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Abstract24

This first paper of the two-part series focuses on demonstrating the accuracy of a hyper-25

resolution, offline terrestrial modeling system used for the High Mountain Asia (HMA)26

region. To this end, this study systematically evaluates four sets of model simulations27

at point scale, basin scale, and domain scale obtained from different spatial resolutions28

including 0.01◦ (∼ 1-km) and 0.25◦ (∼ 25-km). The assessment is conducted via com-29

parisons against ground-based observations and satellite-derived reference products. The30

key variables of interest include surface net shortwave radiation, surface net longwave31

radiation, skin temperature, near-surface soil temperature, snow depth, snow water equiv-32

alent, and total runoff. In the evaluation against ground-based measurements, the su-33

periority of the 0.01◦ estimates are mostly demonstrated across relatively complex ter-34

rain. Specifically, hyper-resolution modeling improves the skill in meteorological forc-35

ing estimates (except precipitation) by 9% relative to coarse-resolution estimates. The36

model forced by downscaled forcings in its entirety yields the highest skill in model out-37

put states as well as precipitation, which improves the skill obtained by coarse-resolution38

estimates by 7%. These findings, on one hand, corroborate the importance of employ-39

ing the hyper-resolution versus coarse-resolution modeling in areas characterized by com-40

plex terrain. On the other hand, by evaluating four sets of model simulations forced with41

different precipitation products, this study emphasizes the importance of accurate hyper-42

resolution precipitation products to drive model simulations.43

1 Introduction44

High Mountain Asia (HMA) forms the headwaters of river systems, e.g., Yangtze,45

Yellow, Mekong, Brahmaputra, Indus, and Ganges Rivers, that provide fresh water sup-46

ply for more than a billion people in the region for the purposes of downstream irriga-47

tion, hydropower generation, and general consumption (Armstrong et al., 2019). Mete-48

orological and hydrological conditions in such mountainous environment are poorly mon-49

itored due to terrain inaccessibility and financial insufficiency (Ghatak et al., 2018). To50

overcome the limitations imposed by inadequate ground-based stations, previous stud-51

ies generally utilized global land surface models or regional hydrological models to rep-52

resent the hydro-meteorological processes involved across the HMA region. For exam-53

ple, Immerzeel et al. (2009) evaluated runoff simulations in a Himalayan river basin us-54

ing the Snowmelt Runoff Model forced by remotely sensed precipitation at a spatial res-55
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olution of 0.25◦. Yoon et al. (2019) provided a thorough evaluation of the terrestrial wa-56

ter budget estimation (i.e., precipitation, evapotranspiration, runoff, and terrestrial wa-57

ter storage) over HMA using a suite of uncoupled global land surface models at a spa-58

tial resolution of 0.25◦. Further, the study conducted by Ghatak et al. (2018) evaluated59

the Noah land surface model-derived runoff simulations in a HMA region at a spatial res-60

olution of 5-km. To our current knowledge, there exists no published study performing61

land surface model simulations finer than 5-km for the entire HMA for a relatively long62

period (e.g., more than 10 years).63

As pointed out by Singh et al. (2015), increasing computational efficiency and the64

need for improved accuracy are driving the development of “hyper-resolution” land sur-65

face models that can be implemented at regional scales, with spatial resolutions of 1-km66

or even finer. In addition, previous studies emphasized that high spatial heterogeneity67

over complex terrain requires land surface model simulations to be implemented at rel-68

atively high spatial resolutions (e.g., Zhao and Li (2015)). In addition to the tremendous69

amount of computational resources, one of the primary challenges of land surface mod-70

eling at hyper-resolution is the lack of forcing datasets at such resolution (Kollet et al.,71

2010; Singh et al., 2015). That is, we simply do not have reliable regional-scale 1-km in-72

situ or satellite observational capabilities to derive all meteorological forcing variables73

required as input into land surface models. Thanks to the recent developments in phys-74

ical and statistical downscaling approaches (e.g., Rouf et al. (2019); Mei et al. (2020)),75

we can derive hyper-resolution forcing fields from coarser-resolution data based on an-76

cillary information (e.g., land cover, surface roughness, and topography). Using Yoon77

et al. (2019) as a benchmark, in this study, we attempt to address the following science78

question: “to what extent does the development of hyper-resolution forcing input im-79

prove or worsen land surface modeling, compared to ground-based observations or satellite-80

derived reference products”? To this end, this study systematically evaluates the 0.01◦81

(∼ 1-km) and 0.25◦ (∼ 25-km) model simulations at point-scale, basin-scale, and domain-82

scale. The key variables of interest include various downscaled meteorological forcing in-83

put, as well as model output of surface net shortwave radiation, surface net longwave ra-84

diation, skin temperature, near-surface soil temperature, snow depth, snow water equiv-85

alent, and total runoff.86

The ultimate goal of this research is to evaluate the newly-developed, hyper-resolution87

High Mountain Asia - Land Data Assimilation System (version 1) from 2003 to 2016.88
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The High Mountain Asia - Land Data Assimilation System is intended to provide spa-89

tially and temporally continuous land surface estimates, which are believed essential to90

capture the spatio-temporal evolution of hydrometeorological conditions and their as-91

sociated processes across HMA. Part I, presented in this manuscript, focuses on demon-92

strating the accuracy of a hyper-resolution (at ∼ 1-km spatial resolution), offline (un-93

coupled to the atmosphere) terrestrial modeling system (without assimilation) used for94

complex terrain regions.95

2 Data and Methods96

2.1 Study domain and models97

The study domain is the HMA region bounded between 20◦N and 41◦N and 66◦E98

and 101◦E. Meteorological fields from the European Centre for Medium-Range Weather99

Forecasts (ECMWF; Molteni et al. (1996)) and Climate Hazards Group InfraRed Pre-100

cipitation with Station data, Version 2 (CHIRPS; Funk et al. (2015)) (and two precip-101

itation variants derived from CHIRPS; see Table 1) are used in this study. The ECMWF102

product is originally on a TL511 triangular truncation, linear reduced gaussian grid (0.25◦)103

for four synoptic hours: 00, 06, 12, and 18 UTC. The ECMWF forcing fields employed104

in this study include air temperature, specific humidity, downward longwave flux, down-105

ward shortwave flux, wind speed, and surface pressure. The CHIRPS precipitation prod-106

uct has a native spatial resolution of 0.05◦ at a daily time scale. All meteorological in-107

puts are temporally disaggregated onto the model time step of 15-min following Yoon108

et al. (2019) within the NASA Land Information System (LIS) 7.2 version (Kumar et109

al., 2006). Further, Yoon et al. (2019) demonstrated that the joint use of ECMWF and110

CHIRPS forcings provides the best model estimates at 0.25◦ spatial resolution for daily111

output of water balance components.112

Four sets of model simulations are evaluated in this study, which are summarized113

in Table 1. 1) In “HMA-Coarse” (also denoted as “HMA-CS” in figures), the meteoro-114

logical inputs (i.e., air temperature, humidity, surface pressure, wind, downward short-115

wave, and longwave radiation) are adjusted for the elevation differences through lapse-116

rate and slope-aspect correction methods (Kumar et al., 2013). Inputs obtained from ECMWF117

and CHIRPS are spatially interpolated and aggregated onto the same 0.25◦ grid for gen-118

erating model output. 2) In “HMA-GMU”, all meteorological inputs are downscaled us-119
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ing physically-based and statistically-based algorithms onto the 0.01◦ grid for model es-120

timates. Section 2.1.1 summarizes key steps used in the downscaling process. 3) In “HMA-121

CHIRPS”, except for the precipitation field, all other meteorological forcings remain the122

same as “HMA-GMU”. The precipitation field is replaced with original CHIRPS, which123

is then spatially interpolated onto the same 0.01◦ grid for model estimates using the sim-124

plistic conservative interpolation scheme. 4) In “HMA-corr-CHIRPS”, except for pre-125

cipitation, all other meteorological forcings remain the same as “HMA-GMU” and “HMA-126

CHIRPS”. The precipitation field is replaced with the bias-corrected CHIRPS (see Sec-127

tion 2.1.2 for details), which is then spatially interpolated onto the same 0.01◦ grid for128

model estimates using the simplistic conservative interpolation scheme.129

The land surface model used in this study is the baseline Noah-MP (Niu et al., 2011;130

Yang et al., 2011). Noah-MP is enhanced from the original Noah land surface model through131

the addition of improved model physics (i.e., dynamic vegetation phenology, a carbon132

budget and carbon-based photosynthesis, an explicit vegetation canopy layer, a multi-133

layer snowpack representation and a groundwater module) and multi-parameterization134

options. We used Noah-MP version 3.6 within the NASA LIS. The Noah-MP model con-135

figuration options are the same as Xue et al. (2019), and Yoon et al. (2019), which were136

shown to provide relatively good agreement with reference datasets in simulating hydro-137

logical conditions over HMA. To be more specific, we adopt a three-layer snow scheme138

within Noah-MP. The skin temperature (defined as the average surface temperature in139

this study, diagnosed from the Noah-MP model) is calculated as the areal-weighted av-140

erage of the canopy temperature and the bare ground temperature, where the canopy141

temperature and the bare ground temperature are solved through Newton-Raphson it-142

erations in order to balance the surface energy budgets. In terms of soil, a four-layer soil143

column configuration is used, and the thickness of each soil layer (from top to bottom)144

are 10 cm, 30 cm, 60 cm, and 100 cm, respectively. More details regarding model physics145

can be found in Niu et al. (2011); Xue et al. (2019). As opposed to using the Noah-MP146

output of surface radiative temperature (e.g., Yang et al. (2011)), we use the average sur-147

face temperature to represent modeled skin temperature. Slight but no significant dif-148

ferences in the computed statistical metrics are found when using the modeled surface149

radiative temperature versus the average surface temperature during the evaluation against150

either ground-based measurements or satellite-based products (results not shown). At151

this stage, it is difficult to tell which set of model output is more representative or ac-152
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curate and thus, we choose to only use the average surface temperature defined above153

to present all results. Further studies should examine and compare the two approaches154

to calculate modeled skin temperature from Noah-MP. In addition, it is important to155

note that the Noah-MP model used in this study does not contain a glacier modeling rou-156

tine, which may negatively impact the accuracy of all model derived snow depth, SWE,157

and runoff estimates.158

The land surface model simulations are conducted with a 15-min time step for a159

14-year time period (2003–2016) to generate daily output of water balance components.160

The initial conditions for the runs are generated by appropriate spin-up strategies as de-161

scribed by Xue et al. (2019) and Yoon et al. (2019), and then reinitializing all model runs162

in 2003.163

2.1.1 Downscaling of meteorological forcings164

Following Rouf et al. (2019), meteorological forcings including near-surface (∼ 10165

m above the ground) air temperature (denoted as “Ta”), surface pressure (denoted as166

“pr”), near-surface (∼ 10 m above the ground) specific humidity (denoted as “q”), near-167

surface (∼ 10 m above the ground) wind speed (denoted as “w”), downward surface short-168

wave radiation (denoted as “SW”), and downward surface longwave radiation (denoted169

as “LW”) obtained from ECMWF are spatially downscaled from their original resolu-170

tions (0.25◦) onto the 0.01◦ model grid. All spatial downscaling procedures preserve the171

variable measurement height before and after being downscaled. The symbol of “(̃·)” de-172

notes the variable at 0.01◦ model grid. The downscaling methods are developed by the173

George Mason University (GMU) research team, and therefore we refer to the downscaled174

meteorological forcings as GMU downscaled forcings. The downscaled air temperature175

in the unit of K is computed as Marshall and Plumb (1989):176

T̃a = Ta + Γa(Z̃ − Z), (1)177

where Z (m) is the Shuttle Radar Topography Mission (SRTM) digital elevation model178

derived elevation at 0.25◦, Z̃ (m) is the elevation derived at 0.01◦ (see Figure 1a), and179

Γa (K/m) is the spatially distributed dynamic lapse rate in air temperature (Rouf et al.,180

2019). The downscaled surface pressure in the unit of Pa is computed as Cosgrove et al.181

(2003):182

p̃r = pr exp(−g(Z̃ − Z)

RTm
), (2)183
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where exp(·) is the exponential operator. R (= 287 J/(kg · K)) is the ideal gas constant,184

g (= 9.81 m/s2) is the gravitational acceleration constant, and Tm (K) is the mean air185

temperature computed from Ta and T̃a. The downscaled specific humidity in the unit186

of kg/kg is computed as Lawrence (2005):187

q̃ =
0.622Ẽ

p̃r − 0.378Ẽ
, (3)188

where189

Ẽ = C1 exp
C2T̃d

T̃d + C3

, (4)190

T̃d = Td + Γd(Z̃ − Z), (5)191
192

where for water, C1 (= 611.21 Pa), C2 (= 17.268), C3 (= 238.88◦C), and for ice, C1 (=193

611.15 Pa), C2 (= 22.452), C3 (= 272.55◦C) as noted in Buck (1981). Td (K) is the dew194

point temperature, and Γd (K/m) is the spatially distributed dynamic lapse rate in dew195

point temperature. The downscaled wind speed in the unit of m/s is computed as Tao196

and Barros (2018); Rouf et al. (2019); Bohn and Vivoni (2019):197

w̃ =
µ̃∗

κ
ln
H

z̃0
, (6)198

where199

µ̃∗ = µ∗(
z̃0
z0

)0.09, (7)200

z̃0 = k̃

M∑
i=1

ρ̃iz0,i + z0 − k

M∑
i=1

ρiz0,i, (8)201

202

where ln(·) is the natural logarithm operator, µ∗ (m/s) is the friction velocity, z0 (m)203

is the surface roughness, κ (= 0.41) is the Von Kármán constant, H (= 10 m) is the mea-204

surement height above the ground, and M is the number of land cover types. ρi is the205

fractional values of the ith land cover type. k represents the temporal variability of the206

Moderate Resolution Imaging Spectroradiometer (MODIS) derived normalized differ-207

ence vegetation index (NDVI), which is computed as the ratio of the NDVI obtained from208

the current time step versus the annual mean of the NDVI. The downscaled incident short-209

wave radiation in the unit of W/m2 is computed as Ruiz-Arias et al. (2010); Fiddes and210

Gruber (2014); Gupta and Tarboton (2016); Tao and Barros (2018):211

˜SW = δ cos(θ) exp(τ(p̃r − pr))SWb + FvSWd + αFt( ˜SWb + (1 − Fv) ˜SWd), (9)212

where SWb (W/m2) is the direct shortwave radiation, and SWd (W/m2) is the diffuse213

shortwave radiation. δ is the binary shadowing mask indicating whether the grid cell is214
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blocked by the shadow of nearby terrain, cos(θ) is the cosine of the solar illumination215

angle, τ (Pa−1) is the broadband attenuation coefficient, α is the MODIS derived sur-216

face albedo, Fv is the fractional value of the visible sky, and Ft is the terrain configu-217

ration factor, which is computed as the function of terrain slope and Fv. The downscaled218

longwave radiation in the unit of W/m2 is computed as Konzelmann et al. (1994); Fid-219

des and Gruber (2014):220

˜LW = (ε̃c + ∆ε)σT̃a
4
, (10)221

where222

ε̃c = 0.23 + 0.484(
Ẽ

T̃a
)

1
8 , (11)223

∆ε =
LW

σTa
4 − εc, (12)224

225

where σ (= 5.67 × 10−8 W/(m2 · K4)) is the Stefan-Boltzmann constant, and εc is the226

clear-sky emissivity.227

The original 0.05◦/daily CHIRPS precipitation is spatially and temporally down-228

scaled to 0.01◦/6-hourly by weighting factors. To disaggregate CHIRPS to 0.01◦, spatially-229

distributed weighting factors are derived from daily cumulative downscaled 0.01◦ ECMWF230

precipitation, which is derived from the original 0.25◦/6-hourly ECMWF precipitation231

following Mei et al. (2020). The kernel of the Mei et al. (2020) precipitation downscal-232

ing framework lies in a random forest (RF) classification along with a regression algo-233

rithm. The framework first applies the recursive feature elimination algorithm to select234

important predictors in terms of their predictive values to the daily cumulative ECMWF235

precipitation from a list of potential predictors. There are 13 potential predictors includ-236

ing eight meteorological variables (air and dew point temperature, surface pressure, spe-237

cific and relative humidity, longwave and shortwave radiation, and wind speed) and five238

auxiliary variables (vegetation index with 30-day and 60-day lag, latitude, longitude, and239

day of year). The meteorological variables are either adopted or derived from the down-240

scaled 0.01◦ ECMWF estimates. For each year from 2003 to 2016, the first seven pre-241

dictors with higher predictive values are selected as important predictors. In a next step,242

with the identified predictors, RF classification models are trained to a binary precip-243

itation mask defining rainy (i.e., daily cumulative precipitation being greater than 0 mm)244

and non-rainy grid cells and RF regression models are trained to the daily cumulative245

precipitation for rainy grid cells (Note: one RF classification and one RF regression model246

for a year to maintain a relatively high computational efficiency). Then, the trained RF247
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classification models are used to produce the 0.01◦ daily binary precipitation masks with248

the 0.01◦/daily predictors. Finally, the RF regression models are used to estimate the249

daily cumulative precipitation for rainy grid cells (inferred by the 0.01◦ precipitation masks)250

with the identified predictors. It is important to note that each 0.01◦ model grid cell is251

treated independently. In other words, the spatial correlation is not explicitly consid-252

ered except that for some years the models may take the geographical information (lat-253

itude and longitude) as predictors.254

After attaining the 0.01◦/daily ECMWF precipitation, the 0.05◦/daily CHIRPS255

precipitation is spatially disaggregated following the equations below:256

˜pdC =


˜pdE,i

1
N

∑N
i=1

˜pdE,i
pdC , if 1

N

∑N
i=1

˜pdE,i > 0,

pdC , if 1
N

∑N
i=1

˜pdE,i = 0

(13)257

where pdE and pdC represent the daily cumulative precipitation from ECMWF and CHIRPS,258

respectively. N is the total number of 0.01◦ grid cells within a 0.05◦ grid cell. The term259

of
˜pdE,i

1
N

∑N
i=1

˜pdE,i
denotes the spatially distributed weighting factors, which quantifies the260

0.01◦ variability of precipitation within the 0.05◦ grid cells. In the case that all 0.01◦ grid261

cells within a 0.05◦ grid cell have null precipitation, pdC is distributed evenly. The daily262

cumulative CHIRPS precipitation is then multiplied by a temporal weighting factor to263

attain the 6-hourly precipitation value at 0.01◦ (denoted as “ ˜ptC”). The temporal weight-264

ing factor is derived from the 0.25◦/6-hourly ECMWF precipitation, written as:265

˜ptC =


ptE,t∑T
t=1 ptE,t

˜pdC , if
∑T

t=1 ptE,t > 0,

˜pdC , if
∑T

t=1 ptE,t = 0

(14)266

where ptE denotes the 6-hourly ECMWF precipitation. T is the total number of time267

steps within one day. Similar to Equation 13, the term of
ptE,t∑T
t=1 ptE,t

is the 6-hourly tem-268

poral weighting factor used to distribute the daily cumulative precipitation; if all 6-hourly269

precipitation values are zeros within a day, ˜pdC is distributed evenly.270

2.1.2 Bias-corrected CHIRPS271

The bias-corrected CHIRPS are generated using the original CHIRPS at 0.05◦ mul-272

tiplied with the monthly, spatially-distributed correction factors given by Beck et al. (2020).273

Their study used streamflow observations from 9372 stations for calibrations of several274

state-of-the-art (quasi-) global precipitation climatologies. Monthly climatological bias275
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correction factors were calculated by disaggregating the long-term bias correction fac-276

tors on the basis of gauge catch efficiencies. An example of the spatially-distributed pre-277

cipitation correction factors as applied in CHIRPS product in February across HMA can278

be seen from Figure 1b. The domain-averaged precipitation correction factor is 1.43, with279

relatively high correction factors presence along Karakoram and Himalayan ranges. As280

noted in Beck et al. (2020), these regions exhibit marked elevation gradients, sparse gauge281

networks, and substantial snowfall: all factors that tend to favor precipitation underes-282

timation, and therefore, the newly-generated bias-corrected CHIRPS product is intended283

to increase the magnitude of precipitation across HMA (see Figure 12).284

2.2 Ground-based measurements of meteorological conditions285

A summary of ground-based measurements of meteorological conditions used for286

evaluation is listed in Tables 3 and 4. These measurements include air temperature, wind287

speed, specific humidity, surface pressure, incident shortwave radiation, incident long-288

wave radiation, and total precipitation. These dataset are obtained from 1) the Chinese289

Meteorological Administration (CMA), namely the Dataset of Daily Climate Data From290

Chinese Surface Stations for Global Exchange (V3.0) (https://data.cma.cn/en/?r=291

data/detail&dataCode=SURF CLI CHN MUL DAY CES V3.0&keywords=daily), or 2) the292

Coordinated Enhanced Observing Period (CEOP) Asia Monsoon project (https://www293

.eol.ucar.edu/projects/ceop/dm/insitu/sites/ceop ap/), or 3) the Department294

of Hydrology and Meteorology in Nepal (DHM), or 4) the Pakistan Meteorology Depart-295

ment (PMD), or 5) the weather underground (WU; https://www.wunderground.com).296

Locations of the ground-based stations are shown in Figures 3 through 5. The discrep-297

ancies between model estimates and measurements resulting from different measurement298

heights are neglected in this study because they are deemed much smaller than model299

errors alone (calculations not shown). Note some in-situ data source do not provide the300

measurement height information.301

2.3 Ground-based measurements of modeled states302

A summary of ground-based measurements of modeled states used for evaluation303

is listed in Table 4. It is important to note that only a handful of model output variables304

are evaluated here due to reference measurements inadequacy.305
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2.3.1 Surface radiation306

Surface net shortwave radiation and net longwave radiation, calculated as incoming-307

minus-outgoing radiant energy fluxes, are evaluated in this study, respectively. The in-308

situ radiation measurements are obtained from CEOP. Radiation fluxes are measured309

using CM21 Kipp & Zonen (or 2770 Aandera) sensors at a time step of an hour (or twenty310

minutes), and at a height of 1.58 m, 2 m (or 3.1 m) above from the ground surface (de-311

pending on the station). Daily-averaged, in-situ fluxes are then computed as the tem-312

poral mean of the values collected during the 24-hour period. The measurement discrep-313

ancies as a result of different sensor installation heights are neglected in this study.314

2.3.2 Skin temperature315

Two different sources of skin temperature measurements are obtained. First, in-316

situ, daily-averaged surface temperature measurements are obtained from CMA. The daily-317

averaged surface temperature values are computed by averaging the four measurements318

taken by platinum resistance thermometers at 02:00, 08:00, 14:00, and 20:00. Second,319

the in-situ surface temperature measurements are obtained from the CEOP Asia Mon-320

soon project. Skin temperature are measured at a time step of an hour. Daily-averaged,321

in-situ temperatures are then computed as the temporal mean of the values collected dur-322

ing the 24-hour period.323

2.3.3 Snow depth324

The in-situ, daily-averaged snow depth measurements are obtained from 1) the Global325

Summary of the Day (GSOD; https://data.noaa.gov/dataset/dataset/global-surface326

-summary-of-the-day-gsod), 2) the Contribution to High Asia Runoff from Ice and Snow327

(CHARIS) project (http://himatmap.apps.nsidc.org/hma insitu.html), and 3) the328

CEOP Asia Monsoon project.329

2.3.4 Near-surface soil temperature330

Three different sources of the near-surface (5 cm below the ground) soil temper-331

ature measurements are obtained. First, in-situ soil temperature measurements are ob-332

tained from the CEOP Asia Monsoon project. Near surface soil temperatures are mea-333

sured at a time step of an hour or twenty minutes, and at the depth of 3 cm, 4 cm, and/or334
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5 cm from the ground surface (depending on the station). Daily-averaged temperature335

values are then computed as the temporal mean of the temperatures collected during the336

24-hour period as a function of the measured depth. It is assumed that measurements337

taken at the depth of 5 cm (i.e., center of the soil layer) can best represent the modeled338

top-layer of soil (0 - 10 cm). Therefore, the relatively simple linear interpolation method339

is applied to the model estimates to match with the measurement depths of 3 cm and340

4 cm, respectively.341

Second, daily-averaged near-surface soil temperature measurements from one sta-342

tion located at (29.76◦N, 94.74◦E) are obtained from the Southeastern Tibet Observa-343

tion and Research Station for the Alpine Environment (SETORS; http://en.tpedatabase344

.cn/portal/MetaDataInfo.jsp?MetaDataId=197) maintained by the Chinese Academy345

of Sciences. At this station, soil temperature at a depth of 4 cm below the ground are346

measured using a Campbell 107 sensor. We then interpolate the modeled top-layer of347

soil (0 - 10 cm) temperature estimates to 4 cm using linear interpolation to match with348

the measurement depth.349

Third, in-situ, daily- and spatially-averaged near-surface soil temperature measure-350

ments are obtained from the Central Tibetan Plateau Soil Moisture and Temperature351

Monitoring Network (CTP-SMTMN; http://dam.itpcas.ac.cn/rs/?q=data) main-352

tained by the Institute of Tibetan Plateau Research, Chinese Academy of Science. Near-353

surface soil temperature measurements are taken at the soil depth in between 0 and 5354

cm. Only the range of the near-surface measurement depth is given in the CTP-SMTMN355

document without the exact measurement depth (K. Yang et al., 2013). Therefore, the356

modeled top-layer soil temperature is used to approximate the measurement taken at357

in-situ sites.358

2.3.5 Total runoff359

Table 2 summarizes the main characteristics of the five gauged basins (see Figure360

2) in the study area, including drainage area, data source, and mean elevation computed361

via averaging all grid cells coincident within the given basin. These ground-based mea-362

surements are obtained from 1) the Contribution to High Asia Runoff from Ice and Snow363

(CHARIS) project, or 2) Department of Hydrology and Meteorology in Nepal, or 3) the364

Global Runoff Data Centre, 56068 Koblenz, Germany (https://www.bafg.de/GRDC/365
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EN/01 GRDC/grdc node.html). Basin #1 through Basin #5 are listed and organized by366

drainage area in ascending order in Table 2. It is important to note that only basins with367

drainage areas of greater than 625 km2 are included in this study.368

Basin #1 originates in the higher mountains in Nepal, where monsoon precipita-369

tion constitutes the major source of discharge water. In this basin, there exists a fairly370

clear rainfall-runoff relationship. i.e., strong commonality with precipitation highs to lows371

matching up with flow magnitudes tends to occur frequently (Hannah et al., 2005). Ac-372

cording to Hannah et al. (2005), the flow regime shape in Basin #1 is Class C with marked373

August peak runoff. The flow regime magnitude in Basin #1 is Class 2 with interme-374

diate amount of both annual total precipitation and total runoff. Note names of “Class375

C” and “Class 2” are classification schemes based on Hannah et al. (2005).376

Basin #2 is a trans-boundary basin lying north-south in the central Himalayan re-377

gion. It extends from China in the north, and flows through Nepal. The majority of the378

glaciated region in Basin #2 are located in Tibet, China. The climate is dominated by379

the Indian summer monsoon system, with the majority of the precipitation falls between380

June and September. Total runoff varies throughout the year influenced by both snow381

(and glacier) melt and precipitation (Dandekhya et al., 2017). Peak flows generally oc-382

cur in July or August as the peak snow and glacier melt coincide with the monsoon peak383

(Mishra et al., 2018).384

Basin #3 originates in Tajikistan and flows towards Uzbekistan. The highest pre-385

cipitation is often brought by Westerlies during winter and spring periods, with mini-386

mums during summer and early autumn periods (Gafurov et al., 2015). The discharge387

regime is strongly dominated by snow (and glacier) melt in the area during summer time.388

The increase of water discharge typically begins in April and peaks around July or Au-389

gust. The recession of the discharge river flow generally commences in August and con-390

tinues until February or March, when it reaches its minimum discharge point (Kulmatov391

et al., 2013).392

Basin #4 is located in Tajikistan, which is mainly fed by melting snow and glaciers.393

The region is under the continental climate, characterized by a wide temperature vari-394

ation throughout the year, with the coldest temperature generally occurring in January.395

Similar to Basin #3, Mid Latitude Westerlies are the dominant climatic influence in the396

area. Precipitation decreases from west to east. The majority of the annual precipita-397
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tion falls between February and May (Grin et al., 2018), while during the summer and398

early autumn seasons precipitation presents a minimum.399

Basin #5 is located in the North Western part of Myanmar. It is dominated by a400

mountainous forested terrain, except for the wide flood plain at its lowest southern part401

(Yuan et al., 2017). Rainfall is the major driver for the discharge regime in the area. Dur-402

ing the southwest monsoon season, Basin #5 is prone to severe floods, due to the high403

precipitation intensities with significant spatial and temporal variations (Yuan et al., 2017).404

Riverine floods are very common in Basin #5, and they occur as a result of the intense405

precipitation when the monsoon troughs or low pressure waves superimpose on the gen-406

eral monsoon pattern (Latt, 2015).407

2.4 Reference remotely sensed products408

A summary of remotely sensed products used for evaluation is listed in Table 5.409

2.4.1 Skin temperature410

Similar to the evaluation strategy described in Xue et al. (2019), the reference satellite-411

based surface temperature products utilized here are the MODIS/Terra Land Surface412

Temperature Daily L3 Global 1-km Grid (MOD11A1, version 6; Wan, Hook, and Hul-413

ley (2015)) and the MODIS/Aqua Land Surface Temperature Daily L3 Global 1-km Grid414

(MYD11A1, version 6; Wan et al. (2015)). Given the availability of both nighttime and415

daytime land surface maps generated by MOD11A1 and MYD11A1 from 2003 to 2016,416

we use the simple arithmetic mean of all four measurements to approximate daily-averaged417

values. It is important to note that when daytime MOD11A1, nighttime MOD11A1 as418

well as daytime MYD11A1, and nighttime MYD11A1 present simultaneously, we cal-419

culate the daily-averaged surface temperature value; otherwise, a “no-value” flag is ap-420

plied.421

2.4.2 Snow water equivalent422

The reference satellite-based snow water equivalent (SWE) product utilized here423

is the Copernicus Global Land Service (CGLS) SWE product (v1.0.2; https://land.copernicus424

.eu/global/products/swe) at a spatial resolution of 5 km (Pulliainen, 2006; Takala et425

al., 2011) available from 01 January 2006. The CGLS SWE retrieval algorithm combines426
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information from satellite-based microwave radiometer and optical spectrometer obser-427

vations with ground based weather station snow depth measurements and produces daily428

Northern Hemispherical scale SWE estimates. The SWE product covers all land surface429

areas between latitudes 35◦N and 85◦N with the exception of mountainous regions, and430

glaciers. Therefore, the CGLS SWE product only covers about 16.3% of the entire HMA431

land area.432

2.5 Evaluation methods433

All four experiments listed in Table 1 are integrated forward in time at a time step434

of 15 minutes, and the daily-averaged model output are generated. The overlapping pe-435

riod from 01 February 2003 to 30 November 2016 are used for evaluation in this study.436

It is important to note that stations (or grid cells) with records less than 200 days are437

excluded from the evaluation. Evaluations are conducted at three different spatial scales.438

The point-scale evaluations are carried out at selected grid cells with at least one colo-439

cated ground-based stations. That is, the performance of air temperature, wind speed,440

specific humidity, surface pressure, incident shortwave radiation, incident longwave ra-441

diation, total precipitation, surface radiation, skin temperature, snow depth, and near-442

surface soil temperatures are evaluated at daily time scales via comparisons against in-443

situ measurements taken by the closest ground-based stations. Goodness-of-fit statis-444

tics (see Section 2.5.1) are computed and a scoring system (see Appendix A) is designed445

to rank the performance of different sets of estimates. It is always difficult to compare446

1-km scale estimates against in-situ scale stations due to the stations’ representativeness447

issue. Therefore, if the relative elevation difference between the 1-km scale grid cell and448

colocated station is greater than 50% (with the ground-based station being the baseline),449

we deem that the station is unrepresentative of the large-scale model estimates, and thus450

such stations are removed from the evaluation. The relatively simple threshold employed451

here is somewhat arbitrary, however, it can be used as a first-order criterion to eliminate452

underrepresentative stations in the model evaluation.453

The basin-scale evaluations are conducted for modeled runoff through comparisons454

against ground-based discharge measurements. This study aggregates daily-averaged to-455

tal runoff output onto monthly averages and then evaluates against ground-based dis-456

charge measurements taken at basin outlets. The main reason for comparing runoff at457

monthly scale, rather than at hourly and daily scales is that no river routing routines458
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are employed in this study. For each of the model simulation listed in Table 1, the mod-459

eled basin-scale total runoff is computed by integrating the runoff output at each grid460

cell across each of the drainage basin. The goodness-of-fit statistics plus the Nash–Sutcliffe461

model efficiency coefficient (see Section 2.5.1) are computed to evaluate the modeled runoff462

performance.463

The domain-scale evaluations are conducted between 1) model estimates and ref-464

erence satellite-based products, as well as between 2) meteorological forcings before and465

after being downscaled. That is, the performance of regional model output of skin tem-466

perature, and SWE are evaluated at daily time scales via comparisons against reference467

remotely-sensed products using the goodness-of-fit statistics. All model output and ref-468

erence products are aggregated onto the same 0.25◦ grid for this set of evaluation. All469

SWE estimates in June, July, and August are excluded from evaluation due to minimized470

coverage of snow in summertime. In addition, the performance of the downscaled me-471

teorological forcings are evaluated using the normalized mutual information index (Sec-472

tion 2.5.2), which is intended to serve as a proxy for the spatial similarity between the473

multi-year averaged forcing variable before and after being downscaled.474

2.5.1 Evaluation statistics475

Goodness-of-fit statistics used for evaluation include bias, root mean squared er-476

ror (RMSE), unbiased root mean squared error (ubRMSE), and correlation coefficient477

(R). The symbol, xmodel, is used to denote estimates obtained from the given model sim-478

ulation. The symbol, xmeas, is used to denote in-situ measurements (or reference satellite-479

based measurements) at either daily or monthly time steps (Note: monthly time step is480

only applicable for runoff assessment). The bias is computed as:481

Bias =
1

Nt

Nt∑
j=1

(xmodel,j − xmeas,j), (15)482

where Nt denotes the total sample size. A lower absolute value of bias is deemed bet-483

ter at decreasing the systematic errors. RMSE is computed as:484

RMSE =

√√√√ 1

Nt

Nt∑
j=1

(xmodel,j − xmeas,j)2. (16)485

A lower RMSE reflects decreased systematic errors and random errors. Further, ubRMSE486

is calculated as:487

ubRMSE =
√

(RMSE)2 − (Bias)2. (17)488
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A lower ubRMSE reflects reduced amount of random errors. In addition, R is computed489

as:490

R =

∑Nt

j=1(xmodel,j − x̄model)(xmeas,j − x̄meas)√∑Nt

j=1(xmodel,j − x̄model)2
√∑Nt

j=1(xmeas,j − x̄meas)2
, (18)491

where x̄meas is the time-averaged estimates of the measurements, and x̄model is the time-492

averaged estimates obtained from model simulations. A higher R demonstrates better493

correlations with the reference. Overall, a relatively low absolute value of bias, or low494

RMSE, or low ubRMSE, or high R is deemed as a higher level of accuracy in the model495

estimates.496

In addition, we compute the Nash–Sutcliffe model efficiency coefficient (NSE) statis-497

tics (Nash & Sutcliffe, 1970) in the basin-scale runoff evaluation, which is computed as:498

NSE = 1 −
∑Nt

j=1(xmeas,j − xmodel,j)
2∑Nt

j=1(xmeas,j − 1
Nt

∑Nt

j=1 xmeas,j)2
. (19)499

NSEs are used to emphasize peak values in evaluating simulation fit, which can be a use-500

ful indicator to distinguish the modeling skills among different experiments for peak runoff.501

NSEs can range from -infinity to 1.0. An NSE of 1.0 corresponds to a perfect match be-502

tween model and observed runoff, whereas an NSE less than 0 occurs when the model503

simulations are not better than solely the mean of the observations.504

2.5.2 Spatial similarity assessments for downscaled products505

Mutual information – without an upper bound – can be used to quantify the sta-506

tistical information shared between two distributions (Cover & Thomas, 1991; Strehl &507

Ghosh, 2002), provides a sound indication of the shared information between two dataset.508

On top of that, the normalized mutual information (NMI) could be further derived as509

a proxy for spatial similarity, which is the normalization of the mutual information in-510

dex to scale the results between 0 (no correlation) and 1 (perfect correlation). That is,511

the NMI close to zero indicates high dissimilarity between the two distributions, whereas512

the NMI close to one indicates high similarity.513

Following Strehl and Ghosh (2002), we define the NMI between variable X and Y514

as follows:515

NMI(X,Y) =
I(X;Y)√
H(X)H(Y)

, (20)516

where I(X;Y) denotes the mutual information shared between the two variables, and517

H(X) and H(Y) are the entropies of the two variables, respectively. I(X;Y) can be fur-518
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ther written as:519

I(X;Y) = H(X) +H(Y) −H(X,Y), (21)520

where H(X, Y) denotes the joint entropy of two distributions.521

3 Results522

3.1 Point-scale evaluations523

Figure 3 shows the evaluation of air temperature at both 0.25◦ and 0.01◦ against524

five sources of ground-based measurements. Except for the evaluation against DHM air525

temperature, the GMU downscaled 0.01◦ air temperature generally outperforms the 0.25◦526

one. The superiority of the 0.01◦ air temperature is mostly demonstrated in average bias527

and average RMSE improvements, but less so with respect to ubRMSE and R. For ex-528

ample, in the comparison against CEOP air temperature, the mean bias is improved by529

32% from -4.98 K (0.25◦) to -3.38 K (0.01◦), and the mean RMSE is improved by 23%530

from 5.44 K (0.25◦) to 4.17 K (0.01◦). However, the mean ubRMSE is degraded slightly531

by 0.9% from 1.91 K (0.25◦) to 1.93 K (0.01◦), and the mean R (= 0.96) is the same.532

Figure 3 also shows the evaluation of surface pressure at both 0.25◦ and 0.01◦ against533

ground-based CMA measurements. The downscaled 0.01◦ estimate yields a perfect weighted534

score of 4.00 (see Table 3), which means the 0.01◦ surface pressure is superior to the 0.25◦535

estimate with respect to all goodness-of-fit statistics in both accuracy and precision mea-536

sures. These two evaluations together signifies the benefits of detailed adjustment of the537

elevation difference as air temperature and pressure are very sensitive to the change of538

altitude especially across highly elevated regions.539

Similarly, improvements are seen in the downscaled shortwave and longwave radi-540

ation estimates in the evaluation against ground-based measurements. Figure 4 shows541

the evaluation of incident shortwave radiation, and incident longwave radiation at both542

0.25◦ and 0.01◦ against CEOP measurements. In general, the 0.01◦ downward longwave543

and shortwave radiation estimates are superior to those at 0.25◦ especially with respect544

to bias and RMSE. For example, in the comparison against CEOP downward shortwave545

radiation, the mean bias is improved by 30% from 12.32 W/m2 (0.25◦) to 8.61 W/m2
546

(0.01◦), and the mean RMSE is improved by 3% from 63.02 W/m2 (0.25◦) to 61.21 W/m2
547

(0.01◦). In the comparison against CEOP downward longwave radiation, the mean bias548

is improved by 15% from -36.87 W/m2 (0.25◦) to -31.36 W/m2 (0.01◦), and the mean549
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RMSE is improved by 6% from 43.91 W/m2 (0.25◦) to 41.23 W/m2 (0.01◦). In addition,550

the improvement in the downscaled 0.01◦ specific humidity (relative to 0.25◦) is mostly551

demonstrated in the mean bias (see Figure 4). That is, the mean bias is improved by 74%552

from -0.0011 kg/kg (0.25◦) to -0.0003 kg/kg (0.01◦).553

Figure 4 further shows the evaluation of wind speed at both 0.25◦ and 0.01◦ against554

three sources of ground-based measurements. On average, the range of R is generally higher555

(relative to other meteorological fields) possibly due to the uncertainty in wind speed556

measurements and estimates caused by random or turbulent disturbance, especially over557

the complex terrain. Generally, the 0.01◦ wind speed estimate slightly degrades the 0.25◦558

result. That is, the 0.01◦ wind speed estimate only outperforms the 0.25◦ estimate in559

the evaluation against CMA ground-based measurements; the 0.25◦ wind speed estimate560

demonstrates better skills in the evaluation against WU or CEOP measurements. The561

degradations seen in the 0.01◦ wind speed estimates may be partly caused by the assump-562

tions of the logarithmic wind profile used in the downscaling procedure (Rouf et al., 2019).563

Table 3 summarizes the weighted scores obtained from 0.01◦ and 0.25◦ near-surface564

atmospheric forcings estimates, respectively. It is encouraging to see that the spatial down-565

scaling scheme improves the skill in meteorological forcing estimates (exclude precipi-566

tation) by 9% relative to coarse-resolution results. The spatial downscaling enabled re-567

sults outperform the coarse-resolution meteorological forcing estimates (exclude precip-568

itation) in nine out of 12 sets of evaluation sources in terms of estimates accuracy and569

precision.570

Figure 5 shows the evaluation of the precipitation field used in all experiments, in-571

cluding HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS. It is not572

surprising to see that the bias-corrected CHIRPS precipitation field used in the HMA-573

corr-CHIRPS experiment yields a much higher positive bias compared to the rest of the574

precipitation estimates. This phenomenon is especially notable in the evaluation against575

CMA ground-based measurements in that the difference between the mean bias of pre-576

cipitation estimates obtained from the HMA-corr-CHIRPS experiment at 0.01◦ is sta-577

tistically different (at a significance level of 5%) from those obtained from all other three578

sets of experiments. As a result, the bias-corrected CHIRPS yields the lowest skill in pre-579

cipitation estimate according to Table 4. Beck et al. (2020) argued that the disagreement580

between bias-corrected CHIRPS and gauge observations might be attributed to either581
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1) gauge under-catch issues or 2) scale mismatch between the model estimates and the582

gauge observations, which is reasonable. In general, the range of R is high and the mean583

value of R is low across all four sets of precipitation fields. The precipitation estimate584

skill varies more significantly over high elevated regions, whereas in flatter regions, four585

sets of precipitation fields demonstrate comparable skills. Comparatively, HMA-Coarse586

achieves the highest skills over relatively flat regions (i.e., with a mean elevation of less587

than 250 m). That is, the aggregated precipitation field used in the HMA-Coarse exper-588

iment at a spatial resolution of 0.25◦ yields a perfect score of 4.0 in the evaluation against589

precipitation measurements obtained from one WU station at an elevation of 250.0m.590

In relatively high elevations, the downscaled GMU precipitation at 0.01◦ yields the high-591

est skill among all, followed by the CHIRPS precipitation at 0.01◦.592

In addition, we aggregate all sources of ground-based measurements according to593

measurement variables as a function of seasons from 2003 to 2016. As a result, the to-594

tal number of ground-based stations are 14 for specific humidity, 70 for air temperature,595

30 for surface pressure, 51 for precipitation, 16 for incident shortwave radiation, 7 for596

incident longwave radiation, and 62 for wind speed. The average bias is computed in the597

evaluation against all stations according to measurement variables as a function of sea-598

sons (see Figure 6). In general, the worst performance in bias is seen during June-July-599

August (JJA) period in specific humidity, precipitation, and wind speed for both 25-km600

ad GMU 1-km estimates. This is likely due to the occurrence of intense precipitation re-601

sulting from the seasonally reversing wind system across the summer monsoon. It is en-602

couraging to see that the majority of the noticeable improvements in the computed av-603

erage bias are seen in terms of GMU 1-km derived specific humidity, air temperature,604

surface pressure, and incident longwave radiation relative to 25-km estimates across all605

seasons. The performance of the 1-km incident shortwave radiation is mixed while we606

see slight degradations during September-October-November (SON) and marginal im-607

provements during the rest of the seasons relative to 25-km estimates. This mix behav-608

ior may be partly caused by the increase in the modeling uncertainty resulting from the609

introduction of multiple correction factors in the shortwave radiation downscaling pro-610

cedure. Further, in terms of precipitation and wind speed, comparable, and sometimes611

degraded performance are seen in the 1-km estimates most likely due to 1) erroneous ground-612

based measurements and/or 2) too simplistic assumptions used in the downscaling scheme613

as we discussed for Figures 4 and 5 above. Further, we attempt to find out the relation-614
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ship between spatial downscaling accuracy and a variety of factors, such as slope, ele-615

vation, and land cover type. However, such a relationship is not very clear (not shown).616

We postulate that 1) limited sample size (i.e., with the maximum number of aggregated617

stations of 70), and 2) strong spatial heterogeneity are the two main reasons for not be-618

ing able to see a rather clear relationship between spatial downscaling accuracy and fac-619

tors mentioned above.620

Figure 7 shows the evaluation of net shortwave radiation, and net longwave radi-621

ation generated by all experiments, including HMA-Coarse, HMA-GMU, HMA-CHIRPS,622

and HMA-corr-CHIRPS in the comparison against CEOP measurements. It is encour-623

aging to see that all 0.01◦ net shortwave radiation estimates (obtained from HMA-GMU624

or HMA-CHIRPS or HMA-corr-CHIRPS) generally outperform the 0.25◦ estimate ob-625

tained from HMA-Coarse, especially in terms of the mean bias. For example, the mean626

bias is improved from 38.11 W/m2 (HMA-Coarse) to -1.21 W/m2 (HMA-GMU). Sim-627

ilarly, it is encouraging to see all 0.01◦ net longwave radiation estimates outperform the628

0.25◦ estimate. The superiority of the 0.01◦ net longwave radiation is mostly demonstrated629

in average bias and average RMSE improvements, but less so with respect to ubRMSE630

and R. For example, the mean bias is improved by 39% from -34.80 W/m2 (HMA-Coarse)631

to -21.38 W/m2 (HMA-corr-CHIRPS), and the mean RMSE is improved by 13% from632

47.33 W/m2 (HMA-Coarse) to 41.27 W/m2 (HMA-corr-CHIRPS). However, both of the633

mean R and mean ubRMSE are comparable between HMA-Coarse and HMA-corr-CHIRPS.634

In general, HMA-CHIRPS yields the best performance in net shortwave and net long-635

wave radiation estimates, followed by HMA-GMU.636

Figure 7 further shows the evaluation of snow depth generated by all experiments637

in the comparison against three sources of ground-based stations. Due to the positive638

bias seen within the bias-corrected CHIRPS precipitation, it is not surprising to see that639

HMA-corr-CHIRPS yields the worst performance due to the relatively high estimate of640

the snow depth relative to other experiments. For example, the mean bias is degraded641

from -0.05 m in HMA-GMU (or -0.06 m in HMA-CHIRPS) to 0.32 m in HMA-corr-CHIRPS.642

The mean RMSE is degraded from 0.33 m in HMA-GMU (or 0.29 m in HMA-CHIRPS)643

to 0.56 m in HMA-corr-CHIRPS. Further, the ubRMSE is degraded by 54% from 0.24644

m (HMA-GMU) to 0.37 m (HMA-corr-CHIPRS). The ubRMSE is degraded by 60% from645

0.23 m (HMA-CHIRPS) to 0.37 m (HMA-corr-CHIPRS). Again, it is difficult to discern646

whether such bad performance seen in HMA-corr-CHIRPS is due to the erroneous model647

–21–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Atmospheres

estimate itself or under-representative and erroneous ground-based measurements or both.648

Assuming the relatively simple elevation threshold applied as discussed in Section 2.5649

could effectively address the underrepresentativeness issue, Part II of the assimilation650

study is able to alleviate part of the positive bias introduced in the HMA-corr-CHIRPS651

snow depth estimates. Based on the sum of the weighted scores presented in this Part652

I study, HMA-GMU yields the highest skill in snow depth estimates, followed by HMA-653

CHIRPS.654

Figure 7 also shows the evaluation of skin temperature generated by all experiments655

in the comparison against two sources of ground-based stations. It is encouraging to see656

that all experiments yield relatively good agreement with the ground-based measurements657

in terms of R, with all Rs being greater than 0.9. All 0.01◦ estimates tend to correct the658

positive bias in the 0.25◦ skin temperature likely arising from the positive bias in the net659

shortwave radiation. That is, in the evaluation against CMA skin temperature measure-660

ments, the bias decreases from 1.16 K (HMA-Coarse) to 0.03 K (HMA-GMU), and to661

0.0009 K (HMA-CHIRPS), and to -0.17 K (HMA-corr-CHIRPS). In the evaluation against662

CEOP skin temperature measurements, the bias drops from 1.13 K (HMA-Coarse) to663

-1.04 K (HMA-GMU), and to -1.06 K (HMA-CHIRPS), and to -1.47 K (HMA-corr-CHIRPS).664

HMA-corr-CHIRPS seems to over-correct the 0.25◦ skin temperature possibly due to the665

over-corrected precipitation, which yields the worst performance among all experiments.666

Although HMA-Coarse yields relatively high magnitude of the mean bias relative to both667

HMA-GMU and HMA-CHIRPS, HMA-Coarse yields the best performance among all668

experiments according to Table 4 mainly due to its superiority in the relatively low val-669

ues of interquartile range (IQR; see Appendix A) achieved across all goodness-of-fit statis-670

tics.671

Figure 8 shows the evaluation of soil temperature at different depths generated by672

all experiments in the comparison against five sets of ground-based stations. Due to the673

difficulty in in-situ soil temperature measurements as well as discrepancies in the mea-674

surement and model estimate depth in soil, it is not surprising to see that different ex-675

periments are superior with respect to different set of ground-based measurements. In676

the evaluation against CTP-SMTMN soil temperature measurements, HMA-Coarse out-677

performs all 0.01◦ estimates with respect to all goodness-of-fit statistics. Although there678

are 63 CTP-SMTMN stations used for evaluation, only 12 model grid cells at a spatial679

resolution of 0.25◦ are used due to the close proximity of the ground-based stations. That680
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is, because multiple stations are colocated within one 0.25◦ grid cell, we evaluate the same681

set of 0.25◦ model estimates against different in-situ measurements colocated within the682

model grid cell. Under such circumstances, HMA-Coarse still yields the best performance683

partly due to relatively low spatial variability in soil temperature measurements. For ex-684

ample, for three 0.25◦ model grid cells, all with more than five colocated ground-based685

stations, the temporally-averaged standard deviations of the ground-based measurements686

are 1.28 K, 0.97 K, and 0.96 K. Further, in the evaluation against CEOP 3-cm soil tem-687

perature measurements, HMA-corr-CHIRPS yields the best skill, whereas HMA-Coarse688

yields the worst performance mainly due to the relatively high positive bias. That is, the689

bias of the 3-cm soil temperature estimates in HMA-Coarse, HMA-GMU, HMA-CHIRPS,690

and HMA-corr-CHIRPS, are 3.05 K, 0.35 K, 0.36 K, and -0.24 K. In the evaluation against691

CEOP 4-cm soil temperature measurements, HMA-Coarse yields the best performance.692

HMA-Coarse is superior to all 0.01◦ estimates mainly in terms of significantly reduced693

bias and reduced RMSE. The degradation in the 0.01◦ estimates relative to 0.25◦ esti-694

mate might be caused by 1) errors in in-situ soil temperature measurements, or 2) over-695

correction in the downscaled incident shortwave radiation and net shortwave radiation696

although the point-scale evaluation shows better performance in 0.01◦ estimates (see Fig-697

ure 7). It is also possible that the relatively simple linear interpolation method used to698

apply with the modeled soil temperature estimates to match with the measurement depth699

may not be appropriate in this case because the temperature gradient may not be lin-700

ear. Further, in the evaluation against SETORS 4-cm soil temperature measurements,701

HMA-GMU yields a close-to-perfect score with improved performance seen across all goodness-702

of-fit statistics in terms of the accuracy measure. Compared with the estimates obtained703

from HMA-Coarse, HMA-GMU improves the bias by 54% from -9.21 K to -4.21 K. The704

RMSE is improved by 51% from 9.44 K to 4.61 K, the ubRMSE is improved by 9% from705

2.07 K to 1.88 K, and the R is improved by 6% from 0.94 to 0.95. Finally, the evalua-706

tion against CEOP 5-cm soil temperature measurements shows that HMA-CHIRPS is707

slightly superior to other experiments. HMA-CHIRPS’ better performance is largely at-708

tributed to its relatively low ranges of IQRs achieved across all goodness-of-fit statistics.709

To summarize, HMA-CHIRPS yields the best performance in soil temperature estimates,710

followed by HMA-GMU.711

Table 4 summarizes the weighted score achieved by each of the experiment with712

respect to each set of the evaluation source. It is found that HMA-GMU yields the high-713
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est skill in precipitation and model output states, followed by HMA-CHIRPS. Compared714

with HMA-Coarse, HMA-GMU improves the skill by 7%. However, HMA-corr-CHIRPS715

yields the lowest skill, which degrades HMA-Coarse skill by 10%. These analyses, on one716

hand, further corroborate the importance of employing the hyper-resolution modeling717

versus coarse-resolution modeling strategy across the complex terrain; on the other hand,718

emphasize the importance of the accuracy of the hyper-resolution precipitation product719

used to drive model simulations.720

3.2 Basin-scale evaluations721

Figure 9 shows the total runoff time series obtained from all experiments for the722

five gauged basins in the evaluation against ground-based measurements. In general, all723

experiments yield relatively good agreement with the ground-based measurements in terms724

of both low flow and high flow seasons, except for Basin #4. In Basin #4, HMA-Coarse725

yields the lowest R of 0.07, and HMA-corr-CHIRPS yields the highest R of 0.66. In ad-726

dition, all experiments yield positive NSEs except for Basin #3 and Basin #4. HMA-727

corr-CHIRPS is the only experiment with a positive NSE of 0.32 for Basin #3. In Basin728

#4, although HMA-CHIRPS achieves the highest NSE of -0.62 among all experiments,729

a negative NSE is still not desirable. There can be several reasons contributing to the730

relative poor performance of the modeled runoff simulations in Basin #3 and Basin #4.731

For example, in addition to the shortcoming of neglecting water travel time (residence732

time) within the basin, this study does not model human-related impacts (e.g., water733

engineering works) and agriculture related activities (e.g., irrigation) in the total runoff734

simulation. Further, the discharge regime is strongly dominated by snow and glacier melt735

within these two basins during summer time (see Section 2.3.5), and therefore, it is pos-736

sible that modeled snow melt discharge enter the stream network too soon due to too737

early onset of snow melt. Therefore, in Part II of the study, we will determine if a sim-738

ple snow cover assimilation scheme can help with modifying the snow melt timing and739

further improving the runoff modeling performance in snow and glacier dominated basins.740

Figure 10 shows all statistics computed for evaluating the performance of HMA-741

Coarse, HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS in comparisons against742

ground-based measurements. In terms of the NSE, model runs for Basin #2, Basin #3,743

and Basin #4 yield relatively low values (all below 0.6) as compared with Basin #1 and744

Basin #5. According to Table 2, Basins #2 through #4 have mean elevations of greater745
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than 3000 m, whereas Basin #1 has a mean elevation of 1638 m and Basin #5 has a mean746

elevation of 681 m. Therefore, it is likely because precipitation estimates used to force747

models vary more significantly over high elevated regions relative to flatter regions, which748

is also seen in the point-scale precipitation evaluation. In addition, in flatter regions (i.e.,749

Basin #5), all experiments yield relatively high Rs, which are greater than 0.96. Com-750

paratively, HMA-Coarse yields the best performance across all evaluated statistics, and751

HMA-corr-CHIRPS yields the worst performance. In relatively high elevation regions752

(i.e., Basin #1 through Basin #4), 0.01◦ runoff estimates obtained from HMA-GMU,753

HMA-CHIRPS, or HMA-corr-CHIRPS are generally superior to 0.25◦ runoff estimates754

obtained from HMA-Coarse. In Basin #1, HMA-corr-CHIRPS yields the lowest bias (=755

2.4 m3/s), lowest RMSE (= 14.5 m3/s), and highest NSE (= 0.85), whereas HMA-Coarse756

yields the worst performance across all statistics. In Basin #2, HMA-corr-CHIRPS seems757

to over-correct the total runoff especially in years 2007 through 2012. As a result, HMA-758

GMU yields the best performance in total runoff in terms of the lowest RMSE (= 140.2759

m3/s), lowest ubRMSE (= 121.5 m3/s), and highest NSE (= 0.53), whereas HMA-Coarse760

yields the worst performance across all statistics. In Basin #3, HMA-corr-CHIRPS sig-761

nificantly outperforms other experiments, with a much lower bias (= -12.8 m3/s), lower762

RMSE (= 352.2 m3/s), higher R (= 0.84), and higher NSE (= 0.32). The good perfor-763

mance in HMA-corr-CHIPRS derived runoff might be attributed to the relatively high764

correction factors as applied to the region (see Figure 1b). In Basin #4, HMA-CHIRPS765

yields the best performance in terms of the lowest absolute value of bias (= -81.75 m3/s),766

lowest RMSE (= 194.9 m3/s), lowest ubRMSE (= 177.7 m3/s), and less negative value767

of NSE (= -0.62). The over-correction issue in HMA-corr-CHIRPS runoff can also be768

seen from 2005 to 2012.769

Since the bias-corrected CHIRPS precipitation field is obtained through calibrat-770

ing against ground-based runoff measurements, it is probable that ground-based runoff771

measurements used in the evaluation here are also used to calibrate the bias-corrected772

precipitation product. This argument might be also used to explain why HMA-corr-CHIRPS773

can significantly outperform all other experiments in Basin #1 and Basin #3 especially774

in bias (i.e., systematic errors). We do not see HMA-corr-CHIRPS ranks as the best prod-775

uct in terms of ubRMSE (i.e., random errors) because Beck et al. (2020) and this study776

share different calibration/evaluation metrics. Further, the over-correction issue in the777

bias-corrected CHIRPS field should not be neglected in Basin #2 and Basin #4. In ad-778
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dition to the errors in the ground-based runoff measurements, the over-correction issue779

seen in HMA-corr-CHIRPS may be attributed to the fixed long-term correction factors780

applied without considering the inter-annual variability. Therefore, in Part II of the study,781

we will determine if a snow cover assimilation scheme can help HMA-corr-CHIRPS to782

mitigate much of the positive bias possibly caused by overly-corrected precipitation.783

3.3 Domain-scale evaluations784

3.3.1 Evaluation of meteorological forcings785

Figure 11 shows the multi-year averaged daily air temperature, and incident short-786

wave radiation before and after being downscaled as two sets of examples from 2003 to787

2016. In general, 0.01◦ downscaled forcings preserve the spatially and temporally aver-788

aged values obtained from original 0.25◦ (or 0.05◦) estimates relatively well (not all shown789

in Figure 11). The relative differences between the multi-year mean of the meteorolog-790

ical forcings before and after being downscaled are -0.02% in air temperature, 6.76% in791

specific humidity, 0.13% in surface pressure, -0.43% in wind speed, -0.74% in incident792

shortwave radiation, -0.24% in incident longwave radiation, and -0.11% in total precip-793

itation. Based on Table 6, the computed NMIs between before and after downscaled me-794

teorological forcing field range from 0.82 to 0.96, which indicate relatively high similar-795

ities shared between the two set of forcing fields. The lowest NMI of 0.82 is obtained from796

the incident shortwave radiation field evaluation, which is likely due to the introduction797

of multiple correction factors (i.e., clearness index, local illumination, cast-shadowing,798

sky obstruction, and topographic configuration; Rouf et al. (2019)) in the shortwave ra-799

diation downscaling procedure.800

Figure 12 shows the spatial distribution of the annual mean total precipitation ob-801

tained from HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS. The802

spatially-averaged annual mean precipitation difference between HMA-Coarse and HMA-803

CHIRPS is -5.89 mm/yr, which is largely attributed to the spatial aggregation proce-804

dure in the precipitation field used in the 0.25◦ estimate. Although the spatially-averaged805

annual mean precipitation difference between HMA-GMU and HMA-CHIRPS is neg-806

ligible (= -0.74 mm/yr), precipitation magnitudes still vary grid-by-grid between these807

two experiments. HMA-corr-CHIRPS yields the highest precipitation magnitude in terms808

of the spatially-averaged mean. For example, compared with the precipitation field used809
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in HMA-CHIRPS, the bias-corrected CHIRPS increases the spatially-averaged annual810

mean precipitation by 23%, with the majority of the notable increases in the mountain-811

ous regions. Despite of the discrepancies in magnitudes among all experiments, it is en-812

couraging to see that all four total precipitation field reveal similar patterns across HMA.813

For example, precipitation intensity exhibits a strong north-south gradient due to oro-814

graphic effects. Specifically, along the south slope of the Himalayas, annual precipita-815

tion is relatively high due to the prevalence of the Indian monsoon. While the height and816

extent of the Himalayas impose a significant barrier to atmospheric circulation patterns817

and the northward push of water vapor is greatly limited by the Himalayan mountain818

chain, regions north of the orographic barriers (e.g., Tibetan Plateau) receive little pre-819

cipitation throughout the year (Bookhagen & Burbank, 2010). Within the Tibetan Plateau820

region, there exists a gradual decrease of the annual precipitation from Southeastern Ti-821

betan Plateau to Northwestern Tibetan Plateau. The relatively dry Northwestern Ti-822

betan Plateau is dominated by the westerlies for almost the entire year, while the South-823

eastern Tibetan Plateau precipitation is more influenced by the summer monsoons as824

the center moves more toward the southeast (You et al., 2015; Zhang et al., 2019). Over-825

all, generally wetter regions in Bangladesh, eastern India, and the central and eastern826

Ganges plains are observed in all three products assessed in this study, which is consis-827

tent with the findings from Bookhagen and Burbank (2010) and Yoon et al. (2019) us-828

ing other different precipitation products.829

3.3.2 Evaluation of model estimates against satellite-based products830

Figure 13 shows the goodness-of-fit statistics computed for HMA-Coarse, HMA-831

GMU, HMA-CHIRPS, and HMA-corr-CHIRPS in the evaluation against the CGLS SWE832

product from 2006 to 2016 across part of HMA above latitude 35◦. It is expected that833

the worst agreement (i.e., relatively high magnitudes of bias, RMSE, ubRMSE, and low834

R) of all four experiments are colocated with relatively high elevation regions inside the835

Tibetan Plateau relative to the Taklamakan dessert due to the difference in different cli-836

mate regions. Although HMA-corr-CHIRPS yields the best performance in terms of the837

spatially-averaged bias (= -1.23 mm) compared with the rest of the experiments due to838

the higher total precipitation magnitude, it still yields the worst performance in terms839

of RMSE (= 9.87 mm) and ubRMSE (= 9.41 mm). Among HMA-Coarse, HMA-GMU,840

and HMA-CHIRPS, the two 0.01◦ SWE estimates obtained from HMA-GMU, and HMA-841
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CHIRPS generally outperform the 0.25◦ SWE estimates obtained from HMA-Coarse across842

all goodness-of-fit statistics. In terms of the spatially-averaged bias, both HMA-GMU843

and HMA-CHIRPS yield slight improvements relative to HMA-Coarse. The spatially-844

averaged bias is improved by 13% from -2.29 mm (HMA-Coarse) to -1.99 mm (HMA-845

GMU), and it is improved by 12% from -2.29 mm (HMA-Coarse) to -2.02 mm (HMA-846

CHIRPS). Similarly, the spatially-averaged R derived by HMA-GMU and HMA-CHIRPS847

are improved slightly relative to HMA-Coarse. In addition, both HMA-GMU and HMA-848

CHIRPS yield slight improvements in RMSE and ubRMSE relative to HMA-Coarse. Over-849

all, HMA-GMU yields the best performance in SWE estimates in the evaluation against850

the CGLS SWE product, followed by HMA-CHIRPS. This finding also corroborates the851

results in the ground-based snow depth evaluation that HMA-GMU achieves the high-852

est score in the snow estimates.853

Figure 14 shows the goodness-of-fit statistics computed for HMA-Coarse, HMA-854

GMU, HMA-CHIRPS, and HMA-corr-CHIRPS in the evaluation against the MODIS855

skin temperature product from 2003 to 2016 across HMA. The worst agreement (i.e., rel-856

atively high magnitudes of bias, RMSE, ubRMSE, and low R) of all four experiments857

are along the Himalayas. The spatially-averaged bias is negative for all four experiments,858

however, with noticeable positive biases present in Pakistan and Northern India along859

Ganges and Indus rivers, covered with cropland. As discussed in Xue et al. (2019), such860

positive biases are possibly attributed to the lack of irrigation related activities in the861

Noah-MP model, and therefore yield an overestimation of the surface temperature in this862

region across all experiments. Comparatively, HMA-Coarse yields the most agreement863

(i.e., relatively low magnitudes of bias, RMSE, and ubRMSE) with the MODIS skin tem-864

perature product among all experiments, whereas HMA-corr-CHIRPS yields the worst865

agreement, which is consistent with the finding obtained from ground-based skin tem-866

perature evaluation. Compared with HMA-Coarse, HMA-GMU and HMA-CHIRPS de-867

crease the spatially and temporally averaged skin temperature by 1.10 K (from 285.30868

K to 284.20 K) and 1.13 K (from 285.30 K to 284.17 K), respectively (not shown). This869

reduction in the skin temperature magnitude is mainly caused by the reduction in the870

incident shortwave radiation before and after being downscaled (see Figure 11). Since871

HMA-Coarse already yields a negative bias in the skin temperature in the evaluation,872

the reduction in the HMA-GMU or HMA-CHIRPS derived skin temperature magnitude873

further exacerbates the negative bias, which leads to significant degradations in terms874
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of both bias and RMSE. HMA-corr-CHIRPS skin temperature yields more negative bias875

than HMA-GMU and HMA-CHIRPS because more precipitation is associated with more876

chances of evapotranspiration, which will lead to further reduction in the skin temper-877

ature estimates. In Part II of the study, we will determine if a freeze/thaw assimilation878

scheme can help improving the performance of the 0.01◦ skin temperature estimates.879

4 Conclusions and discussions880

This first article of a two-part series focuses on demonstrating the skill of a hyper-881

resolution, offline terrestrial modeling system used for High Mountain Asia (HMA) re-882

gion. To this end, this study systematically evaluates four sets of model simulations ob-883

tained from different spatial resolutions including 0.01◦ (∼ 1-km) and 0.25◦ (∼ 25-km)884

at point-scale, basin-scale, and domain-scale. The advantages of employing a hyper-resolution885

modeling unit (versus the coarse-resolution modeling unit) within the Noah-MP model886

are demonstrated in this study, especially in terms of its ability in reducing systematic887

errors in model estimates. That is, over relatively complex terrain, the spatial downscal-888

ing scheme along with hyper-resolution modeling demonstrates superiority in estimat-889

ing air temperature, surface pressure, incident shortwave radiation, incident longwave890

radiation, specific humidity, precipitation, surface net shortwave radiation, surface net891

longwave radiation, snow depth, and total runoff based on point-scale and basin-scale892

evaluations. In terms of wind speed, skin temperature, and near-surface soil tempera-893

ture, mixed performance – sometimes improvements and sometimes degradations – are894

seen in 0.01◦ estimates relative to 0.25◦ estimates. The exact reason of the mixed per-895

formance seen in 0.01◦ estimates remains unclear, but may be partly attributed to mea-896

surement errors arising from scale mismatch or measurement height discrepancies.897

In the domain-scale evaluations against satellite-based products, HMA-GMU yields898

the largest agreement with the CGLS SWE product, and HMA-Coarse yields the largest899

agreement with the MODIS skin temperature product. We are aware that skill metrics900

computed during these comparisons are impacted by errors in the reference products.901

For example, the CGLS SWE product may yield higher uncertainty in estimating rel-902

atively deep snow especially over the forested regions. The accuracy of the MODIS skin903

temperature product is largely impacted by atmospheric attenuation effect, surface emis-904

sivity variability, as well as the procedure to derive the daily-averaged value. In this re-905

gard, systematic errors metrics such as bias and RMSE, may be secondary or tertiary906
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as compared with the random errors measures such as ubRMSE. In Part II of this study,907

we will present the effects of the joint assimilation of satellite-based snow cover and freeze/thaw908

observations into the system. We will present to what extent the assimilation procedure909

will improve or degrade the performance of the 0.01◦ estimate without assimilation, es-910

pecially for the random error measure metrics, such as ubRMSE. In addition, Part II will911

present that the over-correction issues seen in HMA-corr-CHIRPS could be reduced by912

the assimilation procedure.913

Among all meteorological forcings used to drive land surface model simulations,914

precipitation is undoubtedly one of the most important fields. Through evaluating four915

sets of model simulations forced by different precipitation products, it is seen that the916

0.01◦ estimate forced by an inaccurate precipitation representation would lead to mod-917

est degradations in model estimates relative to the 0.25◦ estimate. Among all 0.01◦ es-918

timates, in general, HMA-GMU and HMA-CHIRPS yield relatively high skills in model919

estimates. Key conclusions drawn from this study are summarized below:920

1) In the evaluation against ground-based measurements of air temperature, sur-921

face pressure, wind speed, incident shortwave radiation, incident longwave radiation, and922

specific humidity, it is found that the hyper-resolution modeling improves the skill in me-923

teorological forcing estimates (exclude precipitation) by 9% relative to coarse-resolution924

estimates using the sum of the weighted scores as the criteria (see Table 3). The hyper-925

resolution modeling outperforms the coarse-resolution meteorological forcing estimates926

(exclude precipitation) in 9 out of 12 sets of evaluation sources in terms of estimates ac-927

curacy and precision. In terms of precipitation, the downscaled GMU precipitation yields928

the highest skill across relatively high elevated regions, which improves the skill by 3%929

relative to the 0.25◦ aggregated precipitation across the complex terrain.930

2) In the evaluation against ground-based net shortwave radiation measurements,931

all 0.01◦ estimates generally outperform the 0.25◦ estimate obtained from HMA-Coarse,932

especially in terms of bias and RMSE. Compared with HMA-Coarse performance in net933

radiation estimates, HMA-CHIRPS improves the skill by 10%.934

3) In the evaluation against ground-based snow depth measurements, HMA-GMU935

yields the highest skill in snow depth estimates, followed by HMA-CHIRPS. Compared936

with HMA-Coarse performance in snow depth estimates, HMA-GMU improves the skill937

significantly by 39%.938
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4) In the evaluation against ground-based skin temperature measurements, although939

HMA-Coarse yields relatively high magnitude of the mean bias relative to both HMA-940

GMU and HMA-CHIRPS, HMA-Coarse yields the best performance among all exper-941

iments mainly due to its superiority in the relatively low ranges of IQRs achieved across942

all goodness-of-fit statistics. Overall, HMA-CHIRPS degrades HMA-Coarse skill in skin943

temperature estimates slightly by 6%.944

5) In the evaluation against ground-based near-surface soil temperature measure-945

ments, different experiments demonstrate their superiority with respect to different set946

of ground-based measurements. In general, compared with HMA-Coarse performance947

in soil temperature estimates, HMA-CHIRPS improves the skill slightly by 6%.948

6) In the evaluation against ground-based total runoff measurements obtained from949

five gauged basins, HMA-Coarse yields the best performance across all evaluated statis-950

tics in relatively flat regions. In relatively high elevated regions, 0.01◦ runoff estimates951

obtained from HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS are generally su-952

perior to 0.25◦ runoff estimates obtained from HMA-Coarse.953

7) 0.01◦ downscaled forcings preserve the spatially and temporally averaged val-954

ues obtained from original 0.25◦ (or 0.05◦) estimates relatively well with relatively high955

spatial similarity.956

8) In the evaluation against the CGLS SWE product, HMA-GMU yields the most957

agreement, followed by HMA-CHIRPS.958

9) In the evaluation against the MODIS skin temperature product, HMA-Coarse959

yields the most agreement.960
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a) b)

Figure 1. a) The SRTM derived HMA elevation map at a spatial resolution of 0.01◦. b) An

example of the spatially-distributed precipitation correction factors at a spatial resolution of

0.05◦ as applied in the bias-corrected CHIRPS product in February across HMA.
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Figure 2. a) HMA study domain with gauged basin outlines in black. Gauged Basin #1

through Basin #5 are shown in b) through f) with elevation information and basin outlet loca-

tions.
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Figure 3. Box plots of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column

4) computed from 0.25◦ (∼25-km) and downscaled GMU 0.01◦ (∼1-km) meteorological forcings

in the evaluation against ground-based CMA air temperature (row 1), CEOP air temperature

(row 2), DHM air temperature (row 3), PMD air temperature (row 4), WU air temperature (row

5), and CMA surface pressure (row 6). The study domain with dots showing ground-based sta-

tions for each evaluation source are shown in column 5. The plus signs and red lines in the box

plots are shown as outliers and medians, respectively. A close-up sub-figure of the DHM stations

is shown in column 6.
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Figure 4. Same as Figure 3, but for the evaluation against ground-based WU wind speed

(row 1), CMA wind speed (row 2), CEOP wind speed (row 3), CEOP incident shortwave ra-

diation (row 4), CEOP incident longwave radiation (row 5), and CEOP specific humidity (row

6).
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Figure 5. Box plots of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column

4) computed from HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS in the

evaluation against ground-based CMA daily precipitation (row 1), CEOP daily precipitation (row

2), DHM daily precipitation (row 3), PMD daily precipitation (row 4), and WU daily precipi-

tation (row 5). The study domain with dots showing ground-based stations for each evaluation

source are shown in column 5. The plus signs and red lines in the box plots are shown as outliers

and medians, respectively. The prefix of the experimental name of “HMA” is omitted for clarity.
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Figure 6. Average bias computed for 25-km and GMU 1-km estimates of a) wind speed, b)

air temperature, c) surface pressure, d) precipitation, e) incident shortwave radiation, f) incident

longwave radiation, and g) specific humidity in the evaluation against all ground-based stations

as a function of seasons. DJF= December, January, February; MAM = March, April, May; JJA

= June, July, August; SON = September, October, November.
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Figure 7. Same as Figure 5, but for the evaluation against ground-based CEOP net short-

wave radiation (row 1), CEOP net longwave radiation (row 2), CHARIS snow depth (row 3),

CEOP snow depth (row 4), GSOD snow depth (row 5), CMA skin temperature (row 6), and

CEOP skin temperature (row 7).
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Figure 8. Same as Figure 5, but for the evaluation against ground-based CTP-SMTMN 0-5

cm soil temperature (row 1), CEOP 3 cm soil temperature (row 2), CEOP 4 cm soil tempera-

ture (row 3), SETORS 4 cm soil temperature (row 4), and CEOP 5 cm soil temperature (row

5). Note there is only one CEOP station measuring 3 cm soil temperature, and there is only one

SETORS station. A close-up sub-figure of the CTP-SMTMN stations is shown in column 6.
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Figure 9. Monthly runoff estimates obtained from HMA-Coarse, HMA-GMU, HMA-CHIRPS,

and HMA-corr-CHIRPS for the five gauged basins in the evaluation against ground-based mea-

surements.
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Figure 10. Statistics of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column

4), and NSE (column 5) computed from HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-

corr-CHIRPS in the evaluation against five sets of ground-based monthly runoff measurements.

Each row represents statistics for each basin. In addition, experiments with the best goodness-of-

fit statistics for each basin are marked with grey bars or noted with numbers if their bars are too

tiny to visualize.
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Figure 11. Examples of multi-year (2003-2016) average of daily air temperature, and short-

wave radiation before and after being downscaled across HMA. m in the title denotes the

domain-averaged value.
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Figure 12. Annual mean total precipitation computed from a) HMA-Coarse, b) HMA-GMU,

c) HMA-CHIRPS, and d) HMA-corr-CHIRPS. m in the title denotes the domain-averaged value.
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Figure 13. Goodness-of-fit statistics computed for HMA-Coarse (column 1), HMA-GMU (col-

umn 2), HMA-CHIRPS (column 3), and HMA-corr-CHIRPS (column 4) at a spatial resolution of

0.25◦ in the evaluation against the CGLS SWE product. Note the domain is truncated because

the CGLS SWE product only covers area above latitude 35◦N. Each row represents one set of

goodness-of-fit statistics. m in the title denotes the domain-averaged value.

–44–



A
ut

ho
r 

M
an

us
cr

ip
t 

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Atmospheres

Figure 14. Goodness-of-fit statistics computed for HMA-Coarse (column 1), HMA-GMU (col-

umn 2), HMA-CHIRPS (column 3), and HMA-corr-CHIRPS (column 4) at a spatial resolution of

0.25◦ in the evaluation against the MODIS skin temperature product. Each row represents one

set of goodness-of-fit statistics. m in the title denotes the domain-averaged value.
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Table 2. Summary of gauged basins shown in Figure 2. CHARIS = Contribution to High Asia

Runoff from Ice and Snow project; DHM = Department of Hydrology and Meteorology in Nepal;

GRDC = Global Runoff Data Centre.

Basin name Drainage area Data Source Mean Elevation

(Figure number) (km2) (m)

Basin #1 (Figure 2b) 654.9 DHM 1637.9

Basin #2 (Figure 2c) 4629.1 DHM 4329.1

Basin #3 (Figure 2d) 10320.6 CHARIS 3092.8

Basin #4 (Figure 2e) 29110.9 CHARIS 3534.2

Basin #5 (Figure 2f) 110350.0 GRDC 680.7
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Table 3. Summary of meteorological forcings evaluation (except for precipitation; see precip-

itation evaluation in Table 4) in the comparisons against ground-based stations. Forcing fields

from ECMWF before downscaling at 0.25◦ and after downscaling at 0.01◦ are evaluated. The

final weighted scores are calculated following the method described in Section A and higher

weighted scores are bold. CMA = Chinese Meteorological Administration; CEOP = Coordinated

Enhanced Observing Period project; DHM = Department of Hydrology and Meteorology in

Nepal; PMD = Pakistan Meteorology Department; WU = Weather Underground.

Data Source Number of Variables Weighted score Weighted score

stations (Mean elevation) (temporal scale) by 0.25◦ by 0.01◦

CMA 30 (2442.7m) Air temperature (daily) 3.47 3.76

CEOP 16 (4263.5m) Air temperature (daily) 3.49 3.94

DHM 6 (2689.7m) Air temperature (daily) 3.41 3.04

PMD 3 (1360.7m) Air temperature (daily) 2.83 3.55

WU 15 (393.9m) Air temperature (daily) 3.56 3.89

CMA 30 (2442.7m) Surface pressure (daily) 2.29 4.00

WU 14 (414.1m) Wind speed (daily) 3.97 3.94

CMA 30 (2442.7m) Wind speed (daily) 3.80 3.86

CEOP 18 (4264.4m) Wind speed (daily) 3.96 3.71

CEOP 16 (4263.5m) Incident shortwave (daily) 3.71 3.93

CEOP 7 (4684.8m) Incident longwave (daily) 3.70 3.98

CEOP 14 (4181.2m) Specific humidity (daily) 3.38 3.65

Total scores 41.57 45.25
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Table 5. Summary of reference satellite-based products used for evaluation. MODIS = Moder-

ate Resolution Imaging Spectroradiometer; CGLS = Copernicus Global Land Service.

Data Source Temporal coverage Variables (temporal scale)

MODIS 01 Feb 2003 - 30 Nov 2016 Skin temperature (daily)

CGLS 01 Jan 2006 - 30 Nov 2016 SWE (daily)
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Table 6. The normalized mutual information (NMI) index computed between 25-km and 1-

km multi-year (2003-2016) average of daily forcing estimates (except precipitation), as well as

between 5-km and 1-km multi-year average of daily precipitation estimates.

Forcing field NMI (-)

Air temperature 0.89

Specific humidity 0.95

Surface pressure 0.89

Wind speed 0.96

Downward surface shortwave radiation 0.82

Downward surface longwave radiation 0.93

Precipitation 0.93
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A A scoring system for point-scale evaluations961

Many evaluation data sources provide more than one station to compare against962

(see Tables 3 and 4). Therefore, the mean and the range (or spread) of the goodness-963

of-fit statistics (including bias, RMSE, ubRMSE, and R) are computed as measures for964

estimates accuracy and precision, respectively. The range of each set of goodness-of-fit965

statistics is calculated as the difference between the third quartile and the first quartile966

(a.k.a., interquartile range (IQR)). The lower the IQR is, the lower the spread is, and967

the higher the precision is achieved by the corresponding experiment. However, if the968

number of stations used for evaluation is less than three, the IQRs of goodness-of-fit statis-969

tics are not calculated, and only the means of them are calculated. As a second step, for970

each set of the goodness-of-fit statistics, we normalize the value (either mean or IQR of971

the goodness-of-fit statistics) with respect to the best statistics obtained across all ex-972

periments. Then, for each set of the model estimate, we sum up the normalized scores973

across all four goodness-of-fit statistics for its accuracy (mean) and precision (IQR) mea-974

sures, respectively. Third, we give equal weight (50% vs. 50%) to the accuracy and the975

precision measures to derive the weighted score. Note that in the absence of the preci-976

sion measure when the number of stations used for evaluation being less than three, we977

give all weight (100%) to the accuracy measure. Finally, the experiment with the high-978

est weighted score is deemed as the best model.979

Using the CEOP air temperature evaluation as an example, through averaging the980

bias computed via comparing against 16 ground-based stations, the mean bias of the air981

temperature at 0.25◦ (0.01◦) is -4.98 K (-3.38 K). Thus, the normalized score of the 0.25◦982

(0.01◦) air temperature estimates is 0.68 (1.00) in terms of mean bias. Similarly, the IQR983

of bias of the air temperature at 0.25◦ (0.01◦) is 4.04 K (3.46 K). Thus, the normalized984

score of 0.25◦ (0.01◦) air temperature estimates is 0.85 (1.00) in terms of the bias IQR.985

Similar steps were also taken for other goodness-of-fit statistics. Then, the sum of the986

normalized scores in the mean of the goodness-of-fit statistics for air temperature at 0.25◦987

(0.01◦) is 3.44 (3.99). The sum of the normalized scores in the IQRs of the goodness-988

of-fit statistics for air temperature at 0.25◦ (0.01◦) is 3.54 (3.89). Finally we give equal989

weight (50% vs. 50%) to the accuracy and the precision measures. As a result, in the990

evaluation against CEOP air temperature measurements, the weighted score for air tem-991

perature at 0.25◦ (0.01◦) is 3.49 (3.94). Since the downscaled air temperature yields a992

higher weighted score than the original air temperature, we deem that the downscaled993
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air temperature performs better than the air temperature at the coarse spatial resolu-994

tion.995
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