
1 
 

 

Using Biochar in Coffee Agroforestry 

Management to Store Soil Carbon and Produce 

Biomass Energy in Puerto Rico  
 

By 

 

Juan Jhong Chung 

 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

(Environment and Sustainability) 

School for Environment and Sustainability 

University of Michigan, Ann Arbor 

April 2021 

 

 

 

 

 

 

Masters Committee: 

 

Professor Ivette Perfecto 

Professor John Vandermeer 



2 
 

Acknowledgements 

 

I would like to thank my advisors Ivette Perfecto and John Vandermeer for their guidance and 

support during my time at the University of Michigan. This thesis would have not been possible 

without their mentorship. I would also like to thank them for being incredible resources for 

myself and other students interested in using research to have a positive impact beyond 

academia.  

 

I owe an immense debt of gratitude to Dr. Jose Alfaro and Dr. Brendan O’Neil. I am thankful for 

Nicholas Medina, Lauren Schmitt, Iris Rivera, Simone Oliphant, Jannice Newson, Zachary 

Hajian-Forooshani, and everyone else at the Perfecto-Vandermeer Lab for their help and 

incredible camaraderie; and to Professor Javier Lugo at UPR-Utuado; Isa, Amarilis, and Warren; 

and to Lotty and Bernardo Morales from Café Gran Batey, for their help during my time in 

Puerto Rico.  

 

I would like to thank Casa Pueblo, a self-management project in Adjuntas, Puerto Rico who 

partnered with me and other students in our research projects. I am thankful to all the faculty and 

students of the Department of Agricultural Technology at the Universidad de Puerto Rico, 

Utuado. Particularly Profs. Mariangie Ramos, Olgalí Ramos, and Andre San Fiorenzo for their 

support during the biochar study. I  thank Daniel Morales from Puerto Rico Coffee Roaster for 

providing the decomposing bags where the coffee seedlings were planted. 

 

Finally, I would like to thank my parents, Luis and Victoria, and my sisters, Victoria and Luisa, 

for always being a solid foundation I can count on.  

 

 

 

 

 

 

 

 



3 
 

Introduction 

 

Anthropogenic climate change is disrupting ecological and human systems worldwide, 

particularly across the tropics. A complete transformation of our energy and food systems is 

necessary. We must aggressively phase out fossil fuels and dramatically reduce the current levels 

of atmospheric CO2 to avoid disaster. The 2018 IPCC Report acknowledges that to stay under 

the 1.5 degrees of warming target, carbon dioxide removal (CDR) must be employed. 

Unfortunately, most proposed CDR projects center around expensive and energy-intensive 

industrial-chemical processes. Instead, we hope that this research can contribute to the growing 

amount of scholarly research of biological carbon sequestration through smallholding 

agricultural management and energy microgrids.  

 The motivation behind this research is to understand the potential between coffee 

agroecosystems, smallholder farming, and climate change mitigation. Current research shows 

evidence that smallholder management of coffee agroecosystems is linked to increased 

biodiversity (Richard & Mendez, 2013; Perfecto et al., 2014; Goodall et al., 2015). However, the 

results are mixed for its potential for carbon sequestration and climate change mitigation 

(Schmitt-Harsh et al., 2012; Richard & Mendez, 2013; Goodall et al., 2015; Tumwebaze & 

Byakagaba, 2016). This study explores the sustainable management of coffee agroforests using 

biochar and biomass energy to store soil carbon and provide decentralized energy in rural and 

farming communities in Puerto Rico.  

This work is divided in two chapters. In Chapter 1, we examine the relationship between 

shade management in coffee agroforestry, and the availability of downed woody material 

(DWM), and its potential as feedstock for energy production. We estimate total biomass of 

DWM from sampling twenty coffee farms across a shade gradient in the central mountains of 

Puerto Rico using line transects. We then compare the average amount of DWM found in each 

farm and the amount of shade measured at two levels (at breast height and above the highest 

coffee bush).  Using the data obtained in the field survey, we estimate the potential for electricity 

generation per year using DWM from coffee agroforests in Puerto Rico and the potential for 

reduction in carbon emissions from the production of biochar. 

 In Chapter 2, we study a greenhouse experiment using biochar to understand its effects 

on plant growth of coffee (Coffea arabica). Using coffee seedlings grown in different mediums 

consisting of compost, soil, and biochar mixtures, we track height, number of leaves, and length 

of the longest leaf of each seedling for three consecutive months to understand the potential 

effect of biochar as a soil amendment. This study was the first part of a broader project with our 

local partner Casa Pueblo. This self-management organization owns a small coffee farm where 

the seedlings were transplanted for the next phase of this project. 
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I. Chapter 1: Estimating Woody Debris Biomass Availability 

across a Shade Gradient in Puerto Rican Coffee Agro-

Ecosystems for small scale Biochar and Bioenergy 

Production 

 

Abstract 
 Many agroforestry systems exist along a shade gradient depending on management 

practices. Shade trees are thought to be responsible for multiple ecosystem functions such as 

nitrogen fixation, nutrient cycling, moisture retention, and carbon storage, among others. 

Recently there has been growing interest in an additional potential function of shade and the 

provisioning of biomass as feedstock in small-scale biochar and other bioenergy production. The 

goal of this study is to examine the relationship between shade management in coffee 

agroforestry and the consequent availability of woody debris for its potential as feedstock for 

energy production. We estimated total biomass of woody debris from surveys of twenty coffee 

farms across a shade gradient in the central mountains of Puerto Rico, using line transects. We 

compared amount of woody debris biomass with upper (above coffee plants) and lower (at 

approximately 1.3 meters above ground) canopy cover in each farm. We found that the average 

amount of down woody material (DWM) biomass was 1.5 Mg/ha with a standard deviation of 

1.76 Mg/ha, ranging from 0.25 Mg/ha to 6.67 Mg/ha.  There is a statistically significant 

difference between the average biomass available in shade farms (1.91 Mg/ha) vs. sun farms 

(0.88 Mg/ha) (p < 0.05). After performing a linear regression, we can observe that lower canopy 

and biomass are positively related showing the influence of planting density and biomass. 

However, upper canopy and biomass are negatively related and sharply so for sun coffee farms.    

Using our results and data from the Caribbean Climate Hub, we estimate a potential for 5.79 

GWh/year producible from DWM in coffee agroforests in the entire island of Puerto Rico 

through biomass gasification. Biochar, co-produced in the gasification process and returned to 

farm soil, could potentially reduce 8110 tons of CO2e/year. Our study shows evidence linking 

shade management practices with increased biomass. Additionally, it provides base line 

estimates for a circular economy model linking agroforestry coffee production and decentralized 

renewable energy production in rural Puerto Rico. Through co-production of biomass energy and 

biochar, coffee farmers can reduce carbon emissions  associated with decomposition of DWM 

within their farms while supplying part of their own energy needs through syngas. 

 

 

 

 

1. Background 
Anthropogenic climate change is disrupting ecological and human systems worldwide. At 

450 ppm, current CO2 levels in the atmosphere have locked the planet into a future of extreme 

climatic events with dire consequences, particularly across the tropics (Masson-Delmotte et al., 

2018). Since our current CO2 levels are well above the limit that serious scientific studies have 

established is necessary to avoid catastrophic planetary consequences, a rapid coordinated 

response to this issue is imperative. Climate change mitigation requires a complete 
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transformation of our energy systems by phasing out fossil fuels and reducing the current levels 

of atmospheric CO2. Although a host of expensive, controversial, and technologically heavy 

proposals have been floated, especially in the grey and popular literature, the potential for carbon 

sequestration and reduced emissions of smallholder agriculture has not received the attention it 

deserves.  

In particular, the role and function of agroforests has not been studied as much as other 

types of forests, yet they are critical repositories of carbon. For example, Zomer et al. (2016) 

report that more than 43% of agricultural land globally has more than 10% tree cover, containing 

an estimated 45 billion tons of carbon. While there is obviously a great deal of carbon in trunks, 

roots, and leaves of the trees in agroforestry systems, they are also quite dynamic ecologically. 

Agroforests, much like other forests, have an internal cycling mechanism that also includes 

respiration from both plants and the microorganisms decomposing the debris they shed. Thus, 

photosynthesis removes CO2 from the air, but decomposition, under normal circumstances, 

releases that CO2 back to the atmosphere.  

It is feasible, however, to interfere with that basic ecological process of decomposition 

through pyrolysis, a thermal decomposition of materials at high temperatures under low oxygen. 

This process produced recalcitrant carbon molecules along with syngas, a high nitrogen content 

gas. The syngas can be used for energy with low carbon emissions, while the recalcitrant carbon 

can be returned to the soil for both local improvement in soil characteristics as well as long-term 

carbon sequestration in the soil. In much of the literature there is an emphasis on the potential of 

agroforestry systems to mitigate greenhouse gases through carbon storage in plant biomass and 

soil organic material, certainly an important issue, since in the tropics, the carbon sequestration 

potential of this land management system is estimated to be between 12 and 228 Mg per hectare 

(Albercht & Kandji, 2003). However, very little attention has been paid to the potential of 

reducing emissions by collecting some of the biomass that would normally decompose and 

turning it into energy and biochar. 

Decentralized biomass energy production has the potential to provide renewable energy 

and carbon sequestration through co-production of biochar, a stable form of carbon and an 

agricultural soil amendment. This is particularly important for rural and agricultural communities 

which face structural challenges accessing renewable energy and already rely on local biomass 

or fossil fuels for their cooking and heating needs (Iiyama et. al., 2014; Bailis et al., 2015). 

However, it is important to note that the sustainability of biomass energy systems relies on using 

agricultural waste as feedstock. Industrial biomass energy using tree plantations and other live 

woody material has been discredited for its inaccurate carbon accounting, land use change 

(Haberl et al., 2012; Ter-Mikaelian et al., 2015), and its impact on other ecosystem services such 

as biodiversity conservation (Pedroli et al., 2013). 

In Puerto Rico, agroforestry systems, for example shaded coffee farms, present a unique 

opportunity to link renewable energy and sustainable agriculture. Woody debris or downed 

woody material (DWM) from coffee shrubs and the associated shade trees has the potential to be 

used as feedstock for local bioenergy and biochar production. In turn, biochar can be used as an 

amendment to improve soil quality and sequester soil carbon, simultaneously contributing both 

to agricultural sustainability and climate change mitigation. For coffee farmers, bioenergy and 

biochar systems can generate renewable energy, reduce reliance on fossil fuel-based fertilizers, 

and repurpose agricultural waste. Shade trees in tropical agroforestry systems refer to overstory 

trees under which crops (e.g., coffee and cocoa) are cultivated. They have been linked to 

multiple benefits and ecosystem services, including soil fertility through nitrogen fixation, 
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erosion control, resistance to insect pests and pathogens, and increased biodiversity conservation 

(Vandermeer et al., 2010; Tscharntke et al., 2011; Tully et al., 2012; Perfecto et al., 2014).  

Intensification practices have tended to eliminate or reduce shade trees in coffee farms so 

as to increase short-term gains in crop yield, but perhaps inadvertently depleting soil health in the 

long-term (Dollinger & Jose, 2018) creating a negative feedback loop that pressures farmers to 

increase deforestation in search of more fertile lands. Additionally, reducing shade trees reduce 

biodiversity (Perfecto et al., 1996; Moguel and Toledo, 1999; Jha et al., 2014)  and can make 

these systems more vulnerable to extreme climatic events (Philpott at al. 2008; Lin 2008, 2011; 

Perfecto et al., 2019). The additional potential function of debris from shade trees providing a 

feedstock for energy production is obvious and suggests a need to understand the relationship 

between shade trees and that feedstock. Multiple studies have linked aboveground biomass 

availability with shade tree density in agroforestry systems (Vieilledent et al., 2012). 

Nevertheless, little attention has been accorded to the relationship between shade trees and 

downed woody materials (DWM). It is well-known that the litter layer is an important 

component of carbon stocks and nutrient cycling in forests and agroforestry systems (Pfeifer et 

al., 2015). Collecting DWM from coffee agroforestry systems for bioenergy and biochar 

production could provide local renewable energy and carbon sequestration while incentivizing 

reforestation with the use of shade trees. It can also reduce the amount of fuel loading and reduce 

the probability of wild fires spreading into coffee farms, especially during drought years 

(Brandeis and Woodall, 2008). 

 

1.1 Research Questions 
In this study, we explore the potential of a coupled agroforestry and biomass energy 

system in Puerto Rico as strategy for sustainable energy production, climate change mitigation, 

and sustainable agriculture. We seek to explore the extent to which management, especially with 

respect to shade tree coverage, contributes to the potential for DWM from coffee farms and 

provide a significant feedstock for local energy production. The specific goal of our study was to 

assess the quantity of down woody biomass available in coffee farms that could be used as a 

source for small-scale biochar and bioenergy production in the coffee-growing region of Puerto 

Rico. We posed four questions to evaluate the use of agricultural woody biomass and its 

environmental implications: (1) What is the amount of down woody materials available per 

hectare in coffee farms in the central mountains of Puerto Rico? (2) What is the relationship, if 

any, between the amount of down woody biomass and percent canopy cover? (3) How much 

energy can be derived from locally available down woody material in coffee farms through a 

gasification process? (4) How many tons of carbon per year could be sequestered by using farm-

generated biochar? We hope the answers to these questions can further the understanding of 

biochar, agricultural management of coffee, and its energy generation and carbon sequestration 

potential. 

 

2. Methods 

2.1 Study Area and Survey Sites 
This study was conducted in the Cordillera Central or central mountains of Puerto Rico 

(Fig. 1) in twenty coffee farms distributed among the municipalities of Utuado, Adjuntas, Yauco, 

Las Marias, Juana Diaz, Ponce, and Orocovis. The U.S. Forest Service classifies this climatic 

area as subtropical moist forest with 2300 – 4500 mm of rainfall per year (Ewel et al., 1973). 

According to the USDA, soils in the area belong to the oxisol and ultisol orders, which are 
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highly weathered and acidic soils. Historically, agricultural activity in this area has centered 

around coffee farming (Bergad, 1978). Agricultural management intensity of the surveyed farms 

ranged widely from coffee monocultures grown under full sun to coffee grown under the canopy 

of shade trees intercropped with other fruit trees and root vegetables. For exact coordinates and 

locations of each farm, see Table S1 in supplementary materials.  

 

 
Figure 1. Map of Puerto Rico divided highlighting the municipalities and locations of the farms surveyed. 

 

2.2 Down Woody Material Survey 
To estimate the amount of down woody material in each farm, we used a line transect 

method (Van Wagner, 1968) with a few modifications. We drew a 10-meter line using a meter  

tape in an area representative of the rest of the farm. We, then, collected up to one hundred 

DWM samples that intersected with our line. For each sample, we measured its diameter and 

length using caliper and measuring tape, respectively. If the number of samples found within 10-

meter transect were less than one hundred, we increased the transect by another five meters until 

one hundred samples were measured. The final length of the transect was the distance from the 

start of the line to where the one hundredth sample was found.  Likewise, if we encountered 100 

samples before reaching the 10 meter mark, we noted the length of the transect as the distance 

between the beginning of the transect and where we encounter the one hundredth sample. 

 

2.3 Biomass Availability  
 The volume of individual pieces was estimated by approximating the shape of each piece 

to a cylinder and using the sampled lengths and diameters of each piece. Total volume of all 

sampled DWM was calculated by adding the volume of all individual pieces. To find volume per 

area, we used the following process. (1) All pieces were tallied and binned according to their 

lengths to create frequency distribution graphs of each farm. (2) To estimate the mass of each 

piece, we multiplied their individual volumes by 0.62 g/cm3, which is the wood density of coffee 

(Goldsmith & Carter, 1981), since most of the twigs and branches encountered were from coffee. 

Afterwards, we calculated the frequency per area using the following equation: 

 

=
𝑓

𝐿 ∗ 2 ∗ 𝑏
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Where f is the frequency of pieces, L is the length of the transect in cm, and b represents the bin 

size also in cm. This equation assumes that the width used to sample DWM is at most twice the 

size of the largest piece (bin size). (3) Finally, we multiply this frequency/area with the average 

mass per bin to obtain mass/area.  

Our estimates assume that all DWM pieces were sound and freshly fallen or decay class = 1 

(Woodall et all, 2013). For the purposes of feedstock collection for gasification and biochar, 

woody material can be obtained on a yearly basis during the pruning of coffee trees after the 

harvest.  

 

2.4  Canopy Cover 
Percent canopy cover was estimated using CanopyApp, an image processing application 

from the University of New Hampshire. Measurements of canopy cover were taken at two 

different heights: low and high. In each farm, a 10 x 10 meter plot representative of the 

management of the rest of the farm was selected. For the low canopy cover estimates, we took 

measurements in 5 point of the plot (the four corners and the center) at approximately 1.3 meters 

from the ground and used the average percent canopy cover. For the high canopy estimate we 

took 5 measurements in approximately the same positions (four in each corner and one in the 

center) but the measurements were taken at a height determined by the highest coffee plants in 

the plot. Our two different measurements of canopy cover reflect, indirectly, the basic origin of 

the woody debris.  The measurements at the 1.3m level reflect the canopy cover resulting from 

the coffee bushes themselves and is referred as lower canopy cover.  The measurements above 

the coffee bushes reflect the canopy cover resulting from the shade trees above the coffee and is 

referred to as upper canopy cover.   

  In order to take these measurements, the camera was placed in an extendable pole and 

connected to a remote shooter that allowed for a picture to be taken at height higher than a meter. 

CanopyApp uses the smart phone gyroscope so that each picture is level with the ground. After 

pictures are taken, the user selects leaf colors to allow the application to estimate a percent of 

canopy cover.  

 

2.5 Statistical Analysis 
Data analysis was carried out in Microsoft Excel. The DWM biomass dataset was not 

normally distributed, so we used a non-parametric test (Mann-Whitney test) to compare the 

means between shade farms and sun farms and our two canopy measurements. A linear 

regression was performed on the natural logarithm of the data to understand the relationship 

between ln(biomass) and percent of shade cover at both levels (upper and lower).   

 

 

2.6 Electricity Generation  
We estimated electricity generation using the following equation: 

 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑘𝑊ℎ

𝑦𝑒𝑎𝑟
)

= 𝐴(ℎ𝑎) ∗ 𝑌 (
𝑡𝑜𝑛

ℎ𝑎 ∗ 𝑦𝑒𝑎𝑟
) ∗ 1000 (

𝑘𝑔

𝑡𝑜𝑛
) ∗ 𝐿𝐻𝑉 (

𝑀𝐽

𝑘𝑔
) ∗  𝜂 ∗ 0.28 (

𝑘𝑊ℎ

𝑀𝐽
) 
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Where,  A represents the area of a farm dedicated to coffee cultivation in hectares. Y is the yield 

or weight in tons of our DWM per hectare per year. The Lower Heating Value (LHV) for woody 

biomass has been reported between 17.4 and 18.37 MJ/Kg (Torres et. al, 2018).  . We use a 

conservative figure of 17 MJ/kg. η is the electrical efficiency of the gasifier which has been 

reported for small units from 8.13 to 15.21% (Zainal et al, 2002; Roesch, 2011). We assumed an 

average value of 12%.  

This equation assumes an estimated moisture content of feedstock or yield not greater 

than 15 to 25%. In our down woody material availability survey, we encountered DWM with a 

moisture content of 7 to 14%. Since this study was conducted in less than a year, we do not have 

survey data of availability per year. However, based on semi-structured interviews, we assume 

that the estimated amount of DWM is available on a yearly basis from pruning after the coffee 

harvest also known as poda de mejoramiento. It is also important to note that while the biomass 

may be available at one specific time during the year, storage for woody biomass would allow 

the electricity production to be carried out throughout the year.  

  

2.7     Carbon Sequestration Potential 
 To calculate the amount of biochar produced we used the following equation: 

 

𝐵𝑖𝑜𝑐ℎ𝑎𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (
𝑡𝑜𝑛𝑛𝑒𝑠

𝑦𝑒𝑎𝑟
) = 𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎 (ℎ𝑎) ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑊𝑀 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (

𝑡𝑜𝑛𝑛𝑒𝑠

ℎ𝑎∗𝑦𝑒𝑎𝑟
) ∗

𝑏𝑖𝑜𝑐ℎ𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%)  

 

We have two important assumptions to estimate the amount of biochar produced annually 

that can be returned to the soil as an agricultural condition. 1) We assumed a lifecycle yield of 

0.9 tons of CO2e per ton of feedstock for woody biomass and gasification (Cowie et al., 2015). 

The total amount of agricultural land dedicated to coffee in Puerto Rico is 6747 ha (USDA, 

2016)  

 

3. Results  

3.1 DWM and Shade Tree Management 
The amount of down woody material available varied between farms (Fig. 2). The 

smallest amount found in any farm was 0.25Mg/ha. The largest amount was 6.67 Mg/ha. The 

mean available DWM in all farms was 1.5 Mg/ha with a large standard deviation of 1.76 Mg/ha.  

 

 
Figure 2.  Estimated biomass available in every farm surveyed from highest (6.67 Mg/ha) to 

lowest (0.25 Mg/ha). 
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Using two canopy cover estimates (upper and lower), we noted that there was a large 

range of measurements, from zero canopy to almost 50% cover. The twenty farms sampled fell 

into two distinguishable groups, sun coffee and shade coffee, based on shade measurements of 

the upper canopy (Fig. 3).  The exact amount that constitutes sun or shade coffee is somewhat 

arbitrary and depends on multiple management practices. The maximum shade recorded was less 

than 50% and we classified anything above 5% as shade coffee. The average DWM biomass in 

sun farms was 0.88 Mg/ha and in shade farms 1.91 Mg/ha. These results are statistically 

significant (p < 0.05) using a Mann-Whiney test to compare the means of shade farm and sun 

farms. 

 

 
Figure 3.  Bar chart of the shade measurements on all 20 farms in the study, showing the arbitrary 

division between sun farms and shade farms set at <5%. 

 

Based on the expectation that more shade would generally translate into more down 

woody material, we examined the relationship between upper and lower canopy cover and 

DWM, as shown in Figure 4. For upper canopy, the relationship is negative. Interestingly, for 

sun coffee alone, the relationship is sharply negative (Fig. 4a). For lower canopy, the relationship 

is, as expected, positive.  
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Figure 4.  Scattergrams of percent canopy cover related to the log of biomass of downed woody 

material.  Shade coffee in open circles, sun coffee in red solid circles.  a. relationship between biomass 

and high shade cover (i.e., percent canopy cover above the highest coffee bush).  b. relationship 

between biomass and percent canopy cover measured at 1.3 m above ground level, reflecting both high 

cover from shade trees plus the shade cast by the coffee itself. 

 

 Dividing the farms into shade categories, the mean biomass for shade coffee is 1.92 while 

that of sun farms is 0.88, a marginally significant difference (p < 0.05 by a simple bootstrap 

resampling, p< .082 with a standard one-tailed t-test). This difference is represented graphically 

with a rank order plot of both shade and sun farms in figure 5.  

 

 
Figure 5.  Ranked farms production of biomass of woody debris, based on 

status as sun or shade farms.  Ranks are displayed in two ranges for the sun 

farms since there are fewer of them than the shade farms. 

 

The canopy density of coffee bushes, as estimated with the “lower” canopy cover at 1.3 

m, varied enormously from farm to farm, as shown in figure 6.  No distinct separation of shade 

and sun coffee is evident in these data.  However, the six most “dense” farms and the six least 

“dense” farms seem to be distinguishable from the intermediate farms. The woody debris figures 

for these two subgroups in isolation show a significant difference with the dense coffee farms 

producing an average of 1.87 and that of the low-density farms producing 0.49mg/ha of woody 

debris (p < 0.05). 
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Figure 6.  Sparce versus dense coffee bush plantings, as estimated from the 

lower canopy measurements. A simple dual division, as clear for the upper 

canopy cover measures, is not evident in these data.  A division of the six 

lowest and the six highest is, however, clearly possible. 

 

   

 

3.3  Energy and Emissions Reduction 
 Total electricity generation was estimated using our average yearly DWM biomass 

availability in conjunction with data for land size used for coffee farming from the Caribbean 

Climate Hub (USDA, 2016). We obtained three electricity generation results using different 

areas and three different average waste biomass stock: all coffee farms regardless of shade type; 

shade coffee farms; and sun coffee farm (Table 1). 

  
Management 

style 

Total 

Area of 

coffee 

cultivation 

(ha) 

Average yearly 

DWM biomass  

(Mg/ha*year) 

Electricity generation 

(GWh/year) 

All types 6747.71 1.50 5.79 

Shade 1184.22 1.91 1.29 

Sun 5563.49 0.88 2.80 

 

Table 1.  Total electricity generation from total hectares of sun and shade coffee planted in 

Puerto Rico using the average DWM biomass availability estimated from our survey. 

 

 Production of biochar was estimated using a lifecycle assessment of 0.8 CO2e yield per 

ton of feedstock (Cowie et al., 2015). We used the data from electricity generation scenario 

where woody debris is obtained from all coffee farms in Puerto Rico regardless of management 

style. Our results in metric tons can be found in Table 2.   

 

Area of 

coffee 

cultivation 

(ha) 

DWM biomass 

stock (Mg/ha) 

Total Biomass 

(metric ton) 

CO2e 

(metric ton) 

 

6747.71 1.50 10138.43 8110.74 
Table 2. Total metric tons of CO2e that can be sequestered using down woody debris on a yearly basis. 

 

4. Discussion 

4.1  Biomass Availability and Shade Management 
 These results collectively suggest that sun coffee farms produce fewer woody debris than 

shade coffee farms and that farms with densely planted coffee bushes produce more DWM than 

sparsely planted ones.  However, it is important to note that it is generally the case that coffee 

bushes are planted less densely when under shade (Perfecto et al. 1996; Moguel and Toledo, 

1999; Avelino et al., 2004).  This explains why we did not find a strong positive relationship 

between shade level and the amount of DWM, since farms that have low shade, have higher 
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density of coffee plants that contribute to the DWM. In other words, the management of shade is 

related to DWM in two ways. First, it is generally expected that the proportion of the DWM will 

be proportional to the amount of shade in the system, with coffee bushes and shade trees both 

contributing to the amount of DWM. Yet the expected lowered production of coffee bushes- as 

overstory shade becomes more prominent- suggests that the amount of DWM contributed by 

coffee bushes will decrease as the level of shade increases.  Our two different measures of 

canopy cover, one at 1.3m above ground, the other above the coffee canopy, reflect these two 

inputs. With low upper canopy shade, we expect most of the DWM to be a product of the coffee 

bushes and with high upper canopy we expect a higher proportion of the DWM to be a product 

of the shade trees. Furthermore, we expect that the range of coffee management systems will 

produce not only a distinct set of origins for the DWM, but a particular pattern of variability, 

from low to high to low, as the management system proceeds from full sun to full shade (Fig. 6). 

 

   

 
Figure 6. Increasing shade trees increases the variance of shade until canopy cover starts becoming more 

homogenous and variances decreases back to zero. 

 

Our results show a statistical difference in the average DWM biomass between sun and 

shade coffee with the latter producing more biomass. Additionally, there is stronger evidence 

that the availability of DWM biomass is influenced by the amount of lower and upper canopy 

shade cover when we take planting density into account. This indicates that DWM biomass in 

dense sun coffee farms could increase by planting shade trees up to a point where further 

increases in shade do not yield significantly more DWM. This result could be explained by the 

relationship between upper canopy shade and its variance (Fig 6).  

Our estimates of DWM biomass stocks in Puerto Rico are in line with other estimations 

of coffee agroforests in other parts of the world. In Mexico, DWM biomass has been estimated 

from 0.02 to 1.4 Mg/ha for coffee agroforests (Soto-Pinto & Aguirre-Davila, 2014). In Indonesia, 

biomass at the litter layer was found to be 1.8Mg/ha for polyculture coffee, 1.2 Mg/ha for shade 

coffee, and 1.2 Mg/ha for sun coffee (Hairiah et al., 2006). For comparison, secondary forests in 

Puerto Rico are estimated to hold about 9.4 Mg/ha of DWM biomass (Brandeis & Woodall, 

2008) . This can possibly be explained by current agricultural practices and economic conditions 

in Puerto Rico. Agricultural labor in coffee farms is very limited due to wage competitions with 

other sectors. Most farmers only hire workers during the harvest season. This has created a very 
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limited active management of shade trees. When overgrown shade tree branches do fall, they are 

collected over many years in separate piles in certain parts of the farm. We chose not to include 

those piles in our survey, which represent a large amount of DWM biomass, as part of our 

sampling because we could not assess their availability on a yearly basis. Higher DWM from sun 

coffee farms can be explained by higher amounts of debris from coffee trees which are left in 

place in the soil and which we likely encountered at a much higher rate than debris from shade 

trees.   

 

 

5.2 Energy and Carbon Sequestration Potential 
The total amount of energy generated using coffee biomass is around 5 GW-hours per 

year. This is a very small amount compared to the total energy use in Puerto Rico estimated at 

17,000 GW-hours per year (CCS, 2014). However, it could account for 19% of all energy use in 

the agricultural sector of Puerto Rico which is estimated at 26 GW-hours in 2016 (CCS, 2014). 

Biomass energy alone, even when accounting for other agricultural biomass apart from coffee, 

cannot supply all the energy consumed in Puerto Rico. However, energy systems in the island 

face challenges that could make biomass energy a viable and sustainable addition to its energy 

mix. Puerto Rico has a complex topography that includes the coastal plains and mountains 

among. Its power grid relies on 2,400 miles of transmission and 30,000 miles of distribution lines 

(EIA). In 2017, Hurricane Maria badly damaged this infrastructure leaving residents without 

power for months. In response, the Puerto Rico Electric Power Authority has proposed the 

creation of microgrids and minigrids that can increase the resilience of power systems and reduce 

reliance in the central grid (EIA). In this context, biomass energy from coffee can be a viable 

option for supplying electricity in rural areas of Puerto Rico. Some studies have shown that 

biomass energy can effectively supplement solar and wind energy microgrids in rural areas 

(Mazzola et al., 2016; Li et al., 2019).  

In terms of carbon sequestration, total biochar production from coffee agriculture ranges 

from 500 to 3900 Mt per year. Production of biochar will be dependent on gasifier efficiency and 

whether the system is tuned for syngas production or biochar production (Yao et al., 2018). Even 

for the higher range of production, this amount is insignificant compared to the island’s total 

carbon footprint in 2017 which was 18 MMtCO2e. However, there is potential to offset 

emissions for electricity consumption in the agricultural sector which produced 19 000 MtCO2e 

in 2015. Our data indicates that it is possible to offset between 2% and 20% of GHG emission 

from electricity used for agriculture using biochar from coffee production. Based on the 

Caribbean Climate Hub data, the total area of coffee cultivation in Puerto Rico amounts to 6.7k 

hectares which could benefit from soil quality improvement by using biochar. In Puerto Rico, 

agriculture itself produces very few GHG emissions. In 2013, agriculture was responsible for a 

net sink of 0.3 MMtCO2e due to perennial crops, like coffee, offsetting emissions associated 

with local livestock and crop production (CCS, 2014). However, this does not take into account 

agrochemicals.  

 

6.      Conclusions 
  In Puerto Rico, coffee is an important crop for small holder farmers and for rural 

livelihoods. While it is outside of the scope of this paper, it is necessary to state that industrial 

biomass energy produced from tree plantations is not compatible with sustainable energy and 

food systems. For that reason, our study focuses on biological carbon sequestration that can help 
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support tropical farmers. We link shade management to energy provisioning and carbon 

sequestration as ecosystem services derived from what is traditionally considered waste material 

in coffee agroforests. Our findings support the addition of pyrolysis of coffee agro-residues in 

microgrids in Puerto Rico to achieve an agricultural circular economy. Our analysis estimates 

that island-wide biomass energy from DWM in coffee fields can produce almost 20% of the 

energy used in the whole agricultural sector of Puerto Rico. Further research and analysis are 

needed to estimate the contributions of other agricultural biomass residues. Additionally, woody 

debris in forest ecosystems, including agroforests, has multiple roles including water retention, 

erosion prevention, nutrient cycling, and habitat and food for decomposers. In the future, we 

must also understand the trade-offs between decomposition of DWM and its use for energy 

generation and carbon sequestration to truly understand its implication in sustainable 

management of resources in these agroforestry systems.  
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II. Chapter 2:   

Plant Response to Biochar Soil Enrichment in Coffee(Coffea 

arabica) Seedlings 

 

Abstract 

Amending soils with biochar is an increasingly popular agricultural management 

technique to enhance crop productivity. However, the relationship between plant growth rate and 

the rate of biochar addition in soil is not fully understood. Using biochar during the seedling 

establishment process of coffee (Coffea arabica) offers an opportunity for addition to soil and to 

test its effects in a perennial agroecosystem. The objective of this experiment was to understand 

plant performance of coffee seedlings when biochar-amended tropical oxisols were used as a 

growing medium. A greenhouse experiment was set up in the central mountains of Puerto Rico 

where we grew seventy-two coffee seedlings using six different treatments. The growing 

mediums were a mixture of biochar, compost, and local soil. All treatments consisted of 50% 

compost and 50% of a soil/biochar mixture. The soil/biochar mixture contained the following 

proportions of biochar: 0%, 25%, 50%, 75%, and 100%. Additionally, we had a control 

treatment of soil with the addition of calcium carbonate. The seedling’s height, number of leaves, 

and length of its longest leaf were tracked every fourteen days for three consecutive months. The 

pH of the soil was measured at the end of the experiment. We found that soil pH increased 

linearly with the proportion of biochar added to the growing medium. Treatments with a 100% 

biochar mixture resulted in coffee plants with the lowest mean height and lowest mean length of 

its longest leaf (P<0.01, by a one-way ANOVA and Tukey post-hoc test), while the number of 

leaves showed no statistical differences. A second-degree polynomial fit between the proportion 

of biochar and plant height produced an R-squared of 30%.  These results possibly show a 

saturation effect of biochar as a soil amendment in the establishment of coffee seedlings. They 

also suggest that seedling growth rate in pots can be optimized based on the proportion of 

biochar present in the growing medium and its effects on soil pH. 
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1. Introduction 

Agricultural intensification around the world has led to an increase in greenhouse 

gas(GHG) emissions because of management practices that focus on crop productivity while 

depleting soil organic carbon(SOC) and relying on inorganic fertilizers (Smith, 2008). Emissions 

from agriculture, forestry, and land use change are a major contributor to global climate change 

accounting for approximately 24% of all emissions (IPCC, 2014). Current concentrations of CO2 

(410 ppm) in the atmosphere have locked us into dangerous climatic patterns that will impact 

human and agricultural systems at a global scale (IPCC, 2018). Furthermore, this model of 

industrial agriculture has been exported to the Global South leading to a decreasing biodiversity 

and disrupting the livelihoods of farmers and peasants (Perfecto et al., 2009).  

An effective and just response to climate change in agriculture will require innovative 

management techniques, for example biochar, that can support farmer livelihoods and help 

reduce GHG emissions. Biochar is a stable form of carbon obtained after pyrolysis of biomass 

such as wood, leaves, or agricultural waste (Lehmann, 2007). Charcoal and biochar are 

differentiated by their applications: the former is used as a source of energy while the latter is 

used for soil enhancement. There is evidence that application of biochar can increase soil organic 

carbon sequestration (Lehmann, 2007) and improve fertility in agricultural soils, further 

increasing carbon dioxide absorption (Biederman and Harpole, 2013). The use of charred organic 

material as a soil amendment can be traced back to pre-Columbian practices in the Amazon 

basin. These anthropogenic soils, known as Terra Preta do Indio, have a high content of organic 

material and higher fertility than the surrounding soils. Multiple studies have established a 

positive relationship between biochar addition to soil and several key functions of agricultural 

productivity, such as plant biomass, cation exchange capacity, water retention, and nutrient 

retention (Lehmann & Joseph, 2009; Jeffery et al., 2011; Karhu et al., 2011; Chintala et al., 

2014). This is particularly important in the tropics where agriculture is frequently limited by low 

nutrient availability due to the highly weathered soils. 

In Puerto Rico, coffee has been an important commercial crop since the 1800s when it 

surpassed sugar cane as an export crop (Borkhataria, 2012). Despite multiple devastating 

hurricanes and trade policies that opened the island to coffee imports, coffee farming has 

remained a part of the Puerto Rican economy and culture. In the municipality of Utuado, where 

this research took place, coffee agro-ecosystems are highly heterogenous and range from sun-

grown coffee monocultures to shade-grown coffee in the understory of native forests. Farmers 

have found themselves reliant on industrial inputs to offset the nutrient-poor soils (ultisols and 

oxisols) found in the “Cordillera Central” or the central mountains of Puerto Rico. In such agro-

climatic conditions, inorganic fertilizer applications are leached quickly, and few nutrients 

remain available for plant absorption. Organic fertilizers are mineralized quickly and the 

products similarly leached quickly. The effectiveness of biochar as a soil amendment has mostly 

been tested with annual crops, but there is little research on its effects in a perennial system like 

coffee. In a system with little to no tilling, an appropriate place to introduce biochar may at the 

seedling planting stage. Coffee seedlings are grown in nurseries until they reach an appropriate 

height to be planted in fields. This presents an opportunity to test the use of biochar as a growing 
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medium for seedlings. Coffee farms are routinely renovated, and part of that renovation is 

planting new coffee, usually in the form of seedlings.  If seedlings can be grown in a biochar-rich 

soil, the normal (usually yearly) replanting of seedlings could offer a process whereby biochar 

would be introduced naturally into the soil. Motivation for doing so would be aided by farmers 

realizing immediate benefits from the process. Thus, the research reported herein interrogates the 

possibility that seedlings grown in a biochar-rich soil will display characteristics that will be seen 

as beneficial to the agricultural process.  

The general goal of our research is to further the understanding of sustainable 

management techniques like biochar and assess its potential to support farmer livelihoods in the 

tropics by increasing crop yields and soil carbon storage. To achieve our goal, we seek to 

understand the effect of using biochar as a soil amendment in the growth and establishment of 

coffee seedlings. Particularly, we were interested in measuring the effects (if any) of different 

rates of biochar addition on seedling growth in a perennial crop like coffee. We posed three 

questions:  (1) Does biochar have a positive effect on the growth of coffee seedlings? (2) Can 

different amounts of biochar produce different outcomes in coffee seedling establishment? (3) Is 

there an ideal amount of biochar that can increase biomass productivity in coffee seedlings? The 

answers to these research questions can help inform farmers of management practices that 

increase coffee production and support soil carbon sequestration. 

 

2. Methods 
2.1 Experimental Setup 

A greenhouse experiment was set up to grow coffee seedlings using five different growing 

mediums as treatments and one control with twelve replicates each. A total of seventy-two coffee 

(Coffea arabica) seedlings (Caturra Amerillo variety), in their cotyledon stage, were obtained 

from the nursery at the Universidad de Puerto Rico, Utuado campus, in Utuado, Puerto Rico. 

Each seedling was grown in compostable bags of 15cm in height with a volume of 500ml. 

Treatments consisted of different mixtures of biochar, vermicompost (VC), and local soil by 

volume in order to differentiate the effects of multiple rates of biochar addition. All treatments 

contained 50% compost to account for the lack of nutrients (particularly N and P) in biochar. The 

other 50% was a mixture of soil and biochar. This soil/biochar mixture contained the following 

proportions of biochar: 0% (T1), 25% (T2), 50% (T3), 75% (T4), and 100% (T5). Since Biochar 

usually increases the pH of the soil, in addition to the control treatment (T1= 50% VC, 50% soil, 

0% biochar) we added a second control treatment (T6) consisting of 50% VC , 50% soil, 0% 

biochar, plus 5g of calcium carbonate (limestone). Calcium carbonate (CaCO3) is applied in 

coffee agroecosystems to raise the pH of highly acidic soils. When considering the entire volume 

of substrate in the bags, the treatments translate into: 50%VC, 50% soil (T1); 50% VC, 12.5% 

biochar, 62.5% soil (T2); 50% VC, 25% biochar, 25% soil (T3); 50% VC, 62.5% biochar, 12.5% 

soil (T4); 50% VC, 50% biochar (T5); 50% VC, 50% soil, plus 5 ml of calcium carbonate (T6) 

(Fig. 1). Coffee farmers regularly apply inorganic fertilizer to supply the necessary nutrients for 

their plants. However, we chose to use compost to more closely mimic the conditions of Terra 

Preta.  
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The vermicompost used for the experiment was made at the university campus using house 

manure, plant residues and kitchen scraps (for nutrient content see Table S-T1 in Appendices). 

The soil was taken from a small coffee farm within the university campus and was classified as 

an Ultisol (fine, kaolinitic, isohyperthermic Typic Hapludults; (for information about nutrient 

content see table S-T2 in Appendices). The biochar used for this experiment was obtained from 

Wakefield Biochar, a commercial provider in Michigan. It is made exclusively from pine wood 

and it has a pH of 7.4. (its detailed composition can be found in Table S-T3 in Appendices). 

 

Fig. 1 Composition of growing medium by treatment (T1-T6) showing percent of biochar, soil, and compost of total 

volume 

Each bag with coffee seedlings was housed in a greenhouse and arranged in a tray 

containing six bags of all six treatments. An automatic sprinkler system watered the coffee 

seedlings twice a day. All blocks were rotated clockwise every two weeks to control for light and 

watering differences within the greenhouse.  

 

2.2 Measurements 

 Sampling non-destructively, we assessed plant response to different biochar addition 

rates using three traits for dependent variables: seedling height, number of leaves, and the length 

of the longest leaf. These measurements were taken every two weeks for three consecutive 

months. The height was measured from the base of the seedling and the growing medium to its 

apical bud (tip of stem). The length of its longest leaf was measured from the base of the node to 

the tip of the leaf blade. Only leaves that were fully opened were counted. 

At the end of the experiment, we measured the pH of the growing medium for each bag. 

Soil samples were collected using a tube of 10 cm in length. For each replicate, 2.5gr of soil 
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were mixed with 20 mL of a 1 mol solution of KCL and allowed to sit for 5 minutes. Afterwards, 

a pH strip was submerged in the solution and the result measured colorimetrically.  

 

2.3 Statistical Analysis 

Data analysis was carried out in R version 3.5.2. Each dependent variable was analyzed 

using a one-way ANOVA test to determine if any treatments were significantly different from 

each other. Dataset passed all the assumptions of the ANOVA test (normal distribution, 

independence, and homoscedasticity). This was followed by a Tukey HSD post-hoc test to 

establish which treatments were different from each other. Additionally, we applied a linear and 

a polynomial fit to each dependent variable to describe the dependence between physiological 

traits and the amount of biochar in the growing medium. More specifically, we used a linear 

equation and quadratic equation in R by applying the ‘lm’ function to the forms: (y ~ x) and (y ~ 

x)+ I (x2) respectively.  

 

3. Results 
3.1 Coffee plant height 

At the end of the experiment (three months), the mean height of coffee seedling varied 

considerably among treatments. Treatment 3 which contained 50% VC, 25% biochar and 25% 

soil had the highest mean height at 19.13 cm, representing a 12% increase over the control (T1= 

50% VC, 50% soil) (Fig. 2). Treatment 5, which contained 50% VC and 50% biochar had the 

lowest mean height at 13.68 cm. The two control treatments did not differ significantly from 

each other and had the most similar heights with T6 = 16.94 cm  and T1 = 17.11 cm. Neither of 

the control treatments had any biochar additions. Some differences in mean height were 

statistically significant (p < 0.01 by a one-way ANOVA test). Specifically, treatment 5, which 

had the lowest mean height, was statistically different from treatments 2 and 3, which had the 

highest mean heights after performing a TukeyHSD post-hoc test. We used a polynomial fit to 

understand the relationship between proportion of biochar and height of coffee seedlings. In this 

analysis we excluded treatment 6 since it represented the same proportion of biochar as treatment 

1. A ‘hump-shaped’ or quadratic curve had an R2 = 34.37% (Fig. 2). 

When examining the growth of the plants’ heights over time, we see that all treatments 

follow each other closely until week 5. After that, T5 with the highest amount of biochar shows a 

visibly lower seedling height. T3 shows the highest seedling height beginning on week 6 until 

the end of the experiment. The rest of the treatments trail T3 and follow each other closely from 

beginning to end of the experiment (Fig. 3). 
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Fig. 2 In red, mean height per treatment. T1: 17.11 cm, T2: 18.42 cm, T3: 19.13 cm, T4: 16.82 cm, T5: 13.68 cm. In 

grey, mean height for T6: 16.94 cm. In blue, quadratic fit of relationship between proportion of biochar and height 

of seedlings with R2 = 34.37%. Statistical difference is shown in letter as follows: a, significantly different from T2 

(p < 0.05); b, significantly different from T3 (p <0.05); and c, moderately different from T1(Control 1) (p < 0.1). d: 

moderately different from T6(Control 2) (p < 0.1). 

  

Fig. 3 Average height of every treatment and control over the duration of the experiment with standard error bars. 

 

 

 



23 
 

3.2 Number of leaves 

The number of leaves in coffee seedlings also varied per treatment. Again, treatment 3, 

contained the highest mean number of leaves at 15.45, representing an 11% increase in the 

number of leaves over the control (Treatment 1) (Fig. 4). Treatment 6, the control treatment (no 

biochar) with limestone, had the lowest mean number of leaves at 13.16 followed by treatment 5 

at 13.40. The variation between treatments was small. Treatment 3 was significantly different (p 

< 0.05) from treatments 1, 5, and 6 after running a one-way ANOVA and TukeyHSD post-hoc 

test. Once again to understand the relationship between biochar dosage and physiological 

response (number of leaves), we tried to fit a polynomial curve. A ‘hump-shaped’ or quadratic 

curve had an R2 = 23.76% for the data (Fig. 4). Figure 7 shows average number of leaves over 

time for each treatment. 

When examining the number of leaves over the duration of the entire experiment, we see 

some variability in all treatments (Fig. 5). However, starting at week 4, T3 shows the highest 

number of leaves until the end of the experiment. During the first 4 weeks, T6 (Control 2) with 

no biochar and with limestone, showed the lowest number of leaves. Starting at week 5, the 

average number of leaves for T6 seedlings surpasses that of T5 seedlings.   

 

 

Fig. 4 In red, mean number of leaves per treatment. T1: 13.75, T2: 14.40, T3: 15.45 , T4: 14.5, T5: 13.40. In green, 

mean number of leaves per treatment for T6: 13.16. In blue, quadratic fit of relationship between proportion of 

biochar and number of leaves R2 = 26.81%. Statistical difference is shown in letter as follows: a, significantly 

different from T1 (p < 0.05); b, significantly different from T5 (p <0.05); and c, significantly different from 

T6(Control 2) (p < 0.05). 
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Fig. 5 Average number of leaves per treatment over the duration of the experiment with standard error bars. 

 

3.3 Length of longest leaf 

Mean length of the longest leaf of a coffee seedling also varied between different 

treatments. Here again, treatment 3 had the highest mean for the length of its longest leaf at 

14.42 cm, representing a 9.6% increase over the control (T1) (Fig. 6). Treatment 5, which 

contained 50% CV, and 50% biochar, had the lowest mean length of its longest leaf at 13.68 cm. 

The control treatment scored at 13.50 cm and was closest to treatment 1 and treatment 4. 

Treatment 5, which had the lowest mean for the length of its longest leaf, was statistically 

different from treatments 2 and 3 (p < 0.05). Treatment 5 was also marginally different from 

treatment 6 (p = 0.054). All values come from performing a one-way ANOVA and TukeyHSD 

post-hoc test. A quadratic curve with an R2 = 31.43% explained the relationship between biochar 

addition and the length of a coffee seedling’s longest leaf (Fig. 6). 

Throughout the experiment, the average length of the longest leaf, followed a different 

pattern than that of the average height or average number of leaves (Fig. 7). For the first 3 weeks, 

T5, the treatment with the highest amount of biochar, shows the highest length of its longest leaf 

while T2, the treatment with 50% VC, 35.5% soil, and 12.5% biochar, showed the lowest length 

of its longest leaf. until the end of the experiment. After that, T3 showed the highest average for 

the length of its longest leaf, and T5 showed the lowest.   
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Fig. 6 In red, mean length of longest leaf per treatment. T1: 13.04 cm, T2: 14.12 cm, T3: 14.42 cm, T4: 13.10 cm, 

T5: 9.80 cm. In green, mean length of longest leaf for T6: 13.51 cm. In blue, quadratic fit of relationship between 

proportion of biochar and length of the longest leaf. R = 27.59%. Statistical difference is shown in letter as follows: 

a, significantly different from T2 (p < 0.05); b, significantly different from T3 (p <0.05); and c, significantly 

different from T6(Control 2) (p < 0.05). 

 

 

 

Fig. 7 Average length of the longest leaf per treatment over the duration of the experiment. 
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3.4 Soil pH 

Results from the pH analysis show that pH rises with the proportion of biochar added to 

the growing medium in a linear fashion (Fig. 8). Using a linear model to explain the relationship 

between proportion of biochar and pH, we obtained an R2= 82.11%. The lowest mean pH value 

corresponded to treatment 1, which contained no biochar, at 5.9. The highest value corresponded 

to treatment 5, with a 50% soil, 50% biochar mixture, at 7.2. The control treatment, which 

contains limestone, had a mean pH of 6.67. Table S-T4 contains all the means and standard 

deviation per treatment.  

 

 

Fig. 8 In blue, proportion of biochar and pH have a strong linear relationship with an R2 = 82.11%. In red, mean pH 

per treatment. In green, mean pH of T6 (Control 2) which contains limestone. 

 

3.5 Carbon Sequestration Potential  

 To calculate the carbon sequestration potential of biochar as a growing medium in coffee 

nurseries, we used the total proportion of biochar per bag and the proportion of C in biochar on a 

mass basis (Table 1). In 2019, the U.S Department of Agriculture distributed 2 million coffee 

seedlings as an effort to aid farmers after Hurricane Maria. They estimated that between 9 to 18 

million new coffee trees needed to be planted to replace what was lost. We estimated the carbon 

sequestration potential using the amount of biochar under the following assumptions: all 

seedlings bags weight 1 kg; weight of compostable bag is negligible; treatment with best 

performance (T3) is used for growing medium (25% biochar). Afterwards we created three 

scenarios based on the number of seedlings to be distributed (Table 1). 
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 Treatment 

Total % 

of 

biochar 

per bag 

% C in 

biochar 

Total weight of seedling 

bag (kg) 

Number of 

seedlings 

(Millions) 

Total Carbon (metric 

ton) 

T3 0.25 0.88 1 2 440 

T3 0.25 0.88 1 9 1980 

T3 0.25 0.88 1 18 3960 
 

Table 1. Total estimated carbon sequestration under three different scenarios  

 

 

4. Discussion 

The literature on the effects of biochar on annual cropping systems is extensive and 

growing (REF..). However, there are only a few studies that have examined the physiological 

responses of biochar amendments in agroforestry systems and perennial crops such  as coffee 

(Stavi & Lal, 2013; Sanchez-Garcia et al., 2016; Miltner & Coomes, 2015; Gautam et al., 2017). 

Only one study investigated the effects of biochar added to coffee at the nursery stage (Ajema-

Gebisa, 2019). Multiple studies in field and greenhouse experiments in annual crops report 

positive relationships between biochar application in tropical soils and crop growth (Schulz & 

Glasser, 2012; Wang et. al, 2012; Jeffrey et al., 2011). For example, different amounts of rice 

husk and corn stover biochars were used to grow eggplant with positive linear results on its 

height, number of leaves, and dry weight (Mohan et al., 2018). On the other hand, a few studies 

have found negative or no effects at all (Jeffrey et al., 2011; Laird et al., 2017).  

In this study, we focus on biochar addition to the growing substrate for coffee seedlings 

in the nursery since this could be a potential way to add carbon to the soil in perennial and 

agroforestry systems. Perennial crops like coffee and cacao are renovated every few years when 

farmers remove old or diseased plants and replace them with new plants. If the seedlings are 

grown in a biochar rich substrate, the process of transplanting coffee seedlings into the soil can 

add carbon to the soil sequestering it for thousands of years (ref.)     

We expected to find a positive linear relationship between rates of biochar addition and 

plant growth as measured in its height, number of leaves, and length of its longest leaf. Instead, 

we found a quadratic fit for all dependent variables. While surprising, this result shows the 

possibility of an ideal dosage of biochar when mixing growing medium for coffee seedlings. 

Other studies have established similar nonlinear relationships between the amount of biochar 

application and the physiological response in early successional forest plants in a greenhouse 

setting (Gale et al., 2017; Gale & Thomas, 2019). However, the rates of biochar applications 

were smaller than in our experiment. 
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For all three dependent variables, treatment 5, with the highest addition of biochar (50%), 

performed significantly worse than treatments 2 and 3 which contained 12.5% and 25% biochar 

respectively. One possible explanation for this could be the strong pH increasing effect of 

biochar. In our experiment and in other studies (Chintala et al., 2014; Hass et al., 2012), biochar 

was able to significantly raise the pH of the soil. Treatment 1, which had no biochar, had an 

average pH of 5.9, while treatment 5 with the highest addition of biochar had an average pH of 

7.2. However, Coffea arabica is a plant adapted to the acidic soils of its native tropics. Its 

preferred pH range is between 5.2 to 6.2 (Clifford and Wilson, 1985). This could explain why 

Treatment 5, with a pH of 7.2, had the worst performance in our experiment. But it does not 

explain why Treatment 3, was the best performing treatment in terms of the response variables, 

since the average pH of this treatment was 6.5, which is above the preferred range for coffee.  

Some have argued that the increased basic effect is a chemical mechanism that enables the 

mobilization of N and P (Jeffrey et al., 2015), which are limiting nutrients for crops in tropical 

soils. It is possible that, while the substrate in Treatment 3 had a pH slightly above the preferred 

range for coffee, it also enabled the mobilization of essential nutrient for the plants, making it the 

best substrate to grow coffee seedlings. 

Using biochar as a growing medium at the seedling stage offers a substantial and easy 

opportunity to increase carbon storage of tropical soils. According to our estimates, it is possible 

to sequester close to 4k metric tons of C in the process of replanting coffee trees lost during 

Hurricane Maria in Puerto Rico. This represents 220 metric tons of C per million trees planted. 

This number does not include all the sequestration of carbon dioxide by photosynthesis 

performed by the coffee plants and the shade trees that are frequently planted with coffee 

(Perfecto and Vandermeer 2015). However, 220 metric tons of C per million trees is a modest 

number relative to the carbon sequestration potential in annual agro-ecosystems were tilling 

allows for much higher additions of biochar on more frequent basis. A study of wheat farming in 

temperate areas found that applying biochar could result in 30 to 60 tons of carbon per hectare 

stored in agricultural soil (Vaccari et al., 2011). There are other options to consider in order to 

increase carbon storage. The International Biochar Initiative (IBI) has proposed surface 

application of biochar for perennial ecosystems despite possible higher losses by wind and water 

run-off (Major, 2010).  

Although more research is needed, there is evidence from this experiment that biochar 

can have a positive effect on some physiological traits of coffee seedlings. Long term studies are 

needed to understand the effects of biochar in coffee bean yields which would have a more direct 

impact on farmers’ livelihoods. There is also a need to understand the exact mechanism 

(chemical, physical, biological) by which biochar produces its positive effect on plant growth.  

 

5. Conclusions 

To summarize, using biochar as a growing medium for coffee has the potential to 

introduce recalcitrant carbon in the soils of perennial agroecosystems like coffee farms in Puerto 

Rico. The benefit of this management practice could be two-fold: improve plant growth and 
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increase soil carbon sequestration. Based on this experiment, biochar used as soil amendment 

can benefit plant growth of coffee seedlings. Coffee nurseries could include the use of biochar 

amended growing mediums for their seedlings using a 12.5% to 25% dosage based on our results 

and expect on average higher plant growth than soil and compost alone.  
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Conclusion 

In this thesis, I set out to understand the potential for integrating food and energy systems 

to mitigate climate change. Both food and energy production are significant emitters of 

greenhouse gases. Up to one-third of GHG emissions globally come from agriculture (Gilbert, 

2012). A systems-thinking approach requires the study of both energy and agriculture. Climate 

change is creating more pressure on the management of energy, food, and water. These issues 

cannot be resolved in isolation but with a nexus approach (Finley & Seiber, 2014).  Furthermore, 

agriculture in the tropics is particularly in danger due to changing weather patterns and increased 

intensity of climatic events. Degradation of forested ecosystems in tropical areas might also be a 

significant contributor of GHG (Pearson et al., 2017). Puerto Rico, the place where this research 

was conducted, was struck by Hurricane Maria in 2017 deepening its socioeconomic and racial 

inequalities (García-López, 2018).  Puerto Rico’s agricultural and energy sectors were affected. 

Certain parts of the island endured a blackout for almost a whole year (Smith-Nonini, 2020). 

Coffee agriculture in Puerto Rico was disrupted by damages and uprooted trees among other 

things (Mariño et al., 2018; Perfecto et al., 2019). 

 In the first part of this thesis, I conducted a survey to estimate the amount of down 

woody material biomass available in a gradient of sun to shade coffee agroecosystems. Based on 

those results, I calculated an approximate amount of energy generation that could be available 

through gasification, and the amount of carbon emissions reduction through biochar production. I 

began my study with four questions: (1) What is the amount of dead woody materials available 

per hectare in coffee farms in the central mountains of Puerto Rico? (2) What is the relationship, 

if any, between the amount of dead woody biomass and percent canopy cover? (3) How much 

energy can be derived from locally available dead woody material in coffee farms through a 

gasification process? (4) How many tons of carbon per year could be sequestered by using farm-

generated biochar? Our results show some evidence that farms with densely planted coffee 

bushes produce more DWM than sparsely planted ones, and that sun coffee produces less DWM 

than shade coffee. Additionally, we estimated the potential to produce more than 5 GWh of 

energy per year using woody debris from coffee farms using our results for average down woody 

material found in our sampling locations. There is a potential to reduce emissions from 

agricultural activity and energy generation by using down woody material from coffee farms in 

biomass energy microgrids with biochar co-generation. About 8,000 tons of CO2e per year could 

be reduced in this manner.  

In the second part of this thesis, I conducted a greenhouse experiment to measure the 

effects of using biochar as a growing substrate for coffee seedlings. I measured plant response 

every fourteen days for three months tracking height, number of leaves, and the length of its 

longest leaf. At the end of the experiment, I measured the substrate pH. I began with three 

research questions: (1) Does biochar have a positive effect on the growth of coffee seedlings? (2) 

Can different amounts of biochar produce different outcomes in coffee seedling establishment?  

(3) Is there an ideal amount of biochar that can increase biomass productivity in coffee 

seedlings? The results show some evidence of positive effect of adding biochar in seedling 

growth of coffee plants. However, this effect seems to follow a quadratic relationship between 



31 
 

seedling growth and amount of biochar. It is possible that there is a saturation effect or “too 

much” biochar added to the growing medium due to its highly alkaline nature. Additionally, I 

estimated the amount of carbon that could be sequestered by using a biochar and compost 

mixture as the growing substrate in coffee nurseries at a rate of 220 metric tons of C per million 

trees planted.           

Finally, the results of this thesis show positive effects of integrating food and energy 

management by creating a circular economy of DWM in coffee agroecosystems and biochar soil 

conditioning. Most importantly, my thesis shows evidence that shade abundant coffee farms can 

produce more DWM as part of its management practices that can be used to generate biochar and 

energy through biomass gasification. Integrating small-scale biomass energy production and 

biochar co-generation in coffee agroforestry could be used as a technique to mitigate the effects 

of climate change. However, it is of utmost important to state that neither biochar nor emissions 

reductions nor biological carbon sequestration are silver bullets to fight climate change and its 

impact in tropical agriculture. The most important step to achieve a climate just future is to phase 

out all fossil and dirty fuels by 2030.   
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III. Appendices 

 

Appendix A. 

 

 

Table S1. Nutrient content analysis of vermicompost 
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Table S2. Soil analysis carried out by University of Puerto Rico Utuado in 2011 and 2013 

 

Table S3. Wakefield Biochar specification sheet 

 

T1(Control 1) 5.9 0.097 

T2 6.2 0.155 

T3 6.5 0.144 

T4 6.8 0.179 

T5 7.2 0.361 

T6(Control 2) 6.6 0.123 

 

Table S4. pH values of soil solution per every treatment and standard deviation 
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