
May 2021 Report No. 12

Project Start Date: March 2018 

Project End Date: March 2021 

Design and operation of 
efficient and budget-
balanced shared-use 
mobility systems 
by 
Neda Masoud 
Assistant Professor 
University of Michigan 
Ann Arbor 



DISCLAIMER 

Funding for this research was provided by the Center for Connected and Automated Transportation 
under Grant No. 69A3551747105 of the U.S. Department of Transportation, Office of the Assistant 
Secretary for Research and Technology (OST-R), University Transportation Centers Program. 
The contents of this report reflect the views of the authors, who are responsible for the facts 
and the accuracy of the information presented herein. This document is disseminated under the 
sponsorship of the Department of Transportation, University Transportation Centers Program, in 
the interest of information exchange. The U.S. Government assumes no liability for the contents or 
use thereof. 

Suggested APA Format Citation:
Masoud, N., Tafreshian, A. (2021). Design and Operation of efficient and budget-balanced shared-use 
mobility systems. Final Report. USDOT CCAT Project No. 12.
DOI: 10.7302/1055 

Contacts 
For more information:

Neda Masoud 
2350 Hayward Street 
Phone: (734) 764-8230
Email:   
nmasoud@umich.edu

Amirmahdi Tafreshian
Email:   
atafresh@umich.edu

CCAT 
University of Michigan Transportation Research Institute 
2901 Baxter Road 
Ann Arbor, MI  48152 
uumtri-ccat@umich.edu 
(734) 763-2498

mailto:u


Technical Report Documentation Page 
1. Report No.
Generated by your organization

2. Government Accession No.
Leave blank – not used

3. Recipient’s Catalog No.
Leave blank -  not used

4. Title and Subtitle
Design and operation of efficient and budget-balanced shared-use mobility systems
DOI: 10.7302/1055

5. Report Date
2021
6. Performing Organization Code
Enter any/all unique numbers assigned to
the performing organization, if applicable.

7. Author(s)
Neda Masoud, Ph.D. http://orcid.org/0000-0002-6526-3317
Amirmahdi Tafreshian, M.S. http://orcid.org/0000-0003-1175-0707

8. Performing Organization Report No.
Enter any/all unique alphanumeric report
numbers assigned by the performing
organization, if applicable.

9. Performing Organization Name and Address
Center for Connected and Automated Transportation
University of Michigan Transportation Research Institute
2901 Baxter Road
Ann Arbor, MI  48109

10. Work Unit No.

11. Contract or Grant No.
Contract No. 69A3551747105

12. Sponsoring Agency Name and Address
U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
1200 New Jersey Avenue, SE
Washington, DC  20590

13. Type of Report and Period Covered
Final Report (March 2018-March 2021)
14. Sponsoring Agency Code
OST-R

15. Supplementary Notes
Conducted under the U.S. DOT Office of the Assistant Secretary for Research and Technology’s (OST-R) University
Transportation Centers (UTC) program.
16. Abstract
Traffic congestion has become a serious issue around the globe, partly owing to single-occupancy commuter trips. Ridesharing can
present a suitable alternative for serving commuter trips. However, there are several important obstacles that impede ridesharing
systems from becoming a viable mode of transportation, including the lack of a guarantee for a ride back home as well as the
difficulty of obtaining a critical mass of participants. This paper addresses these obstacles by introducing a Traveler Incentive
Program (TIP) to promote community-based ridesharing with a ride-back home guarantee among commuters. The TIP program
allocates incentives to (1) directly subsidize a select set of ridesharing rides, and (2) encourage a few, carefully selected set of
travelers to change their travel behavior (i.e., departure or arrival times). We formulate the underlying ride-matching problem as a
budget-constrained min-cost flow problem, and present a Lagrangian Relaxation-based algorithm with a worst-case optimality
bound to solve large-scale instances of this problem in polynomial time. We further propose a polynomial-time budget-balanced
version of the problem.  Numerical experiments suggest that allocating subsidies to change travel behavior is significantly more
beneficial than directly subsidizing rides. Furthermore, using a flat tax rate as low as 1\% can double the system's social welfare in
the budget-balanced variant of the incentive program.

17. Key Words
P2P ridesharing, Incentive design, Community-based ridesharing,
Monetary subsidy, Budget-constrained flow problem, Guaranteed
ride-back home

18. Distribution Statement
No restrictions.



 

 

19. Security Classif. (of this report) 
Unclassified 

20. Security Classif. (of this page) 
Unclassified 

21. No. of Pages 
Enter the total 
number of pages 
in the report, 
including both 
sides of all pages 
and the front and 
back covers. 

22. Price 
Leave blank – 
not used 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 
 

 



P a g e  | i 

 

Table of Contents 
1 INTRODUCTION............................................................................................................................................. 1 

2 LITERATURE REVIEW ................................................................................................................................... 2 

2.1 PEER-TO-PEER (P2P) RIDESHARING ........................................................................................................... 2 

2.2 INCENTIVES IN SHARED MOBILITY ............................................................................................................. 3 

2.3 OUR CONTRIBUTIONS .................................................................................................................................. 5 

3 PROBLEM STATEMENT ................................................................................................................................ 5 

3.1 STATIC ONE-TO-ONE RIDESHARING WITH RIDE-BACK GUARANTEE ....................................................... 6 

3.2 INCENTIVE DESIGN ...................................................................................................................................... 8 

4 SOLUTION METHODOLOGY ..................................................................................................................... 9 

4.1 MATHEMATICAL FORMULATION FOR THE MORNING TRIPS...................................................................... 9 

4.2 MATHEMATICAL FORMULATION FOR THE MORNING AND EVENING TRIPS ........................................... 13 

4.3 A LAGRANGIAN RELAXATION BASED METHOD ...................................................................................... 14 

4.4 A BUDGET-BALANCED VARIANT OF THE INCENTIVE PROGRAM ............................................................. 20 

5 NUMERICAL EXPERIMENT ....................................................................................................................... 21 

5.1 DATASET .................................................................................................................................................... 22 

5.2 EXPERIMENT SETUP AND PARAMETER SETTINGS ...................................................................................... 22 

5.3 PERFORMANCE METRICS ........................................................................................................................... 23 

5.4 THE PERFORMANCE OF THE LR-BASED SOLUTION METHOD .................................................................. 23 

5.5 THE IMPACT OF THE TWO PROPOSED INCENTIVES ................................................................................... 24 

5.6 THE IMPACT OF TAX RATE IN THE BUDGET-BALANCED INCENTIVE PROGRAM ........................................ 25 

5.7 THE DISTRIBUTION OF THE BA INCENTIVE BASED ON TRIP ORIGINS AND DESTINATIONS ....................... 26 

5.8 A DYNAMIC IMPLEMENTATION OF THE INCENTIVE PROGRAM ............................................................. 27 

5.9 SENSITIVITY ANALYSIS .............................................................................................................................. 29 

6 FINDINGS AND FUTURE WORK ............................................................................................................. 30 

7 RECOMMENDATIONS ................................................................................................................................ 32 

8 REFERENCES .................................................................................................................................................. 33 

APPENDIX A. TABLE OF NOTATIONS .................................................................................................... 36 

APPENDIX B. PROOF OF PROPOSITION 1 ................................................................................................. 38 



P a g e  | ii 

 

APPENDIX C. SENSITIVITY ANALYSIS (CONT’D) .................................................................................. 40 

APPENDIX D. OUTPUTS, OUTCOMES, AND IMPACTS ..................................................................... 44 

D-1 OUTPUTS .................................................................................................................................................... 44 

D-1.1 Publications, conference papers, or presentations (from major conference or similar event) ............ 44 

D-1.2 Other outputs.  Electronic copies or links should be provided as appropriate.  May include: ........ 45 

D-2 LIST AND ELECTRONIC COPIES (AS APPROPRIATE) OF OUTCOMES FROM THE PROJECT. ........................... 46 

D-3 LIST OF IMPACTS ........................................................................................................................................ 46 

D-4 TECH TRANSFER – LIST ANY ADDITIONAL TECH TRANSFER ACTIVITIES NOT CAPTURED ABOVE. ............ 46 

D-5 CHALLENGES AND LESSONS LEARNED, IF NOT CONTAINED IN THE RECOMMENDATION SECTION ABOVE.
 46 

 

   

  



P a g e  | iii 

 

List of Figures  
FIGURE 1: GRAPH 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)  FOR A RIDESHARING SYSTEM WITH 11 USERS WHERE 𝐷𝐷′ = {1′,2′,3′,4′} , 𝐷𝐷″ =

{1″,2″,5″,6″}, 𝑅𝑅′ = {7′,8′,9′,10′}, AND 𝑅𝑅″ = {7″,8″,9″,11″}. ...................................................................... 7 

FIGURE 2: A SMALL EXAMPLE OF GRAPH 𝐺𝐺. .............................................................................................................. 15 

FIGURE 3: A BUDGET -FEASIBLE AND -INFEASIBLE OPTIMAL FLOW FOR LR SUBPROBLEM OF THE SMALL EXAMPLE 16 

FIGURE 4: THE CYCLES IN ∆= {𝑋𝑋1,𝑋𝑋2} AND THE FLOW 𝑆𝑆ℎ AFTER CANCELLING CYCLE INDUCED BY THE EDGES IN 

𝑋𝑋1 = 2′,8′,8′,3′, 3′,9′,9′,4′,4′,10′,10′,2′. IN PART (A), THE SOLID ARROWS DENOTE EDGES IN 𝐸𝐸𝐸𝐸 AND THE 

DASHED ARROWS DENOTE THE EDGES IN 𝐸𝐸𝐸𝐸. ................................................................................................... 17 

FIGURE 5: CYCLE X, SUBSEQUENCE Y, GRAPH G”=(V,S), AND THE FINAL FLOW SM................................................. 19 

FIGURE 6: THE COMPARISON BETWEEN THE PERFORMANCE OF THE MIP SOLVER AND THE LR-BASED METHOD . 24 

FIGURE 7: THE COMPARISON BETWEEN THE PERFORMANCE OF THE RIDESHARING UNDER DIFFERENT 

CASES OF SUBSIDY FOR THE OBJECTIVE OF (A) MAXIMIZING THE SOCIAL WELFARE, AND (B) 

MAXIMIZING THE MATCHING RATE. ............................................................................................................. 25 

FIGURE 8: THE SOCIAL WELFARE FOR DIFFERENT VALUES OF TAX RATE IN A BUDGET-BALANCED 

INCENTIVE PROGRAM ...................................................................................................................................... 26 

FIGURE 9: : THE HEATMAP OF THE ORIGIN AND DESTINATION ZONES ............................................................ 27 

FIGURE 10: THE SOCIAL WELFARE A DYNAMIC INCENTIVE PROGRAM UNDER DIFFERENT POLICIES FOR ALLOCATING 

BUDGET AND FINALIZING MATCHES .................................................................................................................. 29 

FIGURE 11: IMPACT OF AVERAGE VALUE OF TIME...................................................................................................... 30 

FIGURE 12: IMPACT OF AVERAGE VALUE OF DISTANCE ............................................................................................. 30  
FIGURE D-1: IMPACT OF NUMBER OF PARTICIPANTS ................................................................................................. 40 

FIGURE D-2: IMPACT OF PERCENTAGE RIDERS........................................................................................................... 41 

FIGURE D-3: IMPACT OF PERCENTAGE OF RIDE-BACK TRIPS ..................................................................................... 42 

FIGURE D-4: IMPACT OF TOTAL BUDGET ................................................................................................................... 42 

FIGURE D-5: IMPACT OF THE MORNING AND EVENING PEAK HOURS’ LENGTHS ...................................................... 43 

  



P a g e  | iv 

 

List of Tables 
TABLE 1: THE PARAMETER SETTING FOR THE BASE SCENARIO .................................................................................. 23 
 
TABLE A-1: LIST OF NOTATIONS 36 

  



P a g e  | v 

 

List of Algorithms 
ALGORITHM 1: THE PRE-PROCESSING PROCEDURE FOR THE MORNING TRIPS ......................................................... 12 

ALGORITHM 2: A NEAR OPTIMAL SOLUTION FOR P2P RIDESHARING WITH RIDE-BACK GUARANTEE ..................... 16 



P a g e  | 1 

 

1 Introduction 

In recent years, traffic congestion has become a serious issue around the globe. In a contemporary 
study of 1,360 cities in 38 countries, Bloomberg CITYLab asserted that traffic congestion costs 
over $305 Billion per year only in the U.S. (Schneider, 2018). This spike in traffic congestion, 
especially during morning and evening peak hours, is mainly due to the rising number of solo-
driver commuting trips. Despite tremendous expenditure on subsidy, public transit services have 
failed to alleviate congestion by shifting solo driving toward more sustainable forms of transport. 
In addition, not only has the recent proliferation of Transportation Network Companies (TNCs) 
such as Uber and Lyft not addressed this issue, but it has exacerbated congestion, particularly in 
large cities (Hawkins, 2019).   

 Peer-to-peer (P2P) ridesharing is a manifestation of the sharing economy business model in 
the mobility market, and provides a promising solution for mitigating traffic congestion. In 
contrast to TNCs that produce high empty miles, thereby adversely affecting traffic congestion, 
P2P ridesharing improves congestion by increasing the utilization rate of empty seats. 
Additionally, P2P ridesharing provides a unique opportunity for communities to augment transit 
services by serving their mobility needs internally. In community-based ridesharing—a form of 
P2P ridesharing for commuters—the members of the community who own cars, henceforth 
referred to as drivers, transport their peers, henceforth referred to as riders, along their routes 
while completing their own personal trips. Aside from its environmental benefits, community-
based ridesharing provides a promising mobility solution for the following reasons: 

1 Existing trust: Drivers and riders are members of the same small community, preventing 
lack of participation that may arise from lack of trust in large metropolitan areas. 

2 Lack of opportunity cost: Drivers travel according to their own schedules, and may only 
take small detours to serve their fellow community members. 

3 Revenue for the community: The fare of the rides will be set so as to compensate drivers 
fully for their detours and partially for their base travel costs,  as they would be sharing 
the  cost of their base trips with riders. 

 Despite abundant benefits of ridesharing systems, there are a few obstacles that hinder the 
adoption of such systems by commuters in practice. First, commuters are in general reluctant to 
leave their vehicles at home in favor of outsourcing their rides in the morning if they do not have 
a guarantee for a ride back home. Traditional carpooling services can provide such a guarantee 
for commuters who have fixed and common working hours. However, carpooling may not be a 
viable option for commuters whose working hours may shift from one day to the next. Second, 
in P2P ridesharing participants are available in the network only for a short period of time 
(compared to TNC drivers and transit providers), which leads to low spatio-temporal proximity 
among trips. These factors pose a challenge for P2P ridesharing systems achieving a critical mass, 
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and thereby, becoming a viable transportation option in the long run. 

 This paper tackles this timely issue by designing a traveler incentive program (TIP) that 
allocates monetary subsidies to riders and drivers to foster ridesharing participation rates and 
provide an opportunity for the commuters within a community to serve their mobility needs 
internally. To this end, this paper develops a ridesharing system with ride-back guarantee that 
incentivizes commuters to share their morning and evening trips with their peers. TIP finds the 
optimal allocation of a set budget to participants so as to: (i) subsidize a selective set of rides, and 
(ii) change the travel behavior of a small, carefully selected set of commuters, with respect to their 
travel time windows. The ultimate goal of TIP is to maximize social welfare of system participants 
while ensuring that every dollar injected to the system will generate a higher value in social 
welfare. In the rest of this paper, Section 2 provides a review of the literature related to P2P 
ridesharing and using incentives to promote shared mobility services. Next, we carefully define 
the problem in this paper and its underlying assumptions in Section 3. In Section 4, we present a 
mathematical formulation for the problem and a solution methodology to solve its large 
instances. Section 5 presents the results of several numerical experiments that evaluate different 
aspects of our proposed methodology. Finally, Section 6 finalizes this paper by summarizing our 
findings and providing directions for future research. 

2 Literature Review 

In this section, we first present a brief overview of the literature in P2P ridesharing, followed by 
a review of studies in shared mobility that consider various types of incentives to promote their 
systems. Finally, we clearly state the contributions of this paper. 

2.1 Peer-to-Peer (P2P) Ridesharing 

P2P ridesharing is a shared mobility platform that encourages users with similar routes and time 
schedules to share their rides together (Agatz N. , Erera, Savelsbergh, & Wang, 2012). In spite of 
some similarities, one must distinguish P2P ridesharing from other forms of shared mobility 
platforms such as carpooling (see e.g., (Baldacci, Maniezzo, & Mingozzi, 2004)), since it does not 
require long-time commitments from users, as well as ride-sourcing (see e.g., (Xu, Yin, & Ye, 
2020)) or taxi-sharing (see e.g., (Alonso-Mora, Samaranayake, Wallar, Frazzoli, & Rus, 2017)) since 
drivers in P2P ridesharing are not treated as employees and their primary intention is to complete 
their own personal trips. In what follows, we describe a number of major characteristics of P2P 
ridesharing, henceforth referred to as ridesharing, and its variant forms. For further information 
on ridesharing, the interested reader is referred to the surveys by (Agatz N. , Erera, Savelsbergh, 
& Wang, 2012); (Furuhata, et al., 2013); (Tafreshian, Masoud, & Yin, 2020a). 

 Ridesharing systems can be roughly divided into the two categories of static ridesharing (see 
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e.g., (Regue, Masoud, & Recker, 2016); (Wang, Dessouky, & Ordonez, 2016); (Long, Tan, Szeto, & 
Li, 2018)) and dynamic ridesharing (see e.g., (Agatz N. , Erera, Savelsbergh, & Wang, 2011); (Lee 
& Savelsbergh, 2015); (Masoud & Jayakrishnan, 2017b)). In the former case, the trip information 
of all users is known ahead of time, while in the latter case users enter the system dynamically 
and register their trips shortly before their departure times. Most of the studies in P2P ridesharing 
consider the sets of riders and drivers as two mutually exclusive sets (see e.g., (Agatz N. , Erera, 
Savelsbergh, & Wang, 2011); (Nourinejad & Roorda, 2016); (Najmi, Rey, & Rashidi, 2017)). 
However, a few studies relax this assumption and let the system operator decide the most 
beneficial role (i.e., rider or driver) for each participant (see e.g., (Amey, 2011); (Chen, Mes, 
Schutten, & Quint, 2019); (Tafreshian & Masoud, 2020b); (Tafreshian & Masoud, 2020c)). The core 
of a ridesharing system is a ride-matching problem, the solution of which determines the optimal 
assignment between riders and drivers, users’ trip schedules, and drivers’ routes. With an intent 
to make ridesharing convenient for both riders and drivers, many studies consider the simplest 
form of the ride-matching problem in which every user can be matched with at most one other 
user (see e.g., (Ma, Zheng, & Wolfson, 2013); (Najmi, Rey, & Rashidi, 2017); (Wang, Agatz, & 
Erera, 2017)). In order to increase the possibility of matching, however, a number of studies 
diverge from this assumption by allowing multiple riders per vehicle and transfers between 
vehicles (see e.g., (Stiglic, Agatz, Savelsbergh, & Gradisar, 2015); (Masoud & Jayakrishnan, 2017a); 
(Chen, Mes, Schutten, & Quint, 2019)). Moreover, a number of studies incorporate the choice of 
ride-back home guarantee in their models, which motivates rider participation, and increases the 
level-of-service offered by the system (see e.g., (Regue, Masoud, & Recker, 2016); (Lloret-Batlle, 
Masoud, & Nam, 2017); (Chen, Mes, Schutten, & Quint, 2019); (Hasan, Van Hentenryck, & 
Legrain, 2020)). 

 Based on the definitions above, the community-based ridesharing proposed in this paper can 
be categorized as a static one-to-one ridesharing system with ride-back guarantee. The choice of 
a static system is supported by the outcome of a ridesharing survey in Berkeley, CA, which 
concludes that commuters prefer to learn about their rideshare arrangements at least a night 
before (Deakin, Frick, & Shively, 2010). Also, given the assumption that all users select the 
shortest travel time path as their selected route, one-to-one ride-matching ensures that (i) riders 
do not experience any detour during their travel, and (ii) drivers’ inconvenience due to pick-ups 
and drop-offs are minimized. Finally the results of a behavioral study by (Brownstone & Golob, 
1992) indicates that the option of ride-back home guarantee motivates a high percentage of 
commuters to engage in ridesharing programs. 

2.2 Incentives in Shared Mobility 

Since the introduction of shared mobility services, several studies have emphasized the need for 
designing incentives to motivate solo drivers to participate in rideshare programs. The proposed 
incentives can roughly fall into two categories of indirect and direct (a.k.a. financial subsidies) 
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incentives. The employer-provided parking discounts for high occupancy vehicles (HOV) is an 
example of an indirect incentive that can significantly incentivize daily commuters to shift toward 
ridesharing ( (Brownstone & Golob, 1992); (Su & Zhou, 2012)). Another indirect incentive that 
proves useful in practice is the possibility of using freeway HOV lanes that leads to savings in 
commute times ( (Brownstone & Golob, 1992); (Lloret-Batlle, Masoud, & Nam, 2017)). Finally, 
integrating ridesharing with public transit and/or other transport programs can reduce the travel 
cost of commuting and encourage a higher number of commuters to share their rides ( (Deakin, 
Frick, & Shively, 2010); (Nam, et al., 2018); (Bian & Liu, 2019)). 

 Aside from indirect incentives, many studies stress the necessity of adopting various form of 
financial subsidiary schemes to promote ridesharing among commuters ( (Chan & Shaheen, 
2012); (Agatz N. , Erera, Savelsbergh, & Wang, 2012)). The ultimate goal of financial (or direct) 
incentives is to maximize fleet utilization, and thereby reduce traffic congestion. (Stiglic, Agatz, 
Savelsbergh, & Gradisar, 2016) conduct a comprehensive case study to evaluate the effect of time 
flexibility on the matching rate in one-to-one ridesharing systems. Based on the results of their 
experiments, they emphasize the importance of adopting an incentive scheme that provides 
monetary benefits to commuters to increase their time flexibility. In a study that focuses on the 
role of rider-driver cost-sharing strategies in the success of ridesharing programs, (Wang, Yang, 
& Zhu, 2018) show that providing ridesharing users with sufficient subsidies can reduce the cost 
of participation and turn ridesharing into a viable alternative to public transit. They further 
emphasize the need for designing appropriate subsidizing schemes. 

 The consideration of financial subsidies is not limited to ridesharing systems and has been 
studied in other types of shared mobility services. (Qian, Zhang, Ukkusuri, & Yang, 2017), for  
instance, introduce ride incentives for groups of passengers in a shared-taxi service as discounts 
towards their trip fares. They further propose different algorithms that find the best ride 
incentives to improve total saved mileage. For the operation of ride-sourcing platforms such as 
Uber and DiDi Chuxing, (Zhao & Chen, 2019) compare the ex-ante and ex-post destination 
information models and show the effectiveness of subsidies in attracting more participants under 
the latter model. They further design a subsidy scheme based on the income of drivers that 
motivates them to serve farther distant passengers. (Luo, Saigal, Chen, & Yin, 2019) develop a 
new dynamic games approach to find the optimal subsidy policy that accelerates the adoption of 
automated vehicles (AV’s). In their approach, adaptive subsidies are computed based on the state 
of the AV market penetration process under uncertainty. They claim that the optimal subsidies 
further incentivize the AV manufacturers to improve their technology, and offer pricing 
incentives to potential consumers. More recently, through a joint simulation of car-sharing, bike-
sharing and ride-hailing for a city-scale transport system, (Becker, Balac, Ciari, & Axhausen, 2020) 
found that the highest system-level impacts can be achieved when the operations of shared modes 
are subsidized. More interestingly, they showed that the total amount of subsidies required for 
these shared modes is lower than the amount paid for current regular public transport services. 
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Finally, (Xiong, et al., 2020) propose an integrated system that provides personalized travel 
alternatives and monetary incentives for travelers. As a part of their system, to reduce traffic 
congestion they offer alternative departure times for commuters and compensate them with 
monetary subsidies. This incentive scheme has been commercialized as a mobile app, called 
incenTrip, and is currently used in the Washington area. 

 Based on the findings of these studies, we propose two types of monetary incentives that can 
help improve the social welfare of a community adopting a ridesharing system. The first incentive 
is targeted toward changing travelers’ schedules to increase their chance of being matched. The 
other incentive attempts to compensate the negative externalities of riders and drivers sharing 
rides together. 

2.3 Our Contributions 

The contributions of this paper are as follows: 

1. We introduce a traveler incentive program for a ridesharing system with guaranteed ride- 
back, and present a mixed integer nonlinear optimization model that determines the 
optimal matching, scheduling, and incentive allocation. 

2. We decompose the mixed integer nonlinear optimization model into a linear model that 
determines the optimal amount of incentives to each rider-driver pair, and a budget- 
constrained min-cost flow problem, which is known to be NP-complete. 

3. We propose a polynomial-time Lagrangian Relaxation method to efficiently find near-
optimal solutions for large-scale instances of the problem, and provide a worst-case 
optimality bound for its performance. 

4. We propose a budget-balanced variant of the incentive program, which could be solved 
in polynomial time. 

5. We perform a comprehensive set of numerical experiments to showcase the impact of the 
proposed incentive program on serving the mobility needs in a city. 

3 Problem Statement 

The main focus of this paper is a static ridesharing system for commuters (although in Section 5.8 
we will investigate a dynamic setting). This program guarantees ride-back services for the riders 
who register both their morning and evening trips in the system. 

 Let 𝑁𝑁  denote the set of all participants (users) that register their trips in a given day. A 
participant in the system can be either a driver or a rider in a given day. Therefore, set 𝑁𝑁 can be 
further partitioned into two disjoint sets of riders, denoted by 𝑅𝑅, and drivers, denoted by 𝐷𝐷. We 
assume that the ridesharing system knows the following information regarding each user 𝑛𝑛 ∈ 𝑁𝑁: 

https://www.incentrip.org/
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𝖥𝖥(𝑛𝑛): the value of every unit of time spent on traveling 
𝖧𝖧(𝑛𝑛): the value of every unit of distance driven 

These values can either be specified directly by having the users answer a short survey, or 
estimated based on the provided information upon registration for the first time in the system 
(e.g. occupation, place of residence, vehicle’s make and model, etc.). Every user 𝑛𝑛 ∈ 𝑁𝑁  may 
register a trip in the morning, represented by 𝑛𝑛′, a trip in the evening, represented by 𝑛𝑛″, or both. 
Let 𝑁𝑁′ = 𝑅𝑅′ ∪ 𝐷𝐷′ and 𝑁𝑁″ = 𝑅𝑅″ ∪ 𝐷𝐷″ respectively denote the sets of all trips in the morning and 
evening. Also, let 𝐷𝐷‴ ⊂ 𝐷𝐷, 𝑅𝑅‴ ⊂ 𝑅𝑅, 𝑁𝑁‴ = 𝑅𝑅‴ ∪ 𝐷𝐷‴ denote the set of drivers, riders, and users 
who register both their morning and evening trips in the system, respectively. Due to the 
similarities between the characteristics of morning and evening trips, we describe our 
assumptions using only the morning trips in the rest of this section. Table A-1 summarizes the 
notation used in this paper. 

 It is assumed that the study region consists of a large number of stations from/at which trips 
originate/end. Thus, every trip 𝑛𝑛′ ∈ 𝑁𝑁′ can be characterized by the following information: 

• 𝖨𝖨(𝑛𝑛′): the origin station for the morning trip of user 𝑛𝑛 
• 𝖩𝖩(𝑛𝑛′): the destination station for the morning trip of user 𝑛𝑛 
• 𝖳𝖳(𝑛𝑛′): the desired earliest departure time of user 𝑛𝑛 from the origin station in the morning 
• 𝖰𝖰(𝑛𝑛′): the desired latest arrival time of user 𝑛𝑛 from the destination station in the morning 

 We further assume that the shortest-path travel time and driving distance between every pair 
of stations during the morning period are known and stored in the hash tables 𝜏𝜏  and 𝜌𝜌 , 
respectively. Thus, 𝜏𝜏𝑖𝑖,𝑗𝑗/𝜌𝜌𝑖𝑖,𝑗𝑗  represent the shortest-path travel time/distance from station 𝑖𝑖  to 
station 𝑗𝑗. We refer to [𝖳𝖳(𝑛𝑛′),𝖰𝖰(𝑛𝑛′)] as the morning time window of user 𝑛𝑛. The length of this 
time window is rather tight, but always greater than or equal to 𝜏𝜏𝖨𝖨(𝑛𝑛′),𝖩𝖩(𝑛𝑛′). 

 To provide a high quality of service for both riders and drivers participating in the ridesharing 
system, we assume that in a given time period (e.g., morning) ,each driver will give a ride to at 
most one rider, and riders complete their trips with at most one driver. This limits the length of 
detours incurred by drivers, and guarantees no detour and transfer for riders. 

3.1 Static One-to-One Ridesharing with Ride-Back Guarantee 

The problem of one-to-one ridematching with guaranteed ride-backs was first considered by 
(Agatz N. , Erera, Savelsbergh, & Wang, 2011), where they formulated it as a weighted matching 
problem with the addition of a set of bundle constraints that relate riders’ inbound trips to their 
outbound trips. In general, this problem may no longer have the unimodularity property, and 
thus, requires an MIP solver to solve. However, in the cases where inbound and outbound trips 
occur in two non-overlapping periods (e.g., all the outbound trips occur in the morning peak 
hours and inbound trips occur in the evening peak hours), (Lloret-Batlle, Masoud, & Nam, 2017) 
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show that the ridematching problem can be formulated as a min-cost max flow problem a 
weighted directed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where the set of nodes is denoted by 𝑉𝑉 = {𝗌𝗌,  𝗍𝗍} ∪ 𝑁𝑁′ ∪ 𝑁𝑁″, 
and the edge set is denoted by 𝐸𝐸.  

 

 
Figure 1: Graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) for a ridesharing system with 11 users where 𝐷𝐷′ = {1′, 2′, 3′, 4′}, 𝐷𝐷″ = {1″, 2″, 5″, 6″}, 𝑅𝑅′ =

{7′, 8′, 9′, 10′}, and 𝑅𝑅″ = {7″, 8″, 9″, 11″}. 

 Figure 1 shows an example of such a graph with 11 users. The auxiliary nodes 𝗌𝗌 and 𝗍𝗍 
respectively represent the source node and the target node. The edge set 𝐸𝐸 consists of two edge 
subsets: (𝑖𝑖) the auxiliary edges with capacity of 1 unit and 0 units of cost, and (𝑖𝑖𝑖𝑖) the potential 
matching edges with capacity of 1 unit and −𝖶𝖶 units of cost. The auxiliary edges connect (𝑖𝑖) 
node 𝗌𝗌 to all driver trips 𝑑𝑑′ ∈ 𝐷𝐷′ and all rider trips 𝑟𝑟 ∈ 𝑅𝑅″ when 𝑟𝑟 ∉ 𝑅𝑅‴, (𝑖𝑖𝑖𝑖) all driver trips 𝑑𝑑″ ∈
𝐷𝐷″ and all rider trips 𝑟𝑟′ ∈ 𝑅𝑅′ when 𝑟𝑟 ∉ 𝑅𝑅‴ to target node 𝗍𝗍, and (𝑖𝑖𝑖𝑖𝑖𝑖) every rider trip 𝑟𝑟′ ∈ 𝑅𝑅′ to 
rider trip 𝑟𝑟″ ∈ 𝑅𝑅″ when 𝑟𝑟 ∈ 𝑅𝑅‴. The potential matching edges connect the morning drivers to the 
morning riders and the evening riders to the evening drivers. A potential match edge exists in 
graph 𝐺𝐺 if (𝑖𝑖) the match is spatio-temporally feasible, and (𝑖𝑖𝑖𝑖) both parties prefer the match to 
their other available options outside of the ridesharing system, i.e., the match is individually 
rational. 

 In what follows, we develop the mathematical equations for spatio-temporal feasibility and 
individual rationality conditions for the morning period. Similar equations can be derived for the 
evening period. Spatio-temporal feasibility requires a driver to be capable of providing a ride to 
a rider within the rider’s time window while completing their own trip within their time window. 
Thus, the following two equations must be satisfied simultaneously: 

max{𝖳𝖳(𝑑𝑑′) + 𝜏𝜏𝖨𝖨(𝑑𝑑′),𝖨𝖨(𝑟𝑟′) , 𝖳𝖳(𝑟𝑟′)} + 𝜏𝜏𝖨𝖨(𝑟𝑟′),𝖩𝖩(𝑟𝑟′) ≤ 𝖰𝖰(𝑟𝑟′) ,        (1.1)
max{𝖳𝖳(𝑑𝑑′) + 𝜏𝜏𝖨𝖨(𝑑𝑑′),𝖨𝖨(𝑟𝑟′) , 𝖳𝖳(𝑟𝑟′)} + 𝜏𝜏𝖨𝖨(𝑟𝑟′), 𝖩𝖩(𝑟𝑟′) + 𝜏𝜏𝖩𝖩(𝑟𝑟′), 𝖩𝖩(𝑑𝑑′) ≤ 𝖰𝖰(𝑑𝑑′) . (1.2) 

 Equations (1.1) and (1.2) respectively ensure that the match allows rider 𝑟𝑟 and driver 𝑑𝑑 to 
complete their trips within their specified time windows. While these equations describe the 
spatio-temporal feasibility of a match, for a match to be deemed valuable and accepted by both 
parties, the fare for the ride should be set to an amount that is acceptable by both the driver and 
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the rider. Let 𝖴𝖴(𝑟𝑟′|𝑑𝑑′) and 𝖴𝖴(𝑑𝑑′|𝑟𝑟′) respectively denote the valuations of rider 𝑟𝑟 and driver 𝑑𝑑 
of sharing a ride together. This valuation can be defined as the difference between the cost of 
sharing the ride and the cost of driving alone (in case the rider does not own a car, this cost is set 
to the cost of taking a taxi cab). Based on the elicited information from both parties, these 
valuations can be found as: 

𝖴𝖴(𝑟𝑟′|𝑑𝑑′) = 𝖧𝖧(𝑟𝑟) 𝜌𝜌𝖨𝖨(𝑟𝑟′),𝖩𝖩(𝑟𝑟′) ,            (2.1)
𝖴𝖴(𝑑𝑑′|𝑟𝑟′) = −𝖧𝖧(𝑑𝑑) (𝜌𝜌𝖨𝖨(𝑑𝑑′),𝖨𝖨(𝑟𝑟′) + 𝜌𝜌𝖨𝖨(𝑟𝑟′),𝖩𝖩(𝑟𝑟′) + 𝜌𝜌𝖩𝖩(𝑟𝑟′),𝖩𝖩(𝑑𝑑′) − 𝜌𝜌𝖨𝖨(𝑑𝑑′),𝖩𝖩(𝑑𝑑′))

−𝖥𝖥(𝑑𝑑) (𝜏𝜏𝖨𝖨(𝑑𝑑′),𝖨𝖨(𝑟𝑟′) + 𝜏𝜏𝖨𝖨(𝑟𝑟′),𝖩𝖩(𝑟𝑟′) + 𝜏𝜏𝖩𝖩(𝑟𝑟′),𝖩𝖩(𝑑𝑑′) − 𝜏𝜏𝖨𝖨(𝑑𝑑′),𝖩𝖩(𝑑𝑑′)) , (2.2)
 

where 𝖥𝖥(𝑛𝑛) > 0 and 𝖧𝖧(𝑛𝑛) > 0 respectively denote the values of time (in $ per unit of time) and 
distance (in $ per unit of distance) for user 𝑛𝑛 ∈ 𝑁𝑁. The statements in parentheses in Equations 
respectively represent the distance and time of the detour incurred by driver 𝑑𝑑 to serve rider 𝑟𝑟 
in the morning. If we assume that all users follow a quasi-linear utility, then the sum of valuations 
in (2.1) and (2.2) yields the potential monetary saving (gain) due to driver 𝑑𝑑 providing a ride to 
rider 𝑟𝑟, denoted as 𝖶𝖶(𝑑𝑑′, 𝑟𝑟′) = 𝖴𝖴(𝑑𝑑′|𝑟𝑟′) + 𝖴𝖴(𝑟𝑟′|𝑑𝑑′). If the gain for a match is non-negative, that is, 
if 𝖶𝖶(𝑑𝑑′, 𝑟𝑟′) > 0, then there exists a pricing mechanism to split the benefits between users 𝑟𝑟 and 
𝑑𝑑 so as to ensure they both have non-negative utilities, i.e., both choices are individually rational 
(e.g., they share the profit based on the length of the two trips). Note that 𝖶𝖶(𝑟𝑟″,𝑑𝑑″) = 𝖴𝖴(𝑟𝑟″|𝑑𝑑″) +
𝖴𝖴(𝑑𝑑″|𝑟𝑟″) can be computed similarly for the evening trips. 

3.2 Incentive Design 

The graph corresponding to the ridesharing problem with guaranteed ride-back can be sparse, as 
demonstrated in the example in Figure 1. This sparsity is partly due to individuals’ rather tight 
travel time windows, and partly a result of the heterogeneity in their valuations of options. It is 
not surprising to see trip requests with tight time windows, as this ensures the rides to be in 
congruence with travelers’ preferences. Furthermore, it is realistic to assume that individuals who 
own cars are in a superior financial status than those who do not. As such, having drivers with 
higher values of time, and possibly distance, get compensated for their detours by riders may 
lead to the ridesharing option not being affordable for a large portion of riders. To tackle these 
issues, we introduce two types of incentives to increase the number of edges between trip nodes 
in graph 𝐺𝐺, eventually leading to higher percentage of matches, and possibly higher levels of 
social welfare in the community. 
 Behavioral Adjustment (BA) Incentives: When registering a trip, the desired earliest 
departure time and latest arrival time are two of the trip characteristics that a participant has to 
specify. A wider time window for a driver implies a potentially longer detour and more flexibility 
in departure time. For riders, a wider time window only implies higher flexibility in departure 
time, as a rider’s travel duration would be that of their shortest-path travel time. Clearly, by 
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providing tighter time windows, participants would receive matches that are more congruent 
with their preferences. A behavioral adjustment (BA) incentive encourages participants to be 
more flexible with their travel time windows.  Let us subsidize user 𝑛𝑛 by an incentive rate of 
𝖥𝖥(𝑛𝑛), equal to their value of time, to widen their morning trip time window for 𝛾𝛾(𝑛𝑛′) units, with 
the assumption that their disutility from leaving earlier than 𝖳𝖳(𝑛𝑛′) and arriving later than 𝖰𝖰(𝑛𝑛′) 
are the same and are proportional to 𝖥𝖥(𝑛𝑛). If we let 𝛾𝛾−(𝑛𝑛′) and 𝛾𝛾+(𝑛𝑛′) respectively denote the 
amount of time extension in time window of trip 𝑛𝑛′  from left and right, the adjusted time 
window can be shown as [𝖳𝖳(𝑛𝑛′) − 𝛾𝛾−(𝑛𝑛′),  𝖰𝖰(𝑛𝑛′) + 𝛾𝛾+(𝑛𝑛′)]  subject to the constraint 𝛾𝛾−(𝑛𝑛′) +
𝛾𝛾+(𝑛𝑛′) = 𝛾𝛾(𝑛𝑛′). Note that the right value for 𝛾𝛾(𝑛𝑛′) depends on other users’ trip information; 
hence, it must be determined by the system operator as a part of the ridematching problem. 

 Individual Rationality (IR) Incentives: Consider a rider-driver pair (𝑑𝑑′, 𝑟𝑟′)  for whom 
spatio-temporal conditions (i.e., Equations (1.1)-(1.2)) are satisfied, but the individual rationality 
conditions are violated (i.e., W(𝑑𝑑′, 𝑟𝑟′) < 0). An individual rationality (IR) incentive, denoted by 
𝜆𝜆(𝑑𝑑′, 𝑟𝑟′) , provides subsidies that allow for introducing such a link in graph 𝐺𝐺  with a non-
negative gain. 
 The consideration of these incentives in our ridesharing system has two important 
consequences. First, the Equations in (1) can no longer be used to determine the spatio-temporal 
feasibility of a match since the adjusted time windows depend on the unknown values of the BA 
incentives. Secondly, the rider and driver valuations from sharing a ride in (2) as well as the gains 
of potential matches are dependent upon the unknown values of both incentive types. These 
consequences clearly suggest that no longer can we find the optimal ridematching using the min-
cost max flow problem described above. As such, in this paper we develop a ridematching 
problem that determines the optimal matching, trip scheduling, and incentive allocation that 
maximizes the social welfare given a monetary budget of 𝖡𝖡 dollars. In order to make sure that 
the available budget is used wisely, we further require that every dollar spent on subsidy 
contributes more than one dollar to the system’s social welfare. 

4 Solution Methodology 

In this section, we first present the mathematical formulation of the TIP for a simpler system 
involving only one-time trips with no ride-back guarantee (e.g., the morning trips) given the 
assumptions provided in the previous section. Next, we modify this mathematical formulation to 
model the TIP for a system that includes both the morning and evening trips. We propose an 
efficient algorithm to solve large-scale instances of this problem in a timely manner, and prove a 
worst-case optimality bound for its performance. Finally, we propose a budget-balanced 
counterpart of the TIP through taxation. 

4.1 Mathematical Formulation for the Morning Trips 
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Let us consider a ridesharing system that includes only the morning trips 𝑁𝑁′. Also, let 𝐴𝐴′ denote 
the set of all driver-rider trip pairs in the morning, i.e., 𝐴𝐴′ = {(𝑑𝑑′, 𝑟𝑟′) ∈ 𝐷𝐷′ × 𝑅𝑅′}. Based on the 
assumptions provided in Section 3, the optimal matching, scheduling, and incentive allocation of 
the system can be obtained by solving the mixed integer nonlinear program (MINLP) presented 
in (3). In this formulation, there are eight sets of decision variables. The decision variable 𝑥𝑥(𝑎𝑎′) is 
a binary variable that holds the value 1 if the pair of trips in 𝑎𝑎′ ∈ 𝐴𝐴′ share their rides together, 
and the value 0 otherwise. The continuous decision variables 𝑡𝑡(𝑛𝑛′) and 𝑞𝑞(𝑛𝑛′) denote the start 
and end time of the trip 𝑛𝑛′ ∈ 𝑁𝑁′, respectively. The decision variable 𝛾𝛾(𝑛𝑛′) can be defined as the 
amount of extension in the time window of trip 𝑛𝑛′. We further define two variables, 𝛾𝛾−(𝑛𝑛′) and 
𝛾𝛾+(𝑛𝑛′), to denote the amount of extension in the time window of the morning trip 𝑛𝑛′ from the 
left and the right, respectively. Finally, the decision variables 𝜆𝜆(𝑎𝑎′)  and 𝑤𝑤(𝑎𝑎′)  respectively 
represent the IR incentive and the gain for the match between a driver-rider trip pair 𝑎𝑎′ ∈ 𝐴𝐴′. 

 Let 𝜀𝜀  be an infinitesimal positive value. The objective in (3.1) maximizes the difference 
between the system’s social welfare and the total amount of subsidies spent on the BA and IR 
incentives. Choosing this objective enables us to maximize social welfare while allocating 
subsidies only when the added value to social welfare is strictly higher than the amount of 
subsidy; that is, for each dollar spent on subsidy, a return-to-investment of more than one dollar 
can be obtained on social welfare. Constraint (3.2) defines the adjusted gain of match (𝑑𝑑′, 𝑟𝑟′) in 
the morning as the sum of the original savings due to driver 𝑑𝑑 sharing their ride with rider 𝑟𝑟 
and the subsidies allocated to these participants and their coalition. Constraint (3.3) ensures that 
if users 𝑟𝑟 and 𝑑𝑑 are determined to share a ride in the morning, i.e., if 𝑥𝑥(𝑑𝑑′, 𝑟𝑟′) = 1, then their 
coalition is individually rational, i.e., 𝑤𝑤(𝑑𝑑′, 𝑟𝑟′) ≥ 0. Constraints (3.4) and (3.5) together guarantee 
that every trip starts and ends within its adjusted time windows. Constraint (3.6) states that if 
driver trip 𝑑𝑑′ is matched with rider trip 𝑟𝑟′, the difference between their trips’ start times must be 
at least equal to the shortest-path travel time between their origin stations. Constraint (3.7) defines 
the end time of rider trip 𝑟𝑟′ as the sum of its start time and the duration of the trip. Constraint 
(3.8) ensures that the difference between the end time of driver trip 𝑑𝑑′  and rider trip 𝑟𝑟′ , if 
matched together, must be equal to the shortest-path travel time from the rider’s destination 
station to driver’s destination station. Constraint (3.9) defines the total extension in a trip’s time 
window as the sum of the extensions from the left and the right. Constraints (3.10) and (3.11) 
respectively ensure that every rider is matched with at most one driver and each driver serves at 
most one rider in the morning. Finally, Constraint (3.12) ensures that the total amount of allocated 
subsidy is lower than the available budget. Constraints (3.13)-(3.15) are the non-negativity and 
integrality constraints. 
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max  ∑ 𝑤𝑤𝑎𝑎′∈𝐴𝐴′ (𝑎𝑎′) 𝑥𝑥(𝑎𝑎′) − (1 + ε) (∑ 𝖥𝖥𝑛𝑛′∈𝑁𝑁′ (𝑛𝑛) 𝛾𝛾(𝑛𝑛′) + ∑ 𝜆𝜆𝑎𝑎′∈𝐴𝐴′ (𝑎𝑎′))  (3.1)
s. t.  𝑤𝑤(𝑑𝑑′, 𝑟𝑟′) = 𝖶𝖶(𝑑𝑑′, 𝑟𝑟′) + 𝜆𝜆(𝑑𝑑′, 𝑟𝑟′) , ∀ (𝑑𝑑′, 𝑟𝑟′) ∈ 𝐴𝐴′ , (3.2)

𝑤𝑤(𝑎𝑎′) 𝑥𝑥(𝑎𝑎′) ≥ 0 , ∀ 𝑎𝑎′ ∈ 𝐴𝐴′ , (3.3)
𝑡𝑡(𝑛𝑛′) ≥ 𝖳𝖳(𝑛𝑛′) − 𝛾𝛾−(𝑛𝑛′) , ∀ 𝑛𝑛′ ∈ 𝑁𝑁′ , (3.4)
𝑞𝑞(𝑛𝑛′) ≤ 𝖰𝖰(𝑛𝑛′) + 𝛾𝛾+(𝑛𝑛′) , ∀ 𝑛𝑛′ ∈ 𝑁𝑁′ , (3.5)
𝑥𝑥(𝑑𝑑′, 𝑟𝑟′) (𝑡𝑡(𝑟𝑟′) − 𝑡𝑡(𝑑𝑑′) − 𝜏𝜏𝖨𝖨(𝑑𝑑′),𝖨𝖨(𝑟𝑟′)) ≥ 0 , ∀ (𝑑𝑑′, 𝑟𝑟′) ∈ 𝐴𝐴′ , (3.6)
𝑞𝑞(𝑟𝑟′) = 𝑡𝑡(𝑟𝑟′) + 𝜏𝜏𝖨𝖨(𝑟𝑟′),𝖩𝖩(𝑟𝑟′) , ∀ 𝑟𝑟′ ∈ 𝑅𝑅′ , (3.7)
𝑥𝑥(𝑑𝑑′, 𝑟𝑟′) (𝑞𝑞(𝑑𝑑′) − 𝑞𝑞(𝑟𝑟′) − 𝜏𝜏𝖩𝖩(𝑟𝑟′),𝖩𝖩(𝑑𝑑′)) = 0 , ∀ (𝑑𝑑′, 𝑟𝑟′) ∈ 𝐴𝐴′ , (3.8)
𝛾𝛾(𝑛𝑛′) = 𝛾𝛾−(𝑛𝑛′) + 𝛾𝛾+(𝑛𝑛′) , ∀ 𝑛𝑛′ ∈ 𝑁𝑁′ , (3.9)
∑ 𝑥𝑥𝑑𝑑′∈𝐷𝐷′ (𝑑𝑑′, 𝑟𝑟′) ≤ 1 , ∀ 𝑟𝑟′ ∈ 𝑅𝑅′ , (3.10)
∑ 𝑥𝑥𝑟𝑟′∈𝑅𝑅′ (𝑑𝑑′, 𝑟𝑟′) ≤ 1 , ∀ 𝑑𝑑′ ∈ 𝐷𝐷′ , (3.11)
∑ 𝖥𝖥𝑛𝑛′∈𝑁𝑁′ (𝑛𝑛) 𝛾𝛾(𝑛𝑛′) + ∑ 𝜆𝜆𝑎𝑎′∈𝐴𝐴′ (𝑎𝑎′) ≤ 𝖡𝖡 , (3.12)
𝑡𝑡(𝑛𝑛′),  𝑞𝑞(𝑛𝑛′), 𝛾𝛾−(𝑛𝑛′), 𝛾𝛾+(𝑛𝑛′) ≥ 0 , ∀ 𝑛𝑛′ ∈ 𝑁𝑁′ , (3.13)
𝜆𝜆(𝑎𝑎′) ≥ 0 , ∀ 𝑎𝑎′ ∈ 𝐴𝐴′ , (3.14)
𝑥𝑥(𝑎𝑎′) ∈ {0,1} , ∀ 𝑎𝑎′ ∈ 𝐴𝐴′ . (3.15)

 

The formulation in model (3) involves nonlinear statements in both the objective function and 
constraints, which make the ridematching problem intractable to solve, especially for real-size 
networks. However, there are a few properties of this formulation that help us reduce its size 
considerably. First, let us emphasize the fact that the objective function in (5) implies that the 
unmatched users in any feasible solution will not receive any subsidy. Additionally, this objective 
function indicates that the optimal solution never assigns any IR incentive to any user, as one unit 
of IR incentive would decrease the objective function by ε. (Note that IR incentives will not be 
trivially zero when we introduce the ride-back guarantee component in Section 4.2). Another 
observation is that Constraints (3.2)-(3.9) indicate that the optimal solutions for the incentives and 
trip start and end times depend on the matching variables. As such, we present a pre-processing 
procedure in Algorithm 1 that allows us to reduce the problem in (3) to a well-know combinatorial 
problem. 

 This algorithm takes the trip information of all users and the original gains of all pairs of 
drivers and riders as its input. The primary goal of this algorithm is to determine the set of all 
potential matches in the morning, denoted by 𝐴𝐴′, the optimal values of incentives required for 
driver 𝑑𝑑 and rider 𝑟𝑟 to have a feasible match, denoted by Ψ(𝑑𝑑′, 𝑟𝑟′), and the objective coefficient 
of this pair, denoted by 𝖢𝖢(𝑑𝑑′, 𝑟𝑟′). The algorithm starts with letting 𝐴𝐴′ be an empty set. Next, it 
iterates over all pairs of riders and drivers to check whether they can be a potential match and if 
the answer is yes, further find the optimal required subsidies for such pairs. More specifically, in 
lines 3 to 6, we check the spatio-temporal feasibility of pair (𝑑𝑑′, 𝑟𝑟′) by solving a linear problem, 
and storing the optimal trip start times and BA incentives of driver 𝑑𝑑 and rider 𝑟𝑟 conditional on 
𝑥𝑥(𝑑𝑑′, 𝑟𝑟′) = 1, denoted by 𝑡𝑡(𝑑𝑑′|𝑟𝑟′), 𝛾𝛾(𝑑𝑑′|𝑟𝑟′), 𝑡𝑡(𝑟𝑟′|𝑑𝑑′), and 𝛾𝛾(𝑟𝑟′|𝑑𝑑′), respectively. Next, in lines 7, we 
determine the optimal IR incentive which is only positive if the corresponding original gain is 
negative. Finally, we calculate the objective coefficient 𝖢𝖢(𝑑𝑑′, 𝑟𝑟′) as the difference between the 
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original gain and incurred dis-utilities of driver 𝑑𝑑 and rider 𝑟𝑟 from sharing their morning rides 
together. Also, the total allocated subsidy to (𝑑𝑑′, 𝑟𝑟′) conditional on them sharing their rides 
together, denoted by Ψ(𝑑𝑑′, 𝑟𝑟′), can be computed as the some of the optimal BA and IR incentives. 

 
Algorithm 1: The Pre-processing procedure for the morning trips  

 Input: 𝖨𝖨,  𝖩𝖩,  𝖳𝖳,  𝖰𝖰,  𝖥𝖥,  𝖶𝖶 . 
 Output: 𝐴𝐴′,  𝖢𝖢,Ψ . 
1 Initialize 𝐴𝐴′ ← ⌀ ; 
2 for ((𝑑𝑑′, 𝑟𝑟′) ∈ 𝐷𝐷′ × 𝑅𝑅′) do: 
3  Solve the following linear problem: 

min  𝑧𝑧 = 𝖥𝖥(𝑑𝑑) (𝛾𝛾−(𝑑𝑑′) + 𝛾𝛾+(𝑑𝑑′)) + 𝖥𝖥(𝑟𝑟) (𝛾𝛾−(𝑟𝑟′) + 𝛾𝛾+(𝑟𝑟′))    (4.1)
s. t.  𝑡𝑡(𝑛𝑛′) ≥ 𝖳𝖳(𝑛𝑛′) − 𝛾𝛾−(𝑛𝑛′) , ∀ 𝑛𝑛′ ∈ {𝑑𝑑′, 𝑟𝑟′} , (4.2)

𝑡𝑡(𝑑𝑑′) + 𝜏𝜏𝖨𝖨(𝑑𝑑′),𝖨𝖨(𝑟𝑟′) ≥ 𝖳𝖳(𝑟𝑟′) − 𝛾𝛾−(𝑟𝑟′) , (4.3)
𝑡𝑡(𝑑𝑑′) + 𝜏𝜏𝖨𝖨(𝑑𝑑′),𝖨𝖨(𝑟𝑟′) + 𝜏𝜏𝖨𝖨(𝑟𝑟′),𝖩𝖩(𝑟𝑟′) ≤ 𝖰𝖰(𝑟𝑟′) + 𝛾𝛾+(𝑟𝑟′) , (4.4)
𝑡𝑡(𝑑𝑑′) + 𝜏𝜏𝖨𝖨(𝑑𝑑′),𝖨𝖨(𝑟𝑟′) + 𝜏𝜏𝖨𝖨(𝑟𝑟′),𝖩𝖩(𝑟𝑟′) + 𝜏𝜏𝖩𝖩(𝑟𝑟′),𝖩𝖩(𝑑𝑑′) ≤ 𝖰𝖰(𝑑𝑑′) + 𝛾𝛾+(𝑑𝑑′) , (4.5)
𝑡𝑡(𝑑𝑑′),  𝑡𝑡(𝑟𝑟′),  𝛾𝛾−(𝑑𝑑′),  𝛾𝛾+(𝑑𝑑′),  𝛾𝛾−(𝑟𝑟′),  𝛾𝛾+(𝑟𝑟′) ≥ 0 . (4.5)

 

4  if (the problem in (4) is feasible) 𝐝𝐝𝐝𝐝: 
5      Retrieve optimal solution (𝑡𝑡∗(𝑑𝑑′), 𝑡𝑡∗(𝑟𝑟′), 𝛾𝛾−

∗
(𝑟𝑟′), 𝛾𝛾+

∗
(𝑟𝑟′), 𝛾𝛾−

∗
(𝑑𝑑′), 𝛾𝛾+

∗
(𝑑𝑑)) and objective 𝑧𝑧∗ ; 

6      Let 𝑡𝑡(𝑑𝑑′|𝑟𝑟′),   𝑡𝑡(𝑟𝑟′|𝑑𝑑′) ← 𝑡𝑡∗(𝑑𝑑′),  𝑡𝑡∗(𝑟𝑟′) ; 
7      Let 𝛾𝛾(𝑑𝑑′|𝑟𝑟′),  𝛾𝛾(𝑟𝑟′|𝑑𝑑′) ← 𝛾𝛾−

∗
(𝑑𝑑′) + 𝛾𝛾+

∗
(𝑑𝑑′),  𝛾𝛾−

∗
(𝑟𝑟′) + 𝛾𝛾+

∗
(𝑟𝑟′) ; 

8      Let 𝜆𝜆(𝑑𝑑′, 𝑟𝑟′) ← max{0,−𝖶𝖶(𝑑𝑑′, 𝑟𝑟′)} ; 
9      Let 𝖢𝖢(𝑑𝑑′, 𝑟𝑟′) = 𝖶𝖶(𝑑𝑑′, 𝑟𝑟′) − (1 + 𝜖𝜖) 𝑧𝑧∗ − 𝜖𝜖 𝜆𝜆(𝑑𝑑′, 𝑟𝑟′) ; 
11      Let Ψ(𝑑𝑑′, 𝑟𝑟′) ← 𝖥𝖥(𝑑𝑑) 𝛾𝛾(𝑑𝑑′|𝑟𝑟′) + 𝖥𝖥(𝑟𝑟) 𝛾𝛾(𝑟𝑟′|𝑑𝑑′) + 𝜆𝜆(𝑑𝑑′, 𝑟𝑟′) ; 
10      Update 𝐴𝐴′ ← 𝐴𝐴′ ∪ {(𝑑𝑑′, 𝑟𝑟′)} ; 
  end 
 end 

Upon this polynomial-time pre-processing procedure, the problem in (3) reduces to a budget-
constrained matching problem presented in (5). Note that this formulation clearly implies that 
those pairs of trips whose IR incentives are positive cannot be a part of the optimal solution.  

 
max  ∑ 𝖢𝖢𝑎𝑎′∈𝐴𝐴′ (𝑎𝑎′) 𝑥𝑥(𝑎𝑎′)                                (5.1)

s. t.  ∑ 𝑥𝑥𝑑𝑑′∈𝐷𝐷′ (𝑑𝑑′, 𝑟𝑟′) ≤ 1 , ∀ 𝑟𝑟′ ∈ 𝑅𝑅′ , (5.2)
∑ 𝑥𝑥𝑟𝑟′∈𝑅𝑅′ (𝑑𝑑′, 𝑟𝑟′) ≤ 1 , ∀ 𝑑𝑑′ ∈ 𝐷𝐷′ , (5.3)
∑ Ψ𝑎𝑎′∈𝐴𝐴′ (𝑎𝑎′) 𝑥𝑥(𝑎𝑎′) ≤ 𝖡𝖡 , (5.4)
𝑥𝑥(𝑎𝑎′) ∈ {0,1} , ∀ 𝑎𝑎′ ∈ 𝐴𝐴′ . (5.5)

 

 By a reduction from the knapsack problem, the problem in (5) can be shown to be NP-hard. 
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As such, (Berger, Bonifaci, Grandoni, & Schäfer, 2011) propose a polynomial time approximation 
scheme (PTAS) to solve the problem. The core of this PTAS is a Lagrangian relaxation-based 
method the solution of which has an objective that is different from the optimal one by at most 
2 𝖢𝖢max, where 𝖢𝖢max denotes the largest weight. In Section 4.3, we extend this method to find a 
near-optimal solution for the problem involving both the morning and evening trips. 

4.2 Mathematical Formulation for the Morning and Evening Trips 

Let 𝐴𝐴″ denote the set of all rider-driver trip pairs in the evening, i.e., 𝐴𝐴″ = {(𝑟𝑟″,𝑑𝑑″) ∈ 𝑅𝑅″ × 𝐷𝐷″}. 
This set can be generated by applying the pre-processing procedure described in Algorithm 1 to 
the evening trips. As a result, the ride-matching problem with the morning and evening trips can 
be formulated as the binary program in (6). The objective function in (6.1) seeks to maximize 
social welfare while ensuring that each dollar spent on subsidy returns more than a dollar in 
social welfare. Constraints (6.2)-(6.5) ensure that all users are served at most once both in the 
morning and in the evening. Constraint (6.6) ensures that any rider in 𝑅𝑅‴ is served in the evening 
if and only if served in the morning. Constraint (6.7) sets a limit on the allocated budget. 

   

max  ∑ 𝖢𝖢𝑎𝑎∈𝐴𝐴′∪𝐴𝐴″ (𝑎𝑎) 𝑥𝑥(𝑎𝑎)       (6.1)
s. t.  ∑ 𝑥𝑥𝑑𝑑′∈𝐷𝐷′ (𝑑𝑑′, 𝑟𝑟′) ≤ 1 , ∀ 𝑟𝑟′ ∈ 𝑅𝑅′ , (6.2)

∑ 𝑥𝑥𝑟𝑟′∈𝑅𝑅′ (𝑑𝑑′, 𝑟𝑟′) ≤ 1 , ∀ 𝑑𝑑′ ∈ 𝐷𝐷′ , (6.3)
∑ 𝑥𝑥𝑑𝑑″∈𝐷𝐷″ (𝑟𝑟″,𝑑𝑑″) ≤ 1 , ∀ 𝑟𝑟″ ∈ 𝑅𝑅″ , (6.4)
∑ 𝑥𝑥𝑟𝑟″∈𝑅𝑅″ (𝑟𝑟″,𝑑𝑑″) ≤ 1 , ∀ 𝑑𝑑″ ∈ 𝐷𝐷″ , (6.5)
∑ 𝑥𝑥𝑑𝑑′∈𝐷𝐷′ (𝑑𝑑′, 𝑟𝑟′) = ∑  𝑑𝑑″∈𝐷𝐷″ 𝑥𝑥(𝑟𝑟″,𝑑𝑑″) , ∀ 𝑟𝑟 ∈ 𝑅𝑅: 𝑟𝑟′ ∈ 𝑅𝑅′ ∧ 𝑟𝑟″ ∈ 𝑅𝑅″ , (6.6)
∑ Ψ𝑎𝑎∈𝐴𝐴′∪𝐴𝐴″ (𝑎𝑎) 𝑥𝑥(𝑎𝑎) ≤ 𝖡𝖡 , (6.7)
𝑥𝑥(𝑎𝑎) ∈ {0,1} , ∀ 𝑎𝑎 ∈ 𝐴𝐴′ ∪ 𝐴𝐴″ . (6.8)

 

 Following our discussion in Section 3, we observe that the problem in (6) is similar to that of 
(Lloret-Batlle, Masoud, & Nam, 2017) with the addition of Constraint (6.7). Thus, by defining a 
set of auxiliary nodes and edges, we can construct a min-cost max flow network similar to the 
one explained in Section 5 with the exception that the cost of potential matching edges can be set 
as −𝖢𝖢. Now, if for every potential matching edge we define a new cost, namely the usage fee, and 
set it to Ψ, problem (6) turns out to be a budget-constrained min-cost flow problem (Holzhauser, 
Krumke, & Thielen, 2016) as follows: 

 
max  ∑ 𝖢𝖢𝑒𝑒∈𝐸𝐸 (𝑒𝑒) 𝑥𝑥(𝑒𝑒)                  (7.1)

s. t.  ∑ 𝑥𝑥𝑒𝑒∈𝛿𝛿+(𝑣𝑣) (𝑒𝑒) − ∑ 𝑥𝑥𝑒𝑒∈𝛿𝛿−(𝑣𝑣) (𝑒𝑒) = 0 , ∀ 𝑣𝑣 ∈ 𝑁𝑁′ ∪ 𝑁𝑁″ , (7.2)
∑ Ψ𝑒𝑒∈𝐸𝐸 (𝑒𝑒) 𝑥𝑥(𝑒𝑒) ≤ 𝖡𝖡 , (7.3)
𝑥𝑥(𝑒𝑒) ∈ {0,1} , ∀ 𝑒𝑒 ∈ 𝐸𝐸 (7.4)
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where 𝐴𝐴‴ is the set of auxiliary edges as described in Section 3. 𝐸𝐸 = 𝐴𝐴′ ∪ 𝐴𝐴″ ∪ 𝐴𝐴‴, and 𝛿𝛿+(𝑣𝑣) 
and 𝛿𝛿−(𝑣𝑣) denote the set of in-going and out-going edges of node 𝑣𝑣 in graph 𝐺𝐺, respectively. It 
is worth mentioning that, unlike the previous case, the IR incentives are not always equal to zero. 
Consider the case that 𝖢𝖢(𝑑𝑑1′, 𝑟𝑟′) < 0, 𝖢𝖢(𝑟𝑟″,𝑑𝑑2″) > 0, and 𝖢𝖢(𝑑𝑑1′, 𝑟𝑟′) + 𝖢𝖢(𝑟𝑟″,𝑑𝑑2″) > 0 for arbitrary 
users 𝑑𝑑1 , 𝑟𝑟 , 𝑑𝑑2 . In this case, we may have 𝑥𝑥∗(𝑑𝑑1′, 𝑟𝑟′) = 𝑥𝑥∗(𝑟𝑟″,𝑑𝑑″2) = 1  which implies that 
𝜆𝜆∗(𝑑𝑑′1, 𝑟𝑟′) > 0. 

 This problem is clearly a generalization of the problem in (4.1), and thus, can be shown to be 
NP-hard. Due to the similarities of these two problems, we present a solution methodology that 
extends the method proposed by (Berger, Bonifaci, Grandoni, & Schäfer, 2011) to find near-
optimal solutions for large-scale instances of problem (4.2). This method solves in polynomial 
time and does not require a commercial optimization engine. 

 We finalize this section by describing a post-processing procedure to find the optimal trip 
start time, trip end time, incentives, and gains for the original MINLP based on the optimal 
matching 𝑥𝑥∗. For any pair (𝑑𝑑′, 𝑟𝑟′) such that 𝑥𝑥∗(𝑑𝑑′, 𝑟𝑟′) = 1, the optimal values for these variables 
can be calculated as:   

𝑡𝑡∗(𝑟𝑟′) = 𝑡𝑡(𝑟𝑟′|𝑑𝑑′) ,                     (8.1)
𝑞𝑞∗(𝑟𝑟′) = 𝑡𝑡∗(𝑟𝑟′) + 𝜏𝜏𝖨𝖨(𝑟𝑟′),𝖩𝖩(𝑟𝑟′) , (8.2)
𝛾𝛾∗(𝑟𝑟′) = 𝛾𝛾(𝑟𝑟′|𝑑𝑑′) , (8.3)
𝑡𝑡∗(𝑑𝑑′) = 𝑡𝑡(𝑑𝑑′|𝑟𝑟′) , (8.4)
𝑞𝑞∗(𝑑𝑑′) = 𝑡𝑡(𝑑𝑑′) + 𝜏𝜏𝖨𝖨(𝑟𝑟′),𝖩𝖩(𝑟𝑟′) + 𝜏𝜏𝖩𝖩(𝑟𝑟′),𝖩𝖩(𝑑𝑑′) , (8.5)
𝛾𝛾∗(𝑑𝑑′) = 𝛾𝛾(𝑑𝑑′|𝑟𝑟′) , (8.6)
𝑤𝑤∗(𝑑𝑑′, 𝑟𝑟′) = 𝖶𝖶(𝑑𝑑′, 𝑟𝑟′) + 𝜆𝜆(𝑑𝑑′, 𝑟𝑟′) , (8.7)
𝜆𝜆∗(𝑑𝑑′, 𝑟𝑟′) = 𝜆𝜆(𝑑𝑑′, 𝑟𝑟′) , (8.8)

 

4.3 A Lagrangian Relaxation Based Method 

Lagrangian Relaxation (LR) is a well-known decomposition technique that proves to be useful in 
finding a lower bound (in minimization problems) for large MIP problems (Fisher, 1981). The 
MIP problems usually involve some complicating constraints that make them hard to solve. LR 
takes advantage of such constraints by dualizing them in the objective function and solving an 
easier subproblem that does not include these constraints. In problem (7), for instance, removing 
the budget constraint leaves us with a min-cost max flow problem. In what follows, we present a 
solution procedure based on LR that solves in polynomial time and yields a lower bound for the 
optimal objective of problem (7). This procedure is summarized in Algorithm 2. For illustrative 
purposes, consider the small min-cost max flow network 𝐺𝐺 in Figure 2. 

 The objective function in (51) can be simply written as:  

 𝖫𝖫𝖫𝖫(𝛽𝛽) = ∑ 𝖢𝖢𝛽𝛽𝑒𝑒∈𝐸𝐸 (𝑒𝑒) 𝑥𝑥(𝑒𝑒) + 𝛽𝛽 𝖡𝖡 ,                (10) 
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Figure 2: A small example of graph 𝐺𝐺. 

 where 𝖢𝖢𝛽𝛽(𝑒𝑒) = 𝖢𝖢(𝑒𝑒) − 𝛽𝛽 Ψ(𝑒𝑒) . Therefore, given the value of 𝛽𝛽 , the cost of the potential 
matching edge 𝑒𝑒 in graph 𝐺𝐺 can be set to −𝖢𝖢𝛽𝛽(𝑒𝑒), and the difference between the constant 𝛽𝛽 𝖡𝖡 
and the optimal cost of network yields an upper bound for the original problem in (4.2). We know 
that 𝖫𝖫𝖫𝖫 is a convex piecewise linear function of 𝛽𝛽, and thus, this upper bound will be minimized 
at 𝛽𝛽∗. Also note that the min-cost max flow problem in a DAG with unit capacities can be solved 
in strongly polynomial time of 𝒪𝒪(|𝑉𝑉|2|𝐸𝐸|) using the successive shortest path algorithm (Ahuja, 
Magnanti, & Orlin, 1988). These two facts lead us to the conclusion that 𝛽𝛽∗  can be found in 
polynomial time of 𝒪𝒪(|𝑉𝑉|4|𝐸𝐸|2) using the parametric search method proposed by (Megiddo, 
1978).  

 If we let 𝜀𝜀 be a positive infinitesimal number, solving the min-cost max flow in graph 𝐺𝐺 with 
costs respectively set as 𝖢𝖢𝛽𝛽∗−𝜀𝜀  and 𝖢𝖢𝛽𝛽∗+𝜀𝜀  gives rise to two flows 𝑆𝑆𝑙𝑙 ⊂ 𝐸𝐸 , and 𝑆𝑆ℎ ⊂ 𝐸𝐸  that 
minimize the LR subproblem. It is easy to show that unless the solution of both is the same which 
implies optimality, 𝑆𝑆𝑙𝑙, violates the budget constraint while 𝑆𝑆ℎ satisfies it and hence attributes to 
a feasible solution for problem in (7). The main issue is that the objective of flow 𝑆𝑆ℎ  may be 
arbitrarily far from the optimal one denoted by OPT. In order to tackle this issue, we modify the 
patching method proposed by (Berger, Bonifaci, Grandoni, & Schäfer, 2011) to construct a 
solution based on the two flows, 𝑆𝑆ℎ and 𝑆𝑆𝑙𝑙, that yields a worst-case optimality bound for our 
problem. For our small example, for instance, this search can result in two flows 𝑆𝑆ℎ  and 𝑆𝑆𝑙𝑙 
presented in Figure 3 (a) and Figure 3 (b).  

  
          (a) 𝑆𝑆ℎ                                                (b) 𝑆𝑆𝑙𝑙    
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Figure 3: A budget -feasible and -infeasible optimal flow for LR subproblem of the small example 

 Algorithm 2 details our proposed patching method that utilizes a feasible a feasible flow, 𝑆𝑆ℎ 
and an infeasible one, 𝑆𝑆ℎ to construct a high-quality solution. Let us define the set of forward 
edges, 𝐸𝐸𝑓𝑓, as all edges in 𝑆𝑆𝑙𝑙 that are not in 𝑆𝑆ℎ, and the set of backward edges, 𝐸𝐸𝑏𝑏, as all edges in 
𝑆𝑆𝑙𝑙 that are not in 𝑆𝑆ℎ. Also, denote the set of reversed edges in 𝐸𝐸𝑏𝑏 by 𝐸𝐸𝑏𝑏. Two flows 𝑆𝑆𝑙𝑙 and 𝑆𝑆ℎ 
are adjacent if and only if the graph induced by edges in 𝐸𝐸𝑏𝑏 ∪ 𝐸𝐸𝑓𝑓, denoted by 𝐺𝐺′, has only one 
cycle (Gallo & Sodini, 1978). In Algorithm 2, we first turn 𝑆𝑆𝑙𝑙 and 𝑆𝑆ℎ into two adjacent extreme 
flows of the solution polytope of the LR subproblem given 𝛽𝛽∗. 

 

Algorithm 2: A near optimal solution for P2P ridesharing with ride-back guarantee 

 Input: 𝖢𝖢,Ψ,𝐺𝐺 = (𝑉𝑉,𝐸𝐸) . 
 Output: 𝑆𝑆𝑚𝑚 . 
1 Find the optimal Lagrangian multiplier 𝛽𝛽∗  and two sets of matching edges 𝑆𝑆ℎ  and 𝑆𝑆𝑙𝑙  such that 

𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) = 𝖢𝖢𝛽𝛽∗(𝑆𝑆𝑙𝑙)  and Ψ(𝑆𝑆ℎ) ≤ 𝖡𝖡 < Ψ(𝑆𝑆𝑙𝑙)  ; 
2 Let 𝐸𝐸𝑓𝑓, 𝐸𝐸𝑏𝑏 ← 𝑆𝑆𝑙𝑙\𝑆𝑆ℎ, 𝑆𝑆ℎ\𝑆𝑆𝑙𝑙 ; 
3 Find the set of alternating cycles ∆ in graph 𝐺𝐺′ = (𝑉𝑉,𝐸𝐸𝑏𝑏 ∪ 𝐸𝐸𝑓𝑓)  ; 
4 while (|∆| = 1) do: 
5  Pick an arbitrary cycle 𝑋𝑋 ∈ ∆ ; 
6  Let 𝑋𝑋𝑓𝑓, 𝑋𝑋𝑏𝑏 ← 𝑋𝑋 ∩ 𝐸𝐸𝑓𝑓, 𝑋𝑋 ∩ 𝐸𝐸𝑏𝑏 ; 
7  Let 𝑆𝑆 ← (𝑆𝑆ℎ ∪ 𝑋𝑋𝑓𝑓)\𝑋𝑋𝑏𝑏 ; 
8  if (Ψ(𝑆𝑆) ≤ 𝖡𝖡) do: 
9      Update 𝑆𝑆ℎ ← 𝑆𝑆  ;  
10  else do: 
11      Update 𝑆𝑆𝑙𝑙 ← 𝑆𝑆  ; 
  end 
12      Update 𝐸𝐸𝑓𝑓, 𝐸𝐸𝑏𝑏 ← 𝑆𝑆𝑙𝑙\𝑆𝑆ℎ, 𝑆𝑆ℎ\𝑆𝑆𝑙𝑙 ; 
13     Find the set of alternating cycles ∆ in graph 𝐺𝐺′ = (𝑉𝑉,𝐸𝐸𝑏𝑏 ∪ 𝐸𝐸𝑓𝑓)  ; 
 
14 end 
15 if (Ψ(𝑆𝑆ℎ) = 𝖡𝖡) do: 
16 Let 𝑆𝑆𝑚𝑚 ← 𝑆𝑆ℎ  ; 
17 else do: 
18 Find sequence 𝑌𝑌 = 𝑌𝑌𝑓𝑓 ∪ 𝑌𝑌𝑏𝑏 in cycle 𝑋𝑋 using the Gasoline Lemma  ; 
19 Find 𝑆𝑆𝑚𝑚 by solving a min-cost max flow in graph 𝐺𝐺″ = (𝑉𝑉, (𝑆𝑆ℎ ∪ 𝑌𝑌𝑓𝑓)\𝑌𝑌𝑏𝑏) with costs ∆ ; 
20  end 
  

 The following claim states that 𝐸𝐸𝑏𝑏 ∪ 𝐸𝐸𝑓𝑓 upon minor adjustments contains a set of cycles. 

Claim 1. Graph 𝐺𝐺′ contains a non-empty collection of cycles denoted by ∆.   
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Proof. Based on the definition of 𝐸𝐸𝑏𝑏 ∪ 𝐸𝐸𝑓𝑓 and the fact that both 𝑆𝑆𝑙𝑙 and 𝑆𝑆ℎ satisfy Constraint (7.2), 
we infer that all nodes in 𝑉𝑉 except the source and target node have in-degrees and out-degrees 
of either 1 or 0. We further infer that the net outflow of 𝗌𝗌 is equal to the net inflow of 𝗍𝗍. As a 
result, 𝐸𝐸𝑏𝑏 ∪ 𝐸𝐸𝑓𝑓 can be decomposed into a combination of cycles and paths that include at least 
one of the following: 

• simple path(s) from 𝗌𝗌 to 𝗍𝗍 
• simple path(s) from 𝗍𝗍 to 𝗌𝗌 
• simple cycle(s) 

 Note that by adding zero-cost auxiliary edge(s) from 𝗍𝗍 to 𝗌𝗌 in the first case, and zero-cost 
auxiliary edge(s) from 𝗌𝗌 to 𝗍𝗍 in the second case, paths can turn into cycles. 

Q.E.D. 

 If the cardinality of ∆ is one, by definition 𝑆𝑆𝑙𝑙  and 𝑆𝑆ℎ  are adjacent. Otherwise, until the 
cardinality of ∆ is equal to one, we repeat the process described in lines 4 to 13 of Algorithm 2. 
More specifically, we draw one arbitrary cycle from ∆ at a time and add its forward edges to 𝑆𝑆ℎ  
and remove its backward edges from 𝑆𝑆ℎ . This yields a new feasible flow, denoted by 𝑆𝑆, the 
Lagrangian objective of which is equal to those of 𝑆𝑆ℎ and 𝑆𝑆𝑙𝑙. Now, depending on whether this 
flow satisfies the budget constraint, we replace it by 𝑆𝑆ℎ or 𝑆𝑆𝑙𝑙. At the end of this process, if flow 
𝑆𝑆ℎ depletes all the budget, we claim that it is the optimal solution. Otherwise, we continue to the 
patching method described below. In Figure 4 (a), we show that ∆ consists of two cycles 𝑋𝑋1 =
{(2′, 8′), (8′, 3′), (3′, 9′), (9′, 4′), (4′, 10′), (10′, 2′)} and 𝑋𝑋2 = {(𝗌𝗌, 1′), (1′, 7′), (7′, 7″), (7″, 1″), (1″,
11″), (11″, 5″), (5″, 9″), (9″, 6″), (6″, 𝗍𝗍)} in our small example. Note that 𝑋𝑋2 is indeed a path from 
𝗌𝗌 to 𝗍𝗍 which can turn into a cycle by adding the auxiliary edge (𝗍𝗍, 𝗌𝗌). Since |∆ | = 2, we need to 
cancel one of these cycles using the procedure described above. Note that the forward edges in 
𝑋𝑋1 and 𝑋𝑋2 are shown by solid lines and backward edges are shown by dashed lines. In Figure 4 
(b), we show the result of cancelling cycle 𝑋𝑋1 which provides a new flow 𝑆𝑆ℎ assuming that the 
budget constraint remains feasible 

 

 
(a) 𝐸𝐸𝑏𝑏 ∪ 𝐸𝐸𝑓𝑓                                        (b) 𝑆𝑆ℎ after cancelling cycles 

Figure 4: The cycles in ∆= {𝑋𝑋1,𝑋𝑋2} and the flow 𝑆𝑆ℎ  after cancelling cycle induced by the edges in 𝑋𝑋1 = {(2′, 8′), (8′, 3′),
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(3′, 9′), (9′, 4′), (4′, 10′), (10′, 2′)}. In part (a), the solid arrows denote edges in 𝐸𝐸𝑓𝑓  and the dashed arrows denote the edges in 𝐸𝐸𝑏𝑏. 

 Now, let us denote the last remaining cycle in ∆  by 𝑋𝑋 = 𝑋𝑋𝑓𝑓 ∪ 𝑋𝑋𝑏𝑏 , where 𝑋𝑋𝑓𝑓  and 𝑋𝑋𝑏𝑏 
respectively denote the forward edges and backward edges in 𝑋𝑋 . If we use the procedure 
described above to remove the last cycle 𝑋𝑋, flow 𝑆𝑆ℎ will turn into flow 𝑆𝑆𝑙𝑙, i.e., the two solutions 
will collapse, providing an infeasible solution with respect to the budget constraint. Also note 
that: 

𝖢𝖢(𝑆𝑆ℎ) ≥ 𝖮𝖮𝖮𝖮𝖮𝖮 − 𝛽𝛽∗ (𝖡𝖡 − Ψ(𝑆𝑆ℎ)) .                             

Therefore, finding a solution whose subsidy is closer to 𝖡𝖡 improves the optimality bound of our 
solution for problem (7). To this end, we present a method to alter flow 𝑆𝑆ℎ using a subsequence 
of edges in cycle 𝑋𝑋. Similar to the patching method in (Berger, Bonifaci, Grandoni, & Schäfer, 
2011), the core of our method is based on the well-known Gasoline Lemma (see e.g., (Lin & 
Kernighan, 1973)). 
 Let us define the following weights for edges 𝑒𝑒 = (𝑖𝑖, 𝑗𝑗) in 𝑋𝑋: 

𝛼𝛼(𝑖𝑖, 𝑗𝑗) = 𝖢𝖢𝛽𝛽∗(𝑖𝑖, 𝑗𝑗)   , if (𝑖𝑖, 𝑗𝑗) ∈ 𝑋𝑋𝑓𝑓 ,
𝛼𝛼(𝑖𝑖, 𝑗𝑗) = −𝖢𝖢𝛽𝛽∗(𝑗𝑗, 𝑖𝑖) , if (𝑖𝑖, 𝑗𝑗) ∈ 𝑋𝑋𝑏𝑏 .                            (11) 

For any rider 𝑟𝑟 ∈ 𝑅𝑅‴ in 𝑋𝑋, we further adjust the weight of the edge that starts from or ends at 𝑟𝑟″ 
as follows: 

𝛼𝛼(𝑟𝑟″, 𝑗𝑗) = 𝛼𝛼(𝑟𝑟″, 𝑗𝑗) + max{𝖢𝖢(𝑑𝑑′𝑙𝑙(𝑟𝑟′), 𝑟𝑟′),  𝖢𝖢(𝑑𝑑′ℎ(𝑟𝑟′), 𝑟𝑟′),  0} ,       (12)
𝛼𝛼(𝑖𝑖, 𝑟𝑟″) = 𝛼𝛼(𝑖𝑖, 𝑟𝑟″) − max{𝖢𝖢(𝑑𝑑′𝑙𝑙(𝑟𝑟′), 𝑟𝑟′),  𝖢𝖢(𝑑𝑑′ℎ(𝑟𝑟′), 𝑟𝑟′),  0} , (13) 

where 𝑑𝑑′𝑙𝑙(𝑟𝑟′), 𝑑𝑑′ℎ(𝑟𝑟′) respectively denote the driver trips that are matched with rider trip 𝑟𝑟′ in 
flows 𝑆𝑆𝑙𝑙 and 𝑆𝑆ℎ. If there is no such matches in either of these flows, we let the corresponding 𝖢𝖢 
value be zero. Also, note that the 𝛼𝛼 values for edges in 𝑋𝑋 add up to zero. Next, we apply the 
Gasoline Lemma to the edges in 𝑋𝑋 with the weights set as 𝛼𝛼. The Gasoline Lemma is presented 
in the following. 

Lemma 1. (Gasoline Lemma) Given a sequence of 𝑘𝑘 real numbers 𝛼𝛼0, . . . ,𝛼𝛼𝑘𝑘−1 such that ∑ 𝛼𝛼𝑗𝑗𝑘𝑘−1
𝑗𝑗=0 = 0, 

there is an index 𝑖𝑖 ∈ {0, . . . , 𝑘𝑘 − 1} such that, for any 0 ≤ ℎ ≤ 𝑘𝑘 − 1, 

 ∑ 𝛼𝛼𝑗𝑗( 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘)
𝑖𝑖+ℎ
𝑗𝑗=𝑖𝑖 ≥ 0 , ∀ ℎ ∈ {0, . . . , 𝑘𝑘 − 1} .                      

Proof. Let i′ ∈ {0, . . . , k − 1}  be the index for which ∑ αji′
j=0  is minimum and let i  be (i′ +

1)( mod k). Thus, we have: 

 ∑ 𝛼𝛼𝑗𝑗( 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘)
𝑖𝑖+ℎ
𝑗𝑗=𝑖𝑖 = ∑ 𝛼𝛼𝑗𝑗( 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘)

𝑖𝑖+ℎ
𝑗𝑗=0 − ∑ 𝛼𝛼𝑗𝑗( 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘)

𝑖𝑖′
𝑗𝑗=0 ≥ 0 ,       ∀ ℎ ∈ {0, . . . , 𝑘𝑘 − 1} .    

  Q.E.D. 
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 This lemma gives us an edge 𝑒𝑒1 in 𝑋𝑋 such that any subsequence 𝑋𝑋′ of 𝑋𝑋 that starts with 
edge 𝑒𝑒1 has the following property:    

 ∑ 𝛼𝛼𝑒𝑒∈𝑋𝑋′ (𝑒𝑒) ≥ 0   .                               (14) 

 Let 𝑌𝑌 = 𝑌𝑌𝑓𝑓 ∪ 𝑌𝑌𝑏𝑏 be the longest subsequence 𝑋𝑋′ such that adding the edges in 𝑌𝑌𝑓𝑓 to 𝑆𝑆ℎ and 
removing the edges in 𝑌𝑌𝑏𝑏 from it do not violate the budget constraint. We further remove edges 
from the start and end of 𝑌𝑌  that originate from or end at the source and target nodes, 
respectively. (Note that doing so does not affect the property in (14) since the value of 𝛼𝛼 is zero 
for all such edges.) Let 𝑆𝑆 denote the flow built by adding edges in 𝑌𝑌𝑓𝑓 to 𝑆𝑆ℎ and removing the 
edges in 𝑌𝑌𝑏𝑏  from it. Note that flow 𝑆𝑆 satisfies the budget constraint due to the choice of 𝑌𝑌. 
However, it may not attribute to a feasible flow as it may violate the flow conservation constraints 
in (7.2). Therefore, we solve a min-cost max flow in graph 𝐺𝐺″ = (𝑉𝑉, 𝑆𝑆), with costs of edges set as 
𝖢𝖢, to obtain a feasible flow 𝑆𝑆𝑚𝑚. This implies that 𝑆𝑆𝑚𝑚 ⊆ 𝑆𝑆. 

 Let us implement this procedure for our small example. In Figure 5 (a), we show the 
remaining cycle  𝑋𝑋 = 𝑋𝑋2  after removing cycle 𝑋𝑋1 . We further show a possible case for 
subsequence  𝑌𝑌  of 𝑋𝑋 , which is represented by the edges in red, starting from node 9″  and 
ending at node 11″. Figure 5 (b) demonstrates graph 𝐺𝐺″ = (𝑉𝑉, 𝑆𝑆). Note that 𝑆𝑆 does not satisfy 
the flow conservation for nodes 9″ and 11″. By solving a min-cost max flow in graph 𝐺𝐺, we 
obtain flow 𝑆𝑆𝑚𝑚 which can be obtained by removing the edges in red from flow 𝑆𝑆. 

 

                (a) 𝑋𝑋 and 𝑌𝑌                             (b) infeasible flow 𝑆𝑆 and feasible flow 𝑆𝑆 in graph 𝐺𝐺″ 

Figure 5: Cycle X, subsequence Y, graph G”=(V,S), and the final flow Sm 

 Finally, we claim that 𝑆𝑆𝑚𝑚  yields a worst-case optimality bound, and solves in strongly 
polynomial time. 

Proposition 1. Algorithm 2 provides a solution for problem (7) with worst-case optimality bound of 
3 𝘊𝘊𝑚𝑚𝑚𝑚𝑚𝑚, i.e. 𝘊𝘊(𝑆𝑆𝑚𝑚) ≥ 𝘖𝘖𝘖𝘖𝘖𝘖 − 3 𝘊𝘊𝑚𝑚𝑚𝑚𝑚𝑚 . 

Remark 1. Algorithm 2 provides a solution for the problem in (7) in strongly polynomial time.   

 Proof. As mentioned earlier, the value of 𝛽𝛽∗ can be found in 𝒪𝒪(|𝑉𝑉|4|𝐸𝐸|2) using the Megiddo’s 
parametric search technique. Also, all simple cycles in graph 𝐺𝐺′ can be found in 𝒪𝒪(|𝑉𝑉|2) using 
the algorithm proposed by (Johnson, 1975), given the fact that at most 𝒪𝒪(|𝑉𝑉|) simple cycles can 
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exist in this graph. After each loop, at least one cycle can be cancelled. Thus, the whole cycle-
cancelling process takes 𝒪𝒪(|𝑉𝑉|3). The Gasoline Lemma can be applied in 𝒪𝒪(|𝑉𝑉|), and flow 𝑆𝑆𝑚𝑚 
can be found by solving a min-cost max flow in 𝒪𝒪(|𝑉𝑉|3), given the fact 𝒪𝒪(|𝐸𝐸|) = 𝒪𝒪(|𝑉𝑉|) in graph 
𝐺𝐺″. Thus, the running time of Algorithm 2 is bounded by that of the parametric search and the 
result follows. 

             Q.E.D. 

 We finalize this section by stating that one can turn Algorithm 2 into a PTAS by guessing the 
heaviest edges that will be in the optimal solution similar to the procedure described by (Berger, 
Bonifaci, Grandoni, & Schäfer, 2011). However, in large-scale instances of our problem 𝖢𝖢max is 
sufficiently small compared to 𝖮𝖮𝖮𝖮𝖮𝖮, which implies that the optimality gap is reasonably low and 
we do not need such an expensive procedure. 

4.4 A Budget-Balanced Variant of the Incentive Program 

In Section 3, we assumed that the ridesharing system relies on an external budget of size 𝖡𝖡 to 
incentivize the participants. In this subsection, we introduce a budget-balanced variant of our 
traveler incentive program whose funding comes from taxing the matches with positive adjusted 
gain. As such, let 𝜙𝜙 denote a flat tax rate that will be applied to any matched pair whose gain 
after adding subsidies is positive. In this case, we can replace the budget constraint in (7.3) with 
the following constraint:  

  ∑ Ψ𝑒𝑒∈𝐸𝐸 (𝑒𝑒) 𝑥𝑥(𝑒𝑒)  ≤ 𝜙𝜙  ∑ (𝑒𝑒∈𝐸𝐸 𝖶𝖶(𝑒𝑒) + 𝜆𝜆(𝑒𝑒)) 𝑥𝑥(𝑒𝑒) .                    (15) 

 In problem (7), we chose to maximize the difference between system’s social welfare and 
allocated subsidy to ensure that every external dollar added to the system generates a positive 
return on investment. In the case of a budget-balanced system, however, the budget will be 
provided internally, and thus, we choose to maximize the system’s social welfare. As a result, the 
after-tax social welfare of the budget-balanced system can be calculated:  

  (1 − 𝜙𝜙)  ∑ (𝑒𝑒∈𝐸𝐸 𝖶𝖶(𝑒𝑒) + 𝜆𝜆(𝑒𝑒)) 𝑥𝑥(𝑒𝑒) ,                        (16) 

 Note that the pre-processing procedure in Algorithm 1 is still valid in this case, since taxing 
affects neither the spatio-temporal feasibility nor the individual rationality of any pair. Hence, 
given a constant value for 𝜙𝜙, we can find the optimal solution to the new problem using the 
methodology proposed in the previous subsection with minor adjustments. 
 For a budget-balanced system, an important question that needs to be addressed is that “what 
would be an appropriate value for  𝜙𝜙?”. On the one hand, increasing the value of 𝜙𝜙 raises our 
available budget to subsidize more users, which leads to a higher matching rate and system-level 
social welfare. On the other hand, raising the tax rate adversely affects the social welfare of those 
participants who could be matched with lower values of 𝜙𝜙 . In what follows, we present a 
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proposition that helps us answer this question. 
Proposition 2. The optimal flat tax rate that yields the maximum social welfare for the budget-balanced 
variant of the traveler incentive program can be found as:  

𝜙𝜙max =
∑ Ψ𝑒𝑒∈𝐸𝐸 (𝑒𝑒) 𝑥𝑥max(𝑒𝑒)

∑ (𝑒𝑒∈𝐸𝐸 𝖶𝖶(𝑒𝑒) + 𝜆𝜆(𝑒𝑒)) 𝑥𝑥max(𝑒𝑒)
,                  (17) 

where 𝑥𝑥max denotes the optimal solution to problem (7) when Constraint (7.3) is relaxed.   

Proof. Let us rewrite the objective function in (16) as:  

  max  ∑ 𝖢𝖢𝑒𝑒∈𝐸𝐸 (𝑒𝑒) 𝑥𝑥(𝑒𝑒) + (∑ Ψ𝑒𝑒∈𝐸𝐸 (𝑒𝑒) 𝑥𝑥(𝑒𝑒) − 𝜙𝜙 ∑ (𝑒𝑒∈𝐸𝐸 𝖶𝖶(𝑒𝑒) + 𝜆𝜆(𝑒𝑒)) 𝑥𝑥(𝑒𝑒))  .          

Note that the statement inside the parentheses is always non-positive due to the budget constraint 
in (15). Therefore, its value will be maximized if Constraint (15) is binding. Thus, solution 
(𝑥𝑥max,𝜙𝜙max) maximizes both the statements inside and outside the parentheses and the result 
follows.            

Q.E.D. 

 This proposition further implies that the budget-balanced variant of our program is no longer 
NP-hard as stated in the following remark.   

Remark 2. The optimal solution to the budget-balanced variant of the traveler incentive program as a 
function of 𝜙𝜙 can be found in strongly polynomial time.   

Proof.  Since problem (7) without Constraint (7.3) can be modeled as a min-cost max flow and 
thus the worst-case running time complexity of finding 𝑥𝑥max  is 𝒪𝒪(|𝑉𝑉|2|𝐸𝐸|) . Also, the pre-
processing procedure has a time complexity of 𝒪𝒪(|𝑉𝑉|2). Hence, the overall complexity of the 
budget-balanced variant of the incentive program is the same as that of the min-cost max flow 
problem which is fully polynomial in the input size and the result follows. 

Q.E.D. 

5 Numerical Experiment 

In this section we conduct a comprehensive set of numerical studies using the New York City taxi 
dataset (New York City Taxi Datset) to evaluate the performance of the proposed traveler 
incentive program for a ridesharing system. In the next three subsections, we carefully define our 
dataset, parameter settings, and several performance metrics that help us quantify the impact of 
the proposed methodology. Afterwards, we present the result of various experiments. 

 All the experiments are implemented on a 3.50  GHz Intel Xeon machine with a 64-bit 
version of the Windows 10 operating system with 128.0 GB RAM. The data preparation and the 

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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subgradient optimization algorithm are coded in Python 3.7, and all the optimization problems 
are solved using GUROBI 9.0. 

5.1 Dataset 

In our numerical experiments, we assume that the proposed ridesharing system is practiced by 
the travelers in the Manhattan area of the New York City. Therefore, the road network of the 
Manhattan area is extracted from Open Street Map, which consists of 4500 nodes (stations) and 
9800 transportation links. We further use the Google Map API to find the shortest-path travel 
time and driving distance between every pair of stations in the morning and evening. For the 
morning and evening trip information of the participants, we use the daily average of the 
historical trips in the New York City taxi dataset from Feb 1, 2016 to Feb 10, 2016 subject to the 
following assumptions and modifications: 

• For a user that participates in the system only in the morning or evening peak hours, the 
origin and destination stations as well as the desired earliest departure time are obtained 
directly from the dataset. 

• To construct the set of users who are interested in both the morning and evening trips, we 
pick the trip information of their morning trips from the dataset. For the evening trip, we 
randomly pick a desired earliest departure time from the evening peak hour period and 
flip the origin and destination of their morning trip to form the origin and destination of 
the evening trip. 

• In order to obtain a tight time window for every trip, we generate a random number 
following a Normal distribution with mean of 5 minutes and standard deviation of 1 as 
the trip time flexibility. As a result, the desired latest arrival time of every trip can be set 
as the sum of desired earliest departure time, the shortest-path travel time between their 
origin and destination stations, and the trip time flexibility. 

• We only consider trips whose shortest-path travel times are at least 10 minutes. 
• We randomly generate the user’s values of time and distance from Normal distributions 

with means  𝜇𝜇(𝖥𝖥) and 𝜇𝜇(𝖧𝖧) and standard deviations 𝜇𝜇(𝖥𝖥)/5 and 𝜇𝜇(𝖧𝖧)/5, respectively. 

5.2 Experiment setup and Parameter Settings 

In our numerical experiments, we consider different scenarios of the ridesharing network with 
parameters defined as follows: 

• |𝑁𝑁| : the total number of participants in the system, 
• |𝑅𝑅|/|𝑁𝑁| : the percentage of riders, 
• |𝑁𝑁‴|/|𝑁𝑁| : the percentage of participants with both morning and evening trips, 
• 𝖡𝖡 : the total available budget for subsidy, 
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• 𝜇𝜇(𝖥𝖥) : the mean of a user’s time valuation, 
• 𝜇𝜇(𝖧𝖧) : the mean of a user’s distance valuation, 
• 𝖬𝖬 and 𝖤𝖤 : the morning and evening peak hour periods, respectively. 

We define a base scenario whose parameters are shown in Table 1. We define other scenarios by 
changing the value of a single parameter in the base scenario at a time.  

Table 1: The parameter setting for the base scenario 

|𝑁𝑁| 
|𝑅𝑅|
|𝑁𝑁| 

|𝑁𝑁‴|
|𝑁𝑁|  𝖡𝖡 𝜇𝜇(𝖥𝖥) 𝜇𝜇(𝖧𝖧) 𝖬𝖬 𝖤𝖤 

 (%) (%) ($) ($/mile) ($/min) (am/am) (pm/pm) 
6000 50 50 1000 3 0.35 [7:00, 10:00] [5:00, 8:00] 

 

 Let us first describe how we generate the different sets, used in developing our methodology, 
based on the value of the first three parameters in Table 1. Consider the base scenario where the 
set of all users can be shown as 𝑁𝑁 = {1, … ,6000} based on the first parameter. The set of all riders 
and drivers can be respectively shown as 𝑅𝑅 = {1, … ,3000} and 𝐷𝐷 = {3001, … ,6000} based on the 
value of 50% for the second parameter. Finally, the value of 50% for the third parameter allows 
us to find all other sets as 𝑅𝑅′ = {1′, … ,2250′}, 𝑅𝑅″ = {751″, … ,3000″}, 𝑅𝑅‴ = {751, … ,2250}, 𝐷𝐷′ =
{3001′, … ,5250′} , 𝐷𝐷″ = {3751″, … ,6000″} , and 𝐷𝐷‴ = {3751, … ,5250} . We also set 𝜀𝜀  in the 
parametric search to 10−6. 

5.3 Performance Metrics 

In order to quantify the performance of the proposed methodology, we introduce the following 
performance metrics:   

• Social Welfare (SW) = ∑ 𝑤𝑤∗
𝑒𝑒∈𝐸𝐸 (𝑒𝑒) 𝑥𝑥∗(𝑒𝑒) , 

• Subsidy Impact Rate (SIR) = (SW − SW without Subsidy)/(∑ Ψ𝑒𝑒∈𝐸𝐸 (𝑒𝑒) 𝑥𝑥∗(𝑒𝑒)) , 
• Subsidized Matches Rate (SMR) = 100 × (∑ 1Ψ(𝑒𝑒)>0𝑒𝑒∈𝐸𝐸 )/(∑ 𝑥𝑥∗𝑒𝑒∈𝐸𝐸 (𝑒𝑒)) , 
• Time Window Extension (TWE) = (∑ 𝛾𝛾∗𝑛𝑛∈𝑁𝑁′∪𝑁𝑁″ (𝑛𝑛))/(∑ 1𝛾𝛾∗(𝑛𝑛)>0𝑛𝑛∈𝑁𝑁′∪𝑁𝑁″ ) , 

where “SW without Subsidy” represents the negated total flow cost of the original min-cost flow 
problem in Section 3 without considering any subsidy.   

5.4 The Performance of the LR-Based Solution Method 

In this study, we show the merits of our proposed solution method in solving the budget-
constrained min cost flow problem in (7). To this end, we compare the computation time and the 
quality of the solution obtained by the proposed LR-based method with that of solving the 
problem in (7) directly using a MIP solver. For this comparison, we generated 10 random 
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instances of the problem using the parameters in the base scenario and applied both methods to 
solve them. We also repeated our experiments with the number of users set as 2000, 4000, 6000, 
8000, 10000, and 12000. Figure 6 (a) shows the computation time of both methods for different 
number of users averaged over 10 instances. Figure 6 (b) shows the average optimality gap of our 
solution method for different number of users. The shaded region in both figures demonstrate 
the 95% confidence intervals of the average values. 

 Figure 6 (a) indicates that the MIP solver takes almost half an hour to solve the problem with 
12000 customers while the proposed method in Algorithm 2 takes less than 3 minutes to find a 
near-optimal solution. Also, this figure clearly shows that the rate of increase in the computation 
time of the MIP solver is super-linear while the computation time of our solution method 
increases fairly linearly with the number of users, highlighting the scalability of the proposed 
method. Also, Figure 6 (b) suggests that, in general, the quality of the solutions obtained using 
Algorithm 2 improves with the number of system participants. Finally, it is worth mentioning 
that we observed that the MIP solver uses different heuristics to solve the problem in the reported 
times. Without these heuristics, the pure Branch-and-Cut algorithm takes a considerable amount 
of memory and hours of computation time to provide any high quality solution to any instance 
of the problem with more than 6000 users.  

(a)  Computation time                                (b)  Optimality gap 

Figure 6: The comparison between the performance of the MIP solver and the LR-based Method 

5.5 The Impact of the Two Proposed Incentives 

In this paper, we consider two types of incentives, namely the behavioral adjustment and the 
individual rationality incentives. Here, we compare the performance of a ridesharing system with 
guaranteed-ride-back under four different cases of “no subsidy”, “only the BA incentive”, “only 
the IR incentive”, and “both the BA and IR incentives” using 10 different randomly-generated 
instances of the base scenario. Figure 7 (a) demonstrates the average system-level social welfare 
over 10 runs for these four cases. Clearly, no subsidy yields the lowest values in social welfare. 
Subsidizing the system only using the BA incentive type shows a promising increase in the social 
welfare. However, this figure suggests that the IR incentive does not change the social welfare in 
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the absence of the BA incentive, and improves the social welfare in the presence of the BA 
incentive only minusculely. There are two main reasons for this observation. First, the IR 
incentive cannot turn a spatio-temporally infeasible pair into a feasible pair by itself. That is the 
reason why in Algorithm 1 we first check the spatio-temporal feasibility of a pair, and only when 
a pair is spatio-temporally feasible do we inspect the individual rationality of that pair. Secondly, 
we stated in Section 4.2 that the IR incentive can be positive only if the served rider is in R‴ and 
one of their trips in the morning or evening has negative original gain and the other has positive 
original gain, with sum of their original gains being positive. Otherwise, the IR incentive cannot 
add a higher value than its magnitude to the system. This fact highly narrows down the number 
of edges with positive IR incentive, and thus, its impact on the system-level social welfare 
diminishes. From the experiments above, one may come to the conclusion that the IR incentive 
seems to be useless and should not be considered. In order to show the merit of such an incentive 
in promoting a ridesharing system, we change the objective function in problem (7) to 
maximizing the matching rate as follows:       

 max  100×2
|𝑁𝑁′|+|𝑁𝑁″|

 ∑ 𝑥𝑥𝑒𝑒∈𝐸𝐸 (𝑒𝑒) .                               

 It is easy to show that under this objective, we can still use the pre-processing procedure in 
Algorithm 1. Figure 7 (b) demonstrates the result of maximizing the matching rate under the four 
cases. This figure indicates that the IR incentive can increase the new objective, i.e., the matching 
rate, in a statistically significant manner compared to the no subsidy case, even in the absence of 
the BA incentive. However, this figure also suggests that the BA incentive has more benefits than 
the IR incentive to offer due to the first reason discussed above. This figure also shows that in the 
presence of the BA incentive, introducing the IR incentive does not add considerable value. 

      (a)  Maximize the Social Welfare                       (b)  Maximize the Matching Rate 

Figure 7: The comparison between the performance of the ridesharing under different cases of subsidy for the objective 
of (a) maximizing the social welfare, and (b) maximizing the matching rate. 

5.6 The Impact of Tax Rate in the Budget-Balanced Incentive Program 

In Section 4.4, we introduced a budget-balanced variant of our incentive program in which the 
required subsidy is collected internally through taxing the matches with positive adjusted gain. 
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We further showed that the optimal flat tax rate  𝜙𝜙max  can be found analytically. In this 
experiment, we demonstrate the empirical results for an arbitrary instance of the base scenario 
for different values of 0 ≤ 𝜙𝜙 ≤ 100.  Figure 8 shows the after-tax social welfare in against the tax 
rate. This figure clearly shows that the social welfare of the budget-balanced variant of the 
incentive program increases sub-linearly until it reaches 𝜙𝜙max = 16.87% , and then it starts to 
collapse until it gets to zero at 100%. Overall, this figure suggests that subsidizing the system 
internally can significantly increase its social welfare from less than $6000 (without subsidy) to 
more than $20,000. Also, it indicates that even a small tax rate as low as 1% can double the 
system’s social welfare. 

 
Figure 8: The social welfare for different values of tax rate in a budget-balanced incentive program 

5.7 The Distribution of the BA Incentive Based on Trip Origins and Destinations 

In this experiment, we are interested in learning the characteristics of the users who are more 
likely to change their travel behavior, and thus, receive the BA incentive. To this end, we 
investigate the chance of receiving the BA incentive as well as the average amount of subsidy 
based on the origin and destination geo-coordinates of participants. Figure 9 presents three heat 
maps that help us analyze the distribution of the BA incentive among participants for an arbitrary 
instance of the base scenario. Note that due to having a large number of stations, we aggregate 
them into larger zones that represent different neighborhoods in the Manhattan area. 

 Figure 9 (a) shows the number of trips in the morning and evening whose origin or destination 
stations falls within each zone. This figure clearly shows that most trips originate/end form/at the 
lower Manhattan area, more specifically in the neighborhood where the Time Square is located. 
Figure 9 (b) shows the percentage of the subsidized users for each neighborhood. This figure 
suggests that those users who start or end their trips in less popular zones are more likely to 
receive the BA incentive. This is not surprising, because the chances of finding users with 
compatible trips is lower for such trips. Therefore, they are more likely to extend their time 
windows to match with other users. Figure 9 (c) shows the average amount of the BA incentive 
per number of users that received such an incentive for each neighborhood. This figure clearly 
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indicates that as the popularity of a neighborhood decreases, the trips whose origin and/or 
destination stations fall into that region should expand their time windows by a larger extent. 
Overall, this experiment suggests that those users who are located in the areas that are poorly 
supported by public transit can benefit more from the introduction of such an incentive program. 

 

   (a) Frequency of the origin     (b) Relative frequency of           (c) Average subsidy per  
     and destination zones              subsidized zones                 subsidized users of zones 

Figure 9: : The heatmap of the origin and destination zones 

5.8 A Dynamic Implementation of the Incentive Program 

Throughout this paper, we considered a static ridesharing system for which all trip information 
for a given day is known prior to solving the ride-matching problem. This requires all users to 
announce their trips before the start of the morning period. In this experiment, we relax this 
requirement by considering a dynamic system in which users are allowed to announce their trip 
information shortly before their desired earliest departure times. Let 𝖫𝖫(𝑛𝑛)  denotes the trip 
announcement time for user 𝑛𝑛 ∈ 𝑁𝑁. Note that we assume that users in 𝑁𝑁‴ announce both of their 
trips at the same time in the morning. In order to solve the dynamic ride-matching problem, we 
adopt the rolling horizon approach that re-optimizes the static ride-matching problem in short 
time intervals, say every 1 minute, using all the available trip information collected by the onset 
of each interval (see e.g., (Agatz N. , Erera, Savelsbergh, & Wang, 2012)). There are two important 
considerations for applying the rolling horizon approach in the existence of an incentive program: 
(𝑖𝑖) how to allocate the total budget 𝖡𝖡 to the re-optimization intervals, and (𝑖𝑖𝑖𝑖) when to finalize 
the matches between riders and drivers. Let us denote the re-optimization points (i.e., the starting 
times of the re-optimization intervals) by set 𝑃𝑃 = 𝑃𝑃′ ∪ 𝑃𝑃″, where 𝑃𝑃′ and 𝑃𝑃″ respectively denote 
the re-optimization points in the morning and evening. It is easy show that the pre-processing 
(with a minor adjustment) and solution method can still be applied in this case. More specifically, 
we only need to add the following constraint to the problem in (4):  

 𝑡𝑡(𝑛𝑛′) ≥ 𝑝𝑝 + 1 , ∀ 𝑛𝑛 ∈ {𝑑𝑑, 𝑟𝑟} .                   (18) 
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This constraint ensures that the trip’s start time is always after the end of the re-optimization 
interval. In what follows, we introduce two different policies for each of these considerations and 
evaluate their impacts on the system’s social welfare. 

For allocating the budget to the intervals, we consider two policies: (1) a naive policy that 
allows for using the entire available budget in each interval, and (2) dividing the total budget 
among intervals in a two-step process. In the first step, we divide the total budget between the 
morning and the evening intervals according to a pre-determined rate 𝜋𝜋 ∈ (0,1). In the second 
step, we divide 𝜋𝜋 𝖡𝖡  dollars uniformly among the intervals in 𝑃𝑃′ , and (1 − 𝜋𝜋) 𝖡𝖡  dollars 
uniformly among the intervals in 𝑃𝑃″. Also, we roll over the unused budget in each interval to the 
next interval. 
 For finalizing the matches found after solving the problem in (7) at each time 𝑝𝑝 ∈ 𝑃𝑃, we 
consider two policies: (1) we finalize the matches for users as soon as they got matched in a re-
optimization interval, (2) we postpone the matching finalization for any user as much as possible. 
More precisely, in the second policy we only finalize the matching between pairs of riders and 
drivers who cannot get matched together in the next re-optimization interval, or when the 
amount of subsidy allocated to them needs to increase in the next interval. This can be done by 
solving the problem in (4) once for 𝑝𝑝 + 1, and once for 𝑝𝑝 + 2 at every re-optimization point 𝑝𝑝 ∈
𝑃𝑃. 

 Figure 10 demonstrates the results of applying these policies to 10 randomly-generated 
instances of the base scenario. For each scenario, the trip announcement times are calculated by 
subtracting a random number following the Normal distribution with mean 5 and standard 
deviation of 1 from the corresponding desired earliest departure times. Moreover, for partial 
budget allocation policy, we consider different values of 𝜋𝜋 from 0.5 to 1. The scenario “whole” 
in this figure corresponds to the naive budget allocation strategy of using as much of the budget 
as desired in the earlier intervals, and only using the roll-over budget in the subsequent ones. 
Scenarios “Partial𝜋𝜋” indicate the results for the fraction 𝜋𝜋 of the total budget being allocated to 
the morning period. Under each scenario, the blue and red bars indicate the total social welfare 
for the two match fixing policies of finalizing the matches as early and late as possible, 
respectively. 

 Figure 10 clearly indicates that the combination of a partial budget allocation and latest time 
to finalize the matches yields the highest system-level social welfare. This is due to the following 
facts: under the Whole budget policy, the available budget will be depleted in the first few re-
optimization points, which results in a huge opportunity cost of not being able to subsidize the 
ride-matching problems in the following intervals. Additionally, postponing the matching 
finalization to the latest possible interval enables us to obtain more information on future trips, 
and thus, find possibly more beneficial matches (with higher welfare and lower subsidy) for each 
user. This figure further demonstrates that the highest social welfare can be obtained by setting 
𝜋𝜋 to 0.8, which is slightly higher than the rate of the morning trips in the system (0.75 in the base 
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scenario) in the base scenario. One possible explanation for this observation is that all the 
available budget will not be used in each interval, and hence, letting 𝜋𝜋 be slightly larger than the 
rate of the morning trips in the system can help us distribute the total available budget more 
uniformly between the morning and evening trips; i.e., if there is no need for the extra 5% of 
budget, it will be rolled over to the next interval, but not proving the possibly of using this budget 
may lead to an opportunity cost. 

 
Figure 10: The social welfare a dynamic incentive program under different policies for allocating budget and finalizing matches 

5.9 Sensitivity Analysis 

In this subsection, we consider different scenarios, by changing one parameter of the base 
scenario at a time, to analyze the sensitivity of the performance metrics (see Section 5.3) on 
parameter values (see Section 5.6). The results of this analysis are plotted in Figure 11, Figure 12, 
Figure C-1, Figure C-2, Figure C-3, Figure C-4, and Figure C-5. Each plot shows the average and 
the 95% CI of the corresponding performance metric over 10 instances. In what follows, we 
analyze the results of Figure 11 and Figure 12. The rest of Figures and their interpretations are 
presented in Section 9.3. 

In the base scenario, we assumed that the user’s value of time, 𝜇𝜇(𝖥𝖥), has a mean of $0.35 per 
minute. In order to study the relation between different values of this parameter and the 
performance metrics, we change the value to $0.1, $0.2, $0.5 and $0.6 per minute. The results are 
presented in Figure 11. In this figure, we observe that all the performance metrics decrease 
sublinearly with an increase the value of 𝜇𝜇(𝖥𝖥). This is not surprising because the amount of 
subsidy allocated to a user to change their travel behavior is a linear function of their value of 
time. Therefore, as a user’s value of time increases, the system has to compensate them with more 
subsidy to change their travel behavior, i.e. expand their time window. 
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           (a) Social Welfare       (b) Subsidy Impact Rate    (c) Subsidized Matches Rate  (d) Time Window Extension  
Figure 11: Impact of average value of time 

 Next, we consider the impact of changes in the average user’s value of distance, denoted by 
𝜇𝜇(𝖧𝖧), on the performance metrics. Figure 12 presents the results of changing this value from $3 
per mile in the base scenario to $1, $2, $4 and $5 per mile. Figure 12 (c) shows no significant 
changes in the percentage of subsidized matches, which is due to the fact that the BA incentive 
allocated to users does not get affected by the value of this parameter, and that most of the 
available budget is spent on the BA incentive (see Section 5.5). However, Figure 12 (a) and Figure 
12 (c) indicate that both the social welfare and the subsidy impact rate increase linearly as a result 
of an increase in the value of 𝜇𝜇(𝖧𝖧). The main reason behind these increasing trends is that an 
increase in the valuation of distance linearly increases the savings due to matching, which leads 
to a higher number of individually rational matches. Also, this increase in the number of 
individually rational matches allows users to find matches that not only have higher gains but 
also require smaller changes in their time windows, as shown in Figure 12 (d). 

 

            (a) Social Welfare       (b) Subsidy Impact Rate    (c) Subsidized Matches Rate  (d) Time Window Extension  
Figure 12: Impact of average value of distance 

6 Findings and Future Work 

In this paper, we consider a community-based ridesharing system with guaranteed-ride-back for 
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commuters. To promote such a ridesharing system among commuters, we introduce a traveler 
incentive program (TIP) that offers two types of incentives, namely the behavioral adjustment 
(BA) and the individual rationality (IR) incentives. We formulate the joint problem of matching, 
scheduling, and incentive allocation as a mixed integer nonlinear program (MINLP). Using a pre-
processing procedure and by utilizing linear programming, we reduce the MINLP problem to a 
budget-constrained min-cost flow problem. For solving large-scale instances of this problem, we 
devise a polynomial-time Lagrangian Relaxation-based algorithm, and obtain a worst-case 
optimality bound for its performance. We further introduce a budget-balanced variant of the 
incentive program that does not require external budget. Finally, we conduct several experiments 
using the New York City taxi dataset to evaluate different aspects of the TIP and the solution 
methodology. Our findings from the results of these experiments can be summarized as follows: 

• The proposed TIP considerably increases the social welfare by tripling that of the system 
without subsidy. Also, every dollar spent on subsidy increases the social welfare by 12 
dollars and matching rate by more than 40%. 

• The proposed LR-based solution method significantly reduces the computational effort 
needed to solve the large-scale instances of the problem when compared to a MIP solver. 
Also, the relative optimality gap of the LR method does not exceed 0.15% for any large-
scale instance, and converges to zero as the size of the problem increases. 

• When the objective of the system is to maximize social welfare, the impact of the IR 
incentive is negligible. However, we show that this type of incentive can be effective when 
the system operator aims to maximize the matching rate. Nonetheless, when BA 
incentives are introduced, adding IR incentives to the incentive basket improves neither 
the social welfare nor the matching rate in a statistically significant manner. This signifies 
the importance of using limited resources to change travel behavior, rather than providing 
direct monetary subsidies to travelers. 

• Those users who start or end their trips in regions that are less populated and/or farther 
away from the business districts are more likely to receive subsidies. In addition, these 
users experience larger increases in their time windows. 

• For dynamic implementation of the incentive program, it is more beneficial to separate 
the budget for the morning and evening peak hours and distribute the available budget 
among re-optimization intervals. 

There are at least three directions to extend the work in this paper. First, the fare paid by riders 
and the compensation received by drivers depend on their personal information (the valuations 
of time and distance), which we assumed could be estimated from their historical information. 
However, this information can also be directly solicited from the participants upon registration. 
In this case, it is essential to design a mechanism that ensures incentive compatibility, i.e., the 
individuals cannot benefit by not being truthful in reporting their private information (i.e., 
gaming the system). For future work, we consider designing a mechanism to determine the fare 
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paid/received by riders/drivers based on their marginal contributions to social welfare (i.e., 
fairness), and also guarantees incentive compatibility (i.e., truthfulness). Moreover, this paper 
assumes the simplest form of ride-matching problem, i.e., the one-to-one ride-matching problem. 
As a result of this assumption, we observe that the IR incentive does not contribute much to 
improving social welfare. However, in case of allowing multiple riders or the possibility of 
transfers between vehicles, we might observe significant impacts by both types of incentives. 
Finally, this paper considers a simple linear model to incorporate the effect of subsidies on a user’s 
utility. It is interesting to consider more complicated forms of subsidization in ridesharing, as 
(Fang, Huang, & Wierman, 2020) shows that the multi-threshold subsidy programs are more 
effective in practice. Additionally, participants’ valuations of expanding their time windows from 
right or left (leaving later or earlier, respectively) could be different, especially for commuter trips. 

7 Recommendations 

The main findings of this study can be summarized as follows: 

- Using incentives in shared mobility system can help increase social welfare 
- Incentives that focus on changing travel behavior are more impactful than direct 

monetary incentive to subsidize trip fares 
- Taxation can be used as an effective tool to increase social welfare 
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Appendix A. Table of Notations 

Table A-1: List of notations 

Notation Definition 
Sets:  
𝑁𝑁 = {𝑛𝑛}  
𝑅𝑅 = {𝑟𝑟}  
𝐷𝐷 = {𝑑𝑑}  
𝑁𝑁′ = {𝑛𝑛′}, 
𝑅𝑅′ = {𝑟𝑟′}, 
𝐷𝐷′ = {𝑑𝑑′}, 
𝑁𝑁‴ 
𝑅𝑅′ = {𝑟𝑟′}  
𝐷𝐷′ = {𝑑𝑑′} 
𝐴𝐴′ = {𝑎𝑎′}, 
𝑉𝑉 = {𝑣𝑣}  
𝐸𝐸 = {𝑒𝑒}  

𝑁𝑁″ = {𝑛𝑛″}  
𝑅𝑅″ = {𝑟𝑟″}  
𝐷𝐷″ = {𝑑𝑑″}  

𝐴𝐴″ = {𝑎𝑎″}  

the set of 
the set of 
the set of 
the set of 
the set of 
the set of 
the set of 
the set of 
the set of 
the set of 
the set of 
the set of 

all users 
all riders 
all drivers 
trips in the morning/evening 
rider trips in the morning/evening 
driver trips in the morning/evening 
users with trips both in the morning and evening 
riders with trips both in the morning and evening 
drivers with trips both in the morning and evening 
potential morning/evening trip matches 
nodes in the min-cost max flow network 
edges in the min-cost max flow network 

Parameters: 
𝖨𝖨(𝑛𝑛′)   , 𝖨𝖨(𝑛𝑛″)  
𝖩𝖩(𝑛𝑛′)   , 𝖩𝖩(𝑛𝑛″)  
𝖳𝖳(𝑛𝑛′)   , 𝖳𝖳(𝑛𝑛″)  
𝖰𝖰(𝑛𝑛′)   , 𝖰𝖰(𝑛𝑛″)  
𝖥𝖥(𝑛𝑛)  
𝖧𝖧(𝑛𝑛)  
𝖡𝖡  
𝖴𝖴(𝑟𝑟′|𝑑𝑑′)   , 𝖴𝖴(𝑟𝑟″|𝑑𝑑″)  
𝖴𝖴(𝑑𝑑′|𝑟𝑟′)  , 𝖴𝖴(𝑑𝑑″|𝑟𝑟″)  
𝖶𝖶(𝑒𝑒)  

𝛾𝛾(𝑑𝑑′|𝑟𝑟′)  , 𝛾𝛾(𝑑𝑑″|𝑟𝑟″) 

𝛾𝛾(𝑟𝑟′|𝑑𝑑′)  , 𝛾𝛾(𝑟𝑟″|𝑑𝑑″)  

𝜆𝜆(𝑑𝑑′, 𝑟𝑟′)  , 𝜆𝜆(𝑟𝑟″,𝑑𝑑″) 

𝑡𝑡(𝑑𝑑′|𝑟𝑟′)  , 𝑡𝑡(𝑑𝑑″|𝑟𝑟″)  

𝑡𝑡(𝑟𝑟′|𝑑𝑑′)  , 𝑡𝑡(𝑟𝑟″|𝑑𝑑″)  

Ψ(𝑑𝑑′, 𝑟𝑟′) , Ψ(𝑟𝑟″,𝑑𝑑″)  

 
the origin station of user  𝑛𝑛 in the morning/evening 
the destination station of user  𝑛𝑛 in the morning/evening 
the desired earliest departure time of user  𝑛𝑛 in the morning/evening 
the desired latest arrival time of user  𝑛𝑛 in the morning/evening 
the valuation of every minutes of travel time for user  𝑛𝑛  
the valuation of every mile driven for user  𝑛𝑛  
the total budget available for monetary incentives 
the valuation of rider  𝑟𝑟 if matched to driver  𝑑𝑑 in the morning/evening 
the valuation of driver 𝑑𝑑 if matched to rider 𝑟𝑟 in the morning/evening 
the original gain of pair of trips  𝑒𝑒  
the optimal BA incentive of driver  𝑑𝑑 if matched with rider  𝑟𝑟 in the 
morning/evening 
the optimal BA incentive of rider 𝑟𝑟 if matched with driver 𝑑𝑑 in the 
morning/evening 
the optimal IR incentive of pair (𝑑𝑑′, 𝑟𝑟′)/(𝑟𝑟″,𝑑𝑑″) if matched in the 
morning/evening 
the optimal trip start time of driver  𝑑𝑑 if matched with rider  𝑟𝑟 in the 
morning/evening 
the optimal trip start time of rider  𝑟𝑟 if matched with driver  𝑑𝑑 in the 
morning/evening 
the optimal subsidy allocated to the pair (𝑑𝑑′, 𝑟𝑟′)/(𝑟𝑟″,𝑑𝑑″) if matched in the 
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𝗌𝗌  , 𝗍𝗍 
𝜀𝜀 
𝖢𝖢(𝑒𝑒)  
𝖢𝖢max  
𝖮𝖮𝖮𝖮𝖳𝖳 
𝛽𝛽 
𝖢𝖢𝛽𝛽(𝑒𝑒) 
𝛼𝛼(𝑒𝑒) 
𝜙𝜙  
 𝜋𝜋  

morning/evening 
the source/target node in the min-cost max flow network 
an infinitesimal positive, real number 
the difference between the adjusted gain and subsidy of pair of trips  𝑒𝑒  
the largest value of 𝖢𝖢 
the optimal objective of the problem in (4.2) 
the Lagrange multiplier 
the coefficient of pair of trips  𝑒𝑒 in LR subproblem for a given 𝛽𝛽  
the weight of edge  𝑒𝑒 in the Gasoline Lemma 
a flat tax rate for budget balanced variant of TIP 
a rate for dividing the budget between the morning and evening periods 

Functions: 
𝐺𝐺 
𝐺𝐺′ 
𝐺𝐺″ 
𝛿𝛿+(𝑣𝑣)  , 𝛿𝛿−(𝑣𝑣) 

 
the 
the 
the 
the 

min-cost flow network of a ridesharing system with ride-back 
graph containing the cycles between two flows 𝑆𝑆𝑙𝑙 and 𝑆𝑆ℎ 
min-cost flow network of an infeasible flow 𝑆𝑆 
in-going and out-going edges of node  𝑣𝑣  in 𝐺𝐺 

guarantee 

Tables:  
 𝜏𝜏  
 𝜌𝜌  

the 
the 

shortest-path travel times matrix for the stations 
shortest-path driving distances matrix for the stations 

Variables:  
𝑥𝑥(𝑒𝑒)  
𝑡𝑡(𝑛𝑛′)   , 𝑡𝑡(𝑛𝑛″)  
𝑞𝑞(𝑛𝑛′)   , 𝑞𝑞(𝑛𝑛″)  
𝛾𝛾−(𝑛𝑛′)  , 𝛾𝛾−(𝑛𝑛″)  
𝛾𝛾+(𝑛𝑛′)  , 𝛾𝛾+(𝑛𝑛″)  
𝛾𝛾(𝑛𝑛′)   , 𝛾𝛾(𝑛𝑛″)  
𝜆𝜆(𝑒𝑒)  
𝑤𝑤(𝑒𝑒)  
𝑆𝑆ℎ = {𝑒𝑒}  , 𝑆𝑆𝑙𝑙 = {𝑒𝑒}  
𝑆𝑆𝑚𝑚 = {𝑒𝑒} 

1 if the driver and rider trip in  𝑒𝑒 are matched, and 0 otherwise 
the morning/evening trip start time of user 𝑛𝑛 
the morning/evening trip end time of user  𝑛𝑛 
the morning/evening time extension of the earliest departure time for user  
the morning/evening time extension of the latest arrival time for user  𝑛𝑛  
the BA incentive for the trip of user  𝑛𝑛 in the morning/evening 
the IR incentive for the pair of trips  𝑒𝑒  
the adjusted gain of pair of trips  𝑒𝑒 including the subsidies 
A budget-feasible/infeasible flow that maximizes the LR subproblem 
A near-optimal solution obtained from Algorithm 2 

𝑛𝑛  
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Appendix B. Proof of Proposition 1 

Proof. Let us consider different possible scenarios of subsequence 𝑌𝑌  and show that in each 
scenario we can obtain a feasible flow by removing a set of edges from 𝑆𝑆. Let us denote the first 
and last edges of subsequence 𝑌𝑌 as 𝑒𝑒1 = (𝑖𝑖1, 𝑗𝑗1) and 𝑒𝑒2 = (𝑖𝑖2, 𝑗𝑗2), respectively. For any node in 
subsequence 𝑌𝑌 which is not incident to these 2 edges, it is easy to show that the flow conservation 
constraint is satisfied in 𝑆𝑆 = (𝑆𝑆ℎ ∪ 𝑌𝑌𝑓𝑓)\𝑌𝑌𝑏𝑏. However, this is not the case for 𝑖𝑖1 and 𝑗𝑗2. 

 From the assumptions on 𝑌𝑌 and the procedure described in the proof of the Gasoline Lemma, 
we infer that 𝑒𝑒1  is one of the following six scenarios: (𝑖𝑖) (𝑑𝑑′, 𝑟𝑟′) ,  (𝑖𝑖𝑖𝑖)(𝑟𝑟′,𝑑𝑑′) ,  (𝑖𝑖𝑖𝑖𝑖𝑖)(𝑑𝑑″, 𝑟𝑟″) , 
 (𝑖𝑖𝑖𝑖)(𝑟𝑟″,𝑑𝑑″) ,  (𝑣𝑣)(𝑟𝑟′, 𝑟𝑟″) , and  (𝑣𝑣𝑣𝑣)(𝑟𝑟″, 𝑟𝑟′) . In scenario (𝑖𝑖) , by adding (𝑑𝑑′, 𝑟𝑟′)  to 𝑆𝑆ℎ  the flow 
conservation will be violated if 𝑑𝑑′ is matched to another rider trip in 𝑆𝑆ℎ. Therefore, we must 
remove edge (𝑑𝑑′, 𝑟𝑟′) from 𝑆𝑆. Moreover, if 𝑟𝑟 ∈ 𝑅𝑅‴, we may have to remove (𝑟𝑟″,𝑑𝑑𝑠𝑠(𝑟𝑟″)) from 𝑆𝑆 
in the worst case. Note that 𝑑𝑑𝑠𝑠(𝑟𝑟″) is the driver trip matched with rider 𝑟𝑟 in the evening. In 
scenario (𝑖𝑖𝑖𝑖), removing (𝑑𝑑′, 𝑟𝑟′) from 𝑆𝑆ℎ will violate flow conservation for node 𝑟𝑟″ in 𝑆𝑆 if 𝑟𝑟 ∈
𝑅𝑅‴. Therefore, we may have to remove edge (𝑟𝑟″,𝑑𝑑𝑠𝑠(𝑟𝑟″)) in the worst case. Using the same line 
of reasoning as in scenario (𝑖𝑖𝑖𝑖), we can show that we have to remove (𝑟𝑟″,𝑑𝑑″) for the fourth 
scenario, and (𝑟𝑟″,𝑑𝑑𝑠𝑠(𝑟𝑟″)) for the fifth and sixth scenarios from 𝑆𝑆 in the worst-case. Note that 
scenario (𝑖𝑖𝑖𝑖𝑖𝑖) does not require removing any edges from 𝑆𝑆. It is worth mentioning that we may 
also need to remove some of the auxiliary edges in 𝑆𝑆 which involve the source and target nodes, 
but those edges have no effect on the objective function value. 

 From the fact that 𝑌𝑌 is the longest subseqence in 𝑋𝑋, we conclude that 𝑒𝑒2 cannot be of type 
(𝑑𝑑′, 𝑟𝑟′), (𝑟𝑟″,𝑑𝑑″), and (𝑟𝑟″, 𝑟𝑟′), because their following edges in 𝑋𝑋 will have to be included in 𝑌𝑌. As 
such, 𝑒𝑒2 can only follow one of the following scenarios: (𝑖𝑖)(𝑟𝑟′,𝑑𝑑′),  (𝑖𝑖𝑖𝑖)(𝑑𝑑″, 𝑟𝑟″), and (𝑖𝑖𝑖𝑖𝑖𝑖)(𝑟𝑟′, 𝑟𝑟″). 
In the first case, we do not need to remove any edge from 𝑆𝑆 other than the auxiliary edges. In the 
next two scenarios, however, we have to remove (𝑑𝑑𝑠𝑠(𝑟𝑟′), 𝑟𝑟′) if 𝑟𝑟 ∈ 𝑅𝑅‴. 

 Let 𝑟𝑟″1  and 𝑟𝑟2″  be two rider trips in the evening for 𝑟𝑟1 ∈ 𝑅𝑅‴  and 𝑟𝑟2 ∈ 𝑅𝑅‴ . Now, let us 
consider the following possible cases for 𝑌𝑌  based on the scenarios for 𝑒𝑒1 = (𝑖𝑖1, 𝑗𝑗1) and 𝑒𝑒2 =
(𝑖𝑖2, 𝑗𝑗2):     

1. 𝑖𝑖1 ≠ 𝑟𝑟″1  and 𝑗𝑗2 ≠ 𝑟𝑟″2 : In this case, the property of 𝑌𝑌  in (14) implies that 
∑ 𝛼𝛼𝑒𝑒∈𝑌𝑌 (𝑒𝑒) = ∑ 𝖢𝖢𝛽𝛽∗𝑒𝑒∈𝑌𝑌𝑓𝑓 (𝑒𝑒) − ∑ 𝖢𝖢𝛽𝛽∗𝑒𝑒∈𝑌𝑌𝑏𝑏 (𝑒𝑒) ≥ 0 .  By adding 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ)  and 𝛽𝛽∗ Ψ(𝑆𝑆)  to both 
sides of the inequality, we have 𝖢𝖢(𝑆𝑆) ≥ 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) + 𝛽𝛽∗ Ψ(𝑆𝑆) . Also, based on the scenarios 
discussed above, at most two edges will be removed from 𝑆𝑆 to get a feasible solution for 
the min-cost max flow in graph 𝐺𝐺″  in this case. Therefore, 𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖢𝖢(𝑆𝑆) − 2 𝖢𝖢max , 
because 𝑆𝑆𝑚𝑚 is a feasible solution that maximizes the costs in graph 𝐺𝐺″. Thus, we conclude 
that 𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) + 𝛽𝛽∗ Ψ(𝑆𝑆) − 2 𝖢𝖢max . 

2. 𝑖𝑖1 = 𝑟𝑟1″  and 𝑗𝑗2 ≠ 𝑟𝑟2″ : In this case, the property in (14) implies that 
𝖢𝖢(𝑆𝑆) ≥ 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) + 𝛽𝛽∗ Ψ(𝑆𝑆) − max{𝖢𝖢(𝑑𝑑′𝑙𝑙(𝑟𝑟1′), 𝑟𝑟1′),  𝖢𝖢(𝑑𝑑′ℎ(𝑟𝑟1′), 𝑟𝑟1′),  0} . Also, based on the 
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scenarios discussed above, at most one edge will be removed in this case which yields 
𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖢𝖢(𝑆𝑆) − 𝖢𝖢max. Thus, we again conclude that 𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) + 𝛽𝛽∗ Ψ(𝑆𝑆) − 2 𝖢𝖢max. 

3. 𝑖𝑖1 ≠ 𝑟𝑟″1  and 𝑗𝑗2 = 𝑟𝑟″2 : In this case, the property in (14) implies that 𝖢𝖢(𝑆𝑆) ≥ 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) +
𝛽𝛽∗ Ψ(𝑆𝑆) + max{𝖢𝖢(𝑑𝑑′𝑙𝑙(𝑟𝑟2′), 𝑟𝑟2′),  𝖢𝖢(𝑑𝑑′ℎ(𝑟𝑟2′), 𝑟𝑟2′),  0}. Based on the scenarios discussed above, at 
most two edges will be removed due to 𝑖𝑖1 and edge (𝑑𝑑𝑠𝑠(𝑟𝑟2′), 𝑟𝑟2′) due to 𝑗𝑗2 in this case. 
As a result, we have 𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖢𝖢(𝑆𝑆) − 2 𝖢𝖢max − 𝖢𝖢(𝑑𝑑𝑠𝑠(𝑟𝑟2′), 𝑟𝑟2′). Note that 𝑑𝑑𝑠𝑠(𝑟𝑟2′) is either 
𝑑𝑑ℎ(𝑟𝑟2′) or 𝑑𝑑𝑙𝑙(𝑟𝑟2′). Thus, we again conclude that 𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) + 𝛽𝛽∗ Ψ(𝑆𝑆) − 2 𝖢𝖢max.   

4. 𝑖𝑖1 = 𝑟𝑟1″  and 𝑗𝑗2 = 𝑟𝑟2″ : In this case, the property in (14) implies that 𝖢𝖢(𝑆𝑆) ≥ 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) −
𝛽𝛽∗ Ψ(𝑆𝑆) − max{𝖢𝖢(𝑑𝑑′𝑙𝑙(𝑟𝑟1′), 𝑟𝑟1′),  𝖢𝖢(𝑑𝑑′ℎ(𝑟𝑟1′), 𝑟𝑟1′),  0} + max{𝖢𝖢(𝑑𝑑′𝑙𝑙(𝑟𝑟2′), 𝑟𝑟2′),  𝖢𝖢(𝑑𝑑′ℎ(𝑟𝑟2′), 𝑟𝑟2′),  0} . 
Based on the scenarios discussed above, at most one edge will be removed due to 𝑖𝑖1 and 
edge (𝑑𝑑𝑠𝑠(𝑟𝑟2′), 𝑟𝑟2′)  due to 𝑗𝑗2  in this case. Therefore, 𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖢𝖢(𝑆𝑆) − 2 𝖢𝖢max −
𝖢𝖢(𝑑𝑑𝑠𝑠(𝑟𝑟2′), 𝑟𝑟2′). Using the same reasoning as in the last two cases, we can again conclude 
that 𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) + 𝛽𝛽∗ Ψ(𝑆𝑆) − 2 𝖢𝖢max. 

 In all the cases above, we have that 𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) + 𝛽𝛽∗ Ψ(𝑆𝑆) − 2 𝖢𝖢max. Let us rewrite this 
inequlaity as:  

 𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) + 𝛽𝛽∗ 𝖡𝖡 − 𝛽𝛽∗ 𝖡𝖡 + 𝛽𝛽∗ Ψ(𝑆𝑆) − 2 𝖢𝖢max .           (19) 

We know that 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) + 𝛽𝛽∗ 𝖡𝖡 is a solution to the LR subproblem, and thus, we have:  

 𝖢𝖢𝛽𝛽∗(𝑆𝑆ℎ) + 𝛽𝛽∗ 𝖡𝖡 ≥ 𝖮𝖮𝖮𝖮𝖮𝖮 .                                    (20) 

Also, from the fact that 𝑌𝑌 is the longest subsequence in 𝑋𝑋 for which Ψ(𝑆𝑆) ≤ 𝖡𝖡, we know that 
there always exist an edge 𝑒𝑒3 ∈ 𝑋𝑋\𝑌𝑌  such that Ψ(𝑒𝑒3) + Ψ(𝑆𝑆) > 𝖡𝖡 . Now, consider the two 
following cases for edge 𝑒𝑒3: 

1. 𝖢𝖢𝛽𝛽∗(𝑒𝑒3) ≥ 0: In this case, 𝖢𝖢(𝑒𝑒3) ≥ 𝛽𝛽∗Ψ(𝑒𝑒3) which yields −𝛽𝛽∗Ψ(𝑒𝑒3) ≥ −𝖢𝖢(𝑒𝑒3) ≥ −𝖢𝖢max. 
2. 𝖢𝖢𝛽𝛽∗(𝑒𝑒3) < 0: Due to the fact that 𝑒𝑒3 is a part the min-cost max flow solution in graph 𝐺𝐺 

with costs set as −𝖢𝖢𝛽𝛽∗ , this case can happen only if there exists an edge 𝑒𝑒4 such that 
𝖢𝖢𝛽𝛽∗(𝑒𝑒3) + 𝖢𝖢𝛽𝛽∗(𝑒𝑒4) ≥ 0  which implies that 𝖢𝖢(𝑒𝑒4) ≥ 𝛽𝛽∗Ψ(𝑒𝑒3) . Thus, again, we have 
−𝛽𝛽∗Ψ(𝑒𝑒3) ≥ −𝖢𝖢(𝑒𝑒4) ≥ −𝖢𝖢max. 

From the cases above, we conclude that 

 −𝛽𝛽∗ 𝖡𝖡 + 𝛽𝛽∗Ψ(𝑆𝑆) ≥ −𝖢𝖢max .                               (21) 

Combining the inequalities in (19), (20), and (21) yields 𝖢𝖢(𝑆𝑆𝑚𝑚) ≥ 𝖮𝖮𝖮𝖮𝖮𝖮 − 3 𝖢𝖢max  and the result 
follows. 

Q.E.D. 
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Appendix C. Sensitivity Analysis (Cont’d) 

In the base scenario, we assume that the total number of participants in the ridesharing system 
during the morning and evening peak hours is 6000. In order to study the impact of the number 
participants on different performance metrics, we change its value to 2000, 4000, 6000, 8000, and 
10,000. The results are presented in Figure C-1. 

  Figure C-1 (a) suggests that the social welfare of the system increases significantly as the 
penetration rate of the system increases. Also, the rate of increase in this figures is linear, which 
is not surprising because the system is not saturated and adding more users increases the 
possibility of matching, and thereby, increasing the system’s social welfare. The upward trend of 
the subsidy impact rate in Figure C-1 (b) indicates that the added value to the system per one 
dollar spent on subsidy significantly increases with the number of participants. This is due to the 
fact that as the number of participants grows, the spatio-temporal proximity of trips increases, 
which results in (𝑖𝑖) fewer users requiring the BA incentive to get matched, and (𝑖𝑖𝑖𝑖) a smaller 
amount of the BA incentive for those who need it (see Figure C-1 (d)). Finally, Figure C-1 (c) and 
Figure C-1 (d) suggest that at least 50% of the matches are subsidized while the average time 
window extension for those that received the BA incentive does not exceed 5 minutes. The higher 
spatio-temporal proximity of trips that follows from a higher penetration rate allows the system 
to subsidize fewer rides and the participants to experience less deviation from their preferred 
time windows.  

           (a) Social Welfare       (b) Subsidy Impact Rate    (c) Subsidized Matches Rate  (d) Time Window Extension  
Figure C-1: Impact of number of participants 

 The number of riders and drivers are assumed to be the same in the base scenario. Next, we 
investigate the impact of changing the percentage of riders from 50 to 25, 33, 67 and 75, 
respectively. Figure C-2 displays the results of these scenarios for different performance metrics. 
Figure C-2 (a) shows that the social welfare decreases when the percentage of riders diverges 
from 50%, especially when the percentage of riders is greater than the percentage of drivers. This 
is partly due to the fact that we are implementing a one-to-one system where a single driver 
carries at most a single rider in each peak period, and thus, the best results are obtained when 
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there is a balance between the number of riders and drivers. When we have fewer riders than 
drivers, more drivers are available to serve them, and therefore the percentage of matched riders 
will be higher than the case where we have more riders than drivers due to (1) more resources to 
match the riders, and (2) fewer riders to be served. This trend can also be partly explained by the 
assumption of ride-back guarantees, as 50% of riders in these scenarios register both their 
morning and evening trips in the system and will be served if and only if both of their trips are 
served by the drivers in the system. Since this type of requests are harder to satisfy, we expect 
that the matching rate and social welfare decrease with a higher rate for scenarios above 50%. On 
top of having a smaller social welfare, Figure C-2 (c) shows that a higher percentage of matches 
need to be subsidized when the percentage of riders is higher than 50. This is why the subsidy 
impact rates are lower for these scenarios compared to the base scenario, as shown in Figure C-2 
(b). 

 

            (a) Social Welfare       (b) Subsidy Impact Rate    (c) Subsidized Matches Rate  (d) Time Window Extension  
Figure C-2: Impact of percentage riders 

 The base scenario assumes that 50% of users register both their morning and evening trips in 
the system. In this part, we investigate the impact of having lower percentages (25% and 33%) or 
higher percentages (67%, 75%) of participants be present in both the morning and evening peak 
hours. Figure C-3 demonstrates how different performance metrics change as this parameter 
increases from 25% to 75%. Given a fixed number of participants, increasing the value of this 
parameter clearly increases the number of users (both riders and drivers) in the morning and in 
the evening. Thus, the number of matches and hence the social welfare increases as shown in 
Figure C-3 (a). Also, the upward trend of the subsidy impact rate in Figure C-3 (b) implies that 
the proposed incentive program is more beneficial when users register both trips in the system. 
The downward trend of subsidized matched users in Figure C-3 (c) originates from the fact that 
with a higher number of riders and drivers in the morning or evening, the likelihood of finding 
a match without the help of the BA incentive increases, because of the higher spatio-temporal 
proximity between trips. Higher spatio-temporal proximity between trips further explains the 
linearly decreasing trend in Figure C-3 (d), as users will be required to expand their time window 
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less when this parameter increases. 

            (a) Social Welfare       (b) Subsidy Impact Rate    (c) Subsidized Matches Rate  (d) Time Window Extension  
Figure C-3: Impact of percentage of ride-back trips 

 Figure C-4 demonstrates the results of changing the available budget for subsidy from $1,000 
in the base scenario to $100 $500, $1500 and $2,500. Figure C-4 (a) shows that the social welfare 
increases sublinearly as we increase the value of 𝖡𝖡. This is consistent with our earlier results in 
Section 5.6, where we observed that social welfare grows sublinearly until it converges to the 
maximum possible social welfare. More interestingly, the same trend is also observed in Figure 
C-4 (c). Moreover, the subsidy impact rate in Figure C-4 (b) has the reverse trend: we can initially 
make a huge impact by investing a small amount of budget, but the rate of return-on-investment 
diminishes as we increase the budget. However, as we try to incentivize higher number of 
matches, we have to invest more, and the margin of profit gets smaller. Finally, we reach a point 
that either no further matches can become feasible with the help of the BA incentive or the 
required budget becomes higher than its subsequent added social welfare. Figure C-4 (d) shows 
an interesting result where the time window expansion decreases slightly as we increase the 
budget from $100 to $500 and then increases from $500 to $2500. One possible explanation would 
be that from $100 to $500, the rate of increase in the number of subsidized matches is very high 
(more than 20%) while the amount of increase in time windows for those users is not that much 
higher, and thus, the average time window expansion slightly decreases. 

            (a) Social Welfare       (b) Subsidy Impact Rate    (c) Subsidized Matches Rate  (d) Time Window Extension  
Figure C-4: Impact of total budget 
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 Finally, Figure C-5 displays the impact of the length of peak hour periods in the morning and 
the evening on the performance metrics. In the base scenario, we assume that the length of both 
peak hour periods is 3 hours. Here, we consider tighter periods (1 and 2 hours) and wider periods 
(4 and 5 hours). Obviously, increasing the length of the peak hour periods causes the trips to 
spread over a larger horizon, which results in reducing the temporal proximity of trips. This is 
the main reason behind the descending trend in the social welfare presented in Figure C-5 (a). 
Also, for the same reason, more participants need the BA incentive (see Figure C-5 (c)), and the 
magnitude of allocated incentive per user increases as shown in Figure C-5 (d). Moreover, since 
trips become more temporally sparse, the savings due to sharing rides decreases, which 
consequently decreases the impact of each dollar spent on subsidy, as shown in Figure C-5 (b).  

 

            (a) Social Welfare       (b) Subsidy Impact Rate    (c) Subsidized Matches Rate  (d) Time Window Extension  
Figure C-5: Impact of the morning and evening peak hours’ lengths 
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Appendix D. Outputs, Outcomes, and Impacts  

D-1 Outputs 
D-1.1 Publications, conference papers, or presentations (from major conference or similar 

event) 
1. Journal publication: 

- Transit timetable synchronization from transfer time minimization 
- Abdolmaleki Mojtaba, Neda Masoud, and Yafeng Yin. Transit Timetable 

Synchronization for Transfer Time Minimization, Transportation Research Part B: 
Methodological, 131: 143-159, 2020.  

- https://www.sciencedirect.com/science/article/abs/pii/S0191261519301201 
- Electronic copy included 

2. Journal publication: 
- Connected and Automated Road Vehicles: State of the Art and Future Challenges  
- Ersal Tulga, Ilya Kolmanovsky, Neda Masoud, Necmiye Ozay, Jeffrey Scruggs, Ram 

Vasudevan, and Gábor Orosz. Connected and Automated Road Vehicles: State of the 
Art and Future Challenges, Vehicle System Dynamics. 58(5):672–704, 2020. 

- https://www.tandfonline.com/doi/abs/10.1080/00423114.2020.1741652?journalCode=n
vsd20  

- Electronic copy included 
3. Journal publication: 

- Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review 
and Future Directions 

- Tafreshian Amirmahdi, Neda Masoud, and Yafeng Yin. Frontiers in Service Science: 
Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions. 
Service Science. 12 (2-3), 44-60, 2020. 

- https://pubsonline.informs.org/doi/abs/10.1287/serv.2020.0258  
- Electronic copy included 

4. Journal publication: 
- Using Subsidies to Stabilize Peer-to-Peer Ridesharing Markets with Role Assignment 
- Tafreshian Amirmahdi, and Neda Masoud. Using Subsidies to Stabilize Peer-to-Peer 

Ridesharing Markets with Role Assignment. Transportation Research Part C: 
Emerging Technologies. 120, 2020. 

- https://www.sciencedirect.com/science/article/abs/pii/S0968090X20306811 
- Electronic copy included 

5. Journal publication: 

https://www.sciencedirect.com/science/article/abs/pii/S0191261519301201
https://www.sciencedirect.com/science/article/abs/pii/S0968090X20306811
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- Modular Transit: Using Autonomy and Modularity to Improve Performance in 
Public Transportation  

- Zhang Zhenhao, Amirmahdi Tafreshian, and Neda Masoud. Modular Transit: Using 
Autonomy and Modularity to Improve Performance in Public Transportation. 
Transportation Research Part E: Logistics and Review. 141, 2020. 

- https://www.sciencedirect.com/science/article/abs/pii/S1366554520306840 
- Electronic copy included 

6. Conference proceeding: 
- Transit Timetable Synchronization for Transfer Time Minimization 
- Abdolmaleki Mojtaba$, Neda Masoud, and Yafeng Yin. Transit Timetable 

Synchronization for Transfer Time Minimization. In Proceedings of the INFORMS 
TSL Second Triennial Conference, 2020. 

- https://www.informs.org/Publications/Proceedings-of-the-TSL-Second-Triennial-
Conference 

- Electronic copy included 
7. Conference presentations: 

- Investigating the Role Assignment Stability in Large-scale Peer-to-Peer Ridesharing 
Markets  

- Tafreshian Amirmahdi, and Neda Masoud. Investigating the Role Assignment 
Stability in Large-scale Peer-to-Peer Ridesharing Markets. Transportation Research 
Board 98th Annual Meeting, 2019. 

- TRB does not publish the peer-reviewed papers in their proceedings 
8. Conference presentations: 

- Investigating the Role Assignment Stability in Large-scale Peer-to-Peer Ridesharing 
Markets  

- Adbolmaleki Mojtaba, Neda Masoud, and Yafeng Yin. High Quality Approximation 
Algorithms for Vehicle Synchronization in Transit Systems. Transportation Research 
Board 98th Annual Meeting}, 2019.  

- TRB does not publish the peer-reviewed papers in their proceedings 
 

D-1.2 Other outputs.  Electronic copies or links should be provided as appropriate.  May 
include: 

1. Analytical model: This project produces an analytical model to decide whom among a 
set of system participants in a shared mobility system should receive incentives. 
Incentives are designed to increase the likelihood of matching between participants, and 
increase social welfare.  

https://www.sciencedirect.com/science/article/abs/pii/S1366554520306840
https://www.informs.org/Publications/Proceedings-of-the-TSL-Second-Triennial-Conference
https://www.informs.org/Publications/Proceedings-of-the-TSL-Second-Triennial-Conference
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2. Courses: The methodology developed in this project will be used in the course CEE557: 
Large Scale Transportation Systems Optimization. 

D-2 List and electronic copies (as appropriate) of outcomes from the project.   
N/A 

D-3 List of impacts  
1. Enhancing mobility: The work completed in this project will help enhance mobility, 

especially in rural communities or those who have lower income. In such 
communities, popular ridesourcing services, such as Uber, do not have the critical 
mass of participants to operate. As such, these communities are deprived of additional 
mobility options to which urban areas have access, and thus suffer even a wider equity 
gap. The incentive mechanism designed in this work narrows down this equity gap by 
having the community members satisfying their mobility needs internally. 

2. Improving operations: By devising optimization solution methodologies that can 
efficiently match participants in a shared mobility system, this study improves the 
operation of such systems. 

3. Improving the body of knowledge: this study produces a novel methodology for 
incentive design and allocation in mobility systems, thereby improving the body of 
knowledge. 

4. Improving information resources: by sharing the outcomes of the study through 
publication in peer-reviewed journals and conference presentations, the PI has shared 
the study with the academic community. 

D-4 Tech transfer – list any additional tech transfer activities not captured above. 
N/A 

D-5 Challenges and lessons learned, if not contained in the recommendation 
section above. 

N/A 
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