
1.  Introduction
High Mountain Asia (HMA) forms the headwaters of river systems, for example, Yangtze, Yellow, Mekong, 
Brahmaputra, Indus, and Ganges Rivers, that provide fresh water supply for more than a billion people in 
the region for the purposes of downstream irrigation, hydropower generation, and general consumption 
(Armstrong et al., 2019). Meteorological and hydrological conditions in such mountainous environment 
are poorly monitored due to terrain inaccessibility and financial insufficiency (Ghatak et  al.,  2018). To 
overcome the limitations imposed by inadequate ground-based stations, previous studies generally utilized 
global land surface models or regional hydrological models to represent the hydro-meteorological process-
es involved across the HMA region. For example, Immerzeel et al. (2009) evaluated runoff simulations in 
a Himalayan river basin using the Snowmelt Runoff Model forced by rem otely sensed precipitation at a 
spatial resolution of 0.25°. Yoon et al. (2019) provided a thorough evaluation of the terrestrial water budget 
estimation (i.e., precipitation, evapotranspiration, runoff, and terrestrial water storage) over HMA using a 
suite of uncoupled global land surface models at a spatial resolution of 0.25°. Further, the study conducted 
by Ghatak et al. (2018) evaluated the Noah land surface model-derived runoff simulations in a HMA region 
at a spatial resolution of 5-km. To our current knowledge, there exists no published study performing land 
surface model simulations finer than 5-km for the entire HMA for a relatively long period (e.g., more than 
10 years).

As pointed out by Singh et al. (2015), increasing computational efficiency and the need for improved ac-
curacy are driving the development of “hyper-resolution” land surface models that can be implemented at 
regional scales, with spatial resolutions of 1-km or even finer. In addition, previous studies emphasized that 
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high spatial heterogeneity over complex terrain requires land surface model simulations to be implement-
ed at relatively high spatial resolutions (e.g., Zhao & Li, 2015). In addition to the tremendous amount of 
computational resources, one of the primary challenges of land surface modeling at hyper-resolution is the 
lack of forcing data sets at such resolution (Kollet et al., 2010; Singh et al., 2015). That is, we simply do not 
have reliable regional-scale 1-km in situ or satellite observational capabilities to derive all meteorological 
forcing variables required as input into land surface models. Thanks to the recent developments in physical 
and statistical downscaling approaches (e.g., Mei et al., 2020; Rouf et al., 2019), we can derive hyper-reso-
lution forcing fields from coarser-resolution data based on ancillary information (e.g., land cover, surface 
roughness, and topography). Using Yoon et al. (2019) as a benchmark, in this study, we attempt to address 
the following science question: “to what extent does the development of hyper-resolution forcing input 
improve or worsen land surface modeling, compared to ground-based observations or satellite-derived ref-
erence products”? To this end, this study systematically evaluates the 0.01° (∼1-km) and 0.25° (∼25-km) 
model simulations at point-scale, basin-scale, and domain-scale. The key variables of interest include var-
ious downscaled meteorological forcing input, as well as model output of surface net shortwave radiation, 
surface net longwave radiation, skin temperature, near-surface soil temperature, snow depth, snow water 
equivalent, and total runoff.

The ultimate goal of this research is to evaluate the newly-developed, hyper-resolution High Mountain 
Asia-Land Data Assimilation System (version 1) from 2003 to 2016. The High Mountain Asia-Land Data As-
similation System is intended to provide spatially and temporally continuous land surface estimates, which 
are believed essential to capture the spatio-temporal evolution of hydrometeorological conditions and their 
associated processes across HMA. Part I, presented in this manuscript, focuses on demonstrating the accu-
racy of a hyper-resolution (at ∼1-km spatial resolution), offline (uncoupled to the atmosphere) terrestrial 
modeling system (without assimilation) used for complex terrain regions.

2.  Data and Methods
2.1.  Study Domain and Models

The study domain is the HMA region bounded between 20°N and 41°N and 66°E and 101°E. Meteorological 
fields from the European Center for Medium-Range Weather Forecasts (ECMWF; Molteni et al., 1996) and 
Climate Hazards Group InfraRed Precipitation with Station data, Version 2 (CHIRPS; Funk et al., 2015; and 
two precipitation variants derived from CHIRPS; see Table 1) are used in this study. The ECMWF product 
is originally on a TL511 triangular truncation, linear reduced gaussian grid (0.25°) for four synoptic hours: 
00:00, 06:00, 12:00, and 18:00 UTC. The ECMWF forcing fields employed in this study include air tem-
perature, specific humidity, downward longwave flux, downward shortwave flux, wind speed, and surface 
pressure. The CHIRPS precipitation product has a native spatial resolution of 0.05° at a daily time scale. 
All meteorological inputs are temporally disaggregated onto the model time step of 15-min following Yoon 
et  al.  (2019) within the NASA Land Information System (LIS) 7.2 version (Kumar, Peters-Lidard, Tian, 
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Experiment name

Model output 
spatial 

resolution/
temporal 

resolution
Precipitation input source (spatial 

resolution/temporal resolution)

Other meteorological forcings 
source (spatial resolution/

temporal resolution)

HMA-Coarse (HMA-CS) 0.25°/daily CHIRPS (0.05°/daily) ECMWF (0.25°/6-h)

HMA-GMU 0.01°/daily Downscaled CHIRPS (0.01°/6-h) Downscaled ECMWF (0.01°/6-h)

HMA-CHIRPS 0.01°/daily CHIRPS (0.05°/daily) Downscaled ECMWF (0.01°/6-h)

HMA-corr-CHIRPS 0.01°/daily Bias-corrected CHIRPS (0.05°/daily) Downscaled ECMWF (0.01°/6-h)

Abbreviation: CHIRPS, Climate Hazards Group InfraRed Precipitation with Station data, Version 2; ECMWF, European 
Center for Medium-Range Weather Forecasts; HMA, High Mountain Asia.

Table 1 
Experiments Used for Evaluation
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et al., 2006). Further, Yoon et al. (2019) demonstrated that the joint use of ECMWF and CHIRPS forcings 
provides the best model estimates at 0.25° spatial resolution for daily output of water balance components.

Four sets of model simulations are evaluated in this study, which are summarized in Table 1. (1) In “HMA-
Coarse” (also denoted as “HMA-CS” in figures), the meteorological inputs (i.e., air temperature, humidity, 
surface pressure, wind, downward shortwave, and longwave radiation) are adjusted for the elevation differ-
ences through lapse-rate and slope-aspect correction methods (Kumar, Peters-Lidard, Mocko, & Tian, 2013). 
Inputs obtained from ECMWF and CHIRPS are spatially interpolated and aggregated onto the same 0.25° 
grid for generating model output. (2) In “HMA-GMU,” all meteorological inputs are downscaled using phys-
ically-based and statistically-based algorithms onto the 0.01° grid for model estimates. Section 2.1.1 summa-
rizes key steps used in the downscaling process. (3) In “HMA-CHIRPS,” except for the precipitation field, 
all other meteorological forcings remain the same as “HMA-GMU.” The precipitation field is replaced with 
original CHIRPS, which is then spatially interpolated onto the same 0.01° grid for model estimates using the 
simplistic conservative interpolation scheme. (4) In “HMA-corr-CHIRPS,” except for precipitation, all other 
meteorological forcings remain the same as “HMA-GMU” and “HMA-CHIRPS.” The precipitation field is 
replaced with the bias-corrected CHIRPS (see Section 2.1.2 for details), which is then spatially interpolated 
onto the same 0.01° grid for model estimates using the simplistic conservative interpolation scheme.

The land surface model used in this study is the baseline Noah-MP (Niu et al., 2011; Z.-L. Yang et al., 2011). 
Noah-MP is enhanced from the original Noah land surface model through the addition of improved model 
physics (i.e., dynamic vegetation phenology, a carbon budget and carbon-based photosynthesis, an explicit 
vegetation canopy layer, a multilayer snowpack representation and a groundwater module) and multi-pa-
rameterization options. We used Noah-MP version 3.6 within the NASA LIS. The Noah-MP model con-
figuration options are the same as Xue et al. (2019) and Yoon et al. (2019), which were shown to provide 
relatively good agreement with reference data sets in simulating hydrological conditions over HMA. To be 
more specific, we adopt a three-layer snow scheme within Noah-MP. The skin temperature (defined as the 
average surface temperature in this study, diagnosed from the Noah-MP model) is calculated as the are-
al-weighted average of the canopy temperature and the bare ground temperature, where the canopy temper-
ature and the bare ground temperature are solved through Newton-Raphson iterations in order to balance 
the surface energy budgets. In terms of soil, a four-layer soil column configuration is used, and the thickness 
of each soil layer (from top to bottom) are 10, 30, 60, and 100 cm, respectively. More details regarding model 
physics can be found in Niu et al. (2011) and Xue et al. (2019). As opposed to using the Noah-MP output of 
surface radiative temperature (e.g., Z.-L. Yang et al., 2011), we use the average surface temperature to rep-
resent modeled skin temperature. Slight but no significant differences in the computed statistical metrics 
are found when using the modeled surface radiative temperature versus the average surface temperature 
during the evaluation against either ground-based measurements or satellite-based products (results not 
shown). At this stage, it is difficult to tell which set of model output is more representative or accurate and 
thus, we choose to only use the average surface temperature defined above to present all results. Further 
studies should examine and compare the two approaches to calculate modeled skin temperature from No-
ah-MP. In addition, it is important to note that the Noah-MP model used in this study does not contain a 
glacier modeling routine, which may negatively impact the accuracy of all model derived snow depth, SWE, 
and runoff estimates.

The land surface model simulations are conducted with a 15-min time step for a 14-year time period (2003–
2016) to generate daily output of water balance components. The initial conditions for the runs are gen-
erated by appropriate spin-up strategies as described by Xue et al. (2019) and Yoon et al. (2019), and then 
reinitializing all model runs in 2003.

2.1.1.  Downscaling of Meteorological Forcings

Following Rouf et al. (2019), meteorological forcings including near-surface (∼10 m above the ground) air 
temperature (denoted as “Ta”), surface pressure (denoted as “pr”), near-surface (∼10 m above the ground) 
specific humidity (denoted as “q”), near-surface (∼10 m above the ground) wind speed (denoted as “w”), 
downward surface shortwave radiation (denoted as “SW”), and downward surface longwave radiation (de-
noted as “LW”) obtained from ECMWF are spatially downscaled from their original resolutions (0.25°) onto 
the 0.01° model grid. All spatial downscaling procedures preserve the variable measurement height before 
and after being downscaled. The symbol of “ ( )” denotes the variable at 0.01° model grid. The downscaling 
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methods are developed by the George Mason University (GMU) research team, and therefore we refer to the 
downscaled meteorological forcings as GMU downscaled forcings. The downscaled air temperature in the 
unit of K is computed as Marshall and Plumb (1989):

   Γ ( ),a a aT T Z Z� (1)

where Z (m) is the Shuttle Radar Topography Mission (SRTM) digital elevation model derived elevation at 
0.25°, Z  (m) is the elevation derived at 0.01° (see Figure 1a), and Γa (K/m) is the spatially distributed dy-
namic lapse rate in air temperature (Rouf et al., 2019). The downscaled surface pressure in the unit of Pa is 
computed as Cosgrove et al. (2003):


 


 ( )exp( ),r r

m

g Z Zp p
RT

� (2)

where exp(⋅) is the exponential operator. R (=287 J/(kg ⋅ K)) is the ideal gas constant, g (=9.81 m/s2) is the 
gravitational acceleration constant, and Tm (K) is the mean air temperature computed from Ta and 

aT . The 
downscaled specific humidity in the unit of kg/kg is computed as Lawrence (2005):
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where for water, C1 (=611.21 Pa), C2 (=17.268), C3 (=238.88°C), and for ice, C1 (=611.15 Pa), C2 (=22.452), 
C3 (=272.55°C) as noted in Buck (1981). Td (K) is the dew point temperature, and Γd (K/m) is the spatially 
distributed dynamic lapse rate in dew point temperature. The downscaled wind speed in the unit of m/s is 
computed as Tao and Barros (2018), Rouf et al. (2019), and Bohn and Vivoni (2019):
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Figure 1.  (a) The SRTM derived HMA elevation map at a spatial resolution of 0.01°. (b) An example of the spatially-
distributed precipitation correction factors at a spatial resolution of 0.05° as applied in the bias-corrected CHIRPS 
product in February across HMA. HMA, High Mountain Asia; SRTM, Shuttle Radar Topography Mission.
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where ln(⋅) is the natural logarithm operator, μ* (m/s) is the friction velocity, z0 (m) is the surface roughness, 
κ (=0.41) is the Von Kármán constant, H (=10 m) is the measurement height above the ground, and M is the 
number of land cover types. ρi is the fractional values of the ith land cover type. K represents the temporal 
variability of the Moderate Resolution Imaging Spectroradiometer (MODIS) derived normalized difference 
vegetation index (NDVI), which is computed as the ratio of the NDVI obtained from the current time step 
versus the annual mean of the NDVI. The downscaled incident shortwave radiation in the unit of W/m2 is 
computed as Ruiz-Arias et al. (2010), Fiddes and Gruber (2014), Gupta and Tarboton (2016), and Tao and 
Barros (2018):

          cos( )exp( ( )) ( (1 ) ),b dr r b v d t vSW p p SW F SW F SW F SW� (9)

where SWb (W/m2) is the direct shortwave radiation, and SWd (W/m2) is the diffuse shortwave radiation. δ 
is the binary shadowing mask indicating whether the grid cell is blocked by the shadow of nearby terrain, 
cos(θ) is the cosine of the solar illumination angle, τ (Pa−1) is the broadband attenuation coefficient, α is the 
MODIS derived surface albedo, Fv is the fractional value of the visible sky, and Ft is the terrain configuration 
factor, which is computed as the function of terrain slope and Fv. The downscaled longwave radiation in the 
unit of W/m2 is computed as Konzelmann et al. (1994) and Fiddes and Gruber (2014):
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where σ (=5.67 × 10−8 W/(m2 ⋅ K4)) is the Stefan-Boltzmann constant, and ϵc is the clear-sky emissivity.

The original 0.05°/daily CHIRPS precipitation is spatially and temporally downscaled to 0.01°/6-h by 
weighting factors. To disaggregate CHIRPS to 0.01°, spatially-distributed weighting factors are derived from 
daily cumulative downscaled 0.01° ECMWF precipitation, which is derived from the original 0.25°/6-h EC-
MWF precipitation following Mei et al. (2020). The kernel of the Mei et al. (2020) precipitation downscaling 
framework lies in a random forest (RF) classification along with a regression algorithm. The framework 
first applies the recursive feature elimination algorithm to select important predictors in terms of their 
predictive values to the daily cumulative ECMWF precipitation from a list of potential predictors. There 
are 13 potential predictors including eight meteorological variables (air and dew point temperature, sur-
face pressure, specific and relative humidity, longwave and shortwave radiation, and wind speed) and five 
auxiliary variables (vegetation index with 30-days and 60-days lag, latitude, longitude, and day of year). 
The meteorological variables are either adopted or derived from the downscaled 0.01° ECMWF estimates. 
For each year from 2003 to 2016, the first seven predictors with higher predictive values are selected as 
important predictors. In a next step, with the identified predictors, RF classification models are trained to a 
binary precipitation mask defining rainy (i.e., daily cumulative precipitation being greater than 0 mm) and 
non-rainy grid cells and RF regression models are trained to the daily cumulative precipitation for rainy 
grid cells (Note: one RF classification and one RF regression model for a year to maintain a relatively high 
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computational efficiency). Then, the trained RF classification models are used to produce the 0.01° daily 
binary precipitation masks with the 0.01°/daily predictors. Finally, the RF regression models are used to es-
timate the daily cumulative precipitation for rainy grid cells (inferred by the 0.01° precipitation masks) with 
the identified predictors. It is important to note that each 0.01° model grid cell is treated independently. In 
other words, the spatial correlation is not explicitly considered except that for some years the models may 
take the geographical information (latitude and longitude) as predictors.

After attaining the 0.01°/daily ECMWF precipitation, the 0.05°/daily CHIRPS precipitation is spatially dis-
aggregated following the equations below:

pd
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N
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where pdE and pdC represent the daily cumulative precipitation from ECMWF and CHIRPS, respectively. N 

is the total number of 0.01° grid cells within a 0.05° grid cell. The term of 



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i E i

pd

pd
N

 denotes the spatially 

distributed weighting factors, which quantifies the 0.01° variability of precipitation within the 0.05° grid 
cells. In the case that all 0.01° grid cells within a 0.05° grid cell have null precipitation, pdC is distributed 
evenly. The daily cumulative CHIRPS precipitation is then multiplied by a temporal weighting factor to 
attain the 6-h precipitation value at 0.01° (denoted as “Cpt ”). The temporal weighting factor is derived from 
the 0.25°/6-h ECMWF precipitation, written as:
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where ptE denotes the 6-h ECMWF precipitation. T is the total number of time steps within one day. Similar 

to Equation 13, the term of 


,

1 ,

E t
T
t E t

pt

pt
 is the 6-h temporal weighting factor used to distribute the daily cumu-

lative precipitation; if all 6-h precipitation values are zeros within a day, Cpd  is distributed evenly.

2.1.2.  Bias-Corrected CHIRPS

The bias-corrected CHIRPS are generated using the original CHIRPS at 0.05° multiplied with the monthly, 
spatially-distributed correction factors given by Beck et al. (2020). Their study used streamflow observations 
from 9,372 stations for calibrations of several state-of-the-art (quasi-) global precipitation climatologies. 
Monthly climatological bias correction factors were calculated by disaggregating the long-term bias correc-
tion factors on the basis of gauge catch efficiencies. An example of the spatially-distributed precipitation 
correction factors as applied in CHIRPS product in February across HMA can be seen from Figure 1b. The 
domain-averaged precipitation correction factor is 1.43, with relatively high correction factors presence 
along Karakoram and Himalayan ranges. As noted in Beck et al. (2020), these regions exhibit marked ele-
vation gradients, sparse gauge networks, and substantial snowfall: all factors that tend to favor precipita-
tion underestimation, and therefore, the newly-generated bias-corrected CHIRPS product is intended to 
increase the magnitude of precipitation across HMA (see Figure 12).

2.2.  Ground-Based Measurements of Meteorological Conditions

A summary of ground-based measurements of meteorological conditions used for evaluation is listed in 
Tables 3 and 4. These measurements include air temperature, wind speed, specific humidity, surface pres-
sure, incident shortwave radiation, incident longwave radiation, and total precipitation. These data set are 
obtained from (1) the Chinese Meteorological Administration (CMA), namely the Data set of Daily Climate 
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Data From Chinese Surface Stations for Global Exchange (V3.0) (https://data.cma.cn/en/?r=data/detail&-
dataCode=SURF_CLI_CHN_MUL_DAY_CES_V3.0&keywords=daily), or (2) the Coordinated Enhanced 
Observing Period (CEOP) Asia Monsoon project (https://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/
ceop_ap/), or (3) the Department of Hydrology and Meteorology in Nepal (DHM), or (4) the Pakistan Mete-
orology Department (PMD), or (5) the weather underground (WU; https://www.wunderground.com). Lo-
cations of the ground-based stations are shown in Figure 3–5. The discrepancies between model estimates 
and measurements resulting from different measurement heights are neglected in this study because they 
are deemed much smaller than model errors alone (calculations not shown). Note some in situ data source 
do not provide the measurement height information.

2.3.  Ground-Based Measurements of Modeled States

A summary of ground-based measurements of modeled states used for evaluation is listed in Table 4. It is 
important to note that only a handful of model output variables are evaluated here due to reference meas-
urements inadequacy.

2.3.1.  Surface Radiation

Surface net shortwave radiation and net longwave radiation, calculated as incoming-minus-outgoing radi-
ant energy fluxes, are evaluated in this study, respectively. The in situ radiation measurements are obtained 
from CEOP. Radiation fluxes are measured using CM21 Kipp & Zonen (or 2770 Aandera) sensors at a time 
step of an hour (or 20 minutes), and at a height of 1.58 m, 2 m (or 3.1 m) above from the ground surface (de-
pending on the station). Daily-averaged, in situ fluxes are then computed as the temporal mean of the values 
collected during the 24-h period. The measurement discrepancies as a result of different sensor installation 
heights are neglected in this study.

2.3.2.  Skin Temperature

Two different sources of skin temperature measurements are obtained. First, in situ, daily-averaged surface 
temperature measurements are obtained from CMA. The daily-averaged surface temperature values are 
computed by averaging the four measurements taken by platinum resistance thermometers at 02:00, 08:00, 
14:00, and 20:00. Second, the in situ surface temperature measurements are obtained from the CEOP Asia 
Monsoon project. Skin temperature are measured at a time step of an hour. Daily-averaged, in situ tempera-
tures are then computed as the temporal mean of the values collected during the 24-h period.

2.3.3.  Snow Depth

The in situ, daily-averaged snow depth measurements are obtained from (1) the Global Summary of the Day 
(GSOD; https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod), (2) the Contribu-
tion to High Asia Runoff from Ice and Snow (CHARIS) project (http://himatmap.apps.nsidc.org/hma_insi-
tu.html), and (3) the CEOP Asia Monsoon project.

2.3.4.  Near-Surface Soil Temperature

Three different sources of the near-surface (5 cm below the ground) soil temperature measurements are 
obtained. First, in situ soil temperature measurements are obtained from the CEOP Asia Monsoon project. 
Near surface soil temperatures are measured at a time step of an hour or 20 min, and at the depth of 3, 4, 
and/or 5 cm from the ground surface (depending on the station). Daily-averaged temperature values are 
then computed as the temporal mean of the temperatures collected during the 24-h period as a function 
of the measured depth. It is assumed that measurements taken at the depth of 5 cm (i.e., center of the soil 
layer) can best represent the modeled top-layer of soil (0–10 cm). Therefore, the relatively simple linear 
interpolation method is applied to the model estimates to match with the measurement depths of 3 and 
4 cm, respectively.

Second, daily-averaged near-surface soil temperature measurements from one station located at (29.76°N, 
94.74°E) are obtained from the Southeastern Tibet Observation and Research Station for the Alpine En-
vironment (SETORS; http://en.tpedatabase.cn/portal/MetaDataInfo.jsp?MetaDataId=197) maintained by 
the Chinese Academy of Sciences. At this station, soil temperature at a depth of 4 cm below the ground are 
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measured using a Campbell 107 sensor. We then interpolate the modeled top-layer of soil (0–10 cm) temper-
ature estimates to 4 cm using linear interpolation to match with the measurement depth.

Third, in situ, daily- and spatially-averaged near-surface soil temperature measurements are obtained from 
the Central Tibetan Plateau Soil Moisture and Temperature Monitoring Network (CTP-SMTMN; http://
dam.itpcas.ac.cn/rs/?q=data) maintained by the Institute of Tibetan Plateau Research, Chinese Academy 
of Science. Near-surface soil temperature measurements are taken at the soil depth in between 0 and 5 cm. 
Only the range of the near-surface measurement depth is given in the CTP-SMTMN document without the 
exact measurement depth (K. Yang et al., 2013). Therefore, the modeled top-layer soil temperature is used 
to approximate the measurement taken at in situ sites.

2.3.5.  Total Runoff

Table  2 summarizes the main characteristics of the five gauged basins (see Figure 2) in the study area, 
including drainage area, data source, and mean elevation computed via averaging all grid cells coincident 
within the given basin. These ground-based measurements are obtained from (1) the Contribution to High 
Asia Runoff from Ice and Snow (CHARIS) project, or (2) Department of Hydrology and Meteorology in Ne-
pal, or (3) the Global Runoff Data Center, 56,068 Koblenz, Germany (https://www.bafg.de/GRDC/EN/01_
GRDC/grdc_node.html). Basin #1 through Basin #5 are listed and organized by drainage area in ascending 
order in Table 2. It is important to note that only basins with drainage areas of greater than 625 km2 are 
included in this study.

Basin #1 originates in the higher mountains in Nepal, where monsoon precipitation constitutes the major 
source of discharge water. In this basin, there exists a fairly clear rainfall-runoff relationship. that is, strong 
commonality with precipitation highs to lows matching up with flow magnitudes tends to occur frequently 
(Hannah et al., 2005). According to Hannah et al. (2005), the flow regime shape in Basin #1 is Class C with 
marked August peak runoff. The flow regime magnitude in Basin #1 is Class 2 with intermediate amount 
of both annual total precipitation and total runoff. Note names of “Class C″ and “Class 2” are classification 
schemes based on Hannah et al. (2005).

Basin #2 is a trans-boundary basin lying north-south in the central Himalayan region. It extends from China 
in the north, and flows through Nepal. The majority of the glaciated region in Basin #2 are located in Tibet, 
China. The climate is dominated by the Indian summer monsoon system, with the majority of the precipi-
tation falls between June and September. Total runoff varies throughout the year influenced by both snow 
(and glacier) melt and precipitation (Dandekhya et al., 2017). Peak flows generally occur in July or August 
as the peak snow and glacier melt coincide with the monsoon peak (Mishra et al., 2018).

Basin #3 originates in Tajikistan and flows toward Uzbekistan. The highest precipitation is often brought 
by Westerlies during winter and spring periods, with minimums during summer and early autumn periods 
(Gafurov et al., 2015). The discharge regime is strongly dominated by snow (and glacier) melt in the area 
during summer time. The increase of water discharge typically begins in April and peaks around July or 
August. The recession of the discharge river flow generally commences in August and continues until Feb-
ruary or March, when it reaches its minimum discharge point (Kulmatov et al., 2013).

Basin #4 is located in Tajikistan, which is mainly fed by melting snow and glaciers. The region is under the 
continental climate, characterized by a wide temperature variation throughout the year, with the coldest 
temperature generally occurring in January. Similar to Basin #3, Mid Latitude Westerlies are the dominant 
climatic influence in the area. Precipitation decreases from west to east. The majority of the annual pre-
cipitation falls between February and May (Grin et al., 2018), while during the summer and early autumn 
seasons precipitation presents a minimum.

Basin #5 is located in the North Western part of Myanmar. It is dominated by a mountainous forested 
terrain, except for the wide flood plain at its lowest southern part (Yuan et al., 2017). Rainfall is the major 
driver for the discharge regime in the area. During the southwest monsoon season, Basin #5 is prone to se-
vere floods, due to the high precipitation intensities with significant spatial and temporal variations (Yuan 
et al., 2017). Riverine floods are very common in Basin #5, and they occur as a result of the intense pre-
cipitation when the monsoon troughs or low pressure waves superimpose on the general monsoon pattern 
(Latt, 2015).

XUE ET AL.

10.1029/2020JD034131

8 of 32

http://dam.itpcas.ac.cn/rs/?q=data
http://dam.itpcas.ac.cn/rs/?q=data
https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html
https://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html


Journal of Geophysical Research: Atmospheres

2.4.  Reference Remotely Sensed Products

A summary of remotely sensed products used for evaluation is listed in 
Table 5.

2.4.1.  Skin Temperature

Similar to the evaluation strategy described in Xue et al. (2019), the ref-
erence satellite-based surface temperature products utilized here are the 
MODIS/Terra Land Surface Temperature Daily L3 Global 1-km Grid 
(MOD11A1, version 6; Wan et  al.  (2015)) and the MODIS/Aqua Land 
Surface Temperature Daily L3 Global 1-km Grid (MYD11A1, version 6; 
Wan et al., 2015). Given the availability of both nighttime and daytime 
land surface maps generated by MOD11A1 and MYD11A1 from 2003 to 
2016, we use the simple arithmetic mean of all four measurements to 
approximate daily-averaged values. It is important to note that when day-
time MOD11A1, nighttime MOD11A1 as well as daytime MYD11A1, and 

nighttime MYD11A1 present simultaneously, we calculate the daily-averaged surface temperature value; 
otherwise, a “no-value” flag is applied.

2.4.2.  Snow Water Equivalent

The reference satellite-based snow water equivalent (SWE) product utilized here is the Copernicus Glob-
al Land Service (CGLS) SWE product (v1.0.2; https://land.copernicus.eu/global/products/swe) at a spatial 
resolution of 5 km (Pulliainen, 2006; Takala et al., 2011) available from January 1, 2006. The CGLS SWE 
retrieval algorithm combines information from satellite-based microwave radiometer and optical spectrom-
eter observations with ground based weather station snow depth measurements and produces daily North-
ern Hemispherical scale SWE estimates. The SWE product covers all land surface areas between latitudes 
35°N and 85°N with the exception of mountainous regions, and glaciers. Therefore, the CGLS SWE product 
only covers about 16.3% of the entire HMA land area.

2.5.  Evaluation Methods

All four experiments listed in Table 1 are integrated forward in time at a time step of 15 min, and the dai-
ly-averaged model output are generated. The overlapping period from February 1, 2003 to November 30, 
2016 are used for evaluation in this study. It is important to note that stations (or grid cells) with records 
less than 200 days are excluded from the evaluation. Evaluations are conducted at three different spatial 
scales. The point-scale evaluations are carried out at selected grid cells with at least one colocated ground-
based stations. That is, the performance of air temperature, wind speed, specific humidity, surface pressure, 
incident shortwave radiation, incident longwave radiation, total precipitation, surface radiation, skin tem-
perature, snow depth, and near-surface soil temperatures are evaluated at daily time scales via compari-
sons against in situ measurements taken by the closest ground-based stations. Goodness-of-fit statistics (see 
Section 2.5.1) are computed and a scoring system (see Appendix A) is designed to rank the performance of 
different sets of estimates. It is always difficult to compare 1-km scale estimates against in situ scale stations 
due to the stations' representativeness issue. Therefore, if the relative elevation difference between the 1-km 
scale grid cell and colocated station is greater than 50% (with the ground-based station being the baseline), 
we deem that the station is unrepresentative of the large-scale model estimates, and thus such stations are 
removed from the evaluation. The relatively simple threshold employed here is somewhat arbitrary, howev-
er, it can be used as a first-order criterion to eliminate underrepresentative stations in the model evaluation.

The basin-scale evaluations are conducted for modeled runoff through comparisons against ground-based 
discharge measurements. This study aggregates daily-averaged total runoff output onto monthly averages 
and then evaluates against ground-based discharge measurements taken at basin outlets. The main reason 
for comparing runoff at monthly scale, rather than at hourly and daily scales is that no river routing rou-
tines are employed in this study. For each of the model simulation listed in Table 1, the modeled basin-scale 
total runoff is computed by integrating the runoff output at each grid cell across each of the drainage basin. 
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Basin name (figure 
number)

Drainage area 
(km2) Data source

Mean 
elevation (m)

Basin #1 (Figure 2b) 654.9 DHM 1637.9

Basin #2 (Figure 2c) 4629.1 DHM 4329.1

Basin #3 (Figure 2d) 10320.6 CHARIS 3092.8

Basin #4 (Figure 2e) 29110.9 CHARIS 3534.2

Basin #5 (Figure 2f) 110350.0 GRDC 680.7

Abbreviation: CHARIS, Contribution to High Asia Runoff from Ice 
and Snow project; DHM, Department of Hydrology and Meteorology in 
Nepal; GRDC, Global Runoff Data Center.

Table 2 
Summary of Gauged Basins Shown in Figure 2

https://land.copernicus.eu/global/products/swe
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The goodness-of-fit statistics plus the Nash–Sutcliffe model efficiency coefficient (see Section  2.5.1) are 
computed to evaluate the modeled runoff performance.

The domain-scale evaluations are conducted between (1) model estimates and reference satellite-based 
products, as well as between (2) meteorological forcings before and after being downscaled. That is, the per-
formance of regional model output of skin temperature, and SWE are evaluated at daily time scales via com-
parisons against reference remotely-sensed products using the goodness-of-fit statistics. All model output 
and reference products are aggregated onto the same 0.25° grid for this set of evaluation. All SWE estimates 
in June, July, and August are excluded from evaluation due to minimized coverage of snow in summertime. 
In addition, the performance of the downscaled meteorological forcings are evaluated using the normalized 
mutual information index (Section 2.5.2), which is intended to serve as a proxy for the spatial similarity 
between the multi-year averaged forcing variable before and after being downscaled.

2.5.1.  Evaluation Statistics

Goodness-of-fit statistics used for evaluation include bias, root mean squared error (RMSE), unbiased root 
mean squared error (ubRMSE), and correlation coefficient (R). The symbol, xmodel, is used to denote esti-
mates obtained from the given model simulation. The symbol, xmeas, is used to denote in situ measurements 
(or reference satellite-based measurements) at either daily or monthly time steps (Note: monthly time step 
is only applicable for runoff assessment). The bias is computed as:


  , ,

1

1 ( ),
Nt

model j meas j
jt

Bias x x
N
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where Nt denotes the total sample size. A lower absolute value of bias is deemed better at decreasing the 
systematic errors. RMSE is computed as:
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A lower RMSE reflects decreased systematic errors and random errors. Further, ubRMSE is calculated as:
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A lower ubRMSE reflects reduced amount of random errors. In addition, R is computed as:
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where measx  is the time-averaged estimates of the measurements, and modelx  is the time-averaged estimates 
obtained from model simulations. A higher R demonstrates better correlations with the reference. Overall, 
a relatively low absolute value of bias, or low RMSE, or low ubRMSE, or high R is deemed as a higher level 
of accuracy in the model estimates.

In addition, we compute the Nash–Sutcliffe model efficiency coefficient (NSE) statistics (Nash & Sut-
cliffe, 1970) in the basin-scale runoff evaluation, which is computed as:
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NSEs are used to emphasize peak values in evaluating simulation fit, which can be a useful indicator to 
distinguish the modeling skills among different experiments for peak runoff. NSEs can range from -infinity 
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to 1.0. An NSE of 1.0 corresponds to a perfect match between model and observed runoff, whereas an NSE 
less than 0 occurs when the model simulations are not better than solely the mean of the observations.

2.5.2.  Spatial Similarity Assessments for Downscaled Products

Mutual information–without an upper bound–can be used to quantify the statistical information shared 
between two distributions (Cover & Thomas, 1991; Strehl & Ghosh, 2002), provides a sound indication of 
the shared information between two data set. On top of that, the normalized mutual information (NMI) 
could be further derived as a proxy for spatial similarity, which is the normalization of the mutual informa-
tion index to scale the results between 0 (no correlation) and 1 (perfect correlation). That is, the NMI close 
to zero indicates high dissimilarity between the two distributions, whereas the NMI close to one indicates 
high similarity.

Following Strehl and Ghosh (2002), we define the NMI between variable X and Y as follows:

   ( ; ), ,
( ) ( )

INMI
H H

X YX Y
X Y� (20)

where I(X; Y) denotes the mutual information shared between the two variables, and H(X) and H(Y) are the 
entropies of the two variables, respectively. I(X; Y) can be further written as:

  ( ; ) ( ) ( ) ( , ),I H H HX Y X Y X Y� (21)

where H(X, Y) denotes the joint entropy of two distributions.

3.  Results
3.1.  Point-Scale Evaluations

Figure 3 shows the evaluation of air temperature at both 0.25° and 0.01° against five sources of ground-
based measurements. Except for the evaluation against DHM air temperature, the GMU downscaled 0.01° 
air temperature generally outperforms the 0.25° one. The superiority of the 0.01° air temperature is mostly 
demonstrated in average bias and average RMSE improvements, but less so with respect to ubRMSE and 
R. For example, in the comparison against CEOP air temperature, the mean bias is improved by 32% from 
−4.98 K (0.25°) to −3.38 K (0.01°), and the mean RMSE is improved by 23% from 5.44 K (0.25°) to 4.17 K 
(0.01°). However, the mean ubRMSE is degraded slightly by 0.9% from 1.91 K (0.25°) to 1.93 K (0.01°), and 
the mean R (= 0.96) is the same. Figure 3 also shows the evaluation of surface pressure at both 0.25° and 
0.01° against ground-based CMA measurements. The downscaled 0.01° estimate yields a perfect weighted 
score of 4.00 (see Table 3), which means the 0.01° surface pressure is superior to the 0.25° estimate with re-
spect to all goodness-of-fit statistics in both accuracy and precision measures. These two evaluations togeth-
er signifies the benefits of detailed adjustment of the elevation difference as air temperature and pressure 
are very sensitive to the change of altitude especially across highly elevated regions.

Similarly, improvements are seen in the downscaled shortwave and longwave radiation estimates in the 
evaluation against ground-based measurements. Figure 4 shows the evaluation of incident shortwave radi-
ation, and incident longwave radiation at both 0.25° and 0.01° against CEOP measurements. In general, the 
0.01° downward longwave and shortwave radiation estimates are superior to those at 0.25° especially with 
respect to bias and RMSE. For example, in the comparison against CEOP downward shortwave radiation, 
the mean bias is improved by 30% from 12.32 W/m2 (0.25°) to 8.61 W/m2 (0.01°), and the mean RMSE is 
improved by 3% from 63.02 W/m2 (0.25°) to 61.21 W/m2 (0.01°). In the comparison against CEOP downward 
longwave radiation, the mean bias is improved by 15% from −36.87 W/m2 (0.25°) to −31.36 W/m2 (0.01°), 
and the mean RMSE is improved by 6% from 43.91 W/m2 (0.25°) to 41.23 W/m2 (0.01°). In addition, the im-
provement in the downscaled 0.01° specific humidity (relative to 0.25°) is mostly demonstrated in the mean 
bias (see Figure 4). That is, the mean bias is improved by 74% from −0.0011 kg/kg (0.25°) to −0.0003 kg/
kg (0.01°).

Figure 4 further shows the evaluation of wind speed at both 0.25° and 0.01° against three sources of ground-
based measurements. On average, the range of R is generally higher (relative to other meteorological fields) 
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possibly due to the uncertainty in wind speed measurements and estimates caused by random or turbulent 
disturbance, especially over the complex terrain. Generally, the 0.01° wind speed estimate slightly degrades 
the 0.25° result. That is, the 0.01° wind speed estimate only outperforms the 0.25° estimate in the evaluation 
against CMA ground-based measurements; the 0.25° wind speed estimate demonstrates better skills in the 
evaluation against WU or CEOP measurements. The degradations seen in the 0.01° wind speed estimates 
may be partly caused by the assumptions of the logarithmic wind profile used in the downscaling procedure 
(Rouf et al., 2019).

Table 3 summarizes the weighted scores obtained from 0.01° and 0.25° near-surface atmospheric forcings 
estimates, respectively. It is encouraging to see that the spatial downscaling scheme improves the skill in 
meteorological forcing estimates (exclude precipitation) by 9% relative to coarse-resolution results. The spa-
tial downscaling enabled results outperform the coarse-resolution meteorological forcing estimates (ex-
clude precipitation) in nine out of 12 sets of evaluation sources in terms of estimates accuracy and precision.

Figure 5 shows the evaluation of the precipitation field used in all experiments, including HMA-Coarse, 
HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS. It is not surprising to see that the bias-corrected 
CHIRPS precipitation field used in the HMA-corr-CHIRPS experiment yields a much higher positive bias 
compared to the rest of the precipitation estimates. This phenomenon is especially notable in the evaluation 
against CMA ground-based measurements in that the difference between the mean bias of precipitation es-
timates obtained from the HMA-corr-CHIRPS experiment at 0.01° is statistically different (at a significance 
level of 5%) from those obtained from all other three sets of experiments. As a result, the bias-corrected 
CHIRPS yields the lowest skill in precipitation estimate according to Table 4. Beck et al. (2020) argued that 
the disagreement between bias-corrected CHIRPS and gauge observations might be attributed to either (1) 
gauge under-catch issues or (2) scale mismatch between the model estimates and the gauge observations, 
which is reasonable. In general, the range of R is high and the mean value of R is low across all four sets 
of precipitation fields. The precipitation estimate skill varies more significantly over high elevated regions, 
whereas in flatter regions, four sets of precipitation fields demonstrate comparable skills. Comparatively, 
HMA-Coarse achieves the highest skills over relatively flat regions (i.e., with a mean elevation of less than 
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Data source
Number of stations (mean 

elevation) Variables (temporal scale)
Weighted score by 

0.25°
Weighted 

score by 0.01°

CMA 30 (2442.7 m) Air temperature (daily) 3.47 3.76

CEOP 16 (4263.5 m) Air temperature (daily) 3.49 3.94

DHM 6 (2689.7 m) Air temperature (daily) 3.41 3.04

PMD 3 (1360.7 m) Air temperature (daily) 2.83 3.55

WU 15 (393.9 m) Air temperature (daily) 3.56 3.89

CMA 30 (2442.7 m) Surface pressure (daily) 2.29 4.00

WU 14 (414.1 m) Wind speed (daily) 3.97 3.94

CMA 30 (2442.7 m) Wind speed (daily) 3.80 3.86

CEOP 18 (4264.4 m) Wind speed (daily) 3.96 3.71

CEOP 16 (4263.5 m) Incident shortwave (daily) 3.71 3.93

CEOP 7 (4684.8 m) Incident longwave (daily) 3.70 3.98

CEOP 14 (4181.2 m) Specific humidity (daily) 3.38 3.65

Total scores – – 41.57 45.25

Note. Forcing fields from ECMWF before downscaling at 0.25° and after downscaling at 0.01° are evaluated. The final 
weighted scores are calculated following the method described in Section A and higher weighted scores are bold.
Abbreviation: CMA, Chinese Meteorological Administration; CEOP, Coordinated Enhanced Observing Period project; 
DHM, Department of Hydrology and Meteorology in Nepal; PMD, Pakistan Meteorology Department; WU, Weather 
Underground.

Table 3 
Summary of Meteorological Forcings Evaluation (Except for Precipitation; See Precipitation Evaluation in Table 4) in the 
Comparisons Against Ground-Based Stations
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250 m). That is, the aggregated precipitation field used in the HMA-Coarse experiment at a spatial reso-
lution of 0.25° yields a perfect score of 4.0 in the evaluation against precipitation measurements obtained 
from one WU station at an elevation of 250.0 m. In relatively high elevations, the downscaled GMU precip-
itation at 0.01° yields the highest skill among all, followed by the CHIRPS precipitation at 0.01°.

In addition, we aggregate all sources of ground-based measurements according to measurement variables 
as a function of seasons from 2003 to 2016. As a result, the total number of ground-based stations are 14 
for specific humidity, 70 for air temperature, 30 for surface pressure, 51 for precipitation, 16 for incident 
shortwave radiation, 7 for incident longwave radiation, and 62 for wind speed. The average bias is comput-
ed in the evaluation against all stations according to measurement variables as a function of seasons (see 
Figure 6). In general, the worst performance in bias is seen during June-July-August (JJA) period in specific 
humidity, precipitation, and wind speed for both 25-km ad GMU 1-km estimates. This is likely due to the 
occurrence of intense precipitation resulting from the seasonally reversing wind system across the summer 
monsoon. It is encouraging to see that the majority of the noticeable improvements in the computed aver-
age bias are seen in terms of GMU 1-km derived specific humidity, air temperature, surface pressure, and 
incident longwave radiation relative to 25-km estimates across all seasons. The performance of the 1-km 
incident shortwave radiation is mixed while we see slight degradations during September-October-Novem-
ber (SON) and marginal improvements during the rest of the seasons relative to 25-km estimates. This mix 
behavior may be partly caused by the increase in the modeling uncertainty resulting from the introduction 
of multiple correction factors in the shortwave radiation downscaling procedure. Further, in terms of pre-
cipitation and wind speed, comparable, and sometimes degraded performance are seen in the 1-km esti-
mates most likely due to (1) erroneous ground-based measurements and/or (2) too simplistic assumptions 
used in the downscaling scheme as we discussed for Figures 4 and 5 above. Further, we attempt to find out 
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Data source
Number of stations 

(mean elevation) Variables (temporal scale)
Weighted score by 

HMA-Coarse
Weighted score by 

HMA-GMU
Weighted score by 

HMA-CHIRPS
Weighted score by 
HMA-corr-CHIRPS

CMA 30 (2442.7 m) Precipitation (daily) 3.75 3.79 3.83 2.91

CEOP 11 (4036.3 m) Precipitation (daily) 3.72 3.15 3.85 2.49

DHM 6 (2689.7 m) Precipitation (daily) 3.59 3.37 3.42 3.12

PMD 3 (1360.7 m) Precipitation (daily) 2.82 3.94 3.05 2.86

WU 1 (250.0 m) Precipitation (daily) 4.00 3.79 3.62 3.53

CEOP 8 (4578.3 m) Net shortwave (daily) 3.16 3.73 3.77 3.22

CEOP 7 (4684.8 m) Net longwave (daily) 3.69 3.74 3.74 3.83

CHARIS 3 (1937.7 m) Snow depth (daily) 1.16 4.00 2.13 0.86

CEOP 6 (4777.9 m) Snow depth (daily) 3.38 2.87 3.50 1.91

GSOD 8 (2303.3 m) Snow depth (daily) 3.01 3.61 3.71 2.46

CMA 24 (2315.6 m) Skin temp (daily) 3.50 2.87 3.32 2.69

CEOP 11 (4587.3 m) Skin temp (daily) 3.74 3.60 3.50 3.45

CTP-SMTMN 63 (4648.3 m) 0–5 cm soil temp (daily) 3.79 3.26 3.32 3.46

CEOP 1 (5038.6 m) 3 cm soil temp (daily) 2.73 3.63 3.66 3.69

CEOP 12 (4688.5 m) 4 cm soil temp (daily) 3.79 3.05 3.07 3.24

SETORS 1 (3326.0 m) 4 cm soil temp (daily) 2.84 3.99 3.98 3.82

CEOP 9 (4356.2 m) 5 cm soil temp (daily) 3.48 3.46 3.53 3.05

Total scores – – 56.15 59.85 59.00 50.59

Note. Experiments listed in Table 1 are evaluated. The final weighted scores are calculated following the method described in Section A and higher weighted 
scores are bold.
Abbreviation: CHARIS, Contribution to High Asia Runoff from Ice and Snow project; CMA, Chinese Meteorological Administration; CTP-SMTMN, Central 
Tibetan Plateau Soil Moisture and Temperature Monitoring Network; CEOP, Coordinated Enhanced Observing Period project; GSOD, Global Summary of the 
Day; SETORS, Southeastern Tibet Observation and Research Station for the Alpine Environment.

Table 4 
Summary of Precipitation and Model States Evaluation in the Comparisons Against Ground-Based Stations
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Figure 2.  (a) HMA study domain with gauged basin outlines in black. Gauged Basin #1 through Basin #5 are shown in (b) through (f) with elevation 
information and basin outlet locations. HMA, High Mountain Asia.
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the relationship between spatial downscaling accuracy and a variety of factors, such as slope, elevation, and 
land cover type. However, such a relationship is not very clear (not shown). We postulate that (1) limited 
sample size (i.e., with the maximum number of aggregated stations of 70), and (2) strong spatial heterogene-
ity are the two main reasons for not being able to see a rather clear relationship between spatial downscaling 
accuracy and factors mentioned above.

Figure  7 shows the evaluation of net shortwave radiation, and net longwave radiation generated by all 
experiments, including HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS in the compar-
ison against CEOP measurements. It is encouraging to see that all 0.01° net shortwave radiation estimates 
(obtained from HMA-GMU or HMA-CHIRPS or HMA-corr-CHIRPS) generally outperform the 0.25° es-
timate obtained from HMA-Coarse, especially in terms of the mean bias. For example, the mean bias is 
improved from 38.11 W/m2 (HMA-Coarse) to −1.21 W/m2 (HMA-GMU). Similarly, it is encouraging to see 
all 0.01° net longwave radiation estimates outperform the 0.25° estimate. The superiority of the 0.01° net 
longwave radiation is mostly demonstrated in average bias and average RMSE improvements, but less so 
with respect to ubRMSE and R. For example, the mean bias is improved by 39% from −34.80 W/m2 (HMA-
Coarse) to −21.38 W/m2 (HMA-corr-CHIRPS), and the mean RMSE is improved by 13% from 47.33 W/m2 
(HMA-Coarse) to 41.27 W/m2 (HMA-corr-CHIRPS). However, both of the mean R and mean ubRMSE are 
comparable between HMA-Coarse and HMA-corr-CHIRPS. In general, HMA-CHIRPS yields the best per-
formance in net shortwave and net longwave radiation estimates, followed by HMA-GMU.

Figure 7 further shows the evaluation of snow depth generated by all experiments in the comparison against 
three sources of ground-based stations. Due to the positive bias seen within the bias-corrected CHIRPS 
precipitation, it is not surprising to see that HMA-corr-CHIRPS yields the worst performance due to the 
relatively high estimate of the snow depth relative to other experiments. For example, the mean bias is 
degraded from −0.05 m in HMA-GMU (or −0.06 m in HMA-CHIRPS) to 0.32 m in HMA-corr-CHIRPS. 
The mean RMSE is degraded from 0.33 m in HMA-GMU (or 0.29 m in HMA-CHIRPS) to 0.56 m in HMA-
corr-CHIRPS. Further, the ubRMSE is degraded by 54% from 0.24 m (HMA-GMU) to 0.37 m (HMA-corr-
CHIPRS). The ubRMSE is degraded by 60% from 0.23 m (HMA-CHIRPS) to 0.37 m (HMA-corr-CHIPRS). 
Again, it is difficult to discern whether such bad performance seen in HMA-corr-CHIRPS is due to the er-
roneous model estimate itself or under-representative and erroneous ground-based measurements or both. 
Assuming the relatively simple elevation threshold applied as discussed in Section  2.5 could effectively 
address the underrepresentativeness issue, Part II of the assimilation study is able to alleviate part of the 
positive bias introduced in the HMA-corr-CHIRPS snow depth estimates. Based on the sum of the weighted 
scores presented in this Part I study, HMA-GMU yields the highest skill in snow depth estimates, followed 
by HMA-CHIRPS.

Figure 7 also shows the evaluation of skin temperature generated by all experiments in the comparison 
against two sources of ground-based stations. It is encouraging to see that all experiments yield relatively 
good agreement with the ground-based measurements in terms of R, with all Rs being greater than 0.9. All 
0.01° estimates tend to correct the positive bias in the 0.25° skin temperature likely arising from the positive 
bias in the net shortwave radiation. That is, in the evaluation against CMA skin temperature measurements, 
the bias decreases from 1.16 K (HMA-Coarse) to 0.03 K (HMA-GMU), and to 0.0009 K (HMA-CHIRPS), and 
to −0.17 K (HMA-corr-CHIRPS). In the evaluation against CEOP skin temperature measurements, the bias 
drops from 1.13 K (HMA-Coarse) to −1.04 K (HMA-GMU), and to −1.06 K (HMA-CHIRPS), and to −1.47 K 
(HMA-corr-CHIRPS). HMA-corr-CHIRPS seems to over-correct the 0.25° skin temperature possibly due 
to the over-corrected precipitation, which yields the worst performance among all experiments. Although 
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Data source Temporal coverage Variables (temporal scale)

MODIS February 1, 2003–November 30, 2016 Skin temperature (daily)

CGLS January 1, 2006–November 30, 2016 SWE (daily)

Abbreviation: CGLS, Copernicus Global Land Service; MODIS, Moderate Resolution Imaging Spectroradiometer; 
SWE, snow water equivalent.

Table 5 
Summary of Reference Satellite-Based Products Used for Evaluation
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Figure 3.  Box plots of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column 4) computed from 0.25° (∼25-km) and downscaled GMU 0.01° (∼1-
km) meteorological forcings in the evaluation against ground-based CMA air temperature (row 1), CEOP air temperature (row 2), DHM air temperature (row 
3), PMD air temperature (row 4), WU air temperature (row 5), and CMA surface pressure (row 6). The study domain with dots showing ground-based stations 
for each evaluation source are shown in column 5. The plus signs and red lines in the box plots are shown as outliers and medians, respectively. A close-up 
sub-figure of the DHM stations is shown in column 6. CEOP, Coordinated Enhanced Observing Period; CMA, Chinese Meteorological Administration; DHM, 
Department of Hydrology and Meteorology in Nepal; HMA, High Mountain Asia; PMD, Pakistan Meteorology Department; RMSE, root mean squared error.
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Figure 4.  Same as Figure 3, but for the evaluation against ground-based WU wind speed (row 1), CMA wind speed (row 2), CEOP wind speed (row 3), CEOP 
incident shortwave radiation (row 4), CEOP incident longwave radiation (row 5), and CEOP specific humidity (row 6). CEOP, Coordinated Enhanced Observing 
Period; CMA, Chinese Meteorological Administration.
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Figure 5.  Box plots of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column 4) computed from HMA-Coarse, HMA-GMU, HMA-CHIRPS, 
and HMA-corr-CHIRPS in the evaluation against ground-based CMA daily precipitation (row 1), CEOP daily precipitation (row 2), DHM daily precipitation 
(row 3), PMD daily precipitation (row 4), and WU daily precipitation (row 5). The study domain with dots showing ground-based stations for each evaluation 
source are shown in column 5. The plus signs and red lines in the box plots are shown as outliers and medians, respectively. The prefix of the experimental 
name of “HMA” is omitted for clarity. CHIRPS, Climate Hazards Group InfraRed Precipitation with Station data, Version 2; CMA, Chinese Meteorological 
Administration; DHM, Department of Hydrology and Meteorology in Nepal; GMU, George Mason University; HMA, High Mountain Asia; PMD, Pakistan 
Meteorology Department; RMSE, root mean squared error.
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HMA-Coarse yields relatively high magnitude of the mean bias relative to both HMA-GMU and HMA-
CHIRPS, HMA-Coarse yields the best performance among all experiments according to Table 4 mainly due 
to its superiority in the relatively low values of interquartile range (IQR; see Appendix A) achieved across 
all goodness-of-fit statistics.

Figure 8 shows the evaluation of soil temperature at different depths generated by all experiments in the 
comparison against five sets of ground-based stations. Due to the difficulty, in situ soil temperature meas-
urements as well as discrepancies in the measurement and model estimate depth in soil, it is not surprising 
to see that different experiments are superior with respect to different set of ground-based measurements. 
In the evaluation against CTP-SMTMN soil temperature measurements, HMA-Coarse outperforms all 0.01° 
estimates with respect to all goodness-of-fit statistics. Although there are 63 CTP-SMTMN stations used for 
evaluation, only 12 model grid cells at a spatial resolution of 0.25° are used due to the close proximity of the 
ground-based stations. That is, because multiple stations are colocated within one 0.25° grid cell, we evalu-
ate the same set of 0.25° model estimates against different in situ measurements colocated within the model 
grid cell. Under such circumstances, HMA-Coarse still yields the best performance partly due to relatively 
low spatial variability in soil temperature measurements. For example, for three 0.25° model grid cells, all 
with more than five colocated ground-based stations, the temporally-averaged standard deviations of the 
ground-based measurements are 1.28 K, 0.97 K, and 0.96 K. Further, in the evaluation against CEOP 3-cm 
soil temperature measurements, HMA-corr-CHIRPS yields the best skill, whereas HMA-Coarse yields the 
worst performance mainly due to the relatively high positive bias. That is, the bias of the 3-cm soil temper-
ature estimates in HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS, are 3.05 K, 0.35 K, 
0.36 K, and −0.24 K. In the evaluation against CEOP 4-cm soil temperature measurements, HMA-Coarse 
yields the best performance. HMA-Coarse is superior to all 0.01° estimates mainly in terms of significantly 
reduced bias and reduced RMSE. The degradation in the 0.01° estimates relative to 0.25° estimate might 
be caused by (1) errors in, in situ soil temperature measurements, or (2) over-correction in the downscaled 
incident shortwave radiation and net shortwave radiation although the point-scale evaluation shows better 
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Figure 6.  Average bias computed for 25-km and GMU 1-km estimates of (a) wind speed, (b) air temperature, (c) surface pressure, (d) precipitation, (e) incident 
shortwave radiation, (f) incident longwave radiation, and (g) specific humidity in the evaluation against all ground-based stations as a function of seasons. DJF, 
December, January, February; MAM, March, April, May; JJA, June, July, August; SON, September, October, November. GMU, George Mason University.
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Figure 7.  Same as Figure 5, but for the evaluation against ground-based CEOP net shortwave radiation (row 1), CEOP net longwave radiation (row 2), CHARIS 
snow depth (row 3), CEOP snow depth (row 4), GSOD snow depth (row 5), CMA skin temperature (row 6), and CEOP skin temperature (row 7). CEOP, 
Coordinated Enhanced Observing Period; CHARIS, Contribution to High Asia Runoff from Ice and Snow project; CHIRPS, Climate Hazards Group InfraRed 
Precipitation with Station data, Version 2; CMA, Chinese Meteorological Administration; GSOD, Global Summary of the Day.
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performance in 0.01° estimates (see Figure 7). It is also possible that the relatively simple linear interpola-
tion method used to apply with the modeled soil temperature estimates to match with the measurement 
depth may not be appropriate in this case because the temperature gradient may not be linear. Further, in 
the evaluation against SETORS 4-cm soil temperature measurements, HMA-GMU yields a close-to-per-
fect score with improved performance seen across all goodness-of-fit statistics in terms of the accuracy 
measure. Compared with the estimates obtained from HMA-Coarse, HMA-GMU improves the bias by 54% 
from −9.21 to −4.21 K. The RMSE is improved by 51% from 9.44 to 4.61 K, the ubRMSE is improved by 9% 
from 2.07 to 1.88 K, and the R is improved by 6% from 0.94 to 0.95. Finally, the evaluation against CEOP 
5-cm soil temperature measurements shows that HMA-CHIRPS is slightly superior to other experiments. 
HMA-CHIRPS′ better performance is largely attributed to its relatively low ranges of IQRs achieved across 
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Figure 8.  Same as Figure 5, but for the evaluation against ground-based CTP-SMTMN 0–5 cm soil temperature (row 1), CEOP 3 cm soil temperature (row 2), 
CEOP 4 cm soil temperature (row 3), SETORS 4 cm soil temperature (row 4), and CEOP 5 cm soil temperature (row 5). Note there is only one CEOP station 
measuring 3 cm soil temperature, and there is only one SETORS station. A close-up sub-figure of the CTP-SMTMN stations is shown in column 6. CEOP, 
Coordinated Enhanced Observing Period; CTP-SMTMN, Central Tibetan Plateau Soil Moisture and Temperature Monitoring Network; SETORS, Southeastern 
Tibet Observation and Research Station for the Alpine Environment.
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all goodness-of-fit statistics. To summarize, HMA-CHIRPS yields the best performance in soil temperature 
estimates, followed by HMA-GMU.

Table  4 summarizes the weighted score achieved by each of the experiment with respect to each set of 
the evaluation source. It is found that HMA-GMU yields the highest skill in precipitation and model out-
put states, followed by HMA-CHIRPS. Compared with HMA-Coarse, HMA-GMU improves the skill by 
7%. However, HMA-corr-CHIRPS yields the lowest skill, which degrades HMA-Coarse skill by 10%. These 
analyses, on one hand, further corroborate the importance of employing the hyper-resolution modeling 
versus coarse-resolution modeling strategy across the complex terrain; on the other hand, emphasize the 
importance of the accuracy of the hyper-resolution precipitation product used to drive model simulations.

3.2.  Basin-Scale Evaluations

Figure 9 shows the total runoff time series obtained from all experiments for the five gauged basins in the 
evaluation against ground-based measurements. In general, all experiments yield relatively good agreement 
with the ground-based measurements in terms of both low flow and high flow seasons, except for Basin #4. 
In Basin #4, HMA-Coarse yields the lowest R of 0.07, and HMA-corr-CHIRPS yields the highest R of 0.66. 
In addition, all experiments yield positive NSEs except for Basin #3 and Basin #4. HMA-corr-CHIRPS is the 
only experiment with a positive NSE of 0.32 for Basin #3. In Basin #4, although HMA-CHIRPS achieves the 
highest NSE of −0.62 among all experiments, a negative NSE is still not desirable. There can be several rea-
sons contributing to the relative poor performance of the modeled runoff simulations in Basin #3 and Basin 
#4. For example, in addition to the shortcoming of neglecting water travel time (residence time) within the 
basin, this study does not model human-related impacts (e.g., water engineering works) and agriculture 
related activities (e.g., irrigation) in the total runoff simulation. Further, the discharge regime is strongly 
dominated by snow and glacier melt within these two basins during summer time (see Section 2.3.5), and 
therefore, it is possible that modeled snow melt discharge enter the stream network too soon due to too early 
onset of snow melt. Therefore, in Part II of the study, we will determine if a simple snow cover assimilation 
scheme can help with modifying the snow melt timing and further improving the runoff modeling perfor-
mance in snow and glacier dominated basins.

Figure 10 shows all statistics computed for evaluating the performance of HMA-Coarse, HMA-GMU, HMA-
CHIRPS, and HMA-corr-CHIRPS in comparisons against ground-based measurements. In terms of the NSE, 
model runs for Basin #2, Basin #3, and Basin #4 yield relatively low values (all below 0.6) as compared with 
Basin #1 and Basin #5. According to Table 2, Basins #2 through #4 have mean elevations of greater than 
3,000 m, whereas Basin #1 has a mean elevation of 1,638 m and Basin #5 has a mean elevation of 681 m. 
Therefore, it is likely because precipitation estimates used to force models vary more significantly over high 
elevated regions relative to flatter regions, which is also seen in the point-scale precipitation evaluation. In 
addition, in flatter regions (i.e., Basin #5), all experiments yield relatively high Rs, which are greater than 
0.96. Comparatively, HMA-Coarse yields the best performance across all evaluated statistics, and HMA-
corr-CHIRPS yields the worst performance. In relatively high elevation regions (i.e., Basin #1 through Basin 
#4), 0.01° runoff estimates obtained from HMA-GMU, HMA-CHIRPS, or HMA-corr-CHIRPS are general-
ly superior to 0.25° runoff estimates obtained from HMA-Coarse. In Basin #1, HMA-corr-CHIRPS yields 
the lowest bias (= 2.4 m3/s), lowest RMSE (=14.5 m3/s), and highest NSE (= 0.85), whereas HMA-Coarse 
yields the worst performance across all statistics. In Basin #2, HMA-corr-CHIRPS seems to over-correct the 
total runoff especially in years 2007 through 2012. As a result, HMA-GMU yields the best performance in 
total runoff in terms of the lowest RMSE (= 140.2 m3/s), lowest ubRMSE (= 121.5 m3/s), and highest NSE 
(= 0.53), whereas HMA-Coarse yields the worst performance across all statistics. In Basin #3, HMA-corr-
CHIRPS significantly outperforms other experiments, with a much lower bias (= −12.8 m3/s), lower RMSE 
(= 352.2 m3/s), higher R (= 0.84), and higher NSE (= 0.32). The good performance in HMA-corr-CHIPRS 
derived runoff might be attributed to the relatively high correction factors as applied to the region (see 
Figure 1b). In Basin #4, HMA-CHIRPS yields the best performance in terms of the lowest absolute value of 
bias (= −81.75 m3/s), lowest RMSE (= 194.9 m3/s), lowest ubRMSE (=177.7 m3/s), and less negative value of 
NSE (= −0.62). The over-correction issue in HMA-corr-CHIRPS runoff can also be seen from 2005 to 2012.

Since the bias-corrected CHIRPS precipitation field is obtained through calibrating against ground-based 
runoff measurements, it is probable that ground-based runoff measurements used in the evaluation here 
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are also used to calibrate the bias-corrected precipitation product. This argument might be also used to 
explain why HMA-corr-CHIRPS can significantly outperform all other experiments in Basin #1 and Basin 
#3 especially in bias (i.e., systematic errors). We do not see HMA-corr-CHIRPS ranks as the best product in 
terms of ubRMSE (i.e., random errors) because Beck et al. (2020) and this study share different calibration/
evaluation metrics. Further, the over-correction issue in the bias-corrected CHIRPS field should not be ne-
glected in Basin #2 and Basin #4. In addition to the errors in the ground-based runoff measurements, the 
over-correction issue seen in HMA-corr-CHIRPS may be attributed to the fixed long-term correction factors 
applied without considering the inter-annual variability. Therefore, in Part II of the study, we will determine 
if a snow cover assimilation scheme can help HMA-corr-CHIRPS to mitigate much of the positive bias pos-
sibly caused by overly-corrected precipitation.
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Figure 9.  Monthly runoff estimates obtained from HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS 
for the five gauged basins in the evaluation against ground-based measurements. CHIRPS, Climate Hazards Group 
InfraRed Precipitation with Station data, Version 2; GMU, George Mason University; HMA, High Mountain Asia.
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3.3.  Domain-Scale Evaluations

3.3.1.  Evaluation of Meteorological Forcings

Figure 11 shows the multi-year averaged daily air temperature, and incident shortwave radiation before 
and after being downscaled as two sets of examples from 2003 to 2016. In general, 0.01° downscaled forc-
ings preserve the spatially and temporally averaged values obtained from original 0.25° (or 0.05°) estimates 
relatively well (not all shown in Figure 11). The relative differences between the multi-year mean of the 
meteorological forcings before and after being downscaled are −0.02% in air temperature, 6.76% in spe-
cific humidity, 0.13% in surface pressure, −0.43% in wind speed, −0.74% in incident shortwave radiation, 
−0.24% in incident longwave radiation, and −0.11% in total precipitation. Based on Table 6, the computed 
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Figure 10.  Statistics of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column 4), and NSE (column 5) computed from HMA-Coarse, HMA-GMU, 
HMA-CHIRPS, and HMA-corr-CHIRPS in the evaluation against five sets of ground-based monthly runoff measurements. Each row represents statistics for 
each basin. In addition, experiments with the best goodness-of-fit statistics for each basin are marked with gray bars or noted with numbers if their bars are too 
tiny to visualize. CHIRPS, Climate Hazards Group InfraRed Precipitation with Station data, Version 2; GMU, George Mason University; HMA, High Mountain 
Asia; NSE, Nash–Sutcliffe model efficiency; RMSE, root mean squared error.
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NMIs between before and after downscaled meteorological forcing field 
range from 0.82 to 0.96, which indicate relatively high similarities shared 
between the two set of forcing fields. The lowest NMI of 0.82 is obtained 
from the incident shortwave radiation field evaluation, which is likely 
due to the introduction of multiple correction factors (i.e., clearness in-
dex, local illumination, cast-shadowing, sky obstruction, and topographic 
configuration; Rouf et al., 2019) in the shortwave radiation downscaling 
procedure.

Figure 12 shows the spatial distribution of the annual mean total pre-
cipitation obtained from HMA-Coarse, HMA-GMU, HMA-CHIRPS, and 
HMA-corr-CHIRPS. The spatially-averaged annual mean precipitation 
difference between HMA-Coarse and HMA-CHIRPS is −5.89  mm/yr, 
which is largely attributed to the spatial aggregation procedure in the 
precipitation field used in the 0.25° estimate. Although the spatially-av-
eraged annual mean precipitation difference between HMA-GMU and 
HMA-CHIRPS is negligible (= −0.74 mm/yr), precipitation magnitudes 
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Figure 11.  Examples of multi-year (2003–2016) average of daily air temperature, and shortwave radiation before and after being downscaled across HMA. m in 
the title denotes the domain-averaged value. HMA, High Mountain Asia.

Forcing field NMI (−)

Air temperature 0.89

Specific humidity 0.95

Surface pressure 0.89

Wind speed 0.96

Downward surface shortwave radiation 0.82

Downward surface longwave radiation 0.93

Precipitation 0.93

Table 6 
The Normalized Mutual Information (NMI) Index Computed Between 25-
km and 1-km Multi-Year (2003–2016) Average of Daily Forcing Estimates 
(Except Precipitation), as Well as Between 5-km and 1-km Multi-Year 
Average of Daily Precipitation Estimates
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still vary grid-by-grid between these two experiments. HMA-corr-CHIRPS yields the highest precipitation 
magnitude in terms of the spatially-averaged mean. For example, compared with the precipitation field used 
in HMA-CHIRPS, the bias-corrected CHIRPS increases the spatially-averaged annual mean precipitation by 
23%, with the majority of the notable increases in the mountainous regions. Despite of the discrepancies in 
magnitudes among all experiments, it is encouraging to see that all four total precipitation field reveal sim-
ilar patterns across HMA. For example, precipitation intensity exhibits a strong north-south gradient due 
to orographic effects. Specifically, along the south slope of the Himalayas, annual precipitation is relatively 
high due to the prevalence of the Indian monsoon. While the height and extent of the Himalayas impose 
a significant barrier to atmospheric circulation patterns and the northward push of water vapor is greatly 
limited by the Himalayan mountain chain, regions north of the orographic barriers (e.g., Tibetan Plateau) 
receive little precipitation throughout the year (Bookhagen & Burbank, 2010). Within the Tibetan Plateau 
region, there exists a gradual decrease of the annual precipitation from Southeastern Tibetan Plateau to 
Northwestern Tibetan Plateau. The relatively dry Northwestern Tibetan Plateau is dominated by the west-
erlies for almost the entire year, while the Southeastern Tibetan Plateau precipitation is more influenced by 
the summer monsoons as the center moves more toward the southeast (You et al., 2015; Zhang et al., 2019). 
Overall, generally wetter regions in Bangladesh, eastern India, and the central and eastern Ganges plains 
are observed in all three products assessed in this study, which is consistent with the findings from Bookha-
gen and Burbank (2010) and Yoon et al. (2019) using other different precipitation products.

3.3.2.  Evaluation of Model Estimates Against Satellite-Based Products

Figure  13 shows the goodness-of-fit statistics computed for HMA-Coarse, HMA-GMU, HMA-CHIRPS, 
and HMA-corr-CHIRPS in the evaluation against the CGLS SWE product from 2006 to 2016 across part of 
HMA above latitude 35°. It is expected that the worst agreement (i.e., relatively high magnitudes of bias, 
RMSE, ubRMSE, and low R) of all four experiments are colocated with relatively high elevation regions 
inside the Tibetan Plateau relative to the Taklamakan dessert due to the difference in different climate re-
gions. Although HMA-corr-CHIRPS yields the best performance in terms of the spatially-averaged bias (= 
−1.23 mm) compared with the rest of the experiments due to the higher total precipitation magnitude, it 
still yields the worst performance in terms of RMSE (=9.87 mm) and ubRMSE (=9.41 mm). Among HMA-
Coarse, HMA-GMU, and HMA-CHIRPS, the two 0.01° SWE estimates obtained from HMA-GMU, and 
HMA-CHIRPS generally outperform the 0.25° SWE estimates obtained from HMA-Coarse across all good-
ness-of-fit statistics. In terms of the spatially-averaged bias, both HMA-GMU and HMA-CHIRPS yield slight 
improvements relative to HMA-Coarse. The spatially-averaged bias is improved by 13% from −2.29 mm 
(HMA-Coarse) to −1.99 mm (HMA-GMU), and it is improved by 12% from −2.29 mm (HMA-Coarse) to 
−2.02 mm (HMA-CHIRPS). Similarly, the spatially-averaged R derived by HMA-GMU and HMA-CHIRPS 
are improved slightly relative to HMA-Coarse. In addition, both HMA-GMU and HMA-CHIRPS yield slight 
improvements in RMSE and ubRMSE relative to HMA-Coarse. Overall, HMA-GMU yields the best perfor-
mance in SWE estimates in the evaluation against the CGLS SWE product, followed by HMA-CHIRPS. This 
finding also corroborates the results in the ground-based snow depth evaluation that HMA-GMU achieves 
the highest score in the snow estimates.
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Figure 12.  Annual mean total precipitation computed from (a) HMA-Coarse, (b) HMA-GMU, (c) HMA-CHIRPS, and (d) HMA-corr-CHIRPS. m in the title 
denotes the domain-averaged value. CHIRPS, Climate Hazards Group InfraRed Precipitation with Station data, Version 2; GMU, George Mason University; 
HMA, High Mountain Asia.
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Figure  14 shows the goodness-of-fit statistics computed for HMA-Coarse, HMA-GMU, HMA-CHIRPS, 
and HMA-corr-CHIRPS in the evaluation against the MODIS skin temperature product from 2003 to 2016 
across HMA. The worst agreement (i.e., relatively high magnitudes of bias, RMSE, ubRMSE, and low R) 
of all four experiments are along the Himalayas. The spatially-averaged bias is negative for all four experi-
ments, however, with noticeable positive biases present in Pakistan and Northern India along Ganges and 
Indus rivers, covered with cropland. As discussed in Xue et  al.  (2019), such positive biases are possibly 
attributed to the lack of irrigation related activities in the Noah-MP model, and therefore yield an over-
estimation of the surface temperature in this region across all experiments. Comparatively, HMA-Coarse 
yields the most agreement (i.e., relatively low magnitudes of bias, RMSE, and ubRMSE) with the MODIS 
skin temperature product among all experiments, whereas HMA-corr-CHIRPS yields the worst agreement, 
which is consistent with the finding obtained from ground-based skin temperature evaluation. Compared 
with HMA-Coarse, HMA-GMU and HMA-CHIRPS decrease the spatially and temporally averaged skin 
temperature by 1.10 K (from 285.30 to 284.20 K) and 1.13 K (from 285.30 to 284.17 K), respectively (not 
shown). This reduction in the skin temperature magnitude is mainly caused by the reduction in the incident 
shortwave radiation before and after being downscaled (see Figure 11). Since HMA-Coarse already yields a 
negative bias in the skin temperature in the evaluation, the reduction in the HMA-GMU or HMA-CHIRPS 
derived skin temperature magnitude further exacerbates the negative bias, which leads to significant deg-
radations in terms of both bias and RMSE. HMA-corr-CHIRPS skin temperature yields more negative bias 
than HMA-GMU and HMA-CHIRPS because more precipitation is associated with more chances of evapo-
transpiration, which will lead to further reduction in the skin temperature estimates. In Part II of the study, 
we will determine if a freeze/thaw assimilation scheme can help improving the performance of the 0.01° 
skin temperature estimates.
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Figure 13.  Goodness-of-fit statistics computed for HMA-Coarse (column 1), HMA-GMU (column 2), HMA-CHIRPS (column 3), and HMA-corr-CHIRPS 
(column 4) at a spatial resolution of 0.25° in the evaluation against the CGLS SWE product. Note the domain is truncated because the CGLS SWE product only 
covers area above latitude 35°N. Each row represents one set of goodness-of-fit statistics. m in the title denotes the domain-averaged value. CGLS, Copernicus 
Global Land Service; CHIRPS, Climate Hazards Group InfraRed Precipitation with Station data, Version 2; GMU, George Mason University; HMA, High 
Mountain Asia; SWE, snow water equivalent.
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4.  Conclusions and Discussions
This first article of a two-part series focuses on demonstrating the skill of a hyper-resolution, offline terres-
trial modeling system used for High Mountain Asia (HMA) region. To this end, this study systematically 
evaluates four sets of model simulations obtained from different spatial resolutions including 0.01° (∼1-km) 
and 0.25° (∼25-km) at point-scale, basin-scale, and domain-scale. The advantages of employing a hyper-res-
olution modeling unit (vs. the coarse-resolution modeling unit) within the Noah-MP model are demon-
strated in this study, especially in terms of its ability in reducing systematic errors in model estimates. That 
is, over relatively complex terrain, the spatial downscaling scheme along with hyper-resolution modeling 
demonstrates superiority in estimating air temperature, surface pressure, incident shortwave radiation, in-
cident longwave radiation, specific humidity, precipitation, surface net shortwave radiation, surface net 
longwave radiation, snow depth, and total runoff based on point-scale and basin-scale evaluations. In terms 
of wind speed, skin temperature, and near-surface soil temperature, mixed performance–sometimes im-
provements and sometimes degradations–are seen in 0.01° estimates relative to 0.25° estimates. The exact 
reason of the mixed performance seen in 0.01° estimates remains unclear, but may be partly attributed to 
measurement errors arising from scale mismatch or measurement height discrepancies.
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Figure 14.  Goodness-of-fit statistics computed for HMA-Coarse (column 1), HMA-GMU (column 2), HMA-CHIRPS 
(column 3), and HMA-corr-CHIRPS (column 4) at a spatial resolution of 0.25° in the evaluation against the MODIS 
skin temperature product. Each row represents one set of goodness-of-fit statistics. m in the title denotes the domain-
averaged value. CHIRPS, Climate Hazards Group InfraRed Precipitation with Station data, Version 2; GMU, George 
Mason University; HMA, High Mountain Asia; MODIS, Moderate Resolution Imaging Spectroradiometer.
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In the domain-scale evaluations against satellite-based products, HMA-GMU yields the largest agreement 
with the CGLS SWE product, and HMA-Coarse yields the largest agreement with the MODIS skin temper-
ature product. We are aware that skill metrics computed during these comparisons are impacted by errors 
in the reference products. For example, the CGLS SWE product may yield higher uncertainty in estimating 
relatively deep snow especially over the forested regions. The accuracy of the MODIS skin temperature 
product is largely impacted by atmospheric attenuation effect, surface emissivity variability, as well as the 
procedure to derive the daily-averaged value. In this regard, systematic errors metrics such as bias and 
RMSE, may be secondary or tertiary as compared with the random errors measures such as ubRMSE. In 
Part II of this study, we will present the effects of the joint assimilation of satellite-based snow cover and 
freeze/thaw observations into the system. We will present to what extent the assimilation procedure will 
improve or degrade the performance of the 0.01° estimate without assimilation, especially for the random 
error measure metrics, such as ubRMSE. In addition, Part II will present that the over-correction issues seen 
in HMA-corr-CHIRPS could be reduced by the assimilation procedure.

Among all meteorological forcings used to drive land surface model simulations, precipitation is undoubt-
edly one of the most important fields. Through evaluating four sets of model simulations forced by different 
precipitation products, it is seen that the 0.01° estimate forced by an inaccurate precipitation representa-
tion would lead to modest degradations in model estimates relative to the 0.25° estimate. Among all 0.01° 
estimates, in general, HMA-GMU and HMA-CHIRPS yield relatively high skills in model estimates. Key 
conclusions drawn from this study are summarized below:

�(1)	� In the evaluation against ground-based measurements of air temperature, surface pressure, wind speed, 
incident shortwave radiation, incident longwave radiation, and specific humidity, it is found that the 
hyper-resolution modeling improves the skill in meteorological forcing estimates (exclude precipita-
tion) by 9% relative to coarse-resolution estimates using the sum of the weighted scores as the criteria 
(see Table 3). The hyper-resolution modeling outperforms the coarse-resolution meteorological forcing 
estimates (exclude precipitation) in 9 out of 12 sets of evaluation sources in terms of estimates accuracy 
and precision. In terms of precipitation, the downscaled GMU precipitation yields the highest skill 
across relatively high elevated regions, which improves the skill by 3% relative to the 0.25° aggregated 
precipitation across the complex terrain

�(2)	� In the evaluation against ground-based net shortwave radiation measurements, all 0.01° estimates gen-
erally outperform the 0.25° estimate obtained from HMA-Coarse, especially in terms of bias and RMSE. 
Compared with HMA-Coarse performance in net radiation estimates, HMA-CHIRPS improves the skill 
by 10%

�(3)	� In the evaluation against ground-based snow depth measurements, HMA-GMU yields the highest skill 
in snow depth estimates, followed by HMA-CHIRPS. Compared with HMA-Coarse performance in 
snow depth estimates, HMA-GMU improves the skill significantly by 39%

�(4)	� In the evaluation against ground-based skin temperature measurements, although HMA-Coarse yields 
relatively high magnitude of the mean bias relative to both HMA-GMU and HMA-CHIRPS, HMA-
Coarse yields the best performance among all experiments mainly due to its superiority in the relative-
ly low ranges of IQRs achieved across all goodness-of-fit statistics. Overall, HMA-CHIRPS degrades 
HMA-Coarse skill in skin temperature estimates slightly by 6%

�(5)	� In the evaluation against ground-based near-surface soil temperature measurements, different exper-
iments demonstrate their superiority with respect to different set of ground-based measurements. In 
general, compared with HMA-Coarse performance in soil temperature estimates, HMA-CHIRPS im-
proves the skill slightly by 6%

�(6)	� In the evaluation against ground-based total runoff measurements obtained from five gauged basins, 
HMA-Coarse yields the best performance across all evaluated statistics in relatively flat regions. In 
relatively high elevated regions, 0.01° runoff estimates obtained from HMA-GMU, HMA-CHIRPS, and 
HMA-corr-CHIRPS are generally superior to 0.25° runoff estimates obtained from HMA-Coarse

�(7)	� 0.01° downscaled forcings preserve the spatially and temporally averaged values obtained from original 
0.25° (or 0.05°) estimates relatively well with relatively high spatial similarity

�(8)	� In the evaluation against the CGLS SWE product, HMA-GMU yields the most agreement, followed by 
HMA-CHIRPS

�(9)	� In the evaluation against the MODIS skin temperature product, HMA-Coarse yields the most agreement
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Appendix A:  Scoring System for Point-Scale Evaluations
Many evaluation data sources provide more than one station to compare against (see Tables 3 and 4). There-
fore, the mean and the range (or spread) of the goodness-of-fit statistics (including bias, RMSE, ubRMSE, 
and R) are computed as measures for estimates accuracy and precision, respectively. The range of each set 
of goodness-of-fit statistics is calculated as the difference between the third quartile and the first quartile 
(a.k.a., interquartile range (IQR)). The lower the IQR is, the lower the spread is, and the higher the precision 
is achieved by the corresponding experiment. However, if the number of stations used for evaluation is less 
than three, the IQRs of goodness-of-fit statistics are not calculated, and only the means of them are calcu-
lated. As a second step, for each set of the goodness-of-fit statistics, we normalize the value (either mean or 
IQR of the goodness-of-fit statistics) with respect to the best statistics obtained across all experiments. Then, 
for each set of the model estimate, we sum up the normalized scores across all four goodness-of-fit statistics 
for its accuracy (mean) and precision (IQR) measures, respectively. Third, we give equal weight (50% vs. 
50%) to the accuracy and the precision measures to derive the weighted score. Note that in the absence of 
the precision measure when the number of stations used for evaluation being less than three, we give all 
weight (100%) to the accuracy measure. Finally, the experiment with the highest weighted score is deemed 
as the best model.

Using the CEOP air temperature evaluation as an example, through averaging the bias computed via com-
paring against 16 ground-based stations, the mean bias of the air temperature at 0.25° (0.01°) is −4.98 K 
(−3.38 K). Thus, the normalized score of the 0.25° (0.01°) air temperature estimates is 0.68 (1.00) in terms 
of mean bias. Similarly, the IQR of bias of the air temperature at 0.25° (0.01°) is 4.04 K (3.46 K). Thus, the 
normalized score of 0.25° (0.01°) air temperature estimates is 0.85 (1.00) in terms of the bias IQR. Similar 
steps were also taken for other goodness-of-fit statistics. Then, the sum of the normalized scores in the mean 
of the goodness-of-fit statistics for air temperature at 0.25° (0.01°) is 3.44 (3.99). The sum of the normalized 
scores in the IQRs of the goodness-of-fit statistics for air temperature at 0.25° (0.01°) is 3.54 (3.89). Finally 
we give equal weight (50% vs. 50%) to the accuracy and the precision measures. As a result, in the evaluation 
against CEOP air temperature measurements, the weighted score for air temperature at 0.25° (0.01°) is 3.49 
(3.94). Since the downscaled air temperature yields a higher weighted score than the original air tempera-
ture, we deem that the downscaled air temperature performs better than the air temperature at the coarse 
spatial resolution.

Data Availability Statement
The CHIPRS precipitation data are available from ftp://ftp.chg.ucsb.edu/pub/org/chg/products/. The bias 
correction factors as applied to CHIRPS precipitation product is obtained from http://www.gloh2o.org/
pbcor/. The CHARIS data were obtained from http://himatmap.apps.nsidc.org/hma_insitu.html. The WU 
data were obtained from https://www.wunderground.com. The GRDC data were obtained from the Glob-
al Runoff Data Center, 56,068 Koblenz, Germany (https://www.bafg.de/GRDC/EN/01_{\mathit{GRDC/
grdc_node.html}}). The GSOD data were obtained from https://data.noaa.gov/dataset/dataset/global-sur-
face-summary-of-the-day-gsod. The CMA data were obtained from https://data.cma.cn/en/?r=data/de-
tail&dataCode=SURF_CLI_CHN_MUL_DAY_CES_V3.0&keywords=daily. The CEOP data were obtained 
from https://www.eol.ucar.edu/projects/ceop/dm/insitu/sites/ceop_ap/. The CTP-SMTMN data were ob-
tained from http://dam.itpcas.ac.cn/rs/?q=data, which was provided by Data Assimilation and Modeling 
Center for Tibetan Multi-spheres, Institute of Tibetan Plateau Research, Chinese Academy of Sciences. The 
SETORS data were obtained from http://en.tpedatabase.cn/portal/MetaDataInfo.jsp?MetaDataId=197. The 
SRTM elevation data may be downloaded from http://srtm.csi.cgiar.org/srtmdata/. All MODIS products 
were obtained from https://earthdata.nasa.gov/. The MEaSUREs landscape freeze/thaw product was ob-
tained from https://nsidc.org/data/nsidc-0728. The CGLS SWE product (v1.0.2) was obtained from https://
land.copernicus.eu/global/products/swe. LIS models were run on ARGO, a research computing cluster 
provided by the Office of Research Computing at George Mason University, VA (http://orc.gmu.edu). The 
downscaling framework is implemented by functions/codes available via Mei's GitHub at https://github.
com/YiwenMei/AtmDS and https://github.com/YiwenMei/PrecipDS. Data set used/generated in this study 
will be uploaded at NASA Distributed Active Archive Center (DAAC) at National Snow and Ice Data Center. 
The data uploading process may be delayed due to the maximum file size limitation since hyper-resolution 
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HMA products require extensive amount of storage. In any case, all data set are available from the corre-
sponding author, Y. Xue, upon reasonable request.
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