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The Soft Bond Potential

In free energy perturbation and other similar approaches, the soft bond need only be suffi-

ciently smooth to ensure sufficient phase space overlap between the alchemical endpoint at

λ = 0 and the neighboring λ window. In contrast, MSλD requires a smoother alchemical

free energy because sharp changes near the endpoint can lead to trapping and because they

can lead to errors due to the MSλD histogram based free energy estimator which includes

points near the endpoint.

Consequently, we explored parameters of the soft bond potential, including using rα of 1

Å or∞ (which corresponds to a scaled hard bond), scaling the soft bond by λnα , and scaling

the angles and other bonded terms by λnθ . The tests in the table below were performed on

the unfolded ensemble of the Y25P proline mutation. The soft bond does not change the
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endpoints, only the pathway between them, so ∆G should be the same for all simulations,

but is systematically lower for simulations with linear bond or angle scaling (nα = 1 or

nθ = 1). The systems with nα = nθ = 2 are more likely to be correct because their free

energy profiles are smoother, as quantified by the smaller magnitude of the endpoint bias

determined from ALF (ω). Simulations using soft bonds (rα = 1 Å) rather than hard bonds

(rα = ∞) also appear to have improved transition rates and more accurate ∆G, as judged

by their agreement with nα = nθ = 2 simulations. Because we wanted to used soft bonds

to scale angles linearly with nθ = 1 as described in the next section, and because nθ = 2

lowers transition rates, rα = 1 Å, nα = 2, and nθ = 1 was chosen as a compromise between

accuracy and efficiency.

Table S1: Soft Bond Optimization

rα (Å) Bond exp (nα) Angle exp (nθ) Transitions (1/ns) ∆G (kcal/mol) ω (kcal/mol)
1 1 1 7.895 33.94± 0.08 −7.80
1 2 1 8.090 34.13± 0.07 −5.84
1 2 2 7.265 34.20± 0.10 −1.42
∞ 1 1 7.995 33.89± 0.05 −7.74
∞ 2 1 7.740 34.04± 0.07 −5.80
∞ 2 2 7.145 34.25± 0.09 −1.90

Restraints and Scaled Angles

The whole residue approach tightly restrains analogous atoms together. This is implemented

in CHARMM with NOE restraints in the cons module. For a site with Ns interconverting

residues, each atom is harmonically restrained to each of the other Ns − 1 analogous atoms

with a harmonic force constant of 59.2/(Ns−1) kcal/mol/Å2, (where the harmonic potential

has the standard prefactor of one half.)

Three angles through the Cα atom were unscaled, which is two more than allowed.

Furthermore, in the whole residue strategy, two angles through N are also unscaled, which

is one more than allowed. We responded to this problem in three ways, first by ignoring it
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(which is not rigorous, but gives satisfactory results), second by scaling all but one of the

offending angles by λ, and finally by scaling all of the offending angles by λ and adding an

angle restraint between Cα-Cβ bonds.

Scaling all but one of the angles was done as follows. For the old side chain perturbation

strategy, the Cβ-Cα-N and Cβ-Cα-Hα angles were scaled and the Cβ-Cα-C angle remained

unscaled. For the new whole residue perturbation strategy, the Cβ-Cα-Hα and Cβ-Cα-

C angles were scaled and the Cβ-Cα-N angle was unscaled, and the HN-N-Cα angle was

also scaled, leaving the HN-N-C angle unscaled. This strategy was unsatisfactory because

the Cα-Cβ bond sampled many unphysical orientations, which degraded the quality of the

results.

In the third strategy, to ensure the Cα-Cβ bond remained in a physical orientation, the

angle between each Cα-Cβ bond vector, and every other Cα-Cβ bond vector was harmoni-

cally restrained with GEO ANGLE (or a newly implemented GEO AANGLE) in the mmfp

module of CHARMM, with a harmonic force constant of 59.2/(Ns − 1) kcal/mol/radian2.

This restraint took the role of the one allowed unscaled angle interaction, so all angles

through Cα (and N in the whole residue strategy) were scaled. This maintained full physical

rigor, but without the sampling of nonphysical Cα-Cβ bond orientations in the previous

approach. This strategy gave indistinguishable results from the strategy of keeping all Cα

angles unscaled, indicating that leaving these angles unscaled has a negligible effect on ac-

curacy (Figure S1).

Scaling an angle A-B-C was implemented in CHARMM by declaring a soft bond between

atoms A and C. While there is no bond between A and C, except possibly a Urey-Bradley

interaction, which is treated with a soft bond, this ensures the A-B-C angle including both

these atoms is scaled by λ.
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Figure S1: Comparison of MSλD with experiment for proline and glycine mutations, but
with all three Cα angles unscaled. (See Main Text Figure 3 for results with the three Cα
angles scaled.) While calculations with the angles scaled were run with rα = 1 Å, nα = 2,
and nθ = 1 and scaled improper torsions, these calculations with the angles unscaled were
run with rα = ∞, nα = 2, and nθ = 2 and unscaled improper torsions. The dashed line is
y = x.

Table S2: Proline and Glycine Predictions (kcal/mol)

Mutation Experiment MSλD MSλD
Unscaled Angles Scaled Angles

Native 0.00 0.00± 0.00 0.00± 0.00
Y25P 2.30 4.18± 0.12 3.92± 0.11
L33G 2.90 7.75± 0.08 7.80± 0.11
P37G -0.20 1.74± 0.12 1.68± 0.15
S44G 0.53 1.47± 0.06 1.38± 0.04
S44P 3.03 5.30± 0.05 5.91± 0.10
G56M 1.80 1.58± 0.12 1.36± 0.10
T59G 1.60 0.58± 0.09 0.40± 0.14
Q69P 2.90 5.14± 0.14 5.07± 0.16
L99G 6.30 9.41± 0.18 9.30± 0.06
V149G 4.90 5.71± 0.27 6.43± 0.27
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Sources of Error

The errors relative to experiment were larger for the proline and glycine dataset than for

the dataset lacking proline and glycine. While this is disappointing, it is not surprising.

As mentioned in the main text, glycine mutations have been previously observed to give

larger errors relative to experiment than other mutation types, and it is not surprising that

prolines do as well. A further difficulty is that the ∆∆G values for this data were computed

using at least three different equations from thermal unfolding at much higher temperatures,

and reported for temperatures between 51.68 and 63.2 Celsius, whereas our simulations were

performed at 300 K, or 26.85 C (Table S3). Using ∆G = ∆H −T∆S to linearly extrapolate

back to 300 K for the eight mutations for which the necessary data was reported gives

markedly different ∆∆G values, especially in the case of the worst outlier, L33G. Thus we

expect at least some of our error comes from using ∆∆G measured at a high temperature,

which may not reflect ∆∆G at a lower temperature. This may also partially explain why

the results were better for the dataset lacking proline and glycine: those mutations were

mostly made at a lower pH with a lower unfolding temperature, so the ∆∆G values were

not measured as far from 300 K; for example, sites 42 and 98 were measured at 40 Celsius.

For this set of eight mutations and calculations with unscaled angles, the RMSE falls from

1.50 kcal/mol with the reported values to 1.41 kcal/mol with the extrapolated values, and

more notably, the mean signed error, which captures systematic overprediction, falls from

1.73 kcal/mol to -0.47 kcal/mol.

The sites where large errors occur mostly make sense. Y25 and L33 are paired in a β

sheet. S44 and Q69 are both fully solvent exposed in α helices. P37, G56, and T59 are

surface exposed in a loop. L33, L99, and V149 are all deeply buried, and their mutation

to glycine leaves a void that must be filled by water, structural rearrangement, or simply a

buried cavity. Unsurprisingly, mutations in the surface loops have small effects and agree

most closely with experiment. More surprisingly, for surface helix mutations, simulations

seem to overestimate the effect of the mutation by 2 kcal/mol. Finally, our worst outliers are
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for deeply buried mutations to glycine, and notably the two leucine to glycine mutations that

remove four carbons are worse than the valine to glycine mutation, which only removes three

carbons. Either experiments underestimate the large destabilizing effect of these mutations,

or other slow degrees of freedom that aren’t observable in the time scale of our simulations

relax to accommodate the void.

Table S3: Extrapolating Experimental ∆∆G back to 300 K

Mutation Reported ∆∆G Reported T (C) Extrapolated ∆∆G pH
Y25P 2.3 60 4.61 5.4
L33G 2.9 60 8.13 5.4
P37G -0.2 60 -0.32 5.4
S44G 0.53 51.68 0.79 3.0
S44P 3.03 51.68 5.30 3.0
G56M 1.8 60 3.88 5.4
T59G 1.6 63 - 6.5
Q69P 2.9 63.2 - 6.5
L99G 6.3 60 10.31 5.4
V149G 4.9 59 8.68 5.4

Controls

In order to demonstrate the theoretical validity of this strategy, Ramachandran distribu-

tions of the endpoint ensembles were examined, and closed thermodynamic cycles were con-

structed. These controls were performed with the three extra angles unscaled because this

provides an upper bound on the error; simulations with the extra angles all scaled have one

less source for possible artifacts.

The Ramachandran distributions for the pentapeptide modeling the P37G unfolded en-

semble were examined (Figure S2) along with one dimensional free energy profiles along φ

and ψ (Figure S3). In addition to proline and glycine, a third alanine substituent was added

at the same site. Standard molecular dynamics (MD) simulations containing only one of

the three residues were performed for 40 or 400 ns with five independent trials, the first

quarters of the simulations were discarded for equilibration, and snapshots were saved every
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10 ps. Analogously, simulations with the MSλD perturbation strategy were run with proline,

glycine, and alanine all present, but λ variables were fixed to one of the three thermody-

namic endpoints. Ramachandran distributions run for 40 ns showed deviation between MD

and MSλD results due to noise caused by the small number of transitions between basins.

Consequently, longer 400 ns simulations were run to allow the Ramachandran distributions

to equilibrate fully. Due to the length of these simulations, they were run in the unpublished

BLaDE software package, which can perform MSλD simulations more than five times faster

than CHARMM on a GTX 1080 TI GPU. For these longer simulations, the Ramachandran

distributions agree quite well.

Closed thermodynamic cycles are not important for error correction in MSλD as they

are in other alchemical methods like free energy perturbation, because all perturbations

can be compared in the same MSλD simulation without the need for a network of pairwise

comparisons. Still, thermodynamic cycles are useful for highlighting possible theoretical

artifacts or coding errors, and have been previously used with MSλD to highlight the need

for soft core interactions (Hayes et al, JPC B 2017). Since the free energy change around a

thermodynamic cycle should be zero to within statistical noise, deviations highlight potential

artifacts. Consequently, closed thermodynamic cycles, from proline to glycine to alanine and

back to proline were evaluated in the unfolded ensemble for the P37G mutation. Since the

corresponding folded cycle is not considered, artifacts which might cancel out between the

folded and unfolded cycles are still present, and this represents a stricter test of correctness.

Convergence is also likely slower in the folded ensemble due to slow backbone relaxation, so

focusing on the unfolded ensemble minimizes noise due to sampling issues. Even within the

unfolded ensemble, convergence is still nontrivial.

After flattening, five independent trials were run for 40 ns, and after reoptimization of

biases, another five trials of 40 ns were run. Results from both are reported in Table S4. It

is readily apparent that bootstrapping significantly underestimates the uncertainty in these

simulations because the two results differ from each other by substantially more than the
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Figure S2: Ramachandran distributions for standard molecular dynamics (MD), and MSλD
for proline, glycine, and alanine with a fixed λ state at one of the three thermodynamic
endpoints (MSλD PGA fixed λ). Distributions show some deviation for 40 ns simulations
due to small numbers of transitions between basins, but agree well after 400 ns of sampling.
Color axis is in units of kcal/mol.
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Figure S3: One dimensional φ and ψ backbone dihedral distributions for standard molecular
dynamics (MD), and MSλD for proline, glycine, and alanine with a fixed λ state at one of
the three thermodynamic endpoints (MSλD). Distributions show some deviation for 40 ns
simulations due to small numbers of transitions between basins, but agree well after 400 ns
of sampling.
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estimated uncertainty. The majority of the inconsistency between the two runs can be traced

to the proline to glycine perturbation. Inspection of the λ trajectories reveals two states:

a state that is trapped in glycine and a state that rapidly transitions between proline and

glycine (corresponding to positive and negative φ in the Ramachandran plots, respectively).

Within the 150 ns used for free energy estimation (5 trials times the final 75% of a 40 ns

simulation), only four transitions from one state to the other were observed, which explains

the poor convergence. Consequently, the BLaDE software package was used to access longer

time scales. After flattening, five trials of 40 ns were used to reoptimize the bias for five trials

of 400 ns. By random chance, the BLaDE 40 ns runs were quite close to zero. In the 400 ns

runs, slightly over 50 transitions between the states were observed, implying substantially

improved convergence. While the result differs from zero by more than the bootstrapped

uncertainty, it is closer, and the uncertainty is likely underestimated as it was in the 40

ns simulations. While the cycle closure error of 0.19 kcal/mol is quite small, we expect

longer simulations would bring it even closer to zero. If they do not, the two best candidate

explanations are the three unscaled angles, which could mildly perturb the ensemble, or the

free energy estimator, which approximates the free energy of the endpoint by the population

of states within a small λ distance from the true endpoint. Both of these effects might be

mitigated by subtracting the corresponding folded cycle.

Table S4: Closed Thermodynamic Cycles (kcal/mol)

∆GPG ∆GGA ∆GAP ∆Gcycle

First 40 ns run −55.514± 0.409 12.011± 0.072 42.501± 0.035 −1.002± 0.417
Second 40 ns run −54.345± 0.078 12.147± 0.017 42.491± 0.051 0.293± 0.095
BLaDE 40 ns run −54.740± 0.160 12.012± 0.052 42.548± 0.056 −0.180± 0.177
BLaDE 400 ns run −54.720± 0.063 12.033± 0.025 42.495± 0.020 −0.192± 0.070

Given that longer 400 ns runs were required to obtain well converged results for Ra-

machandran distributions and closed cycles in the unfolded ensemble, it is likely longer

simulations would improve upon the results presented in the paper. Indeed, preliminary

400 ns simulations of the ten proline and glycine mutations run in CHARMM and BLaDE
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obtained RMSE values of 1.59 kcal/mol and 1.50 kcal/mol, respectively. While this repre-

sented a modest improvement of 0.1 to 0.2 kcal/mol over the results obtained with 40 ns

simulations, we chose to present results from the 40 ns simulations both for consistency with

the previous study of T4 lysozyme and because the modest improvement required a tenfold

increase in computational effort.

Patching

In order to implement whole residue scaling, an elaborate set of CHARMM patches were

designed. Patches are used in CHARMM to make changes to the topology of one or more

residues, including adding a disulfide bond, protonating a titratable residue, or phosphory-

lating a residue. Patches were generated with a python script to avoid introduction of errors

due to typos. Each patch included all atoms from a residue with new unique names, and

bonds, impropers, and CMAP interactions between them and with the previous and next

residue. Angles and dihedrals are automatically generated by CHARMM and need not be

included in the patch, though nonphysical angles and dihedrals generated between different

patches must be removed. Additional patches are employed to duplicate the CMAP and

C improper from the the previous residue and the CMAP and N improper from the next

residue, which should interact in a scaled fashion with each copy of the perturbed residue.

While only single mutations were considered in this work, this approach has already been

used within our group for applications with multiple mutations, which requires additional

modifications. If two consecutive residues are mutating, additional CMAP, improper, and

bond patches are required to link each copy of the neighboring residues, and if two residues

separated by a third residue are mutating, or if three consecutive residues are mutating,

additional CMAP only patches are required. This ensures that even though the CMAP

terms are scaled by the product of all three λ values, they always add up to the equivalent

of one and only one effective CMAP interaction. These patches are all applied appropriately
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and automatically by a CHARMM script posted online.

Adaptive Landscape Flattening

In a previous study of T4 lysozyme, adaptive landscape flattening (ALF) was run for 50

iterations of 100 ps, 10 iterations of 1 ns, 3 iterations of 5 ns, and then production simulations

of 40 ns (or 20 ns when using variable bias replica exchange) were run until a converged result

was obtained. A result was considered converged if the range of changes in the fixed bias

(∆φ) was less than 3kT , the minimum ∆φ was greater than −2kT , and the uncertainties

of the native and non-native ∆G were less than 0.3 and 0.5 kcal/mol respectively. If these

criteria were not met, the biasing potential was reoptimized based on the production run,

and another production run was launched.

In this study the same approach was used for the mutations excluding proline and glycine,

except instead of 3 sequential 5 ns simulations, a short production of 5 independent trials

of 5 ns simulations run in parallel was used. This slightly increased computational cost in

GPU-hours, but decreased the wait time to obtain results by 10 ns of sampling. Following

this the full production simulation was run. In some cases the A98 site was stopped before

production simulations had reached the above convergence criteria because it was judged

unlikely results would improve by running it yet again.

The proline and glycine mutations were only considered in pairs, which reduced the level

of noise substantially, but still had large noise in some cases. The flattening strategy consisted

of 100 iterations of 100 ps, 10 iterations of 1 ns, and a production run of 5 independent trials

of 5ns. To reduce confusion about the number of production runs, two production runs of 5

independent trials of 40 ns were performed, though only one or two sites needed the second

run for convergence, and results from the second run were reported. In all cases, results were

not compared to experiment until after they were judged to have converged to avoid biasing

the results artificially.
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