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Abstract: 

 

Coastal areas are more sensitive to climate change and are more vulnerable to 

increase in temperatures. For the last decades, residents of New Orleans have 

been experiencing hotter summer temperatures conditions and extreme 

weather conditions. Meanwhile, with economic development and the impact 

of human activities, the land cover of the region has experienced substantial 

changes. Since Hurricane Katrina in 2005, Parks and Parkway has undertaken 

a re-greening effort to replace the many thousands of trees lost. A specific 

benefit of tree cover is its ability to reduce the heat storage capacity of urban 

surfaces that creates urban heat islands. This study (1) creates an up-to-date, 

high spatial resolution land cover map and examine how the components of 

Land cover, particularly trees vary across post-Katrina New Orleans; (2) 

quantifies the magnitude and seasonality of LST change between 2006 to 

2020 within the same areas of Land cover maps; and (3) contextualizes Land 

cover and LST patterns with census‐based demographic data and to draw 

inferences about the heat vulnerability implications.  

 

 

Keywords: Land cover, tree cover, Land surface temperature, health 
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1. Introduction: 

 

Urban land use and land cover (LULC) mapping has been one of the major 

applications in remote sensing of the urban environment. Land cover refers to 

the biophysical materials at the surface of the earth (i.e., grass, trees, soils, 

concrete, water) (Liu, 2020). Tree cover is one of the most important 

components of Land cover in urban areas, and it is widely believed to provide 

myriad health services, which are crucial for urban sustainability (Wu 2010, 

2013). These services include regulation of climate and water cycles (Bolund 

and Hunhammar 1999; Zhou et al. 2011), noise reduction (Pathak et al. 2011), 

air pollution mitigation (Yang et al. 2005; Nowak et al. 2006), reduced energy 

use (Ng et al. 2012), increased property values (Tajima 2003), and improved 

aesthetics (Home et al. 2010). A specific benefit of tree cover is its ability to 

reduce the  heat storage capacity of urban surfaces that creates so-called urban 

heat islands (UHI) (Oke, 1982, Taha, 1997, Rizwan et al., 2008). Local 

difference in temperatures creates a negative impact on people and 

environment because negatively impacts air quality, increases energy 

consumption, loses biological control, and affects people’s health (Kikegawa 

et al., 2003, Grimmond, 2007, Meineke et al., 2014, Plocoste et al., 2014, 

Tran, Duy X., et al, 2017). Climate risk prone areas like New Orleans 

experience multiple stressors in the absence of trees for reducing vulnerability 

to flooding caused by hurricanes and sea-level rise, and extreme heat from 

climate change. Understanding the long-term trajectories of tree provision is 

vital for assessing vulnerabilities and illuminating best practices for its 

development. 

 

New Orleans has long been the subject of much study related to 

environmental hazards and the risk and equitable provision of environmental 

goods due to its unique vulnerabilities as a hurricane prone area, and historical 

inequities. Much study has focused on environmental provisions pre and post 

hurricane using surveys of trees, shrubs, and herbaceous lawns and the 
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composition and structure of plant communities across New Orleans (Lewis, 

Joshua A., et al, 2017). Such study has found a linkage between vegetation 

loss following catastrophic flooding (Potter, 2005). Vegetation loss and lack 

of regrowth is often experienced at a greater rate in Black and Brown 

neighborhoods as these areas are low lying and flood prone (Lewis, Joshua A., 

et al, 2017). For example, both Joshua and Potter found lagging vegetation 

disparities for these groups following Hurricane Katrina. Remote sensing has 

likewise been used to capture Land surface temperature(Kilic et al., 2016) and 

assess flood vulnerabilities (Randall et al., 2018) utilizing earth observations 

from 2013 to 2017 to assist groundwork New Orleans in reducing flood 

vulnerability.  

 

Despite there being many articles analyzing vegetation effects on physical 

health in New Orleans, very little analysis has leveraged remote sensing for 

comprehensive change detection of tree cover over time. Remote sensing can 

be a valuable tool examining trajectories of tree cover change, and analyzing 

vulnerability due to lack of trees for specific neighborhoods (Gibbes, Cerian, 

et al). Despite its broad applicability in many applications, challenges can 

exist for multitemporal change detection when using remote sensing. 

Temporal coverage (return rates), obsolete and sensors that are no longer in 

service and data availability (spatial coverage) can all contribute to the issues 

in reconstructing land change processes with sufficient fidelity for accurate 

comparisons over time periods of interest. The adoption of multi-sensor data 

could potentially make up for missing temporal returns. Challenges persist in 

comparison that might be of different resolution, varying spectral quality for 

classifications and differing requirements for processing. However, testing the 

efficacy of using different sensors for change detection can add important 

insight into how these multitemporal dataset can be constructed in practice 

(Civco, Daniel L., et al, 2002). 
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In addition, remote sensing can help detect the secondary environmental risk 

to health by measuring land surface temperature (LST). LST approximates 

how temperatures can be experienced for urban residents as a general 

indicator of heat hazards(  Wang, Jiong, et al. , 2019). Satellite-derived LST is 

widely used in a variety of applications, including land cover and land-cover 

change analysis (Lambin and Ehrlich, 1997), estimation and parameterization 

of surface fluxes (Lu et al., 2013), climate change studies (Hansen et al., 

2010), vegetation monitoring (Kogan, 2001), urban climate studies (Voogt 

and Oke, 2003), and drought monitoring and surface soil moisture estimation 

(Wan et al., 2004a; Leng et al., 2014; Zhao et al., 2017a). Traditionally air 

temperature has been measured from ground stations, and this is a more 

accurate indicator of how individuals experience heat(Nichol, Janet E., et al, 

2009). The challenge with this method is that ground stations are sparse and 

may not be located in communities where extreme heat is experienced. LST 

derived from remote sensing data allows for complete measure across 

neighborhoods and is a unique source of information for defining urban heat 

islands  (Weng et al., 2004, Weng, 2009, Imhoff et al., 2010). It is retrieved 

based on thermal infrared sensors, using different surface emissivity sources. 

Despite the salience of pre-hazard to post-hazard change in LST due 

hurricanes, that often includes dramatic changes in land cover composition 

and resulting LST, long-term there have been few studies that use the unique 

capabilities of remote-sensing following disasters in New Orleans. Besides, 

there has been minimal research relating LST, land cover and vulnerability in 

the region. Examining the change/rise in urban heat islands in New Orleans as 

a result of natural disasters and development will help us understand potential 

changes in quality of life. 

 

While LST allows for assessing heat exposure, it does not indicate health 

risks, which are associated with baseline health scores, behavioral exposure 

and access to health care. Critically in the United States, health coverage 

through health insurances is a strong indicator of health risk. According to the 
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Louisiana Health Insurance Survey in 2017 and regions defined by the 

Department of Health and Hospitals administrative regions, New Orleans 

ranks 6th with estimated uninsured children (under 19) and 4th with estimated 

uninsured adults by 9 regions (New Orleans, Baton Rouge, Houma-

Thibodaux, Acadiana, Southwest, Central, Northwest, Northeast, Northshore). 

Additionally, the survey shows the percentage of children responding to 

insurance meets their needs is 71 percent and that of adults is 53 percent. 

Examining the health insurance coverage around neighborhoods can provide 

references for regions that are vulnerable in terms of disparities in heat 

exposure and re-greening effects.  

 

The goals of this study are to: (1) create an up-to-date, high spatial resolution 

land cover map and examine how the components of Land cover, particularly 

trees vary across post-Katrina New Orleans; (2) quantify the magnitude and 

seasonality of LST change between 2006 to 2020 within the same areas of 

Land cover maps; and (3) contextualizes Land cover and LST patterns with 

census‐based demographic data and to draw inferences about the heat 

vulnerability implications.  

 

2. Methods 

 

2.1 Study Area 

 

New Orleans, Louisiana (NOLA) lies on the Mississippi River, near the Gulf 

of Mexico with a total area of 1084 km2 inhabited by almost 1,262,888 

people, with an average density of 1165/km2. The latitude of New Orleans, 

LA, USA is 29.951065, and the longitude is -90.071533. New Orleans is 

subtropical with an annual high temperature of 25 °C, an annual low of 

16.8 °C, and average annual precipitation of 162.3 cm. Average highest 

precipitation occurs in July (17.9 cm). The study area (Fig. 1) includes 
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communities in Lake View, Gentily, Esplanade Ridge, Treme, French 

Quarter, Marigny, Mid-City, Downtown, Arts/Warehouse District, Uptown. 

 

 

Fig 1. New Orleans case study area and major neighborhoods 
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2.2 Data Sources and Methods 

 

To analyse the dynamic of vegetation and temperature for NOLA after 

Hurricane Katrina, we collected and processed several datasets derived from 

remote sensing (Table. 1). Our land classification is based on, High 

Resolution Orthoimages (2006 - 2012) and Sentinel-2 MultiSpectral 

Instrument, Level-1C(2012 -2018) imagery. For LST we used Landsat7 and 

Landsat8 data sets. Image processing was conducted in the Google Earth 

Engine application.  Additional vulnerability mapping was done at the scale of 

the U.S. Census Tracts to be able to summarize key vulnerabilities at the 

neighborhood level using ArcGIS. The flow of methods is described in Fig. 2. 

 

 

Table 1. Data information 
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Fig. 2 Overview of the methodology 

 

2.2.1 High resolution land cover classification and accuracy verification 

 

2.2.1.1 Pre-processing 

     Terrain and geometrical correction were performed on the High Resolution 

Orthoimagery and Sentinel-2 MSI for spatial co-registration. We used a first-

order polynomial method for geometric referencing  (Fig. 2B; ESRI, 2014). 

Referencing results showed only minor offset between the two images with 

the x-direction deviation of 240 m and the y-direction deviation of 150 m, 

which may be related to the different ground control points (GCPs) used by 

the satellite image product processing teams. The total RMS error of 

correction was 0, which satisfied the accuracy requirement. Data was clipped 

to the New Orleans boundary and projected into Universal Transverse 

Mercator (UTM), Zone 15 with the North American Datum of 1983 

(NAD83). The Orthoimages were aggregated up to a 10-meter scale to match 

the resolution of Sentinel-2 data.  

 

2.2.1.2 Random forest classification and accuracy verification 

 

We used Random Forest (RF) Machine Learning algorithms to classify land 

cover for the study area. RF has been widely used for classification (Breiman, 
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Leo, 2001, Zafari, 2019)Briefly, RF is an ensemble classifier that performs 

well in land classification. Moreover, RF is known for being fast, stable 

against overfitting and requiring small sample size with high dimensional 

input compared to many classifiers (Belgiu, Mariana, and Lucian Drăguţ, 

2016, Chan, Jonathan Cheung-Wai, et al, 2012). Classification is based on a 

“majority of vote” from assemblages of built trees (i.e. forests) that predict 

best class-assignment for any given pixel (Berhane, Tedros M., et al, 2018). 

Each tree is grown by recursively partitioning the data into nodes until each of 

them contains very similar samples, or until meeting one stopping condition. 

RF uses the Gini Index to find the best features (e.g reflectance) and plot 

points to separate the training samples (e.g. Manual examples of land cover 

classes) into homogeneous groups (classes). A key characteristic of RF is that 

only a random subset of all the available features is evaluated when looking 

for the best split point. The number of features in the subset is controlled by 

the user and is typically called mtry. Hence, for large trees which is what RFs 

use, it is at least conceivable that all features might be used at some point 

when searching for split points whilst growing the tree. The final classification 

results are obtained by considering the majority votes calculated from all 

trees. We classified 5 land cover classes (i.e., water, soil and barren, tree and 

forest, grass and herbaceous, impervious surfaces) based on the Meter-Scale 

Urban Land Cover (MULC) classification developed for the United States 

Environmental Protection Agency (US EPA) EnviroAtlas. The MULC classes 

are intended to represent common urban landscape composition and features 

that can be reliably identified in 1 × 1 m pixels, visible near-infrared digital 

aerial photography, by human aerial photo interpreters, and by computer 

image classification algorithms (Pilant, Andrew, et al, 2020). Training data 

were collected for the land cover classes using randomly chosen sites.   

Precision testing was conducted using the Kappa index and the overall 

accuracy for the classification ( Congalton, Russell G, 1991, Keshtkar, 

Hamidreza, Winfried Voigt, and Esmaeil Alizadeh, 2017).  Classification was 
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conducted using software Google Earth Engine and ENVI and pre and post 

processing analysis in Arc Pro. 

 

In this study, 221 polygons for High resolution orthoimagery and 192 

polygons for Sentinel-2 MSI are randomly selected to assess classification 

accuracy. The validation data are randomly and manually chosen based on 

Google Maps. Table (Classification accuracy verification values) contains the 

evaluation results of the five periods of images. Producer’s accuracy and 

user’s accuracy are obtained by a confusion matrix. 

 

2.2.2 Land Surface temperature 

 

LST is sensitive to vegetation and soil moisture, with land use/land cover 

changes drastically impacting it in urban contexts (ref). To capture 

corresponding LST changes from vegetation change, we calculated LST for 

all years using remotely sensed data retrieved from Landsat 7 and 8 dataset 

according to the procedure as described by Chander et al. (2009). It is 

calculated based on radiance values from which temperature can be inferred 

(i.e., black body temperature) followed by a correction for spectral emissivity 

according to the nature of the landscape (Weng et al. 2004). For instance, 

Impervious surface results in hotter temperatures than vegetation, water and 

surrounding areas. LST maps with band 6 (Landsat-7), band 10 (Landsat 8) 

and top of atmosphere brightness temperature values have been expressed in 

Kelvin for each of the study areas[ref].                                                                      

 

2.2.3 Heat vulnerability mapping   

 

Finally, we combined vegetation trajectories, LST and insurance rates to 

characterize heat vulnerability across neighborhoods using principal 

component analysis (PCA). PCA simplifies the complexity in high-

dimensional data while retaining trends and patterns. It does this by 
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transforming the data into fewer dimensions, which act as summaries of 

features. PCA reduces data by geometrically projecting them onto lower 

dimensions called principal components (PCs), with the goal of finding the 

best summary of the data using a limited number of PCs[ref]. Our study 

includes a change in tree cover to assess trends in the benefit derived from this 

environmental good, trend in LST to understand heat exposure and access to 

health insurance as an approximation of risk from its exposure. Though 

vulnerability assessment is not a new concept, it emerges in the climate 

science and policy application (Füssel & Klein, 2006) which is the first step in 

minimizing the impact of the future extreme climate based on socio-ecological 

system (Adger, 2006; Howden et al., 2007). Vulnerability provides the 

foundation for risk level assessment as well as building resilience (Salinger, 

Sivakumar, & Motha, 2005). Assessing vulnerability to heat is important for 

characterizing the risks posed by climate change and delivers information for 

recognizing measures in order to adapt to the adverse impacts of climate 

change. Coastal region has been marked as vulnerable due to the impacts from 

various activities such as continuing high density of socio economic activities, 

rising of temperature and changing of precipitation patterns (Moser & 

Davidson, 2015). In the context of climate change, assessment of vulnerability 

in coastal areas is found essential (McInnes et al., 2013). In multivariate 

statistics, Principal Components Analysis (PCA) is a mainstay of modern data 

analysis tool that is widely used (Blasius and Greenacre, 2014; Bro & Smilde, 

2014; Hair, Black, Babin, Anderson, & Tatham, 2006; Hou, Li, & Zhang, 

2015; Kline, 2014; Shlens, 2014; Yeater, Duke, & Riedell, 2015) to depict the 

profile of vulnerability (Kang, Xuxiang, & Jing, 2015; Guillard-Gonçalves, 

Cutter, Emrich, & Zêzere, 2015; Singh & Vedwan, 2015) in making decisions 

based on spatial maps (Okey, Alidina, & Agbayani, 2015; Schiavinato & 

Payne, 2015). PCA approach provides several potential advantages. When the 

original variables are correlated, the higher orders Principal Components 

(PCs) are able to capture more of the total variability in the original data than 

any individual original variable. PCA technique is applied for spatially 
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explicit aggregation of socioeconomic vulnerability (Miller, 2014), poverty 

(Howe, Suich, van Gardingen, Rahman, & Mace, 2013) and health 

vulnerability (Fisher, Ellis, Adams, Fox, & Selig, 2015; Zhu et al., 2014, 

Uddin, Md Nasir, et al., 2019) 

 

3. Results 

 

3.1 Land Cover classification 

 

3.1.1 Results of Land Cover classification 

 

Classification accuracy (Table. 2) measures indicate high reliability of our 

results comparable to numerous other land cover studies (Zeng, Hongwei, et 

al., 2020, Becker, Willyan Ronaldo, et al., 202,  Clerici et al., 2017 ,  Hasan, et 

al., 2021). Producer’s and user’s accuracy and Kappa values show slight 

improvements comparing classifications using HR and SEN. Visual 

assessment comparing the two imagery shows larger amounts of speckling in 

the HR classification due to the higher resolution.  Overall classification 

accuracy in 2006, 2008, 2012, 2018 and 2020 are 86.36%, 87.59%, 97.73%, 

90.49% and 89.93% respectively, with Kappa indexes of 0.8793, 0.8889, 

0.8862, 0.9012 and 0.9009 respectively. The comparison between 

classification accuracy between the different imagery suggests some 

differences that are negligible when at local neighborhood trends (i.e., census 

tract averages).  
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Table. 2 Classification accuracy verification values 

 

 

Table. 3 Changes of Land cover from 2006 to 2008, 2012, 2018, 2020, and 

2006 to 2020 

 

Classification results (Fig. 3, Table. 3, Fig. 4) show substantial increases in 

tree cover after Hurricane Katrina over the 15-year time-span of our data, tree 

cover increased by over 5.8 km2, which is a 34.3% increase for the main urban 

areas of NOLA. Increases can clearly be seen in parks, parkways and 

neighborhoods due to natural return and re-greening efforts to replace the loss 

of trees (Lewis, Joshua A., et al., 2017). For instance, for residential areas 

such as Gentilly terrace, Broadmoor and Seventh ward, gains of trees on 
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residents around neighborhoods. In City park, the reconstruction of the golf 

course in 2015, resulted in substantial regreening with only minimal benefits 

to adjacent neighborhoods. Meanwhile, impervious surfaces increased from 

32. to 26.7797 km2, a 13.6815 % decrease. Canopy regrowth and impervious 

expansion caused a 18.1134% decline in grass and herbaceous areas (22.76to 

18.64 km2), as these became obscured with net forest cover of increases 

(16.86 to 22.63 km2). Findings suggest that some impervious surface is now 

shaded by the increase of tree canopy, while the other transitions include 

planting and management of grass, and improves in investing resources to 

determine the appropriate protection for levee systems (Raff, et al., 2018). The 

bare land area over this time decreased from 18.97 to 13.05km2, a 31.1988% 

loss. This can result from the controlling of emergent vegetation and 

managing abandoned urban land for returning residents in repopulated flooded 

neighborhoods are likely causes of this loss (Lewis, Joshua A., et al., 2017).  

 

 

Fig. 3 The Land Cover classification map in 2006, 2008, 2012, 2018 and 2020 
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Fig. 4 Examples of tree cover increase in parks, parkways and neighborhoods 

from 2006 to 2020 

 

3.1.2 Analysis of interannual  

 

Analysis of interannual changes (Fig. 5) suggests that tree regrowth has 

increased most between 2008 and 2020 after steady increases since Hurricane 

Katrina. Analysis of tree canopy transitions suggest that increases have come 

from maintaining trees on public property such as neutral grounds and in 

parks, and trees between the sidewalk and street. Those trees serve as natural 

systems and infrastructure. They can also better stave off flooding, reduce 

pollution, improve community health, and provide beauty and shade. 
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Fig. 5 Land cover change statistics from 2006 to 2020 in research area 

 

Reconstruction and dredging can be clearly seen with river width narrower 

between 2012 than 2006, and increasing from 2012 to 2020. The area of 

impervious surface is the largest in the study area which could be the impact 

of reconstruction and new development urbanization according to records of 

the City of New Orleans. Grass and bare land changes correlate with urban 

expansion and limited management of natural disasters. 

 

3.1.3 Neighborhood change 

 

Neighborhood analysis of canopy change since the hurricane (Fig. 6) shows 

that increases have not been felt equally across neighborhoods with many 

losing tree cover over this period. Residential areas such as the Treme Lafitte, 

Uptown, Garden district and Central city have actually experienced loss since 

the Hurricane. Among tracts with increases, those located in  the Lake view 

and Gentilly areas like St. Bernard (around 0.8 km2), and Audubon (around 1 

km2) have experienced the highest percentage of tree cover increase. These 

residential neighborhoods were particularly hard hit by flooding when levees 

broke. Tract with large natural areas like City park also increased canopy as 

trees have rebounded after stress caused by flooding (around 1 km2 gain). 

Comparison of absolute and percent change neighborhood indicate that 

canopy in the southeast part of NOLA has lost or stagnated over the 15-year 
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period. Lack of dynamics is likely related to low possibility for increases due 

this area including high density residential and commercial areas marked by 

impervious surfaces. Tree cover was less disturbed in areas at higher surface 

elevations that experienced lower flooding depths, like the audubon and 

Lakeshore neighborhoods. Prominently, tree cover loss in the Lower garden 

district and the central business district exceeded that of Lakeview and 

Gentilly, despite having higher elevation profiles. However, the expansion of 

tree cover between 2006 and 2020 was greater in neighborhoods with 

widespread residential demolitions, land abandonment, and state management 

(seventh ward, St. Bernard) as opposed to neighborhoods with the lowest 

mean elevations (Treme laffite, central city). 

 

 

Fig. 6 Percentage of tree cover change and absolute tree cover change within 

census tracts in the research area from 2006 to 2020 Jenks class intervals  

3.2 Urban Heat Island analysis 
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Fig. 7 Land surface temperature in 2006, 2008, 2012, 2018 and 2020 

 

Overall, average, max and min summer months LST has increased over the 

16-year time period after Hurricane (Fig. 7). This has occurred even as canopy 

has increased. Over the period average temperature rose by 4.37 degree 

celsius and max and min changed by 2 and 10 degree celsius respectively. 

Interannual variation, peak LST in 2015 and lows in 2010, are typical for 

NOLA variable weather patterns marked by difference in rainfall and 

subsequent cooling from evapotranspiration and other extreme weather events 

(Hurricanes). LST also varies between neighborhoods over this period (2006 

and 2020). While this is partially related to tree canopy, which is elaborated 

below, micro climate also plays a role in these differences (Fig. 8). For 

example, warm and humid southerly winds from the Gulf of Mexico can be 

felt in coastal neighborhoods. Landscape composition also influences these 

micro climate processes with highly urban areas experiencing greater wind 

flow compared to those with tree canopy. Among all tracts, Central city, lower 

garden district and Central business district have the highest percent of LST 

change. Those regions are mainly located around downtown and might be 

influenced by southerly wind and the urban heat island. Regions such as 

Gentilly wood, Gentilly terrace, Folmore have the lowest percentage change. 
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Those cities are located mainly around Gentilly and Lake view on Lake 

Pontchartrain which also has a regulating impact. The absolute change of LST 

ranges from -4 to 10 Degree celsius. Central business district and Irish 

channel which are located around downtown, have the biggest change. Lake 

terrace & oaks, Lakeshore lake vista, City park, Audubon, Fillmore, Gentilly 

terrace have the smallest absolute change. Those areas are located around 

Lake view and Gentilly.  In general, the northern part of the research area has 

lower values for both percent change and absolute change, while the southern 

part has higher values. The results contrast that of tree cover change. 

 

 

Fig. 8 Absolute and percent change of LST from 2006 to 2020 

 

3.3 Tree cover and Land Surface Temperature analysis 

 

 

Fig. 9 Weekly-basis LST from 2006 to 2020 in summer months 
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From Fig. 9, the percent change of LST is mainly within a mild range which is 

-10 to 10%, and the percent change of tree cover is mainly within -10 to 50%. 

Analysis of the regulating impact of tree cover across neighborhoods suggests 

that there is no significant difference between the change of tree cover and 

LST (Fig. 10). This could be due to the strong southerly wind that prevails in 

the area, and although there is change in trees, the regulating effect of them is 

not obvious.  

 

Fig. 10 Percent change of Tree cover and LST  

from 2006 to 2020 by Census Tracts 

 

3.4 Heat Vulnerability assessment 

 

3.4.1 Health insurance coverage analysis 

 

Our spatial analysis of heat vulnerability includes neighborhood level health 

insurance coverage (Fig. 11), distributions of this coverage is highly variable 

throughout NOLA (0 to 378). Regions such as Lake Terrace & Oaks, Mid-

city, St. Anthony, Treme lafitte and Balck Pearl have higher rates of coverage, 

while Lakeshore-Lake vista, City park, Audubon and Desire area have lower 

in comparison. Those people are mainly from 19 to 64 years old. Reflecting 

the more limited availability of public coverage in some tracts, adults are 

more likely to be uninsured than children. Most uninsured people have at least 

one worker in the family. Families with low incomes are more likely to be 
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uninsured. Those families at higher risk are mainly black people and located 

in the hurricane-prone areas. 

 

Fig. 11 People without health insurance at all ages in 2017 in research areas 

3.4.2 Principal component analysis 

 

Our characterization of vulnerability using PCA indicated 4 distinct 

neighborhoods types (Table. 4). Component 1 explains 98.63% of proportion 

variance with eigenvalues(ev) that suggest neighborhoods with high LST (ev 

= 0.7008), and tree canopy (ev =0.6215) dynamics that have substantial 

impervious surfaces (ev = 0.3892), in areas with high rates of uninsured 

individuals (ev = 0.5791).  PC2 has similar rates, but appears to be located in 

more rural areas with less impervious surface and lower change in LST. PC3 

and PC4 describes neighbors with high rates of health insurance, likely in the 

suburbs with low rates of impervious service. The main difference is 

neighborhoods mapping high in PC4 experience high canopy dynamics are 

measured and tabulated in Table (Eigen analysis of the correlation matrix for 

environmental and social impact). Their coefficients are used to calculate 

scores. Notably, all neighborhoods will experience an increase in LST.  

Together, the first two principal components represent 99.7% of the total 

variability representing the clearest dimensionality related to heat 
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vulnerability. Mapping of PCA 1 and 2 indicate the most vulnerable 

neighborhood given local heat trends and insurance rates. The Central 

business district, Irish channel, Lower garden district, Bywater and Desire 

area have the highest vulnerability according to the intensity of LST, tree 

cover, impervious surface and uninsured people. Those areas are mainly 

located in the central, southern and eastern parts of the research area. Tracts 

such as Lake view, Lake terrace & oaks, Audubon and Fillmore which are in 

the northern and western parts have lower vulnerability. (Fig. 12) The result 

implies that areas with less trees, higher LST, higher uninsured people, more 

impervious areas are more vulnerable and are located mainly in the southern 

part of the research area. 

 

Table. 4 Eigen analysis of the correlation matrix  

for environmental and social impact  
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Fig. 12 PCA Heat vulnerability in 2017 in research areas 

 

4. Discussion and conclusion 

 

In this study, we used high resolution orthoimage and Sentinel-2 MSI data to 

detect land cover change for a large portion of New Orleans, La to reconstruct 

canopy cover dynamics after Hurricane Katrina. We analyzed the relationship 

of these changes to change in LST to understand vulnerable neighborhoods. 

LST trends suggest increasing summer average temperature and increasing 

extremes between minimums and maximums. While there is likely a slight 

moderating impact of canopy return on these increasing temperatures, 

neighborhood variability is influenced by microclimatic conditions. Further 

analysis should explore the possible moderating impact of tree canopy 

increases (average Min and Max temperature). Climate change is likely to 

drive increasing temperature, and this will disproportionately impact residents 

without access to health insurances. Our methodology effectively captures 

current vulnerability and areas where future green intervention might 

moderate increasing temperature at the city-wide scale.  
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Change analysis typically relies on data from the same sensor or suite of 

sensors, which removes problems associated with change of GSD, spectral 

resolution, and radiometric calibration. However, because fine spatial 

resolution sensors cover small swaths and require large revisit times, it is 

often necessary to complete change mapping with multiple sensors and/or 

platforms (Elmes, Arthur, et al., 2017). Results of land cover showed that tree 

cover increased by over 5.8 km2 from 2006 to 2020, which is a 34.3% 

increase for the main urban areas of NOLA. Neighborhood analysis of canopy 

change shows that increases have not been felt equally across neighborhoods 

with many losing trees covers over this period. Residential areas such as the 

Treme Lafitte, Uptown, Garden district and Central city have actually 

experienced loss since the Hurricane. Among tracts with increases, those 

located in the Lake view and Gentilly areas like St. Bernard and Audubon 

have experienced the highest percentage of tree cover increase. 

  

To analyze the heat changes and influences in the region, LST from Landsat 7 

& 8 from 2006 to 2020 were obtained. Overall, average, max and min summer 

months LST has increased over the 16-year time period after Hurricane 

Katrina. This has occurred even as canopy has increased. Over the period 

average temperature rose by 4.37 Degree Celsius and max and min changed 

by 2 and 10 Degree Celsius respectively. Among all tracts, Central city, lower 

garden district and Central business district have the highest percent of LST 

change. Those regions are mainly located around downtown and might be 

influenced by southerly wind and the urban heat island. Despite the re-

greening in the region, the local climate still differs across neighborhoods. 

 

The statistics results mentioned above notably shows that a formulation of 

heat vulnerability related with variations in tree cover, health insurance 

coverage and impervious surface, can enable the region to initiate its 

regreening projects and efforts to expand health insurance coverage at all 
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ages. It also found that expanding tree cover and health insurance coverage 

can mitigate the heat vulnerability. Our results indicate that the long-run 

benefits of regreening and expansion of health insurance are substantial. 

 

Chronology of hurricanes and other extreme events have been hitting New 

Orleans in a long period of time. Exposure to high temperatures, which can be 

the result of damage of extreme events to the environment, is a serious health 

hazard. The human thermoregulatory system cannot offset extreme heat, 

resulting in a significant increase of heat related morbidity and mortality 

(Johnson et al., 2005, Stafoggia et al., 2006). In Louisiana, the health survey 

in 2017 is particularly important, as it will be the first to assess coverage after 

Louisiana’s Medicaid expansion in 2016, which is the largest expansion of 

coverage for adults since the original introduction of the Medicaid program 

decades ago (Louisiana health insurance survey). We did a PCA analysis 

using tree cover, LST, impervious surface and health insurance coverage data 

to assess the heat vulnerability in 

the region. The result implies that areas with less trees, higher LST, higher 

uninsured people, more impervious areas are more vulnerable and are located 

mainly in the southern part of the research area. It also found that expanding 

tree cover and health insurance coverage can mitigate the heat vulnerability 

which indicates that the long-run benefits of regreening and expansion of 

Health insurance is substantial. 

For future research, ground truth data for canopy and temperature may be 

obtained. Additionally, community engagement, the process of working 

collaboratively with and through groups of people in the neighborhoods to 

address issues affecting the well-being of people is a powerful vehicle for 

bringing about environmental changes that will improve the health of the 

community and its members. 
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Fig. (Distribution of people without health insurance at different age 

groups. B27010e17: people under 19 years old, B27010e33: people 

between 19 and 34 years old, B27010e50: people between 34 and 64 

years old, B27010m66: people older than 65) 

 

 

Fig. Land cover classification in 2006, 2008, 2012, 2018 and 2020 

 


