SUPPLEMENTARY INFORMATION

The HMP-P synthase of *Legionella pneumophila* (Lpg1565) suggests a difference between the metabolic networks of Bacteria and Yeast

Michael D. Paxhia¹, Michele S. Swanson² and Diana M. Downs^{1*}

¹Department of Microbiology, University of Georgia, Athens, GA 30606 ²Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48019

* To whom correspondences may be addressed: Dr. Diana Downs, Department of Microbiology, University of Georgia, Athens, GA, USA, <u>dmdowns@uga.edu</u>

Running Title: HMP-P synthase in Legionella pneumophila

Keywords: Hydroxymethyl pyrimidine, HMP, Thiamine synthesis, *THI5*, *Legionella* pneumophila, lpg1565

Carbon Source and Additions	Final Cell Yield			
	(OD_{650})			
Glucose	0.08 ± 0.01			
	0.00 - 0.01			
Glucose + 100 nM THZ	0.09 ± 0.01			
Glucose + 10 nM HMP	0.28 ± 0.01			
Glucose + 20 nM HMP	0.47 ± 0.03			
Glucose + 100 nM THZ + 10 nM HMP	0.53 ± 0.01			
Ribose	0.08 ± 0.01			
Ribose + 10 nM HMP	0.42 ± 0.01			

Table S1 - HMP requirements with different carbon sources

Final cell yield (OD₆₅₀) was recorded after 15 hours of growth with shaking at 37 °C. Values are averages \pm standard deviations of three biological replicates.

Figure S1 – Representative LpThi5-His₆ protein purification

After purification by Ni-NTA chromatography, 1.5 μ g of purified protein was denatured in SDS-PAGE loading dye (60 mM Tris pH 6.8, 0.1 M DTT, 2 % SDS, 10 % Glycerol) by incubating at 95 °C for 10 minutes, separated by SDS-PAGE using a 12 % acrylamide gel, stained with Coomassie Brilliant Blue, and purity was determined by TotalLab Quant v11 densitometry software. *Lp*Thi5 was enriched to > 85 % purity.

L. L. L. S. B. C. S. M.	pneumophila lansingensis longbeachae cherrii anisa pombe maydis albicans cerevisiae guilliermondii	1 M 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	AAMSSLKSR MSTLSSR MSALSTR MSALSTR MSALSTR MSTNK MSTNK MSTNK MSTDK MSTDI	VTLLLNWYI TTLLLNWY2 TTLLLNWY2 TTLLLNWY2 TTLLLNWY2 ITFLTNWE2 ITFLTNWE2 ITFLTNWE2 ITFLLNWQB ITFLLNWQB ISFLLNWE2	NPYHTPI NPYHTPI NPYHTPI NPYHTPI NPYHTPI NPYHIPI APYHIPI APYHIPI APYHIPI	LVAQQLG FVAQALG FIAQALG FVAHSLGY FVAHSLGY FLAQTRGY YLAQSKGY FLAQTKGY FLAQIKGY	YSEEDIK YQDEGIK YQQEGIK YQQEGIK YQQEGIK YEREGIE (FKDEGIK (FKDENLD FKEQGLD YQQEGIR	LAILEPAD LAILEPAD LAILEPSD LAILEPSD LAILEPSD VAILEPTN VALLEPND IAILEPSN MAILEPTN LSILEPSN	PSDVTEI PSDVTEI PSDVTEI PSDVTEI PSDVTEI PSDVTEI PSDVTEI PSDVTEI PSDVTEI	IVGLGT VGLGR VGRGH VGMGH VGMGH IGSGK VGSGK VGSGK LIGSGK
L. L. L. S. B. C. M.	pneumophila lansingensis longbeachae cherrii anisa pombe maydis albicans cerevisiae guilliermondii	61 V 59 V 59 V 57 V 57 V 57 V 57 V 57 V	/DFGVKAMI /DFGVKAMI /DFGVKAMI /DFGVKAMI /D MGL KAMI /D MGL KAMI /D MGL KAM I /D MGL KAM I /D MGL KAM V	HTVAAKAKO HTTAARAKO HTLAARAKO HTLAARAKO HTLAARAKO HTLAAKARO HTLAAKARO HTLAAKARO HTLAAKARO	YPVTSIG YPVTSIG YPVTSIG YPVTSIG YPVTSIG YPVTSEG PVVSVA EPVTSVA	TLLDEPPT TLLDEPPT TLLDEPPT TLLDEPPT SLLDEPPT SLLDEPFT SLLDEPFT SLLDEPFT SLLDEPFT SLLDEPFT	rGLIALKS rGLIALKS rGLIALKS rGLIALKS rGLITLKG rGVTYLTS rGVTYLKG rGVTYLKG rGILYLKA	SGI-NSFQ SGI-TSFQ SGI-NSFQ SGI-SSFQ SGI-SSFQ NGI-NDFK SGITSDFQ SGITSDFQ SGITGDFH	DIVGKR DIIGKR DIVGKR DIVGKR DIVGKR DIKGKR TIKGKR SLKGKR SLKGKR	/GYIGE /GYIGE /GYIGE /GYIGE [GYVGE [GYVGE [GYVGE [GYVGE [GYVGE
L. L. L. S. B. S. M.	pneumophila 1 lansingensis 1 longbeachae 1 cherrii 1 anisa 1 pombe 1 maydis 1 albicans 1 guilliermondii1	20 E 18 E 18 E 18 E 18 E 18 E 18 E 17 E 17 E 17 E	FGKKIIDDL FGKKILDNL FGKIIIDNL FGKIIIDNL FGKIQLDDL FGKIQVDEL FGKIQVDEL FGKIQVDEL	ASLAGIDP ATLAGIDTN ANLAGIDTS AQLAGIDS AKLAGIEP CSKFGLSPS TAHYGMSPS TKHYGMTPI TKHYGMTPI	SYKTVRI SYETVRI SYETVRI SYETVRI DYTATRC DYQAVRV DYVAVRC DYTAVRC	GMNVTDA GMNVTDA GMNVTDA GMNVTDA GMNVTDA GMNVTRS GMNVAKY GMNVAKY GMNVAKY	YRDVIDT CRDLIDT CRDLIDT CRDLIDT CRDLIDT INGEIDG ITGEIDA LEGTIDC IEGKIDA	GIGFINFQ GIGFINFQ GIGFINFQ GIGFINFQ GIGFECMQ GIGIECMQ GIGIECCQ GIGIECCQ GIGIECIQ	KVELEHI RVELEHI KVELEHI KVELEHI QVELERI QVELERI QVELEES QVELEES	IC IR IR VCVSQG VLVLQK ALKEQG YLAKQG YLKKQG
L. L. L. S. S. M.	pneumophila 1 lansingensis 1 longbeachae 1 cherrii 1 anisa 1 pombe 1 maydis 1 albicans 1 guilliermondii1	76 - 74 - 74 - 74 - 74 - 76 F 77 F 77 F 77 F 77 F	GETVFL GETVFL GETVFL GETVFL RPRSDVQML RARDEVQML KDSNDAKML RPASDAKML RPIEDAQML	RIDQLAGLG REDQLAGLG REDQLAGLG REDQLAGLG REDQLAGLG RIDELAQLG RIDELAQLG RIDELAQLG RIDELACLG RIDQLAELG	GCCCFCSI GCCCFCSI GCCCFCSI GCCCFCSI GCCCFCFI GCCCFCFI GCCCFCTI GCCCFCTI GCCCFCTI	QFIVPEI1 QFIVPEQ1 QFIVPERN QFIVPERN QFIVPERN LYIAHDEH LYIGNNAH LYIGNNAH LYICNDEH LYICNDEH	L – QQPEL L – QQPAL L – AQPQL L – KNPET L – KNPET L AKHPDK I ERHPDA I AENSQA L AENSQA C L KKNPDK	VKGFLRAT VKGFLNAT IKGFLKAT IKGFLKAT IKAFLRAT VRAFLRAT VKKFLKAT VKKFLKAV	QRGAAY QRGAAF QRGAAF QRGAAF QRGAAF KRATDE KRATDE KRATDE KKATDY KRATDY KRATDU	TEKPE TEQPD TENPD TENPD LAQPE LAQPE LAPR LAPR LANPQ
L. L. L. S. C. S. M.	pneumophila 2 lansingensis 2 longbeachae 2 cherrii 2 anisa 2 pombe 2 maydis 2 albicans 2 guilliermondii2	32 F 30 F 30 F 30 F 30 F 30 F 37 F 37 F 37 F	CAYELLCQA CAYELLCQA CAYELLCRA CAYELLCKT CAYELLCRM TYKEYIHF CAWAEFCAA CAWAEFCAA CAWAEYGNF CAWAEYIDF SWAQFCDF	KPQLRTPLY QPGLRTPMY KPQLRTPMY KPQLRTPMY KREMGSELF KRAMDTPTN KPTMQTDLN KPQLANEVN	QKIFTRT KTIFTRT HTIFIRS HTIFIRS HTIFIRS IREQFERC IRKIFQRC YKQYQRC YKQYQRC	L PFFSRTI L PFFSRNT L PFFSRTI L PFFSRTI L PFFSRTI FAYFSHD FAYFSHD YAYFSESI YAYFSSSI YAYFSESI	INVDRDW INVDRDW INVDRDW INVERDW INVERDW SNVPRDW ONVQRDW YNVHRDW YNVHRDW	DKVGRYTK GKVGSYCK NKVGRFGK NKVGRFGK NKVGRFGK NKVTNYSK RKVTRYGK RKVTGYGK RKVTGYGK	HLKIIDE HLGIINI HLGVIDI HLGVIDE RLGVIDE RLGVIDE RLGVLNE RLGVLNE RLAILPE RLEILPS	IHFDIS SFNVA SFDIH SFSVH 2DFE IAFT INYV SDYV SDYV
L. L. L. S. B. C. S. M.	pneumophila 2 lansingensis 2 longbeachae 2 cherrii 2 anisa 2 pombe 2 maydis 2 albicans 2 guilliermondii2	92 Q 90 S 90 S 90 A 95 E 95 E 95 E 95 E	QCYTNRELP CCYTNEWLP CCYTNELLP CCYTNELLP CCYTNELLP NCTNGYLT NYTNEYLA NYTNEYLS NYTNEYLS NYTNEYLS NYTNEYLS	DTPYSDL KMPHSDL KMPHSDL KMPHSDL WELDPDEKI WGLQAEAEI WPEPKEVDI WPEPKEVSI WFEPEEVSI WKEPEETAI	PHARMAN PHARMAN PHARMAN PHARMAN PHARMAN PHEAQ PLEAQ RQ	IACCLEN- IACCVSE- IACCVSE- IACCLEE IACCLEE IACLES MVELQEGV MLKHQEE MAIHQEK MASHQEE	KQKCGVF KQNGGFK KTCCGYK CRQEGTFK CRACGGYR	SGNSLRY- RLESMAGK RLVLA RLALPA- RLVV	VF TVVGAA7	EPANL APASA

Figure S2 – CLUSTAL Omega alignment of diverse Legionella and Eukaryotic Thi5

Diverse Thi5 orthologs from the Eukaryotic clade and the *Legionella* clade of Bacteria were aligned using the CLUSTAL Omega algorithm (Sievers *et al.*, 2011) to highlight conserved, similar, and non-conserved structural features across these two domains. Strictly conserved residues are highlighted in black, similar residues are highlighted in gray, and non-conserved residues are annotated with a white background.

LITERATURE CITED

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J.D., and Higgins, D.G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol* 7: 539.