
702  |     Indoor Air. 2021;31:702–716.wileyonlinelibrary.com/journal/ina

Received: 29 May 2020  | Revised: 12 September 2020  | Accepted: 25 September 2020

DOI: 10.1111/ina.12760  

O R I G I N A L  A R T I C L E

Modeling residential indoor concentrations of PM2.5, NO2, 
NOx, and secondhand smoke in the Subpopulations and 
Intermediate Outcome Measures in COPD (SPIROMICS) Air 
study

Marina Zusman1  |   Amanda J. Gassett1 |   Kipruto Kirwa1 |   R. Graham Barr2 |   
Christopher B. Cooper3 |   MeiLan K. Han4 |   Richard E. Kanner5 |   Kirsten Koehler6  |   
Victor E. Ortega7 |   Robert Paine 3rd8 |   Laura Paulin9 |   Cheryl Pirozzi10 |   Ana Rule6 |   
Nadia N. Hansel11 |   Joel D. Kaufman1,12,13

1Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
2Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA
3Department of Medicine, UCLA School of Medicine, Los Angeles, CA, USA
4Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
5Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah Health Sciences Center, Salt Lake 
City, UT, USA
6Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
7Section on Pulmonary, Critical Care, Allergy and Immunologic Diseases, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, 
NC, USA
8Division of Pulmonary Medicine, University Of Utah Hospital, Salt Lake City, UT, USA
9Pulmonary/Critical Care, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
10University of Utah Hospital, Salt Lake City, UT, USA
11Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
12Department of Medicine, University of Washington, Seattle, WA, USA
13Department of Epidemiology, University of Washington, Seattle, WA, USA

© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

Correspondence
Joel D. Kaufman, Department of 
Environmental and Occupational Health 
Sciences, University of Washington, 
Seattle, WA, USA.
Email: joelk@uw.edu

Funding information
National Institute of Environmental 
Health Sciences, Grant/Award Number: 
K23ES025781, P30ES007033 and 
R01ES023500; National Heart, Lung, 
and Blood Institute, Grant/Award 
Number: HHSN268200900013C, 
HHSN268200900014C, 
HHSN268200900015C, 
HHSN268200900016C, 
HHSN268200900017C, 
HHSN268200900018C, 
HHSN268200900019C, 

Abstract
Increased outdoor concentrations of fine particulate matter (PM2.5) and oxides of ni-
trogen (NO2, NOx) are associated with respiratory and cardiovascular morbidity in 
adults and children. However, people spend most of their time indoors and this is par-
ticularly true for individuals with chronic obstructive pulmonary disease (COPD). Both 
outdoor and indoor air pollution may accelerate lung function loss in individuals with 
COPD, but it is not feasible to measure indoor pollutant concentrations in all partici-
pants in large cohort studies. We aimed to understand indoor exposures in a cohort 
of adults (SPIROMICS Air, the SubPopulations and Intermediate Outcome Measures 
in COPD Study of Air pollution). We developed models for the entire cohort based on 
monitoring in a subset of homes, to predict mean 2-week–measured concentrations 
of PM2.5, NO2, NOx, and nicotine, using home and behavioral questionnaire responses 
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1  |  INTRODUC TION

Air pollution is a well-established risk factor for a variety of adverse 
health effects.1,2 Epidemiological studies have found an association 
between air pollution levels and increased risk of cardiovascular and 
respiratory disease. Increased concentrations of fine particulate mat-
ter (PM2.5) and oxides of nitrogen (NO2, NOx) assessed in the ambient 
environment have been associated with adverse respiratory out-
comes, including chronic obstructive pulmonary disease (COPD).2-8

While these relatively consistent associations have been seen 
with outdoor pollutant concentrations, the majority of adults, es-
pecially older adults, spend most of their time indoors. Individuals 
with COPD spend even more time at home than their age-matched 
counterparts. Both exposure to outdoor and to indoor air pollution 
may accelerate lung function loss in individuals with COPD and lead 
to exacerbations.

Spending most of residents’ time at home and only a small part 
of time outside the house or in transit suggests that characterizing 
indoor exposures may improve our understanding of these relation-
ships, since the severity of adverse respiratory outcomes linking air 
pollution depends on the concentration, frequency, and duration of 
the personal exposure to each pollutant.1,9-11

Researchers tend to classify residential indoor exposures as ei-
ther the result of indoor-generated pollutants or the result of emis-
sions from ambient origin. High outdoor concentrations can increase 
indoor concentrations of particulate pollution. Potential sources of 
indoor-generated air pollution include fuel-burning combustion pro-
cesses, biologic agents, building and furnishing materials, tobacco 
smoke, and different heating/cooling devices. Indoor concentra-
tion can vary due to characteristics of the indoor environment.12 
Outdoor-derived pollutants are found in houses due to infiltration of 
these substances into the residential environment. The dynamics of 
outdoor-generated pollutants indoors, their concentration, and their 
reactivity are important factors for indoor pollution modeling that 
require detailed information on residence-specific characteristics 
and resident behavior data that are typically unavailable, especially 
for a large multi-center cohort.

Since long-term individual indoor exposure measurement is a 
complex task which would be expensive for investigators and bur-
densome for participants, most studies directly measuring indoor 

exposure have small sample sizes13,14 and the majority of studies 
rely on outdoor exposure or modeled indoor concentrations,15,16,17 
or examine personal exposure levels to specific air pollutants.18-22

SPIROMICS Air, an ancillary study of NHLBI’s Subpopulations 
and Intermediate Outcome Measures in COPD Study (SPIROMICS) 
multi-center prospective cohort study, was designed to examine the 
relationship between disease progression in individuals with COPD 
and short- and long-term exposure to air pollutants (particulate mat-
ter with aerodynamic diameter less than 2.5 μm [PM2.5], nitrogen di-
oxide [NO2], nitrogen oxides [NOx], sulfur dioxide [SO2], ozone [O3], 
black carbon [BC], and secondhand smoke [SHS] (SO2 and O3 are not 
presented here.) Participants were enrolled in twelve clinical centers 
across the United States (Winston-Salem, Ann Arbor, San Francisco, 
Los Angeles, New York City, Salt Lake City, Iowa City, Baltimore, 
Denver, Philadelphia, Birmingham, and Chicago) from 2012 to 2016 
for SPIROMICS (see Figure 1). SPIROMICS Air was initiated in 2013.23

Since it was not feasible to measure exposures for all 2982 
SPIROMICS participants, we chose a modeling approach to assess 
each participant's long-term exposure to various air pollutants. In 
this study, we used indoor concentrations of PM2.5, NO2, NOx, and 
nicotine measured in a subset of homes, estimates of ambient-or-
igin-infiltrated concentrations, and questionnaire-based behav-
ioral and residence data (questionnaire responses are available for 
all SPIROMICS participants) to develop an individual-based model 
for residential indoor pollutant concentrations in SPIROMICS Air. 
We aimed to generalize each pollutant prediction model to the full 

HHSN268200900020C, U01 HL137880 
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available in the full cohort. Models incorporating socioeconomic, meteorological, be-
havioral, and residential information together explained about 60% of the variation in 
indoor concentration of each pollutant. Cross-validated R2 for best indoor prediction 
models ranged from 0.43 (NOx) to 0.51 (NO2). Models based on questionnaire re-
sponses and estimated outdoor concentrations successfully explained most variation 
in indoor PM2.5, NO2, NOx, and nicotine concentrations.

K E Y W O R D S
air pollutants, exposure assessment, indoor exposure questionnaires, indoor monitoring, 
prediction modeling, residential behavior

Practical Implications

• Questionnaire responses regarding home characteris-
tics and residential behaviors explained a majority of 
the variation in indoor concentrations of key ambient air 
pollutants and secondhand smoke exposure.

• These model-based estimates can be used in epidemio-
logical analyses in this cohort, taking into account re-
maining uncertainties.

• This approach and these models may be applicable to 
other populations with similar characteristics.



704  |    ZUSMAN et Al.

SPIROMICS cohort in order to estimate each participant's indoor ex-
posure to PM2.5, NO2, NOx, and nicotine.

2  |  METHODS

2.1  |  Study design and monitoring

SPIROMICS enrolled 2,982 participants aged 40-80 years at base-
line from 12 clinical centers including 202 non-smokers without 
airflow obstruction, 944 smokers without airflow obstruction, and 
1836 current and former smokers with COPD.

Figure 1 shows jittered residential locations of the 27-30 par-
ticipants (total of 216) from each of seven SPIROMICS Air clinical 
centers (Winston-Salem, Ann Arbor, San Francisco, Los Angeles, 
New York City, Salt Lake City, and Baltimore) who were selected to 
participate in detailed individual exposure assessment campaigns 
between 2014 and 2016.23 Characteristics of the full SPIROMICS 
cohort and SPIROMICS Air participants who completed the two-
week monitoring are provided in Table S1.

Measuring pollutant concentrations in each of the 2982 resi-
dences was not possible, so we measured pollutant concentrations in 
a sample of SPIROMICS participants and developed prediction models 
using the information from home characteristics and residential be-
haviors questionnaires administered to all SPIROMICS participants. 
Convenience samples of approximately 30 participants that were 
available during pre-determined sampling periods in each area were 
selected, with COPD Stratum 3 and 4 participants prioritized for inclu-
sion. Since this work builds on previous work in the MESA cohort, lo-
cations in non-MESA cities were observed in two contrasting seasons. 
Other locations were observed in one season. Pollutant measure-
ments were made inside and outside those participants’ homes.20,23

2.1.1  |  Indoor, outdoor, and personal 
exposure sampling

Two-week–integrated paired indoor and outdoor measurements of 
PM2.5, NO2, and NOx were collected at the 216 homes. In Ann Arbor, 
San Francisco, and Salt Lake City, measurements were collected 

F I G U R E  1  Map of regions covered by SPIROMICS and SPIROMICS Air with the location of participants, indoor/outdoor monitoring sites 
Note: All participants’ locations have been jittered. Black dots represent the locations that were reported by participants at the time of 
enrollment. Participants that were not recruited from one of the seven SPIROMICS Air sites were excluded from the analysis.



    |  705ZUSMAN et Al.

during two campaigns to account for seasonal differences (winter 
and summer in Ann Arbor and Salt Lake City and fall and spring 
in San Francisco). Ogawa passive samplers were used to measure 
NO2, NOx, and O3. PM2.5 mass was measured by collecting particles 
on a 37-mm Teflon filter within a Harvard Personal Environmental 
Monitor (HPEM).24 Indoors, these were connected by silicone tubing 
to a TSI SidePak SP530 pump, programmed to run on a 50% duty 
cycle (alternating 5 minutes on and off). These pumps were also 
used to collect outdoor PM2.5 measurements in residences with-
out an outdoor sampling space (some apartments or condo units), 
where samplers were attached to an arm extended from a window. 
Outdoors, HPEMs were connected to MEDO VP0125 pumps, with 
a similar 50% duty cycle. Both types of pumps were adjusted to 
achieve a target flow rate of 1.8 liters per minute. Nicotine 2-week 
indoor-integrated measurements were collected using a sodium bi-
sulfate passive badge.

Indoor sampling units were preferably placed in a room where 
participants spent the majority of their waking hours. Outdoor units 
were placed away from particle sources such as grills or smoking 
areas.

PM2.5 mass concentrations were gravimetrically determined 
from Teflon filters weighed in a temperature and humidity con-
trolled environment25 using standard filter weighing procedures.26 
Ogawa passive samplers were used to measure NO2 and NOx using 
ion chromatography and ultraviolet spectroscopy. Concentrations of 
each pollutant were calculated using equations provided by Ogawa 
& Co..24 Nicotine concentrations were determined from passive air 
samplers using a sodium bisulfate–treated filter with a polycarbon-
ate filter diffusion screen.27 Nicotine content was analyzed using gas 
chromatography with a nitrogen phosphate detector. The LOD for 
the passive air nicotine badges was 0.021 μg/mL.28

Additional information about pollutant monitoring and analytical 
methods used has been previously described in Hansel et al23 and 
Cohen et al.20

2.1.2  |  Temperature and relative humidity

Indoor temperature and humidity were monitored using Onset 
HOBO data loggers.29 Outdoor temperature and relative humidity 
(RH) data were obtained from government sources30 at meteoro-
logical stations nearest to each study clinic. The data were averaged 
over the 2-week periods that matched the 2-week monitoring period 
(with about 5-10 days' variability in the start/end dates) to provide 
seasonal variation across sites.

2.1.3  |  Questionnaires

We integrated information from several instruments. All partici-
pants answered questions regarding smoking behaviors, including 
SHS exposure. These were administered annually for the 3 years of 
follow-up, and the questionnaire instruments are available online,31 

whether or not they participated in the home monitoring. A home in-
formation questionnaire on residence characteristics, residential be-
haviors, and approximate amounts of time spent indoors, outdoors, 
and in transit was completed by 2054 SPIROMICS participants once 
during 2014-2017 (see Table 1).

Field technicians completed a home inspection form for partici-
pants included in the air monitoring subset to verify the presence of 
appliances, window types, and other home characteristics. During 
each 2-week monitoring period, participants logged cooking activity, 
equipment use, amount of time spent indoors and outdoors, and any 
combustion. Research staff deploying home monitoring equipment 
also assessed the presence of specific appliances in the home and 
assessed relevant environmental characteristics of the residence.

2.1.4  |  Neighborhood-scale socioeconomic 
information

Percent of owner-occupied housing units, education level of adults 
(age 25+), and median household income data were obtained at 
the block group level (an area that typically encompasses between 
600 and 3000 people), based on the US Census and the American 
Community Survey sources.32

2.1.5  |  Estimation of PM2.5 infiltration

To estimate the level of ambient-derived PM2.5 concentrations in-
side each home, we used a model for outdoor PM2.5 that we had 
previously developed and validated in the MESA Air study.33 In that 
model, the proportion of ambient-origin PM2.5 that infiltrates into 
dwellings was estimated based on paired indoor-outdoor filters with 
elemental sulfur as a tracer. We employed infiltration coefficients 
from that model to calculate levels of indoor PM2.5 in SPIROMICS 
Air households estimated to be of ambient origin.

2.2  |  Exposure modeling

The exposure assessment design for SPIROMICS Air has been de-
scribed in Hansel et al (2017) and has already been successfully used 
in MESA Air study.20,33,34 Briefly, cohort-specific air monitoring was 
conducted to support the development of air pollution prediction 
models that can be generalized to the study population. These mod-
els are based on spatiotemporal air pollution prediction methods 
that incorporate the study-specific outdoor monitoring data.23,34 
The SPIROMICS Air exposure prediction modeling structure for 
PM2.5, NO2, NOx, and SHS, with the available data sources, is shown 
in Figure 2. The left wing of Figure 2 shows the outdoor predicted 
exposure modeling with the data that are incorporated into outdoor 
prediction models for PM2.5, NO2, NOx, and ozone, although ozone 
is not further discussed in this paper. The right wing of this struc-
ture demonstrates indoor prediction model with the available data 
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resources (the scope of this paper is highlighted by the content of 
the red rectangle). Indoor and outdoor measurements for indoor 
exposure prediction modeling were collected inside and outside 
participants’ homes. This paper focuses on indoor exposure mod-
eling for PM2.5, NO2, NOx, and SHS using data from questionnaires, 
predicted infiltration estimates, and neighborhood socioeconomic 
data.

2.2.1  |  Indoor exposures

Indoor pollutant concentration can be calculated as follows:

where:

(1)C
I
= C

IG
+ C

A
Finf

TA B L E  1  Available questionnaire and measurements data for SPIROMICS Air participants

Type of data Participants
Monitoring Sample No. of participants (No. 
of measurements)a,b 

Sample with home monitoring 
and questionnaire data

Questionnaires

Home Information Questionnaire (HIQ) 2054 287

Respiratory Disease and Smoke Exposure 
Questionnaire (RDSE)

2912 283

Questionnaires for validation

Daily Activity Questionnaire 217 209

Home Inspection Form 216 209

Measurements

Indoor PM2.5 (µg/m3) 201 (270) 194 (263)

Outdoor PM2.5 (µg/m3) 197 (271) 190 (264)

Indoor NO2 (ppb) 216 (294) 209 (287)

Outdoor NO2 (ppb) 216 (294) 209 (287)

Indoor NOx (ppb) 216 (294) 209 (287)

Outdoor NOx (ppb) 216 (294) 209 (287)

Indoor nicotine (µg/m3) 205 (274) 198 (265)

Outdoor RH 209 (287)

Outdoor temperature (°C) 209 (287)

Abbreviations: SPIROMICS, Subpopulations and Intermediate Outcome Measures in COPD Study; PM2.5, particulate matters with diameter less than 
2.5 µm; NO2, nitrogen dioxide; NOx, oxides of nitrogen; RH, relative humidity.
aNot including participants with missing measurements 
bParticipants from Ann Arbor, San Francisco, and Salt Lake City centers had up to two sets of home monitoring measurements. 

F I G U R E  2  The structure of the SPIROMICS Air total exposure prediction modeling
Note: The scope of the current paper is marked by red rectangle. Indoor and outdoor measurements for indoor exposure prediction 
modeling were collected inside and outside participants’ homes.
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CI, total indoor pollution concentration; CIG, indoor-generated 
pollution concentration; CA, ambient (outdoor) pollution concentra-
tion; and Finf, pollutant-specific infiltration rate.

SHS exposures were assessed based on responses from smok-
ing-related questions from all available questionnaires and then val-
idated with air nicotine measurements.

Unlike PM2.5, infiltration models for NO2, NOx, and SHS were not 
available from MESA Air, and to account for potential infiltration of 
oxides of nitrogen, we modeled the total measured indoor concen-
tration (CI) using the ambient concentration (CA) as an input to the 
prediction model. We assumed that levels of SHS are dominated by 
indoor-generated sources.

2.3  |  Analytical methods and modeling decisions

Indoor prediction models were developed using the 2-week time-
integrated indoor and outdoor (I/O) data (that were obtained during 
2014-2016) and responses from available questionnaires that were 
mentioned above.

Multivariate linear regression models were developed for each 
pollutant.

2.3.1  |  Predictor selection

We built prediction models using a forward stepwise linear regres-
sion procedure. The response variable in all models was the meas-
ured pollutant-specific 2-week time-integrated indoor concentration 
(native-scale or transformed). As indoor concentrations vary across 
cities, seasons, and by neighborhood socioeconomic status, vari-
ables such as “city,” “temperature,” or/and “relative humidity” and 
several census-derived socioeconomic factors were always included 
in our models. Additionally, estimated infiltrated concentrations of 
PM2.5 and measured outdoor concentrations of oxides of nitrogen 
were included in the respective models.

We examined 148 variables from both questionnaires (see SM, 
Table S2). We excluded questions with fewer than 10 responses and 
used only questions that had been posed to most of the SPIROMICS 
participants. We explored each variable and performed various trans-
formations of continuous variables (eg, quadratic, square root, loga-
rithmic, and polynomial) to satisfy the assumptions of linear modeling.

Since home characteristics and behaviors were assessed in up 
to three ways (questionnaires completed by all SPIROMICS partici-
pants in the course of interviews by clinic staff, diaries completed by 
participants in the home monitoring study, and observations of the 
home by the study technician), we evaluated agreement between 
these sources (see SM, Table S3 and description of the analysis).

2.3.2  |  Model development and statistical methods

We built prediction model using two approaches. In a first “A” ap-
proach, starting with the mandatory variables outlined above, 

additional covariates were evaluated by assessing significant step-
wise improvements in R2 and leaving out predictors that contributed 
less than 0.01 to the R2. In a second “B” approach, the residuals of 
the best model from the aforementioned stepwise method were first 
estimated. Then, the variables that were excluded were explored in-
dividually against these residuals by forward stepwise regression. 
Any variables contributing improvements of more than 0.01 to the 
R2 were selected, creating a second model with additional predic-
tors. Post-modeling diagnostics were performed for each model to 
assess collinearity check, outliers, and high leverage and influential 
points. Outlier were identified using the Bonferroni-adjusted outlier 
test finding the largest absolute studentized residual.35 Interactions 
between variables of the model were also analyzed. Model perfor-
mance was assessed using 10-fold cross-validation (CV).

To prevent inappropriate extrapolation, predictions for the full 
cohort were generated to eliminate models that produced predic-
tions well outside the range of the observations (see SM, Figure S1).

All statistical analyses were conducted in R version 3.6.0.

3  |  RESULTS

The 2-week time-integrated indoor and outdoor (I/O) measurements 
were collected from 216 homes for NO2 and NOx, from 201 homes 
for PM2.5, and from 205 homes for nicotine (Table 1). After inclusion 
of two monitoring campaigns at homes in Ann Arbor, San Francisco, 
and Salt Lake City, and removal of missing data, there were 287 
paired I/O observations for NO2 and NOx, 263 for indoor and 264 
for outdoor PM2.5, and 265 for indoor nicotine available for further 
analysis. Some samples were invalidated for duration, flow rate, or 
physical damage.

The indoor and outdoor concentrations by pollutant and city 
are shown in Figure 3A and additionally by season in SM, Table S4. 
On average, indoor measurements were higher and more variable 
than outdoor measurements. Between paired measurements, 54% 
of PM2.5 measurements, and 53% of NO2 and 72% of NOx measure-
ments were higher indoors than outdoors. However, average indoor 
measurements for NO2 in Los Angeles (LA) and Salt Lake City (SLC) 
were lower than outdoors. The highest indoor PM2.5 values were 
found in Winston-Salem in spring, while the highest outdoor con-
centrations were found in SLC in summer. These values were un-
expectedly higher than the winter PM2.5 outdoor measurements in 
SLC area, due to an uncommon pollution event during our particular 
sampling period.

The highest average indoor and outdoor NOx and NO2 concentra-
tions were measured in LA in fall (see SM, Table S4). Of 265 nicotine 
samples collected, only 61 measurements were above the level of de-
tection (LOD) of 0.013 µg/m3 of which participants in 29 of these 61 
homes were current smokers. Out of the 61 homes with nicotine con-
centrations above LOD, 21 residents were living in the same household 
with another smoker and 21 were not current smokers nor living with 
smoker. Out of the residences with detected nicotine levels, 25 were 
living in “single family” type of house, 3 in row house, townhouse, du-
plex, or triplex types of houses, and 5 in apartments.
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Indoor/outdoor temperature and RH are shown in Figure 3B. 
Outdoor average temperature (15.5 ± 7.8°C) was more variable 
across sites than indoor temperature (22.6 ± 2.1°C), and indoor tem-
perature was largely consistent between cities. Since temperature 
was highly correlated with RH, the one that contributed larger im-
provements in R2 was chosen for each model.

Table 2 demonstrates the results for the best indoor prediction 
models of PM2.5, NO2, NOx, and nicotine using the two model-build-
ing approaches “A” and “B”. Linear and square-root models provided 
the best fit for indoor PM2.5 (Model A1—best linear model; Models 

A2-A3—two best square-root models with interactions with/with-
out outliers using first “A” approach; and Models B4-B5—two addi-
tional best square-root models with/without outliers using second 
“B” approach) are described in Table 2.

We observed a very low correlation between indoor and outdoor 
measurements of PM2.5 (Pearson's r = 0.01, P-value = .91, Table 2). 
There were higher correlations between indoor and outdoor NO2 
and NOx measurements (Pearson's r = 0.34, P-value < .001, and 
r = 0.41, P-value < .001, respectively). The ranges of indoor NO2 and 
NOx concentrations are wide, especially for NOx (1.3-477.7 ppb), 

F I G U R E  3  (A) Indoor and outdoor concentrations grouped by city. (B) Indoor and outdoor temperature (°C) and relative humidity grouped 
by city and season
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suggesting a few extreme outliers (there were two indoor NOx val-
ues larger than 200 ppb).

Models based on log-transformed measured indoor concen-
trations performed better than linear for NO2, NOx, and nicotine 
(Table 2). The best logarithmic prediction model fit for NO2 using 
the first approach explained 63% of variation in concentrations, 
and the second approach, in which two additional predictors 
were added, yielded a model with slightly improved performance 
(for NO2 Model B4 R2 = 0.63, and Model B5 R2 = 0.65). For 
NOx, the best prediction logarithmic model fits explained 58% 
of the variation in concentrations (Model A3 based on the first 
approach) and for nicotine 61%. The second approach did not 
result in selection of any additional predictors both for NOx and 
for nicotine.

Analyzing outlying observations provided some important in-
sights for the PM2.5. Model A1, suggesting that these outliers were 
explained by two residents using wood fireplaces during periods 

with low outdoor temperatures. Hence, applying a model with an 
interaction between “the use of wood fireplace” and temperature 
improved substantially Model A1’s fit (cross-validation (CV) R2 rose 
from 0.30 to 0.44; see PM2.5 Models A1-A2, Table 2). Finally, two 
variables associated with window-opening residential behavior fac-
tors, and the interaction between opening windows and smoking 
factors during second approach improved the model's performance 
to an R2 of = 0.66 (CV R2 = 0.45, RMSE = 1.06 µg/m3; see Model B5, 
Table 2).

Table 3 shows the goodness of fit from the best prediction model 
based on the first approach (Model A3 per pollutant), and the coef-
ficients of the predictors selected via forward stepwise regression. 
The full list of variables explored during model building is shown in 
the SM, Table S2.

The reliability and correlation of data for the subset of variables 
with multiple information sources available are shown in the SM, 
Tables S4, S5a, and b.

NO2 (ppb) NOx (ppb)
Nicotine (SHS) 
(µg/m3)

PM2.5 (µg/
m3)a 

Range of concentration (min, max of measured)

Indoor (1.01, 115.91) (1.27, 477.68) (0.01, 19.92) (1.19, 58.80)

Outdoor (0.99, 29.79) (0.15, 143.29) – (1.66, 29.18)

Correlation of indoor to outdoor

Pearson's r 
(P-value)

r = 0.34 
(P < .001)

r = 0.41 
(P < .001)

– r = 0.01 
(P = .92)

Model A1b : best linear

R2/adj. R2 0.40/0.35 0.38/0.33 0.40/0.30 0.52/0.45

CV R2 (RMSE) 0.21 (8.88) 0.14 (38.36) −0.12 (1.93) 0.30 (10.67)

Model A2b : best logarithmic

R2/adj. R2 0.60/ 0.55 0.57/ 0.51 0.59/ 0.54 –

CV R2 (RMSE) 0.46 (0.51) 0.39 (0.72) 0.45 (1.41) –

Model A2b :squared root with interactions

R2/adj. R2 – – – 0.58/ 0.52

CV R2 (RMSE) – – – 0.44 (1.09)

Model A3b : removing outliers from Model A2

R2/adj. R2 0.63/0.57 0.58/0.53 0.61/0.56 0.60/0.54

CV R2 (RMSE) 0.48 (0.47) 0.43 (0.69) 0.45 (1.37) 0.45 (1.06)

Model B4b : correlation with residuals

R2/adj. R2 0.63/0.58 – – 0.65/0.56

CV R2 (RMSE) 0.49 (0.491) – – 0.42 (1.11)

Model B5b : removing outliers from Model B4b 

R2/adj. R2 0.65/0.59 – – 0.66/0.58

CV R2 (RMSE) 0.51 (0.46) – – 0.45 (1.06)

aFor PM2.5, all models (except the first one) are in square-root function: Model A1—is a model with 
linear function without interactions; Model A2—square-root function with interactions; Model 
A3—removing outliers from Model A2; Model B4—testing residuals; Model B5—removing outliers 
from Model B4. 
bLetter “A” represents models that were built using the first “A” approach, while letter “B” 
represents models that were built using the second “B” approach (see subsection 2.3.2). 

TA B L E  2  Prediction of indoor exposure 
for NO2, NOx, SHS, and PM2.5
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4  |  DISCUSSION

We developed residential indoor exposure prediction models for 
measured PM2.5, NO2, NOx, and nicotine based on home character-
istics and residential behavior information in a well-characterized 
cohort. Using socioeconomic, meteorological, behavioral, residen-
tial, and ambient-pollutant concentration data obtained from ques-
tionnaires, direct observations, and measurements, we built models 
that explained about 60% of the variability in measured indoor pol-
lutant concentrations.

4.1  |  PM2.5

It is well-established that both indoor and outdoor sources con-
tribute to indoor PM2.5 concentrations. Coal and wood burning for 
cooking and heating, the use of candles, and tobacco smoke increase 
indoor PM2.5 concentrations,36-40 and outdoor particulates infiltrate 
indoors variably based on the tightness of the home environment 
and natural and/or mechanical ventilation and air cleaning sys-
tems.41 While the mean average PM2.5 I/O ratio 1.74 ± 2.14 µg/m3 
in the current study was higher than typically reported (Wichmann 
et al,8 Geller et al,42 and Jones et al43 reported from 1.00 to 1.02 
mean PM2.5 I/O ratio in their studies), our median PM2.5 I/O ratio 
(1.08) was close to these values. We found little correlation between 
PM2.5 indoor and outdoor measurements. This suggests that in our 
sampled homes, indoor sources of fine particles are the major source 
of variation in indoor concentrations, rather than infiltrated ambient 
particles. As expected, we observed significant reduction in indoor 
PM2.5 with the use of an air cleaner/filter. We also observed that 
smoking and the use of wood fireplace were significantly correlated 
with the concentration of indoor fine particles. Our results are con-
sistent with Meng et al39 who observed an increase in PM2.5 mass 
during wood burning, woodworking, and tobacco smoke. We also 
observed that parking more than two cars in the attached garage 
significantly increased the indoor concentrations of ambient parti-
cles compared to the residences that had no garage. Additionally, we 
observed significant reduction in indoor ambient particles for resi-
dents living in second floor or higher compared to residents living 
most of their time in basement and ground floor. Unlike several other 
studies,44-46 we did not find that cooking-related variables were sig-
nificantly predictive of indoor PM2.5.

4.2  |  NO2 and NOx

Consistent with prior research, the main indoor sources of NO2 
and NOx were cooking-related factors such as gas stove usage and 
frequency of cooking.47-52 Hansel et al23 report positive associa-
tion between indoor NO2 and the use of gas heaters, gas stoves, 
and space heaters. Our results are consistent with these findings, 
suggesting that both the use of gas oven and the frequency of 
stove cooking were significantly predictive of higher NO2 and NOx 

indoor concentrations. However, neither the use of gas heating 
nor gas space heater appliances were associated with increased 
concentrations of oxides of nitrogen. The use of forced air ventila-
tion significantly reduced indoor concentrations both in NO2 and 
NOx models.

We found that the presence of pilot lights on clothes dryer sig-
nificantly increased oxides of nitrogen levels, consistent with prior 
report.49 The presence of pilot lights on water heater was associ-
ated with a decrease of NOx but not NO2 indoor concentrations. We 
observed positive associations between oxides of nitrogen and the 
use of an attached garage for parking, which has been previously 
described.53

Among a variety of variables examined, we found that indoor 
NOx was associated only with one smoking-related factor—the most 
intensive category of smoking activity. Previous investigators had 
found several tobacco variables to predict indoor NO2 levels.47,52

As in other studies investigating exposure from various air pollut-
ants, we observed significant reduction in oxides of nitrogen indoor 
concentration with the use of air cleaner appliances and increased 
window-opening behavior. Opening windows in the summer for a 
few days a month (compared to not opening at all) was associated 
with significantly reduced indoor NO2 and NOx levels. The presence 
of double pane windows was associated with increased indoor NO2 
but not NOx levels.

Somewhat surprisingly, the relationships between outdoor pol-
lutant concentrations and indoor concentrations of oxides of nitro-
gen were stronger than the associations for indoor concentrations of 
PM2.5. Not only were outdoor NOx and NO2 predictions associated 
with higher indoor concentrations of these pollutants, but higher 
outdoor concentrations of PM2.5 were also significantly associated 
with increased indoor NO2 and indoor NOx concentrations. We can 
only speculate about this relationship; it is possible that some out-
door sources of variation in PM2.5 concentration, such as proximity 
to traffic sources, are also predictors of indoor concentrations of 
oxides of nitrogen.

4.3  |  Nicotine

We modeled indoor nicotine concentrations in order to understand 
secondhand smoke exposures. As expected, indoor nicotine con-
centrations were strongly related to smoking habits. Active ciga-
rette smoking of any amount (as of one month prior to sampling), 
more intense smoking habits (more than 20 cigarettes per day), and 
permitting smoking in all rooms each increased the levels of indoor 
nicotine.

We found that natural ventilation (eg, reporting opening win-
dows in the summer) significantly reduced the level of indoor nic-
otine concentrations. In this study, the use of a radiator for heating 
was significantly and positively associated with indoor nicotine con-
centrations, unlike other sources of heating. This might be related 
to the fact that people tend to smoke indoors when temperature 
decreases but our data cannot clearly confirm that.



714  |    ZUSMAN et Al.

Our ability to predict indoor nicotine levels based on the ques-
tionnaire responses for smoking was not as high as we might an-
ticipate. We found some inconsistencies between indoor measured 
nicotine concentrations, which we expect to only be measurable 
when smoking occurs in the home, and participants’ answers about 
smoking behavior at home (see SM, Table S5a and b). For example, 
33 participants responded that no one smoked in their house in 
the past year while indoor nicotine concentrations were above the 
detection limit. There are several possible reasons for this, includ-
ing the potential temporal mismatch between questionnaire com-
pletion and sampling (eg, the average difference between the start 
date of I/O sampling and the date of RDS questionnaire response is 
956 days, and between I/O sampling and HIQ response is 185 days, 
see SM, Figure S2), a persistence of indoor nicotine after smoking 
cessation, as well as a bias to report what is believed to be the de-
sired response.

4.4  |  General issues and limitations

Our indoor exposure prediction models are meant to predict ex-
posure for every participant by incorporating high-level resolution 
data (indoor and outdoor measurements of PM2.5, NO2, and NOx 
collected in a subset plus socioeconomic, meteorological, behav-
ioral, and residential information from all participants) from seven 
different regions to improve spatial and seasonal variation. Similar 
prediction models have not previously been available. These mod-
els can facilitate exposure characterization of research cohorts with 
much less effort and expense than monitoring in all participants. 
Future studies may find this indoor exposure assessment method 
applicable for use in other populations while assessing indoor ex-
posure with home characteristic and residential behavior question-
naire data.

We found reasonably high R2 estimates of best model fit, 
though cross-validation analysis showed lower R2 values. Lower R2 
estimates in cross-validation approaches are not surprising since 
these approaches can create substantial areas of missing data and 
hence lowered effective sample size in these approaches. The lower 
cross-validated performance metrics also suggest some degree of 
over-fitting of our models.

Linear and square-root transformation models produced similar 
performance results for the PM2.5 model, but the square-root trans-
formation model was preferred because it does not produce nega-
tive predictions and thus showed better generalizability to the full 
SPIROMICS population.

Several predictors that we found to be important in model fit 
contained substantial missing information that could not be esti-
mated or imputed easily; these include age of building and outdoor 
PM2.5 measurements. Additionally, we created models that included 
all cities and seasons under study, but since each city had a rela-
tively small number of indoor samples and seasonal representation 
was incomplete, we are limited in our ability to compare regional and 
seasonal contrasts in this dataset. Some individual 2-week periods 

may have included non-representative weather or pollution events 
which were beyond our control. For example, high concentrations of 
PM2.5 observed in Salt Lake City may be explained by dust storms 
which are occasionally observed from the spring to fall, originating 
from the Great Salt Lake, and wildfires which increase ambient PM2.5 
concentration in this area. This could impact the generalizability of 
the model in the affected city.

The SPIROMICS full cohort is somewhat younger than the sub-
group with indoor air monitoring studied here. This may reduce the 
generalizability of our models.

4.5  |  Conclusions

In a subset of participants representative of a multi-city cohort, we 
developed models that explained most variation in indoor PM2.5, 
NOx, NO2, and estimated secondhand smoke concentrations using 
a set of variables available in most of the members of this major lon-
gitudinal cohort of chronic pulmonary disease. These models can be 
used in the full SPIROMICS cohort, may be of use in other epide-
miological projects, and can be leveraged to study the lung health 
effects of several important indoor air contaminants.
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