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ABSTRACT

Accelerated life testing (ALT) has been widely used to expedite the analysis of a product’s
failure time when used under normal conditions and calculate its reliability. For engineering
systems, ALT could be performed at two levels: component level and/or system level. Each testing
level requires different resources to be performed and a specific approach to analyze the data of
failure times collected in order to draw reliability conclusions. Present methodologies in ALT
allow for the assessment of system reliability conclusions by testing at the system level. On the
other hand, some of the available practices allows testing single components and calculate the
component reliability. Both schools of thoughts do not take into account any dependence that
might exist among the components of one system once put in use and the possibility of using either
type of testing in order to calculate the system reliability.

In addition, each of these two levels: The component level testing and the system level
testing have their own advantages and disadvantages. Systems of multiple components undergoing
a system level testing could be expensive, but it takes into account the dependence of the system’s
components failure times. The component testing level consists of testing each component
separately. Using the information collected from component level testing to assess the system
reliability could be of great financial importance at the design level. being cheap and allowing
testing customization. However, it does not include any of failure time correlations of components
when assembled in one system.

The research aims at fusing testing information collected from component level testing

and system level testing in order to draw system reliability conclusions. This research tackles the

XiX



dependence between the component failure times of a system that is caused by unobservable
factors. Two novel frameworks are proposed to analyze the reliability of systems with multiple
components using ALT testing. The difference between the two frameworks lies in hoe we model
the dependency between the failure times of the components. We model the dependency using a
Copula function in conjunction with Weibull distributions in the first framework and using shared
frailty models with extended hazard model in the second. Both frameworks present a propagation
of uncertainty from both testing levels: the component testing level and the system testing level to
the system reliability. Firstly, the frameworks incorporate a model to calculate the system
reliability using ALT component testing data, this presents a linkage method allowing uncertainty
propagation by using ALT component failure time data in order to conclude the system reliability.
Secondly, the latter is followed by a linkage method to show how the ALT System testing data
could be used to calculate the system reliability with minimal uncertainty. Thirdly, we present the
concept of information fusion a which is a method to fuse both component level testing information
and system level ALT testing information (i.e. Failure Time Data) to calculate the system
reliability. This research relies heavily on different statistical concepts and Bayesian inference
approaches.

An optimization model that takes into consideration the cost of testing and other ALT
parameters, namely stress levels and number of tests at each stress levels, is employed to find the
optimal and cost-effective values of these parameters. The optimization model is applied to the
framework that uses the Copula function as a way to model dependence.

A sensitivity analysis has been done to analyze the effect of the variance of the frailty factor
variance on the reliability estimate. A four-arm robots and a mixed system examples are used to

show the effectiveness and usefulness of the proposed Copula based ALT system reliability

XX



method and a circuit board of an autonomous vehicle is employed to demonstrate the proposed
approach to estimate the system reliability using frailty model with extended hazard regression
analysis method. For each example, we show results in a graphical format followed by an

interpretation explaining the reduction in the uncertainty of the system reliability.

XX1



Chapter 1 Introduction

In this chapter, we provide a background about accelerated life testing (ALT), we define
the term and explain its importance in reliability analysis and product design analysis. Next, we

present the research objectives followed by the outline of the dissertation.

1.1 Background

Engineered products are getting more complex in terms of structure and manufacturers
are competing to keep up with new inventions and technologies. Studying the life of new
products that integrate new technologies is an essential component in the product development
phase. The failure of a product affects the warranty terms and safety incurred costs and
companies need to find ways to estimate the life of their products. Additionally, the life of a
product is considered a differentiation factor and a quality indicator to many companies which
drives the competition against their competitors in the market of a product. As well, the quality
of a product could very well drive the pricing strategy that a manufacturer intends to follow
when launching the product for sale.

Moreover, the expectation of customers placed when owning a new product is to function
for as long as possible serving its purpose to the fullest. So, early failure of products not only
increase the warranty cost to the manufacturer but could lead to serious loss in the customer

satisfaction which in turn will affects the sales force and the company’s reputation.



An old type of testing used in the industry is called the Accelerated Life Testing. The
aforementioned type of testing is widely used in reliability analysis in order to study the life of
products in general [1]. ALT is considered a reliability testing procedure and various methods
have been developed to concentrate on the study of such type of testing with the intention of
estimating the reliability via various prediction models[2].

ALT has gained enormous traction and attention to develop new observations in how to
analyze the data collected from this testing and try to estimate the reliability of products and
systems with minimum uncertainty and higher confidence.

In ALT, products could be individual components or systems of multi-components. ALT
entails putting the product (a component or a system) at higher than use stress[2]. Use stress is
defined as the stress or load that the product would experience when operating in its normal
conditions. ALT testing is done in order to expedite the failure of the product reaching its
maximum life.

ALT involves testing the specimen under different stress levels. At each stress level, that
is often referred to as the accelerating factor, the specimen is tested multiple times. Figure 1-1
below shows the concept of the accelerated life testing used in this research where each test
specimen, which could be a component or a system, is subject to different stress levels and tested
n times according to the number of tests (number of test specimens) at each stress levels. So, the
output of this ALT testing is experimental failure time data which is the failure times of the
specimen (i) at different stress levels[3].

Another aspect of systems and products is that they impose dependence among the failure
modes due to a functional and/or physical connection among the components in that system.

Systems fail under different failure modes (Fracture, Corrosion, Wear etc.). That dependence, as



shown in Figure 1-2, cannot be neglected or else the model could lead to a bias (i.e.
overconfidence or under confidence) in the estimation of the product reliability. Dependence
occurs between the different failure modes of the components of one system. This correlation
among the components which produce different failure modes on the overall system adds

complications to the accelerated life testing data analysis.

Accelerated Life Testing
[

v v
Stress % Of Tests at
Levels(X;) j Stress level j of
! specimen i,
X, - =
Test Specimen,;(Component
Or System) . i
X2 ---------------- - n
1
Xj ................ 1 n

Figure 1-1 Accelerated Life Testing Concept

Systems can as well take multiple configurations; the components of a system could be
mounted in different topologies making the failure of the system different for every topology.
The system failure mode depends on the system topology. Components of a system could be

mounted in as simple as series (Figure 1-3) and parallel (Figure 1-4) configurations or in a more



complex predefined structure (Figure 1-5). Considering the structure of the system in system

reliability analysis is essential as it affects its failure mode.

System of Nc¢
Components

'

Component 1
A

Component 2 [«
A

Component Nc

Component (i) is dependent on a following
component(i+a) i< i+a<N¢i =
1,2,..,Nc

T Component (i) is dependent on a prior
component(i—a@);1 £ i—a< ;i = 1,2,..,N¢

Figure 1-2 Dependence illustration among the components of a system of Nc components

— Component 1 Component2 ——

Figure 1-3 System of two components mounted in a series configuration



Component 1

Component 2

Figure 1-4 System of two components mounted in a parallel configuration

— Component 1
] Component 4

— Component 2

— Component 3

Figure 1-5 System of four components mounted in a complex configuration

A complete system reliability analysis shall consider the failure data collected from ALT.
Also, it shall include the modelling of the existing dependence among the components of one
system as well as it shall be applicable for the different system topographies.

ALT data could be collected at two different testing levels: component level Component
Level ALT Data by testing each of the components individually and System Level ALT Data by
putting the whole system at test. So, in order to use each set of testing data collected from
component testing or system testing and link it to the system reliability, this research target is to

pursue meeting six objectives detailed in section 1.2 below.



1.2 Research Objectives

The goal in this research is to find the reliability of systems with minimum cost and with
high accuracy level. Reducing the uncertainty of a product reliability requires a robust prediction
model in place. The research aims at developing a system reliability prediction model by using
accelerated life testing data applicable for all system configurations in which components are
configured in series, parallel, or any other specific topography decided by the product design
engineers. As mentioned previously, for a system with N components the accelerated life
testing data could be collected from two testing levels: Component -level ALT Data when testing
individual components and system-level ALT Data when testing systems with multiple
components. So, the goal is analyzing and modelling the collected ALT data from the
aforementioned two ALT levels to minimize and estimate the system reliability with confidence.

In order to reduce the uncertainty of the system reliability six objectives are pursued. The
research objectives are as follows:

The first objective is to consider the correlation between the failure time data and find a
suitable method to consider the association between the failures and the components of a system.
Since we are dealing with systems of multiple components connected physically or logically to
serve a purpose under normal operating conditions, the dependence is an association of sharing a
failure factor. Failures of components in one system can take different forms leading to multiple
competing risks or failure modes, modelling the dependence of these failure modes that lead to a
dependence in the failure time data is essential to remove the bias from the prediction model.
This objective goes hand in hand with every objective listed below and is considered an integral

part of their implementation.



The second objective is to develop a framework to estimate the system reliability by
using ALT data collected from components level testing. This objective is characterized by
finding a suitable linkage method to link the failure data (i.e. ALT data) of each component
tested separately and to be connected in one system and integrate the dependence method in
order to infer and reduce the uncertainty of the system reliability under normal operation.
Mathematically, we aim at finding the likelihood and apply the Bayesian estimation method that
takes prior information about the model parameters collected from experts and sample posterior
distributions with reduced uncertainty then link the data of all components together to find the
system reliability including the dependence among the failures of the components.

The third objective is to construct a linkage method to derive and minimize the
uncertainty in the system reliability using ALT data collected from system level ALT testing. In
similar fashion of objective but using a different approach in allocating the model parameter, the
research aims at finding a suitable connection to fit the ALT data and reduce the uncertainty in
the system reliability while modelling the dependence among the failure data.

The fourth objective of the research is referred to as information fusion which aims at
combining ALT testing data from both testing levels when they are available in order to reduce
the uncertainty in the system reliability. This objective is a grouping objective to combine the
three prior objectives listed above.

The fifth objective is to allocate the ALT resources optimally. The research aims at
finding the optimal design parameters of the mode conditioned on the testing budget and cost.
This objective is pursued by developing an optimization model subject to conditions of ALT

testing cost and total budget:

fX,n)s.t. Cost Crprq;0<E<1,n=0 (1-1)



The last objective which is the sixth objective is to find a way to apply all of the above to
any system of N, components mounted in different configuration that could be components in
series, parallel or other topography. This objective aims at making the methods developed
versatile and not limited in application.

Pursuing the six objectives listed above allows to construct a comprehensive ALT
analysis model to estimate the system reliability of product with high confidence and minimal
uncertainty all while considering the dependence among the components that carries latent

failure times. Finally, the model is versatile in its application to different system structures.

1.3 Dissertation Outline

The Dissertation contains eight chapters in total in order to pursue the research objectives
detailed in section 1.2 above. Chapter 1 gives an overview background about the research and
details the research objective.

Chapter 2 presents the literature review for the different methods and frameworks related
to the accelerated life testing and are in direct relation to what is used in this research. The latter
includes: 1) Statistical methods in ALT, 2) Regression survival models, 3) Dependence
modelling. In each of the three sections under the State of Art chapter, we detail the different
methods available. This allows identifying the gaps and helps identifying the novelty of the ALT
framework enclosed in this research.

Following the literature review presented inChapter 1, the motivation of this research is
given in Chapter 3 in which we talk about the advantages of this framework by presenting the

intellectual merit and the broader impact of the research and its findings. The intellectual merit



taps into the new observations and the novelty of the ALT model as well as the positive impact
that this ALT framework could present to industries and individuals.

Chapter 4 includes the approach by which we intend to solve the problem. The chapter
dissects the problem into its subcomponents and steps and describe the reason behind each of the
steps we intend to follow in the following chapter. The assumptions to the model are presented,
and illustrative example about autonomous vehicle leads to set the problem statement of the
research. By setting the problem statement of the research which is reducing the system
reliability uncertainty and the methods to solve the presented problem are given and explained:

1. Log-scale parametric distribution model

2. Copula function

3. Extended hazard model

4. Frailty model

5. Bayesian Estimation method (the concept of likelihood function)

6. Particle Filtering

Chapter 5, the previous chapters have presented and defined the terms to be used and the
frameworks available to be used. This piece of the research deep dive into the mathematical
formulation of propagating the uncertainty using component level testing data, then it details the
steps about using the system ALT testing data and the propagation of uncertainty to the system
reliability closing with the information fusion of both ALT testing data. An optimization model
to find the optimal design parameters of the ALT is enclosed at the end of this chapter, this part
encloses the resource allocation bounded by an ALT budget.

In Chapter 1 we identify the gaps of the method implemented in the previous chapter

(Chapter 5), so the chapters suggests a novel method consisting of using distribution free



regression models to explain the effect of explanatory factors on the failure time and it integrates
the frailty model to explain correlation among failure times. Numerical examples are presented,
and the results are interpreted to obtain the statistical inference meanings and develop investigate
new observations about the model.

Chapter 1 aims to explain the effect of the frailty factor on the uncertainty of the system
reliability. A sensitivity analysis is enclosed by varying the frailty factor value and the changes
are presented graphically followed by an explanation of the changes. This part allows
understanding the effect of using the frailty to model dependence among failure time on the
system reliability confidence.

The last chapter, Chapter 7, presents the concluding remarks and proposes the future
work, the major achievements achieved by conducting this research and the concluding remarks

about the findings.
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Chapter 2 State of Knowledge

Different models have been implemented to find the optimal design and model
accelerated life testing. The advantage of accelerated life testing is to predict the life of product
in an expedited format under higher than use stress that allows predicting the probability of no
failure by using translation function to translate the performance of the product in an accelerated
environment to the normal one. Various models have been presented in the literature and the
field has been of interest for so long, some researchers presented ALT models involving
parametric distribution function such that the Weibull distribution, Exponential distribution and
the Lognormal distribution, along with using specific stress- failure time translation functions.
Others have shown the advantage of using distribution free parameters by incorporating
regression modelling in the big picture.

The different models tackle data censoring with its different types. Censoring is involved
when a testing unit survives without failing at the end of the test. ALT is often timed and
sometimes the testing unit survives the accelerating factor without any indication of a failure.
The data for such testing units is called censored data. The most common two types of censoring
are Type -1 and Type-II which allows engineers to remove the non-failed units and at different
times during testing.

In what follows we present some of the available work published by peers over the years.
We present the models according to their overarching modelling perspective with a focus on

models with statistical distributions and models with regression analysis.
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2.1 Accelerated Life Testing (ALT) Statistical Models

We review in this section the different accelerated testing models available in the
literature. Multiple statistical (parametric and non-parametric), regression and distribution free
have been developed to estimate the system reliability using ALT data. We review some of these

models and identify the gaps.

2.1.1 Accelerated Failure Time Models

An alternative method to regression models is the Accelerated Failure Time (AFT) that is
classified as parametric, The method initial name is Scale-Accelerated Failure Time or SAFT [3]

The method is often characterized by linking the logarithm of the event or failure time to
the stress. It assumes that the covariate factors which is the stress in the ALT case act linearly on
the logarithm of the failure time or multiplicatively on the failure time. AFT is widely used in the
reliability field, and the disadvantage lies in their application that necessitate finding a suitable
parametric distribution [4]. Newby [5] mentions that the effect of covariates on the event time
are described in the scale parameter of a parametric distribution of choice to fit the failure data.

Stute in [6] presented a methodology to estimate linear regression parameters, the method
could be regarded as an accelerated failure time model as referenced in [4] and it gives the
benefit of being a distribution free so it allows making inference without fitting the failure times
into a probability distribution function making it a promising methodology to be used in survival
analysis making it equivalent to the hazard model presented by Cox in 1972 which we will
review in section 3.2.1.

AFT models have been first referenced by Pieruschka[7]. AFT models have been

demonstrated robust against neglecting explanatory variables as shown by Hougaard in [8].. Xu
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et al [9] used the AFT model in order to investigate a general Bayesian approach for step-stress
accelerated life testing is investigated for the log-location-scale distribution family and
particularly the widely used parametric lifetime distributions in ALT.

Louis [10] presented a complement method to the regression method that uses hazard
functions and it has the restriction of hazard rate proportionality at two different levels of the
explanatory variable (covariate). The approach integrates the accelerated failure time whereas the
proposed method is identified as efficient for the Weibull distribution class and does not include
censored data in the formulation.

In a different approach, Kuo and Mallick [11] considered a Bayesian framework by using
parametric prior information on the regression coefficients of the AFT model. They have
deployed Markov chain Monte Carlo (MCMC) to sample the posterior data of the model
parameters and they have concluded their work with numerical examples including censored
data.

Anderson in [12] presented a non-proportional hazard Weibull accelerated failure time
model where they do not use the standard Weibull AFT model with a standard linear location
AFT model, instead they considered a varying location and dispersion parameters model in
which the dispersion parameter is dependent on the location parameter, more information about
the specifics of such model could be found in [12]. The application problem in this work is
medical.

The AFT models assume that for a given covariates vector Z which is the applied stress
which follows a distribution with a location parameter a(Z) and a constant positive scale
parameter ¢ > 0, the logarithm of the failure time equation is linked to these parameters by the

following[13]:
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Y =log(t) = a(Z) + o¢ (2-1)
¢ is arandom variable that has a specific distribution, and it is assumed to be independent of Z.
The AFT model has been of great use in the reliability field for estimating the life of
engineered goods. However, it requires the model to be parametrized and it is often used with
parametric probability distribution functions, and the linkage form is limiting as it takes the form
of linear regression between the logarithm of the event time and the applied stress. Various
approaches and distributions have been used to go with the accelerated failure time. We review

some of them in the next section 3.1.2.

2.1.2 ALT Data Parametric Distributions
Log-location scale distributions have been extensively studied in the accelerated life
testing field. Weibull, exponential and lognormal distributions have been the focus of multiple
researchers. In this section we review studies available that have used the latter distributions to
analyze and plan ALT.

Klein et al [14] have developed a model for a multi-component placed in series
configuration in 1981. The model consists of using data collected from accelerated life testing in
order to predict parameters of a function called a stress translation function. The function is then
used to predict the reliability of a system when operating under normal conditions. The model
fits the component failure times collected in an accelerated environment via a 2-parameters
Weibull distribution. The failure times of each component are assumed to be independent from
each other. Maximum likelihood has been used as the estimation method of the different
parameters involved in order to conclude the reliability of the system. Van Dorp et al [15]

developed a Bayes approach to model accelerated life testing with step stress and they have used
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the exponential distribution to fit the data collected from ALT at each stress level. They adopted
a probabilistic approach that uses parametric prior distribution by assuming that information
about these parameters is found by referring to expert’s judgement and that the prior distributions
of the model parameters preserves the ordering of the failure rates into the sampled posterior
distributions.

Tang at al [16] developed a model to design accelerated life testing under k-step stress as
the accelerating factor. They have presented a method to find the optimum test plans with Type I
censoring, defined by removing the item within the testing stage if it fails, for two types of
parametric distributions: exponential distribution and Weibull distribution. They as well use the
accelerated tampered model that assumes the hazard function rate at high stress is the hazard rate
function at lower stress multiplied by a modifying factor referred to as the accumulated tampered
factor and determined by the each stress level (low and high) as well as it is assumed to be
related to the time at which we move from a low stress level to higher level of stress. They use
the concept of maximum likelihood along with the fisher matrix to estimate necessary
parameters.

Wang at al [17] presented a model for a Weibull distributed failure data with a non-
constant shape parameter for a constant stress ALT, it is assumed that both the shape and scale of
the 2 parameters Weibull distribution are affected by the stress applied. the research uses the EM
(Expectation-maximization), MLE (Maximum Likelihood Estimation) and ML (Maximum
Likelihood) as estimation methods for the parameters involved. The paper as well take into
consideration progressive type-II censoring defined as randomly removing some of the surviving
units every time a failure is noticed during testing so if there are n testing units, one failure is

noticed at time t;, the remaining surviving units is n — 1 at time t;, by progressive type-II
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censor, their model assumes 7 units out of the n — 1 units that have survived at time t; when the
first failure has been noticed and the same concept is applied at t, when the second failure is
noticed.

Doksum et al [18] presented the time transformed inverse Gaussian distribution model for
variable stress ALT data to fit time to failure as a flexible alternative to the Weibull Distribution
which is widely used to model failure times with the same shape parameters. Their model
consists of a fatigue failure model in which the accumulated decay is covered by a Gaussian
process considering a continuous stress increase. A failure is defined when the Gaussian process
crosses certain limit. Time to failure is governed as a function of the accumulated decay where
parametric functions are used to explain the effect of higher stress on the failure time and decay
rate. The model presents how the decay under both normal and accelerated stresses could be
found as well as the mean life under use stress.

Meeker et al [19] used log location scale distributions to model cycles to failures of
components and noted that the two most used distributions are the Weibull and Lognormal
distributions as special cases. The research proposed a model to predict the system reliability in
the use field by using ALT data and characterization of the use field. So, they suggested a model
that relate these data sets (failure time data and field data) in order to predict the life distribution
of a future component operating in normal conditions. In order to estimate the model parameters,
they have used the Maximum Likelihood (ML). Zhang et al [20] described the Bayesian methods
Accelerated life testing and planning involving a Type II censored data from a 2 parameters

Weibull distribution, where the PDF function is expressed by:

feein. ) =4 (%)[H exp (— (%)3) (2-2)
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where 7 is the unknown scale parameter and £ is the known shape parameter that is given.

The model allows a better planning that is based on the precision of the life distribution
quantile assuming the information about the shape parameter of the Weibull distribution is
known.

Miller & Nelson [21] presented a framework to obtain the optimum simple step-stress
ALT plans when the failure time of the test units follows an Exponential distribution assuming
they are monitored to failure without any censoring. Bai et al [22] extended the model the latter
work of Miller & Nelson to include censored data.

Doksum and Hbyland [23] created models for variable-stress accelerated life testing
experiments based developing a Wiener process consisting of considering fatigue failure model
that includes an accumulated decay that is modelled by a continuous Gaussian process with a
variable distribution that changes with the stress change point instead of using the widely used
distribution which is segmented Weibull-distributions for the failure time of the ALT
experimental units at increased stress at stress change points. Chaloner and Larntz [24] studied
the design of accelerated life testing (ALT) assuming two distribution models for the failure
times of the experimental units, namely lognormal distributions and Weibull distributions. In
their paper, they assume that the increased level of the testing stress has an upper limit and they
consider Type I censoring which is based on assuming that the experiment is timed over a fixed
period of time and samples that do not fail upon terminating the test are referred to as censored.

Bagdonavicius et al tackled [25] special plans for the ALT design and analyzed the ALT
data (i.e. failure times of experimental samples) using numerical methods and simulation using

the changing shape and scale model which is a natural extension to the known Accelerated
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Failure Time model (AFT), they also propose parametric and semiparametric estimation
procedures for their model.

Additionally, J. Rene et al [26] developed a general Bayes Weibull inference model for
ALT in which they assumed that failure times follows a Weibull distribution under a constant
stress level. They have used prior information to define prior distribution for the scale parameters
at different stress levels and the shape parameter. Additionally, a general Bayesian exponential
inference model for accelerated life testing has been established. I-Chen Lee [27] et al has
presented a method to overcome the problem of guessing values for the parameters to be
estimated by introducing ta sequential Bayesian design for planning ALT. Zhang and Meeker
[28] described Bayesian methods for accelerated life testing planning assuming one accelerating
variable and that the acceleration model is linear in the parameter based on censored data.

Statistical methods in ALT are often combined with other methods like the Inverse Power
law and the Arrhenius Relationship. In the sections below, we present available models
developed that uses these methods in analyzing ALT data.

Nelson and Kielpinski [29] have presented the optimal ALT design using normal and
lognormal life distributions. The model incorporates the Arrhenius relationship and they assumed
that the mean of the life distribution is a function of the applied stress.

In this research, we will make use of the log-scale distribution because as it has been
noted in the state of art, it is a widely used distribution and in more specific we will use the
Weibull distribution with 2 parameters shape and scale and apply the AFT concept to link the
accelerated factor to the failure of components and systems. More on the construction of the

mathematical and statistical form could be found in Chapter 6.
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2.1.3 Competing Risks in ALT Design

Nelson [30] has introduced examples of product that fails under various failure modes
and discussed the ALT analysis of such products with multiple competing risks. Examples of
system with multiple failure modes are the semiconductor devices and insulation systems.

Kim and Bai [31] have studied the accelerated life testing with two failure modes. They
have presented a paper in which they have showed a framework to calculate the life distribution
of a component at use stress when there are two failure modes: an extrinsic failure mode and an
intrinsic one by using constant stress accelerated life testing data. They have used a location-
scale distribution to model failure times, and they have derived the equation for a 2-parameters
Weibull distribution. In their analysis they assumed that the lifetimes of the test units are
independent, and that the location parameter of the life time distribution is a function of the

applied stress and it is given by:

Hjk = ok + 1xS] (2-3)

where s; designate the stress, agx and a;y are coefficient parameters and k is the index that
represents the failure modes k = {1,2} because they are considering two failure modes. They
also use EM methods to estimate the model’s parameters by using the likelihood as a mixture pdf
which is represented as the sum of two portion where each portion represents the pdf of a failure
mode.

Patra et al [32] constructed a multivariate distribution of a mix of Weibull distributions
and they characterize the dependence among the components by a latent random variable that is
assumed to be independently distributed of the original component. They have extended the
model and showed how it could be applied to model competing risks which takes place when a

component potentially could fail under different failure modes and each competing risk is a
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mixture of either Weibull or exponential distributions. So, for r competing risks where each is a

mix of k Weibull distributions, they define the following:

T:{X:UXZJ""JXT'Z} (2_4)

where X; = Xjq, ..., Xjk , i = 1,2, ..., 7 is a mixture of Weibull (a, 6;;) and Z is the independent
latent random variable that follows a Weibull distribution Z ~ Weibull («, 8,). Next, they

define the survival probability as:

P(T>t)=PX;>t)PX,>t)...PX, >t)P(Z>1)

- ﬁ{zk: a--e_'fa<<
i=1 j=1 !

where a;; is the mixing probability and 2?:1 a;; = 1foralli =1,2,....7. and by that the

1 1
CTRGT

>> - ﬁp(ri > 1) (29)
i=1

multivariate joint survival function is given by:

Lr(t) = Dsri(t) (2-6)

Ishioka et al [33] worked on constructing the maximum likelihood parameters of a
Weibull distribution for two components forming a series system. They assumed the mean of the
Weibull distribution of the each of the independent failure mode to be a log-linear function of the
applied stress. The likelihood of sample size N for two components including censored data is

given by:

N
1) = ¢ [ rren ray-> @)
i=1
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where f(.) Is the pdf and R(.) is the survival function. C is a constant and &; is = 1 if the system
fails at the end of the ALT test and 0 otherwise. In their framework they assume that regardless
of the system configuration of the 2 components R(t) = R, (t)R,(t) and that the total PDF is
f(t) = Ri(6)fi(t) + R,(t) fo(t). They apply the log-likelihood and by maximizing the
derivative of theLog (L(6)) they find the closed form of the distribution parameters.

Bai and Chun [34] constructed a model to find the optimum simple step-stress
accelerated life test data with competing causes of failure (i.e. competing risks) where the life
distribution of each failure cause is assumed to follow an exponential distribution and the failure
modes are assumed to be independent of each other. Their framework assumed that each unit has
p statistically independent failure modes and that the failure of the unit the smallest of the
p failure times corresponding to the p potential failure modes. The log of the mean life of p
failure times is a function of the applied stress. The derived likelihood for two stress levels from
observations (y;j, ¢;j) representing the (failure time, cause of failure) of the test unit j at stress
x;,t =1,2andj =1,2,..,n;. The likelihood includes n, censored data and is given by the

equation below:

n=1rp P
L(ay, By, @, By) = 1_[ [n{ﬂ'lk eXp(—/ll.ylj)}ak(clj)]
j=1 Lk=1

n=2 14
X 1_[ [1_[{/121(, exp(—/lz.YZj)}ak(czj)] (2-8)
j=1 Lk=1

X exp(—4;. (T — )n, — A1.71ny)
where A; = £=1 Aix 1s the failure rate under the failure mode k at stress x; and 7 is the test run

time and a4, By, ..., @p, Bp are the parameters to be inferred.
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Pascual Francis [35]presents method for accelerated life testing planning under k
independent failure modes. Pascual used the lognormal distribution to derive the Fisher Matrix.
The method is established in conjunction with the Arrhenius relationship for temperature
acceleration. On the other hand, Pascual in [36] derived a method for ALT planning for
competing risks when failure times are assumed to follow a Weibull distribution. the framework
assumed s —independent competing risks and the minimum latent failure time corresponding to a
failure mode or competing risk is assumed to be the minimum. Klein and Basu presented worked
on series of papers [37] [38] in which they have presented the analysis of ALT involving more
than one failure mode. they further assumed that the competing risks or failure modes are
independent for each stress level, they have used the maximum likelihood estimators when the
lifetimes follow Weibull and exponential distributions and they have considered the case of
having a common versus varying shape parameters, as well as 3 types of censored data being
Type I, Type II and progressive censoring.

Additionally, Bunea and Mazzuchi [39] presented a Bayesian method for the analysis of
ALT data with possible multiple failure modes. They have used failure rates following a Gamma
distribution and the Arrhenius relationship to relate the failure rate due to a stress level to the

actual failure rate under use stress.

2.1.4 Inverse Power Law in ALT
Inverse Power Law is often used in combination with the statistical models in
accelerated life testing to relate the applied accelerated variable to the life of the testing unit

and it has the scale-accelerated failure time form[3]. Nelson [40] developed a model using the
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maximum likelihood estimators (MLEs) to obtain the parameters of a Weibull distribution in
combination with the inverse power law using the breakdown time data of electrical insulation.

The inverse power describes the relationship between the constant V' stress and the life
of the test specimen that is assumed to follow a Weibull distribution with a constant shape

parameter [ and the scale parameter « takes the following form [40]:

aV) = (%)p 2-9)

where V;, and p are positive parameters.
The latter implies that the CDF of the failure time t of a specimen is expressed by the

following equation [40]:

v\P1P
F(t;V) =1—exp (— [t (7> l ) (2-10)
0

Allegri and Zhang [41] aimed to develop a model to provide an estimation tool of the
relative accumulation of fatigue damage under random loading conditions and their work has
addressed the usage of the inverse power law in accelerated fatigue testing. Escobar and Meeker
[3] in their review paper explained the usefulness of the Inverse Power Law is describing the
effect of some accelerating variables like voltage and pressure on the failure times of testing
units. The Inverse Power Model is an empirical model and has been used because engineers
emphasized its power in analyzing ALT data. Caruso et al [42] in an overview of the
fundamental ALT methods lists the Inverse Power Relationship and the Arrhenius relationship,
which we will review next, and describes the versatility of the different forms of these
relationships in describing the relationship between the accelerating stress and the life of the

testing unit.
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Another representation of the inverse power relationship for the characteristic life n(V) is

given by [43]:
n(V) =1/Kv™ (2-11)

For a general notation, V in Equation (2-11 ) denotes the accelerated variant or stress.
K and n are referred to as characteristic parameters determined based on the material and the test
procedure or method used to perform the ALT. Given the lifetime follows a Weibull distribution

with shape parameter f the PDF function is given by:

g-1 B
V) = nf—v)(n(%)) exp [— 5) l (2-12)

2.1.5 Arrhenius Relationship in ALT

On the same previous note of the Inverse Power Law above as a linkage method used
with statistical distribution to link the failure time to the accelerating variable in ALT data
analysis, the Arrhenius relationship has gained attention and has been extensively used in
different researches where distribution parameters are a function of temperature as the
accelerating variable. Nelson [44] present a three-part series describing statistical methods to
model temperature accelerated life testing data by assuming all testing units are tested to
failure. In the first part, Nelson described the Arrhenius method in combination with graphical
methods to solve the problem of ALT when the accelerating factor is the temperature and
highlighted that the same method could be applicable to different ALT when the accelerating
variable is not necessarily temperature. His model is designed for single failure modes. The

Arrhenius model has been found useful to describe the life of a component when temperature is
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the accelerating variable. It suggests that the mean of the lifetime distribution is a function of
temperature and that the standard deviation is constant. However, the Arrhenius model does
not tackle the dependence among the failure time distributions and temperature due to multiple
failure modes and suggests that each failure mode could be represented by a separate Arrhenius
model, but multiple failure modes is not allowed during ALT.

The general Arrhenius reaction model is given by the following equation [43] for when

the accelerating variable is the temperature:

B
v = Aexp (— 7) (2-13)

v is the rate to failure, the speed of a reaction, T is the absolute temperature in Kelvin units. A is

E Activation Energy
a non- thermal constant factor whereas B = -2 = - 9Y_
K Boltzmann’s constant

The use life and accelerated life relationship at nominal stress under use conditions and

the accelerated conditions could be found in [43] by:

1 1
Lyse stress = Lavrexp [Ea/K <Tuse - TALT> (2-14)

in which Lyq. seress 18 the life at use temperature, Ly denoted life under ALT conditions (i.e.

accelerated conditions), E, is the activation energy, K is the Boltzmann’s constant K =
8.623 x107° % T.se and Ty, 7 are respectively the use and accelerated temperature.

Pascual [45] developed s-independent Weibull-Arrhenius competing risk model for
accelerated life test (ALT) planning involving multiple failure modes dependent on one
accelerating factor. The failure modes are assumed to have an unobservable failure times and
that the minimum represents the product. The latent failure times of these failure modes are

assumed to follow a Weibull distribution with a known common shape parameter. ML methods
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are used to obtain the planning values for the model parameters. Given emp (Kelvin) =
temp (Celsius) + 273 ; the Arrhenius relationship for the location parameter when the

failure time follows a Weibull distribution:

@ K) = yo + 11605
u emp - )/O )/1 temp(K) (2_15)
The standardization of the experiment conditions is often used to generalize the test

planning model [45], for a given accelerating factor s, with upper stress s,, and a lower stress s;,

by:

s—s (2-16)

2.1.6 Eyring Relationship in ALT
The Eyring model is used for cases using the temperature as the accelerating variable as
the Arrhenius relationship. It is derived from quantum mechanics, however it is not as common
as the Arrhenius relationship [43]. The relationship below represents the mean life as it related to

the temperature:

Linean = %eXp {—A - (?)} (2-17)

Linean 18 the mean life, A and B are parameters to be determined by ALT Testing and T is the
temperature. For an exponential distribution, the mean life under use stress is given by the

following equation:

Tarr 1 1 (2-18)
bmeanase = bmmnir (222) e {8 [(7) -7,
mean,use mean,ALT Tyse Tuse Tar
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2.2 Regression Survival Data Models
Another class of research analyzed survival data by applying different regression model

which would explain the effect of the applied stress on the failure time or they make use of the
accelerated failure method. Some models integrate log-scale statistical distributions with
regression models, models like proportional hazard model, accelerated failure model and the
extended hazard regression model. ALT data are considered survival data as it tests the life of
products. This type of models has gained giant traction in the medical field and recently it was
imported to the reliability analysis world. In this section, we review some of these researches

and their findings.

2.2.1 Cox-Proportional Hazard Regression Models
Nelson [46] offered a detailed analysis of methods about regression models used in
accelerated testing to analyze ALT data. Survival data could be very well fitted into statistical
distribution functions as shown in section 2.1 or could be represented in terms of hazard rate
functions. Cox regression model presented in 1972 [47] is one of the very used models with
different variations to describe the effect of covariates (i.e. factors) on the event time that could

be failure time. The hazard rate of an event time t with covariate X is given by:

: = li < < >
A(t; X) Alil_l:lop(t <T <t+At|IT =t,X)/At (2-19)

and the Cox regression model is given by:

AEX) = Ao(t)eX™ (2-20)

where 4, (t) is defined as the baseline unspecified function which is the hazard rate when X =

0 and B is a regression coefficient vector acting multiplicatively on the covariates X.
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Ata et al studied the assumptions of that model and they showed how it can be applied to
analyze lung cancer survival data [48]. Cox model is based on the main assumption of hazard
rate proportionality where the hazard rate ratio at any two-event time t is constant under two
covariates levels.

Cox-proportional model could take a parametric form where the baseline hazard rate
function could be chosen one of a Weibull distribution as shown in [49] and [50] where 6 is a

positive shape parameter and o a positive scale parameter:

w0 =2() @-21)

Breslow in 1974 presented the application of regression models with censored data using
[51] among the regression models, he made use of the non-parametric cox proportional model.
Breslow is 1975 presented a method to estimate the baseline hazard function known as Breslow’s
estimator [52] which is regarded as a step function. Different methods have been used to estimate
the parameters of the Cox regression model like Bayesian inference methods using prior
information as presented in [49] or like the marginal likelihood function estimation method has
been used by Kalbfleisch and Prentice [53] to obtain the cox proportional hazard model
parameters. Other researchers like Anderson et al [54]used piece wise smooth estimate of the
baseline hazard function where he assumes that A, (t) is a quadratic spline function. Campolieti
[55] proposed a Bayesian framework used to estimate and smooth the baseline hazard in a
discrete time hazard model.

ElSayed et al [S6]applied the proportional hazard model to find the optimal ALT design
of a selection of constant stresses including Type-I censoring. They have assumed the baseline

hazard to be linear with time and obtained the maximum likelihood estimates of the regression
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coefficient as well as the baseline hazard function parameters. The reliability function is given

by:

t2 T
R(t;X) = exp (— <Vot 7 ?>) ef X (2-22)

ElSayed and Zhang [57]presented an approach in which they used the proportional
hazard model to optimize the accelerated life testing design with multiple stress levels. The
optimal stress levels are obtained based on the condition that reduces the variance in the
reliability estimation over a specified period of time.

Hu et al [58] obtained the upper confidence bound of the cumulative failure probability of
a unit under operation stress under use stress by using a non-parametric proportional hazard
model and step stress ALT data. Furthermore, The cox proportional hazard model has been given
a preference for being non-parametric in the sense that the baseline hazard function does not
have to take a parametric form and hence the reliability function distribution is not necessary in
order to explain the effect of covariates (i.e. explanatory variables) on the event time[4].

As well, Newby [5] they demonstrated in a comparison study between AFT models and
proportional hazard model that when a Weibull distribution is picked, the distinction between the
two methods is masked and cannot be distinguished due to the similarity in the model equation.
Also, it has been noted in [59] that the advantage of the PH over AFT lies in being able to derive
the partial likelihood to estimate the relative risk function which describes the effect of
covariates on the failure time in a hazard function form without parametrizing the baseline
hazard function unlike AFT models which is considered a valuable aspect of PH models if one is

interested in the quantification of the effects of the covariates on the failure time.
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As a conclusion of this section, one can notice that PH model has gained great attention
and traction in applying the model to survival analysis and is observed as an alternative to the
AFT model. However, the assumption of proportionality of the hazard rates of two event times at
two levels of the covariates was limiting and has pushed the researchers to look into different
models and estimation approaches to cover the possibility of having this assumption not

satisfied.

2.2.2 Extended Hazard Models

A class of regression models known by the extended hazard models introduced by Amoli
and Ciampi in [60]after testing the PH and AFT and their application to survival data in[61]. The
model is versatile and takes the proportional hazard model and the accelerated failure time model
as special cases. Authors in [60] approximated the baseline hazard function using a spline
quadratic function and the maximum likelihood is used to approximate the regression parameters
of the model. the importance of combining AFT and PH models in one is in the possibility of
covering a large gamut of applications. the framework is useful to analyze survival data
including censored data.

Other researchers have modified the EHR model like Shyur et al in [62] presented a new
framework that modifies the EHR model using the partial likelihood function. The approach is
developed to analyze failure data and takes into consideration time-dependent covariates. They
also suggest that the proposed method is easily adopted to come up with ALT plans with varying
stress loadings (Step Stress, Cyclic etc.). The model has been verified using real testing data
collected from lab testing of units where the specimens are subject to a time dependent load as

the accelerating stress. Then, the data collected is used in a comparative analysis between the
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model result and the lab data, the latter verification approach is regarded as unique to the
development of reliability framework.

ElSayed et al in [63] studied the extensions of AFT and PH models in order to extended
the EHR model to an Extended Linear Regression Model to provide a new framework for
reliability estimation. The model is regarded as an extension to both the Proportional Linear
Hazard (PHL) and EHR model. the PHL is an extension of the Cox model presented first by
Hastie and Tibshirani in 1993 [64]in which the regression coefficients are allowed to vary with
other variables factor (i.e. time) but the effect of the covariates is kept a linear effect. The PHL
model for a single covariate where the regression coefficient f = f, + [t is made dependent

on time and is expressed by:

A(t;X) = Ao(8) exp((Bo + B1)X) (2-23)

The ELHR model includes the reflection of three effects as follows: the proportional-
hazards (PH)effect, the time-scale changing effect and last but not least the time-varying
coefficients effect of the PHL. The baseline hazard function in this research is assumed a
quadratic function. Researcher as well considered censored data in the model and when
collecting testing data in the lab for model verification.

Neto presented an EHR model in which the spread parameters is dependent on the
covariates, more details about this models could be found in [65]. The model is developed for
application to the reliability analysis and survival data. Seng et al [66] presented a
semiparametric form of the extended hazard model and they have obtained the estimation
equation of the regression parameters using counting processes and martingale techniques. The

model has been tested on medical data.
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We can conclude from this review that the model presented great benefits to cover
different aspects in reliability and survival analysis as it combines the assumptions of the PH and
AFT models and expresses them as special cases. The model uses the hazard function form and it
allows, with its extensions, studying the effect of time- dependent regression coefficients and the
effect of covariates on event times. However, the application of this model in the reliability field
is very limited. Conversely, some researchers applied the EHR model in the medical field to
study survival data.

The attractiveness of the EHR model is being a distribution free model and using the
quadratic form for the baseline hazard allows to have different distributions as special cases
which will then covers a wide spectrum of data types and distribution. More on the formulation

of this model and how we will apply it to ALT data will be explained in Chapter 7.

2.3 Dependence Modelling

In this section, we focus on the dependence modelling using the copula function. We
review the state of art and list the work for modelling competing risks via copula function. Then,
we review another dependence model which has been widely used in the medical field known as

frailty models.

2.3.1 Competing Risks Via Copula Function
The interaction of failure modes between two-components system was first presented by
[67] and since then multiple studies have tackled the idea of interaction between the failures,
referred to as competing risks or failure modes, of a system or a component. In this section, we

review some of these findings in what follows.
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Nelson in his book [68] defines the Copulas as functions that takes multivariate
distribution functions as inputs and joins them to their one-dimensional margins. Studying
Copulas and their usefulness in statistics is fairly new and it is a growing field of study. Nelsen
presented in this book the different characteristics of various Copula functions and their
applicability to study dependence.

Zheng and Klein [69] talked about the difficulty of presenting the net survival function in
engineering or in any other field in a competing risk framework, because if T represents the time
to failure of an equipment, it is often difficult or even impossible to measure T because of the
occurrence of another event at time T'. They also presented a Copula graphic estimator
framework to estimate marginal distribution using Copulas to model dependence between
censoring and survival times (like the failure X at time T and event Y at time T"'). They used the
Copula function as a nonparametric function allowing to detect dependence between two random
variables. The Copula includes all information which joins the two marginal distributions of the
two dependent events X and Y together to give their joint distribution.

Schweider and Skar in their book Probabilistic metric spaces [70] defined the Copula

mathematically as follows:

C(y1,y2) = HIF ' (y1),G ' (y2)} ;v €[0,1] (i = 1,2) (2-24)

In Equation (2-24), H is the joint distribution of two events X and Y, F is the marginal
distribution of X and G is the marginal distribution of Y.

Lo and Wilke [71] extended the model presented by Zhen and Klein in [69] to model the
dependence between more than two competing risks using the Archimedean Copula. Rivest et al
[72] assessed the proposal in [69] and constructed a martingale framework for the survival

function with dependent censored times and derived a closed form expression for the copula-
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graphic estimator assuming the joint survival function using Archimedean Copula. Genest and
Rivest [73] constructed a one dimensional empirical distribution function for two events X and Y
and they have assessed the dependence between two variables X and Y for an Archimedean
Copula.

Gu et al [74] constructed a reliability framework for systems by establishing a life
distribution model based on a correlation analysis of the failure modes of components of a
system in conjunction with Copula function. The Copula’s parameters are obtained using the
maximum likelihood technique. They applied the model to a crank and connecting rod
mechanism of a diesel engine where the dependence among the failure modes of the same
component as well as the dependence among failure modes of other components are considered
to estimate the reliability of the system. The framework presents a calculation procedure of the
reliability using Copula function to model dependence between failure modes.

Zu and Lu in [75] aimed at estimating the system reliability of structural systems by
considering the dependence among failure modes using the Copula function. They formulated
the problem based on quantitative method and assumed the system is a series components
system. In order to model the dependence among failure modes, they have proposed 4 copula
functions, namely: Gaussian, Clayton, Gumbel, and Frank copula. They have made use of the
method of moments in order to compute the reliability of a component and estimate its
parameters.

In a different scope, Peng et al [76] proposed a failure rate model that captures the
dependence among the failure modes of the components. Failure rate is assumed to play a central
role in systems maintainability analysis. They further analyze the influence of the maintenance

on the failure rate. Limbourg et al [77] modelled spatial dependencies (i.e. physical location of a
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component in a system) by considering two system layouts and they have presented a framework
that uses the Copula function as a mean to model dependency between failure modes of
components based on their physical location in a system.

On the other hand, the power of copula modelling dependence among competing risks
has been demonstrated in the work of Carriere [78]. In their work applied the concept of Copula
to capture the dependence among competing risks in the medical field. The work shows how the
survival probabilities could be calculated by solving a set of differential equations and that how

dependence is modelled via Copula function.

2.3.2 Failure Time Dependence Via Frailty Models

In survival studies, Frailty models are widely applied in the medical field to study
randomness among individuals in clusters. Different researchers have tackled the frailty and
various models have introduced where some are parametric, and others are arbitrary. As well,
different estimation methods have been used to obtain an estimate of the parameters of the
model. The Frailty modelling has been shown powerful explaining dependence among event
times and many authors hinted to its usefulness in reliability analysis, however based on our
research its use and study is still very limited. Next, we review notable researches and models of
frailty models.

The data in survival analysis is often a multivariate or clustered failure time data [79]. It
was of great interest to develop a framework or a method to model the correlation among
observations sharing certain factors appropriately. A commonly used method is the frailty that
was named first after Vaupel et al [80], in general, if an individual is sought to be frailer in a

population, it is more likely to die before the less frail individuals.
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Clayton [81] in has studied the Frailty models for bivariate data, they applied the Cox
PH model and added the modelling of association among observation via frailty.

It has been shown that frailty could be an extension of the PH hazard regression model.
This modification in the model increases the precision of the study as it accounts for observable
factors by the covariates and unobservable factors by assigning a frailty factor for each cluster of
associated event data, such a model takes the following form provided in [82] where frailty is

defined as unobserved covariates or variables affecting the event time:

A(t; xl-j,zj) = Ao (t) exp(xijB + Z]-) (2-25)
where z; is defined by log of the frailty factor (z; = log(wj)), B represents the relative risk
factor for the variables x;; and 4, (t) is the baseline hazard function when x;; = 0.

It assumed that the frailty factor follows a parametric distribution as in [83] and [84] in
which the association or frailty is allowed to be negative and following a parametric distribution
and the framework is assumed to work for censored data.

Multiple researchers have done extensive research to expand it to multivariate cases like
in [85] for recurrent data and like Klein et al in[86] constructed a framework for multivariate
data with censoring that includes correlated data using a normal distribution data.

Sidhu in [87] talks about frailty and how it is used in medical studies. They say that the
individuals at test are usually clustered into groups, the cluster groups are seen to have a
common factor associated with it. Survival analysis is concerned with events time. Event times
in the medical field could be death or healing time. Examples of these clusters include event
times (i.e. death) of individuals life suffering from a disease and exposed to the same

environment or event times (i.e. healing time) of individuals receiving some sort of treatment in
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similar conditions. It is thought that the latter is a good reason to group these event times
together.

Lambert et al [88] presented a parametric accelerated failure time model with random
effects, they used the frailty to model the randomness factors of survival data. Randomness or
random effects are often referred to as frailty components, to use the model, hazard functions are
widely used and often fitted via parametric forms by adapting a probability distribution function,
however there are situations where the PDF is limiting or not concise, so their framework
allowed a mixture hazard model which permits different forms of the hazard function.

Balakrishnanl et al [89] presented a generalized gamma distribution model. They
assumed that the frailty factor follows a gamma distribution and they include other parametric
distribution like Weibull and Lognormal as special cases. They suggested the maximum
likelihood method to estimate the parameters of the model.

Shared Frailty Models tackles multivariate cases and includes the randomness in the
reaction to the applied load is characterized by the frailty factor explaining the unobservable
factors affecting the failure. The randomness is the dependence among event times and other
unobservable factors [90].

Liu in [91] presented a framework applying the frailty concept to model the dependence
among competing risks of a system and fitted ALT data to the model in order to find the optimal
ALT plan. The frailty is assumed parametric and following a Gamma distribution. Maximum
Likelihood technique has been used to estimate the model parameters.

If the frailty factor z is shared among all latent lifetime, the model is called shared Frailty

model. The value of z is constant over time and is assumed common to the all components in a
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system. In other words, all components share the same frailty which is responsible for their
dependence[92].

Forallj € K, the cumulative hazard functions A(t()) share an unobservable frailty factor
z, conditional on the the frailty factor z, the latent lifetimes [T(l),T(z), ...,T(k)] are assumed
independent and the generalized joint survival function S(.)is given by[91]:

2k _A(tD
S(t(l)p t(Z)p ey t(k)lZ) = e sz_l ( ) (2-26)

The state of art showed the effectiveness of using frailty model to model dependence or
association among survival data or observations belonging to one cluster. However, the frailty
application in reliability analysis is very limited. The hazard function form or PH regression
models and AFT models combined with frailty [93] has attracted the eyes of many scientists and
researchers to use it and apply in the medical field. Compared to Copula, the number of
parameters to be estimated is much less in frailty models. Copula uses correlation parameters
among the all possible correlated items, while frailty assigns a single term to model the
dependence or association as an unseen variable. In this research we will make use of these
models, the mathematical formulations will be illustrated and explained in the context of this

research in subsequent chapters.
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Chapter 3 Research Motivation and Merit
The following shows the reasons this research has been carried by explaining the testing
stages if products during the design and product development phase. Then we present the added

value of the implemented model for statistical and engineering sciences.

3.1 Research Motivation

Often, the life of a product is a requirement established by the OEM to meet customers’
expectations and to dictate warranty cost and terms requirements. ALT is a common testing
method that is used in reliability prediction. ALT take place at different stages of the product
development cycle. Figure 3-1 shows the different testing stages in a production environment of
industrial goods.

The production of a product goes through different cycles and it is normally a joint effort
between different parties called OEM (Brand manufacturer) and suppliers (supplying the OEM
with components or services) and each of them have their own people responsible for the
different tasks: designers, validation engineers, safety engineers, sales men, financial experts etc.
Each of the parties involved are responsible for the delivery of materials, components (i.e.
resistors, sensors and other), or sub-systems that are safe and that meet the quality expectations
of the OEM. Part of quality and design verification and validation is testing. Given the cycles a
product goes through from design to sourcing to production, a product and its original

constituents are subject to testing.
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Figure 3-1 Testing Stages of a System During Production Cycle

Testing could be applied at each cycle to support the validation of the supplied
components; coupons or raw materials (i.e. iron, stainless steel, zinc, aluminum and others) could
be tested to derive their physical properties like the maximum tensile strength or hardness, and
that is the testing stage 1. Other type of testing could be corrosion testing, fatigue testing and
others. These types of testing identify the performance of the materials under certain load and
their failure modes. The failure of these material is then analyzed to develop an understanding
about their life and the characteristics of the environment (Temperature threshold, humidity

threshold) in which they can be used and the expected life in these conditions.
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Raw materials are then processed to form elements (i.e. wires). Once processed, the
material properties are affected due to material mixing, welding, etc., the industry responsible of
turning the coupons into components usually runs testing, testing stage 2 in Figure 3-1, to
determine the physical and performance aspects of their product and in turn they would run life
testing to determine the life expectancy of their elements in certain operation conditions (loads
like voltage, temperature, maximum pressure and other). The testing is supported by data and
results accompanies the design or element delivery to the OEM.

The cycle continues in the same fashion at each stage, the contract cost that an OEM
would sign with a supplier to get components or service supply is often dictated by the different
design, engineering and testing requirements to perform and execute the design. Testing occupy
a major cost in the game and every component or product is expected to be tested to meet certain
safety, quality and performance set of criteria. Accelerated life testing is a major component of
every cycle and data can be collected at different stages from raw material to components and
into subsystems, testing stage 3 in Figure 3-1, to the overall assembled system (i.e. circuit board),
testing stages 3 and 4 , at each stage a new set of testing data is provided.

The research develops a new methodology to integrate these data from different testing
levels in order to ensure minimum uncertainty is being propagated to estimate the system
reliability. On the other hand, limited by testing cost which might limit the available ALT data,
the novel framework developed in this research allows OEMs to use the different set of data
collected from different ALT stages to determine the most accurate system reliability prediction.

The state of art shows the availability of different methods that could be applied directly
to a system of n components assuming these components are independent, or some researchers

addressed a specific topology of systems like the series systems. On the other hand, some
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researchers analyzed the ALT data of a single testing stage (a component or a system), so the gap
is in building a bridge to navigate the ALT of one testing stage, as shown in Figure 3-1, to the
next stage. Moreover, most of the time a single standalone component is manufactured to be part
of a bigger system where it is put in a physical or a logical connection with other components of
different or similar type to serve a sub-service within a system in order to deliver the ultimate
purpose of a system (i.e. product) for which it has been designed and manufactured.

This sets the motivation of the research of building a propagation method by reducing the
uncertainty between the different stages of testing during a production cycle. This motivation
raises other concerns as we intend to tackle it, given the fact that at the last stage the components
are brought together in a certain system structure, the configuration or the topology in which
these components are placed in the system creates a dependence not only in the functionality but
in the way they fail (failure modes or competing risks) due to certain conditions. So, modelling
the effect of these factors along with dependence among the components of a system in order to
build the bridge to propagate ALT data from once testing stage to another or navigate and infer
statistical investigations and observations from any of the testing stage (go backward from one
testing stage to another, go forward from one testing stage to another).

Additionally, given the availability of data at each testing stage raises the concern of
fusing the ALT data collected from two different testing stages together in order to determine an
estimate to the overall product. This testing effort is being paid for and available for the engineer
to use, the larger the data set, the more the accuracy of the model. This is crucial at the last step
when the system is too complex to be tested, imposes testing hardships like limited capabilities
and limited budgets to perform the testing, limited testing results in limited available data which

will then minimize the certainty of the resulting system reliability estimation. Accordingly, the
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latter sets the motivation of how ALT data from different stages could be combined to
complement each other in reducing the uncertainty in the system reliability.
3.2 Research Advantages

Starting with the testing data from both testing level and their statistical distribution, we
can tie the parameters of interest where the uncertainty resides together into one probabilistic
equation for each level of testing. This will allow us to see how the uncertainties in the hyper
parameters resulted from the fitting model of the ALT failure data could result in an accuracy
bias if used to derive the system reliability. The goal is to minimize the uncertainty in the system
reliability and allocate the testing design parameters optimally in order to minimize the testing
budget while avoiding any compromise of the precision of the system reliability estimation.
Fusing the information from system level testing data and component level testing data requires
understanding the mathematical linkages between component level and system level. These
linkages will further detail how the uncertainty is propagated and open the door for reducing it
step by step then use it to optimize the design parameters. A system comprising multiple
components contains dependence of the failure times among its components. Understanding the
dependence is crucial as it will affect the precision of the system reliability if it is neglected. To
manage the uncertainties reduction and the information fusion, the following five challenges
must be resolved.

Tackling the objectives, listed above, in this research, will be of great benefit to achieve
the coveted goal behind this research that has the following advantages:

1. Understand the uncertainty propagation from the component level and system level

throughout the whole approach leading to the system reliability derivation.
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Develop the linkages between a system and its components that will explain the
connections in a reliability analysis context.

It allows versatility in the use of the available data that could be used to travel from a
system level to component level or vice versa depending on the level of testing chosen
and the corresponding failure time data: Component-Level versus System-Level.
Maximizes the return of the available data via data fusion to further tune the precision of
the system reliability.

Adds value to the realm of Reliability Analysis by proposing a model that takes into
consideration the dependence among the failure of components.

Achieve optimal testing design parameters that will help getting rid of irrelevant test
attempts which will lead to a reduction in the testing time as well as well definition of the
targeted stress levels. This will help better the Design of Experiment plan and execution.
Reduce the cost of the product development phase by reducing the cost of quality and

reliability testing while maintaining good quality reliability assessment.

3.3 Intellectual Merit and Broader Impact

Present methodologies in the accelerated life testing allows the assessment of system

reliability conclusions by testing at the system level. On the other hand, some of the available

practices allows testing single components and calculate its reliability. Both schools of thoughts

do not take into account any dependence that might exist among the components of one system

once put in use. Using the information collected from component level testing to assess the

system reliability could be of great financial importance at the design level. In addition,

sometimes it is viable to use system level testing information to form reliability conclusions
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about the components failures. This research will address these issues by showing first, new
flexible methods allowing the use of the component level testing information with the purpose of
calculating the system reliability once these components are assembled into one system, second,
it presents a model to link system level testing data to the system reliability by reducing the
uncertainty and calculating the system reliability. Third, the method versatility allows the fusion
of both information: system level and components level in order to reduce the uncertainty in the
system reliability. Fourth, the proposed approach in this research takes into account the
dependence that might exist between the components. Last but not least, the research at hand
allows the optimization of the testing design parameters to keep the development cost at
minimum.

Considering the current advancements in the technologies, assessing the failure times via
testing of systems is becoming more challenging for its complexity, placing some constraint on
the testing procedures, which in turn is increasing the cost of testing in the prototype phase in
order to figure out the life of systems and their probability of failure. This research benefits the
large OEMs, introducing new complex systems, to better assess the reliability of their products
by optimizing the cost and use the testing information of components subject to an accelerated
failure which is easier to achieve than testing the whole system.

Beyond OEM, the research could be of great use for Engineering Quality Consulting
companies, Quality and Reliability Engineers, Data Scientists, Statistician and Probability
researchers. The content of this research will be communicated at engineering and educational

conference presentations as well as peer reviewed journal papers.
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Chapter 4 Proposed Model Background
In Chapter 4, we enclose the background about the models used to develop the ALT
models enclosed in Chapters 5 and 6. We explain the problem-solving strategy and how the
models will help construct the linkages between the data collected from different testing stages to

the system reliability.

4.1 Problem Solving Strategy Background

The goal of this research is to find a methodology allowing to fuse the information
collected from system level testing and components level testing to improve the assessment of
system reliability. As well, it aims at optimizing the accelerated testing design variables
constrained by a budget. The outcome of this research is expected to be applied to any systems
consisting of multiple components with testing being feasible by applying a higher than use
stress to accelerate their failures.

Normally, a system consists of multiple components connected together to achieve
certain targeted operation, these components often share some environmental and stress loads
that are not clearly observable leading to the dependence among them in how they fail, the latter
is referred to as dependence of components failure times. The dependence forces a challenge on
the modelling of the information gained at each level of testing

We identify two testing levels performed at different testing stages: component-level
ALT and system-level ALT, so this research is dealing with two types of information, one data

set is inferred from system level testing and another is collected from component level testing
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and each of there before mentioned two testing levels have their own advantages and
disadvantages.

1. The system-level testing defined as taking the whole system and apply an accelerating
factor on the whole system. The collected data contains an implication to the
dependence between the components because the system is tested as a whole and the
linkage among the components functioning under this system is already established and
thus considered in the results. Systems of multiple components undergoing a system
level testing could be expensive, and often test customization in order to test a system
with certain design in a specific operational method imposes additional costs and
hardships. However, the result it takes into account the dependence of the system’s
components failure times which is an advantage to this level of testing.

2. The component- level testing consists of testing each component separately before it
becomes a part of system or linked to any other component. This level of testing is
considered inexpensive and allows testing customization because the functionality of a
single component or shape is regarded simpler compared to a system of multiple
components, however it does not include any of failure time correlations of components

when assembled together in one system.

Using the testing design parameters, the failure time ALT data and other identified model
parameters, the testing data could then be fitted to be used with the purpose of running a
reliability assessment and derive the probability of no failure of the system. This analysis
incorporates some uncertainty that propagates starting from the testing data and ending in the

result which is the system reliability.
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The research proposes a method to reduce the uncertainty while presenting a novel
approach in using testing data fusion from component level and system level to reduce the
uncertainties in the components parameters and the system level parameters and then derive the
system reliability with high confidence.

Figure 4-1 shows a figure of a system with two components and the associated
parameters to be estimated in order to reduce the uncertainty carried with each parameter using
the failure times of the two components as data from accelerated life testing as well as the system
level testing data. An example of such a system could be any electrical board with electronic
components such as two resistors, or two sensors in a giant robotic system. Each of the
components and the system, as shown in the figure, shows a set of associated statistical
parameters that are used in the failure time statistical distribution to infer real (i.e. actual) time
failures from accelerated life time testing.

It is shown in Figure 4-1 that component one and component two each has its observation
node which refers to the failure time observations collected from putting each component under a
high stress. Alternatively, the system in the middle consists of the components 1 and 2, has its
own observation node which is the failure time data obtained from putting the system under
higher than use stress in order to attain an early failure. As seen in the figure, the random nodes
from the components is directed at the nodes of the system box meaning that the information
gained from the component level could be used to reduce uncertainty in the system level
parameters.

Outside the three dashed boxes in Figure 4-1 below we see three functional nodes, among

which one is red, which represents the reliability of the whole system. As indicated in the figure,
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the input to that node are parameters from both components and the system which means that

there is a fusion of information in order to derive the reliability of the system.

Design Variable

Observation
node

Random node

Functional node

Figure 4-1 Connections between component-level ALT, system-level ALT, and system reliability
(a system with two components)

Table 4-1 Nomenclature of Parameters in Figure 4.1

Symbol Definition
£y, 6y, Ly Testing Data — Failure Times
a0 o al,p Statistically Inferred Hyper parameters
X! Accelerated Life Testing Design Parameter

Referring to Figure 4-1, One node existing under the system box and does not exist under
either of the boxes representing the components is a random node with the letter p in it indicating
the dependence. The dependence is not something at the component level rather it is established
at the system level. The explanation of the latter is that, the failure of an individual component
by itself does not depend on anything but on its specific operation. When a component is put in

linkage with another component to form a system in order to operate together on achieving a
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system targeted operation, the component establish a connection among each other due to a
symbiotic relationship in the operation.

The components of a system share loads that could be quantified like rotational loads,
electrical loads and others and some other loads that are not observable and could not be
quantified due to the non-linearity of their effect on the operation. Both types of loads could
create dependence in the operation and the failures of the components and hence failure of the
system. In our research we focus on the dependence in the failure and not in the operation, in the
meaning of one component could be affected by certain type of loads leading to an effect on the
other component due to a physical connection between them in a system and in turn flagging an
effect on the system. The effect could lead to a failure of either the components or the system as
a whole which leads to the idea of dependence of failure time among the components.

The design variables indicated in Figure 4-1 above represent the variable that will be
determined according to an optimization model and subjected to a budget in order to find the
optimal values that would lead to an effective testing cost. Each level of testing has its own
design parameters which are mainly two parameters in this research: The stress level and the
number of tests (specimens) at each level of testing.

To target the six objectives of the research and construct the methodology, the
establishment of a relationship between component level and system level failure times is
inevitable. This research uses two approaches: a probabilistic approach and a regression
approach to link the probability of failures of the components and the system in order to fuse the

failure time data and infer the parameters needed to carry on the system survival analysis.
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4.1.1 Autonomous Vehicles Example

The competition between OEMs towards automation and presenting new innovative
technologies has led them to look for more ways to test the robustness of new product designs.
Both OEMs and customers build certain expectations on the performance of these new products
for a certain period of time which in turn has led to the birth of various prediction models and
methodologies to estimate the life of these products [94]. As an example, we consider the
Automated Driving has been greatly capturing the interest of the automotive industry. Countless
hours of design efforts are being invested with the purpose of creating a robust vehicle in order
to gain the confidence of the market. The sensing system is perhaps the most important system of
all as it is responsible for watching the environment and command the vehicle accordingly.
Knowing the lifetime of such system is of great importance, because the moment the sensing
system in the vehicle dies, the vehicle is no longer safe to be driven. Reliability Engineers are
putting enormous efforts to quantify the life of these systems especially that these systems are
being newly invented, and the hardware designs imposes a level of technological complexity
hindering their testing due to the increased costs and customization required to do so.

The method proposed in this research could be put in use in order to run a survival
analysis of these systems using ALT. Figure 4-2 below shows an Autonomous Vehicle with its
radar or sensing system on its roof. The system is equipped with multiple cameras of high
resolution and advanced artificial intelligence as well as multiple sensors, this system is the brain
that commands the car and its level of design safety must be highly rated and designed. For

confidentially purposes we would simplify the system in Figure 4-2.
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The Figure below shoes multiple components (Table 4-)three sensors, two processors, a power
source and 4 resistors. The types of stress that could lead to the failure of the system are
numerous and it could be electrical (excess power), informational (software), physical (crash).

Creating prototypes of the system for each type of the stresses in order to study the
behavior of the system in various environments is very expensive yet complicated and requires
long time of design and application as well as enormous efforts from validation engineers and
quality engineers. So, the optimality of the testing design is key and important to achieve the
system reliability with high confidence.

Also, not all components involved to create these systems are often testable (i.e. wires,
welding). On the other hand, suppliers often test their components separately as part of the
delivery of their products to OEM, so information could be collected for each component
(sensor, power source, resistors etc.). The latter would create the motivation to maximize the use
of the available information and mold a strategy to fuse the data from component level with the
system level (if available) in order to quantify the life of the system.

Table 4-2 Components constituting the sensing system of an autonomous vehicle

-M- Resistor

Processor

Power Source

(«O»» Sensing Electronical Device
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Figure 4-2 Autonomous Vehicle Sensing System

With the research goal in mind and based on Figure 4-1, the overarching research need

could be generalized to be as follows:

Develop a framework to reduce the uncertainties in the ALT failure time data model
parameters (0, o, 8, ) using the Accelerated Life Testing (ALT) failure time data
(tcomponents» tsystem) by considering dependence (p) and propagate the uncertainty to
system reliability then integrate them into an optimization model to optimize the ALT design

parameters: X (stress levels)and n (Number of stests at each stress level).

Problem Statement 4-1 Research problem statement
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Accordingly, the problem-solving strategy is decomposed into two solving procedures
the first one uses a statistical approach combined with a Copula function to model dependence
among the failure time. The research then applies an optimization model to this approach.
Another method is implemented which uses the EHR regression model in combination with
frailty mode, the approach is considered a distribution free method. Both approaches could be
applied to any system with any configuration. In each approach, we target five objectives out of
the six. The optimization objective is applied to the statistical method only.

In the following two sections 4.1.2 and 0 we explain how each strategy is decomposed
and then we detail each of the strategies in terms of mathematical formulation and numerical

examples in a separate chapter (0).

4.1.2 Reliability Assessment Via Statistical Models and Copula Function
In this problem-solving strategy, we make use of the parametric distribution approach
combined with the Copula function to model the dependence. We use a log-scale distribution

function given by[95] :

PriT < t;T]= G l@l

(4-1)
where « is the shape parameter and o represents the scale parameter. The shape parameter is

given by

a = 90 + 91X (4_2)

in which X is the normalized accelerated stress.
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Step 1: Component level ALT Data to System Reliability Uncertainty Propagation

Step 2: System level ALT Data to System Reliability Uncertainty Propagation

Step 3: Information Fusion of Component Level ALT Data and System level ALT Data to
System Reliability Uncertainty Propagation

Figure 4-3 The three major steps of the problem solution strategy

The approach targets three main objectives and comprises three steps as shown in Figure
4-3. To illustrate the three steps better, we take the example of the autonomous vehicle radar
system as shown in Figure 4-2. The steps as they apply to that example are as follows:

Step 1: The use of the component level information to reduce uncertainty of the system
failure time hyper parameters. This step consists of using testing stage 2 according to Figure 3-1,
data and migrate the uncertainties to the system reliability by estimating the reliability of the
product of interest (Figure 4-4).

Step 2: The use of the system level information to reduce uncertainty of the component
failure times hyper parameters. As shown in Figure 4-5 in this step, the research intends to make

use of the testing stages 3 and 4 to propagate the uncertainty to the system reliability.
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Step 3: The fusion of both component level and system level testing information to
reduce uncertainty of the system reliability. Figure 4-6 shows the process under this step,

merging the data collected from testing stage 2 and testing stages 3 and 4 is the scope in order to

propagate the uncertainty to the system reliability.

Testing Stage 3 i)
Tl B
-M M
= "

Figure 4-4 Component ALT data uncertainty propagation to system reliability

Testing Stage 4

Figure 4-5 Step 2 System ALT data uncertainty propagation to system reliability
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Figure 4-6 Step 3 Information Fusion of Testing Stages 2 & 3,4

The first challenge imposed by the first objective of this research and the first step above
that consists of analyzing the linkage between the components and the system in order to reduce
the uncertainty in the ALT data distribution parameters. The reasons behind this challenge are as
follows:

1. Reducing the uncertainty in the parameters of the failure time distribution given
component level testing data in order to limit the propagation of large
uncertainties when reaching the system level reliability.

2. Understand the linkage between the component level failure times collected as
observations, or in other words testing data, and the system level reliability,
allows using the data collected from a component level in order to derive the

system reliability without testing the system itself.
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3. Dissecting the linkage through mathematical equations allows traceability of the
dependence and understand how it might affect the system reliability. Neglecting
the dependence among the failure time of the component would lead to a biased

yet unrealistic system reliability evaluation.

The problem to be solved in this research challenge is as follows:
e The probabilistic distribution of component failure times
e Parameters distribution estimation
e Dependence modelling of failure time ALT data correlation

e Uncertainty propagation to system reliability

e Given: Failure Times (tfg4jjye5)0f Components at different stress
levels higher than use stress level

e Find: The data distribution equation:
(F (tpgiture)and f(tfal-lure|v) where v is the set of parameters)
allowing to reduce the uncertainty in the distribution parameter

¢ Find: Linkage between the component and the system reliability
R(t)and propagate the uncertainties

Problem Statement 4-2 Problem to be solved in Step 1
Imposed by the second objective of the research and the second step that is finding an
approach to link the system level testing data to the system reliability for the following reasons:
1. The linkage between system ALT data and system reliability allows the use of
failure time data collected at a system level to derive the actual system reliability.
2. It helps figuring out how the uncertainty could be reduced at the component level
when attempting to fuse the information later.
3. Allows reducing the uncertainty in the dependence factor given the system level

failure data because the dependence is not introduced at the component level and
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the reason for that is that a component tested individually instead of being an
integral part of a system does not involve dependence on another component

unless brought in a system through some sort of a connection.

According to the latter, the problem statement is as follows:

e Given: Failure Times (tf4j1ye5)0f System at different stress levels
higher than use stress

¢ Find: Map stresses from boundary components to non-boundary
components via physics-informed model

e Find: Linkage between the system level ALT data and the system
reliability R(t)and propagation of the uncertainties

Problem Statement 4-3 Problem statement of Step 2

This step imposes a new challenge which is understanding the load sharing scheme of the
components within a system is crucial because it will allow the modelling of the component
loads cascaded from the loads applied during system level testing. Because when putting the
whole system at test, the different components in the system receive different loads: some
components receive the stress directly and some receive a residual stress cascaded or
extrapolated from components receiving the loads, leading to different failure modes. The latter
requires the use of physics methodologies combined with a statistical approach to reduce the
uncertainty in the failure time’s parameters which will lead to a reduction in the uncertainty of
the reliability quantification. The research integrates two different approaches to model the
dependence and closes the analysis with optimization methodologies so as to decrease the cost of
testing and hence the product development cost by meeting a specified testing cost budget.

In the last step, we intend at fusing the information by using both data collected from the
two ALT levels: component level testing data and system level data in order to reduce the

uncertainty in the system reliability.
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In every step above, we apply the Bayesian estimation method and we model the
dependence between the failure times of a system’s components failure times using the Copula
function. And the last objective is to find the optimal accelerated life testing design parameters
which are mainly the stress levels and the number of tests at each stress level subject to a testing

budget to be spent on testing.

4.1.3 Reliability Assessment Via Distribution Free Models and Shared Frailty Models
In Section A, we explain the main concept for the distribution free models using the
extended hazard regression model. In Section B, we explain the concept of the frailty models that

will be used to model dependence among the ALT data.

A — Distribution Free - Extended Regression Model
While this approach uses the same decomposition of first using component level data to
reduce the uncertainty in the system reliability and then use of system level ALT data to reduce
the uncertainty in the system reliability and finally perform an information fusion, we do not
apply an optimization model to find the optimal ALT design parameters.
This approach uses EHR model as given in [63]with baseline hazard function being a
distribution free and taking the most used parametric distribution (log-scale distributions) as

special cases which allows a distribution free approach to be used in the ALT field:

At]x) = Ao(teBTx) e®'x, 4-3)

in which 1, (t) is the baseline hazard function. The baseline hazard function could be parametric,
non-parametric, or semi-parametric. In this research, 1, (t) is assumed a distribution free function.

Regression methods could be used to estimate the regression coefficients o and 8 of the covariates.
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The unknowns in above model are the regression coefficients a and . The model suggests
that both the time scale effect and the hazard multiplicative effect of the covariate x are contained
in the model. Based on the hazard rate function in Equation (4-3), we can notice that when § = 0,
we get the PH model and when the a = 8, the AFT model is obtained [62].

In this research, the EHR model will be used in conjunction with frailty models to model the
complicated dependence in reliability analysis. In the next section, we first introduce the concept

of frailty models and then discuss how the HER model is integrated with the frailty model.

B — Frailty Models
The dependence is modelled using frailty model[87]and more specifically shared frailty
model. So, for the first three steps, the approach uses a frailty factor to model the dependence

among the failure time.

At X) = 2. 49 (t)ex B (4-4)

A class of frailty models is called shared frailty models. Shared frailty models have been
extensively studied in various research fields as in [62] and [79]. The model is considered a shared
frailty if the frailty factor z is shared among all latent lifetime. The value of z is constant over time
and is assumed to be common to all components in a system. In other words, all components share
the same frailty which is responsible for their dependence [92]. That is, for all components i =

1,2,...,N; , where N is the number of components in a system, the cumulative hazard functions,

A(t(i)), i=1,2,..,N¢, share an unobservable frailty factor z.
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Conditioned on the frailty factor 2z, the latent lifetimes of the components

[T(l), T(Z), . TWN C)] are assumed independent and the generalized joint survival function S(-) is
given by:

- Zkz At
S(EW, ¢, ..., ®]z) = 72, @-5)

Additionally, a widely used distribution to model the frailty factor is the gamma
distribution. When the gamma distribution is chosen for z, the model is referred to as gamma
shared frailty model [92,96].

Alternatively, shared frailty models could be used with AFT models [63] by modifying

Equation (4-3)by adding a multiplicative frailty factor as follows:

At)x) = z Ao(teBTx) PLES (4-6)
where X is the covariate or accelerating stress and z is the frailty factor.

Figure 4.7 shows how the data is used to propagate the uncertainty and reduce it and it
shows the versatility of going from the data of a testing level to another testing level in order to

derive the system reliability and the possibility of fusing both data from both system levels in

order to assess the system reliability.

62



Component
Level Testing
Data

Reduce Uncertainty in
Component related
parameters

Accelerated System

Life Testing Level ALT
System Level
Testing Data

Reduce Uncertainty in
Systems related
parameters

Dependence Modelling
via Frailty Model

_

.

Data Fusion

'

Dependence Modelling
via Frailty Model

Propagate to
System level

Reduce Uncertainties at
both component level
and system level

Figure 4-7 Flow of the Use of Testing Data in Reducing Uncertainties

System Reliability |«
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4.1.4 Bayesian Inference and Particle Filtering
In this section we explain the Bayesian inference relationship used to sample posterior
information given prior information of model parameters and the algorithm used to perform the

sampling of particles which the particle filtering method used in this research.

A — Bayesian Inference

In this section we explain the Bayesian inference and its relation to the likelihood and the
sampling method used in this research. Each of the main 3 steps above use the Likelihood
function along with Bayesian method in order to sample posterior estimation of the model
parameters. Bayesian inference and its application in the ALT field have been studied in [97] by
Shaked et al and in 1988 by Blackwell et al in [98]. Bayesian inference allows the reduction of
uncertainty in the parameters or variables as one gains more information through data
analysis[99].

Bayesian inference is one among many statistical inference methods that is widely used
in investigating data. Inference is a probabilistic explanatory state. So, it is a probabilistic
approach derived from Bayes theorem. As provided with greater details in [100], the Bayes
theorem suggests that if a set of n observations (i.e. data) y = (y4, ¥, ..., ¥,) having a
probability distribution p(y|0) depending on k parameters noted as @ = (64,0, ..., 8;) and

assuming that the parameters have a distribution p(6)then:

p(y|8)p(8) = p(y,8) = p(Bly)p(y) 4-7)

p(.) is the probability notation.
Next, given the probability distribution of the observation data p(y), it is implied that the

conditional probability of 6 is given by Bayes’ theorem:
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_p(yl®)n(6)

Also;

J-P(Y|9)P(9) ;if 0 is continuous
p(y) =E[p(yl0)] =

Z p(y|®)p(0);if 0 is discrete (4-9)

where E[p(y|0)] is the mathematical expectation of p(y|0). Based on (4-9) the theorem could

be written as:

p(8ly) = cp(y8).p(6) (4-10)

To define the terms better, p(6) explains what is recognized about the parameters vector
6 without any given data or observations and it is referred to as the prior distribution of the
parameter 6. Accordingly, p(0|y) explains the known about the set of parameters 8 given the
observations seen in y and they are referred to as posterior distribution of 8. The “c” in the
equation (4-10) above is a normalizing constant or vector ensuring that the posterior distribution
integrates or sums up to a total of 1.

According to Fisher in 1922 [101], when p(y|8) is regarded a function of the parameters
6 rather than being a function of y, p(y|0) is called the likelihood function and could be noted

as [(6]y) which is the likelihood of 8 and the Bayes theorem becomes:

p(Bly) = 1(8ly).p(8) (4-11)

that is the posterior distribution of 8 given new knowledge is proportional to the product of the

likelihood function of 8 and the prior distribution of 8 before gaining any observations.
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posterior distribution « likelihood function x prior distribution (4-12)

where « stands for “proportional to”.

The likelihood function explains the effect in the information getting gained on the
parameter 6 as it comes from the observations or data. It is worth noting that only the relative
value of the likelihood matters so multiplying the likelihood by a constant will not change the
value or its effect on the posterior distribution.

As shown in Figure 4-8, the process of the Bayesian estimation procedure is to have the
prior information collected from experts as an input, the Bayesian estimation requires the use of
the Bayes Law (Equation (4-11)), the theorem requires developing a likelihood function to
conclude the parameters to be estimated or inferred, then apply an MCMC method like the
Particle Filtering method which this research makes use of and then sample the posterior

information of the model parameters upon gaining more information.

B — Particle Filtering Sampling Method

The idea of particle filtering is based on the Monte Carlo (MC) methods. The particle
filtering is a sequential importance sampling method. Based on importance weights associated to
particles or samples, the method aims at approximating the probability distribution function.

Candy in [102] presents a good and brief definition of the MC techniques. The original
groundwork is based on the Markov chain theory which advocates that by random sampling the
empirical distributions is set to converge to the target posterior distribution and that distribution
is referred to as the invariant distribution of the chain. Based on a stochastic system called the
state-space which is governed by a transition probability, Markov chain MC techniques are based

on sampling from probability distributions based these is a stochastic (state-space) system. A
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crucial property of the technique is that as the number of particles or samples becomes larger, the
chain is assumed to converge to the coveted posterior distribution by proper random sampling
based on a set of assumptions.

Particle filtering is being integrated in estimation problems and it is an attractive method
to sample the posterior samples in the Bayes theorem. Correspondingly, the method is a
computational algorithm and, we make use of this algorithm in this research, every time a
posterior distribution sampling is needed as part of the problem-solving strategy.

There are many types of particle filters, the Sequential Importance Sampling (SIS) is one
that is considered the base of all PF MC filters constructed over the research spans[103]. The
core concept of this technique lies in developing an implementation of Bayesian filter recursively

through MC simulations. It is called by different names by researchers, it is referred to as

Bayesian Posterior
*Collected from experts Estimation *MCMC Method |nf0rmati0n

sInformation about , *Particle Sampling Method ; :
parameters without *Bayes'Law +Other MCMC Methods +Sampled information
having data *Probabilistic learning law Metropolis Hastings, about parameters based

Gibb’s Sampling on data gained

Prior L
Information

Figure 4-8 Bayesian Estimation Process

Bootstrap filtering in [104].

The method represents the posterior distribution of state variables in terms of samples
and associated weights reflecting the importance of a samples and then estimate the posterior

values using these samples and weights. The SIS algorithm approaches to the optimal
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Bayesian estimate as the number of particles becomes larger and the output of the PF represents
the posterior pdf of the parameters.

The PF algorithm in 3 steps is enclosed below to sample a posterior belief (p(x)) for an
arbitrary variable x:

Step 1: Sample from the prior distribution (the prior distribution is assumed to be known
parametric distributions), for illustration we use the notation q(x) to represent the prior samples
of a generic variable x.

Step 2: calculate the importance weight: w = % calculated based on the importance

sampling as in [105].
Step 3: Replace unlikely samples with low weights with more likely ones and that is
called resampling.

Based on the tracking concept:

Ve = fr(Vee1,9¢t) (4-13)
where f; is often a non-linear functionof the state variable V;_;, 9;_; is a process noise sequence
or vector where {9;_;; t € N}; Nis a set of natural numbers, and the state of variable sequence
is denoted by {V;_; € t € N}. To recursively estimate V;, measurements are needed and

denoted by:

Dt = HT(thnt) (4_14)

H, is as well a non-linear function and n; ; t € N is the noise terms for the measurements

function.
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In Bayesian inference, particle filtering is an estimation method of the belief in state V, at
time t given some data D; up to that time. The estimates of the states are referred to as filtered
estimates based on available measurements. In the ALT context, these measurements are the
failure data collected from the testing. The method is composed into two major steps: 1)
Prediction (prediction of priors) and 2) Update (Based on importance weights). Accordingly, V;
denotes the state variables at time t and D, the set of measurements up to time t. The SIS
algorithm estimates the posterior distribution p(Vy.;|D;.;) using a set of N samples with

associated weights {Vi.,; @} by:

N
p(Vo.elD1.) = Z @ §(Vor — Vaue) (4-15)

i=1

8(.) is the Dirac delta measure at V.. At time step t, the particle V' of V, is estimated based on
the state at t — 1 denoted by V{_; by a distribution of parameters V\_; and the measurements up
to time t denoted by D}, meaning that the i*" particle or sample V' are generated using a

proposal pdf q(.):

Vti ~ CI(VtiWoi:t; Dé)

(4-16)
and the SIS weight is obtained by the following equation:
ol o ol P(Dt|Vti)P(Vti|Vti—1)
‘ i q(V{ |V.e-1, D1.t) (4-17)

The initial state V{ is sampled from the prior distribution (the initial pdf of state vector
V) ; p(Vo|Dy) and Dy is the set of no measurements available and the weight @w!_, is % more

details could be found about MCMC in [106] and [107].
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Subsequently, the first step in developing the algorithm to estimating a posterior
distribution is to identify the likelihood function, to do so we use the conditional PDF or
probability given by the product of the hazard function and the reliability function. In general

form:

f1X) = Ay|X) x R(y|X) (4-18)

f (y]X) is the conditional pdf function of y conditioned on X, A(y|X) is the conditional
hazard function and R(y|X) is the conditional reliability function of y conditional on X.
Equation (4-18) will be detailed for the model in the following chapters.

Next, deciding on the appropriate prior information about the set of parameters for which
one intends to sample a posterior distribution. Parameters of the model are decided based on the
form of the f(y|X) used.

Now that the prior belief has been established and the likelihood function is put in a
closed form, the posterior distributions cannot be found in parametric form to sample from.
Hence, the particle filtering method comes into play as a non-parametric representation of the
posterior distribution. the way it works is by sampling from the prior distribution and adjust the

belief as it gains more knowledge from the observations using a weight function.
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Chapter 5 ALT Via Log-Scale Parametric Statistical Distribution
and Copula Function
In Chapter 5, we develop a novel ALT model to connect component-level ALT data and
system-level ALT data to the system reliability. We then work on fusing the information
collected from both ALT levels together. Dependence is modelled using the copula function for
this ALT model. The chapter includes an optimization model for the ALT parameters
constrained by testing cost. The ALT model effectiveness is shown via numerical examples at

the end.

5.1 Uncertainty Propagation of Component Level ALT Data to System Reliability

We start the uncertainty propagation by first analyzing the component to system linkage
and uncertainty propagation as the first research task which is split into three main steps, the first
one is modelling the distribution of the component failure time, the second step is estimation of
parameters which aims at reducing the uncertainty in these parameters, and the last step uses
Monte Carlo Simulation in order to propagate the information to a system level and derive the
system reliability by taking into consideration the dependence between the components via
Copula function.

As discussed earlier, the current research task is divided into three categories:

e The probabilistic distribution of component failure times

e Distribution /Model parameters estimation

e Uncertainty propagation to system reliability and dependence modelling
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5.1.1 Framework Steps Overview

In this section of the research, the end goal is to achieve a system reliability with minimal
uncertainty and an optimal Accelerated Life Testing Design by optimizing the design parameters
which are the stress levels and the number of tests at each stress level for each test specimen that
could be a component or a system. In order to find the optimal ALT design parameters, first we
need to investigate the uncertainty propagation. We use the probability distribution of failure
time data collected from the Accelerated Life Testing (ALT) in order to trace and reduce the
uncertainty propagation.

The problem to be solved in this research section is as follows:

e Given: Failure Times (tr4;1405)0f Components at different stress levels
higher than use stress level

¢ Find: The data distribution equation:
(F (tpqiture)and f(tfailure |v) where v is the set of parameters)
allowing to reduce the uncertainty in the distribution parameter

¢ Find: Linkage between the component and the system reliability R(t)and
propagate the uncertainties

Problem Statement 5-1 Component level ALT data uncertainty propagation to system
reliability

As shown in Figure 5-1 above, the experimental data follows certain distribution. The
experimental data is simply failure time of specimens. Each experimental data set corresponds to
a given stress level, at each stress level we have a set of data (failure time) derived from testing a
specimen multiple times (the red dots) at that stress level, the data set is then corresponding to a
component or a system depending on the level of testing chosen(component level versus system

level).
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A — 2-Parameters Statistical Distribution and Inverse Power Relationship:

For the purpose of ALT modelling, there is a need to define the parameters of interest. In
order to achieve that, a statistical distribution approach has been chosen to model the failure
times of the test units. In this research, the ALT model presented in [28] and [108] is employed
and 1s summarized below. The probability distribution function for life time data collected from
the ALT testing must be derived in order to capture the parameters that carries uncertainty. The
ALT model thereafter takes the location parameter as a function of stress that is a stress

dependent parameter and the shape parameter as stress-independent parameter.

Log

® Experimental data

.
e
e
.
.

Probability
bounds
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»
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Testing stress

Figure 5-1 ALT experimental data distributions examples

For an engineered system with N components, the component-level ALT failure time

t are supposed to have a log-location scale distribution and having the following CDF equation:
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Fr(tla, o) = G l%‘)_“)l

(5-1)
where o is the scale parameters and is assumed to be stress independent and « is the location
parameter of the i-th component which is the stress dependent and is computed using Equation

(5-2) shown below:

@l = Yo+ ST (52)

we denote the stress on a component during ALT testing by S® .

The testing stress used is bounded by an upper limit and lower limit. We use these limits
in order to normalize the actual stress used S to test the specimen.

We designate by £ the normalized stress level of the i-th component, S; and Sy, are
respectively the lower and upper bounds of the testing stress level of the i-th component. The
normalized stress is then a value between 0 and 1 (0 < &0 < 1). The ALT model proposed is
valid for up to Sy, that is the validity of the model depends on the accelerated variant is falling
within the range S® € [S;, S,].

The following is based on if the stress goes beyond its upper limit bound, the failure
mechanism would change so this condition preserves the failure mechanism. To accommodate
for that, we normalize the ALT stress by:

s® s,

H=2_"°L
§ Sy— S, (5-3)

According to the latter, the use stress or nominal stress is the lower stress bound of the

accelerated variant; S, ominai = Si- Which transforms Equation (5-2) to:
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@l = 0o+ 050 (54)

The parameters (6,, ;) are a re-parametrization of the parameters (Y, ;) given by the

following:

0o = Yo + 1Sy
0, = ¥2(Sy —51) -
ALT Design approaches widely use the Weibull Distribution; more information about the

distribution could be found in [109]. It is assumed that the general Weibull distribution function

of lifetime data of units at test takes the following form [110]:

] ple BtPb-1.t >0
Ferpn =1 o 56
the scale parameter A and (8 is the shape parameter of the Weibull distribution above that is
Weibull(B, 1). However, to model the ALT, the scope is to use the statistical distribution with a
relationship to the accelerated variant as it acts on the failure time. With the aim of modelling the
life distributions, we assume that the component level failure time follows a Weibull distribution

(i.e. G[. ]is the Type-I extreme value distribution in Equation (5-1). Based on this assumption, the

generalized cumulative distribution function (CDF) is given by:

Qe

_ t
Fr(tla,0) =1—exp| — (exp(a)) (5-7)
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We note the reliability function based on Equation (5-7) is given by the CDF and
reliability relationship Ry (t|a, 0) = 1 — Fr(t|a, o) , equivalently it could be expressed by the

following equation:

alm

t
Rr(tla,0) = exp| - <exp(a)) (5-8)

Accordingly, the hazard function conditioned on the scale parameter and shape parameter
of the considered Weibull Distribution is:

1-0

1 t o
Ar(tla,0) = agexp (a) (exp (a)) (5-9)

And hence the probability density function (PDF) of the failure time is given by:

1-0 1

1 t o t e
fr(tla,0) = oexp (a) (exp (a)) P (exp (a)) (5-10)

Now that we have developed the PDF and the CDF of the component failure time, we
know the parameters that requires processing for uncertainty reduction.

The statistical distribution will be used to fit the data collected from ALT component
level testing. And the distribution scale parameter will be used to extrapolate the results from
ALT accelerating stress to the nominal stress which the normal stress under which a product will
operate in its use environment. Another aspect to be modelled is the dependence, for that the
model uses a class of Copula function. More on the Copula function and how it will be used in

the context of this research will be found in the following section below.
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B — Copula Function

In order to make a complete and realistic reliability assessment, it is necessary to model
the dependence between the failure time distributions of different components. In this section we
introduce two concepts to model the dependence between the failure time distributions that we
intend to use while developing the component to system linkage framework. We present the copula
function as a way to model the dependence.

The definition of an n-dimensional Copula function is given by the following [111]:

1. The Copula function is a function from [ to [ : C:I™ — I ;I is the unit interval [0,1]

2. If at least one coordinate of u is zero, (u = 0) , then C(u) = 0

3. Ifall coordinates of u are one except u then C(u) = uy

4. For every aand b such that a < b;V.([a,b]) = 0 where V.([a,b] = ALC(t) =

ATATTTY L AZAG C(E) ; and

n" Gn-1

b
AZEC(t) = C(ty, s timts b tiegts oos tn) — C(by, won bty Qpes tiegrs -on s E)-

In order to define the equations as used in this research, first we define Sklar’s theorem and
its corollary. The Sklar’s theorem states the following [68]:
Let H be an n-dimensional joint distribution function with margins F;, F,, ..., F, then there

exists an n-copula C such that for all x € R":

H(xb X2y weey xn) = C(Fl(xl)l FZ (XZ)J ey Fn(xn)) (5'1 1)
If C isan n —Copula and F;, F,, ..., E, are distribution functions, therefore H is a
n —dimensional distribution function with margins F;, F,, ..., F,, . Based on this theorem, there

exists a failure distribution Copula corollary as follows:
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Let H,C,F,,F,,...,F, hold the same definition as in the theorem above, and let
F1,F;1, ..., E; ! be the quasi-inverse functions of the Fy, F,, ..., E, respectively. Then for any u

inl™:

C(ull uZl ey un) = H(Fl_l(ul)! Fz_l(uZ)r ey Fn_l(un)) (5-12)
Given the fact that H is an n —dimensional joint distribution function with margins

Fi, F,, ..., E, then H is defined as:

H(xl,xz, ...,xn) = P[Xl < xl,Xz < X2, ""XTL < xn] (5'13)
Then according to the Sklar’s theorem the failure distribution Copula is the n —Copula
C given by:

e e 30) = O G Fa i i) = "
PlX; < x1,X5 < X9, o0, X < X3

Let f (x4, x5, ..., X,) denote the joint probability distribution function of X;, X5, ..., X,,, the

PDF is given by:

f(x1, %0, vy Xp) = €(Xq1, X, n)y Xp) nfl-(xi) (5-15)
i=1

where f;(x;) PDF of x; and c(x4, x5, ..., X,,) is given by:

" C(Fy(x1), F5(x3), ..., Fy(xp))
OF; (x1)0F; (x3) ... 0F, (%)

Subsequently, to put things in the research context notation and as defined previously, a

(X1, X2, ey Xp) = (5-16)

copula function describes the dependence between random variables by connecting the marginal
CDFs to the joint cumulative distribution function [112]. The Copula is a multivariate

cumulative distribution function which is used to describe the dependence between random
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variables in the CDF domain. There are various parametric Copula functions with a parameter
describing the strength of dependence. Using the copula function concept to the component
failure time distributions, the Copula function is written as:

Pr{Ty < t,T, < ty, ., Ty, <t} = C (Fr,(t2), Fr,(t2), ., Fr_(tn.); ) o)

= C(ul,uz, e Up p)
where Pr{. } is the probability operator, C(.; p) is a Copula function that takes dependence
strength parameters p = py3, P13, -, Pij,L,j = 1,2,3, ..., N¢c and marginal CDF values of the
i-th component w; = Fr,(t;),i = 1,2,3, ..., N. as detailed in Equation (5-7). These marginal

distributions are referred to sometimes as Copulae.

The corresponding joint PDF of the component failure time is given by:

fr(tn oty ) = fr, (6 fr, (2) ....fTNC(tNC)c(ul,uz, o Ungs P) (5-18)
where fr(.) is the margin PDF as given in Equation (5-10) and c(., p) is the Copula function of

the marginal CDF u;.

Copula functions are well-studied for bivariate cases, except the Gaussian copula and

student’s t copula function. Even though Vine copula approach has been developed to make it

possible to model the high-dimensional non-linear dependences among a large number of random

variables [113], [114]the implementation procedure is complicated. In this research, for the sake

of illustration, the Gaussian copula is employed to model the dependence between the failure time

distributions of different components. Using Gaussian copula, the joint CDF given in Equation

(5-19) is rewritten as stated by:

Pr{Ty <t;,T, < tg .., Ty, Sty } = @p(@  (wy), @ (up), .., @ Hup,); ) (5-19)
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In Equation (5-19) ®~1(.) is the inverse CDF distribution of a standard normal variable

and @, (. ) is the CDF of standard multivariate normal distribution.
The joint PDF fT(tl, to e, tNC) of the failure time of N, components is represented using

Gaussian copula as:

fT(tp L2y ey tNC) = fr,(t)fr,(t2) ... -fTNC(tNC)
007 (uy) 00 H(uy) 00 (uy,)
% ouy du,  Ouy,

X ¢p (@71 (uy), 27 (w2), -, (p‘l(uNc); P)
¢, (.) is the is the joint PDF of multivariate standard normal variables.

(5-20)

In this research and in order to use the Copula function, we assume that the parameters p
are all stress independent as argued in reference [111]. The s —dependent factors causing the
dependence among the components of the system are assumed to stay the same under normal
operation stress and therefore they are assumed to hold this property under ALT stress. Hence
the dependence among the components under test stays the same as stress varies because the

factors causing this dependence are regarded as constant or unalterable.

5.1.2 Proposed Framework Assumptions
In this section we present the assumptions made in order to develop the ALT framework
via parametric statistical distribution and the copula function. The main assumptions of the
model are listed below in this separate section. Some minor assumptions are mentioned as
needed while explaining the mathematical formulation. The main assumptions for this model are
listed below:
Al- The Log-Location Scale Distribution Assumption: To model the life distribution

which is the failure time distribution we follow a widely used assumption in the ALT

80



A2-

A3-

A4-

design, so we assume that the component-level failure time follows a Log-Location scale
distribution, this assumption is one of the most widely used assumptions in ALT design
and is acceptable to both academia and industry. Correspondingly, at any stress ¢ the
failure time follows a Log-Location scale distribution. The distribution is then assumed to
be a Weibull distribution with Stress dependent parameter « and a stress independent
parameter o. We assume that all components i = 1,2,.., N and the system failure times
follows a Weibull distribution.

Stress Independent Distribution Type Assumption: The distribution family does not
change when varying the stress level. That is, the cumulative distribution probability
function (CDF F(.)) , the probability density function (PDF f(.)), the reliability
function (R(T)), and the failure rate function of any component i ;i = 1,2 ..., N, stay the
same for all S® = {Sl(i),SZ(i), ...,Sj(i), ..S,(l?}.

Shape Parameter Assumption: The shape parameter of the distribution of choice which

is the Weibull distribution does not vary with the stress levels S® =

{S gi), S gi), s S]@, o S,(l?} of each unit. That assumption is based on that the failure mode

under Sl(i), . 57(1? does not change and remains the same at all testing stress levels of the
unit.

System Topography Assumption: The first assumption is in regard to the system
configuration that explains how the components are placed in a system/ The system
topology (i.e. components could be assembled in series, in parallel or in any different
configuration) is pre-defined and identifiable. The system topology is important to
identify what contributes to the system failure (which component(s) shall fail to cause a

system failure). In addition to that, in case the system topography is a custom

81



AS-

A6-

AT7-

configuration, the methodology assumes that a function representing this specific
configuration could be identifiable and known to describe the system failure in terms of
the components failure times.

ALT Feasibility Assumption: For the accelerated life testing to be feasible, an
assumption about the testing of components or systems is made. Accordingly, all
components and systems are testable and ALT testing is feasible to collect failure time
data. That is, the product under study for which an estimation of the reliability is to be
determined, is assumed to be testable and failure data could be collected and recorded
followed by a data fitting in each of the models prescribed by research. System and
component are set to fail if any one of the failure modes/competing risks takes place.
Load Transfer Function Assumption: When conducting a system level testing, we
assume that the load distribution is identifiable and could be described mathematically
via a parametric function that could take any form. For ALT system level testing, the
accelerated variant (i.e. stress) that is received by components referred to as boundary
components is assumed transferable via physics informed model to the non-boundary
components or the components that does not receive a direct load during the ALT testing.
The load transfer function to calculate the non-boundary stress is identified in the design
phase or based on the component layout to form the system. Also, it could be a function
describing the performance (Mechanical, chemical, electrical or other) by propagating the
loads among the components.

Censoring Assumption: We assume that there is no censoring and that all testing unit
would fail at the end of the test. Censoring could be easily incorporated in the model and

in the likelihood function. All items are removed at the end of a timed test, that is every
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item is assumed to fail at time tpnq of tese. Equivalently, for right censoring that would be
t; = min(T;, C;) , as shown in [87] ,where i is the testing unit and t; denotes the survival

time and C is the censoring time and T is the lifetime of a test unit:

1if T; < C;,That is event is not censored (5-21)
51' = [
0if T; > C; that is the event is censored
Accordingly, the full conditional likelihood function of M testing units given some

parameters denoted by a vector V including right censoring takes the following form:

M (5-22)
Le= | [tacvireevy
i=1
So, in this research we assume that the censoring indicator §; = 1 at all time, that is the
failure event of the unit is always taking place before it reaches the censoring time C.
Many researchers have tackled different types of censoring, for an example of ALT with
interval censoring with a statistical parametric distribution (i.e. Weibull) modelling one
could refer to [115]. On the other hand, [116] presents an exponential distribution
Bayesian model for step-stress ALT with progressive Type I censoring
AS8- Constant ALT Accelerated Stress Assumption: Testing units (i.e. components or
systems) are tested using a constant stress as the accelerating factor, the stress is not a
function of time and each testing unit is tested at the same accelerating stress multiple
times until it reaches failure so that the failure time is not censored.
A9- Prior Information Availability Assumption: As stated before, the Bayesian estimation

requires defining prior information about the parameters that are to be inferred or

estimated. Accordingly, this information is assumed accessible and available and is
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allowed to follow a parametric distribution. Prior distributions can be found from available
resources or by referring to experts in the field.

A10- Extrapolation of ALT Failures to Normal Operation Assumption: The failure modes
of the testing unit in the use field could be recreated in the ALT setting. This assumption
allows us to predict the system reliability using the ALT data due to the same failure mode.
It is necessary when extrapolating the information learned in ALT to make sure the failure
modes are the same in both environment: the accelerated environment as well as the use
environment that is the failure modes experienced by a product under normal operations
could be emulated during the ALT allowing an apple to apple comparison.

Al1- Copula Correlation Factor Prior Info Assumption: The model in this section uses the
Copula as the dependence modelling method among the N components of the system.
Prior information about the correlation factor p;,; i, u = (1,2, ..., N.) between any two
components or the failure modes of the same components are available. If not in a
distribution form, the correlation factor is assumed to be identifiable, predefined or could

be calculated.

5.1.3 Likelihood and Bayesian Inference Via Log-Scale Distribution
The symbol t denotes the failure time data collected from ALT component level testing
or testing stage 2. Each component is tested at different stress levels S which will be
normalized using the Equation (5-3) by setting the lower and upper limits of the testing stress,
denoted respectively as S, and Sy, With that being said, S®@ is a vector of the stress levels at

which a component of the system, which is the test unit or specimen, is tested.
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Additionally, at each stress level, each of the components in a system is tested multiple

times, in other words, at each designated component accelerating stress level, we use multiple

test units of the same component and collect the failure times accordingly. Based on that, S® =
[S (i), Sz(i), s S,(l?], where n; is the total number of the stress levels for component i. Given the
fact that the stresses will be normalized using the upper and lower bounds, the corresponding
vector of normalized accelerated stresses for a component i is hence denoted by €9 =
le2,..,60] .

Each component i is then tested separately, at different stress levels j, and at each of the

stress levels, the component is tested n]‘ times, where n} represents the number of tests at the j*
stress level of component i, i = 1,2, ..., N; and j = 1,2,..,n,. Hence, for each 51@ , component i

is tested n]@ times at stress level j. So, for each component the total number of test units at each

stress level is represented by the vector n® = [ngi), N n,(lls) )

The data is failure times corresponding to the specimen at test and are grouped in vectors

where t@ is the set of failure times vectors corresponding to component i, where each sub-set

vector is for a stress level, that is t® = {t(i), tgi), ) tslis)} and in turn t](.i) = t}'l , t}'z ) e t;,ng.“ .

To better illustrate the indexing of the parameters in this framework, Figure 5-2 explains
the indexing and terminology of the data collected by taking a system of three components for
simplicity. That is the total number of components N = 3 and i = [1,2,3]. Taking component 1,

we see that it is tested under 3 stress levels and hence j = 1,2,3 where ng = 3. At stress level 1,

it shown that it is tested 3 times that is three test units are tested at stress level j = 1, so ngl) =

3. Similarly, at stress level j = 2, the component i = 1 is tested three times and then ngl) =3
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and last but not least the component i = 1 is tested two times under the accelerated stress ngl) =

2. Accordingly, the set n® = [3,3,2]. The failure time data for component i = 1 are grouped in
t = {tgl), tgl), tél)} where tgl) = [till) ) tilz), t§13) is the vector of failure times of component
i = 1 containing the failure times of three specimen tested at stress level j = 1. , tgl) =

[t§11) ) t§12) ) t§13) ] corresponds to testing data of three specimen of component i = 1 tested at stress

level j = 2 and tgl) = [téll) ) ts(,lz) is the vector of component ALT data of two specimens of

component i = 1 tested twice at stress level j = 3. For component i = 2 and i = 3, refer to

Figure 5-2.
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Figure 5-2 Component-Level ALT concept and indexing of a system of 3 component
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A — Bayesian Estimation Formulation

As presented in Section 4.1.4A, the Bayesian estimation method will be used to reduce
the uncertainty in the parameters using the prior information of the stress-dependent parameter
a of the Weibull distribution as defined by Equation (5-4) and the stress independent parameter
denoted by o. In order to sample the posterior distributions of these parameters, the Bayesian
method is applied based on Equation (4-11). Using the Weibull parametrized distribution this
Equation becomes as:

£(0W, gD )tW D 7
x F(t®]0D, 0®, ED n®) £, (8D)f,,(a®) (5-23)

In which f (t(i)|(-)(i), o® D), n(i)) represents the conditional likelihood function and fgi(e(i)),

(D) are the prior distributions of the 8@ and ¢@.
fai( p

Note that in Equation (5-23) the parameter () = [Héi), 91(0] rather than a® because the
stress dependent parameter is a function of the theta parameter and the uncertainty could be

propagated from the term 0% to aPwhich is the vector of parameters characterizing the stress-

dependent Weibull parameters as given by :

@) — p® D@
So. alV =60, +6,7% (5-24)
at each stress level S j(i) for component i normalized by the upper bound and lower bound of that

accelerating factor and converted to ¢ @, there exist a stress dependent parameter that could be

calculated using the parameter oW using aj(i) = Héi) + 91(1)51@.
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Accordingly, Equation (5-24) is the set of all stress dependent parameters a® = | aii)
, agi) yenns a,(lis) ] (i.e. location parameter) of a component calculated using the vector of all stress

levels applied to that component during ALT which is normalized by S;; and Sy; to give &® =

sO- sy
Sui —SLi’

In the next section, the likelihood function is formulated using the parametric form a

Weibull distribution probability density function.

B - Likelihood Function Formulation

In order to develop the likelihood function, the Weibull distribution is used to formulate
the probability density function as given by its general form in Equation (5-6). The likelihood
function is based on the conditional probability concept, where the failure time of each
component is a data point conditioned on the model parameters: the stress-dependent parameter
« of the Weibull distribution as defined by Equation (5-4), the stress independent parameter
denoted by o, the design parameters of the ALT: ¢ and n which denotes the normalized
accelerated factor or stress applied during ALT and the number of specimen needed at each
stress level. The problem formulation is based on multiple components comprised under one
system and as mentioned earlier, ALT design approaches widely use the Weibull Distribution to
model life distributions, we assume that the component level failure time follows a Weibull
distribution (i.e. G[. ]is the Type-I extreme value distribution in Equation (5-1) ). Based on this
assumption, the generalized probability density function (PDF) of the failure time of any given
component is given by Equation (5-17).

The term f (t(i) |(-)(i), o®, &0 n(i)) in Equation represents the conditional likelihood

function and is given by the following product representation:
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Ng Tl; Y

F(t©]0®, ¢® D, n®) = 1_[ Hf(tj(z) (k)|0(i)’ U(i)’fjgo) (5.25)
j=1 k=1
Applying the aforementioned equation to multiple components, the following equation

represents the conditional probability density function of the failure time of a component i

among N components tested n() times under a stress §. So the following

£(£2()|8®, 0D, &) is found by using the skeleton of Equation (5-10) and is given by:

1
: _ M.N
oWexp (65" +67¢) (5-26)

F(5°00[e0.0®, ) =

where M and N are defined by:

1

: Fo
M = exp| — - -
exp (85" + 0V

And,

1-g®

t o@®
N = . .
exp (67 +6V¢Y)

In the above equations, following the censored data assumptions, we assume that all the

components are tested to failure and hence no censored data is available. The above equations
can be easily modified to include censored data following the procedure in [117].

Up until this point in the formulation of the methodology, the likelihood has been
established and the Bayesian estimation relationship could be applied to sample posterior
distributions for the parameters of the distribution and namely the stress dependent (location

parameter) and the stress independent parameters given the failure time of the components at
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test. For that purpose, the particle filtering method could be applied as illustrated in Section
4.1.3A.

After estimating the parameters ¢ ® and 8 for all components (Vi = 1,2, ..., N;), and in
turn calculate the location parameter a®) using ) as demonstrated previously, in the next steps,
the uncertainty is propagated from the component level (testing level 4) to the system level in
order to find an estimate to the system reliability Rs. In the next section, the uncertainty

propagation method is illustrated.

5.1.4 Uncertainty Propagation to System Reliability Using Copula Function
After the Bayesian updating of the distribution parameters: 8 and oW, vi =

1,2,...,N.of the component failure time distributions parameters, the uncertainty in these

parameters are propagated to the system reliability ( R,).

Now, in this section we detail the plan in how we intend to propagate the uncertainty in the
updated parameters. The following steps explain the plan of linking the component-level
information to the system reliability R for the model with copula-based dependence modelling.

Step 1 As shown earlier under the copula function dependence section B — 1, we have a

p parameters included in the Gaussian-Copula function, so for a given set of the p
parameters, we first generate samples of component failure time CDFs and denote the
generated CDF samples as ug)cs, i =1,2,3,..., Nc where u,(é)csis the CDF samples of
the i®" component.

Step 2 In this step, we make use of the posterior samples derived for the distribution

parameters updated via Bayesian Inference. We denote these posterior samples by

09 and eV, vi=12,..,N./Vqg = 1,2, ..., Npost Where ny, .5 1s the number of
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posterior samples. Using the CDF function as shown in Equation (6), we generate T;
samples at the use stress (the intended nominal stress at which the component will

operate normally in its normal working conditions) using the following equation:
) ) ) ®
t]\/;cs = exp (aol (@)1 (1 - u}\/ics))(I (@) (5-27)

(l) = 9(1)(q) is the a® at the nominal stress level, uz(v?cs =

[ uz(\;)cs(l)' uz(v?cs' . ul(\,l,)cs (nMCS)] and nycs is the number of MCS samples.

Step 3 Now, at this step we have the samples tzg)cs ,,Vi=1,2,..., N, generated by using
Equation (15) in Step 2, the system reliability Rsis calculated depending on the
system topology. The system topology could be multiple components put together
according to a standard configuration: a parallel configuration or a series
configuration or defined according to a special design. The system topology defines
the failure of the system according to the configuration of its components and hence

it, as well, defines its probability of no failure or system reliability.

nmcs
Re ~ z tD (), Vo)
57 Nyes = ( csU)rtaacs U - tuucs O)) (5-28)

where I{. } is a failure indicator function derived according to the system topology. For

example, for a series system the indicator function is defined as:

N ONT
I t(l) (2) ) (Nc) L lf L, tMCS(]) <T,
mesUD tuesU tyes ) ) = (529)
0, Otherwise
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The three steps above are repeated for all the posterior samples updated by Bayesian
Inference, 8 and 6, Vi = 1,2,...,N/¥q = 1,2, ..., N5, Afterwards, we obtain Samples for
Rs as Rs(q), q = 1,2, ..., o5 The effect of uncertainty reduction could be now quantified
using the Rg samples.

Figure 5-3 below is a flowchart summarizing the steps in a graphical format for the steps
detailed above. Starting with the Bayesian estimation in order to update the prior data of the 8@
and 0@, starting with component i = 1 all the way to component i = N which will allow
sampling posterior data with reduced uncertainty. Once the parameters are updated, the
propagation of uncertainty is performed by calculating the stress dependent parameter a®) for all
component, i = 1,2, ..., N at nominal stress which is defined as the use stress at which the

component will operate under normal conditions in an environment in which it is designed to

function.
; Dependent CDF samples
For given copul parameter p Copula function u‘"l;s 1i=12,..,N, m
Dependent samples
Component 1 _.Bayesian updating |l Posterior distribution L Distribution parameters at L c}:fc omponenf
(v (89] (1) : - 1 1)

Al Tdatat of ALT model of6'") and o nominal stress levele, ' and o failoretitiie

Samplesof

Ry
Component N, Bayesian updating Posterior distribution | | e L
ALT data £ | ofALT model | | of8®™0) ang ™) nominal stress levela|'“ and | —
g, ¢

Figure 5-3 Flowchart of connecting component-level ALT data with system reliability
using Copula function
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Considering the concept of dependence among these components, the copula function is
employed as well in order to close the loop and propagate the uncertainty to the system reliability
Rs. The copula allows modelling the possible correlations among the components by generating
dependent CDF samples using the posterior distribution of the distribution parameters at nominal

stress.

5.2 Uncertainty Propagation of System Level ALT Data to System Reliability

In what follows, we detail the plan for connecting the testing data collected by testing the
system at high stress levels to the system reliability at nominal stress levels or use stress. The
uncertainty propagation in this part consists of using the system level ALT data by applying
parametric Weibull distribution. The system level ALT data is the testing data collected from
putting a system of multiple components under accelerated life testing which is the fourth test

level as shown in Chapter 3 in Figure 3-1.

5.2.1 Framework Steps Overview
When testing a system that comprises multiple components, the analysis is subject to

some complications due to the following reasons:

1- Due to the various components under one system, the failure modes of each component
might be different because the load applied to the system is not evenly distributed on all
components, so the stress-life relationship is not straightforward and easily derived.

2- Testing the whole system at once at higher than nominal stress to accelerate the failure,
imposes stress on some component that we refer to as boundary component, which is
defined as the component receiving the load directly during a system-level testing, while

other components, receive a cascaded or extrapolated stress and we refer to them by non-
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boundary components. Having this concept of boundary versus non-boundary
components requires a mapping of stresses from the boundary to non-boundary
components. Mapping the stresses means finding a framework to calculate the load
carried by non-boundary components by using the properties and stress load on the

boundary components.

In order to resolve the above-mentioned complications, we bridge the gap to connect the
ALT system level data to the actual system reliability by using physics-informed model which
resolves the mapping of stresses from the boundary components to the non-boundary
components.

According to the latter, the problem statement for this section is as follows:

e Given: Failure Times (tfailues)of System at different stress levels higher
than use stress

e Find: Map stresses from boundary components to non-boundary
components via physics-informed model and develop the likelihood
function to establish the Bayesian Inference

¢ Find: Linkage between the system level ALT data and the system
reliability R(t)and propagation of the uncertainties

Problem Statement 5-2 System level ALT data uncertainty propagation to system
reliability

Step 1 Map the loads from boundary components to non-boundary components using
Equation (20). The mapping should be done at all stress levels to all components
present in the system.

Step 2 Calculate the stress-dependent parameter agi)(]') using &p; of stress level j if the
component is identified as boundary component, and if the component is identified as
non-boundary, we use the mapped stresses predicted using the physics informed

model, symbolized by &,;_ of stress level j.
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Step 3 Using the calculated agi) (j) and 6@, i = 1,2, ..., N, of component failure time

distributions, we then generate random MCS sample (tIE,,i)CS, j)of each of the

component’s failure time at the j-th stress level.

Step 4 At this step, we would need to generate CDF distributions to complete Step 3,

because the equation for tg)cs, . following the copula-based model are generated for a

j
given p.

Step 5 Given the set of tg)cs, ; we can now convert the component failure time to system

failure time using a function (f;;;,e(.)) defined according to the system topology or
configuration (i.e. series, parallel, custom configuration).

Step 6 The linkage is done by calculating the likelihood f (tsys ;|(.)).

5.2.2 Physics-Informed Model

The Accelerated Life Testing (ALT) design has been the center of attention of a wide

range of studies in the past decades for its usefulness in the reliability analysis. However, it has

focused on adopting statistical strategies. On the other hand, the physics-informed prediction

modelling has not been widely leveraged in the ALT design. Recently, some researchers shed

light on the practicality of the physics-informed models in ALT design for the rich advantages it

returns in terms of the physical information in ALT design [118][119]. Principles used in this

type of modelling include, but not limited to, analytical methods [120]and data-driven

approaches [121], computer simulations (i.e. Finite Element Analysis (FEA)) [122].

Taking the mechanical system given in Figure 5.4 as an example, there are six types of

components in the system, namely, component 1 (i.e., crank), component 2 (i.e., rigid connecting
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rod 1), component 3 (i.e., connecting rod 2), component 4 (i.e., horizontal sliding bar),
component 5 (i.e., slider), and component 6 (i.e., pin). In the nominal operation condition, the
crank is rotating at a specific speed. The rotating crank then drives the movements of the other
five components. In component-level ALT, the component reliability of these six components
can be tested separately.

When the six components are assembled together and tested as a whole, the crank (i.e.,
component 1) is then the boundary component and the other components are non-boundary
components. For this type of mechanical machine system, the “stress” or “accelerating load” is
the rotating speed of the crank. Suppose that the rotating speed of the crank is 10 rad/s at the
nominal condition, it could be 100 rad/s in the accelerated situation in order to induce failures.
For a given accelerated rotating speed of the crank (i.e., boundary component), the rotating speed
of component 2, sliding speed of component 4 and 5, and the movement of other non-boundary
components can be predicted using physics-based kinetic analysis. It means that we are able to
predict the testing load conditions of the non-boundary components based on the applied
accelerated loads (e.g., rotating speed) of boundary components in system ALT using physics-
based analysis. Note that the example given below is only used for illustration purpose. For
different types of systems, different physic- based approaches For different types of systems,
different physics-based approaches are needed to perform this type of load analysis in system
ALT.

Defining the testing stress levels, which is the rotating speed of component 1 in Figure
5-4, of the boundary components in system-level tests denoted by &, the corresponding stress

levels denoted by &,_, which is the rotating speed of component 2 and sliding speed of the slider
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in Figure 5-4,o0f the non-boundary components excluding the boundary components are predicted

using physics-informed load analysis.

Figure 5-4 Illustration of a mechanical system

To remember, the testing stress in an ALT design are normalized and symbolized by ¢, so
assuming we have n;, boundary components, we denote the stresses of the boundary components

by & = [$p1, ) $pn, ] and the non-boundary components stress by §,_ =
[f bley s € bnb_] where n,_ is the total number of non-boundary component. Now, the problem
is to use physics-informed model to predict &,_ = [E bl s € bnb-] by using &, =

[f bir s € bnb]. So we can write the following equation:

§pj— = Lbj—(gb’w(i))'vj =12,..,m_ (5-30)
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In Equation (5-19) , @@ is a set of deterministic and random parameters representing
uncertainty for situation in which the load prediction models cannot accurately predict the load

conditions of non-boundary components [123], [124], §p;_ is the j-th element of §;,_ and n;,_ =
N¢ — n,, represents the total of non-boundary components and L, ;_ (. )is the set of load
prediction models used for stress mapping from §, to &, Vj = 1,2, ..., n,_. These models can

be obtained via computer simulation models, analytical models or data-driven models.

At nominal stress, the physics -informed model shall satisty the following condition:

0= Lbj_(O,w(i)),Vj =1,2, v, Np— (5_31)

The latter applies for both copula-based and frailty-based dependence as part of the big
model for the connection of system ALT data to actual system reliability in order to map the
stresses from the boundary components in a system to the non-boundary components operating

under the same system.

5.2.3 Bayesian Estimation Formulation

The fact that the whole system is put under testing, the dependence among the
components is accounted for. Consequently, the system-level ALT data collected at higher than
nominal stress level could be used to update the dependence factors, p, z, contingent to the
dependence model used to quantify the correlations among failure times of the system’s
components. Also, since the physics informed models are used to bridge the stress from
boundary component to non-boundary components, we can use the ALT system-level data to
update the w® parameters as part of the prediction model.

To perform the parameter update, the Bayesian inference is applied to derive posterior

samples to all related parameters according to the equation below:
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(0,02, ..,0MN0, g, p, w|tsys, Esys) Neys)

N¢

. . 5-32
o F(teysl0D, 09, .., 600, 0,p, 0, By ey ), 0)fo @) | [Uai(0Vfsa(®)] )
i=1

T
where  tg,s = [tsys,l ) e tsys,ns] where  tgys; = [tsys'j(l), wes bsys,j (nsys (]))] are the
observations or failure time data collected from ALT of the system at stresses higher than nominal

stress  and  &gys = = {£5(1),&(2), ... & (n)} and & () = [€51(D), Epa (D), ons Epn, (D] 5 i1 =
1,2, ...np. The ngys = [Ng5(1), N5y5(2), ..., Ngy5(n,)] are the number of tests at each stress level
and f,(.) denotes the prior distribution of parameter x.

Different methods could be used to run the estimation and sample the posterior data of
the parameters. At this step, we have the Bayesian Inference relationship to update the
parameters that could be used to connect the ALT system-level data to the system reliability as
shown in the next Section. The Bayesian Estimation requires the formulation of the likelihood
function in terms of the parameters of interest and the failure time data collected at the system

level from the system level ALT testing which is shown in what follows.

5.2.4 Likelihood Function Formulation

The likelihood function f(teys|0®,0®@,...,0N0), 6, p, w, &gy, Ngys) is computed by

f(tsys|0P, 0@, ., 000, 6, p, w, &gy, Ngys)

ns Msys(j)

= [ ]] #ltssstole®,0@,...0%), 6, p,0, 8,

j=1 k=1

(5-33)

where tgys ; (k) is the k™" observation at the j " stress level.
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In order to compute f (tsys|(-)(1), 0, ...,00Nd g, p, w, &sys) Ngys), we first map the testing

Sys
load ¢,y from the boundary components to the non-boundary components using the load

prediction models by using Equation (5-30) as follows:

Eq-() = Lpj—(£(), @ @),Vq = 1,2, ..., ny_ (5-34)
where §pq_(j) is the load condition of the q*" non-boundary component at the j* testing stress
level in the system-level tests.

After we obtain &p,_(j),Vq = 1,2, ...,n,_ and §p(j), the distribution parameters agi) )
at the j" testing stress level in the system-level tests are computed by the following equation
below:

MO () = Héi) + Hl(i)fb]-(j) ,if component i is a boundary component
’ 0 +0W¢,._ (), Otherwise (5-35)

Based on parameters, agi) (j) and 6@ forall i = 1,2, ..., N, of the component failure
time distributions, we then generate random samples for each component-level failure time at the
jt" testing stress level of the system-level test using Monte Carlo Simulation methods by using

the Weibull CDF parametric function as follows:

O

@ W )
tl\/;CS] =e%s () (—ln(l - unécs)) (5-36)
where tz(wcs J [tz(v;)cs, i (1), tzsz's j (2),.. ,32.5 j (npmcs) ] are the random failure time samples of

the i-th component at the j-th stress level in the system-level ALT. Whereas, the set of

component random CDF distributions of the i-th component generated from Gaussian copula for
a given copula factor vector p is represented by “1(|;)cs,j =

[uz(v;)cs,j (1),111(\2:51 (2) uM(;sJ (nMCS) ]
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Based on the component failure time samples that are generated as detailed above, the

system failure time samples could be then derived using the following function:

s () = Fume (€55 () 5025 (0, 600, () VR = 120 muies 5 3

where fiime(.) is a function used to convert component failure time to system failure time and is

given by:

.
ier[riin { g)cs] (h)} , for series system

(l)
h f llel syst
ftime( IE/Ilc)‘S] (h) tlf/lzc)‘S] (h) (Nc) (h)) = Lerﬂfll\;(c]{ MCS]( )} or parallel system

tmcs,j
Defined According to System
Topology, Oterwise

(5-38)

£

After we obtain MCS,j (h),Vh =1,2,..,nycs, the function

f(tsys,;(k)]|0L,0P, ..., 000, 5,p, , &, (j)) in Equation (5-34) which is a density function

could be estimated by applying the concept of the kernel smoothing technique. The following

section taps into kernel smoothing in order to briefly explain the technique.

A — Kernel Smoothing:
Kernel smoothing is a statistical technique used to estimate functions like regression
function or probability density function [125]. It is a statistical technique that uses non-
parametric estimation methods to estimate functions.

The kernel density estimator is given by the following general form [126]:

fa®) = % ;K (xv(s— t) (5-39)

K is defined as the kernel and § is called the bandwidth. K could be any pdf function and is

often chosen to be a unimodal distribution that is symmetric around zero, some of the known
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kernels are the Epanechnikov Kernel [126] and Biweight Kernel[127] . The bandwidth is a
smoothing factor determining the smoothness of the estimated function, it is a scaling factor. The
bandwidth plays a major role in the estimation as it dictates if a density function estimate is
overestimated or underestimated. Detailed information about the bandwidth selection could be
found in [125].

Given the form of the likelihood function developed in Section 5.2.4, and by applying the
concept of kernel estimator, the following equation is developed in order to estimate the density

function that is the likelihood function non-parametrically:

f(tsys,j (k)|e(1)) R e(NC); g, p: (l))

nmMcs sys

sys,j (k) — Mcs,,-(i)> (5-40)
(nMcsa) Z <

where k(. )is a kernel smoothing function and § is the bandwidth or smoothing factor [128].

5.2.5 Uncertainty Propagation to System Reliability

In the previous sections, the system-level ALT testing data &, are connected to the
component-level ALT models, copula function, and load prediction model, the connection is
established using the Equations (5-33) through (5-40) .

Table 5-1 below, summarizes the overall procedure for the evaluation of the likelihood
function which in turn established the connection between component-level models and the
system level models. Based on this established connection, the system-level testing data at
higher-than-nominal stress levels can be used to reduce the uncertainty in the model parameters:
0, ...,8N9) g, p and w, by using the Bayesian inference procedure in Section 4.1.4A and thus

reduce the uncertainty in the system reliability estimate R;.
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Table 5-1 Summary of the evaluation procedure of Equation (5-33)
Steps Description
Map the loads §,(j) from boundary components to their counterparts of non-
1 boundary components using physics-informed load prediction models (i.e.

Equation (5-34)).

Obtain the distribution parameters agi)(j) and 0@ for all i = 1,2, ..., N¢ at the

2

testing stress level in the system-level ALT using Equation (5-35).

Generate random samples of component failure time using Equation (5-36),
’ copula function, and the distribution parameters obtained from Step 2.

Convert the samples of component failure time to samples of system failure time
! using Equation (5-37).

Compute likelihood function (i.e. Equation (5-33)) using kernel smoothing
5

function estimate based on the samples of system failure time.

5.3 Reliability Assessment via Information Fusion of Component Level ALT Data with
System Level ALT Data

A major advantage of using Bayesian methods as demonstrated in Sections 5.1 and 5.2,
in order to establish connections between component-level ALT data and system reliability,
system-level ALT data and system reliability, and in both cases aiming at reducing the
uncertainty in the system reliability estimation, is that it allows us to fuse the information from

both component-level and system-level testing data collected from accelerated life testing at two
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different testing stages: by testing the components separately or by testing the whole system,
which could turn further reduction in the uncertainty of the system reliability estimate.

The fusion of the information from both testing level: component level and system level
data could be now combined to establish a connection between system reliability and both ALT
component-level and system-level information data in order to reduce the uncertainty when
assessing the system reliability. With the intention of merging both the component-level ALT

data and the system-level ALT data, we define the testing plan as follows: the normalized stress
Erest = {&sys § 1,82, ., ENO Y where &gy = {8, (1), §(2), ..., §(0)}, in which &, (i) =

[fbl(i), $p2(D), oes Epmy, (i)] ; i =1,2,...n,. The component normalized stress is defined by ¥ =
[£D(1),6D(2), ..., D (ny)], Vi =1,2,..., N¢. Also, we introduce Nyeg; =
{ngy, 0D, n®, . nM} where The ngy = [n5y5(1), Ngys(2), ..., Ngys(ns)] and n® =
[n@(1),nD(2),...,nOny)], vi=12,.., N

Based on the established connections, the uncertainty parameters in the ALT models and
the load prediction model can be updated using the component-level and system-level testing
data. At this stage, we can use the established connections in previous sections to estimate the

distribution parameters, we show below in Equation (5-41)for a copula-based dependence model

as follows:

F(0D, 8D, .. 0™ 6 p @[t®, t@, o 1™, b Er, Deest)

OCf(t(l), t(Z): ttty t(N)) tSYS|9(1)I 9(2); Y B(N)) o, p, W, Etest; ntest)
(5-41)

N¢
X fp(p)fm(w) n[fei(e(i))fai(c(i))]
i=1
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where

f(t(l), t(z), ttey, t(N), tsysle(l)p 9(2)1 Y G(N)r o-’ p’ (.l), Ztestl ntest)
:f(tsysle(l): 0, ..., 8N, ¢, p, , Esys) nsys) X

N¢
1_[ F(t0]0®, o®, gD n®)

i=1
in which f(tsys|0®, 8@, ..., 8W), 6, p, W, &y, Ngys) is computed using Equations

(5-42)

(5-33) through (5-40) in Section 5.1.3 and f(t®|0W, ¢®, D, n®) vi=1,2, ..., N are
computed using Equations through in Section (5-25) through (5-29).
In this research, the particle filtering (PF) method is employed to perform the Bayesian

inference given in Section 4.1.3A. In PF method, we first generate n,,;,, prior samples for the

uncertainty parameters which are 8, 8, ... ™) g, p, and w. After that, we compute the
weights of each prior sample as:

f(t(l)l LR t(NC)l tsysle(l) (k)' LN B(NC) (k), O'(k), p(k)' (,l.)(k), Etest' rltest)

ZZZTIiOT f(t(l)' ) t(NC)' tSys |e(1) (k): ) G(NC) (k)' G(k), p(k), (A)(k), Etestl ntest) ,
Vk =1, ..., Nprior (5-43)

w(k) =

Using the weights obtained from the above equation, the prior samples are then
resampled to get the posterior distributions of 8, 8@, ..., 8™ g, p, and w. The posterior
distribution of the system reliability after the uncertainty reduction using component-level and
system-level testing data is then obtained by propagating the uncertainty in c to the system
reliability by following the procedure discussed in Sec. 3.2.1.

The above discussions imply that the uncertainty reduction in the system reliability
estimate is affected by the component-level and system-level testing data. As shown in Figure
4.1, in Chapter 4 there are several observation nodes in the network, which means that we can

collect data at different locations and different levels of the system. With the limited testing
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resources, how to optimally allocate the resources is a challenging issue. In the next section,
building upon the connections established in this section, we focus on the resource allocation for

ALT-based system reliability analysis.

5.4 Accelerated Life Testing Design Optimization Model
In this section, we first formulate the objective function used for resource allocation. We
then present the resource allocation optimization model based on the formulated objective

function.

5.4.1 Objective Function
In order to quantify the value of information contained in the testing data to the system
reliability estimate, in this paper, the Kullback—Leibler (KL) divergence [124] is employed and is

given by:

Dy, = ijS(R|t(1),t(2) R ALR S B

log (fRS(th(l)'t(Z) '--t(NC%tsys)) aR 49
oo

where fg (R|t(1), s tsys) is the posterior PDF of the system reliability R for given testing data
t@, .., tWo), tsys and fr (R) is the prior PDF of Rg. The distributions of R ,required to use the
Kullback-Leibler (KL) as stated by Equation (5-44) above, are obtained by propagating the
uncertainty in the distribution parameters 8V, ..., 0¢) p o, w to the system reliability per the
methodology described in Sections 5.1 through 5.3.

Defining the posterior samples of defining R as Rpos¢ (i), i = 1,2,.., Ny using the

following summation:

107



Npost

frs(Rpose D [tD, t@ .t W) ¢ )
DKL ~ z log - (5_45)
fro (Rpose ()

And the following numerator f (Rpose(D)[t™®, @ .t ¢, ) is estimated by using

kernel smoothing estimate function given by:

fRs (Rpost(i)|t(1); t(Z) t(NC)) tsys) ~

Npost . .
1 Z <RPost(l) - RPost(])) (5'46)
—_— K
npost‘spost = 8post

in which 8p,; is the bandwidth of the kernel density function. fr (Rpos¢(i)) is computed
similarly using kernel density function based on the prior samples of Rs.

In Equations (5-44) to (5-46), the testing data t™, t@ . t00), ¢ - are assumed to be
known. In the ALT design stage, however, we do not have testing data. As a common practice in
experimental or testing design, synthetic data are generated as the testing data using the prior
distributions of 8V, 8@, ... 8™ g, p, and w. The synthetic data are uncertain due to the
uncertainty in parameters 0V, 82, ..., 9) g p, and w as well as the inherent uncertainty
in the failure time distributions. As a result, the KL divergence given in Equation (5-45) is
uncertain in the ALT design. So, in order to account for this uncertainty, the expected KL
divergence is employed to be the objective function of the optimization model as a widely used

approach in the experimental design domain and Monte Carlo Simulation (MCS) method is used
in order to approximate the expected divergence E (DKL (¢tests ntest)) where §;p5) Myest are the

design parameters of the test plan (ALT Design). Accordingly, For a given testing plan
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characterized by the two parameters: §;.5; and n;,.¢, the expected KL divergence noted

by E (DKL (¢testr ntest)), corresponding to this testing plan is computed by:

E(DKL (Etest: ntest)) = J:I- ff (DKth(l): t(z) t(NC)' tsys)f(t(l)l Etest: rltest)

(5-47)
---f(t(NC)litest, ntest)f(tsyslztest: ntest)dt(l) dt(NC)dtsys

where (D, [t®, 8@ . tNo), £, ) is the KL divergence conditioned on given
tW,¢@ 0o, ¢, and is computed using Equation (5-44), f(¢P|& s, pese ), Vi = 1,2, ..., N

is obtained by solving the following equation:

f(t(i)lztest' ntest) = J- J-f(t(i)le(i)' G(i), E(i), n(i))fei(e(i))fm,(O-(i))de(i)do-(i) (5-48)
in which ¥ = [f(i)(l),f(i)(Z), ...,f(i)(ns)], n® = [n(i)(l),n(i)(Z), ...,n(i)(ns)] ,Vi=
1,2, .., N¢ , and f(t®]0D, 6D, gD n®) is computed using Equation (5-25).

Additionally, f(tsys|Etest Meest) is given by:

f (tsyslztest' ntest)

= J- J-f(tsysle(l): Ly G(NC); oW ... ) O'(NC): p, w, Esys: rlsys)
(5-49)

Nc¢
£(0)f (@) 1_[ £5:(89) £, (0©)d0W ... 40N dg® .. dg Vo)
i=1

where f(tsys|0®, ..., 0N, ¢ g0, p, 6, &, gy ) is computed using Equation (5-33),
Erest = {&sys E, 8P, ., NI} and nyegy = (g, nP, 0@, .., nMNO},
The above formulation, Equations (5-47) through (5-49), indicate that the evaluation of

the expected KL divergence requires very complicated high-dimensional integration. In this

research, the Monte Carlo simulation-based method is employed to approximate Eq. (33). In the
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MCS-based method, we first generate N,j; groups of samples of t™),t@ ... t(NS) ¢ using
MCS by accounting for the uncertainty in the prior distributions of

0w, ...,0MN0 g 50 p and w, as well as the uncertainty in the life distributions. We then
compute the KL divergence using Equation (5-45) for each group of the generated MCS

samples. After that, Equation (5-47) is computed as

1 Nobj
E(DKL(Etest: nest)) ~ Nobj Z DKL(i) (5_5())
i=1

in which Dg; (i) is the KL divergence computed using Equation (5-45) based on the i-th group of
the MCS samples and the number of groups of samples N,; is determined such that the variance

in the estimate in Equation (5-47) can satisfy our requirements.
Next, we perform resource allocation for ALT-based system reliability analysis using the

above objective function.

5.4.2 Resource Allocation Optimization Model
In resource allocation, the goal is to maximize the information gain from the limited
accelerated life tests. With this objective in mind, we formulate the following resource allocation

optimization model:

max E(KL(§est) Neest))

Stest. Ntest
Subject to:

5-51
CALT (Etest; ntest) < Ctotal ( )

np = Niest = Ny
0< E;test <1
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where Capr(&iest, Niest) 1S the total testing cost for a given testing plan &iege and Nyegt, Crorarl 1S
the total budget, n;, and ny are respectively the lower and upper bounds of the number of tests at
each stress levels, Nyest = {Ngys, 0V, 0@, ., nMNO}, where The ngys =

[Msys (1), Nsys(2), ..., Ngys(ns)] and n® = [n®@(1),nD(2),..,n®Ony)], vi=1.2,..,N. And

Erest 1S the test limits Epesr = {Esys, §Y, ..., ENOY.

The cost function could be formulated in different ways to account for various costs
included in the ALT testing. Generally, the plan to formulate a cost function and link it to the
parameters at hand, to do so we plan on using the cost of a testing specimen which could be cost
of testing a component i , C; ,or cost of testing a system Cj,;. Also, we consider the cost of
testing per unit time which as well is divided into two types of costs depending on the testing
level, for a system level testing, we designate the cost of system per unit time by e, and the
cost of component I per unit time by e;. Having the expected testing time for each of the
components and the system, the total testing cost C 417 (test) Nrest) fOr given &ppgr and Nyegp in

Equation (5-51) is computed by the following equation:

CALT (Etest; ntest) = Csystem testing + Ccomponent testing (5'52)

where, the system testing cost is given by:

Ng Ng
Ccomponent testing — Csys Z gy (]) + €sys Z Ny (]) ( Tsys (Eb (])) (5'53)
j=1 j=1

the component testing cost formula is:

N¢ Ng Ng
Ccomponent testing — Z Ci Z n(i) (]) +e Z n(i) (i)'fl(i(i) (])) (5'54)
i=1 j=1 j=1
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The next step includes formulation of the expected testing time per system specimen and
the expected testing time per component specimen. Once we formulate the expected time (Tsys

and T;) we then replace them back in the cost function and the optimization model is now

complete.

TLEW() is given by:

T.(§0()) = ] f ] f (t®]6D, 0@, £0)) x (5-55)
LR ORELA0)

f0i(09)f4i(c®)doVdaVdt
where ()50 and ()

g(are respectively the domain of 0® and O'(i), f (t(i)|e(i),o(i),§(‘)(j)) is

computed similarly to £(t?|0®,s®,g®, n®) using Equation (5-25) and (5-26).
Referring to the analytical expression of a Weibull distribution, the Equation (5-55) is

rewritten as:

T, (590()) = f r (69,00, 50))

Q0 90) 5-56
fei(e(l))fm(a(l)) doDds®dt ( )

where Ut (O(i), a(i), 3 @ (])) is given by:

@, @ (s i
Ur (e(l)’ O'(i), E(l) (i)) — e<90 +67 (l))r(1+o-( )) (5_57)

in which I'(.) is a gamma distribution function generally given by:

I'(z) = fooe_ttz‘ldt (5-58)
0

Tsys(&p(j) is given by:

Tos(6s) = [ o [ er(c

oys|0, .., 800, gD 5N p g, F,b(]')) (5-59)
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N
£,(0) .y (00) 1_[ £o:(89)£,:(c©)dB® .. 40N do™ .. dg ™ dp deo dt
i=1

where f (tsys 0, ..., oM s W o ¥, (])) is computed using the Equations

discussed in Section 5.2.

Figure 5-5 summarizes the overall flowchart for the evaluation of the objective function

E(KL(&,y>M,,)) for a given testing plan (&> M, ). As shown in this figure, the prior

distributions of the component-level ALT model parameters and the correlation coefficients are
inputs for the evaluations of the objective function. For the prior distributions of component-
level ALT parameters, they can be obtained based on calibration of the component-level ALT
models using historical data, previously conducted component-level ALT testing data, or expert
opinions. For the correlation coefficients, their prior distributions are more difficult to get than
that of component-level ALT model parameters. Their prior distributions can be obtained based
on historical data, expert opinion, or physics-based failure correlation analysis. As shown in the
numerical examples, relatively accurate prior distributions are assumed for component-level
ALT parameters while wide and non-informative priors are assumed for the correlation
coefficients. It should also be noted that the effectiveness of the resource allocation framework
will be affected by the prior distributions since they are inputs for the objective function. This
fact is true for all Bayesian experimental design methods.

Due to the uncertainty in the prior distributions of the ALT parameters, solving the
constraint function given in Equation (5-52) to (5-54) is also challenging. Similar to the
evaluation of the expected KL divergence, in this research, the MCS-based method is employed

to estimate Equations (5-56) through (5-59). In the MCS-based method, we first generate prior
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samples of the ALT parameters. After that, random samples of the failure time are generated.

Based on the generated random failure time samples, the expected component-level and system-

level testing time for given testing plan (ém, I, ) are computed. By solving the optimization
model formulated above, we are able to optimize the component-level and system-level ALT
plans to effectively perform system reliability analysis using ALT tests. In this research, the
efficient global optimization method with constraint function [129], [130] is employed to solve
the optimization given in Equation (5-51).

In the next section, two numerical examples are used to illustrate the effectiveness of the
proposed resource allocation framework for ALT-based system reliability analysis using 2

parameters log-scale distribution and the copula function as a mean to model the dependence

among the components of one system.

For given Prior distribution| |Frior distribution e, Prior distribution of
testing plan of Pand o of 8 and 0™’ and o
n T T T
st ? et v
Random samplesof 6" ... 8" o ... ™) p © based onprior
distributions |
v
F h le of 0‘",---,0"', (I),“., (.H’ x )
or eachsampleo o " p.e I Prior
»| distribution
‘ } of system
Generate component-level Generate system-level reliability
synthetic testing data synthetic testing data R, through
: ¥ 1 uncertainty
Bayesian updating of component-leveland system-level ALT model propagation
parameters
Posterior distribution R, , of system reliability R,
v
Compute KL divergence for given synthetic testing data <
Compute E(KLE,,,.n,,)) fora given testing plan

Figure 5-5 Overall flowchart for the evaluation of the objective function for a given testing plan
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5.5 Numerical Examples
In this section, a mixed system and a four-joint robot system are used to illustrate the

effectiveness of the proposed framework.

5.5.1 A Mixed System

A - Problem Statement
A mixed system given in Figure 5-6 is employed as the first numerical example. The system
consists of three components. Amongst the three components, component 1 is the boundary
component. The reliability of the system over a time period [0, 3.5x10°] cycles at the nominal

stress level needs to be estimated based on accelerated life testing.

Figure 5-6 A mixed system with three components

Table 5-2 gives the true parameters (90("),91“), and 0@, Vi :1, 2> 3) of the component-

level ALT model of the three components. The true Gaussian copula parameters of the three

components are given by

1 p12 P13

pP= [.021 1 st] (5-60)
P31 P32 1

where p;, = py1 = 0.9, p13 = p3; = 0.02, and p,3 = p3, = 0.12.
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Table 5-2 True parameters of the component-level ALT models
Component-level ALT parameters

Component 9 éi) 9 1(i) g®
1 12.85 -5.3 0.06
2 13.05 -4.9 0.15
3 13.22 -4.8 0.13

Based on the above true models and parameters, the true system reliability (Rg) over the
time period of interest is estimated as Ry = 0.853. In ALT-based system reliability assessment,
we assume that the above parameters are unknown and thus the true system reliability is
unknown. We need to estimate them based on accelerated life tests. Table 3 presents the required
testing cost of component-level and system-level tests. The total budget of the accelerated life
tests is Cyorq = 6Xx105. Table 4 gives the prior distributions of the ALT model parameters. For
Gaussian distribution, in this Table, Parameters 1 and 2 are respectively the mean value and
standard deviation. For uniform distribution, Parameters 1 and 2 respectively the lower and
upper bounds of the distribution. Based on the prior information of the ALT model parameters,
we then perform ALT design for system reliability assessment. In the ALT design, two-stress
level tests are designed for the three components and the system. In addition, the number of the
available testing chambers is 30 for each component and for the system-level tests at each testing
stress level.

Table 5-3 Testing cost of component-level and system-level tests

Component 1 Component 2 Component 3 System
Cost/specimen 1000 3000 2000 7000
Cost/unit time 0.02 0.01 0.01 0.03

Table 5-4 Prior distributions of the ALT model parameters
i 1 g GO H@ g2 G2 B B HB)
Variable 0, 6;° © 0, 6 o© 6, 06y o P12z P13 P23
Parameter 1 1287 -535 0.055 13.03 -493 0.152 1324 -483 0.132]| 0 0 0
Parameter 2 002 005 0006 0.04 003 0004 0.04 0.05 0.005| 098 0.1 0.2

Distribution Gaussian Uniform
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With the above information, we then perform system reliability assessment based on

ALTs.

B - System reliability assessment based on ALT
Assume that from the physics-informed analysis, we obtain the relationship between the
load conditions of boundary component and non-boundary components as
where &, is the normalized stress of the boundary element, w;, is an uncertain parameter due to
model uncertainty in the physic-informed load prediction model. The prior distribution of is

ESZ = Eb
£5 = [sin(30wp )| (>-61)

given by w,~ Unif(0.11,0.13), where [hlf() means uniform distribution.

In order to optimize both the component-level and system-level ALT plans, we formulate an
optimization model using Equation

(5-51) as below:

max E(KL(&est Neest))

Stest. Neest

Subject to:
Erest = {50(1),&(2), 30 (1, 5P (2)}; vi =123
Nest = {nsys(l)rnsys(z): n(i) (1); n(i) (2)}; Vi= 1,2;3

Cart Etests Neest) < Crotal (5-62)
1<n®(G)<30,vi=123,; Vj =12
1<n4()<30,vi=123,; Vj=1,2
0< et =1
We then solve the above optimization model using the approach discussed in Section

5.4.2. We first generate 300 training points for the design variables (§se5; and M) using Latin

Hypercube sampling approach [131]. After evaluating the objective function at these 300
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training points, we build a Kriging surrogate model for the objective function and refine the
Kriging surrogate modeling using the efficient global optimization approach with the
consideration of the budget constraint [129], [130]. In evaluating the objective function, the
numbers of samples we used are ;.o = 20,000, 1y = 1,000,000 (Equation (5-28)),N,p; =
500 (Equation (5-50)). By adaptively refining the surrogate model, we obtain the optimal design

corresponding to the maximum expected KL divergence.

Table 5-5 ALT Plan for Optimal Design, Design 1, Design 2 and Design 3

Component 1 Component 2

VW Y@ YO W@ [P0 PR 2P0 2?2

Optimal Design | 0.378  0.858 20 18 0.789 = 0.409 22 26
Design 1 0.443  0.465 15 4 0973  0.595 18 14
Design 2 0.404  0.627 15 6 0.501 = 0.527 18 13
Design 3 0.232  0.279 3 18 0.442  0.737 6 8

Component 3 System

P P2 n®PA) n®@)| &) &R ngs(1) ng(2)

Optimal Design | 0.617  0.678 18 13 0.833 = 0.546 16 27
Design 1 0.546  0.398 4 26 0.929  0.380 28 26
Design 2 0.654 0.04 22 24 0.296 = 0.996 19 17
Design 3 0.826  0.383 25 24 0.795  0.512 25 27

Table 5-5 gives the optimal component-level and system-level ALT designs obtained

from the proposed approach. In this table, for the purpose of comparison, we also provide three

non-optimal designs, which have similar expected testing costs (i.e. 6><105) as the optimal
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design. Following that, Figs. 4 and 5 depict the comparisons between the posterior distributions
and prior distribution of the system reliability estimate obtained using different designs. Note
that, the Bayesian updating of the system reliability estimate is performed 200 times for each
design (as indicated by multiple posterior distribution curves) to account for the uncertainty in
the testing data. The comparison given in and Figure 5-10 illustrate that the optimal testing plan
can more effectively reduce the uncertainty in the system reliability estimate than the other three

non-optimal designs. This demonstrates the effectiveness of the proposed framework.
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Figure 5-7 Comparison of prior and posterior distributions of the system reliability for optimal
design
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Figure 5-8 Comparison of prior and posterior distributions of the system reliability for Design 1
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Figure 5-9 Comparison of prior and posterior distributions of the system reliability for Design 2
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Figure 5-10 Comparison of prior and posterior distributions of the system reliability for Design 3

5.5.2 A Four-Joint Robot System
A - Problem Statement
A four-joint Unmanned Ground Vehicle (UGV) [132], [133] is employed as the second
example.
Figure 5-11Figure 5-11 gives the schematic kinematic diagram of the four-joint robot arm
(Figure 5.11 (a)) and its reliability block diagram (Figure 5.11 (b)). As shown in this figure,

there are four joints in total. Each joint is actuated by a motor m; (i = 1, 2, 3,4) and the joint
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angle is measured by a sensor. To guarantee the reliability of the system, redundancy is added to
each sensor.

The four motors (m,, m,, ms, and m,) are identical and independent. The angle sensors
s-1A, s-1B, s-2A, s-2B, s-3A, s-3B, s-4A, and s-4B, are also identical components. There are
mainly two types of components and twelve components in the system. Amongst the twelve
components, component 10 is the boundary component. The reliability of the system over a time
period [0, 3 X 10%] cycles at the nominal stress level needs to be estimated based on ALT.

Table 5-6 gives the true ALT model parameters of the two types of components (motor

and angle sensor).

s-1A s-2A
m === ]
s-1B s-2B
s-4A s-3A
e e
s-4B s-3B

(a) Kinematic diagram (b) Reliability block

Figure 5-11 A four-joint robot system

Table 5-6 True parameters of the component-level ALT models
Component-level ALT parameters

Component 9 éi) 9 1(i) a®
1 13.2 -4.6 0.12
2 12.8 -4.2 0.08

From experts’ opinion, it is known that the failures of components 1 and 2, 1 and 3, 2 and
3,5and 6,8 and 9, and 11 and 12 are dependent due to the shared load conditions. The true

Gaussian copula parameters are assumed to be as shown in Table 5-7 below :
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Table 5-7 Components Copula Correlation Factors

Components Copula Correlation Factors
P23 Ps,6 Ps,9 P1112 | P Vi=12,..12
0.73 0.85 0.8 0.82 1

Copula Factor
Value

P12 P13
043 043

It is assumed that any other correlation parameters not listed in the table to be zeros.
Based on the above assumed true models and parameters, the true system reliability (Rs) is
estimated as Rg = 0.7922. Similar to example one, in ALT-based system reliability assessment,
we assume that the above parameters are unknown and estimate them using ALT data. Table 5-8
presents the required testing cost of component-level and system-level tests. The total budget of
the accelerated life tests is Cpppq; = 2x10°5.

Table 5-9 presents the prior distributions of the unknown parameters. In the ALT design,
two-stress level tests are designed for the components and four-stress level tests are designed for
the system. The number of available testing chambers is 20 for each component and for the
system at each testing stress level. We then perform system reliability assessment using ALT
based on the aforementioned information.

Table 5-8 Testing cost of component-level and system-level tests

Component 1 Component 2 System
Cost/specimen 200 50 1300
Cost/unit time 0.02 0.01 0.045

Table 5-9 Prior distributions of the ALT model parameters

Variable 0(()1) 051) o 0(()2) 052) o? P12 P13 P23 Pse P89 P1112
Parameter 1 | 13.25 -464 0.124 1282 -422 008 }0.1 0.1 0.1 0.1 0.1 O .1
Parameter2 | 0.05  0.06 0.005 0.04 0.05 0004]0.5 0.5 0.9 0.9 095 0.95
Distribution Gaussian Uniform
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B - System reliability assessment using ALT
Following the procedure discussed in Section 5.4.2, assume that from physics-informed
load analysis, we obtain the relationships between the load conditions of boundary component
and non-boundary components as follows:

Table 5-10 Physics-Informed model mapped stresses values

Mapped Stresses
&1 = 0.9§;,
&3 = &2 = sin? (4%,)
&7 = &4 = &
&s6 = &5 3¢
= |sin(5§b) cos (%)|
&8 = &0 = [sin(6%,)|
&s12 = &s11

= sin?(4.5%,)

The ALT design optimization model is formulated as:

max E(KL( §est, Neest))

Stest. Ntest

Subject to:

Brest = {86(1),5(2), £:(3), 5% (D) V(D) EV ()} vi=1,2,3
Nest = {Ngys(1), Ngys(2), Mgy (3), Mgy (3), P (1), n P (2)};
vi=1,2,3

CALT(;testl ntest) < Ctotal

1<n®(G)<20,vi=12; vj=12

1 < ngys(j) <20,vj =1,2,34

0< §ese =1

(5-63)

We then solve the above optimization model similarly to Example one. All results along

with their interpretation are reported in what follows.
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C — Results

Table 5-12 gives the optimal component-level and system-level ALT designs obtained
from the proposed approach. We also compare the obtained optimal design with three other non-
optimal designs given in Table 5-12. The Figures below shows the posterior distributions
obtained using different designs and the prior distribution of the system reliability estimate.
Table 5-11gives the expected KL divergence if ALTs are performed using these different testing
plans.

Following that, Figure 5-12 through Figure 5-14 depict corresponding comparisons
between posterior distributions and prior distribution of the system reliability estimate obtained
using different designs. Note that Bayesian updating of the system reliability estimate is
performed 200 times for each design (as indicated by multiple posterior distribution curves) to
account for the uncertainty in the testing data. Figure 5-12, it also depicts the system reliability
estimate using only component-level tests by ignoring the dependence.

It shows that using only the component-level ALTs for the system reliability estimate can
lead to large error in the reliability estimate. The posterior distributions (i.e., Figure 5-12)
obtained from the proposed method by fusing the component and system-level tests are much
closer to the true value than that of using only component-level testing. This demonstrates the
benefit of fusing component-level and system level testing data in system reliability analysis.
Comparing the results in Figure 5-12 and Figure 5-13 through Figure 5-15, it shows that the
posterior distributions obtained from the optimal design are getting closer to the true value, while
the difference between the posterior distributions and the prior distribution is not as significant as

the optimal design for the other non-optimal testing plans.
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Table 5-11 Comparison of expected KL divergence for different testing plan designs
Design Optimal Design  Design 1 Design 2 Design 3

E(KL(&test Neest)) 0.4902 0.2446 0.2570 0.3329

Expected Cost ($) 5.9898x10° 5.9890x10° 5.9888x10° 5.9889x10°

Table 5-12 ALT Plan for Optimal Design, Design 1, Design 2 and Design 3

Component 1 Component 2

EW) W) W) W@ P D@ 2P nP(Q)
Optimal | o e G494 16 18 0.016  0.523 18 5
Design
Design 1 | 0.663 0.148 5 15 0954  0.260 17 6
Design2 | 0.267 0.094 18 9 0.820  0.733 9 19
Design3 | 0.241  0.258 7 20 0.857  0.532 4 5

System

$h (D $h (2) $h (3 $h (4) Ngys (D Nsys (2) Nsys (3) Nsys (4)
Optimal | /o0 0396 0414 0743 17 18 16 10
Design
Design 1 | 0.306 0.782 0960 0.373 18 14 17 18
Design2 | 0.302  0.363 0.458 0.285 10 5 14 16
Design3 | 0.847 0380 0919 0.700 15 20 17 12

The differences between the prior distribution and the posterior distributions for different
designs are quantified quantitatively by the expected KL divergence in Table 6. The above
results comparisons demonstrate the effectiveness of the proposed framework in reducing the

uncertainty in the system reliability estimate.
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5.6 Summary

Accelerated life testing has been widely used in product development to certify the
reliability of the products in the early design stage. In order to evaluate the reliability of a
complex system, components are usually tested separately and the complicated dependence
between different components are ignored in practice. System-level reliability tests can
effectively account for the complicated dependence between different failure modes and
components. The required testing cost for system-level tests, however, are much higher than its
counterpart of component-level tests. How to effectively allocate the limited testing resources to
the component-level and system-level tests in ALT-based system reliability assessment is a
challenge issue that need to be addressed.

Chapter 5 proposes a novel ALT design framework for system reliability assessment. In
order to fuse the information from component-level and system-level tests for the purpose of
system reliability estimate, connections are first established between the component-level ALT
and system reliability, as well as system-level ALT and system reliability. More specifically,
physics-informed load prediction models are employed to bridge the gap between the system-
level tests at higher-than-nominal stress level and system reliability analysis at the nominal stress
level. Building upon the established connections, an optimization model is then formulated to
maximize the information gain from various tests subject to budget constraint. The results of two
numerical examples including a mixed system and a four-joint robot system, demonstrate that the
proposed framework can effectively reduce the uncertainty in the system reliability estimate
through the information fusion of component-level and system-level tests.

Similar to many other ALT design approaches, the proposed method adopts several

commonly utilized assumptions. Eliminating these assumptions is a research topic that is worth
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pursuing in future. The component-level ALT and system-level ALT are optimized concurrently
in the proposed framework. This may result in a large number of design variables when the number
of components is high. A possible way of addressing this challenge is to perform the component-
level ALT design and system-level ALT design sequentially instead of concurrently. This will be

investigated in our future work.
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Figure 5-12 Comparison of prior and posterior distributions of the system reliability for the
optimal design
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Figure 5-13 Comparison of prior and posterior distributions of the system reliability for
Design 1
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Figure 5-14 Comparison of prior and posterior distributions of the system reliability for
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Chapter 6 System Reliability Assessment via Distribution Free Model and Shared Frailty

Models

In this chapter, we present the proposed method to perform system reliability assessment
based on ALT data collected from two different testing levels, namely component level and
system level. The model is based on using the extended hazard regression (EHR) model is
employed in order to model the component ALT failure time data in conjunction with Frailty
models in order to model the dependence among the failure time data. The EHR model, as
explained previously in Section 4.1.3, relies on using the hazard function formulation and it is a
regression model that takes into account the effect of the covariate which is the applied stress
during testing on the failure time of a component. Additionally, a frailty factor is incorporated in
conjunction with the EHR model in order to model the dependence among the components.

It is assumed that there is no censoring and that all testing units would be tested to failure.
Censoring could be easily incorporated in the model. In addition, only constant stresses are
considered. Step-stress ALT design is not the focus of this research.

As shown in Figure 6-1, the model consists of three sub-models: the first is establishing a
relationship between the component-level ALT data and the system reliability. Second, a model
to connect system-level ALT data to the system reliability and third we aim at fusing both
component-level ALT data and system-level ALT data in order establish an estimate for the

system reliability.
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Figure 6-1 Overview of the proposed ALT framework for system reliability analysis

Next, we start by presenting the component-level ALT data framework that connect the

component-level ALT data to the system reliability using EHR and Frailty models.

6.1 Uncertainty Propagation of Component Level ALT Data to System Reliability
6.1.1 Framework Steps Overview
Aiming at establishing a system reliability estimate, the goal of the component-level ALT
framework is to reduce and propagate the uncertainties in the data of the component parameters
using ALT data collected from component- level ALT by subjecting each of the component to a

higher than nominal stress individually.
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The Diagram shown in Figure 6-2 shows the steps taken in order to establish a
connection between the component level ALT data and the system reliability through uncertainty
propagation. First, ALT data is collected for each of the components in a system. Second, A
likelihood function is formulated using EHR model. Third, the uncertainties of the EHR model
parameters are reduced using Bayesian Inference for all components. Fourth, posterior
distributions for all parameters for each of the components are sampled using particle filtering.
Fifth, Dependence is accounted for using frailty models. Last, using the system topology (series
versus mixed) the uncertainties are propagated to the system reliability.

The first section in this chapter tackles reducing the uncertainties in the prior information
of the component parameters. To do so, the Bayesian relationship is developed to sample out
posterior distribution with minimal uncertainty for model parameters and namely, the regression
parameters of the EHR model and the parameters of the baseline quadratic hazard function.
Accordingly, the Bayesian estimation relationship requires the development of the likelihood
function. After formulating the likelihood function, particle filtering is applied as the sampling
procedure to derive the posterior samples.

In addition, the propagation of the uncertainties in the component parameters to the
system reliability imposes the correlation among the components when assembled together under
one system. In order to tackle the dependence, the frailty models are integrated along with the
EHR model to account for any possible dependence among the components.

Lastly, we calculate the system reliability. The model details the formulation for any pre-
defined system configuration: series topology or mixed topology (i.e. series, parallel or any other

custom topology).
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6.1.2 Framework Assumptions

Figure 6-2 Framework overview of the connection between component-level ALT at high stress
levels and system reliability model overview

In this section we present the assumptions made in order to develop the ALT framework
via distribution free model that includes the concept of frailty models. The following

assumptions listed in section 5.1.2 in Chapter 5 applies to this model as well:

Al- System Topography Assumption

A2- ALT Feasibility Assumption
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A3-

Ad-

AS-

A6-

AT7-

Load Transfer Function Assumption

Time Censoring Assumption

Constant ALT Accelerated Stress Assumption

Prior Information Availability Assumption

Extrapolation of ALT Failures to Normal Operation Assumption

Adding to the seven assumptions that could be carried over from the ALT using Log-Scale

parametric statistical distribution and copula chapter, this model requires an additional assumption

and they are as follows:

A8- Frailty Factor Identifiability: The z factor denoting the frailty factor that is part of the

frailty model is assumed to have an accessible and identifiable prior information. Unlike
the Copula function, one factor is required for all the components of one system which is
the concept of shared frailty factors. The mathematical formulation will be presented in
the sections below.

As shown in Figure 6-2, ALT data is first collected for each component in the system

individually. After that, the data are used to update the component-level ALT models using

Bayesian inference method. The updated component-level ALT models are then connected to

system reliability at the nominal stress level through frailty models. In the subsequent sections, we

will discuss the major steps to establish such a connection between component-level ALT and

system reliability.

6.1.3 Bayesian Updating of the Component-level ALT Models

In order to develop the Bayesian Inference relationship to sample the posterior

distributions, the parameters of interests are identified for which prior information shall be
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available. Accordingly, as detailed in Section 4.1.3 the EHR model is employed based on

Equations (4-3) through (4-4) and the Bayesian Inference Equation (4-11).

A — The EHR Model and the PDF Function Formulation
Considering a system with N, components, we denote the number of ALT stress levels of
the i-th component as m;, Vi = 1,2, ..., N. Letting the testing stress levels of the i-th component
be s; = [s;, j = 1,2, ..., m;], where s;; is the j-th testing stress level of the i-th component, we

first normalize the stress level as below:

Sij _SLL'
Su; — Si (6-1)

Xij =
where s;, and sy, are respectively the lower and upper bounds of the testing stress level of the i-
th component and x;; is the normalized j-th testing stress level of the i-th component. The
normalized stress is then a value between 0 and 1 (0 < x5 < 1).
After that, we model the failure time data collected from component-level ALT using the

EHR model explained in Section 2.2.3. The hazard rate function of the i-th component at the j-th

testing stress level is given by:
T T
A (tlai, Bi,Xi]') = AO,i (te(xijBi)) e(xijai), Vi = 1,2, . NC;j
(6-2)
where A, ;(*) is the baseline hazard function of the i-th component and a; and B; are the regression

parameters of the i-th component given by:
a = [ag ay]

B = [, 1] (6-3)
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Based on the hazard function, we then have the probability density function (PDF) of

failure time t at the j-th testing stress level as below:

fTij(t|ai: Bix;;) = A (t|a;, Bixij) X R(t|exs, Bi Xi}) (6-4)
where fTij(') is the PDF of t for given a, B;, and x;;, 1 (t|ai, Bi, xi]-) is the hazard rate function
given in Equation (6-2) and R(t|ai, B x; j) is the reliability function defined as R(t|(xi, B: x; j) =
e~ A& Buxy) in which At o, By xij) = fotxl(y; «;, Bi, x;;)dy is the cumulative hazard
function.

In order to get the cumulative hazard function to compute R(t|ai, B:, X; ]-), the baseline
hazard function 4, ;(-) is assumed to be a quadratic function by following the method presented in
[62] as follows:

Ao (W) = yoi+ vriwi + Vz,iui2 (6-5)
where v ;, ¥1,, and y,; are regression coefficients and u = te(xiTJ'Bi).

Combining Equations (6-2) and (6-5) yields the following hazard rate function of the i-th
component:

A (tlyi g Boxij) = )/o,iexiTjai + Y1,itexiTjw°'i + yptPeXiva,
Woi = +B; & wy; = o + 26, (6-6)
Vi ={Vouviu¥aih Vi=12..,N

We then can get the cumulative hazard function by integrating Equation (6-6) above:

t
T T
A(tlyi o, By xi5) = f (Vo,iex”ai + ypiteol 4+ Vz,itzex"Twl'i) dy,
0 (6-7)

2 3

Too YLt yTw . V2il” (T
A tly, o, Bi Xii) =7, .texljal_l_'_e ijWoi 4 = o%ijWii
(l ir Y Bl l]) 0,1 2 3 (6-8)
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The reliability function R(t|(xi, Bi, x; j) in Equation (6-4) is then given by:

R(tlyi' o, Bi, Xij) =e A(t|yl-, o, B, Xij),

T 42 T 3T
—<Vo,itexi1'“i :ylgt eu"oi :yzgt e XL ) (6-9)

Plugging Equations (6-6) and (6-9)into Equation (6-5), we have the PDF function of the

failure time of the i-th component at the j-th testing stress level as:
fTij(th(i: o, By Xij) =

T . T . T ,
(Vo,iexija‘ + yy,ite* Vol + Vz,itzex"wl'L)
(6-10)

T 2 T 43T
—<Voitexif“" =y1%t e ij"o. :yz'sft e "L >
X (e

B — Bayesian Inference Relationship and Likelihood Function Formulation
Letting the collected failure time data of the i-th component at the j-th testing stress level
be t;; = {t;j(k), k =1, 2,..., n;;}, where n;; is the number of tests at the j-th testing stress

level of the i-th component, we have the likelihood function of observing t;; as
nij

f(tis|vi i, B xi5) = l_lfTij(tij(k)|Yi: a;, B X;j). (6-11)
k=1

Letting the failure time data collected over all the testing stress level of the i-th component

be t; = {t;;, j = 1,2, ..., m;}, the likelihood function of observing t; is then given by:

m;
f@& v o, By x7) = l_lf(tij|Yi; a;, Bi X)), (6-12)
j=1

in which x{ = {x;;, j = 1,2, ..., m;}.
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Plugging Equations (6-10) and (6-11)into Equation (6-12), we have the likelihood function

for the i-th component as follows

m;  Tij

f&lyn a;, By, x;) = 1_[ Hf(tij(k)|Yi:ai: Bixij),

j=1 k=1

i i L 1jWo,i ' ’ Wi
=112, kil([[yo,iexja + vty ()Mol + (tfl(k)) QXJWL]] (6-13)

—<y0,i(t]i'(k))exi(j)T“i o GO iTwy , ViGN iy )
X | e
where wo; = a; + B; & wy; = a; + 2;.
The Likelihood function given in Equation (6-13) does not include censoring and it can
be simply modified to include censored data as shown in [134].
With the above likelihood function, we can then update the component-level ALT

parameters, y;, &;, and 8; of the i-th component using Bayesian method as below

fQri o, Bilt], x3) o f(& v o, B X{) fy, (Vi) fa, (@) f3,(Bi), (6-14)

where “oc” stands for “proportional to”, f,,(¥:), fo,(@;), and f3 (B;) are the prior distributions of
Yi, ;, and B;, respectively.
Next, we will discuss how to aggregate the component-level information to the system-

level for the evaluation of system reliability.
6.1.4 Uncertainty Propagation to System Reliability

In this section, we intend to calculate the system reliability of a system in which the

components are functioning together, logically or physically, causing their failures to be dependent
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on each other. So, in order to propagate the uncertainties from the component parameters to the
system reliability, it is necessary to model the dependence between the component-level ALT
failure time data of the different components. In this following section, the shared frailty model as
discussed in Section 4.1.3B is employed to establish a link between the component-level ALT
model parameters and system-level failure time. Next, we will discuss how to construct this kind
of connections for two categories of systems, namely series system configuration and other system

configurations- Dependence via Frailty Models and Gamma Distribution

A — Series System Topology
To model the dependence among components and establish the connection for a series
system, we use the Gamma shared frailty model. The gamma shared frailty model assumes that

the frailty factor follows a gamma distribution that is Z ~ Gamma(v, v) with mean equal to 0 and
variance var(Z) = 6 where §% = % and v is the shape parameter which is equal to the scale

parameter of the gamma distribution of Z. This assumption is made to avoid the non-identifiability
issue in Bayesian inference [135].
Combining the frailty model given in Section 4.1.3B with the EHR model and the quadratic

baseline hazard function [63], the modified hazard function is then given by

Tg. T
A (t|z,vi &, Bi xij) = 24 (t ex”m) e, (6-15)
The reliability of the i-th component at the j-th stress-level after introducing the frailty
factor z is given by
Pr(T; > t|z,v;, a;, Bi:xi]')

(6-16)
= R(t|z,vi o, Bi,X;5) = e~ #A(vaPixy)
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After integrating out the uncertain frailty factor Z for given v, we have the unconditional

reliability function at nominal stress X; ,, Vi = 1,2, ..., N¢ as [89] :

R(t|vi o, Biv, Xip) ZJ- R(t|zvi ;B v, Xin)f z1p(zIv)dz,
0

(6-17)
= E(e—ZA(fWi,ai'Bi,Xi,n)) =1L, (A(ti|Yi:ai: Bi:xi,n)):

where f7,(z|v) is the PDF of the random frailty factor conditioned on given distribution

parameter of v, and L, () represents the Laplace transform over Z.
The joint survival function of a series system (i.e. system reliability) at the nominal stress

levels, X; ,, Vi = 1,2, ..., N¢, is given by
Rsys(t IYsys; asys; Bsys; U, Xau ) = Pr(Tl >t TNC > tIYsys; asys; Bsys: U, Xau );

Nc
o0 (6-18)
= J- 1_[ PI'(Tl' > tlZ, Yi, A, Bi, v, Xl',n) fZW(ZlU)dZ,
0 %=1

where Rsys(t [Vsysr Asyss Bsys) Vs Xau ) is the system reliability conditioned on Yy, s, @sys, Bsys.

v, and Xgp1, Ysys Osys, Bsys and Xgy; are respectively Xq = {X;, Vi = 1,2, ..., N¢}, Ogys =

{ay, ay, ..., aNC}a Bsys = {B1, Bz -, BNC}: and ygys = {Y1 » Y2, ""YNC}-
The Joint Survival Function (i.e. Reliability) for given a series system is given by the

following probability equation:

Nc¢

Rsys(t|Ysys: asys: Bsys; U, Xau ) = Lz Z ZA(ti IYiJ a;, Bi; Xi,n) ’

i=1
v (6-19)

Nc¢
1
= |1+ Z A(tilvi &, Bi Xin)
i=1
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Combining Equation (6-8) with Equation (6-19), we have system reliability of a series

system for given Yy, Osys, Bsys, and v as

Rsys(t|Ysys' asys' Bsys: U, Xau )

Nc¢ v
2 43 -
= 1 -|- EZ(YO itiex'il,‘nai + @ exgnwo,i + @ eXEnW1,i) (6 20)
v 4 - ’ 2 3
=

where v 1s the variance of Z, and wy; = a; + B; & wy; = «a; + 2;.

B - Mixed and Non-Standard Systems Topology

Even though the above equations (6-15) through (6-20) have analytical solutions that
allows linking component-level ALT models to system reliability, it is inapplicable to systems
with complicated configurations, it is rather only applicable to systems with series configuration.
However, some system configurations can be converted into series system expressions and then
the above discussed approach can be applied. For some situation, this kind of transformation,
however, is complicated. In addition, it is sometimes cumbersome to convert systems
configurations (e.g. networked systems) into series ones. To overcome this challenge, this
subsection will develop an approach that allows connecting component-level ALT models with
system reliability for any system configuration only if the system topology can be expressed as
Boolean logical functions.

Next, for given values of v, Yy, Qsys, and B,5, we sample ny particles for the frailty

factor z using the inverse of the Gamma distribution; Gamma™1(v,v). We define the obtained
samples of Z as zg, s = 1,2, ..., N,. For each z,, we then generate samples of the component failure

time t;,, of the i-th component at nominal stress X; , using the following inverse CDF function:
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tin = Frt(uinlzs, Vi, &, B Xin),
(6-21)

where u; ,, is a random CDF sample generated from MCS for the i-th component at nominal stress

level, and FT‘i1 (u|zs, Yi, o, Bi, xi,n) is the inverse function of the following CDF function

Fr,(tlzs, Vi, i, Bi Xin) = 1 — R(t|2s, Vi, s, By Xi0),
=1-

T a T w: T . i
=2 ([Vo i ity e in"oly y, i2e¥in1i) ) (6-22)
e ' : : _

For each component, we obtain the failure time samples as ti, = {t;,(q), Vq =
1,2,..,N;i=1,2,..,Nc}, where N, is the number of samples generated using MCS in Eq. (27).
Now, for any system topography, we define the failure function f;;,.(-) as a function

representing the failure of a system based on its topology (i.e. configuration) as below:

tsysn (@) = frime (tig,n (@), t3n(q), - tlilc,n(q))' (6-23)

min(t§ , (q), 5. (@), -, t,svc,n(q)) — Series System,

ftime = max(tin ORI t,f,c,n(q)) — Parallel System, (6-24)
Defined according to system topology — Otherwise,

where t5y5n (q) is the g-th sample of system failure time at nominal stress conditioned on
Ysys:» Qsys, BsySa and v.

Based on samples of tg,s, (q), Yq = 1,2, ..., N,, obtained from the above equations, the
system reliability at nominal stress level X4y conditioned on Zzg, Vsys, Qsys, Bsys, and v is

calculated by

Yaer [(tsysn (@)
Rsys(t |Zs' Ysys: asys: Bsys' Xall) = 1 N. ’ (6_25)
r

where [ (tgym (q)) = 1, if t5y5, (q) = t; otherwise, | (tgys,n (q)) = 0.
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The system reliability conditioned on Yy, s, ®sys, Bsys, and v is then given by

N
_ Zs ? Rsys(t |Zs: Ysys' asys' Bsys: Xall)
Rsys(t | Ysys; asys; Bsys: v, Xall) - N . (6_26)
z

With Equations (6-15) through (6-20), we connect component-level ALT models with
system reliability with the consideration of dependence between failure time distributions of
different components. By applying Equation (6-15) through (6-26) for posterior distributions of
Ysys: Asys, Bsys obtained using the method presented in Section 6.1.3, the uncertainty in system
reliability estimate can be reduced using component-level ALT data for any system
configurations. Next, we will discuss how to connect system-level ALT data with component-
level ALT models and system reliability.

Figure 6-2 below summarizes the steps of propagating the uncertainties using the
component level ALT data with frailty models to model unseen factors causing dependence

among the components of a system when operating under normal conditions.
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Figure 6-3 Flowchart of connecting component-level ALT data with system reliability using shared frailty
models
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6.2 Uncertainty Propagation of System Level ALT Data to System Reliability

In this section, we establish a connection between the system-level ALT at high stress level
with system reliability estimate at nominal stress level. A direct way of achieving this goal is to
test the whole system followed by applying the steps of the component-level ALT analysis method.
Aiming to link system-level ALT with system reliability while preserving the connection
developed in section 6.1, we leverage the use of physics-informed models, which are available in
the design stage, to establish the stress relationship among components. Next, we start by
introducing the physics-informed model and then discuss how it will be applied to construct the

connection between system-level ALT and system reliability.

6.2.1 Framework Steps Overview

The frameworks allow propagating the uncertainties using the testing failure data
collected from system level testing via accelerated life testing of a whole system. The framework
consists first of mapping the stresses via the physics informed model as shown in Section 5.2.2.

Unlike the framework presented in the previous section above, Section 6.1, the model
integrates the frailty factor by taking its variance into account. The shared frailty model allows
modelling the unobserved factors causing dependence among the components. Including the
frailty factor into the likelihood and applying Bayesian Inference to update the parameters of the
model will then reduce the uncertainty included in the variance of the frailty factor.

After sampling out the posterior information of the parameter, the uncertainties are
propagated using the system topology: mixed or series, depending on the system failure design.

The propagation of the uncertainties will allow estimating the system reliability.
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The framework is broken into three steps: first the likelihood function is derived based on
the distribution free model by using the pdf based on hazard function, next the Bayesian
inference is applied to sample the posterior distribution of the parameters, and last the
uncertainties are propagated to estimate the system reliability based on the system topography.

Figure 6-4 below summarizes the steps of framework that will be followed in order to
establish the system reliability using system-level ALT data. To construct the likelihood, first we
need to map the stresses from the boundary component to the non-boundary components. Next,
the dependence shall be modelled using frailty models. Adding the system-level ALT data the
likelihood will be formulated. Bayesian Inference is applied to reduce uncertainties. Last, the

system reliability is established based on the system topography.

System-level ALT
Data

}

Physics Informed Const.ruct h.k Ehihood Dependence via
function using EHR < :
Model Frailty model
model
Reduce

uncertainties using
Bayesian Inference

Sample Posterior
Ditributions via
Particle Filtering

v
Propagate
uncertainties to
system reliability

Figure 6-4 Framework Overview of the uncertainty propagation using system-level ALT data
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6.2.2 Likelihood and Bayesian Inference Via EHR Model
In order to develop the likelihood function using EHR model, establishing the connection
between the component stresses and the system level stress is important. First, the physics
informed model is explained then the likelihood and the Bayesian inference relationship based

on EHR model are presented.

A — Physics Informed Model
Let the testing stress be x, so assuming we have n; boundary components, we denote the

stresses of boundary components as x? = {x?, ...,x}’lb} , and that of non-boundary components

stress as XP~ = {x?_,...,x}’l;_}where n,_ = N; —n, is the total number of non-boundary

component. Using the physics-informed model, the non-boundary component stress to predict

b

xP~can be predicted using xP as follows

X0~ = Ly (x°, @), vg =1,2,...,m,_, 6-27)
where , @@ is a set of deterministic and random parameters representing uncertainty for situation
in which the load prediction models cannot accurately predict the load conditions of non-boundary
components[39,40], XB_ is the g-th non-boundary component (g-th element of x®~) , and

Lyq-(); Vg = 1,2,...,n;,_ is the set of load prediction models used for stress mapping of xP to

b—
Xq .

B — Bayesian Update and Likelihood Function Formulation

Recall that we have the parameters of the component-level ALT models as agys =

{ay, 0y, ..., oy}, Bsys = {B1, B2, - Bnc) and Ysys = {¥1, Y2, .., ¥ }- We define the system-
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b b b

level testing stress levels as Xgys = {xl, X3, e, Xmsys}’ where Mg, is the number of ALT

system-level testing stress levels, X]l? = [xfj , xé’,j, s xﬁb'j], Vj =1, ..., Mgy, is the vector of

normalized testing stresses applied to the boundary component at the j-th stress level. Letting the

collected failure time data of the system at the j-th testing stress level be tgys =

{toys, 1o toys,2s o tsysmyye} ANd toysj = {toys j(k), k =1, 2,..., ngyg;}, where ngyg ; is the
number of tests at the j-th testing stress level, the likelihood function of observing tg, ; is given
by

f(tsys |Ysys y Asys ) Bsys » Xsys, Z, (l))

Mgys Nsys,j

= 1_[ 1_[ f(tsys,j (k)|Ysys: Asys » Bsys 'X})’Z’ w)-

j=1 k=1

(6-28)

where tg,,5 ; (k) is the k-th observation at the j-th stress level.

In order to evaluate f (tsys, j (k) |ysy5 » Osys s Bsys x]b, Z, oo) in above equation, we first map
the accelerating factor from the boundary components to the non-boundary components using the
physics-informed model as follows

b- _ b . —
X0~ = Ly (x2,0@); Vg = 1,...,m,_, (6:29)

in which XB’ ; 1s the testing load of the g-th non-boundary component at the j-th stress level and
x]b is the load condition of boundary component at the j-th stress level.
We then generate random failure time samples, t,incs, iVi=12..,N, for each

component at the j-th ALT stress level of the system-level ALT as below

trincs,j = Fﬂl (ui]- |Yl » O, Bi: Xijr 2, 0.)); (6-30)
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where u;; is a random CDF sample generated from MCS for the i-th component at the j-th stress
level in the system-level ALT, and FT_L,1 (u|yi, a;, Bi X,z u)) is the inverse function of the
following CDF function

Fr,(tlvi, 0, B Xij, 2, @) = 1= R(thes ;)

T os Twa T W -
—Z ([Vo,iexi'jal+ Yiite’ "0l yy it2e VL] ) (631)
=1-—ce ,
where
S { r] ; Vr=1,2,...,n, ifiis aboundary component
ij b— ph s . _
Xp;; Vq = 1,2,..,n,_ifi is anon — boundary component (6-32)

After we generate random failure time samples, t,incsl 2 Vi= 1,2, ..., N, of the failure time

(latent failure time) of each component in system-level ALT, we have the samples of the system-

level failure time at the j-th stress level as
s (1) = Feme (thnes (1), s (W), st (D) s R =12, s,
in which n,,,.¢ is the number of Monte Carlo samples and f;;;,.(*) is a function defined according
to the system topology as discussed in Sec. 3.2.
Based on the system-level failure time sample, f (tsys, i (k)|ysys s Bsys,x}’,z, w) in

Equation (2-25) is then computed using the Kernel function as

f(tSJ’SJ (k) |Ysys ’ asys , Bsys ) ] yZ, (1))

Nimces sys

_ 1 Sys,j (k) - tmcs,j (h) (6-34)
IRl

h=1

where k(+) is the kernel smoothing function and &; is the band width.
Using the above equation, the likelihood function f (tsys |ysy5 » Osys s Bsys » Xsys » Z, oo) can
be obtained. Based on that, for given parameter v of the Gamma frailty factor, we then have the

unconditional likelihood function by integrating out the uncertain frailty factor Z as follows
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f(tsys |Ysys » Usys ) Bsys » Xsys» U, (1))

= f f(tsys|Ysys » Usys Bsys » Xsysr Z, (‘))fZ (zlv)dz, (6-35)
0

where f7(z|v) is the PDF function of the uncertain frailty factor Z for given parameter v.
Based on the likelihood formulation given in Equation (6-35), we can then reduce the
uncertainty in the component-level ALT model parameters and the frailty factor distribution

parameter using system-level ALT testing data t,; using Bayesian method as below
f(Ysys ’ asys ’ Bsys U, w|tsys: Xsys)

x f(tsys|Ysys » UAsys Bsys » Xsys) U, (.0) X fV(U) X fm ((.0)
(6-36)

N¢
B EADIACHACH
i=1

where f;,(v) and f,,(w) are prior distributions of v and w, respectively.
In the next section, building upon the approaches developed in Sections 6.1 and 6.2, we
discuss the fusion of the ALT data collected from component-level ALT and system-level ALT

for system reliability analysis.

6.2.3 Uncertainty Propagation to System Reliability
After we have the posterior samples of the parameters Yy, s, 0y, Bsys, and v, we can
propagate the uncertainty to the system reliability at nominal stress level by following the same
steps detailed in Section 6.1.4 depending on the system topology. If the system is in series, we
would use Equation (6-20) shown in Section 6.1.4A and if it is a mixed system, we use the
algorithm detailed I Section 6.1.4B to sample component failure times using Equation (6-31) the

posterior distributions of the parameters and proceed as detailed in 6.1.4B.
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Figure 6-5 on the next page explains in brief the steps detailed above starting with system
level testing data and how this data could be used through to estimate and reduce the uncertainty

in the system reliability.
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Figure 6-5 Flowchart of connecting system-level ALT data with system reliability using shared frailty models
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6.3 Reliability Assessment via Information Fusion of Component Level ALT Data with
System Level ALT Data

In order to fuse the information from component-level ALT and system-level ALT, we
make use of Sections 6.1 and 6.2. We define the combined accelerated testing stress as X;psr =

S &S s : : — b b b s _ -
{Xsys, X1, X3, .., Xy} in  which Xgys = {xl,xz, ...,xmsys} and X7 = [X;1,X;2, o, Xim, |, Vi =

1,2, ..., N¢, where mgy, is the number of ALT system-level testing stress levels and m; is the

number of ALT component-level testing stress levels
Following Bayes’ theorem and the Bayesian inference as the estimation method and merge

the ALT testing data we get:

f(Ysys » Asys Bsys U, wlti' t;, ) tlsvc' tsys: Xtest)
x f(tsl t3, tzsvc; tsys |Ysys » Usys Bsys U, 0, Xtest)
Nc (6-37)
X fy () % fu(@) x | | £ fu @) f3 (B,
i=1

where f(ti, t3, ot tsy5|ysy5 ) Osys Bsys» VU, w,xtest) is given by

f(tig; tég; oy tzsvc; tsylesys » Osys ) Bsys U, W, Xtest)

= f( tsys |Ysys » UAsys ) Bsys » Xsys) Vs (.0)

e (6-38)
X 1_[ f(thYU Qa;, Bi) ) Xi's):
i=1

in which f( tsys|Vsys, Asys, Bsys » Xsys, v, @) is computed using Equations (6-28) through (6-36)
and f(t7|y;, a;, Bi,, X7) is computed as given in Equations (6-11) through (6-14).

After the uncertainty reduction using both component-level and system-level ALT data
using Equations (6-37)and (6-38), we can obtain the posterior distributions of Rg,s(t) by
propagating the posterior distributions of Ygys, @y, Bsys, v, @ to system reliability using the

uncertainty propagation method presented in Section 3.2.2 for different system configurations.

156



In the following section, we demonstrate the effectiveness of the methodologies developed.
We first take a numerical example to show the results of using two different approaches to estimate
the system reliability of the same system configuration. Then, we demonstrate the effectiveness

fusing the information from both component-level ALT and system-level ALT.

6.4 Numerical Examples

In this section, we use numerical examples to demonstrate the efficacy of the proposed
method. It consists of two parts: (1) demonstration of the proposed method in system reliability
analysis of mixed systems using ALT; (2) information fusion of component-level and system-
level ALT data for system reliability analysis. Next, we will first present the example that is

employed. After that, we will explain the two case studies in details.

6.4.1 Description of the Numerical Example
We take a circuit board as an example to demonstrate the developed method. The
reliability of the system for time threshold of T, = 150 weeks at the nominal stress is to be
estimated using component-level ALT data.
The example is a circuit board of 4 electronical components and is used for illustration.
We simplify the radar circuit shown above in section 4.1.1. Figure 6-6 shows the simplified
circuit board of the radar system and Figure 6-7 presents the reliability block diagram of the

system.
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Figure 6-6 Simplified series configuration of the circuit board of a radar system

Resistor 1 Processor Resistor 2 Sensor

Figure 6-7 Reliability block of a radar circuit system

In this case study, Table 6-1 gives the true values of yg,s = {y1,y2 Y3 ,y4} (i.e. the

quadratic function parameters of the baseline hazard function as discussed in Section 3.2.1). Table

6-2 presents the true values of the regression parameters o5y ={a;, Az, &3, A4}, and Bg,s = {B1,

B2, B3, B.} -
Table 6-1 True Values of baseline hazard function and the shared frailty factor variance
Component Vi
index (i _ _ _
@y (X107) yip (X 1071) | y,(x 107%9)

Resistor 1 1 0.97565 2.75371 5.95432
Processor 2 0.96005 2.46947 2.52201
Resistor 2 3 8.48655 3.48827 0.35832

Sensor 4 5.67227 2.96519 6.29922

The prior distribution of the parameters is assumed to be a non-informative uniform prior
distribution. Uniform prior distributions (Unif[a, b], where a and b are respectively the lower

and upper bounds of the distribution) are used for the other ALT model parameters.
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Table 6-2 True values of the regression parameters

Component o; B:
index (¥)
@i (x 10711) ay,i @i (x 10711) Ay,
Resistor 1 1 1.59914 13.82604 1.31948 1.05106
Processor 2 1.54849 14.13588 2.00388 2.50621
Resistor 2 3 1.46454 14.72182 1.06629 1.15892
Sensor 4 1.24498 15.46258 0.02146 2.53921

Table 6-3 and Table 6-4 below present the prior distribution parameters of these ALT

model parameters.

Table 6-3 Lower and upper bounds of the uniform prior distributions of the baseline hazard
function parameters

Yi~ Unif [aYi ’ in]

Componen , -04 , -15 _ -07
-t index (l) VO,l(X 10 ) yl,t (X 10 ) Vz,z (X 10 )

Ay, by, Ay, by, Ay, by,

Resistor 1 1 0.015 0.150 0.0464 0.464 0.09 0.9
Processor 2 0.019 0.19 0.0422 0422 0.0449 0.449
Resistor 2 3 0.15 1.5 0.0465 @ 0.465  0.0055 0.055
Sensor 4 0.105 1.05 0.0375 0375 0.0685 0.685

Table 6-4 Lower and upper bounds of the uniform prior distributions of the regression

parameters
Comp o;~ Unif[a,, by, | Bi~ Unif[ag, bg,|
RNt g (X1071) @y (X107 (X 10%)  By(x 10)
(1) Qay,; b"‘o,i Aoy ; b @y, ag,,; b.Bo,i ag, ; b,Bl,i

Resistor 1 1 0.1028 0.171 0.091 0.1514 0.09 0.15 0.072  0.12
Processor 2 0.099 0.165 0.087 0.145 0.139 0.231 0.151 0.251
Resistor 2 3 0.1041 0.173 0.098 0.1635 0.069 0.115 0.075 0.125
Sensor 4 0.087 0.145 0.093 0.155 0.142 0.236 0.153  0.256
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We then document the results in terms of variability percentage change. The percentage
of variance reduction (VR) is employed to quantify the reduction in the uncertainty between the
prior and posterior distributions of system reliability, R,,s(t). It is given by

B Var(RP™") — Var(RE*)

VR -
Var(R ETLOT)

0,
X 100%, (6-39)

where RE™°" and RP*** are respectively the prior and posterior distributions of system reliability
and Var(+) is a variance operator. A positive VR is an indication that the uncertainty has been
effectively reduced by applying the developed algorithm.

In the following sections we present the results graphically and tabulated, we then present
a comparative analysis with interpretations. We solve the problem using the three uncertainty
propagation means as in Sections 6.1, 6.2 and 6.3 to check which method is more efficient in

reducing the uncertainty given the variability of the frailty variance v.

6.4.2 Case Study 1: Connecting Component-level ALT with System Reliability

This section focuses on demonstrating the approach developed in Section6.1, which
connects component-level ALT with system reliability. In order to illustrate the capability of the
proposed methods in handling systems with different topologies, we first obtain the system
reliability of the system given in Section 4.1.1 in Figure 6-6, using the propagation method of a
series system topography presented in Section 6.1.3A. After that, we will treat the same system
as a mixed system configuration and analyze the system reliability using the approach proposed
in Section 6.1.3B.

Using the same example presented in the previous section, Section 6.5, under sensitivity

analysis we proceed to solve the example via the two different system configurations approach.
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Table 6-1 gives the true values of y s = {yl,y2 Y3 Ya } (i.e. the quadratic function parameters
of the baseline hazard function as discussed in Section 6.1.3A).Table 6-2 True values of the
regression parameters presents the true values of the regression parameters a,,s ={a,

oy, o3, 04}, and Bys = {B1, B2, B3, B4} . The prior information for y 4,5 are as given in Table 6-3
and the prior information for the regression parameters o, and g, are given in Table 6-4
above.

In this case study, the prior distribution of the frailty factor variance v is assumed to be a
non-informative uniform prior distribution, v~Unif[5, 10.00] and the true value of the frailty
factor variance is set as v = 6.

For a series system, we use Equations (6-15) through (6-20) to calculate the true system
reliability using the true values of y gy, @y5, and Bg,s. Then, we obtain the prior distribution of
Rg rior by propagating the uncertainties in the prior distributions of y gy, @5y, and By to
system reliability using the method discussed in Section 6.2.2. Afterwards, component-level
ALT data are used to reduce the uncertainty in y gy, @y, and Bsy,. For the component-level
ALTs, the testing stress levels for components 1 to 4 are respectively x; = [0.6,0.24]; x, =
[0.643,0.571,0.536, |; x5 = [0.443,0.393, ], and x, = [0.529,0.643]. The number of tests at
each stress level for each component are respectively n;; = 20; ny, = 15,1, = 20,n,, =
ny3 = 10; ng; = n3, = 10;n4; = 20 and ny, = 10. The posterior distribution of the system
reliability Rg ot s finally obtained by using the posterior distributions of y gy, 0y, and
Bsys- Figure 6-8 shows the prior and posterior distributions of Rg,,¢(t) in comparison with the
Rgrior

true value. We note as “Prior Rg” (green line) has a greater variability compared to

t . .
RE®*" as “Posterior Rs” (red line).
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Figure 6-8 shows the posterior and prior distributions in comparison with the true value
for a series system. First, the uncertainty in the priors has been propagated from the components
to the system reliability by using prior distributions of the parameters as shown in Section 6.1.3 ,
we note this reliability “Posterior System Reliability” below plotted in dashed blue line color.
We then use these sampled posterior data from Bayesian inference to propagate the uncertainties
and compute the system reliability using Equation (6-20). The posterior system reliability is
noted as “Posterior System Reliability” and it is represented by the orange line. The green
straight vertical line is the True System Reliability referred to as “True Value” in the graph
below.

Prior and Posterior System Reliability

30 1 —&~ Prior Rs
-~ Posterior Rs
~— True Value

25 1

10 1

086 0.88 0.90 092 094

System Relibility

Figure 6-8 Comparison of prior and posterior distributions for the series system topology
We then treat the system shown in Figure 6-6 Simplified series configuration of the
circuit board of a radar systemin Section 6.5 as a mixed system and use the approach discussed

in Section 6.1.4B to evaluate the system reliability. The same number of stress levels and tests
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are employed as that when the system is treated as a series one. In order to apply the approach
for a mixed system, we define f;;e(*) in Equation (6-24) as fiime(T) = min{T;, T,, T3, T4}
Figure 7 below shows the comparison of the prior and posterior distributions of the system
reliability using the mixed system algorithm. It shows a reduction in the uncertainty in the
posterior distribution of Rg,,¢(t) as compared to the prior distribution. The results in Figure 6-8
and Figure 6-9 show that the proposed approach can effectively reduce the uncertainty in the
system reliability using component-level ALT data with the consideration of the dependence
between the failure time distributions. Note that the difference between Figure 6 and Figure 7 is

caused by the uncertainty in the synthetically generated ALT data.

Prior and Posterior System Reliability

—&— Prior Rs
30 4 -~ Posterior Rs
~— True Value

25 1

PDF
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T T

0.86 0.88 0.90 0.92 0.94

System Relibility

Figure 6-9 Comparison of prior and posterior distributions for the mixed system topology

We then use the metric given in Section 4.1 to quantitatively quantify the accuracy of the

proposed methods. Table 6-5 shows the results of VR for a series system versus a mixed one.
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Results shows that using the series system algorithm (i.e. Section 6.1.3A) leads to a reduction of
38% in the variance of system reliability estimate, and the mixed system algorithm (i.e.
Section6.1.3B) results in 43% reduction in the variance. These results demonstrate the efficacy

of the proposed methods in assess system reliability for different system configurations.

Table 6-5 Comparison of variability reduction for series and mixed system configurations
Series System Topology Mixed System Topology
VR 37.79% 43.11%

6.4.3 Case Study 2: Uncertainty Propagation to System Reliability Via Information
Fusion
In this section, we continue using the same example in Section 6.5 to demonstrate the
capability of the proposed method in fusing both component-level and system-level ALT
data for system reliability analysis. Figure 6.10 shows the system under system ALT testing
and shows the boundary and the non-boundary components model of the system which

consists of 4 electronical components.

Induced Induced
Voltage Voltage

—W— 4 —WA—{eei)—
W W ()

Resistor 1 Processor Resistor 2 Sensor

Figure 6-10 Circuit board of a radar system under system- level ALT testing

In this case study, the true values and prior distributions for y gy, @, s, and B, are the

same as that of the first case study given in Table 6-1 through 6-4.
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The prior distribution of the frailty factor variance v is assumed to be a non-informative
uniform prior distribution, v~Unif[0.005, 10.00] and the true value of the frailty factor variance
issetas v = 6.

In system-level ALT, it is assumed that resistor 1 and resistor 2 receive the induced
testing voltage as shown in Figure 8. The boundary components are therefore resistor 1 and
resistor 2 and xP = {xP,x5}. The testing stress levels for resistor 1 and resistor 2 are respectively
xP = x5 = [0.571,0.315]. The number of tests at each stress level for each component are
respectively ngy51 = Ngy52 = 20. The stress relationships between boundary and non-boundary
components are assumed to be

Xprocessor = 0.98 X} + @Frocessor,
X0 or = 0.85 x5 + wenseT, (6-40)
where x? and xY are the stress levels of resistor 1 and 2, respectively.

Figure 6.11 shows the compassion of the prior and posterior distributions of system
reliability using only component-level ALT data. We then quantify the reduction in the variance
using the metrics defined in Section 6.5. It shows that VR equals to 18.94 %. This results further
demonstrate the effectiveness of the method in reducing the uncertainty of system reliability
estimate using component-level ALT data. Note that the prior distribution in Figure 6.11 is

different from that in the first case study in Section 6.4.1 because different prior distributions are

used for the frailty factor v.
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Figure 6-11 Prior and posterior distributions of system reliability using component-level
ALT data
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Subsequently, we fuse the component-level ALT data with the system ALT data using

the method discussed in Section 6.3. Figure 6-12 shows the comparison between the posterior

Prior and Posterior System Reliability

-3 Prior Rs
-~ Post Rs Component
20 { —¢~ PostRs IF
- True Value
15 p
.
(=)
S 10 4
5 <
o P

0775 0800 0825 0850 0875 0900 0925 0950

System Relibility
Figure 6-12 Comparison of prior and posterior distributions of the system reliability using
different methods
distributions obtained by using the component-level ALT data versus the information fusion
(both component-level and system-level ALT data). While both methods reduced the variability
prior post

in Rfos't compared to the R;" ", the posterior distribution Rg ™" of the system reliability

obtained via information fusion (i.e. “Post Rs IF”’) shows a further reduction in the uncertainty
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than its counterpart obtained using the component-level ALT data (i.e. “Post Rs Component™)
alone.

Table 6-6 shows a side-by-side comparison of both methods in terms of VR. The VR
using information fusion (~51%) is ~2.5 times greater than that obtained from component-level
data alone (~19%). It shows that combining testing data from two different testing levels (i.e.
component-level and system-level) leads to a further decrease in the uncertainty of the system
reliability and a higher confidence than using only component-level ALT data.

Table 6-6 Comparison of variance reduction using different methods
Information Fusion Component-Level ALT data only
VR 50.84 18.94

The above results demonstrate the effectiveness of the proposed method in fusing the

information from both component-level and system-level ALT data for system reliability

estimate.

6.5 Sensitivity Analysis of Frailty Factor on the Uncertainty of the System Reliability

In this Section, we aim at studying the effect of the Variance of z which is the variance of
the frailty factor on minimizing the uncertainty results in the system reliability between the prior
and posterior distributions sampled by using a series system of 4 components as the one
presented in Section 6.4.1.

As a reminder, the larger the value of v, the stronger the dependence is among the
component, so the variance of the frailty factor is the indicator of the dependence power/strength

among the components of one system.
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We provide a sensitivity analysis based on varying the variance of v prior information
interval. Table 6-7 shows the different prior distribution intervals (Uni ~[a, b]) of the variance
of v that is assumed to be a non-informative uniform prior distribution.

We study the reliability over the time interval of [0,150] with a time unites in weeks. For
component-level testing we follow the testing specifications given in Section 6.4.2 and for system-

level testing we follow the given in Section 6.4.2. Table 6-1 gives the true values of yg,s =

{yl,yz Y3 ,y4} and Table 6-2 presents the true values of the regression parameters o, ={a,

oy, 03,0}, and Bsys = {B1, B2, B3, Ba} -
Table 6-3 and Table 6-4 present the prior distribution parameters of these ALT
model parameters: Y gy, Oy and By respectively.

Table 6-7 True Values of Variance v
variance of v
Uni ~|[a, b]
[0.001,2.00] 1.8
[0.001,7.00]
[0.001,10.00]
[0.001,12.00]
[0.001,14.00]

True Values of v

[e) I e) Nl e) Bie)]

6.5.1 Results and Interpretations:
The corresponding graphs are listed in Appendix A at the end. Increasing the dependence
strength by increasing the variance of v range and solving using the different methods presented
in Sections 6.1,6.2 and 6.3 respectively, it is obvious that as the variance of v is larger the

methods of the uncertainty propagation using the information fusion is more effective compared
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to using the component- ALT data and system-ALT data propagation methods in order to
estimate the system reliability.

The variability is reflected by calculating the VR according to Equation (6-39). As we
increase the variability of the variance of v, the information fusion and the system-ALT methods
show an increasing VR compared to a decreasing VR for the component-ALT. Fusing the
information from component-ALT data and system-ALT data allows a further reduction and
becomes more important as the variability of v increases.

In conclusion, system data becomes more important when the variance of v increases
which explains the information fusion effectiveness. Further sensitivity analysis could be applied
to study the effect of the variability of the regression parameters on the result of the system
reliability estimation as well as the parameters of the quadratic baseline hazard function
parameters.

Table 6-8 Variability comparison in prior system reliability and posterior system reliability
using the different propagation models

VR
v Prior Var(v) 'Il'zrue Component System ALT to Information
5ys ALT to R,y Rgys Fusion
[0.001,7.00] 4.066 34.21% 24.44% 50.85%
[0.001,10.00] 8.2989 0.892 43.46% 18.93% 50.97%
[0.001,12.00] 12.08489 ' 47.82% 15.83% 51.39%
[0.001,14.00] 16.2449 49.32% 13.21% 51.77%

6.6 Summary

This Chapter presents a novel framework to system reliability assessment using
component-level and system-level ALT data. To establish connections between different testing
levels and system reliability, frailty models are employed to model the dependence among
components. Physics informed analysis is used to connect the system-level tests at higher-than-

nominal stress to the system reliability at nominal stress.
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The likelihood function and the Bayesian Inference relationship have been established
using the extended hazard regression models. The model uses a baseline hazard function that is
assumed to be quadratic, with three parameters of interest, and distribution free. Regression
parameters to model the effect of the accelerating factor on the failure time has been considered
and subject to uncertainty reduction.

The uncertainty propagation has been detailed for different ALT data collected at a
system level or component level as well as the chapter shows a fusion method for both data
together in order to estimate the system reliability.

The developed approach also has been investigated for different system topographies
including series and mixed systems. Two case studies demonstrate the effectiveness of the
proposed framework.

Numerical algorithms are developed to reduce the uncertainty in system reliability
analysis using different type of testing data by integrating frailty models and Bayesian inference
methods with extended hazard regression (EHR) models. Graphical and tabulated results have
been enclosed showing the effectiveness in the framework in reducing the variability in the
system reliability.

Studying different frailty models to model the heterogeneity among the ALT instead of
shared frailty factor is an important focus to research in the future. Additionally, including shared
frailty models with a different distribution rather than Gamma distribution is also worth pursuing

in the future.
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Figure 6-13 Chart showing the percentage reduction in the variability between prior Rs and
posterior Rs for different Prior Variance v using the different propagation models
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Chapter 7 Concluding Remarks and Future Work
In this Chapter, we review in summary the work done in this research and summarize the
research. We then identify future work on the research topic. Finally, we list he takeaways in the

concluding remarks section.

7.1 Summary of Research Achievements

The research is focusing on accelerated life testing for systems with dependent
components. The research goal is to develop methods for propagating uncertainties from data
collected at different testing stages: component level testing and system level testing. the
research proposed a novel ALT framework combining both types of data in order to maximize
the uncertainty reduction by using all available data to estimate the system reliability. The
research was approached by a thorough review of the state of art. Various methods have been
used in the implementation of the frameworks: Bayesian Inference, Particle Filtering, Weibull
Distribution, Copula Functions and Frailty Models. The following were accomplished by

carrying this research:

1- Review and Background:

Chapter 2 presented a review of the literature about the frameworks, observations and
studied that tackled ALT design and modelling. Reviewing the state of art enabled the use of
different techniques together in order to mold a new methodology to model the estimation of

system reliability with different components. The methodology is based on propagating the
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uncertainties in parameters derived based on the approach chosen to fit the failure time data
collected during Accelerated Life Testing which was abbreviated by ALT.

Chapter 3 showed the merit and novelty of the research by incorporating a new approach
using different dependence modelling frameworks in order to model the dependence between the
components of a system. Additionally, it adds to the ALT field by showing the versatility of
integrating data from different ALT testing stages to derive and reduce the uncertainty in the
overall system reliability.

Chapter 4 talks about the methods available in the literature that have been merged
together to approach solving the ALT problem proposed in this research leading to the major two
chapters; Chapter 5 and Chapter 1 where two approaches have been taken in order to estimate the

system reliability.

2- Uncertainty propagation using ALT data using statistical distribution:

Chapter 5 presents a novel framework for using a 2 parameters Weibull distribution to
model the ALT data collected from different testing stages: component level testing and system
level testing. Three frameworks have been presented by propagating the uncertainty : one for
uncertainty propagation to system reliability using component level ALT data, the second
framework was intended for system level ALT data used to propagate the uncertainty to system
level, and the third model combines the first two frameworks by fusing the data together

collected from component testing and system testing.

3- Uncertainty propagation using ALT data using distribution free models:

Chapter 1 presents a different facet of the ALT coin by approaching the problem using a

distribution free approach. The framework shows the usefulness of the gamma shared frailty
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models in modelling heterogeneity that is an unobserved factor that causes dependence among
the components. The methodology is broken into three parts based on testing stages: component
level testing and system level testing as well as the information fusion concept that is built based
on fusing data from two different testing stages together in order to minimize the uncertainty in
the system reliability. The method in this chapter is based on using hazard functions with a
quadratic baseline hazard function that has 3 parameters and two regression parameters as the
base equation, the model integrates the effect of the covariates which is the ALT accelerated
factor on the failure time of the testing units through an exponential regression form.

Bayesian inference methods were applied to reduce uncertainty in the parameters based
on prior information and particle filtering is used to sample the posterior information, followed
by uncertainty propagation to system reliability for different system topologies. In this chapter,

three frameworks are detailed similar to the one noted in point 1 above.

4- Modelling dependence among components:

Both, Chapter 5 and Chapter 1, showed how dependence models could be integrated to
model any dependencies between the components of a system. In Chapter 5, the copula function
is used in conjunction with the Weibull distribution in order to model the correlation among the
failure times of the components, whereas Chapter 6 makes use of the frailty models that are
widely used in the medical field and shows that frailty models are useful in modelling

heterogeneity among components in ALT modelling.

5- ALT optimization model:

Allocating the resources optimally can greatly help in reducing the cost of the accelerated

life testing. Planning ALT involves deciding on the number of specimens to be put at test, and
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the levels of the accelerating factor to be used. Applying the cost of testing as a constraint and
using Kullback-Liebler divergence to develop the objective method, Chapter 5 presents an

optimization model to estimate the optimal ALT design parameters.

7.2 Future Work

Future work includes integrating Correlated Frailty Models instead of Shared Frailty
Models and make a comparison between the two models regarding the ability of reducing the
uncertainties. Correlated Frailty Models allows to assume different dependencies among the
components however it might make the number of the estimation parameters large similar to the
Copula.

On the other hand, a different form the baseline hazard function could be a point of
interest for future work. Assuming statistical forms for the baseline hazard function with shared
frailty models is a room for investigation Studying the effect of the baseline hazard function
form might have an impact on the end result.

A different distribution for the Frailty Factor, other than the Gamma distribution, could
be studied in the future and compare the results to the Gamma shared frailty model

A different Copula Function_form could be studied, and a sensitivity analysis could be
done to conclude how the Copula form could affect the system reliability results

A sensitivity analysis on the parameters included in Chapter 6 is important to study the

effect of the values as well as the variability in the prior data on the system reliability estimation.
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7.3 Summary and Concluding Remarks

In brief, this research outcome is a new methodology for the Accelerated Life Testing
solving the issue of dependence among failure time of components of one system which will
increase the accuracy of the system reliability estimate. The research proposes a method showing
the versatility of ALT data usage by bridging the gaps between system reliability, component-
level testing data and system-level testing data. Additionally, it details an optimization model
that solves for the optimal design parameters which will reduce the cost of testing during any
product development phase. The latter will enable quality engineers better assess the system
reliability during the design stage by optimally allocating the resources and reduce the
uncertainty. Also, the research presents an approach of how frailty models could be of great use
in the mechanical design environment to model and quantify dependence among failure times of
components. This research will also turn benefits in the decision making and statistical studies

domains.
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Appendix A

In this appendix the figures showing the variability reduction between the prior

information and the posterior information of the system reliability are listed as follows:

1-

Figure A.1 (a) through (d) corresponds to the component-level ALT data propagation
framework presented in Section 6.1, each of figures correspond to a prior v interval.
Similarly, Figure A.2 (a) through (d) corresponds to the system-level ALT data
propagation framework presented in Section 6.2, each of figures correspond to a prior
v interval.

Figure A.3 corresponds to the information fusion framework as presented in Section
6.3.

Last, Figure A.4 shows a comparison between the posterior distribution of the system
reliability obtained via component-level ALT data propagation method versus the one
obtained via information fusion. The graph shows the variability of the posterior

distribution of Ry, against the prior information.
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Figure A.1 Prior, Posterior and True Value of the system reliability for different variance
v using Component Level ALT data propagation to system reliability method
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Figure A.2 Prior, Posterior and True Value of the system reliability for different variance v
using System ALT data propagation to system reliability method
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