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Abstract

Increased outdoor concentrations of fine particulate matter (PM2.5) and oxides of 

nitrogen (NO2, NOx) are associated with respiratory and cardiovascular morbidity in 

adults and children. However, people spend most of their time indoors and this is 
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particularly true for individuals with chronic obstructive pulmonary disease (COPD). 

Both outdoor and indoor air pollution may accelerate lung function loss in individuals 

with COPD, but it is not feasible to measure indoor pollutant concentrations in all 

participants in large cohort studies.  We aimed to understand indoor exposures in a 

cohort of adults (SPIROMICS Air, the SubPopulations and Intermediate Outcome 

Measures in COPD Study, Air pollution). We developed models for the entire cohort 

based on monitoring in a subset of homes, to predict mean 2-week measured 

concentrations of PM2.5, NO2, NOx, and nicotine, using home and behavioral 

questionnaire responses available in the full cohort. Models incorporating 

socioeconomic, meteorological, behavioral and residential information together 

explained about 60% of the variation in indoor concentration of each pollutant. Cross 

validated R2 for best indoor prediction models ranged from 0.43 (NOx) to 0.51 (NO2). 

Models based on questionnaire responses and estimated outdoor concentrations 

successfully explained most variation in indoor PM2.5, NOx, NO2, and nicotine 

concentrations.

Keywords: Indoor monitoring, Air pollutants, Prediction modeling, Residential 

behavior, Indoor exposure questionnaires, Exposure assessment 

Practical implications:

● Questionnaire responses regarding home characteristics and residential 

behaviors explained a majority of the variation in indoor concentrations of key 

ambient air pollutants and secondhand smoke exposure.  

● These model-based estimates can be used in epidemiological analyses in this 

cohort, taking into account remaining uncertainties.

● This approach and these models may be applicable to other populations with 

similar characteristics.  

1. Introduction

Air pollution is a well-established risk factor for a variety of adverse health effects[1-2]. 

Epidemiological studies have found an association between air pollution levels and 
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increased risk of cardiovascular and respiratory disease.  Increased concentrations of 

fine particulate matter (PM2.5) and oxides of nitrogen (NO2, NOx) assessed in the 

ambient environment have been associated with adverse respiratory outcomes, 

including chronic obstructive pulmonary disease (COPD) [2-8]. 

While these relatively consistent associations have been seen with outdoor pollutant 

concentrations, the majority of adults, especially older adults, spend most of their time 

indoors. Individuals with COPD spend even more time at home than their age-matched 

counterparts. Both exposure to outdoor and to indoor air pollution may accelerate lung 

function loss in individuals with COPD and lead to exacerbations. 

Spending most of residents’ time at home and only a small part of time outside the 

house or in transit suggests that characterizing indoor exposures may improve our 

understanding of these relationships, since the severity of adverse respiratory outcomes 

linking air pollution depends on the concentration, frequency and duration of the 

personal exposure to each pollutant[1,9-11]. 

Researchers tend to classify residential indoor exposures as either the result of 

indoor-generated pollutants or the result of emissions from ambient origin. High 

outdoor concentrations can increase indoor concentrations of particulate pollution. 

Potential sources of indoor-generated air pollution include fuel-burning combustion 

processes, biologic agents, building and furnishing materials, tobacco smoke, and 

different heating/cooling devices. Indoor concentration can vary due to characteristics 

of the indoor environment[12]. Outdoor-derived pollutants are found in houses due to 

infiltration of these substances into the residential environment. The dynamics of 

outdoor-generated pollutants indoors, their concentration, and their reactivity are 

important factors for indoor pollution modeling that require detailed information on 

residence-specific characteristics, and resident behavior data that are typically 

unavailable, especially for a large multi-center cohort.   

Since long-term individual indoor exposure measurement is a complex task which 

would be expensive for investigators and burdensome for participants, most studies 

directly measuring indoor exposure have small sample sizes[14-15] and the majority of 
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studies rely on outdoor exposure or modeled indoor concentrations[16-17], or examine 

personal exposure levels to specific air pollutants[18-22]. 

SPIROMICS Air, an ancillary study of NHLBI’s Subpopulations and Intermediate 

Outcome Measures in COPD Study (SPIROMICS) multi-center prospective cohort 

study, was designed to examine the relationship between short and long term exposure 

to particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5), nitrogen 

dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), ozone (O3), black carbon 

(BC) and secondhand smoke (SHS) air pollutants, and disease progression in 

individuals with COPD (SO2 and O3 are not presented here). Participants were enrolled 

in twelve clinical centers across the United States (Winston-Salem, Ann Arbor, San 

Francisco, Los Angeles, New York City, Salt Lake City, Iowa City, Baltimore, Denver, 

Philadelphia, Birmingham, and Chicago) from 2012 to 2016 for SPIROMICS (see Figure 

1). SPIROMICS Air was initiated in 2013[23]. 

Since it was not feasible to measure exposures for all 2,982 SPIROMICS 

participants we chose a modeling approach to assess each participant’s long-term 

exposure to various air pollutants. In this study, we used indoor concentrations of PM2.5, 

NO2, NOx, and nicotine measured in a subset of homes, estimates of ambient-origin 

infiltrated concentrations, and questionnaire-based behavioral and residence data 

(questionnaire responses are available for all SPIROMICS participants) to develop an 

individual-based model for residential indoor pollutant concentrations in SPIROMICS 

Air. We aimed to generalize each pollutant prediction model to the full SPIROMICS 

cohort in order to estimate each participant’s indoor exposure to PM2.5, NO2, NOx, and 

nicotine.

2. Methods

2.1 Study design and monitoring

SPIROMICS enrolled 2,982 participants aged 40-80 years at baseline from 12 clinical 

centers including 202 non-smokers without airflow obstruction, 944 smokers without 

airflow obstruction, and 1836 current and former smokers with COPD. 

Figure 1 shows jittered residential locations of the 27-30 participants (total of 216) 

from each of seven SPIROMICS Air clinical centers (Winston-Salem, Ann Arbor, San 
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Francisco, Los Angeles, New York City, Salt Lake City and Baltimore) who were selected 

to participate in detailed individual exposure assessment campaigns between 2014 and 

2016[23]. Characteristics of the full SPIROMICS cohort and SPIROMICS Air participants 

who completed the two-week monitoring are provided in Supplementary Materials (SM) 

Table S1.

Measuring pollutant concentrations in each of the 2982 residences was not possible, 

so we measured pollutant concentrations in a sample of SPIROMICS participants and 

developed prediction models using the information from home characteristics and 

residential behaviors questionnaires administered to all SPIROMICS participants. 

Convenience samples of approximately 30 participants that were available during pre-

determined sampling periods in each area were selected, with COPD Stratum 3 and 4 

participants prioritized for inclusion.  Since this work builds on previous work in the 

MESA cohort, locations in non-MESA cities were observed in two contrasting seasons. 

Other locations were observed in one season. Pollutant measurements were made inside 

and outside those participants’ homes [20, 23].

a) Indoor, outdoor, and personal exposure sampling

Two-week integrated paired indoor and outdoor measurements of PM2.5, NO2, and NOx 

were collected at the 216 homes. In Ann Arbor, San Francisco and Salt Lake City 

measurements were collected during two campaigns to account for seasonal differences 

(winter and summer in Ann Arbor and Salt Lake City and fall and spring in San 

Francisco). Ogawa passive samplers were used to measure NO2, NOx, and O3.  PM2.5 

mass was measured by collecting particles on a 37-mm Teflon filter within a Harvard 

Personal Environmental Monitor (HPEM) [24]. Indoors, these were connected by silicone 

tubing to a TSI SidePak SP530 pump, programmed to run on a 50% duty cycle 

(alternating 5 minutes on and off).  These pumps were also used to collect outdoor PM2.5 

measurements in residences without an outdoor sampling space (some apartments or 

condo units), where samplers were attached to an arm extended from a window.  

Outdoors, HPEMs were connected to MEDO VP0125 pumps, with a similar 50% duty 

cycle. Both types of pumps were adjusted to achieve a target flow rate of 1.8 liters per 
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minute.  Nicotine 2-week indoor integrated measurements were collected using a 

sodium bisulfate passive badge.   

Indoor sampling units were preferably placed in a room where participants spent 

the majority of their waking hours.  Outdoor units were placed away from particle 

sources such as grills or smoking areas. 

PM2.5 mass concentrations were gravimetrically determined from Teflon filters 

weighed in a temperature and humidity controlled environment[25] using standard filter 

weighing procedures[26]. Ogawa passive samplers were used to measure NO2 and NOx 

using ion chromatography and ultraviolet spectroscopy. Concentrations of each 

pollutant were calculated using equations provided by Ogawa & Co.[24].  Nicotine 

concentrations were determined from passive air samplers using a sodium bisulfate–

treated filter with a polycarbonate filter diffusion screen[27]. Nicotine content was 

analyzed using gas chromatography with a nitrogen phosphate detector. The LOD for 

the passive air nicotine badges was 0.021 μg/mL[28]. 

Additional information about pollutant monitoring and analytical methods used 

have been previously described in Hansel et al, (2017)[23] and Cohen et al, (2009)[20].

b) Temperature and relative humidity

Indoor temperature and humidity were monitored using Onset HOBO data loggers[29]. 

Outdoor temperature and relative humidity (RH) data were obtained from government 

sources[30] at meteorological stations nearest to each study clinic. The data were 

averaged over the 2-week periods that matched the 2-week monitoring period (with 

about 5-10 days' variability in the start/end dates) to provide seasonal variation across 

sites. 

c) Questionnaires

We integrated information from several instruments. All participants answered 

questions regarding smoking behaviors, including SHS exposure. These were 

administered annually for the 3-years of follow, and the questionnaire instruments are 

available online[31], whether or not they participated in the home monitoring. A home 

information questionnaire on residence characteristics, residential behaviors, and 
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approximate amounts of time spent indoors, outdoors, and in transit was completed by 

2054 SPIROMICS participants once during 2014-2017 (see Table 1). 

Field technicians completed a home inspection form for participants included in the 

air monitoring subset to verify the presence of appliances, window types, and other 

home characteristics. During each 2-week monitoring period, participants logged 

cooking activity, equipment use, amount of time spent indoors and outdoors, and any 

combustion.   Research staff deploying home monitoring equipment also assessed the 

presence of specific appliances in the home and assessed relevant environmental 

characteristics of the residence. 

d) Neighborhood- scale socio-economic information

Percent of owner-occupied housing units, education level of adults (age 25+), and 

median household income data were obtained at the block group level (an area that 

typically encompasses between 600 and 3,000 people), based on the U.S. Census and 

the American Community Survey sources [32].

e) Estimation of PM2.5 infiltration 

To estimate the level of ambient-derived PM2.5 concentrations inside each home, we 

used a model for outdoor PM2.5 that we had previously developed and validated in the 

MESA Air study[33]. In that model, the proportion of ambient-origin PM2.5 that 

infiltrates into dwellings was estimated based on paired indoor-outdoor filters with 

elemental sulfur as a tracer. We employed infiltration coefficients from that model to 

calculate levels of indoor PM2.5 in SPIROMICS Air households estimated to be of 

ambient origin.

2.2 Exposure modeling

The exposure assessment design for SPIROMICS Air has been described in Hansel et al, 

2017 and has already been successfully used in MESA Air study[20, 33-34]. Briefly, cohort-

specific air monitoring was conducted to support the development of air pollution 

prediction models that can be generalized to the study population. These models are 

based on spatio-temporal air pollution prediction methods that incorporate the study-

specific outdoor monitoring data[23,34]. The SPIROMICS Air exposure prediction 
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modeling structure for PM2.5, NO2, NOx, and SHS, with the available data sources, is 

shown in Figure 2. The left wing of the Figure 2 shows the outdoor predicted exposure 

modeling with the data that are incorporated into outdoor prediction models for PM2.5, 

NO2, NOx, and ozone, although ozone is not further discussed in this paper. The right 

wing of this structure demonstrates indoor prediction model with the available data 

resources (the scope of this paper is highlighted by the content of the red rectangle). 

Indoor and outdoor measurements for indoor exposure prediction modeling were 

collected inside and outside participants’ homes. This paper focuses on indoor exposure 

modeling for PM2.5, NO2, NOx and SHS using data from questionnaires, predicted 

infiltration estimates, and neighborhood socioeconomic data. 

2.2.1 Indoor exposures

Indoor pollutant concentration can be calculated as follows:

(1) �� =  ��� + ������
where:

  CI - total indoor pollution concentration; CIG - indoor generated pollution 

concentration; CA - ambient (outdoor) pollution concentration; Finf - pollutant specific 

infiltration rate.

SHS exposures were assessed based on responses from smoking related questions from 

all available questionnaires and then validated with air nicotine measurements. 

Unlike PM2.5, infiltration models for NO2, NOx, and SHS were not available from 

MESA Air, and to account for potential infiltration of oxides of nitrogen, we modeled the 

total measured indoor concentration (CI) using the ambient concentration (CA) as an 

input to the prediction model. We assumed that levels of SHS are dominated by indoor-

generated sources.

2.3 Analytical methods and modeling decisions

Indoor prediction models were developed using the 2-week time-integrated indoor and 

outdoor (I/O) data (that were obtained during 2014-2016), and responses from 

available questionnaires that were mentioned above. 
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Multivariate linear regression models were developed for each pollutant.

2.3.1 Predictor selection

We built prediction models using a forward stepwise linear regression procedure.  The 

response variable in all models was the measured pollutant-specific 2-week time-

integrated indoor concentration (native-scale or transformed). As indoor concentrations 

vary across cities, seasons, and by neighborhood socioeconomic status, such variables as 

“city”, “temperature” or/and “relative humidity” and several census-derived 

socioeconomic factors were always included in our models. Additionally, estimated 

infiltrated concentrations of PM2.5 and measured outdoor concentrations of oxides of 

nitrogen were included in the respective models. 

We examined 148 variables from both questionnaires (see SM, Table S2). We 

excluded questions with fewer than 10 responses and used only questions that had been 

posed to most of the SPIROMICS participants. We explored each variable and 

performed various transformations of continuous variables (e.g. quadratic, square root, 

logarithmic, and polynomial) to satisfy the assumptions of linear modeling. 

Since home characteristics and behaviors were assessed in up to three ways 

(questionnaires completed by all SPIROMICS participants in the course of interviews by 

clinic staff, diaries completed by participants in the home monitoring study, and 

observations of the home by the study technician), we evaluated agreement between 

these sources (see SM, Table S3 and description of the analysis).

2.3.2 Model development and statistical methods

We built prediction model using two approaches. In a first “A” approach, starting with 

the mandatory variables outlined above, additional covariates were evaluated by 

assessing significant stepwise improvements in R2 and leaving out predictors that 

contributed less than 0.01 to the R2. In a second “B” approach, the residuals of the best 

model from the aforementioned stepwise method were first estimated. Then the 

variables that were excluded were explored individually against these residuals by 

forward stepwise regression. Any variables contributing improvements of more than 

0.01 to the R2 were selected, creating a second model with additional predictors. Post-
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modeling diagnostics were performed for each model to assess collinearity check, 

outliers and high leverage and influential points. Outlier were identifies using the 

Bonferroni-adjusted outlier test finding the largest absolute studentized residual[35]. 

Interactions between variables of the model were also analyzed. Model performance was 

assessed using 10-fold cross-validation (CV). 

To prevent inappropriate extrapolation, predictions for the full cohort were 

generated to eliminate models that produced predictions well outside the range of the 

observations (see SM, Figure S1).

All statistical analyses were conducted in R version 3.6.0. 

3. Results 

The 2-week time-integrated indoor and outdoor (I/O) measurements were collected 

from 216 homes for NO2 and NOx, from 201 homes for PM2.5 and from 205 homes for 

nicotine (Table 1). After inclusion of two monitoring campaigns at homes in Ann Arbor, 

San Francisco, and Salt Lake City,  and removal of missing data,  there were 287 paired 

I/O observations for NO2 and NOx, 263 for indoor and 264 for outdoor PM2.5, and 265 

for indoor nicotine available for further analysis. Some samples were invalidated for 

duration, flow rate, or physical damage.

The indoor and outdoor concentrations by pollutant and city are shown in Figure 3a 

and additionally by season in SM, Table S4. On average, indoor measurements were 

higher and more variable than outdoor measurements. Between paired measurements, 

54% of PM2.5 measurements, 53% of NO2 and 72% of NOx measurements were higher 

indoors than outdoors. However, average indoor measurements for NO2 in Los Angeles 

(LA) and Salt Lake City (SLC) were lower than outdoors. The highest indoor PM2.5 

values were found in Winston-Salem in spring, while the highest outdoor concentrations 

were found in SLC in summer. These values were unexpectedly higher than the winter 

PM2.5 outdoor measurements in SLC area, due to an uncommon pollution event during 

our particular sampling period. 

The highest average indoor and outdoor NOx and NO2 concentrations were 

measured in LA in fall (see SM, Table S4). Of 265 nicotine samples collected, only 61 
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measurements were above the level of detection (LOD) of 0.013 µg/m3 of which 

participants in 29 of these 61 homes were current smokers. Out of the 61 homes with 

nicotine concentrations above LOD, 21 residents were living in the same household with 

another smoker and 21 were not current smokers nor living with smoker. Out of the 

residences with detected nicotine levels, 25 were living in “single family” type of house, 3 

in row house, townhouse, duplex or triplex types of houses and 5 in apartments.

Indoor/outdoor temperature and RH are shown in Figure 3b. Outdoor average 

temperature (15.5±7.8°C) was more variable across sites than indoor temperature 

(22.6±2.1°C); and indoor temperature was largely consistent between cities. Since 

temperature was highly correlated with RH, the one that contributed larger 

improvements in R2 was chosen for each model. 

Table 2 demonstrates the results for the best indoor prediction models of PM2.5, 

NO2, NOx and nicotine using the two model-building approaches “A” and “B”. Linear 

and square root models provided the best fit for indoor PM2.5 (Model A1 - best linear 

model; Models A2-A3 - two best square root models with interactions with/without 

outliers using first “A” approach; and Models B4-B5 - two additional best square root 

models with/without outliers  using second “B” approach) are described in Table 2. 

We observed a very low correlation between indoor and outdoor measurements of 

PM2.5 (Pearson’s r=0.01, p-value=0.91, Table 2). There were higher correlations between 

indoor and outdoor NO2 and NOx measurements (Pearson’s r=0.34, p-value<0.001 and 

r=0.41, p-value<0.001, respectively). The ranges of indoor NO2 and NOx concentrations 

are wide, especially for NOx (1.3 - 477.7 ppb), suggesting a few extreme outliers (there 

were two indoor NOx values larger than 200 ppb).

Models based on log-transformed measured indoor concentrations performed 

better than linear for NO2, NOx and nicotine (Table 2). The best logarithmic prediction 

model fit for NO2 using the first approach explained 63% of variation in concentrations, 

and the second approach, in which two additional predictors were added, yielded a 

model with slightly improved performance (for NO2 Model B4 R2=0.63, and Model B5 

R2=0.65).  For NOx the best prediction logarithmic model fits explained 58% of the 

variation in concentrations (Model A3 based on the first approach) and for nicotine 61%. 
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The second approach did not result in selection of any additional predictors both for 

NOx and for nicotine. 

Analyzing outlying observations provided some important insights for the PM2.5. 

Model A1, suggesting that these outliers were explained by two residents using wood 

fireplaces during periods with low outdoor temperatures. Hence, applying a model with 

an interaction between “the use of wood fireplace” and temperature improved 

substantially Model A1’s fit (cross validation (CV) R2
 rose from 0.30 to 0.44  see PM2.5 

Models A1-A2, Table 2). Finally, two variables associated with window-opening 

residential behavior factors, and the interaction between opening windows and smoking 

factors during second approach improved the model’s performance to an R2 of =0.66 

(CV R2=0.45, RMSE=1.06 µg/m3; see Model B5, Table 2).

Table 3 shows the goodness of fit from the best prediction model based on the first 

approach (Model A3 per pollutant), and the coefficients of the predictors selected via 

forward stepwise regression. The full list of variables explored during model building is 

shown in the SM, Table S2. 

The reliability and correlation of data for the subset of variables with multiple 

information sources available is shown in the SM, Tables S4, S5a and S5b.

4. Discussion

We developed residential indoor exposure prediction models for measured PM2.5, NO2, 

NOx, and nicotine based on home characteristics and residential behavior information 

in a well-characterized cohort. Using socioeconomic, meteorological, behavioral, 

residential and ambient-pollutant concentration data obtained from questionnaires, 

direct observations and measurements, we built models that explained about 60% of the 

variability in measured indoor pollutant concentrations.

PM2.5

It is well-established that both indoor and outdoor sources contribute to indoor PM2.5 

concentrations.  Coal and wood burning for cooking and heating, the use of candles, and 

tobacco smoke increase indoor PM2.5 concentrations[36-40], and outdoor particulates 

infiltrate indoors variably based on the tightness of the home environment and natural 
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and/or mechanical ventilation and air cleaning systems[41]. While the mean average 

PM2.5 I/O ratio 1.74±2.14 µg/m3 in the current study was higher than typically reported 

(Wichmann et al. (2010)[8], Geller et al. (2002)[42] and Jones et al. (2000)[43] report from 

1.00 to 1.02 mean PM2.5 I/O ratio in their studies), our median PM2.5 I/O ratio (1.08) 

was close to these values.  We found little correlation between PM2.5 indoor and outdoor 

measurements. This suggests that in our sampled homes, indoor sources of fine 

particles are the major source of variation in indoor concentrations, rather than 

infiltrated ambient particles. As expected, we observed significant reduction in indoor 

PM2.5 with the use of an air cleaner/filter. We also observed that smoking and the use of 

wood fireplace were significantly correlated with the concentration of indoor fine 

particles. Our results are consistent with Meng et al (2010)[39] who observed an increase 

in PM2.5 mass during wood burning, woodworking and tobacco smoke. We also observed 

that parking more than two cars in the attached garage significantly increased the 

indoor concentrations of ambient particles compared to the residences that had no 

garage. Additionally, we observed significant reduction in indoor ambient particles for 

residents living in second floor or higher compared to residents living most of their time 

in basement and ground floor. Unlike several other studies[44-46], we didn’t find that 

cooking-related variables were significantly predictive of indoor PM2.5.

NO2 and NOx

Consistent with prior research, the main indoor sources of NO2 and NOx were cooking-

related factors such as gas stove usage and frequency of cooking[47-52]. Hansel et al. 

(2008)[23] report positive association between indoor NO2 and the use of gas heaters, gas 

stoves and space heaters. Our results are consistent with these findings, suggesting that 

both the use of gas oven and the frequency of stove cooking were significantly predictive 

of higher NO2 and NOx indoor concentrations. However, neither the use of gas heating 

nor gas space heater appliances were associated with increased concentrations of oxides 

of nitrogen. The use of forced air ventilation significantly reduced indoor concentrations 

both in NO2 and NOx models.

We found that the presence of pilot lights on clothes dryer significantly increased 

oxides of nitrogen levels, consistent with prior report[49]. The presence of pilot lights on 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

water heater were associated with a decrease of NOx but not NO2 indoor concentrations. 

We observed positive associations between oxides of nitrogen and the use of an attached 

garage for parking, which has been previously described[53].

Among a variety of variables examined, we found that indoor NOx was associated 

only with one smoking related factor - the most intensive category of smoking activity. 

Previous investigators had found several tobacco variables to predict indoor NO2 

levels[47, 52]. 

As in other studies investigating exposure from various air pollutants, we observed 

significant reduction in oxides of nitrogen indoor concentration with the use of air 

cleaner appliances and increased window-opening behavior. Opening windows in the 

summer for a few days a month (compared to not opening at all) was associated with 

significantly reduced indoor NO2 and NOx levels. The presence of double pane windows 

was associated with increased indoor NO2 but not NOx levels. 

Somewhat surprisingly, the relationships between outdoor pollutant concentrations 

and indoor concentrations of oxides of nitrogen were stronger than the associations for 

indoor concentrations of PM2.5. Not only were outdoor NOx and NO2 predictions 

associated with higher indoor concentrations of these pollutants, but higher outdoor 

concentrations of PM2.5 were also significantly associated with increased indoor NO2 

and indoor NOx concentrations.  We can only speculate about this relationship; it is 

possible that some outdoor sources of variation in PM2.5 concentration, such as 

proximity to traffic sources, are also predictors of indoor concentrations of oxides of 

nitrogen.  

Nicotine

We modeled indoor nicotine concentrations in order to understand secondhand smoke 

exposures. As expected, indoor nicotine concentrations were strongly related to smoking 

habits. Active cigarette smoking of any amount (as of one month prior to sampling), 

more intense smoking habits (more than 20 cigarettes per day), and permitting smoking 

in all rooms each increased the levels of indoor nicotine.
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We found that natural ventilation (e.g. reporting opening windows in the summer), 

significantly reduced the level of indoor nicotine concentrations. In this study, the use of 

а radiator for heating was significantly and positively associated with indoor nicotine 

concentrations, unlike other sources of heating. This might be related to the fact that 

people tend to smoke indoors when temperature decreases but our data can’t clearly 

confirm that.  

Our ability to predict indoor nicotine levels based on the questionnaire responses 

for smoking was not as high as we might anticipate.  We found some inconsistencies 

between indoor measured nicotine concentrations, which we expect to only be 

measurable when smoking occurs in the home, and participants’ answers about smoking 

behavior at home (see SM, Table S5a and S5b). For example, 33 participants responded 

that no one smoked in their house in the past year while indoor nicotine concentrations 

were above the detection limit. There are several possible reasons for this, including the 

potential temporal mismatch between questionnaire completion and sampling (for 

example, the average difference between the start date of I/O sampling and the date of 

RDS questionnaire response is 956 days, and between I/O  sampling and HIQ response 

is 185 days, see SM, Figure S2), a persistence of indoor nicotine after smoking cessation, 

as well as a bias to report what is believed to be the desired response. 

General Issues and Limitations

Our indoor exposure prediction models are meant to predict exposure for every 

participant by incorporating high level resolution data (indoor and outdoor 

measurements of PM2.5, NO2, and NOx collected in a subset plus socioeconomic, 

meteorological, behavioral and residential information from all participants) from seven 

different regions to improve spatial and seasonal variation.  Similar prediction models 

have not previously been available. These models can facilitate exposure 

characterization of research cohorts with much less effort and expense than monitoring 

in all participants.  Future studies may find this indoor exposure assessment method 

applicable for use in other populations while assessing indoor exposure with home 

characteristic and residential behavior questionnaire data.

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

We found reasonably high R2 estimates of best model fit, though cross validation 

analysis showed lower R2 values. Lower R2 estimates in cross-validation approaches are 

not surprising since these approaches can create substantial areas of missing data and 

hence lowered effective sample size in these approaches. The lower cross-validated 

performance metrics also suggest some degree of over-fitting of our models.

Linear and square-root transformation models produced similar performance 

results for the PM2.5 model, but the square root transformation model was preferred 

because it does not produce negative predictions and thus showed better generalizability 

to the full SPIROMICS population.

Several predictors that we found to be important in model fit contained substantial 

missing information that could not be estimated or imputed easily; these include age of 

building and outdoor PM2.5 measurements. Additionally, we created models that 

included all cities and seasons under study but since each city had a relatively small 

number of indoor samples and seasonal representation was incomplete, we are limited 

in our ability to compare regional and seasonal contrasts in this dataset. Some 

individual 2-week periods may have included non-representative weather or pollution 

events which were beyond our control.  For example, high concentrations of PM2.5 

observed in Salt Lake City may be explained by dust storms which are occasionally 

observed from the spring to fall, originating from the Great Salt Lake, and wildfires 

which increase ambient PM2.5 concentration in this area. This could impact the 

generalizability of the model in the affected city.

The SPIROMICS full cohort is somewhat younger than the subgroup with indoor air 

monitoring studied here. This may reduce the generalizability of our models.

Conclusions

In a subset of participants representative of a multi-city cohort, we developed models 

that  explained most variation in indoor PM2.5, NOx, NO2, and estimated secondhand 

smoke concentrations using a set of variables available in most of the members of this 

major longitudinal cohort of chronic pulmonary disease. These models can be used in 

the full SPIROMICS cohort, may be of use in other epidemiological projects, and can be 

leveraged to study the lung health effects of several important indoor air contaminants.   
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Tables:

Table 1: Available questionnaire and measurements data for SPIROMICS Air 

participants

Type of data
Participants

Monitoring 

Sample

N. of participants

(N. of 

measurements) ‡

Sample with home 

monitoring  and  

questionnaire data

Questionnaires

Home Information 

Questionnaire (HIQ)
2054

287

Respiratory Disease and 

Smoke Exposure 

Questionnaire (RDSE)

2912

283

Questionnaires for 

validation

Daily Activity Questionnaire 217 209

Home Inspection Form 216 209

Measurements

Indoor PM2.5 (µg/m3) 201 (270) 194 (263)

Outdoor PM2.5 (µg/m3) 197 (271) 190 (264)

Indoor NO2 (ppb) 216 (294) 209 (287)

Outdoor NO2 (ppb)  216 (294) 209 (287)

Indoor NOx (ppb)  216 (294) 209 (287)

Outdoor NOx (ppb)  216 (294) 209 (287)

Indoor nicotine (µg/m3)  205 (274) 198 (265)

Outdoor RH   209 (287) 

Outdoor temperature   209 (287) 
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Note: - not including participants with missing measurements; ‡-Participants from Ann Arbor, San 

Francisco, and Salt Lake City centers had up to two sets of home monitoring measurements.

Abbreviations: SPIROMICS - Subpopulations and Intermediate Outcome Measures in COPD Study; 

PM2.5 – particulate matters with diameter less than 2.5 µm; NO2 - nitrogen dioxide; NOx - oxides of 

nitrogen; RH- relative humidity.

Table 2: Prediction of indoor exposure for NO2, NOx, SHS and PM2.5

NO2 (ppb) NOx (ppb)

Nicotine 

(SHS) 

(µg/m3)

PM2.5 

(µg/m3)  

Indoor (1.01, 115.91) (1.27, 477.68) (0.01, 19.92) (1.19, 58.80)Range of concentration            

(min, max of measured) Outdoor (0.99, 29.79) (0.15, 143.29) - (1.66, 29.18)

Correlation 

of indoor to outdoor

Pearson’s 

r (p-

value)

r=0.34 

(p<0.001)

r=0.41 

(p<0.001)
-

r=0.01 

(p=0.92)

R2/adj. R2 0.40/ 0.35 0.38/ 0.33 0.40/ 0.30 0.52/0.45
Model A1‡:

 best linear
CV R2 

(RMSE)
0.21 (8.88) 0.14 (38.36) -0.12 (1.93) 0.30 (10.67)

R2/adj. R2 0.60/ 0.55 0.57/ 0.51 0.59/ 0.54 -
Model A2‡:

 best logarithmic
CV R2 

(RMSE)
0.46 (0.51) 0.39 (0.72) 0.45 (1.41) -

R2/adj. R2 - - - 0.58/ 0.52Model A2‡:

squared root with 

interactions

CV R2 

(RMSE)
- - - 0.44 (1.09)

R2/adj. R2 0.63/ 0.57 0.58/ 0.53 0.61/ 0.56 0.60/ 0.54Model A3‡: 

removing outliers from 

Model A2

CV R2 

(RMSE)
0.48 (0.47) 0.43 (0.69) 0.45 (1.37) 0.45 (1.06)

R2/adj. R2 0.63/ 0.58 - - 0.65/ 0.56
Model B4‡:

 correlation with residuals
CV R2 

(RMSE)
0.49 (0.491) - - 0.42 (1.11)

R2/adj. R2 0.65/ 0.59 - - 0.66/ 0.58Model B5‡: 

removing outliers from 

Model B4‡

CV R2 

(RMSE)
0.51 (0.46) - - 0.45 (1.06)

Note: 
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 - For PM2.5, all models (except the first one) are in square root function: Model A1 - is a model with linear function 

without interactions; Model A2 - square root function with interactions; Model A3 - removing outliers from Model 

A2; Model B4 - testing residuals; Model B5- removing outliers from Model B4; 

‡ Letter “A” represents models that were built using the first “A” approach, while letter “B” represents models that 

were built using the second “B” approach (see subsection 2.3.2)

Table 3: Comparison of Model A3 prediction fit per pollutant

   

Model 

A3:

PM2.5
�

Model A3: 

NO2
‡

Model A3: 

NOx
‡

Model 

A3: 

nicotine‡ 

  Variables/groups Est. Est. Est. Est.

  (Intercept) 2.52*** 1.34** 2.28*** -5.49***

Baltimore 0.06 0.03 0.59** 1.4***

San Francisco -0.01 0.21** -0.22 0.67**

Los Angeles -0.48 -1.6E-03 -0.13 0.71

New York 0.75** 0.03 -0.15 0.13

Salt Lake City -0.10 -0.17 0.60** 0.74

City§

 

(compared to 

"Ann Arbor" city)  

 

Winston -Salem -0.02 0.32* 0.18 2.53***

 
Outdoor temperature in 

C° (2-week av.) 

-3.10E-

04
-0.01***

Meteorologica

l 

measurements

§ Outdoor RH (2-week av.) 
-0.01* 0.02

 
PM2.5 µg/m3 predicted 

infiltration
0.32

 NO2 outdoor (ppb) 0.49***

Proxy for 

infiltration 

estimation§

 NOx outdoor (ppb) 0.32***

 
 % adults with education 

less than High School 
0.02**

Socio-

economic 

factors (based 

on Census 
 

Median value ($) for 

specified owner-occupied 
6.7E-07
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housing units 

 
Median family income

-3.14E-06 

***

 
% occupied housing units 

that are owner-occupied
-0.01*** -3.4E-03

data)§ 

 
Median household 

income
3.9E-06 **

Other 

pollutants 

measurements  

PM2.5 outdoor (µg/m3) 0.03** 0.05**

Up to 20 cig. 1.07***N. cigarettes per day 

were smoked in the past 

year by any smoker in 

the house? (compared to 

"none" group)

 20 and more cig. 0.53**

Allow smoking only in 

certain rooms
-0.36 0.51

Your approach to 

tobacco smoking in your 

home? (compared to 

"Never allow smoking in 

home" group)¶

Allow smoking In all 

rooms

1.28*** 1.16**

Do you smoke cigarettes 

(as of one month ago)? 

(Y/N)¶

Yes 0.99*** 1.06***

N. of cigarettes per day 

by each smoker. Is it 

more than 20 cigarettes? 

(Y/N)

Yes 0.45** 1.82***

For how many years the 

allowing smoking at 

house approach?¶

(in years) 4.9E-03

Smoking 

habits 

questions

Traveled by car with Yes 0.95**
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someone else who was 

smoking (during last 

week)? (Y/N)¶

Age of building (in years)
-2.64E-

03
-8.5E-05 -9.7E-04 -0.01

What floor do you live 

on? (compared to 

basement and ground 

floor)

2nd floor and higher -1.19***

Rowhouse/townhouse/du

plex/ triplex
-0.33

Apartment/condo -0.57*

What type of building do 

you live in? (compared to 

"single family" type)
Manufact./mobile -0.63

Parking 1 car -0.21 0.28** 0.23

Parking 2 cars -0.17 0.03 0.15

Parking more than 2 cars 1.32*** 0.10 0.39**

Building 

related 

questions

What the garage is used 

for? (compared to "no 

garage")
Storage -0.32 -0.07 -0.15

Is an air cleaner/filter 

used? (Y/N)
Yes -0.57**

 Type of air cleaner/filter 

(Y/N)

 Electrostatic precipitator 

(Yes)
-0.41**

More than half of the 

days and less
-0.17

Cleaner 

appliances 

questions
How often is the air 

cleaner/filter used?
Almost daily or daily 0.08

A few days a month -0.19** -0.26* -1.10***

More than half of the days 

and less than daily
0.11 -0.10 -0.29

How often did you open 

the window (in summer)?

Almost daily or daily 0.08 -0.11 -0.42

Windows use 

questions

Double pane windows 

(Y/N) Yes
0.13

Heating What are the heating Fireplace wood (Yes) 3.68***
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temperature: Fireplace 

gas
-0.19***

Fireplace gas (Yes) -0.64*

Forced Air (vents)(Yes) -0.15** -0.24**

sources 

questions

sources used in your 

residence? (Y/N)

Radiators (Yes) 1.21**

What type of oven is 

used? (compared to 

"electric" group)

Gas oven 0.24** 0.37**

Less than daily -0.41 0.40** 0.41**
Cooking habits 

questions
How often does someone 

cook (on stove) in 

residence? (compared to 

"not cooking" group)

Almost daily or daily 0.26 0.40*** 0.42**

Oven (Yes) 0.15

Water Heater (Yes) -0.39***
Pilots lights 

questions

The presence of a pilot 

lights on: 

 (Y/N) Clothes Dryer (Yes) 0.32*** 0.52***

Observations 195 223 230 192

R2/ 

Adj. R2

0.60/ 

0.54
0.63/ 0.57 0.58/ 0.53

0.61/ 

0.56

AIC 569.64 282.47 468.72 647.55

Cross Validation R2 

(RMSE)

0.45 

(1.06)

0.48

(0.47)

0.43 

(0.69)

0.45 

(1.37)

Notes:

 – Model A3 is based on PM2.5 squared root function 

‡ - Model A3 is based on logarithmic function 

§ - These variables are mandatory and were included in each model regardless of the choice of stepwise regression.

¶ – The questions that were obtained from Respiratory Diseases and Smoke Exposure questionnaire. Other questions 

related to house characteristics were obtained from Home Information Questionnaire.   

*** - p-value <=0.001; **- p-value <0.05; * - p-value <0.1

Figure legends:
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Figure 1: Map of regions covered by SPIROMICS and SPIROMICS Air with the location 

of participants, indoor/outdoor monitoring sites 

Figure 2: The structure of the SPIROMICS AIR total exposure prediction modeling

Figure 3a: Indoor and outdoor concentrations grouped by city

Figure 3b: Indoor and outdoor temperature °C and relative humidity grouped by city 

and season
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Note: All participants’ locations have been jittered; Black dots represent the locations that 

were reported by participants at the time of enrollment.  Participants that were not recruited from 

one of the seven SPIROMICS Air sites were excluded from the analysis.  

 

Figure 1: Map of regions covered by SPIROMICS and SPIROMICS Air with the location 

of participants, indoor/outdoor monitoring sites  
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Note: The scope of the current paper is marked by red rectangle. Indoor and outdoor 

measurements for indoor exposure prediction modeling were collected inside and outside 

participants’ homes.    

 

Figure 2: The structure of the SPIROMICS AIR total exposure prediction modeling 
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Figure 3a: Indoor and outdoor concentrations grouped by city 

 

 

Figure 3b: Indoor and outdoor temperature °C and relative humidity grouped by city 

and season 
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