

, 𝑆ଶ
(௜)

, … , 𝑆௡ೞ

(௜)
ቃ, where 𝑛௦ is the total number of the stress levels for component 𝑖. Given the 

fact that the stresses will be normalized using the upper and lower bounds, the corresponding 

vector of normalized accelerated stresses for a component 𝑖  is hence denoted by 𝛏(𝒊) =

ቂ𝜉ଵ
(௜)

, … , 𝜉௡ೞ

(௜)
ቃ .  

Each component 𝑖 is then tested separately, at different stress levels 𝑗, and at each of the 

stress levels, the component is tested 𝑛௝
௜ times, where 𝑛௝

௜ represents the number of tests at the 𝑗௧௛ 

stress level of component 𝑖, 𝑖 = 1,2, … , 𝑁஼ and 𝑗 = 1,2, . . , 𝑛௦. Hence, for each 𝜉௝
(௜) , component 𝑖 

is tested 𝑛௝
(௜) times at stress level 𝑗. So, for each component the total number of test units at each 

stress level is represented by the vector 𝐧(𝒊) = ቂ𝑛ଵ
(௜)

, … . , 𝑛௡ೞ

(௜)
ቃ. 

The data is failure times corresponding to the specimen at test and are grouped in vectors 

where 𝐭(𝒊) is the set of failure times vectors corresponding to component 𝑖, where each sub-set 

vector is for a stress level, that is 𝐭(𝒊) = {𝐭𝟏
(𝒊)

, 𝐭𝟐
(𝒊)

, … , 𝐭𝒏𝒔

(𝒊)
} and in turn 𝐭𝒋

(𝒊)
= ൤𝑡௝,ଵ

௜  , 𝑡௝,ଶ
௜  , … . , 𝑡

௝,௡ೕ
(೔)

௜  ൨. 

To better illustrate the indexing of the parameters in this framework, Figure 5-2 explains 

the indexing and terminology of the data collected by taking a system of three components for 

simplicity. That is the total number of components 𝑁஼ = 3 and 𝑖 = [1,2,3]. Taking component 1, 

we see that it is tested under 3 stress levels and hence 𝑗 = 1,2,3 where 𝑛௦ = 3. At stress level 1, 

it shown that it is tested 3 times that is three test units are tested at stress level 𝑗 = 1, so 𝑛ଵ
(ଵ)

=

3. Similarly, at stress level 𝑗 = 2 , the component 𝑖 = 1 is tested three times and then 𝑛ଶ
(ଵ) = 3 
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and last but not least the component 𝑖 = 1 is tested two times under the accelerated stress 𝑛ଷ
(ଵ)

=

2. Accordingly, the set 𝐧(𝟏) = [3,3,2].  The failure time data for component 𝑖 = 1 are grouped in 

𝐭(𝟏) = {𝐭𝟏
(𝟏)

, 𝐭𝟐
(𝟏)

, 𝐭𝟑
(𝟏)

} where  𝐭𝟏
(𝟏)

= ቂ𝑡ଵ,ଵ
(ଵ)

, 𝑡ଵ,ଶ
(ଵ)

, 𝑡ଵ,ଷ
(ଵ)

ቃ is the vector of failure times of component 

𝑖 = 1 containing the failure times of three specimen tested at stress level 𝑗 = 1.  , 𝐭𝟐
(𝟏)

=

ቂ𝑡ଶ,ଵ
(ଵ)

, 𝑡ଶ,ଶ
(ଵ)

, 𝑡ଶ,ଷ
(ଵ)

ቃ corresponds to testing data of three specimen of component 𝑖 = 1 tested at stress 

level 𝑗 = 2 and 𝒕𝟑
(𝟏)

= ቂ𝑡ଷ,ଵ
(ଵ)

, 𝑡ଷ,ଶ
(ଵ)

ቃ is the vector of component ALT data of two specimens of  

component 𝑖 = 1 tested twice at stress level 𝑗 = 3. For component 𝑖 = 2 and 𝑖 = 3, refer to 

Figure 5-2. 
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A – Bayesian Estimation Formulation  

As presented in Section 4.1.4A, the Bayesian estimation method will be used to reduce 

the uncertainty in the parameters using the prior information of the stress-dependent parameter 

𝛼 of the Weibull distribution as defined by Equation (5-4) and the stress independent parameter 

denoted by 𝜎. In order to sample the posterior distributions of these parameters, the Bayesian 

method is applied based on Equation (4-11). Using the Weibull parametrized distribution this 

Equation becomes as: 

 

 

 

In which 𝑓൫𝐭(௜)ห𝛉(௜), 𝜎(௜), 𝛏(௜), 𝒏(௜)൯ represents the conditional likelihood function and 𝑓ఏ௜൫𝜽(௜)൯,

𝑓ఙ௜൫𝜎(௜)൯ are the prior distributions of the 𝛉(௜) and 𝜎(௜).  

Note that in Equation (5-23) the parameter  𝛉(௜) = [𝜃଴
(௜)

, 𝜃ଵ
(௜)

] rather than 𝛂(௜) because the 

stress dependent parameter is a function of the theta parameter and the uncertainty could be 

propagated from the term 𝛉(௜) to 𝛂(௜)which is the vector of parameters characterizing the stress-

dependent Weibull parameters as given by :  

 

So, 

at each stress level 𝑆௝
(௜) for component 𝑖  normalized by the upper bound and lower bound of that 

accelerating factor and converted to 𝜉௝
(௜)

, there exist a stress dependent parameter that could be 

calculated using the parameter 𝜽(𝒊) using 𝛼௝
(௜)

=  𝜃଴
(௜)

+ 𝜃ଵ
(ଵ)

𝜉௝
(௜). 

 

𝑓(𝛉(௜), 𝜎(௜)|𝐭(௜), 𝛏(௜), 𝒏(௜))

∝ 𝑓൫𝐭(௜)ห𝛉(௜), 𝜎(௜), 𝛏(௜), 𝒏(௜)൯𝑓ఏ௜൫𝛉(௜)൯𝑓ఙ௜൫𝜎(௜)൯ 
(5-23) 

𝛂(𝒊) =  𝜃଴
(௜)

+ 𝜃ଵ
(௜)

𝛏(𝒊) (5-24) 
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Accordingly, Equation (5-24) is the set of all stress dependent parameters 𝜶(𝒊) = [ 𝛼ଵ
(௜) 

, 𝛼ଶ
(௜) ,…, 𝛼௡ೞ

(௜) ] (i.e. location parameter) of a component calculated using the vector of all stress 

levels applied to that component during ALT which is normalized by 𝑺𝑳𝒊  and 𝑺𝑼𝒊 to give   𝝃(𝒊) =

𝑺(𝒊)ି 𝑺𝑳𝒊

𝑺𝑼𝒊 ି𝑺𝑳𝒊
. 

In the next section, the likelihood function is formulated using the parametric form a 

Weibull distribution probability density function. 

 

B – Likelihood Function Formulation  

In order to develop the likelihood function, the Weibull distribution is used to formulate 

the probability density function as given by its general form in Equation (5-6). The likelihood 

function is based on the conditional probability concept, where the failure time of each 

component is a data point conditioned on the model parameters: the stress-dependent parameter 

𝛼 of the Weibull distribution as defined by Equation (5-4), the stress independent parameter 

denoted by 𝜎, the design parameters of the ALT: 𝜉  and 𝑛 which denotes the normalized 

accelerated factor or stress applied during ALT and the number of specimen needed at each 

stress level. The problem formulation is based on multiple components comprised under one 

system and as mentioned earlier, ALT design approaches widely use the Weibull Distribution to 

model life distributions, we assume that the component level failure time follows a Weibull 

distribution (i.e. 𝐺[. ]is the Type-I extreme value distribution in Equation (5-1) ). Based on this 

assumption, the generalized probability density function (PDF) of the failure time of any given 

component is given by Equation (5-17).  

The term 𝑓൫𝐭(௜)ห𝛉(௜), 𝜎(௜), 𝝃(௜), 𝒏(௜)൯ in Equation represents the conditional likelihood 

function and is given by the following product representation: 
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Applying the aforementioned equation to multiple components, the following equation 

represents the conditional probability density function of the failure time of a component 𝑖 

among 𝑁஼ components tested 𝑛(௜) times under a stress 𝜉(௜). So the following 

𝑓ቀ𝑡௝
(௜)

(𝑘)ቚ𝜽(௜), 𝜎(௜), 𝜉௝
(௜)

ቁ is found by using the skeleton of Equation (5-10) and is given by:  

 

 

where 𝑀 and 𝑁 are defined by:  

𝑀 =  exp ൮− ൭
𝑡

exp ( 𝜃଴
(௜)

+ 𝜃ଵ
(ଵ)

𝜉௝
(௜)

)
൱

ଵ

ఙ(೔)

൲ 

And,  

𝑁 =  ൭
𝑡

exp ( 𝜃଴
(௜)

+ 𝜃ଵ
(ଵ)

𝜉௝
(௜)

)
൱

ଵିఙ(೔)

ఙ(೔)

 

In the above equations, following the censored data assumptions, we assume that all the 

components are tested to failure and hence no censored data is available. The above equations 

can be easily modified to include censored data following the procedure in [117].  

Up until this point in the formulation of the methodology, the likelihood has been 

established and the Bayesian estimation relationship could be applied to sample posterior 

distributions for the parameters of the distribution and namely the stress dependent (location 

parameter) and the stress independent parameters given the failure time of the components at 

𝑓൫𝐭(௜)ห𝛉(௜), 𝜎(௜), 𝛏(௜), 𝐧(௜)൯ =  ෑ ෑ 𝑓ቀ𝑡௝
(௜)

(𝑘)ቚ𝜽(௜), 𝜎(௜), 𝜉௝
(௜)

ቁ

௡ೕ
(೔)

௞ୀଵ 

௡ೞ

௝ୀଵ

 (5-25) 

𝑓ቀ𝑡௝
(௜)

(𝑘)ቚ𝛉(௜), 𝜎(௜), 𝜉௝
(௜)

ቁ =
1

𝜎(௜)exp ( 𝜃଴
(௜)

+ 𝜃ଵ
(ଵ)

𝜉௝
(௜)

)
 . 𝑀. 𝑁 

(5-26) 
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test. For that purpose, the particle filtering method could be applied as illustrated in Section 

4.1.3A.  

After estimating the parameters 𝜎(௜) and 𝛉(௜) for all components (∀𝑖 = 1,2, … , 𝑁஼), and in 

turn calculate the location parameter 𝛂(௜) using 𝛉(௜) as demonstrated previously, in the next steps, 

the uncertainty is propagated from the component level (testing level 4) to the system level in 

order to find an estimate to the system reliability 𝑅ௌ. In the next section, the uncertainty 

propagation method is illustrated.  

 

5.1.4 Uncertainty Propagation to System Reliability Using Copula Function  

 After the Bayesian updating of the distribution parameters: 𝛉(௜)  and  σ(௜), ∀𝑖 =

1,2, … , 𝑁௖of the component failure time distributions parameters, the uncertainty in these 

parameters are propagated to the system reliability ( sR ). 

  Now, in this section we detail the plan in how we intend to propagate the uncertainty in the 

updated parameters. The following steps explain the plan of linking the component-level 

information to the system reliability 𝑅ௌ for the model with copula-based dependence modelling.  

Step 1 As shown earlier under the copula function dependence section B – I , we have a 

𝜌 parameters included in the Gaussian-Copula function, so for a given set of the 𝛒 

parameters, we first generate samples of component failure time CDFs and denote the 

generated CDF samples as 𝑢ெ஼ௌ
(௜)

, 𝑖 = 1,2,3, … , 𝑁஼ where 𝑢ெ஼ௌ
(௜) is the CDF samples of 

the 𝑖௧௛ component.  

Step 2 In this step, we make use of the posterior samples derived for the distribution 

parameters updated via Bayesian Inference. We denote these posterior samples by 

𝛉(௜) 𝑎𝑛𝑑 𝜎(௜), ∀𝑖 = 1,2, … , 𝑁௖/∀𝑞 = 1,2, … , 𝑛௣௢௦௧ where 𝑛௣௢௦௧ is the number of 
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posterior samples. Using the CDF function as shown in Equation (6), we generate 𝑇௜ 

samples at the use stress (the intended nominal stress at which the component will 

operate normally in its normal working conditions) using the following equation:  

 

𝛼଴
(௜)

=  𝜃଴
(௜)

(𝑞) is the  𝛼(௜)
 at the nominal stress level, 𝑢ெ஼ௌ

(௜)
=

ቂ 𝑢ெ஼ௌ
(௜)

(1), 𝑢ெ஼ௌ
(௜)

, … , 𝑢ெ஼ௌ
(௜)

(𝑛ெ஼ௌ)ቃ and 𝑛ெ஼ௌ  is the number of MCS samples. 

Step 3 Now, at this step we have the samples 𝑡ெ஼ௌ
(௜)

 , , ∀𝑖 = 1,2, … , 𝑁௖ generated by using 

Equation (15) in Step 2, the system reliability 𝑅ௌis calculated depending on the 

system topology. The system topology could be multiple components put together 

according to a standard configuration: a parallel configuration or a series 

configuration or defined according to a special design. The system topology defines 

the failure of the system according to the configuration of its components and hence 

it, as well, defines its probability of no failure or system reliability.  

where 𝐼{. } is a failure indicator function derived according to the system topology. For 

example, for a series system the indicator function is defined as:  

𝑡ெ஼ௌ
(௜)

= exp (𝛼଴
(௜)

(𝑞))(− lnቀ1 − 𝑢ெ஼ௌ
(௜)

ቁ)ఙ(೔)(௤) 
(5-27) 

𝑅ௌ ≈
1

𝑛ெ஼ௌ
෍ 𝐼 ቀ𝑡ெ஼ௌ

(ଵ)
(𝑗), 𝑡ெ஼ௌ

(ଶ)
(𝑗), … , 𝑡ெ஼ௌ

(ே಴)
(𝑗)ቁ

௡ಾ಴ೄ

௝ୀଵ

 
(5-28) 

𝐼 ቀ𝑡ெ஼ௌ
(ଵ)

(𝑗), 𝑡ெ஼ௌ
(ଶ)

(𝑗), … , 𝑡ெ஼ௌ
(ே಴)

(𝑗)ቁ = ቐ
1, 𝑖𝑓 ∃𝑖, 𝑡ெ஼ௌ

(௜)
(𝑗) < 𝑇௘

−
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   
(5-29) 
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The three steps above are repeated for all the posterior samples updated by Bayesian 

Inference, 𝛉(௜) 𝑎𝑛𝑑 𝜎(௜), ∀𝑖 = 1,2, … , 𝑁௖/∀𝑞 = 1,2, … , 𝑛௣௢௦௧. Afterwards, we obtain Samples for 

𝑅ௌ as 𝑅௦(𝑞), 𝑞 = 1,2, … , 𝑛௣௢௦௧. The effect of uncertainty reduction could be now quantified 

using the 𝑅ௌ samples.  

Figure 5-3 below is a flowchart summarizing the steps in a graphical format for the steps 

detailed above. Starting with the Bayesian estimation in order to update the prior data of the 𝜽(௜)  

and 𝜎(௜), starting with component 𝑖 = 1 all the way to component 𝑖 = 𝑁஼ which will allow 

sampling posterior data with reduced uncertainty. Once the parameters are updated, the 

propagation of uncertainty is performed by calculating the stress dependent parameter 𝜶(௜) for all 

component, 𝑖 = 1,2, … , 𝑁஼ at nominal stress which is defined as the use stress at which the 

component will operate under normal conditions in an environment in which it is designed to 

function. 

 

 

 

Figure 5-3 Flowchart of connecting component-level ALT data with system reliability 
using Copula function 
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Considering the concept of dependence among these components, the copula function is 

employed as well in order to close the loop and propagate the uncertainty to the system reliability 

𝑅ௌ. The copula allows modelling the possible correlations among the components by generating 

dependent CDF samples using the posterior distribution of the distribution parameters at nominal 

stress.  

 
5.2 Uncertainty Propagation of System Level ALT Data to System Reliability 

In what follows, we detail the plan for connecting the testing data collected by testing the 

system at high stress levels to the system reliability at nominal stress levels or use stress. The 

uncertainty propagation in this part consists of using the system level ALT data by applying 

parametric Weibull distribution. The system level ALT data is the testing data collected from 

putting a system of multiple components under accelerated life testing which is the fourth test 

level as shown in Chapter 3 in Figure 3-1. 

 

5.2.1 Framework Steps Overview 

When testing a system that comprises multiple components, the analysis is subject to 

some complications due to the following reasons:  

1- Due to the various components under one system, the failure modes of each component 

might be different because the load applied to the system is not evenly distributed on all 

components, so the stress-life relationship is not straightforward and easily derived. 

2- Testing the whole system at once at higher than nominal stress to accelerate the failure, 

imposes stress on some component that we refer to as boundary component, which is 

defined as the component receiving the load directly during a system-level testing, while 

other components, receive a cascaded or extrapolated stress and we refer to them by non-
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boundary components. Having this concept of boundary versus non-boundary 

components requires a mapping of stresses from the boundary to non-boundary 

components. Mapping the stresses means finding a framework to calculate the load 

carried by non-boundary components by using the properties and stress load on the 

boundary components.  

In order to resolve the above-mentioned complications, we bridge the gap to connect the 

ALT system level data to the actual system reliability by using physics-informed model which 

resolves the mapping of stresses from the boundary components to the non-boundary 

components. 

According to the latter, the problem statement for this section is as follows: 

 

 

Step 1 Map the loads from boundary components to non-boundary components using 

Equation (20). The mapping should be done at all stress levels to all components 

present in the system.  

Step 2 Calculate the stress-dependent parameter 𝛼௦
(௜)

(𝑗) using 𝜉௕௜ of stress level j if the 

component is identified as boundary component, and if the component is identified as 

non-boundary, we use the mapped stresses predicted using the physics informed 

model, symbolized by 𝜉௕௜ି of stress level j.  

 Given: Failure Times ൫𝑡௙௔௜௟௨௘௦൯of System at different stress levels higher 
than use stress 

 Find: Map stresses from boundary components to non-boundary 
components via physics-informed model and develop the likelihood 
function to establish the Bayesian Inference  

 Find: Linkage between the system level ALT data and the system 
reliability 𝑅(𝑡)and propagation of the uncertainties 

 
Problem Statement 5-2 System level ALT data uncertainty propagation to system 

reliability 
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Step 3 Using the calculated 𝛼௦
(௜)

(𝑗) and 𝜎(௜), 𝑖 = 1,2, … , 𝑁௖ of component failure time 

distributions, we then generate random MCS sample (𝑡ெ஼ௌ,௝
(௜)

)of each of the 

component’s failure time at the j-th stress level.  

Step 4 At this step, we would need to generate CDF distributions to complete Step 3, 

because the equation for 𝑡ெ஼ௌ,௝
(௜)  following the copula-based model are generated for a 

given 𝜌.  

Step 5 Given the set of 𝑡ெ஼ௌ,௝
(௜)  we can now convert the component failure time to system 

failure time using a function (𝑓௧௜௠௘(. )) defined according to the system topology or 

configuration (i.e. series, parallel, custom configuration). 

Step 6 The linkage is done by calculating the likelihood 𝑓(𝑡௦௬௦,௝|(. )). 

 

5.2.2 Physics-Informed Model 

The Accelerated Life Testing (ALT) design has been the center of attention of a wide 

range of studies in the past decades for its usefulness in the reliability analysis. However, it has 

focused on adopting statistical strategies. On the other hand, the physics-informed prediction 

modelling has not been widely leveraged in the ALT design. Recently, some researchers shed 

light on the practicality of the physics-informed models in ALT design for the rich advantages it 

returns in terms of the physical information in ALT design [118][119]. Principles used in this 

type of modelling include, but not limited to, analytical methods [120]and data-driven 

approaches [121], computer simulations (i.e. Finite Element Analysis (FEA)) [122]. 

Taking the mechanical system given in Figure 5.4 as an example, there are six types of 

components in the system, namely, component 1 (i.e., crank), component 2 (i.e., rigid connecting 



 97

rod 1), component 3 (i.e., connecting rod 2), component 4 (i.e., horizontal sliding bar), 

component 5 (i.e., slider), and component 6 (i.e., pin). In the nominal operation condition, the 

crank is rotating at a specific speed. The rotating crank then drives the movements of the other 

five components. In component-level ALT, the component reliability of these six components 

can be tested separately. 

 When the six components are assembled together and tested as a whole, the crank (i.e., 

component 1) is then the boundary component and the other components are non-boundary 

components. For this type of mechanical machine system, the “stress” or “accelerating load” is 

the rotating speed of the crank. Suppose that the rotating speed of the crank is 10 rad/s at the 

nominal condition, it could be 100 rad/s in the accelerated situation in order to induce failures. 

For a given accelerated rotating speed of the crank (i.e., boundary component), the rotating speed 

of component 2, sliding speed of component 4 and 5, and the movement of other non-boundary 

components can be predicted using physics-based kinetic analysis. It means that we are able to 

predict the testing load conditions of the non-boundary components based on the applied 

accelerated loads (e.g., rotating speed) of boundary components in system ALT using physics-

based analysis. Note that the example given below is only used for illustration purpose. For 

different types of systems, different physic- based approaches For different types of systems, 

different physics-based approaches are needed to perform this type of load analysis in system 

ALT. 

Defining the testing stress levels, which is the rotating speed of component 1 in Figure 

5-4, of the boundary components in system-level tests denoted by 𝛏𝒃  the corresponding stress 

levels denoted by 𝛏𝒃ି, which is the rotating speed of component 2 and sliding speed of the slider 
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in Figure 5-4,of the non-boundary components excluding the boundary components are predicted 

using physics-informed load analysis. 

 

 

Figure 5-4 Illustration of a mechanical system 
 

To remember, the testing stress in an ALT design are normalized and symbolized by 𝜉, so 

assuming we have 𝑛௕ boundary components, we denote the stresses of the boundary components 

by  𝛏𝒃 = [𝜉௕ଵ, … , 𝜉௕௡್
] and the non-boundary components stress by 𝛏𝒃ି =

ൣ𝜉௕ଵି, … , 𝜉௕௡್ష
൧ where 𝑛௕ି  is the total number of non-boundary component. Now, the problem 

is to use physics-informed model to predict 𝛏𝒃ି = ൣ𝜉௕ଵି, … , 𝜉௕௡್ష
൧  by using 𝛏𝒃 =

ൣ𝜉௕ଵ, … , 𝜉௕௡್
൧. So we can write the following equation:  

𝛏𝒃𝒋ି = 𝐿௕௝ି൫𝛏𝒃, 𝛚(𝒋)൯, ∀𝑗 = 1,2, … , 𝑛௕ି  (5-30) 
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In Equation (5-19) , 𝛚(𝒊) is a set of deterministic and random parameters representing 

uncertainty for situation in which the load prediction models cannot accurately predict the load 

conditions of non-boundary components [123], [124], 𝛏𝒃𝒋ି is the j-th element of 𝛏𝒃ି and 𝑛௕ି =

𝑁஼ − 𝑛௕ represents the total of non-boundary components and 𝐿௕௝ି(. )is the set of load 

prediction models used for stress mapping from  𝛏𝐛 to 𝛏𝐛𝐣ି, ∀𝑗 = 1,2, … , 𝑛௕ି. These models can 

be obtained via computer simulation models, analytical models or data-driven models. 

At nominal stress, the physics -informed model shall satisfy the following condition:  

The latter applies for both copula-based and frailty-based dependence as part of the big 

model for the connection of system ALT data to actual system reliability in order to map the 

stresses from the boundary components in a system to the non-boundary components operating 

under the same system.  

 

5.2.3 Bayesian Estimation Formulation 

The fact that the whole system is put under testing, the dependence among the 

components is accounted for. Consequently, the system-level ALT data collected at higher than 

nominal stress level could be used to update the dependence factors,𝜌, 𝑧, contingent to the 

dependence model used to quantify the correlations among failure times of the system’s 

components. Also, since the physics informed models are used to bridge the stress from 

boundary component to non-boundary components, we can use the ALT system-level data to 

update the 𝜔(௜) parameters as part of the prediction model.  

To perform the parameter update, the Bayesian inference is applied to derive posterior 

samples to all related parameters according to the equation below: 

0 = 𝐿௕௝ି൫0, 𝛚(𝒋)൯, ∀𝑗 = 1,2, … , 𝑛௕ି  (5-31) 
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where 𝐭𝒔𝒚𝒔 = ൣ𝐭𝒔𝒚𝒔,𝟏 , … , 𝐭𝒔𝒚𝒔,𝒏𝒔
൧ where 𝐭𝒔𝒚𝒔,𝒋 = ቂ𝑡௦௬௦,௝(1), … , 𝑡௦௬௦,௝ ቀ𝑛௦௬௦(𝑗)ቁቃ

்

 are the 

observations or failure time data collected from ALT of the system at stresses higher than nominal 

stress and 𝛏𝒔𝒚𝒔 = = {𝛏𝒃(1), 𝛏𝒃(2), … , 𝛏𝒃(𝑛𝒔)}, and 𝛏𝒃(𝑖) = ൣ𝜉௕ଵ(𝑖), 𝜉௕ଶ(𝑖), … , 𝜉௕௡್
(𝑖)൧ ;  𝑖 =

1,2, … 𝑛௕. The 𝐧𝒔𝒚𝒔 = [𝑛௦௬௦(1), 𝑛௦௬௦(2), … , 𝑛௦௬௦(𝑛௦)] are the number of tests at each stress level 

and 𝑓௫(. ) denotes the prior distribution of parameter 𝑥. 

Different methods could be used to run the estimation and sample the posterior data of 

the parameters. At this step, we have the Bayesian Inference relationship to update the 

parameters that could be used to connect the ALT system-level data to the system reliability as 

shown in the next Section. The Bayesian Estimation requires the formulation of the likelihood 

function in terms of the parameters of interest and the failure time data collected at the system 

level from the system level ALT testing which is shown in what follows. 

 

5.2.4 Likelihood Function Formulation 

The likelihood function  𝑓൫𝐭𝐬𝐲𝐬ห𝛉(𝟏), 𝛉(𝟐), … , 𝛉(𝐍𝐂), 𝛔, 𝛒, 𝛚, 𝛏𝐬𝐲𝐬, 𝐧𝐬𝐲𝐬) is computed by 

where 𝑡௦௬௦,௝ (𝑘) is the 𝑘௧௛ observation at the 𝑗௧௛ stress level. 

𝑓൫𝛉(𝟏), 𝛉(𝟐), … , 𝛉(𝐍𝐂), 𝛔, 𝛒, 𝛚ห𝐭𝐬𝐲𝐬, 𝛏𝐬𝐲𝐬, 𝐧𝐬𝐲𝐬൯ 

∝ 𝑓൫𝐭𝐬𝐲𝐬ห𝛉(𝟏), 𝛉(𝟐), … , 𝛉(𝐍𝐂), 𝛔, 𝛒, 𝛚, 𝛏𝐬𝐲𝐬, 𝐧𝐬𝐲𝐬)𝑓ఘ(𝛒)𝑓ఠ (𝛚) ෑ[𝑓ఏ௜൫𝛉(௜)𝑓ఙ௜൫𝜎(௜)൯൧      

ே೎

௜ୀଵ

(5-32) 

𝑓൫𝐭𝐬𝐲𝐬ห𝛉(𝟏), 𝛉(𝟐), … , 𝛉(𝐍𝐂), 𝛔, 𝛒, 𝛚, 𝛏𝐬𝐲𝐬, 𝐧𝐬𝐲𝐬)

=  ෑ ෑ 𝑓൫𝑡௦௬௦,௝(𝑘)ห𝛉(𝟏), 𝛉(𝟐), … , 𝛉(𝐍𝐂), 𝛔, 𝝆, 𝝎, 𝝃𝒃(𝑗))

௡ೞ೤ೞ(ೕ)

௞ୀଵ

௡ೞ

௝ୀଵ

 
(5-33) 
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In order to compute 𝑓൫𝐭𝐬𝐲𝐬ห𝛉(𝟏), 𝛉(𝟐), … , 𝛉(𝐍𝐂), σ, 𝛒, 𝛚, 𝛏𝐬𝐲𝐬, 𝐧𝐬𝐲𝐬), we first map the testing 

load 𝜉௦௬௦ from the boundary components to the non-boundary components using the load 

prediction models by using Equation  (5-30) as follows: 

where 𝝃𝒃𝒒ି(𝒋) is the load condition of the 𝒒𝒕𝒉 non-boundary component at the 𝒋𝒕𝒉 testing stress 

level in the system-level tests.  

After we obtain 𝜉௕௤ି(𝑗), ∀𝑞 = 1,2, … , 𝑛௕ି   and 𝝃𝒃(𝑗), the distribution parameters 𝛼௦
(௜)

(𝑗) 

at the 𝑗௧௛ testing stress level in the system-level tests are computed by the following equation 

below: 

Based on parameters, 𝛼௦
(௜)

(𝑗)  and 𝜎(௜) for all 𝑖 = 1,2, … , 𝑁஼, of the component failure 

time distributions, we then generate random samples for each component-level failure time at the 

𝑗௧௛ testing stress level of the system-level test using Monte Carlo Simulation methods by using 

the Weibull CDF parametric function as follows: 

where 𝐭𝑴𝑪𝑺,𝒋 
(𝒊)

= ቂ𝑡ெ஼ௌ,௝ 
(௜)

(1), 𝑡ெ஼ௌ,௝ 
(௜)

(2), . . . , 𝑡ெ஼ௌ,௝ 
(௜)

(n୑ୌ) ቃ are the random failure time samples of 

the i-th component at the j-th stress level in the system-level ALT. Whereas, the set of 

component random CDF distributions of the i-th component generated from Gaussian copula for  

a given copula factor vector 𝝆 is represented by 𝐮𝑴𝑪𝑺,𝒋 
(𝒊)

=

 ቂ𝑢ெ஼ௌ,௝ 
(௜)

(1), 𝑢ெ஼ௌ,௝ 
(௜)

(2), . . . , 𝑢ெ஼ௌ,௝ 
(௜)

(n୑ୌ) ቃ . 

𝜉௕௤ି(𝑗) = 𝐿௕௝ି൫𝜉௕(𝑗), 𝜔(௤)൯, ∀𝑞 = 1,2, … , 𝑛௕ି  (5-34) 

𝛼௦
(௜)

(𝑗) =  ൝
𝜃଴

(௜)
+ 𝜃ଵ

(௜)
𝜉௕௝(𝑗) , if component 𝑖 is a boundary component

𝜃଴
(௜)

+ 𝜃ଵ
(௜)

𝜉௕௜ି (𝑗), Otherwise                                                         
 

(5-35) 

 𝑡ெ஼ௌ,௝ 
(௜)

= 𝑒ఈೞ
(೔)

(௝)  ቀ− lnቀ1 − 𝑢ெ஼ௌ
(௜)

ቁቁ
ఙ(೔)

 (5-36) 
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Based on the component failure time samples that are generated as detailed above, the 

system failure time samples could be then derived using the following function:  

where 𝑓௧௜௠௘(. ) is a function used to convert component failure time to system failure time and is 

given by:  

After we obtain 𝑡ெ஼ௌ,௝ 
(௜)

(ℎ) , ∀ℎ = 1,2, . . , 𝑛ெ஼ௌ, the function 

𝑓൫𝑡௦௬௦,௝(𝑘)ห𝛉(𝟏), 𝛉(𝟐), … , 𝛉(𝐍𝐂), 𝜎, 𝛒, 𝛚, 𝛏𝐛(𝑗)) in Equation (5-34) which is a density function 

could be estimated by applying the concept of the kernel smoothing technique. The following 

section taps into kernel smoothing in order to briefly explain the technique.  

 

A – Kernel Smoothing: 

Kernel smoothing is a statistical technique used to estimate functions like regression 

function or probability density function [125]. It is a statistical technique that uses non-

parametric estimation methods to estimate functions. 

The kernel density estimator is given by the following general form [126]:  

𝐾  is defined as the kernel and 𝛿 is called the bandwidth. 𝐾 could be any pdf function and is 

often chosen to be a unimodal distribution that is symmetric around zero, some of the known 

𝑡ெ஼ௌ,௝ 
(௜)

(ℎ) = 𝑓௧௜௠௘ ൬𝑡ெ஼ௌ,௝ 
(ଵ)

(ℎ) , 𝑡ெ஼ௌ,௝ 
(ଶ)

(ℎ), … , 𝑡ெ஼ௌ,௝ 
(ே಴)

(ℎ)൰ , ∀ℎ = 1,2, . . , 𝑛ெ஼ௌ  
(5-37) 

𝑓௧௜௠௘ ൬𝑡ெ஼ௌ,௝ 
(ଵ)

(ℎ) , 𝑡ெ஼ௌ,௝ 
(ଶ)

(ℎ), … , 𝑡ெ஼ௌ,௝ 
(ே಴)

(ℎ)൰ =

⎩
⎪⎪
⎨

⎪⎪
⎧

−
min

௜∈[ଵ,ே಴]
ቄ𝑡ெ஼ௌ,௝ 

(௜)
(ℎ)ቅ , for series system      

max
௜∈[ଵ,ே಴]

ቄ𝑡ெ஼ௌ,௝ 
(௜)

(ℎ)ቅ , for parallel system  

Defined According to System                  
Topology, Oterwise                                    

                             

 (5-38) 

𝑓௛(𝑡) =
1

𝑛𝛿
 ෍ 𝐾 ൬

𝑥௩ − 𝑡

𝛿
൰

௡

௩ୀଵ

 
(5-39) 
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kernels are the Epanechnikov Kernel [126] and Biweight Kernel[127] . The bandwidth is a 

smoothing factor determining the smoothness of the estimated function, it is a scaling factor. The 

bandwidth plays a major role in the estimation as it dictates if a density function estimate is 

overestimated or underestimated. Detailed information about the bandwidth selection could be 

found in [125]. 

Given the form of the likelihood function developed in Section 5.2.4, and by applying the 

concept of kernel estimator, the following equation is developed in order to estimate the density 

function that is the likelihood function non-parametrically:  

where 𝜅(. )is a kernel smoothing function and 𝛿 is the bandwidth or smoothing factor [128].  

 

5.2.5 Uncertainty Propagation to System Reliability 

In the previous sections, the system-level ALT testing data 𝒕𝒔𝒚𝒔 are connected to the 

component-level ALT models, copula function, and load prediction model, the connection is 

established using the Equations (5-33) through (5-40) .  

Table 5-1 below, summarizes the overall procedure for the evaluation of the likelihood 

function which in turn established the connection between component-level models and the 

system level models. Based on this established connection, the system-level testing data at 

higher-than-nominal stress levels can be used to reduce the uncertainty in the model parameters:  

𝛉(𝟏), … , 𝛉(𝐍𝐂), 𝝈, 𝛒 and 𝛚,  by using the Bayesian inference procedure in Section 4.1.4A and thus 

reduce the uncertainty in the system reliability estimate 𝑅௦. 

𝑓൫𝑡௦௬௦,௝ (𝑘)ห𝛉(𝟏), … , 𝛉(𝐍𝐂), 𝜎, 𝛒, 𝛚)

=
1

(𝑛ெ஼ௌ𝛿)
 ෍ 𝜅 ቆ

𝑡௦௬௦,௝(𝑘) − 𝑡ெ஼ௌ,௝
௦௬௦ (𝑖)

𝛿
ቇ       

௡ಾ಴ೄ

௜ୀଵ

 
(5-40) 
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Table 5-1  Summary of the evaluation procedure of Equation (5-33) 
Steps Description 

1 

Map the loads 𝝃𝒃(𝑗) from boundary components to their counterparts of non-

boundary components using physics-informed load prediction models (i.e. 

Equation (5-34)).  

2 
Obtain the distribution parameters 𝛼௦

(௜)
(𝑗)  and 𝜎(௜) for all 𝑖 = 1,2, … , 𝑁஼ at the 

testing stress level in the system-level ALT using Equation (5-35).  

3 
Generate random samples of component failure time using Equation (5-36), 

copula function, and the distribution parameters obtained from Step 2.  

4 
Convert the samples of component failure time to samples of system failure time 

using Equation (5-37). 

5 
Compute likelihood function (i.e. Equation (5-33)) using kernel smoothing 

function estimate based on the samples of system failure time. 

 

 

5.3 Reliability Assessment via Information Fusion of Component Level ALT Data with 

System Level ALT Data 

A major advantage of using Bayesian methods as demonstrated in Sections 5.1 and 5.2, 

in order to establish connections between component-level ALT data and system reliability, 

system-level ALT data and system reliability, and in both cases aiming at reducing the 

uncertainty in the system reliability estimation, is that it allows us to fuse the information from 

both component-level and system-level testing data collected from accelerated life testing at two 
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different testing stages: by testing the components separately or by testing the whole system, 

which could turn further reduction in the uncertainty of the system reliability estimate.  

The fusion of the information from both testing level: component level and system level 

data could be now combined to establish a connection between system reliability and both ALT 

component-level and system-level information data in order to reduce the uncertainty when 

assessing the system reliability. With the intention of merging both the component-level ALT 

data and the system-level ALT data,  we define the testing plan as follows: the normalized stress 

𝛏𝐭𝐞𝐬𝐭 = ൛𝛏𝐬𝐲𝐬, 𝛏(𝟏), 𝛏(𝟐), … , 𝛏(𝐍𝐂)ൟ where 𝛏𝐬𝐲𝐬  = {𝛏𝐛(𝟏), 𝛏𝐛(𝟐), … , 𝛏𝐛(𝐧𝐬)}, in which 𝛏𝒃(𝑖) =

ൣ𝜉௕ଵ(𝑖), 𝜉௕ଶ(𝑖), … , 𝜉௕௡್
(𝑖)൧ ;  𝑖 = 1,2, … 𝑛௕. The component normalized stress is defined by 𝛏(𝒊) =

ൣ𝜉(௜)(1), 𝜉(௜)(2), … , 𝜉(௜)(𝑛௦)൧, ∀𝑖 = 1,2, … , 𝑁஼ .   Also, we introduce 𝐧𝒕𝒆𝒔𝒕 =

{𝐧𝒔𝒚𝒔, 𝐧(𝟏), 𝐧(𝟐), … , 𝐧(𝑵𝑪)}, where The 𝐧𝒔𝒚𝒔 = [𝑛௦௬௦(1), 𝑛௦௬௦(2), … , 𝑛௦௬௦(𝑛௦)] and 𝑛(௜) =

ൣ𝑛(௜)(1), 𝑛(௜)(2), … , 𝑛(௜)(𝑛௦)൧ , ∀𝑖 = 1,2, … , 𝑁஼ .  

Based on the established connections, the uncertainty parameters in the ALT models and 

the load prediction model can be updated using the component-level and system-level testing 

data. At this stage, we can use the established connections in previous sections to estimate the 

distribution parameters, we show below in Equation (5-41)for a copula-based dependence model 

as follows: 

 

𝒇൫𝛉(𝟏), 𝛉(𝟐), ⋯ , 𝛉(𝐍),  𝛔,  𝛒,  𝛚ห𝐭(𝟏), 𝐭(𝟐), ⋯ , 𝐭(𝐍), 𝐭𝐬𝐲𝐬, 𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭൯ 

 ∝ 𝒇൫𝐭(𝟏), 𝐭(𝟐), ⋯ , 𝐭(𝐍), 𝐭𝐬𝐲𝐬ห𝛉(𝟏), 𝛉(𝟐), ⋯ , 𝛉(𝐍),  𝛔,  𝛒,  𝛚, 𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭൯ 

× 𝒇𝛒(𝛒)𝒇𝛚(𝛚) ෑൣ𝒇𝜽𝒊൫𝛉(𝐢)൯𝒇𝝈𝒊൫𝛔(𝐢)൯൧

𝐍𝐂

𝐢ୀ𝟏

 

(5-41) 
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where 

in which 𝒇൫𝐭𝒔𝒚𝒔ห𝛉(𝟏), 𝛉(𝟐), ⋯ , 𝛉(𝑵𝑪),  𝛔,  𝛒,  𝛚, 𝛏𝒔𝒚𝒔, 𝐧𝒔𝒚𝒔൯ is computed using Equations 

(5-33) through (5-40) in Section 5.1.3 and 𝒇൫𝐭(𝒊)ห𝛉(𝒊), 𝝈(𝒊),  𝛏(𝒊),  𝐧(𝒊)൯, ∀𝒊 = 𝟏, 𝟐, … , 𝑵𝑪  are 

computed using Equations through in Section (5-25) through (5-29). 

In this research, the particle filtering (PF) method is employed to perform the Bayesian 

inference given in Section 4.1.3A. In PF method, we first generate 𝑛௣௥௜௢௥ prior samples for the 

uncertainty parameters which are 𝛉(𝟏), 𝛉(𝟐), ⋯ , 𝛉(𝑵),  𝛔,  𝛒, and 𝛚. After that, we compute the 

weights of each prior sample as: 

Using the weights obtained from the above equation, the prior samples are then 

resampled to get the posterior distributions of 𝛉(𝟏), 𝛉(𝟐), ⋯ , 𝛉(𝑵),  𝛔,  𝛒, and 𝛚. The posterior 

distribution of the system reliability after the uncertainty reduction using component-level and 

system-level testing data is then obtained by propagating the uncertainty in 𝑐 to the system 

reliability by following the procedure discussed in Sec. 3.2.1. 

The above discussions imply that the uncertainty reduction in the system reliability 

estimate is affected by the component-level and system-level testing data. As shown in Figure 

4.1, in Chapter 4 there are several observation nodes in the network, which means that we can 

collect data at different locations and different levels of the system. With the limited testing 

𝒇൫𝐭(𝟏), 𝐭(𝟐), ⋯ , 𝐭(𝐍), 𝐭𝐬𝐲𝐬ห𝛉(𝟏), 𝛉(𝟐), ⋯ , 𝛉(𝐍),  𝛔,  𝛒,  𝛚, 𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭൯ 

= 𝒇൫𝐭𝐬𝐲𝐬ห𝛉(𝟏), 𝛉(𝟐), ⋯ , 𝛉(𝐍),  𝛔,  𝛒,  𝛚, 𝛏𝐬𝐲𝐬,  𝐧𝐬𝐲𝐬൯  ×

ෑ 𝒇൫𝐭(𝐢)ห𝛉(𝐢), σ(𝐢), 𝛏(𝐢), 𝐧(𝐢)൯

𝑵𝑪

𝒊ୀ𝟏

 
(5-42) 

𝒘(𝑘) =  
𝒇൫𝐭(𝟏), … , 𝐭(𝐍𝐜), 𝐭𝐬𝐲𝐬ห𝛉(𝟏)(𝐤), … , 𝛉(𝐍𝐂)(𝐤), 𝛔(𝐤), 𝛒(𝐤), 𝛚(𝐤), 𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭൯

∑ 𝒇൫𝐭(𝟏), … , 𝐭(𝐍𝐜), 𝐭𝐬𝐲𝐬ห𝛉(𝟏)(𝐤), … , 𝛉(𝐍𝐂)(𝐤), 𝛔(𝐤), 𝛒(𝐤), 𝛚(𝐤), 𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭൯
𝒏𝒑𝒓𝒊𝒐𝒓

𝒌ୀ𝟏

,  

∀𝑘 = 1, … , 𝑛௣௥௜௢௥       (5-43) 
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resources, how to optimally allocate the resources is a challenging issue. In the next section, 

building upon the connections established in this section, we focus on the resource allocation for 

ALT-based system reliability analysis. 

 

5.4 Accelerated Life Testing Design Optimization Model  

In this section, we first formulate the objective function used for resource allocation. We 

then present the resource allocation optimization model based on the formulated objective 

function. 

 

5.4.1 Objective Function 

In order to quantify the value of information contained in the testing data to the system 

reliability estimate, in this paper, the Kullback–Leibler (KL) divergence [124] is employed and is 

given by: 

where 𝑓ோೄ
൫𝑅ห𝑡(ଵ), … , 𝑡௦௬௦൯ is the posterior PDF of the system reliability 𝑅௦ for given testing data 

𝑡(ଵ), … , 𝑡(ே಴), 𝑡௦௬௦ and 𝑓ோబ
(𝑅) is the prior PDF of 𝑅ௌ. The distributions of 𝑅ௌ ,required to use the 

Kullback-Leibler (KL) as stated by Equation (5-44) above, are obtained by propagating the 

uncertainty in the distribution parameters 𝜽(ଵ), … , 𝜽(ே಴), 𝝆, 𝜎, 𝝎 to the system reliability per the 

methodology described in Sections 5.1 through 5.3.  

Defining the posterior samples of defining 𝑅௦ as 𝑅௣௢௦௧(𝑖), 𝑖 = 1,2, . . , 𝑛௣௢௦௧ using the 

following summation:  

𝐷௄௅ =  න 𝑓ோೞ
൫𝑅ห𝐭(ଵ), 𝐭(ଶ) … 𝐭(୒ి), 𝐭𝐬𝐲𝐬൯ ×  

                                         log ቆ
𝑓ோೄ

൫𝑅ห𝐭(ଵ), 𝐭(ଶ) … 𝐭(୒ి), 𝐭𝐬𝐲𝐬൯

𝑓ோబ
(𝑅)

ቇ  𝑑𝑅 
(5-44) 
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And the following numerator 𝑓ோೄ
൫𝑅௣௢௦௧(𝑖)ห𝒕(ଵ), 𝒕(ଶ) … 𝒕(ே಴), 𝒕𝒔𝒚𝒔൯ is estimated by using 

kernel smoothing estimate function given by: 

 

 

 

 

in which 𝛿௉௢௦௧ is the bandwidth of the kernel density function. 𝑓ோబ
(𝑅௉௢௦௧(𝑖)) is computed 

similarly using kernel density function based on the prior samples of 𝑅ௌ. 

In Equations (5-44) to (5-46),  the testing data 𝒕(ଵ), 𝒕(ଶ) … 𝒕(ே಴), 𝒕𝒔𝒚𝒔 are assumed to be 

known. In the ALT design stage, however, we do not have testing data. As a common practice in 

experimental or testing design, synthetic data are generated as the testing data using the prior 

distributions of 𝛉(𝟏), 𝛉(𝟐), ⋯ , 𝛉(𝑵),  𝛔,  𝛒, and 𝛚. The synthetic data are uncertain due to the 

uncertainty in parameters 𝛉(𝟏), 𝛉(𝟐), ⋯ , 𝛉(𝑵),  𝛔,  𝛒, and 𝛚 as well as the inherent uncertainty 

in the failure time distributions. As a result, the KL divergence given in Equation (5-45) is 

uncertain in the ALT design. So, in order to account for this uncertainty, the expected KL 

divergence is employed to be the objective function of the optimization model as a widely used 

approach in the experimental design domain and Monte Carlo Simulation (MCS) method is used 

in order to approximate the expected divergence 𝐸൫𝐷௄௅(𝜉௧௘௦௧, 𝑛௧௘௦௧)൯ where 𝝃௧௘௦௧, 𝒏௧௘௦௧ are the 

design parameters of the test plan (ALT Design). Accordingly, For a given testing plan 

𝐷௄௅ ≈  ෍ log ቌ
𝑓ோೄ

൫𝑅௣௢௦௧(𝑖)ห𝒕(ଵ), 𝒕(ଶ) … 𝒕(ே಴), 𝒕𝒔𝒚𝒔൯

𝑓ோబ
ቀ𝑅௣௢௦௧(𝑖)ቁ

ቍ

௡೛೚ೞ೟

௜ୀଵ

 
(5-45) 

𝑓ோೄ
൫𝑅௣௢௦௧(𝑖)ห𝒕(ଵ), 𝒕(ଶ) … 𝒕(ே಴), 𝒕𝒔𝒚𝒔൯ ≈ 

1

𝑛௣௢௦௧𝛿௣௢௦௧
෍ 𝜅 ቆ

𝑅௉௢௦௧(𝑖) − 𝑅௉௢௦௧(𝑗)

𝛿௣௢௦௧
ቇ

௡೛೚ೞ೟

௝ୀଵ

 
(5-46) 
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characterized by the two parameters: 𝝃௧௘௦௧ and 𝒏௧௘௦௧, the expected KL divergence noted 

by 𝐸൫𝐷௄௅(𝜉௧௘௦௧, 𝑛௧௘௦௧)൯, corresponding to this testing plan is computed by: 

where (𝐷௄௅|𝒕(ଵ), 𝒕(ଶ) … 𝒕(ே಴), 𝒕𝒔𝒚𝒔) is the KL divergence conditioned on given 

𝒕(ଵ), 𝒕(ଶ) … 𝒕(ே಴), 𝒕𝒔𝒚𝒔 and is computed using Equation (5-44), 𝑓൫𝒕(௜)ห𝝃௧௘௦௧, 𝒏௧௘௦௧൯, ∀𝑖 = 1,2, … , 𝑁஼  

is obtained by solving the following equation: 

in which 𝛏(𝒊) = ൣ𝜉(௜)(1), 𝜉(௜)(2), … , 𝜉(௜)(𝑛௦)൧, 𝐧(௜) = ൣ𝑛(௜)(1), 𝑛(௜)(2), … , 𝑛(௜)(𝑛௦)൧ , ∀𝑖 =

1,2, … , 𝑁஼  , and 𝑓൫𝐭(୧)ห𝛉(୧), 𝜎(୧), 𝛏(୧), 𝐧(୧)൯ is computed using Equation (5-25).  

Additionally, 𝑓൫𝐭ୱ୷ୱห𝛏୲ୣୱ୲, 𝐧୲ୣୱ୲൯ is given by: 

where 𝑓൫𝐭௦௬௦ห𝛉(ଵ), … , 𝛉(୒ి), 𝜎(ଵ) … , 𝜎(ே಴), 𝛒, 𝛚, 𝛏ୱ୷ୱ, 𝐧ୱ୷ୱ൯ is computed using Equation (5-33) , 

𝛏𝐭𝐞𝐬𝐭 = ൛𝛏𝐬𝐲𝐬, 𝛏(𝟏), 𝛏(𝟐), … , 𝛏(𝐍𝐂)ൟ , and 𝐧𝐭𝐞𝐬𝐭 = {𝐧𝐬𝐲𝐬, 𝐧(𝟏), 𝐧(𝟐), … , 𝐧(𝐍𝐂)}.  

The above formulation, Equations (5-47) through (5-49),  indicate that the evaluation of 

the expected KL divergence requires very complicated high-dimensional integration. In this 

research, the Monte Carlo simulation-based method is employed to approximate Eq. (33). In the 

𝐸൫𝐷௄௅(𝛏୲ୣୱ୲, 𝐧୲ୣୱ୲)൯ =  ඵ … ඵ(𝐷௄௅|𝐭(ଵ), 𝐭(ଶ) … 𝐭(୒ి), 𝐭𝐬𝐲𝐬)𝑓(𝐭(ଵ)| 𝛏୲ୣୱ୲, 𝐧୲ୣୱ୲) 

… 𝑓൫𝐭(୒ి)ห𝛏୲ୣୱ୲, 𝐧୲ୣୱ୲൯𝑓൫𝐭ୱ୷ୱห𝛏୲ୣୱ୲, 𝐧୲ୣୱ୲൯𝑑𝐭(ଵ) …  𝑑𝐭(ே಴)𝑑𝐭ୱ୷ୱ 
(5-47) 

𝑓൫𝐭(୧)ห𝛏୲ୣୱ୲, 𝐧୲ୣୱ୲൯ =  න … න 𝑓൫𝐭(୧)ห𝛉(୧), σ(୧), 𝛏(୧), 𝐧(୧)൯𝑓ఏ௜൫𝛉(୧)൯𝑓ఙ௜൫𝜎(௜)൯𝑑𝛉(௜)𝑑𝝈(𝒊) 
(5-48) 

𝑓൫𝐭ୱ୷ୱห𝛏୲ୣୱ୲, 𝐧୲ୣୱ୲൯ 

=  න … න 𝑓൫𝐭ୱ୷ୱห𝛉(ଵ), … , 𝛉(୒ి), 𝜎(ଵ) … , 𝜎(ே಴), 𝛒, 𝛚, 𝛏ୱ୷ୱ, 𝐧ୱ୷ୱ൯ 

𝑓ఘ(𝝆)𝑓ఠ(𝝎) ෑ 𝑓ఏ௜൫𝛉(௜)൯𝑓ఙ௜൫𝜎(௜)൯𝑑𝛉(ଵ) … 𝑑𝛉(ே಴)𝑑𝜎(ଵ) … 𝑑𝜎(ே಴)

ே಴

௜ୀଵ

 

(5-49) 
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MCS-based method, we first generate 𝑁௢௕௝ groups of samples of 𝐭(ଵ), 𝐭(ଶ) … 𝐭(୒ి), 𝐭𝐬𝐲𝐬 using 

MCS by accounting for the uncertainty in the prior distributions of 

𝛉(ଵ), … , 𝛉(୒ి), 𝜎(ଵ) … , 𝜎(ே಴), 𝛒, and 𝛚, as well as the uncertainty in the life distributions. We then 

compute the KL divergence using Equation (5-45) for each group of the generated MCS 

samples. After that, Equation (5-47) is computed as  

in which 𝐷௄௅(𝑖) is the KL divergence computed using Equation (5-45) based on the i-th group of 

the MCS samples and the number of groups of samples 𝑁௢௕௝ is determined such that the variance 

in the estimate in Equation (5-47) can satisfy our requirements. 

Next, we perform resource allocation for ALT-based system reliability analysis using the 

above objective function.  

 

5.4.2 Resource Allocation Optimization Model 

In resource allocation, the goal is to maximize the information gain from the limited 

accelerated life tests. With this objective in mind, we formulate the following resource allocation 

optimization model: 

 

𝐸൫𝐷௄௅(𝛏୲ୣୱ୲, 𝐧ୣୱ୲)൯ ≈
1

𝑁௢௕௝
෍ 𝐷௄௅(𝑖) 

ே೚್ೕ

௜ୀଵ 

 (5-50) 

 
 

𝑚𝑎𝑥
𝛏𝐭𝐞𝐬𝐭,𝐧𝐭𝐞𝐬𝐭

𝐸(𝐾𝐿( 𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭)) 

 
 

(5-51)  

𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨:  
 
𝐶஺௅்(ξ୲ୣୱ୲, n୲ୣୱ୲) ≤ 𝐶௧௢௧௔௟  
𝐧𝐋 ≤ 𝐧𝐭𝐞𝐬𝐭 ≤ 𝐧𝐔 
𝟎 ≤ 𝛏𝐭𝐞𝐬𝐭 ≤ 𝟏 
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where 𝐶𝐀𝐋𝐓(𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭) is the total testing cost for a given testing plan 𝛏𝐭𝐞𝐬𝐭 and 𝐧𝐭𝐞𝐬𝐭, 𝐶𝒕𝒐𝒕𝒂𝒍 is 

the total budget,  𝐧𝐋 and 𝐧𝐔 are respectively the lower and upper bounds of the number of tests at 

each stress levels, 𝐧𝐭𝐞𝐬𝐭 = {𝐧𝐬𝐲𝐬, 𝐧(𝟏), 𝐧(𝟐), … , 𝐧(𝐍𝐂)}, where The 𝒏𝒔𝒚𝒔 =

[𝑛௦௬௦(1), 𝑛௦௬௦(2), … , 𝑛௦௬௦(𝑛௦)] and 𝐧(𝐢) = ൣ𝑛(௜)(1), 𝑛(௜)(2), … , 𝑛(௜)(𝑛௦)൧ , ∀𝑖 = 1,2, … , 𝑁஼ . And 

𝛏୲ୣୱ୲ is the test limits 𝛏୲ୣୱ୲ = ൛𝛏ୱ୷ୱ, 𝛏(ଵ), … , 𝛏(୒ి)ൟ.  

The cost function could be formulated in different ways to account for various costs 

included in the ALT testing. Generally, the plan to formulate a cost function and link it to the 

parameters at hand, to do so we plan on using the cost of a testing specimen which could be cost 

of testing a component 𝑖 , 𝐶௜ ,or cost of testing a system 𝐶௦௬௦. Also, we consider the cost of 

testing per unit time which as well is divided into two types of costs depending on the testing 

level, for a system level testing, we designate the cost of system per unit time by 𝑒௦௬௦ and the 

cost of component I per unit time by 𝑒௜ . Having the expected testing time for each of the 

components and the system, the total testing cost 𝑪𝑨𝑳𝑻(𝜉௧௘௦௧, 𝑛௧௘௦௧) for given 𝜉௧௘௦௧ and 𝑛௧௘௦௧ in 

Equation (5-51) is computed by the following equation: 

    

where, the system testing cost is given by:  

the component testing cost formula is:  

𝐶஺௅்(𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭) =  𝐶௦௬௦௧௘௠ ௧௘௦௧௜௡௚ + 𝐶௖௢௠௣௢௡௘௡௧ ௧௘௦௧௜௡௚  (5-52) 

𝐶௖௢௠௣௢௡௘௡௧ ௧௘௦௧௜௡௚ =  ቎𝐶௦௬௦ ෍ 𝐧 ௦௬௦(𝑗)

௡ೞ

௝ୀଵ

+ 𝑒௦௬௦ ෍ 𝐧 ௦௬௦(𝑗)

௡ೞ

௝ୀଵ

൫ 𝐓ഥ𝐬𝐲𝐬(𝛏𝐛(𝑗)൯    ቏ (5-53) 

𝐶௖௢௠௣௢௡௘௡௧ ௧௘௦௧௜௡௚ =  ቎ ෍ 𝐶௜  ቌ෍ 𝐧(௜)

௡ೞ

௝ୀଵ

(𝑗)

ே೎

௜ୀଵ

ቍ + 𝑒௜ ෍ 𝐧(௜)

௡ೞ

௝ୀଵ

(𝒋)𝐓଍
ഥ (𝛏(𝐢)(𝑗)) ቏ (5-54) 
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The next step includes formulation of the expected testing time per system specimen and 

the expected testing time per component specimen. Once we formulate the expected time (𝑇ത௦௬௦ 

and 𝑇ത௜)  we then replace them back in the cost function and the optimization model is now 

complete.  

𝑇ప
ഥ(𝜉(௜)(𝑗))  is given by: 

where Ωఏ(೔) and Ωఙ(೔)are respectively the domain of 𝛉(௜) and 𝜎(௜), 𝑓 ቀ𝐭(୧)ቚ𝛉(୧), σ(୧), 𝛏(𝐢)(𝐣)ቁ is 

computed similarly to 𝑓൫𝐭(୧)ห𝛉(୧), σ(୧), 𝛏(୧), 𝐧(୧)൯ using Equation (5-25) and (5-26). 

Referring to the analytical expression of a Weibull distribution, the Equation (5-55) is 

rewritten as: 

𝑻ଙ
ഥ ቀ𝝃(𝒊)(𝑗)ቁ =  න න 𝝁𝑻 ቀ𝛉(𝐢), 𝜎(𝒊), 𝝃(𝒊)(𝐣)ቁ

ି

𝛀
𝜽(𝒊)

ି

𝛀
𝝈(𝒊)

 

𝒇𝜽𝒊൫𝛉(𝐢)൯𝒇𝝈𝒊൫𝜎(௜)൯ 𝐝𝛉(𝐢)𝒅𝜎(௜)𝒅𝒕 
(5-56) 

where 𝝁𝑻 ቀ𝜽(𝑖) , 𝜎(𝑖) , 𝝃(𝒊)(𝒋)ቁ is given by: 

𝝁𝑻 ቀ𝛉(𝐢), 𝛔(𝐢), 𝛏(𝐢)(𝒋)ቁ = 𝒆
൬𝜽𝟎

(𝒊)
ା𝜽𝟏

(𝒊)
(𝒋)൰𝜞൫𝟏ାఙ(೔)൯

 (5-57) 

in which 𝚪(. ) is a gamma distribution function generally given by:  

Γ(z) =  න 𝑒ି௧𝑡௭ିଵ𝑑𝑡
ஶ

଴

 (5-58) 

𝑇ത௦௬௦(𝜉௕(𝑗) is given by: 

𝑻ଙ
ഥ ቀ𝝃(𝒊)(𝑗)ቁ =  න න න 𝑡𝒇 ቀ𝐭(𝐢)ቚ𝛉(𝐢), 𝜎(𝐢), 𝛏(𝐢)(𝐣)ቁ 

ି

𝛀
𝜽(𝒊)

ି

𝛀
𝝈(𝒊)

ஶ

𝟎

× (5-55) 

𝒇𝜽𝒊൫𝛉(𝐢)൯𝒇𝝈𝒊൫𝜎(௜)൯𝒅𝜽(𝒊)𝒅𝝈(𝒊)𝒅𝒕   

𝑻ഥ𝒔𝒚𝒔൫𝝃𝒃(𝑗)൯ =  න …  න 𝒕𝒇 ቀ𝐭𝐬𝐲𝐬ቚ𝛉(𝟏), … , 𝛉(𝐍𝐂), 𝝈(𝟏) … , 𝝈(𝑵𝑪), 𝛒, 𝛚, 𝛏𝐛(𝑗)ቁ  (5-59) 
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where 𝑓 ቀ𝐭𝐬𝐲𝐬ቚ𝛉(𝟏), … , 𝛉(𝐍𝐂), 𝜎(𝟏) … , 𝜎(𝑵𝑪), 𝛒, 𝛚, 𝛏𝐛(𝑗)ቁ is computed using the Equations   

discussed in Section 5.2. 

   
Figure 5-5 summarizes the overall flowchart for the evaluation of the objective function 

𝐸(𝐾𝐿( ,test testξ n )) for a given testing plan ( ,test testξ n ). As shown in this figure, the prior 

distributions of the component-level ALT model parameters and the correlation coefficients are 

inputs for the evaluations of the objective function. For the prior distributions of component-

level ALT parameters, they can be obtained based on calibration of the component-level ALT 

models using historical data, previously conducted component-level ALT testing data, or expert 

opinions. For the correlation coefficients, their prior distributions are more difficult to get than 

that of component-level ALT model parameters. Their prior distributions can be obtained based 

on historical data, expert opinion, or physics-based failure correlation analysis. As shown in the 

numerical examples, relatively accurate prior distributions are assumed for component-level 

ALT parameters while wide and non-informative priors are assumed for the correlation 

coefficients. It should also be noted that the effectiveness of the resource allocation framework 

will be affected by the prior distributions since they are inputs for the objective function. This 

fact is true for all Bayesian experimental design methods.   

Due to the uncertainty in the prior distributions of the ALT parameters, solving the 

constraint function given in Equation  (5-52) to (5-54) is also challenging. Similar to the 

evaluation of the expected KL divergence, in this research, the MCS-based method is employed 

to estimate Equations (5-56) through (5-59). In the MCS-based method, we first generate prior 

𝑓ఘ(𝛒)𝑓ఠ(𝛚) ෑ 𝑓ఏ௜൫𝛉(௜)൯𝑓ఙ௜൫𝜎(௜)൯𝑑𝛉(ଵ) … 𝑑𝛉(ே಴)𝑑𝜎(ଵ) … 𝑑𝜎(ே಴)

ே

௜ୀଵ

 𝑑𝛒 𝑑𝛚 𝑑𝑡 



 114

samples of the ALT parameters. After that, random samples of the failure time are generated. 

Based on the generated random failure time samples, the expected component-level and system-

level testing time for given testing plan ( ,test testξ n ) are computed. By solving the optimization 

model formulated above, we are able to optimize the component-level and system-level ALT 

plans to effectively perform system reliability analysis using ALT tests. In this research, the 

efficient global optimization method with constraint function [129], [130] is employed to solve 

the optimization given in Equation (5-51). 

In the next section, two numerical examples are used to illustrate the effectiveness of the 

proposed resource allocation framework for ALT-based system reliability analysis using 2 

parameters log-scale distribution and the copula function as a mean to model the dependence 

among the components of one system. 

 

Figure 5-5 Overall flowchart for the evaluation of the objective function for a given testing plan 
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5.5 Numerical Examples 

In this section, a mixed system and a four-joint robot system are used to illustrate the 

effectiveness of the proposed framework. 

 

5.5.1  A Mixed System 

A - Problem Statement 

A mixed system given in Figure 5-6 is employed as the first numerical example. The system 

consists of three components. Amongst the three components, component 1 is the boundary 

component. The reliability of the system over a time period [0, 3.5×105] cycles at the nominal 

stress level needs to be estimated based on accelerated life testing.  

 
Figure 5-6 A mixed system with three components 

 

Table 5-2 gives the true parameters (𝜃଴
(௜),𝜃ଵ

(௜), and 𝜎(௜), 1, 2,3i  ) of the component-

level ALT model of the three components. The true Gaussian copula parameters of the three 

components are given by 

where 𝜌ଵଶ = 𝜌ଶଵ = 0.9 , 𝜌ଵଷ =  𝜌ଷଵ = 0.02, and 𝜌ଶଷ =  𝜌ଷଶ = 0.12. 

𝛒 = ൥

1 𝜌ଵଶ 𝜌ଵଷ

𝜌ଶଵ 1 𝜌ଶଷ

𝜌ଷଵ 𝜌ଷଶ 1
൩  (5-60) 
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Table 5-2 True parameters of the component-level ALT models 
 Component-level ALT parameters 

Component 𝜃଴
(௜) 𝜃ଵ

(௜) 𝜎(௜) 

1 12.85 -5.3 0.06 

2 13.05 -4.9 0.15 

3 13.22 -4.8 0.13 

 
Based on the above true models and parameters, the true system reliability (𝑅ௌ) over the 

time period of interest is estimated as 𝑅௦ = 0.853. In ALT-based system reliability assessment, 

we assume that the above parameters are unknown and thus the true system reliability is 

unknown. We need to estimate them based on accelerated life tests. Table 3 presents the required 

testing cost of component-level and system-level tests. The total budget of the accelerated life 

tests is 𝐶௧௢௧௔௟ = 6𝑥10ହ. Table 4 gives the prior distributions of the ALT model parameters. For 

Gaussian distribution, in this Table, Parameters 1 and 2 are respectively the mean value and 

standard deviation. For uniform distribution, Parameters 1 and 2 respectively the lower and 

upper bounds of the distribution. Based on the prior information of the ALT model parameters, 

we then perform ALT design for system reliability assessment. In the ALT design, two-stress 

level tests are designed for the three components and the system. In addition, the number of the 

available testing chambers is 30 for each component and for the system-level tests at each testing 

stress level.  

Table 5-3 Testing cost of component-level and system-level tests 
 Component 1 Component 2 Component 3 System 
Cost/specimen 1000 3000 2000 7000 
Cost/unit time 0.02 0.01 0.01 0.03 

 

Table 5-4 Prior distributions of the ALT model parameters 
Variable 𝜽𝟎

(𝟏) 𝜽𝟏
(𝟏) 𝝈(𝟏) 𝜽𝟎

(𝟐) 𝜽𝟏
(𝟐) 𝝈(𝟐) 𝜽𝟎

(𝟑) 𝜽𝟏
(𝟑) 𝝈(𝟑) 𝝆𝟏𝟐 𝝆𝟏𝟑 𝝆𝟐𝟑 

Parameter 1 12.87 -5.35 0.055 13.03 -493 0.152 13.24 -4.83 0.132 0 0 0 

Parameter 2 0.02 0.05 0.006 0.04 0.03 0.004 0.04 0.05 0.005 0.98 0.1 0.2 

Distribution Gaussian Uniform 



 117

 

With the above information, we then perform system reliability assessment based on 

ALTs. 

 

B - System reliability assessment based on ALT 

Assume that from the physics-informed analysis, we obtain the relationship between the 

load conditions of boundary component and non-boundary components as 

where 𝜉௕ is the normalized stress of the boundary element, 𝜔௕  is an uncertain parameter due to 

model uncertainty in the physic-informed load prediction model. The prior distribution of is 

given by 𝜔௕~ 𝑈𝑛𝑖𝑓(0.11,0.13), where Unif()  means uniform distribution. 

  In order to optimize both the component-level and system-level ALT plans, we formulate an 
optimization model using Equation  

 
(5-51) as below: 

 

We then solve the above optimization model using the approach discussed in Section 

5.4.2. We first generate 300 training points for the design variables (𝝃𝒕𝒆𝒔𝒕 and 𝒏𝒕𝒆𝒔𝒕) using Latin 

Hypercube sampling approach [131]. After evaluating the objective function at these 300 

𝛏𝐬𝟐 =  𝛏𝐛 
𝛏𝐬𝟑 = |𝐬𝐢𝐧(𝟑𝟎𝛚𝐛𝛏𝐛)| 

(5-61) 

 

𝑚𝑎𝑥
𝛏𝐭𝐞𝐬𝐭,𝐧𝐭𝐞𝐬𝐭

𝑬(𝑲𝑳( 𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭)) 

Subject to:  

𝛏𝐭𝐞𝐬𝐭 = ൛𝛏𝐛(𝟏), 𝛏𝐛(𝟐), 𝛏(𝐢)(𝟏), 𝛏(𝐢)(𝟐)ൟ; ∀𝑖 = 1,2,3 

𝐧𝐭𝐞𝐬𝐭 = ൛𝐧𝐬𝐲𝐬(𝟏), 𝐧𝐬𝐲𝐬(𝟐), 𝐧(𝐢)(𝟏), 𝐧(𝐢)(𝟐)ൟ;  ∀𝑖 = 1,2,3  

𝐶஺௅்(𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭) ≤ 𝐶௧௢௧௔௟  

𝟏 ≤ 𝑛(௜)(𝑗) ≤ 30 , ∀𝑖 = 1,2,3 , ;  ∀𝑗 = 1,2 
 1 ≤ 𝑛௦௬௦(𝑗) ≤ 30 , ∀𝑖 = 1,2,3 , ;  ∀𝑗 = 1,2 

0 ≤  𝛏௧௘௦௧ ≤ 1 
 

 (5-62) 
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training points, we build a Kriging surrogate model for the objective function and refine the 

Kriging surrogate modeling using the efficient global optimization approach with the 

consideration of the budget constraint [129], [130]. In evaluating the objective function, the 

numbers of samples we used are 𝑛௣௥௜௢௥ = 20,000, 𝑛௠௖௦ = 1,000,000 (Equation (5-28)),𝑁௢௕௝ =

500 (Equation (5-50)). By adaptively refining the surrogate model, we obtain the optimal design 

corresponding to the maximum expected KL divergence. 

Table 5-5 ALT Plan for Optimal Design, Design 1, Design 2 and Design 3 

 
Component 1 Component 2 

𝜉(ଵ)(1) 𝜉(ଵ)(2) 𝑛(ଵ)(1) 𝑛(ଵ)(2) 𝜉(ଶ)(1) 𝜉(ଶ)(2) 𝑛(ଶ)(1) 𝑛(ଶ)(2) 

Optimal Design 0.378 0.858 20 18 0.789 0.409 22 26 

Design 1 0.443 0.465 15 4 0.973 0.595 18 14 

Design 2 0.404 0.627 15 6 0.501 0.527 18 13 

Design 3 0.232 0.279 3 18 0.442 0.737 6 8 

 
Component 3 System 

𝜉(ଷ)(1) 𝜉(ଷ)(2) 𝑛(ଷ)(1) 𝑛(ଷ)(2) 𝜉௕(1) 𝜉௕(2) 𝑛௦௬௦(1) 𝑛௦௬௦(2) 

Optimal Design 0.617 0.678 18 13 0.833 0.546 16 27 

Design 1 0.546 0.398 4 26 0.929 0.380 28 26 

Design 2 0.654 0.04 22 24 0.296 0.996 19 17 

Design 3 0.826 0.383 25 24 0.795 0.512 25 27 

 

 Table 5-5 gives the optimal component-level and system-level ALT designs obtained 

from the proposed approach. In this table, for the purpose of comparison, we also provide three 

non-optimal designs, which have similar expected testing costs (i.e. 
56 10 ) as the optimal 
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design. Following that, Figs. 4 and 5 depict the comparisons between the posterior distributions 

and prior distribution of the system reliability estimate obtained using different designs. Note 

that, the Bayesian updating of the system reliability estimate is performed 200 times for each 

design (as indicated by multiple posterior distribution curves) to account for the uncertainty in 

the testing data. The comparison given in  and Figure 5-10 illustrate that the optimal testing plan 

can more effectively reduce the uncertainty in the system reliability estimate than the other three 

non-optimal designs. This demonstrates the effectiveness of the proposed framework. 

  

Figure 5-7 Comparison of prior and posterior distributions of the system reliability for optimal 
design 
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Figure 5-8 Comparison of prior and posterior distributions of the system reliability for Design 1 
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Figure 5-9 Comparison of prior and posterior distributions of the system reliability for Design 2 

One realization of  
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Figure 5-10 Comparison of prior and posterior distributions of the system reliability for Design 3 
 

5.5.2  A Four-Joint Robot System 

A - Problem Statement 

A four-joint Unmanned Ground Vehicle (UGV) [132], [133] is employed as the second 

example.  

Figure 5-11Figure 5-11  gives the schematic kinematic diagram of the four-joint robot arm 

(Figure 5.11 (a)) and its reliability block diagram (Figure 5.11 (b)).  As shown in this figure, 

there are four joints in total. Each joint is actuated by a motor 𝑚௜  (𝑖 = 1,  2,  3, 4) and the joint 
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angle is measured by a sensor. To guarantee the reliability of the system, redundancy is added to 

each sensor.  

The four motors (𝑚ଵ, 𝑚ଶ, 𝑚ଷ, 𝑎𝑛𝑑 𝑚ସ) are identical and independent. The angle sensors 

s-1A, s-1B, s-2A, s-2B, s-3A, s-3B, s-4A, and s-4B, are also identical components. There are

mainly two types of components and twelve components in the system. Amongst the twelve 

components, component 10 is the boundary component. The reliability of the system over a time 

period [0,  3 × 10ହ] cycles at the nominal stress level needs to be estimated based on ALT.  

Table 5-6 gives the true ALT model parameters of the two types of components (motor 

and angle sensor). 

Figure 5-11 A four-joint robot system 

Table 5-6 True parameters of the component-level ALT models 
Component-level ALT parameters 

Component 𝜃଴
(௜)

𝜃ଵ
(௜) 𝜎(௜) 

1 13.2 -4.6 0.12 

2 12.8 -4.2 0.08 

From experts’ opinion, it is known that the failures of components 1 and 2, 1 and 3, 2 and 

3, 5 and 6, 8 and 9, and 11 and 12 are dependent due to the shared load conditions. The true 

Gaussian copula parameters are assumed to be as shown in Table 5-7 below : 

s-1A

s-1B

s-2A

s-2B
m1 m2 

m3 
s-3A

s-3B
m4 

s-4A

s-4B

(a) Kinematic diagram (b) Reliability block
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Table 5-7 Components Copula Correlation Factors 
 Components Copula Correlation Factors 

Copula Factor 𝜌ଵ,ଶ 𝜌ଵ,ଷ 𝜌ଶ,ଷ 𝜌ହ,଺ 𝜌଼,ଽ 𝜌ଵଵ,ଵଶ 𝜌௜,௜;  ∀𝑖 = 1,2, … ,12 

Value 0.43 0.43 0.73 0.85 0.8 0.82 1 

 

 It is assumed that any other correlation parameters not listed in the table to be zeros. 

Based on the above assumed true models and parameters, the true system reliability (𝑅ௌ) is 

estimated as 𝑅ௌ = 0.7922. Similar to example one, in ALT-based system reliability assessment, 

we assume that the above parameters are unknown and estimate them using ALT data. Table 5-8 

presents the required testing cost of component-level and system-level tests. The total budget of 

the accelerated life tests is 𝐶௧௢௧௔௟ = 2𝑥10ହ.   

Table 5-9 presents the prior distributions of the unknown parameters. In the ALT design, 

two-stress level tests are designed for the components and four-stress level tests are designed for 

the system. The number of available testing chambers is 20 for each component and for the 

system at each testing stress level. We then perform system reliability assessment using ALT 

based on the aforementioned information. 

Table 5-8 Testing cost of component-level and system-level tests 
 Component 1 Component 2 System 
Cost/specimen 200 50 1300 
Cost/unit time 0.02 0.01 0.045 

 

 

Table 5-9 Prior distributions of the ALT model parameters 
Variable 𝜽𝟎

(𝟏) 𝜽𝟏
(𝟏) 𝝈(𝟏) 𝜽𝟎

(𝟐) 𝜽𝟏
(𝟐) 𝝈(𝟐) 𝝆𝟏,𝟐 𝝆𝟏,𝟑 𝝆𝟐,𝟑 𝝆𝟓,𝟔 𝝆𝟖,𝟗 𝝆𝟏𝟏,𝟏𝟐 

Parameter 1 13.25 -4.64 0.124 12.82 -4.22 0.083 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 

Parameter 2 0 .0 5 0.06 0.005 0 . 04 0.05 0.004 0 . 5 0 . 5 0 . 9 0 . 9 0.95 0 . 9 5 

Distribution Gaussian Uniform 
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B - System reliability assessment using ALT 

Following the procedure discussed in Section 5.4.2, assume that from physics-informed 

load analysis, we obtain the relationships between the load conditions of boundary component 

and non-boundary components as follows: 

 Table 5-10 Physics-Informed model mapped stresses values 

Mapped Stresses 

𝛏𝐬𝟏 = 𝟎. 𝟗𝛏𝐛 

𝛏𝐬𝟑 = 𝛏𝐬𝟐 = 𝐬𝐢𝐧𝟐(𝟒𝛏𝐛) 

𝛏𝐬𝟕 = 𝛏𝐬𝟒 =  𝛏𝐛 

𝛏𝐬𝟔 = 𝛏𝐬𝟓

= ฬ𝐬𝐢𝐧(𝟓𝛏𝐛) 𝐜𝐨𝐬 ൬
𝟑𝛏𝐛

𝟖
൰ฬ 

𝛏𝐬𝟖 =  𝛏𝐬𝟗 = |𝐬𝐢𝐧(𝟔𝛏𝐛)| 

𝛏𝐬𝟏𝟐 = 𝛏𝐬𝟏𝟏

= 𝐬𝐢𝐧𝟐(𝟒. 𝟓𝛏𝐛) 
 

The ALT design optimization model is formulated as: 

We then solve the above optimization model similarly to Example one. All results along 

with their interpretation are reported in what follows. 

 

 

𝑚𝑎𝑥
𝛏𝐭𝐞𝐬𝐭,𝐧𝐭𝐞𝐬𝐭

𝑬(𝐾𝐿( 𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭)) 

𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨: 
𝛏𝐭𝐞𝐬𝐭 = ൛𝛏𝐛(𝟏), 𝛏𝐛(𝟐), 𝛏𝐛(𝟑), 𝛏𝐛(𝟒) 𝛏(𝐢)(𝟏), 𝛏(𝐢)(𝟐)ൟ; ∀𝒊 = 𝟏, 𝟐, 𝟑 

𝐧𝐭𝐞𝐬𝐭 = ൛𝐧𝐬𝐲𝐬(𝟏), 𝐧𝐬𝐲𝐬(𝟐), 𝐧𝐬𝐲𝐬(𝟑), 𝐧𝐬𝐲𝐬(𝟑), 𝐧(𝐢)(𝟏), 𝐧(𝐢)(𝟐)ൟ; 
∀𝒊 = 𝟏, 𝟐, 𝟑  
𝑪𝑨𝑳𝑻(𝛏𝐭𝐞𝐬𝐭, 𝐧𝐭𝐞𝐬𝐭) ≤ 𝑪𝒕𝒐𝒕𝒂𝒍 

1 ≤ 𝑛(௜)(𝑗) ≤ 20 , ∀𝑖 = 1,2; ∀𝑗 = 1,2 
 1 ≤ 𝑛௦௬௦(𝑗) ≤ 20 , ∀𝑗 = 1,2,3,4 

0 ≤  𝛏௧௘௦௧ ≤ 1 
 

(5-63) 
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C – Results 

Table 5-12 gives the optimal component-level and system-level ALT designs obtained 

from the proposed approach. We also compare the obtained optimal design with three other non-

optimal designs given in Table 5-12. The Figures below shows the posterior distributions 

obtained using different designs and the prior distribution of the system reliability estimate. 

Table 5-11gives the expected KL divergence if ALTs are performed using these different testing 

plans. 

Following that, Figure 5-12 through Figure 5-14 depict corresponding comparisons 

between posterior distributions and prior distribution of the system reliability estimate obtained 

using different designs. Note that Bayesian updating of the system reliability estimate is 

performed 200 times for each design (as indicated by multiple posterior distribution curves) to 

account for the uncertainty in the testing data.  Figure 5-12, it also depicts the system reliability 

estimate using only component-level tests by ignoring the dependence. 

It shows that using only the component-level ALTs for the system reliability estimate can 

lead to large error in the reliability estimate. The posterior distributions (i.e., Figure 5-12) 

obtained from the proposed method by fusing the component and system-level tests are much 

closer to the true value than that of using only component-level testing. This demonstrates the 

benefit of fusing component-level and system level testing data in system reliability analysis. 

Comparing the results in Figure 5-12 and Figure 5-13 through Figure 5-15, it shows that the 

posterior distributions obtained from the optimal design are getting closer to the true value, while 

the difference between the posterior distributions and the prior distribution is not as significant as 

the optimal design for the other non-optimal testing plans. 
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Table 5-11 Comparison of expected KL divergence for different testing plan designs 
Design Optimal Design Design 1 Design 2 Design 3 

𝑬(𝑲𝑳(𝝃𝒕𝒆𝒔𝒕, 𝒏𝒕𝒆𝒔𝒕)) 0.4902 0.2446 0.2570 0.3329 

Expected Cost ($) 5.9898𝑥10ହ 5.9890𝑥10ହ 5.9888𝑥10ହ 5.9889𝑥10ହ 
 

Table 5-12 ALT Plan for Optimal Design, Design 1, Design 2 and Design 3 

 
Component 1 Component 2 

𝜉(ଵ)(1) 𝜉(ଵ)(2) 𝑛(ଵ)(1) 𝑛(ଵ)(2) 𝜉(ଶ)(1) 𝜉(ଶ)(2) 𝑛(ଶ)(1) 𝑛(ଶ)(2) 

Optimal 
Design 

0.545 0.494 16 18 0.016 0.523 18 5 

Design 1 0.663 0.148 5 15 0.954 0.260 17 6 

Design 2 0.267 0.094 18 9 0.820 0.733 9 19 

Design 3 0.241 0.258 7 20 0.857 0.532 4 5 

 
System 

𝜉௕(1) 𝜉௕(2) 𝜉௕(3) 𝜉௕(4) 𝑛௦௬௦(1) 𝑛௦௬௦(2) 𝑛௦௬௦(3) 𝑛௦௬௦(4) 

Optimal 
Design 

0.478 0.396 0.414 0.743 17 18 16 10 

Design 1 0.306 0.782 0.960 0.373 18 14 17 18 

Design 2 0.302 0.363 0.458 0.285 10 5 14 16 

Design 3 0.847 0.380 0.919 0.700 15 20 17 12 

 

The differences between the prior distribution and the posterior distributions for different 

designs are quantified quantitatively by the expected KL divergence in Table 6. The above 

results comparisons demonstrate the effectiveness of the proposed framework in reducing the 

uncertainty in the system reliability estimate. 
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5.6 Summary  

Accelerated life testing has been widely used in product development to certify the 

reliability of the products in the early design stage. In order to evaluate the reliability of a 

complex system, components are usually tested separately and the complicated dependence 

between different components are ignored in practice. System-level reliability tests can 

effectively account for the complicated dependence between different failure modes and 

components. The required testing cost for system-level tests, however, are much higher than its 

counterpart of component-level tests. How to effectively allocate the limited testing resources to 

the component-level and system-level tests in ALT-based system reliability assessment is a 

challenge issue that need to be addressed. 

Chapter 5 proposes a novel ALT design framework for system reliability assessment. In 

order to fuse the information from component-level and system-level tests for the purpose of 

system reliability estimate, connections are first established between the component-level ALT 

and system reliability, as well as system-level ALT and system reliability. More specifically, 

physics-informed load prediction models are employed to bridge the gap between the system-

level tests at higher-than-nominal stress level and system reliability analysis at the nominal stress 

level. Building upon the established connections, an optimization model is then formulated to 

maximize the information gain from various tests subject to budget constraint. The results of two 

numerical examples including a mixed system and a four-joint robot system, demonstrate that the 

proposed framework can effectively reduce the uncertainty in the system reliability estimate 

through the information fusion of component-level and system-level tests. 

Similar to many other ALT design approaches, the proposed method adopts several 

commonly utilized assumptions. Eliminating these assumptions is a research topic that is worth 
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pursuing in future. The component-level ALT and system-level ALT are optimized concurrently 

in the proposed framework. This may result in a large number of design variables when the number 

of components is high. A possible way of addressing this challenge is to perform the component-

level ALT design and system-level ALT design sequentially instead of concurrently. This will be 

investigated in our future work.  

 

 

P
D

F

Figure 5-12 Comparison of prior and posterior distributions of the system reliability for the 
optimal design 
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Figure 5-13 Comparison of prior and posterior distributions of the system reliability for 
Design 1 
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Figure 5-14 Comparison of prior and posterior distributions of the system reliability for 
Design 2 
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Figure 5-15 Comparison of prior and posterior distributions of the system reliability for Design 3 
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 System Reliability Assessment via Distribution Free Model and Shared Frailty 

Models 

 

In this chapter, we present the proposed method to perform system reliability assessment 

based on ALT data collected from two different testing levels, namely component level and 

system level. The model is based on using the extended hazard regression (EHR) model is 

employed in order to model the component ALT failure time data in conjunction with Frailty 

models in order to model the dependence among the failure time data. The EHR model, as 

explained previously in Section 4.1.3,  relies on using the hazard function formulation and it is a 

regression model that takes into account the effect of the covariate which is the applied stress 

during testing on the failure time of a component. Additionally, a frailty factor is incorporated in 

conjunction with the EHR model in order to model the dependence among the components.  

It is assumed that there is no censoring and that all testing units would be tested to failure. 

Censoring could be easily incorporated in the model. In addition, only constant stresses are 

considered. Step-stress ALT design is not the focus of this research. 

As shown in Figure 6-1, the model consists of three sub-models: the first is establishing a 

relationship between the component-level ALT data and the system reliability. Second, a model 

to connect system-level ALT data to the system reliability and third we aim at fusing both 

component-level ALT data and system-level ALT data in order establish an estimate for the 

system reliability.  
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Figure 6-1 Overview of the proposed ALT framework for system reliability analysis 
 

Next, we start by presenting the component-level ALT data framework that connect the 

component-level ALT data to the system reliability using EHR and Frailty models. 

 

6.1 Uncertainty Propagation of Component Level ALT Data to System Reliability 

6.1.1 Framework Steps Overview 

Aiming at establishing a system reliability estimate, the goal of the component-level ALT 

framework is to reduce and propagate the uncertainties in the data of the component parameters 

using ALT data collected from component- level ALT by subjecting each of the component to a 

higher than nominal stress individually.  
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The Diagram shown in Figure 6-2 shows the steps taken in order to establish a 

connection between the component level ALT data and the system reliability through uncertainty 

propagation. First, ALT data is collected for each of the components in a system.  Second, A 

likelihood function is formulated using EHR model. Third, the uncertainties of the EHR model 

parameters are reduced using Bayesian Inference for all components. Fourth, posterior 

distributions for all parameters for each of the components are sampled using particle filtering. 

Fifth, Dependence is accounted for using frailty models. Last, using the system topology (series 

versus mixed) the uncertainties are propagated to the system reliability. 

The first section in this chapter tackles reducing the uncertainties in the prior information 

of the component parameters. To do so, the Bayesian relationship is developed to sample out 

posterior distribution with minimal uncertainty for model parameters and namely, the regression 

parameters of the EHR model and the parameters of the baseline quadratic hazard function. 

Accordingly, the Bayesian estimation relationship requires the development of the likelihood 

function. After formulating the likelihood function, particle filtering is applied as the sampling 

procedure to derive the posterior samples.  

In addition, the propagation of the uncertainties in the component parameters to the 

system reliability imposes the correlation among the components when assembled together under 

one system. In order to tackle the dependence, the frailty models are integrated along with the 

EHR model to account for any possible dependence among the components.  

Lastly, we calculate the system reliability. The model details the formulation for  any pre-

defined system configuration: series topology or mixed topology (i.e. series, parallel or any other 

custom topology).  

 



 136

 

Figure 6-2 Framework overview of the connection between component-level ALT at high stress 
levels and system reliability model overview 

 

6.1.2 Framework Assumptions 

In this section we present the assumptions made in order to develop the ALT framework 

via distribution free model that includes the concept of frailty models. The following 

assumptions listed in section 5.1.2 in Chapter 5 applies to this model as well:  

A1- System Topography Assumption 

A2- ALT Feasibility Assumption 
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A3- Load Transfer Function Assumption 

A4- Time Censoring Assumption 

A5- Constant ALT Accelerated Stress Assumption 

A6- Prior Information Availability Assumption 

A7- Extrapolation of ALT Failures to Normal Operation Assumption 

Adding to the seven assumptions that could be carried over from the ALT using Log-Scale 

parametric statistical distribution and copula chapter, this model requires an additional assumption 

and they are as follows:  

A8- Frailty Factor Identifiability: The 𝑧 factor denoting the frailty factor that is part of the 

frailty model is assumed to have an accessible and identifiable prior information. Unlike 

the Copula function, one factor is required for all the components of one system which is 

the concept of shared frailty factors. The mathematical formulation will be presented in 

the sections below.  

As shown in Figure 6-2, ALT data is first collected for each component in the system 

individually.  After that, the data are used to update the component-level ALT models using 

Bayesian inference method. The updated component-level ALT models are then connected to 

system reliability at the nominal stress level through frailty models. In the subsequent sections, we 

will discuss the major steps to establish such a connection between component-level ALT and 

system reliability. 

 

6.1.3 Bayesian Updating of the Component-level ALT Models 

In order to develop the Bayesian Inference relationship to sample the posterior 

distributions, the parameters of interests are identified for which prior information shall be 
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available. Accordingly, as detailed in Section 4.1.3 the EHR model is employed based on 

Equations (4-3) through (4-4) and the Bayesian Inference Equation (4-11).  

 

A – The EHR Model and the PDF Function Formulation 

Considering a system with 𝑁஼ components, we denote the number of ALT stress levels of 

the i-th component as 𝑚௜, ∀𝑖 = 1,2, … , 𝑁஼ . Letting the testing stress levels of the i-th component 

be 𝐬௜ = [𝑠௜௝ ,  𝑗 = 1,2, … ,  𝑚௜], where 𝑠௜௝ is the j-th testing stress level of the i-th component, we 

first normalize the stress level as below: 

 x௜௝ =
𝑠௜௝ − 𝑠௅೔

𝑠௎೔
−  𝑠௅೔

 
(6-1) 

where 𝑠௅೔
 and 𝑠௎೔

 are respectively the lower and upper bounds of the testing stress level of the i-

th component and x௜௝ is the normalized j-th testing stress level of the i-th component. The 

normalized stress is then a value between 0 and 1 ൫𝟎 ≤ x௜௝ ≤ 𝟏൯.  

After that, we model the failure time data collected from component-level ALT using the 

EHR model explained in Section 2.2.3. The hazard rate function of the i-th component at the j-th 

testing stress level is given by: 

 
𝜆 ൫𝑡ห𝛂௜ , 𝛃௜ , 𝐱௜௝൯ = 𝜆଴,௜ ቀ𝑡𝑒(𝐱೔ೕ

೅ 𝛃೔)ቁ 𝑒(𝐱೔ೕ
೅ 𝛂೔), ∀𝑖 = 1,2, … , 𝑁஼; 𝑗

= 1,2, … , 𝑚௜ , 
(6-2) 

where 𝜆଴,௜(∙) is the baseline hazard function of the i-th component and 𝛂௜ and 𝛃௜ are the regression 

parameters of the i-th component given by: 

 
𝛂 = [𝛼଴ 𝛼ଵ] 

𝛃 = [𝛽଴ 𝛽ଵ] 
(6-3) 
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Based on the hazard function, we then have the probability density function (PDF) of 

failure time 𝑡 at the j-th testing stress level as below: 

 𝑓
೔ೕ

൫𝑡ห𝛂௜ , 𝛃௜ , 𝐱௜௝൯ =  𝜆 ൫𝑡ห𝛂௜ , 𝛃௜ , 𝐱௜௝൯ × 𝑅൫𝑡ห𝛂௜ , 𝛃௜ , 𝐱௜௝൯ 
(6-4) 

where 𝑓
೔ೕ

(∙) is the PDF of 𝑡 for given 𝛂௜ , 𝛃௜, and 𝐱௜௝, 𝜆 ൫𝑡ห𝛂௜ , 𝛃௜ , 𝐱௜௝൯  is the hazard rate function 

given in Equation (6-2) and 𝑅൫𝑡ห𝛂௜ , 𝛃௜ , 𝐱௜௝൯ is the reliability function defined as 𝑅൫𝑡ห𝛂௜ , 𝛃௜ , 𝐱௜௝൯ =

𝑒ି ஃ൫௧; 𝛂೔, 𝛃೔, 𝐱೔ೕ൯, in which Λ൫𝑡; 𝛂௜ , 𝛃௜ , 𝐱௜௝൯ =  ∫ 𝜆൫𝑦; 𝛂௜ , 𝛃௜ , 𝐱௜௝൯𝑑𝑦 
௧

଴
 is the cumulative hazard 

function.  

In order to get the cumulative hazard function to compute 𝑅൫𝑡ห𝛂௜ , 𝛃௜ , 𝐱௜௝൯, the baseline 

hazard function 𝜆଴,௜(∙) is assumed to be a quadratic function by following the method presented in 

[62]  as follows: 

 𝜆଴,௜ (𝑢) =  𝛾଴,௜ +  𝛾ଵ,௜𝑢௜ +  𝛾ଶ,௜𝑢௜
ଶ 

(6-5) 

where 𝛾଴,௜, 𝛾ଵ,௜, and 𝛾ଶ,௜ are regression coefficients and 𝑢 = 𝑡𝑒(𝐱೔ೕ
೅ 𝛃೔).  

Combining Equations (6-2) and (6-5) yields the following hazard rate function of the i-th 

component: 

 

𝜆௜  ൫𝑡ห𝛄௜ , 𝛂𝒊, 𝛃𝒊, 𝐱௜௝൯ = 𝛾଴,௜𝑒
𝐱೔ೕ

೅ 𝛂೔ +  𝛾ଵ,௜𝑡𝑒𝐱೔ೕ
೅ 𝐰బ,೔ +  𝛾ଶ,௜𝑡

ଶ𝑒𝐗೔
೅𝐰భ,೔ , 

𝐰଴,௜ = 𝛂௜ + 𝛃௜   &  𝐰ଵ,௜ = 𝛂௜ + 2𝛃௜ , 

𝛄𝒊 = ൛𝛾଴,௜ , 𝛾ଵ,௜ , 𝛾ଶ,௜ൟ; ∀ 𝑖 = 1,2, … , 𝑁௖ 

(6-6) 

We then can get the cumulative hazard function by integrating Equation (6-6) above:  

Λ൫𝑡ห𝛄௜ , 𝛂𝒊, 𝛃𝒊, 𝐱௜௝൯ =  න ቀ𝛾଴,௜𝑒
𝐱೔ೕ

೅ 𝛂೔ +  𝛾ଵ,௜𝑡𝑒𝐱೔ೕ
೅ 𝐰బ,೔ +  𝛾ଶ,௜𝑡

ଶ𝑒𝐗೔
೅𝐰భ,೔ቁ 𝑑𝑦 

௧

଴

, 
(6-7) 

Λ൫𝑡ห𝛄௜ , 𝛂𝒊, 𝛃𝒊, 𝐱௜௝൯ = 𝛾଴,௜𝑡𝑒𝐱೔ೕ
೅ 𝛂೔ +

𝛾ଵ,௜𝑡
ଶ

2
𝑒𝐱೔ೕ

೅ 𝐰బ,೔ +
𝛾ଶ,௜𝑡

ଷ

3
𝑒𝐱೔ೕ

೅ 𝐰భ,೔ . 
(6-8) 
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The reliability function 𝑅൫𝑡ห𝛂𝒊, 𝛃𝐢, 𝐱௜௝൯ in Equation (6-4) is then given by: 

𝑅൫𝑡ห𝛄௜ , 𝛂𝒊, 𝛃𝐢, 𝐱௜௝൯ = 𝑒
ି ஃቀ𝑡ቚ𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜௝ቁ

, 

= 𝑒
ିቆఊబ,೔௧௘

𝐱೔ೕ
೅ 𝛂೔ା

ఊభ,೔௧మ

ଶ
௘

𝐱೔ೕ
೅ 𝐰బ,೔ା

ఊమ,೔௧య

ଷ
௘

𝐱೔ೕ
೅ 𝐰భ,೔   ቇ

. 
(6-9) 

Plugging Equations (6-6) and  (6-9)into Equation (6-5), we have the PDF function of the 

failure time of the i-th component at the j-th testing stress level as:  

 

B – Bayesian Inference Relationship and Likelihood Function Formulation 

Letting the collected failure time data of the i-th component at the j-th testing stress level 

be 𝐭௜௝ = {𝑡௜௝(𝑘),  𝑘 = 1, 2, … , 𝑛௜௝}, where 𝑛௜௝ is the number of tests at the j-th testing stress 

level of the i-th component, we have the likelihood function of observing 𝐭௜௝ as 

𝑓൫𝐭୧୨ห𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜௝൯ =  ෑ 𝑓
೔ೕ

൫𝑡௜௝(𝑘)ห𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜௝).  

௡೔ೕ

௞ୀଵ

 (6-11) 

Letting the failure time data collected over all the testing stress level of the i-th component 

be 𝐭௜
௦ = {𝑡௜௝,  𝑗 = 1,2, … , 𝑚௜}, the likelihood function of observing 𝐭௜

௦ is then given by: 

𝑓(𝐭௜
௦|𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜

௦) =  ෑ 𝑓൫𝐭௜௝ห𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜௝൯,

௠೔

௝ୀଵ

 
(6-12) 

in which 𝐱௜
௦ = {x௜௝ ,  𝑗 = 1,2, … , 𝑚௜}. 

𝑓
೔ೕ

൫𝑡ห𝛄௜ , 𝛂𝒊, 𝛃𝐢, 𝐱௜௝൯ = 

ቀ𝛾଴,௜𝑒
𝐱೔ೕ

೅ 𝛂೔ +  𝛾ଵ,௜𝑡𝑒𝐱೔ೕ
೅ 𝐰బ,೔ +  𝛾ଶ,௜𝑡

ଶ𝑒𝐗೔
೅𝐰భ,೔ቁ

× (𝑒
ିቆఊబ,೔௧௘

𝐱೔ೕ
೅ 𝛂೔ା

ఊభ,೔௧మ

ଶ
௘

𝐱೔ೕ
೅ 𝐰బ,೔ା

ఊమ,೔௧య

ଷ
௘

𝐱೔ೕ
೅ 𝐰భ,೔   ቇ

. 

(6-10) 
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Plugging Equations (6-10) and (6-11)into Equation (6-12), we have the likelihood function 

for the i-th component as follows 

𝑓(𝒕௜
௦|𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜

௦) =  ෑ ෑ 𝑓൫𝑡௜௝(𝑘)ห𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜௝) ,

௡೔ೕ

௞ୀଵ

௠೔

௝ୀଵ 

 

(6-13) 
= ∏ ∏ ൬൤[𝛾଴,௜𝑒

𝐱೔ೕ
౐ 𝛂೔ +  𝛾ଵ,௜𝑡௜௝(𝑘)𝑒𝐱೔ೕ

౐ 𝐰బ,೔ +  𝛾ଶ,௜ ቀ𝑡௝
௜(𝑘)ቁ

ଶ

𝑒𝐱೔ೕ
౐ 𝐰భ,೔]൨  

௡೔ೕ

௞ୀଵ
௠೔
௝ୀଵ  

×  ቎  𝑒
ି൭ఊబ,೔(௧ೕ

೔(௞))௘೉೔(ೕ)೅𝜶𝒊   ା 
  ఊభ,೔(௧ೕ

೔(௞))మ

ଶ
௘೉೔(ೕ)೅𝒘𝟎,𝒊   ା  

ఊమ,೔(௧ೕ
೔(௞))య

ଷ
௘

೉೔(ೕ)೅𝒘భ,೔   ൱

቏ቍ 

where 𝐰଴,௜ = 𝛂௜ + 𝛃௜   &  𝐰ଵ,௜ = 𝛂௜ + 2𝛃௜. 

The Likelihood function given in Equation (6-13) does not include censoring and it can 

be simply modified to include censored data as shown in [134].  

With the above likelihood function, we can then update the component-level ALT 

parameters, 𝛄௜ , 𝛂௜ , and 𝛃௜ of the i-th component using Bayesian method as below 

𝑓(𝛄௜ , 𝛂௜ , 𝛃௜|𝒕௜
௦, 𝐱௜

௦) ∝ 𝑓(𝒕௜
௦|𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜

௦)𝑓ఊ೔
(𝛄௜)𝑓ఈ೔

(𝛂௜)𝑓ఉ೔
(𝛃௜), 

(6-14) 

where “∝” stands for “proportional to”, 𝑓ఊ೔
(𝛄௜), 𝑓ఈ೔

(𝛂௜), and 𝑓ఉ೔
(𝛃௜) are the prior distributions of 

𝛄௜ , 𝛂௜ , and 𝛃௜, respectively. 

Next, we will discuss how to aggregate the component-level information to the system-

level for the evaluation of system reliability. 

 

6.1.4 Uncertainty Propagation to System Reliability 

In this section, we intend to calculate the system reliability of a system in which the 

components are functioning together, logically or physically, causing their failures to be dependent 
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on each other. So, in order to propagate the uncertainties from the component parameters to the 

system reliability, it is necessary to model the dependence between the component-level ALT 

failure time data of the different components. In this following section, the shared frailty model as 

discussed in Section 4.1.3B is employed to establish a link between the component-level ALT 

model parameters and system-level failure time. Next, we will discuss how to construct this kind 

of connections for two categories of systems, namely series system configuration and other system 

configurations- Dependence via Frailty Models and Gamma Distribution 

 

A – Series System Topology 

To model the dependence among components and establish the connection for a series 

system, we use the Gamma shared frailty model. The gamma shared frailty model assumes that 

the frailty factor follows a gamma distribution that is 𝑍 ~ 𝐺𝑎𝑚𝑚𝑎(𝑣, 𝑣) with mean equal to 0 and 

variance 𝑣𝑎𝑟(𝑍) = 𝛿ଶ where 𝛿ଶ =
ଵ

௩
  and 𝑣  is the shape parameter which is equal to the scale 

parameter of the gamma distribution of Z. This assumption is made to avoid the non-identifiability 

issue in Bayesian inference [135].  

Combining the frailty model given in Section 4.1.3B with the EHR model and the quadratic 

baseline hazard function [63], the modified hazard function is then given by 

𝜆 ൫𝑡ห𝑧, 𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜௝൯ = 𝑧𝜆଴ ቀ𝑡 𝑒𝐱೔ౠ
೅𝜷೔)ቁ 𝑒(𝐱೔ೕ

೅ 𝜶೔), 
(6-15) 

The reliability of the i-th component at the j-th stress-level after introducing the frailty 

factor 𝑧 is given by 

Pr൫𝑇௜ > 𝑡ห𝑧, 𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜௝൯ 

= 𝑅൫𝑡ห𝑧, 𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜௝൯ = 𝑒ି ௭ஃ൫௧|𝛄೔,𝛂೔,𝛃೔,𝐱೔ೕ൯ 
(6-16) 
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After integrating out the uncertain frailty factor 𝑍 for given 𝑣, we have the unconditional 

reliability function at nominal stress 𝐱௜,௡, ∀𝑖 = 1,2, … , 𝑁஼ as [89] :  

𝑅൫𝑡ห𝛄௜ , 𝛂௜ , 𝛃௜ , 𝑣, 𝐱௜,௡൯ = න 𝑅൫𝑡ห𝑧, 𝛄௜ , 𝛂௜ , 𝛃௜ , 𝑣, 𝐱௜,௡൯𝑓௓|௩(𝑧|𝑣)𝑑𝑧
ஶ

଴

, 

= 𝐸൫𝑒ି ௭ஃ൫௧|𝛄೔,𝛂೔,𝛃೔,𝐱೔,೙൯൯ = 𝐿௭ ቀΛ൫𝑡௜|𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜,௡൯ቁ, 
(6-17) 

where 𝑓௓|௩(𝑧|𝑣) is the PDF of the random frailty factor conditioned on given distribution 

parameter of 𝑣, and 𝐿௭ (∙) represents the Laplace transform over 𝑍. 

The joint survival function of a series system (i.e. system reliability) at the nominal stress 

levels, 𝐱௜,௡, ∀𝑖 = 1,2, … , 𝑁஼, is given by  

𝑅௦௬௦൫𝑡 |𝛄௦௬௦, 𝛂௦௬௦, 𝛃௦௬௦ , 𝑣, 𝐱௔௟௟ ൯  = Pr൫𝑇ଵ > 𝑡, … , 𝑇ே೎
> 𝑡|𝛄௦௬௦, 𝛂௦௬௦, 𝛃௦௬௦, 𝑣, 𝐱௔௟௟ ൯,

= න ෑ Pr൫𝑇௜ > 𝑡ห𝑧, 𝛄௜ , 𝛂௜ , 𝛃௜ , 𝑣, 𝐱௜,௡൯ 𝑓௓|௩(𝑧|𝑣)𝑑𝑧

ே௖

௜ୀଵ

ஶ

଴

, 
(6-18) 

where 𝑅௦௬௦൫𝑡 |𝛄௦௬௦, 𝛂௦௬௦, 𝛃௦௬௦ , 𝑣, 𝐱௔௟௟ ൯ is the system reliability conditioned on 𝛄௦௬௦, 𝛂௦௬௦, 𝛃௦௬௦, 

𝑣, and 𝐱௔௟௟ , 𝛄௦௬௦, 𝛂௦௬௦, 𝛃௦௬௦ , and 𝐱௔௟௟  are respectively 𝐱௔௟௟ = {𝐱௜,௡, ∀𝑖 = 1,2, … , 𝑁஼}, 𝛂𝐬𝐲𝐬 =

{𝛂ଵ, 𝛂ଶ, … , 𝛂ே಴
}, 𝛃𝐬𝐲𝐬 = {𝛃ଵ, 𝛃ଶ, … , 𝛃ே಴

}, and 𝛄ୱ୷ୱ = ൛𝛄ଵ , 𝛄ଶ, … , 𝛄ே಴
ൟ. 

The Joint Survival Function (i.e. Reliability) for given a series system is given by the 

following probability equation:  

𝑅௦௬௦൫𝑡|𝛄௦௬௦, 𝛂௦௬௦, 𝛃௦௬௦, 𝑣, 𝐱௔௟௟ ൯ = 𝐿௭ ቌ෍ 𝑧Λ൫𝑡௜|𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜,௡൯

ே಴

௜ୀଵ

ቍ, 

=   ቌ1 +
1

𝜈
 ෍ Λ൫𝑡௜|𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜,௡൯

ே಴

௜ୀଵ

ቍ

ିఔ

. 

(6-19) 
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Combining Equation (6-8) with Equation (6-19), we have system reliability of a series 

system for given 𝛄௦௬௦, 𝛂௦௬௦, 𝛃௦௬௦, and 𝑣 as 

𝑅௦௬௦(𝑡|𝛄௦௬௦, 𝛂௦௬௦, 𝛃௦௬௦, 𝑣, 𝐱௔௟௟ )

=  ቎1 +
1

𝑣
෍(𝛾଴,௜𝑡௜𝑒

𝐱೔,೙
౐ 𝛂೔ +

𝛾ଵ,௜𝑡௜
ଶ

2
𝑒𝐱೔,೙

౐ 𝐰బ,೔ +
𝛾ଶ,௜𝑡௜

ଷ

3
𝑒𝐱೔,೙

౐ 𝐰భ,೔)

ே಴

௜ୀଵ

቏

ି௩ 

, 
(6-20) 

where 𝑣 is the variance of 𝑍, and  𝐰଴,௜ = 𝛂௜ + 𝛃௜   &  𝐰ଵ,௜ = 𝛂௜ + 2𝛃௜. 

 

B  - Mixed and Non-Standard Systems Topology 

Even though the above equations (6-15) through (6-20) have analytical solutions that 

allows linking component-level ALT models to system reliability, it is inapplicable to systems 

with complicated configurations, it is rather only applicable to systems with series configuration. 

However, some system configurations can be converted into series system expressions and then 

the above discussed approach can be applied. For some situation, this kind of transformation, 

however, is complicated. In addition, it is sometimes cumbersome to convert systems 

configurations (e.g. networked systems) into series ones. To overcome this challenge, this 

subsection will develop an approach that allows connecting component-level ALT models with 

system reliability for any system configuration only if the system topology can be expressed as 

Boolean logical functions. 

Next, for given values of 𝑣, 𝛄௦௬௦ , 𝛂௦௬௦, and 𝛃௦௬௦, we sample 𝑛௓ particles for the frailty 

factor 𝑧 using the inverse of the Gamma distribution; 𝐺𝑎𝑚𝑚𝑎ିଵ(𝑣, 𝑣).  We define the obtained 

samples of 𝑍 as 𝑧௦, 𝑠 = 1,2, … , 𝑁௭ . For each 𝑧௦, we then generate samples of the component failure 

time 𝑡௜,௡
௦  of the i-th component at nominal stress 𝐱௜,௡ using the following inverse CDF function: 
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𝑡௜,௡
௦ = 𝐹்೔

ିଵ൫𝑢௜,௡|𝑧௦, 𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜,௡൯, 
(6-21) 

where 𝑢௜,௡ is a random CDF sample generated from MCS for the i-th component at nominal stress 

level, and 𝐹்೔

ିଵ൫𝑢|𝑧௦, 𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜,௡൯ is the inverse function of the following CDF function 

𝐹்೔
൫𝑡|𝑧௦, 𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜,௡൯ = 1 − 𝑅൫𝑡|𝑧௦, 𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜,௡൯, 

= 1 −

 𝑒
ି௭ೞ ൬[ఊబ,೔௘

𝐱೔,೙
೅ 𝜶೔ା ఊభ,೔𝑡௘

𝐱೔,೙
೅ 𝒘బ,೔ା ఊమ,೔௧మ௘

𝐱೔,೙
೅ 𝒘భ,೔] ൰

. 
 

(6-22) 

For each  component, we obtain the failure time samples as 𝐭௜,௡
௦ = {𝑡௜,௡

௦ (𝑞), ∀𝑞 =

1,2, … , 𝑁௥; 𝑖 = 1,2, … , 𝑁஼}, where 𝑁௥ is the number of samples generated using MCS in Eq. (27).  

Now, for any system topography, we define the failure function 𝑓௧௜௠௘(∙) as a function 

representing the failure of a system based on its topology (i.e. configuration) as below:  

𝑡௦௬௦,௡ 
௦ (𝑞) = 𝑓௧௜௠௘൫𝑡ଵ,௡ 

௦ (𝑞), 𝑡ଶ,௡
௦ (𝑞), … , 𝑡ே಴,௡

௦ (𝑞)൯, 
(6-23) 

𝑓௧௜௠௘ =  ቐ

min൫𝑡ଵ,௡ 
௦ (𝑞), 𝑡ଶ,௡

௦ (𝑞), … , 𝑡ே಴,௡
௦ (𝑞)൯ − Series System,         

max൫𝑡ଵ,௡ 
௦ (𝑞), 𝑡ଶ,௡

௦ (𝑞), … , 𝑡ே಴,௡
௦ (𝑞)൯ − Parallel System,    

Defined according to system topology − Otherwise,

 
(6-24) 

where 𝑡௦௬௦,௡ 
௦ (𝑞) is the q-th sample of system failure time at nominal stress conditioned on 

𝛄௦௬௦ , 𝛂௦௬௦, 𝛃௦௬௦, and 𝑣. 

Based on samples of 𝑡௦௬௦,௡ 
௦ (𝑞),  ∀𝑞 = 1,2, … , 𝑁௥ , obtained from the above equations, the 

system reliability at nominal stress level 𝐱௔௟௟  conditioned on 𝑧௦, 𝛄௦௬௦ , 𝛂௦௬௦, 𝛃௦௬௦, and 𝑣 is 

calculated by   

𝑅௦௬௦൫𝑡 |𝑧௦, 𝛄௦௬௦, 𝛂௦௬௦, 𝛃௦௬௦, 𝐱௔௟௟൯ =
∑ 𝐼(𝑡௦௬௦,௡ 

௦ (𝑞))
ேೝ
௤ୀଵ

𝑁௥
  , (6-25) 

where 𝐼 ቀ𝑡௦௬௦,௡ 
௦ (𝑞)ቁ = 1, if 𝑡௦௬௦,௡ 

௦ (𝑞) ≥ 𝑡; otherwise, 𝐼 ቀ𝑡௦௬௦,௡ 
௦ (𝑞)ቁ = 0. 
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The system reliability conditioned on 𝛄௦௬௦ , 𝛂௦௬௦, 𝛃௦௬௦, and 𝑣 is then given by 

𝑅௦௬௦൫𝑡 | 𝛄௦௬௦ , 𝛂௦௬௦, 𝛃௦௬௦, 𝑣, 𝐱௔௟௟൯ =
∑ 𝑅௦௬௦൫𝑡 |𝑧௦, 𝛄௦௬௦, 𝛂௦௬௦, 𝛃௦௬௦, 𝐱௔௟௟൯

ே೥
௦

𝑁௭
. (6-26) 

With Equations (6-15) through (6-20), we connect component-level ALT models with 

system reliability with the consideration of dependence between failure time distributions of 

different components. By applying Equation (6-15) through (6-26) for posterior distributions of 

𝛄௦௬௦ , 𝛂௦௬௦, 𝛃௦௬௦ obtained using the method presented in Section 6.1.3, the uncertainty in system 

reliability estimate can be reduced using component-level ALT data for any system 

configurations. Next, we will discuss how to connect system-level ALT data with component-

level ALT models and system reliability. 

Figure 6-2  below  summarizes the steps of propagating the uncertainties using the 

component level ALT data with frailty models to model unseen factors causing dependence 

among the components of a system when operating under normal conditions. 
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Figure 6-3 Flowchart of connecting component-level ALT data with system reliability using shared frailty 
models 
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6.2 Uncertainty Propagation of System Level ALT Data to System Reliability 

In this section, we establish a connection between the system-level ALT at high stress level 

with system reliability estimate at nominal stress level. A direct way of achieving this goal is to 

test the whole system followed by applying the steps of the component-level ALT analysis method. 

Aiming to link system-level ALT with system reliability while preserving the connection 

developed in section 6.1, we leverage the use of physics-informed models, which are available in 

the design stage, to establish the stress relationship among components. Next, we start by 

introducing the physics-informed model and then discuss how it will be applied to construct the 

connection between system-level ALT and system reliability. 

 

6.2.1 Framework Steps Overview 

The frameworks allow propagating the uncertainties using the testing failure data 

collected from system level testing via accelerated life testing of a whole system. The framework 

consists first of mapping the stresses via the physics informed model as shown in Section 5.2.2.  

Unlike the framework presented in the previous section above, Section 6.1, the model 

integrates the frailty factor by taking its variance into account. The shared frailty model allows 

modelling the unobserved factors causing dependence among the components. Including the 

frailty factor into the likelihood and applying Bayesian Inference to update the parameters of the 

model will then reduce the uncertainty included in the variance of the frailty factor.  

After sampling out the posterior information of the parameter, the uncertainties are 

propagated using the system topology: mixed or series, depending on the system failure design. 

The propagation of the uncertainties will allow estimating the system reliability.  
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The framework is broken into three steps: first the likelihood function is derived based on 

the distribution free model by using the pdf based on hazard function, next the Bayesian 

inference is applied to sample the posterior distribution of the parameters, and last the 

uncertainties are propagated to estimate the system reliability based on the system topography. 

Figure 6-4 below summarizes the steps of framework that will be followed in order to 

establish the system reliability using system-level ALT data. To construct the likelihood, first we 

need to map the stresses from the boundary component to the non-boundary components. Next, 

the dependence shall be modelled using frailty models. Adding the system-level ALT data the 

likelihood will be formulated. Bayesian Inference is applied to reduce uncertainties. Last, the 

system reliability is established based on the system topography.  

 

 

Figure 6-4 Framework Overview of the uncertainty propagation using system-level ALT data 
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6.2.2 Likelihood and Bayesian Inference Via EHR Model 

In order to develop the likelihood function using EHR model, establishing the connection 

between the component stresses and the system level stress is important. First, the physics 

informed model is explained then the likelihood and the Bayesian inference relationship based 

on EHR model are presented.  

 

A – Physics Informed Model 

Let the testing stress be x, so assuming we have 𝑛௕ boundary components, we denote the 

stresses of boundary components as 𝐱ୠ = {𝐱ଵ
ୠ, … , 𝐱௡್

ୠ }  , and that of non-boundary components 

stress as 𝐱ୠି = ൛𝐱ଵ
ୠି, … , 𝐱௡್ష

ୠି ൟwhere 𝑛௕ି = 𝑁஼ − 𝑛௕ is the total number of non-boundary 

component. Using the physics-informed model, the non-boundary component stress to predict 

𝐱ୠିcan be predicted using 𝐱ୠ as follows 

𝐱௤
ୠି = 𝐿௕௤ି൫𝐱ୠ, 𝛚(௤)൯, ∀𝑞 = 1,2, … , 𝑛௕ି , (6-27) 

where , 𝛚(௤) is a set of deterministic and random parameters representing uncertainty for situation 

in which the load prediction models cannot accurately predict the load conditions of non-boundary 

components[39,40], 𝐱௤
ୠି is the q-th non-boundary component (q-th element of 𝐱ୠି) , and 

𝐿௕௤ି(∙); ∀𝑞 = 1,2, … , 𝑛௕ି   is the set of load prediction models used for stress mapping of 𝐱ୠ to  

𝐱௤
ୠି. 

 

B – Bayesian Update and Likelihood Function Formulation 

Recall that we have the parameters of the component-level ALT models as 𝛂ୱ୷ୱ =

{𝛂ଵ, 𝛂ଶ, … , 𝛂୒ి
}, 𝛃ୱ୷ୱ = {𝛃ଵ, 𝛃ଶ, … , 𝛃୒ి

}, and 𝛄ୱ୷ୱ = ൛𝛄ଵ, 𝛄ଶ, … , 𝛄୒ి
ൟ. We define the system-
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level testing stress levels as 𝐱ୱ୷ୱ = ቄ𝐱ଵ
ୠ, 𝐱ଶ

ୠ, … , 𝐱୫౩౯౩
ୠ ቅ, where 𝑚௦௬௦ is the number of ALT 

system-level testing stress levels, 𝐱௝
௕ = ൣ𝑥ଵ,௝

௕  , 𝑥ଶ,௝
௕ , … , 𝑥௡್,௝

௕ ൧, ∀𝑗 = 1, … , 𝑚௦௬௦ is the vector of 

normalized testing stresses applied to the boundary component at the 𝑗-th stress level. Letting the 

collected failure time data of the system at the j-th testing stress level be 𝐭ୱ୷ୱ =

{𝐭ୱ୷ୱ,ଵ, 𝐭ୱ୷ୱ,ଶ , … , 𝐭ୱ୷ୱ,୫𝐬𝐲𝐬
} and  𝐭ୱ୷ୱ,୨ = {𝑡௦௬௦,௝(𝑘),  𝑘 = 1, 2, … , 𝑛௦௬௦,௝}, where 𝑛௦௬௦,௝ is the 

number of tests at the j-th testing stress level,  the likelihood function of observing 𝒕௦௬௦,௝ is given 

by 

𝑓൫𝐭௦௬௦ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௦௬௦ , 𝑧, 𝛚൯

= ෑ ෑ 𝑓൫𝑡௦௬௦,௝ (𝑘)ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௝
ୠ, 𝑧, 𝛚൯.

௡ೞ೤ೞ,ೕ 

௞ୀଵ

௠ೞ೤ೞ

௝ୀଵ

 
(6-28) 

where 𝑡௦௬௦,௝ (𝑘) is the 𝑘-th observation at the 𝑗-th stress level. 

In order to evaluate 𝑓൫𝑡௦௬௦,௝ (𝑘)ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௝
ୠ, 𝑧, 𝛚൯ in above equation, we first map 

the accelerating factor from the boundary components to the non-boundary components using the 

physics-informed model as follows 

x௤,௝
ୠି = 𝐿௕௤ି൫𝐱௝

ୠ, 𝛚(௤)൯; ∀𝑞 = 1, … , 𝑛௕ି, 
(6-29) 

in which x௤,௝
ୠି is the testing load of the 𝑞-th non-boundary component at the 𝑗-th stress level and 

𝐱௝
ୠ is the load condition of boundary component at the 𝑗-th stress level. 

We then generate random failure time samples, 𝑡௠௖௦,௝
௜  , ∀ 𝑖 = 1,2, … , 𝑁௖, for each 

component at the 𝑗-th ALT stress level of the system-level ALT as below 

𝑡௠௖௦,௝
௜ = 𝐹்೔

ିଵ൫𝑢௜௝|𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜,௝, 𝑧, 𝛚൯, 
(6-30) 
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where 𝑢௜௝ is a random CDF sample generated from MCS for the i-th component at the j-th stress 

level in the system-level ALT, and  𝐹்೔

ିଵ൫𝑢|𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜,௝ , 𝑧, 𝛚൯ is the inverse function of the 

following CDF function 

𝐹்೔
൫𝑡|𝛄௜ , 𝛂௜ , 𝛃௜ , 𝐱௜,௝, 𝑧, 𝛚൯ = 1 − 𝑅൫𝑡௠௖௦,௝

௜ ൯ 

(6-31) 
= 1 − 𝑒

ି௭ ൬[ఊబ,೔௘𝐱𝑖,𝑗
T 𝛂೔ା ఊభ,೔𝑡௘

𝐱𝑖,𝑗
T 𝒘బ,೔ା ఊమ,೔௧మ௘

𝐱𝑖,𝑗
T 𝐰భ,೔] ൰

, 

where 

𝐱௜,௝ = ቊ
𝐱௥,௝

ୠ  ;  ∀𝑟 = 1,2, … , 𝑛௕   if 𝑖 is a boundary component

𝐱௤,௝
ୠି ;  ∀𝑞 = 1,2, … , 𝑛௕ି if 𝑖 is a non − boundary component

. 
(6-32) 

After we generate random failure time samples, 𝑡௠௖௦,௝
௜  , ∀ 𝑖 = 1,2, … , 𝑁௖, of the failure time 

(latent failure time) of each component in system-level ALT, we have the samples of the system-

level failure time at the j-th stress level as 

𝑡௠௖௦,௝ 
௦௬௦ (ℎ) = 𝑓௧௜௠௘൫𝑡௠௖௦,௝

ଵ (ℎ), 𝑡௠௖௦,௝ 
ଶ (ℎ), … , 𝑡௠௖௦,௝

ே಴ (ℎ)൯ ; ℎ = 1,2, … , 𝑛௠௖௦, 
(6-33) 

in which 𝑛௠௖௦ is the number of Monte Carlo samples and 𝑓௧௜௠௘(∙) is a function defined according 

to the system topology as discussed in Sec. 3.2. 

Based on the system-level failure time sample, 𝑓൫𝑡௦௬௦,௝ (𝑘)ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௝
ୠ, 𝑧, 𝛚൯ in 

Equation (2-25) is then computed using the Kernel function as 

𝑓൫𝑡௦௬௦,௝(𝑘)ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௝
ୠ, 𝑧, 𝛚൯

=
1

𝛿௧
෍ 𝜅 ቆ

𝑡௦௬௦,௝ (𝑘) − 𝑡௠௖௦,௝
௦௬௦

(ℎ)

𝛿௧
ቇ ,

௡೘೎ೞ

௛ୀଵ

 (6-34) 

where 𝜅(∙) is the kernel smoothing function and 𝛿௧ is the band width. 

Using the above equation, the likelihood function 𝑓൫𝐭௦௬௦ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௦௬௦ , 𝑧, 𝛚൯ can 

be obtained. Based on that, for given parameter 𝑣 of the Gamma frailty factor, we then have the 

unconditional likelihood function by integrating out the uncertain frailty factor Z as follows 
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𝑓൫𝐭௦௬௦ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௦௬௦ , 𝑣, 𝛚൯

= න 𝑓൫𝐭௦௬௦ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௦௬௦ , 𝑧, 𝛚൯𝑓௓(𝑧|𝑣)𝑑𝑧,
ஶ

଴

 (6-35) 

where 𝑓௓(𝑧|𝑣) is the PDF function of the uncertain frailty factor Z for given parameter 𝑣.   

Based on the likelihood formulation given in Equation (6-35), we can then reduce the 

uncertainty in the component-level ALT model parameters and the frailty factor distribution 

parameter using system-level ALT testing data 𝐭௦௬௦ using Bayesian method as below 

𝑓൫𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝑣, 𝛚ห𝐭௦௬௦, 𝐱௦௬௦൯  

∝ 𝑓൫𝐭௦௬௦ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௦௬௦, 𝑣, 𝛚൯ ×  𝑓௏(𝑣) × 𝑓𝛚(𝛚)

× ෑ 𝑓ఊ೔
(𝜸௜)𝑓ఈ೔

(𝛂௜)𝑓ఉ೔
( 𝛃௜)

ே೎

௜ୀଵ

, 

(6-36) 

where 𝑓௏(𝑣) and 𝑓𝛚(𝛚) are prior distributions of 𝑣 and 𝛚, respectively.  

In the next section, building upon the approaches developed in Sections 6.1 and 6.2, we 

discuss the fusion of the ALT data collected from component-level ALT and system-level ALT 

for system reliability analysis. 

 

6.2.3 Uncertainty Propagation to System Reliability 

After we have the posterior samples of the parameters 𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , and 𝑣, we can 

propagate the uncertainty to the system reliability at nominal stress level by following the same 

steps detailed in Section 6.1.4 depending on the system topology. If the system is in series, we 

would use Equation (6-20) shown in Section 6.1.4A and if it is a mixed system, we use the 

algorithm detailed I Section 6.1.4B to sample component failure times using Equation (6-31) the 

posterior distributions of the parameters and proceed as detailed in 6.1.4B. 
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Figure 6-5 on the next page explains in brief the steps detailed above starting with system 

level testing data and how this data could be used through to estimate and reduce the uncertainty 

in the system reliability.  
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6.3 Reliability Assessment via Information Fusion of Component Level ALT Data with 

System Level ALT Data 

 In order to fuse the information from component-level ALT and system-level ALT, we 

make use of Sections 6.1 and 6.2. We define the combined accelerated testing stress as 𝐱௧௘௦௧ =

൛𝐱௦௬௦, 𝐱ଵ
௦, 𝐱ଶ

௦ , … , 𝐱ே಴

௦ ൟ, in which 𝐱ୱ୷ୱ = ቄ𝐱ଵ
ୠ, 𝐱ଶ

ୠ, … , 𝐱௠ೞ೤ೞ
ୠ ቅ and 𝐱௜

௦ = ൣ𝐱௜,ଵ, 𝐱௜,ଶ, … , 𝐱௜,௠೔
൧, ∀𝑖 =

1,2, … , 𝑁஼ , where 𝑚௦௬௦ is the number of ALT system-level testing stress levels and 𝑚௜ is the 

number of ALT component-level testing stress levels 

 Following Bayes’ theorem and the Bayesian inference as the estimation method and merge 

the ALT testing data we get:  

𝑓൫𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝑣, 𝛚ห𝐭ଵ
௦ , 𝐭ଶ

௦ , … , 𝐭ே಴

௦ , 𝐭௦௬௦, 𝐱௧௘௦௧൯

∝ 𝑓൫𝐭ଵ
௦ , 𝐭ଶ

௦ , … , 𝐭ே಴

௦ , 𝐭௦௬௦ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝑣, 𝛚, 𝐱௧௘௦௧൯

×  𝑓௏(𝑣) × 𝑓ఠ(𝝎) × ෑ 𝑓ఊ೔
(𝜸௜)𝑓ఈ೔

(𝛂௜)𝑓ఉ೔
(

ே಴

௜ୀଵ

𝛃௜), 
(6-37) 

where 𝑓൫𝐭ଵ
௦ , 𝐭ଶ

௦ , … , 𝐭ே಴

௦ , 𝐭௦௬௦ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝑣, 𝛚, 𝐱௧௘௦௧൯ is given by 

𝑓൫𝐭ଵ
௦ , 𝐭ଶ

௦ , … , 𝐭ே಴

௦ , 𝐭௦௬௦ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝑣, 𝛚, 𝐱௧௘௦௧൯

= 𝑓൫ 𝐭௦௬௦ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௦௬௦, 𝜈, 𝛚൯

×  ෑ 𝑓(𝐭௜
௦|𝛄௜ , 𝛂௜ , 𝛃௜ , , 𝐱௜

௦)

ே಴

௜ୀଵ

, 
(6-38) 

in which 𝑓൫ 𝐭௦௬௦ห𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝐱௦௬௦, 𝜈, 𝛚൯ is computed using Equations (6-28) through (6-36) 

and 𝑓(𝐭௜
௦|𝛄௜ , 𝛂௜ , 𝛃௜ , , 𝐱௜

௦) is computed as given in Equations  (6-11) through (6-14). 

After the uncertainty reduction using both component-level and system-level ALT data 

using Equations (6-37)and (6-38), we can obtain the posterior distributions of 𝑅௦௬௦(𝑡) by 

propagating the posterior distributions of  𝛄௦௬௦ , 𝛂௦௬௦ , 𝛃௦௬௦ , 𝑣, 𝛚 to system reliability using the 

uncertainty propagation method presented in Section 3.2.2 for different system configurations.  
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In the following section, we demonstrate the effectiveness of the methodologies developed. 

We first take a numerical example to show the results of using two different approaches to estimate 

the system reliability of the same system configuration. Then, we demonstrate the effectiveness 

fusing the information from both component-level ALT and system-level ALT.  

 

6.4 Numerical Examples 

In this section, we use numerical examples to demonstrate the efficacy of the proposed 

method. It consists of two parts: (1) demonstration of the proposed method in system reliability 

analysis of mixed systems using ALT; (2) information fusion of component-level and system-

level ALT data for system reliability analysis. Next, we will first present the example that is 

employed. After that, we will explain the two case studies in details. 

 

6.4.1 Description of the Numerical Example 

We take a circuit board as an example to demonstrate the developed method. The 

reliability of the system for time threshold of 𝑇௘ = 150 weeks at the nominal stress is to be 

estimated using component-level ALT data.  

The example is a circuit board of 4 electronical components and is used for illustration. 

We simplify the radar circuit shown above in section 4.1.1. Figure 6-6 shows the simplified 

circuit board of the radar system and Figure 6-7 presents the reliability block diagram of the 

system. 
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Figure 6-6 Simplified series configuration of the circuit board of a radar system 
 

 

Figure 6-7 Reliability block of a radar circuit system 
 

In this case study, Table 6-1 gives the true values of  𝛄 ௦௬௦ =  ൛𝛄ଵ,𝛄ଶ , 𝛄ଷ ,𝛄ସ ൟ (i.e. the 

quadratic function parameters of the baseline hazard function as discussed in Section 3.2.1). Table 

6-2 presents the true values of the regression parameters 𝛂௦௬௦ ={𝛂ଵ , 𝛂ଶ, 𝛂ଷ, 𝛂ସ},  and 𝛃௦௬௦ = {𝛃ଵ , 

𝛃ଶ, 𝛃ଷ, 𝛃ସ} . 

Table 6-1 True Values of baseline hazard function and the shared frailty factor variance 
 
 Component 

index (i) 

𝛄𝐢 

 
𝛾଴,௜ (× 10ିହ) 𝛾ଵ,௜ (× 10ିଵ଺) 𝛾ଶ,௜(× 10ି଴଼) 

 
Resistor 1 1 0.97565 2.75371 5.95432 
Processor 2 0.96005 2.46947 2.52201 
Resistor 2 3 8.48655 3.48827 0.35832 

Sensor 4 5.67227 2.96519 6.29922 
 

The prior distribution of the parameters is assumed to be a non-informative uniform prior 

distribution. Uniform prior distributions (Unif[𝑎, 𝑏], where a and b are respectively the lower 

and upper bounds of the distribution) are used for the other ALT model parameters.  
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Table 6-2 True values of the regression parameters 
 
 
 

Component 
index (i) 

𝛂𝒊 𝛃𝒊 

 𝛼଴,௜ (× 10ିଵଵ) 𝛼ଵ,௜ 𝛼଴,௜ (× 10ିଵଵ) 𝛼ଵ,௜ 
Resistor 1 1 1.59914 13.82604 1.31948 1.05106 
Processor 2 1.54849 14.13588 2.00388 2.50621 
Resistor 2 3 1.46454 14.72182 1.06629 1.15892 
Sensor 4 1.24498 15.46258 0.02146 2.53921 

 

Table 6-3 and Table 6-4 below present the prior distribution parameters of these ALT 

model parameters. 

 Table 6-3 Lower and upper bounds of the uniform prior distributions of the baseline hazard 
function parameters 

 

Componen
-t index (i) 

𝛄𝐢~ 𝐔𝐧𝐢𝐟 ൣ𝒂𝜸𝒊 , 𝒃𝜸𝒊
൧ 

 
𝛾଴,௜(× 10ି଴ସ) 𝛾ଵ,௜ (× 10ିଵହ) 𝛾ଶ,௜  (× 10ି଴଻) 

 𝑎ఊబ,೔  𝑏ఊబ,೔  𝑎ఊభ,೔  𝑏ఊభ,೔  𝑎ఊమ,೔
 𝑏ఊమ,೔

 

Resistor 1 1 0.015 0.150 0.0464 0.464 0.09 0.9 
Processor 2 0.019 0.19 0.0422 0.422 0.0449 0.449 
Resistor 2 3 0.15 1.5 0.0465 0.465 0.0055 0.055 
Sensor 4 0.105 1.05 0.0375 0.375 0.0685 0.685 

 

 Table 6-4 Lower and upper bounds of the uniform prior distributions of the regression 
parameters 

 
 

Comp
-onent 
index 

(i) 

𝛂𝒊~ 𝐔𝐧𝐢𝐟ൣ𝒂𝜶𝒊
, 𝒃𝜶𝒊

൧ 𝛃𝒊~ 𝐔𝐧𝐢𝐟ൣ𝒂𝜷𝒊
, 𝒃𝜷𝒊

൧ 

𝛼଴,௜ (× 10ିଵ଴) 𝛼ଵ,௜ (× 10ଶ) 𝛽଴,௜(× 10ଵ଴) 𝛽ଵ,௜(× 10ଶ) 

𝑎ఈబ,೔
 𝑏ఈబ,೔

 𝑎ఈభ,೔
 𝑏ఈభ,೔

 𝑎ఉబ,೔
 𝑏ఉబ,೔

 𝑎ఉభ,೔
 𝑏ఉభ,೔

 

Resistor 1 1 0.1028 0.171 0.091 0.1514 0.09 0.15 0.072 0.12 
Processor 2 0.099 0.165 0.087 0.145 0.139 0.231 0.151 0.251 
Resistor 2 3 0.1041 0.173 0.098 0.1635 0.069 0.115 0.075 0.125 
Sensor 4 0.087 0.145 0.093 0.155 0.142 0.236 0.153 0.256 
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We then document the results in terms of variability percentage change. The percentage 

of variance reduction (VR) is employed to quantify the reduction in the uncertainty between the 

prior and posterior distributions of system reliability, 𝑅௦௬௦(𝑡).  It is given by  

where 𝑅ௌ
௣௥௜௢௥ and 𝑅ௌ

௣௢௦௧ are respectively the prior and posterior distributions of system reliability 

and 𝑉𝑎𝑟(∙) is a variance operator. A positive VR is an indication that the uncertainty has been 

effectively reduced by applying the developed algorithm. 

In the following sections we present the results graphically and tabulated, we then present 

a comparative analysis with interpretations. We solve the problem using the three uncertainty 

propagation means as in Sections 6.1, 6.2 and 6.3 to check which method is more efficient in 

reducing the uncertainty given the variability of the frailty variance 𝜈. 

 

6.4.2 Case Study 1: Connecting Component-level ALT with System Reliability 

This section focuses on demonstrating the approach developed in Section6.1, which 

connects component-level ALT with system reliability. In order to illustrate the capability of the 

proposed methods in handling systems with different topologies, we first obtain the system 

reliability of the system given in Section 4.1.1 in Figure 6-6, using the propagation method of a 

series system topography presented in Section 6.1.3A. After that, we will treat the same system 

as a mixed system configuration and analyze the system reliability using the approach proposed 

in Section 6.1.3B.  

Using the same example presented in the previous section, Section 6.5, under sensitivity 

analysis we proceed to solve the example via the two different system configurations approach.  

𝑉𝑅 =
𝑉𝑎𝑟(𝑅ௌ

௣௥௜௢௥
) − 𝑉𝑎𝑟(𝑅ௌ

௣௢௦௧
)

𝑉𝑎𝑟(𝑅ௌ
௣௥௜௢௥

)
× 100%, 

(6-39) 



 161

Table 6-1 gives the true values of  𝛄 ௦௬௦ =  ൛𝛄ଵ,𝛄ଶ , 𝛄ଷ ,𝛄ସ ൟ (i.e. the quadratic function parameters 

of the baseline hazard function as discussed in Section 6.1.3A).Table 6-2 True values of the 

regression parameters presents the true values of the regression parameters 𝛂௦௬௦ ={𝛂ଵ , 

𝛂ଶ, 𝛂ଷ, 𝛂ସ},  and 𝛃௬௦ = {𝛃ଵ , 𝛃ଶ, 𝛃ଷ, 𝛃ସ} . The prior information for 𝛄 ௦௬௦ are as given in Table 6-3 

and the prior information for the regression parameters 𝛂௦௬௦ and  𝛃௦௬௦ are given in Table 6-4 

above. 

 In this case study, the prior distribution of the frailty factor variance 𝜈 is assumed to be a 

non-informative uniform prior distribution, 𝜈~Unif[5, 10.00] and the true value of the frailty 

factor variance is set as 𝜈 = 6. 

For a series system, we use Equations (6-15) through (6-20) to calculate the true system 

reliability using the true values of 𝛄 ௦௬௦, 𝛂௦௬௦, and 𝛃௦௬௦. Then, we obtain the prior distribution of 

𝑅ௌ
௣௥௜௢௥ by propagating the uncertainties in the prior distributions of 𝛄 ௦௬௦, 𝛂௦௬௦, and 𝛃௦௬௦ to 

system reliability using the method discussed in Section 6.2.2. Afterwards, component-level 

ALT data are used to reduce the uncertainty in 𝛄 ௦௬௦, 𝛂௦௬௦, and 𝛃௦௬௦. For the component-level 

ALTs, the testing stress levels for components 1 to 4 are respectively 𝐱ଵ = [0.6,0.24]; 𝐱ଶ =

[0.643,0.571,0.536, ]; 𝐱ଷ = [0.443,0.393, ], and 𝐱ସ = [0.529,0.643]. The number of tests at 

each stress level for each component are respectively 𝑛ଵଵ = 20 ;  𝑛ଵଶ = 15, 𝑛ଶଵ = 20, 𝑛ଶଶ =

 𝑛ଶଷ = 10; 𝑛ଷଵ = 𝑛ଷଶ =  10 ; 𝑛ସଵ = 20 and 𝑛ସଶ = 10. The posterior distribution of the system 

reliability 𝑅ௌ
௣௢௦௧ is finally obtained by using the posterior distributions of 𝛄 ௦௬௦, 𝛂௦௬௦, and 

𝛃௦௬௦. Figure 6-8 shows the prior and posterior distributions of 𝑅௦௬௦(𝑡) in comparison with the 

true value. We note 𝑅ௌ
௣௥௜௢௥ as “Prior 𝑅ௌ” (green line) has a greater variability compared to 

𝑅ௌ
௣௢௦௧

 as “Posterior 𝑅ௌ” (red line).  
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Figure 6-8 shows the posterior and prior distributions in comparison with the true value 

for a series system. First, the uncertainty in the priors has been propagated from the components 

to the system reliability by using prior distributions of the parameters as shown in Section 6.1.3 , 

we note this reliability “Posterior System Reliability” below plotted in dashed blue line color. 

We then use these sampled posterior data from Bayesian inference to propagate the uncertainties 

and compute the system reliability using Equation (6-20). The posterior system reliability is 

noted as “Posterior System Reliability” and it is represented by the orange line. The green 

straight vertical line is the True System Reliability referred to as “True Value” in the graph 

below.  

 

Figure 6-8 Comparison of prior and posterior distributions for the series system topology 

We then treat the system shown in Figure 6-6 Simplified series configuration of the 

circuit board of a radar systemin Section 6.5 as a mixed system and use the approach discussed 

in Section 6.1.4B  to evaluate the system reliability. The same number of stress levels and tests 
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are employed as that when the system is treated as a series one. In order to apply the approach 

for a mixed system, we define 𝑓௧௜௠௘(∙) in Equation (6-24)  as  𝑓௧௜௠௘(𝐓) = min{𝑇ଵ, 𝑇ଶ, 𝑇ଷ, 𝑇ସ}. 

Figure 7 below shows the comparison of the prior and posterior distributions of the system 

reliability using the mixed system algorithm. It shows a reduction in the uncertainty in the 

posterior distribution of 𝑅௦௬௦(𝑡) as compared to the prior distribution. The results in Figure 6-8 

and Figure 6-9 show that the proposed approach can effectively reduce the uncertainty in the 

system reliability using component-level ALT data with the consideration of the dependence 

between the failure time distributions. Note that the difference between Figure 6 and Figure 7 is 

caused by the uncertainty in the synthetically generated ALT data.  

 

Figure 6-9 Comparison of prior and posterior distributions for the mixed system topology 

We then use the metric given in Section 4.1 to quantitatively quantify the accuracy of the 

proposed methods. Table 6-5 shows the results of 𝑉𝑅 for a series system versus a mixed one. 
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Results shows that using the series system algorithm (i.e. Section 6.1.3A) leads to a reduction of 

38% in the variance of system reliability estimate, and the mixed system algorithm (i.e. 

Section6.1.3B) results in 43% reduction in the variance. These results demonstrate the efficacy 

of the proposed methods in assess system reliability for different system configurations. 

Table 6-5 Comparison of variability reduction for series and mixed system configurations 
 Series System Topology Mixed System Topology 

VR 37.79% 43.11% 
 

 

6.4.3 Case Study 2: Uncertainty Propagation to System Reliability Via Information 

Fusion 

In this section, we continue using the same example in Section 6.5 to demonstrate the 

capability of the proposed method in fusing both component-level and system-level ALT 

data for system reliability analysis.  Figure 6.10 shows the system under system ALT testing 

and shows the boundary and the non-boundary components model of the system which 

consists of 4 electronical components.  

 
Figure 6-10 Circuit board of a radar system under system- level ALT testing 

 
 

In this case study, the true values and prior distributions for 𝛄 ௦௬௦, 𝛂௦௬௦, and 𝛃௦௬௦ are the 

same as that of the first case study given in Table 6-1 through 6-4. 
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 The prior distribution of the frailty factor variance 𝜈 is assumed to be a non-informative 

uniform prior distribution, 𝜈~Unif[0.005, 10.00] and the true value of the frailty factor variance 

is set as 𝜈 = 6. 

In system-level ALT, it is assumed that resistor 1 and resistor 2 receive the induced 

testing voltage as shown in Figure 8. The boundary components are therefore resistor 1 and 

resistor 2 and 𝐱ୠ = {𝐱ଵ
ୠ, 𝐱ଶ

ୠ}. The testing stress levels for resistor 1 and resistor 2 are respectively 

𝐱ଵ
ୠ = 𝐱ଶ

ୠ = [0.571,0.315]. The number of tests at each stress level for each component are 

respectively 𝑛௦௬௦,ଵ = 𝑛௦௬௦,ଶ = 20. The stress relationships between boundary and non-boundary 

components are assumed to be 

𝐱௉௥௢௖௘௦௦௢௥
ୠି = 0.98 𝐱ଵ

ୠ +  𝛚௉௥௢௖௘௦௦௢௥, 

𝐱ௌ௘௡௦௢௥
ୠି = 0.85 𝐱 ଶ

ୠ +  𝛚ௌ௘௡௦௢௥ , 
(6-40) 

where 𝐱ଵ
ୠ and 𝐱 ଶ

ୠ  are the stress levels of resistor 1 and 2, respectively.  

Figure 6.11 shows the compassion of the prior and posterior distributions of system 

reliability using only component-level ALT data. We then quantify the reduction in the variance 

using the metrics defined in Section 6.5. It shows that 𝑉𝑅 equals to 18.94 %. This results further 

demonstrate the effectiveness of the method in reducing the uncertainty of system reliability 

estimate using component-level ALT data. Note that the prior distribution in Figure 6.11 is 

different from that in the first case study in Section 6.4.1 because different prior distributions are 

used for the frailty factor 𝜈. 
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           Figure 6-11 Prior and posterior distributions of system reliability using component-level 

ALT data 
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Subsequently, we fuse the component-level ALT data with the system ALT data using 

the method discussed in Section 6.3. Figure 6-12 shows the comparison between the posterior  

Figure 6-12 Comparison of prior and posterior distributions of the system reliability using 
different methods 

 

distributions obtained by using the component-level ALT data versus the information fusion 

(both component-level and system-level ALT data). While both methods reduced the variability 

in 𝑅௦
௣௢௦௧ compared to the 𝑅ௌ

௣௥௜௢௥, the posterior distribution 𝑅௦
௣௢௦௧ of the system reliability 

obtained via information fusion (i.e. “Post Rs IF”) shows a further reduction in the uncertainty 
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than its counterpart obtained using the component-level ALT data (i.e. “Post Rs Component”) 

alone.  

Table 6-6 shows a side-by-side comparison of both methods in terms of  VR.  The VR 

using information fusion (~51%) is ~2.5 times greater than that obtained from component-level 

data alone (~19%). It shows that combining testing data from two different testing levels (i.e. 

component-level and system-level) leads to a further decrease in the uncertainty of the system 

reliability and a higher confidence than using only component-level ALT data.  

Table 6-6 Comparison of variance reduction using different methods 
 Information Fusion Component-Level ALT data only 

𝑽𝑹 50.84 18.94 
 

The above results demonstrate the effectiveness of the proposed method in fusing the 

information from both component-level and system-level ALT data for system reliability 

estimate. 

 

6.5 Sensitivity Analysis of Frailty Factor on the Uncertainty of the System Reliability 

In this Section, we aim at studying the effect of the Variance of 𝑧 which is the variance of 

the frailty factor on minimizing the uncertainty results in the system reliability between the prior 

and posterior distributions sampled by using a series system of 4 components as the one 

presented in Section 6.4.1.   

As a reminder, the larger the value of 𝜈, the stronger the dependence is among the 

component, so the variance of the frailty factor is the indicator of the dependence power/strength 

among the components of one system. 
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We provide a sensitivity analysis based on varying the variance of 𝜈 prior information 

interval. Table 6-7 shows the different prior distribution intervals (Uni ~[𝑎, 𝑏]) of the variance 

of 𝜈 that is assumed to be a non-informative uniform prior distribution. 

We study the reliability over the time interval of [0,150] with a time unites in weeks. For 

component-level testing we follow the testing specifications given in Section 6.4.2 and for system-

level testing we follow the given in Section 6.4.2. Table 6-1 gives the true values of  𝛄 ௦௬௦ = 

 ൛𝛄ଵ,𝛄ଶ , 𝛄ଷ ,𝛄ସ ൟ and Table 6-2 presents the true values of the regression parameters 𝛂௦௬௦ ={𝛂ଵ , 

𝛂ଶ, 𝛂ଷ, 𝛂ସ},  and 𝛃௦௬௦ = {𝛃ଵ , 𝛃ଶ, 𝛃ଷ, 𝛃ସ} .  

 Table 6-3 and  Table 6-4 present the prior distribution parameters of these ALT 

model parameters: 𝛄 ௦௬௦, 𝛂௦௬௦ and 𝛃௦௬௦ respectively. 

Table 6-7 True Values of Variance 𝜈 

variance of 𝝂 
Uni ~[𝒂, 𝒃] 

True Values of 𝜈 

[0.001,2.00] 1.8 
[0.001,7.00] 6 

[0.001,10.00] 6 
[0.001,12.00] 6 
[0.001,14.00] 6 

 

 

6.5.1 Results and Interpretations: 

The corresponding graphs are listed in Appendix A at the end. Increasing the dependence 

strength by increasing the variance of 𝜈 range and solving using the different methods presented 

in Sections 6.1,6.2 and 6.3 respectively, it is obvious that as the variance of 𝜈 is larger the 

methods of the uncertainty propagation  using  the information fusion is more effective compared 
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to using the component- ALT data and system-ALT data propagation methods  in order to 

estimate the system reliability.  

The variability is reflected by calculating the VR according to Equation (6-39). As we 

increase the variability of the variance of 𝜈, the information fusion and the system-ALT methods 

show an increasing VR compared to a decreasing VR for the component-ALT. Fusing the 

information from component-ALT data and system-ALT data allows a further reduction and 

becomes more important as the variability of 𝜈 increases. 

In conclusion, system data becomes more important when the variance of 𝜈  increases 

which explains the information fusion effectiveness. Further sensitivity analysis could be applied 

to study the effect of the variability of the regression parameters on the result of the system 

reliability estimation as well as the parameters of the quadratic baseline hazard function 

parameters.   

 Table 6-8 Variability comparison in prior system reliability and posterior system reliability 
using the different propagation models 

𝜈 Prior Var(𝜈) 
True 
𝑹𝒔𝒚𝒔 

𝑽𝑹 
Component 
ALT to 𝑅௦௬௦ 

System ALT to 
𝑅௦௬௦ 

Information 
Fusion 

[0.001,7.00] 4.066 

0.892 

34.21% 24.44% 50.85% 
[0.001,10.00] 8.2989 43.46% 18.93% 50.97% 
[0.001,12.00] 12.08489 47.82% 15.83% 51.39% 
[0.001,14.00] 16.2449 49.32% 13.21% 51.77% 

 

6.6 Summary  

This Chapter presents a novel framework to system reliability assessment using 

component-level and system-level ALT data. To establish connections between different testing 

levels and system reliability, frailty models are employed to model the dependence among 

components. Physics informed analysis is used to connect the system-level tests at higher-than-

nominal stress to the system reliability at nominal stress. 
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 The likelihood function and the Bayesian Inference relationship have been established 

using the extended hazard regression models. The model uses a baseline hazard function that is 

assumed to be quadratic, with three parameters of interest, and distribution free. Regression 

parameters to model the effect of the accelerating factor on the failure time has been considered 

and subject to uncertainty reduction.  

The uncertainty propagation has been detailed for different ALT data collected at a 

system level or component level as well as the chapter shows a fusion method for both data 

together in order to estimate the system reliability.  

The developed approach also has been investigated for different system topographies 

including series and mixed systems. Two case studies demonstrate the effectiveness of the 

proposed framework.  

Numerical algorithms are developed to reduce the uncertainty in system reliability 

analysis using different type of testing data by integrating frailty models and Bayesian inference 

methods with extended hazard regression (EHR) models. Graphical and tabulated results have 

been enclosed showing the effectiveness in the framework in reducing the variability in the 

system reliability.  

Studying different frailty models to model the heterogeneity among the ALT instead of 

shared frailty factor is an important focus to research in the future. Additionally, including shared 

frailty models with a different distribution rather than Gamma distribution is also worth pursuing 

in the future.  
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Figure 6-13 Chart showing the percentage reduction in the variability between prior Rs and 
posterior Rs for different Prior Variance 𝝂  using the different propagation models 
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 Concluding Remarks and Future Work 

In this Chapter, we review in summary the work done in this research and summarize the 

research. We then identify future work on the research topic. Finally, we list he takeaways in the 

concluding remarks section. 

 

7.1 Summary of Research Achievements 

The research is focusing on accelerated life testing for systems with dependent 

components. The research goal is to develop methods for propagating uncertainties from data 

collected at different testing stages: component level testing and system level testing. the 

research proposed a novel ALT framework combining both types of data in order to maximize 

the uncertainty reduction by using all available data to estimate the system reliability. The 

research was approached by a thorough review of the state of art. Various methods have been 

used in the implementation of the frameworks: Bayesian Inference, Particle Filtering, Weibull 

Distribution, Copula Functions and Frailty Models.  The following were accomplished by 

carrying this research: 

 

1- Review and Background:  

Chapter 2 presented a review of the literature about the frameworks, observations and 

studied that tackled ALT design and modelling. Reviewing the state of art enabled the use of 

different techniques together in order to mold a new methodology to model the estimation of 

system reliability with different components. The methodology is based on propagating the 
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uncertainties in parameters derived based on the approach chosen to fit the failure time data 

collected during Accelerated Life Testing which was abbreviated by ALT.  

Chapter 3 showed the merit and novelty of the research by incorporating a new approach 

using different dependence modelling frameworks in order to model the dependence between the 

components of a system. Additionally, it adds to the ALT field by showing the versatility of 

integrating data from different ALT testing stages to derive and reduce the uncertainty in the 

overall system reliability.  

Chapter 4 talks about the methods available in the literature that have been merged 

together to approach solving the ALT problem proposed in this research leading to the major two 

chapters; Chapter 5 and Chapter 1 where two approaches have been taken in order to estimate the 

system reliability.  

 

2- Uncertainty propagation using ALT data using statistical distribution: 

Chapter 5 presents a novel framework for using a 2 parameters Weibull distribution to 

model the ALT data collected from different testing stages: component level testing and system 

level testing. Three frameworks have been presented by propagating the uncertainty : one for 

uncertainty propagation to system reliability using component level ALT data, the second 

framework was intended for system level ALT data used to propagate the uncertainty to system 

level, and the third model combines the first two frameworks by fusing the data together 

collected from component testing and system testing.  

 

3- Uncertainty propagation using ALT data using distribution free models: 

Chapter 1 presents a different facet of the ALT coin by approaching the problem using a 

distribution free approach. The framework shows the usefulness of the gamma shared frailty 
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models in modelling heterogeneity that is an unobserved factor that causes dependence among 

the components. The methodology is broken into three parts based on testing stages: component 

level testing and system level testing as well as the information fusion concept that is built based 

on fusing data from two different testing stages together in order to minimize the uncertainty in 

the system reliability. The method in this chapter is based on using hazard functions with a 

quadratic baseline hazard function that has 3 parameters and two regression parameters as the 

base equation, the model integrates the effect of the covariates which is the ALT accelerated 

factor on the failure time of the testing units through an exponential regression form.  

Bayesian inference methods were applied to reduce uncertainty in the parameters based 

on prior information and particle filtering is used to sample the posterior information, followed 

by uncertainty propagation to system reliability for different system topologies. In this chapter, 

three frameworks are detailed similar to the one noted in point 1 above. 

 

4- Modelling dependence among components: 

Both, Chapter 5 and Chapter 1, showed how dependence models could be integrated to 

model any dependencies between the components of a system. In Chapter 5, the copula function 

is used in conjunction with the Weibull distribution in order to model the correlation among the 

failure times of the components, whereas Chapter 6 makes use of the frailty models that are 

widely used in the medical field and shows that frailty models are useful in modelling 

heterogeneity among components in ALT modelling.   

 

5- ALT optimization model: 

Allocating the resources optimally can greatly help in reducing the cost of the accelerated 

life testing. Planning ALT involves deciding on the number of specimens to be put at test, and 
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the levels of the accelerating factor to be used. Applying the cost of testing as a constraint and 

using Kullback-Liebler divergence to develop the objective method, Chapter 5 presents an 

optimization model to estimate the optimal ALT design parameters. 

 

7.2 Future Work 

Future work includes integrating Correlated Frailty Models instead of Shared Frailty 

Models and make a comparison between the two models regarding the ability of reducing the 

uncertainties. Correlated Frailty Models allows to assume different dependencies among the 

components however it might make the number of the estimation parameters large similar to the 

Copula.  

On the other hand, a different form the baseline hazard function could be a point of 

interest for future work. Assuming statistical forms for the baseline hazard function with shared 

frailty models is a room for investigation Studying the effect of the baseline hazard function 

form might have an impact on the end result.  

A different distribution for the Frailty Factor, other than the Gamma distribution, could 

be studied in the future and compare the results to the Gamma shared frailty model 

A different Copula Function form could be studied, and a sensitivity analysis could be 

done to conclude how the Copula form could affect the system reliability results 

A sensitivity analysis on the parameters included in Chapter 6 is important to study the 

effect of the values as well as the variability in the prior data on the system reliability estimation.  
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7.3 Summary and Concluding Remarks 

In brief, this research outcome is a new methodology for the Accelerated Life Testing 

solving the issue of dependence among failure time of components of one system which will 

increase the accuracy of the system reliability estimate. The research proposes a method showing 

the versatility of ALT data usage by bridging the gaps between system reliability, component-

level testing data and system-level testing data. Additionally, it details an optimization model 

that solves for the optimal design parameters which will reduce the cost of testing during any 

product development phase. The latter will enable quality engineers better assess the system 

reliability during the design stage by optimally allocating the resources and reduce the 

uncertainty. Also, the research presents an approach of how frailty models could be of great use 

in the mechanical design environment to model and quantify dependence among failure times of 

components. This research will also turn benefits in the decision making and statistical studies 

domains.  
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Appendix A 

In this appendix the figures showing the variability reduction between the prior 

information and the posterior information of the system reliability are listed as follows: 

1- Figure A.1 (a) through (d) corresponds to the component-level ALT data propagation 

framework presented in Section 6.1, each of figures correspond to a prior 𝜐 interval.  

2- Similarly,  Figure A.2 (a) through (d) corresponds to the system-level ALT data 

propagation framework presented in Section 6.2, each of figures correspond to a prior 

𝜐 interval.  

3- Figure A.3 corresponds to the information fusion framework as presented in Section 

6.3.  

4- Last, Figure A.4 shows a comparison between the posterior distribution of the system 

reliability obtained via component-level ALT data propagation method versus the one 

obtained via information fusion. The graph shows the variability of the posterior 

distribution of 𝑅௦௬௦ against the prior information.  
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(a) 𝑉𝑎(𝜈) = 0.001 − 7 (b) 𝑉𝑎𝑟(𝜈) = 0.001 − 10 

(c) 𝑉𝑎𝑟(𝜈) = 0.001 −12 (d) 𝑉𝑎𝑟(𝜈) = 0.001 − 14 

 Figure A.1 Prior, Posterior and True Value of the system reliability for different variance 
𝝂  using Component Level ALT data propagation to system reliability method 
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(e) 𝑉𝑎(𝜈) = 0.001 − 7 (f) 𝑉𝑎𝑟(𝜈) = 0.001 − 10 

  

(g) 𝑉𝑎𝑟(𝜈) = 0.001 −12 (h) 𝑉𝑎𝑟(𝜈) = 0.001 − 14 

  

 
 Figure A.2 Prior, Posterior and True Value of the system reliability for different variance 𝝂  

using System ALT data propagation to system reliability method 
 

 

 



 181

(i) 𝑉𝑎(𝜈) = 0.001 − 7 (j) 𝑉𝑎𝑟(𝜈) = 0.001 − 10 

  

(k) 𝑉𝑎𝑟(𝜈) = 0.001 −12 (l) 𝑉𝑎𝑟(𝜈) = 0.001 − 14 

  

 Figure A.3 Prior, Posterior and True Value of the system reliability for different variance 
𝝂  using Information Fusion method 
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(a) 𝑉𝑎(𝜈) = 0.001 − 7 (b) 𝑉𝑎𝑟(𝜈) = 0.001 − 10 

  

(c) 𝑉𝑎𝑟(𝜈) = 0.001 −12 (d) 𝑉𝑎𝑟(𝜈) = 0.001 − 14 

  

 Figure A.4 Comparison of prior and posterior distributions of the system reliability using 
different methods 
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