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Abstract

Computation of the thermodynamic consequences of protein mutations holds great

promise in protein biophysics and design. Alchemical free energy methods can give

improved estimates of mutational free energies, and are already widely used in calcu-

lations of relative and absolute binding free energies in small molecule design prob-

lems. In principle, alchemical methods can address any amino acid mutation with an

appropriate alchemical pathway, but identifying a strategy that produces such a path

for proline and glycine mutations is an ongoing challenge. Most current strategies

perturb only side chain atoms, while proline and glycine mutations also alter the

backbone parameters and backbone ring topology. Some strategies also perturb

backbone parameters and enable glycine mutations. This work presents a strategy

that enables both proline and glycine mutations and comprises two key elements: a

dual backbone with restraints and scaling of bonded terms, facilitating backbone

parameter changes, and a soft bond in the proline ring, enabling ring topology

changes in proline mutations. These elements also have utility for core hopping and

macrocycle studies in computer-aided drug design. This new strategy shows slight

improvements over an alternative side chain perturbation strategy for a set T4 lyso-

zyme mutations lacking proline and glycine, and yields good agreement with experi-

ment for a set of T4 lysozyme proline and glycine mutations not previously studied.

To our knowledge this is the first report comparing alchemical predictions of proline

mutations with experiment. With this strategy in hand, alchemical methods now have

access to the full palette of amino acid mutations.
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1 | INTRODUCTION

The effects of amino acid mutations in proteins are of great importance

in medicine, where they determine the mechanism of genetic diseases1

and control evolutionary pathways of drug resistance,2,3 and in biotech-

nology, where protein design relies on iterative mutations to optimize

target properties.4–6 The ability to predict the effect of these mutations

using computational methods is highly desirable both to streamline

experimental efforts and aid in their interpretation. Consequently, many

methods have been developed to compute mutational free energies

with physics or knowledge-based potentials, machine learning, or geno-

mic sequencing data.3,7–12 These methods enable rapid estimation of

mutational free energy changes, but can suffer in accuracy due to

approximations in the equilibrium ensemble and force field, or from

poor generalizability to new ligands, non-natural amino acids, and prob-

lems beyond the training data. Alchemical free energy methods can

offer better accuracy and generalizability at an increased computational

cost, and have already found widespread use in computer-aided drug

design.13,14 This has motivated a growing interest in applying alchemi-

cal methods to protein mutations.15–22
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While alchemical free energy calculations of protein mutations

have shown great promise, none of these previous studies15–22 have

been able to treat mutations to or from proline, and only a few

included mutations to or from glycine.17,19,20 This may seem like a

minor limitation in testing and validation studies and some design

studies when one can choose to avoid inconvenient mutations, but in

many cases, such as comparing evolutionarily related sequences23 or

evaluating redesigned proteins against their natural homologues,24,25

the sequences are already defined and often include a few proline

mutations. In principle there is no reason alchemical calculations can-

not address proline mutations given an appropriate alchemical path-

way; the limitation lies in the perturbation strategies employed in

previous studies, which do not generalize to proline. Indeed, two pre-

vious studies have examined a single proline perturbation, but they

neither compared to experimental measurement of the free energy

change, nor described the perturbation strategy in sufficient

detail.26,27 Consequently, description and experimental testing of a

proline perturbation strategy is needed.

In this work, we present a perturbation strategy that enables

treatment of proline mutations. This strategy also enables glycine

mutations, which can be problematic for some free energy

approaches. We begin with a discussion of alchemical free energy

methods and the perturbation strategy. Next, the new strategy is vali-

dated on a previous T4 lysozyme data set lacking proline and glycine

mutations to ensure it does not degrade accuracy for mutations that

can be treated with other strategies. Finally, the strategy is tested on

a new set of 10 proline and glycine mutations in T4 lysozyme. We

anticipate this strategy will inspire treatment of proline mutations for

several alchemical methods, and the underlying principles will facili-

tate core hopping and macrocycle calculations in computer-aided drug

design.

2 | ALCHEMICAL METHODS AND A
PROLINE PERTURBATION STRATEGY

Alchemical methods all use a similar approach to calculate free energy

differences (Figure 1). Because free energy is a state function, the rel-

ative free energy difference upon mutation for a physical process like

folding can be expressed as either the difference of the horizontal

physical processes or the vertical alchemical processes in Figure 1.

Alchemical methods utilize the alchemical processes because they

converge much more rapidly. Most alchemical free energy methods

introduce an alchemical coupling parameter λ into the potential

energy function for the system that mutates from one sequence to

the other. In the conventional equilibrium methods of thermodynamic

integration,28 free energy perturbation,29 and the multistate Bennett

acceptance ratio,30 several simulations are run at closely spaced, fixed

values of λ. In nonequilibrium methods like fast growth thermody-

namic integration,31 λ is a continuous driving variable. Finally, in the

multisite λ dynamics (MSλD) technique pioneered in our lab,32,33 λ is a

continuous degree of freedom that fluctuates on equal footing with

spatial degrees of freedom. While examples of each of these methods

have shown impressive accuracy in predicting the effect of protein

mutations,18,19,22 MSλD is unique in that λ can be generalized to a

multidimensional alchemical space, allowing scalable and efficient

treatment of multiple mutations. This makes MSλD uniquely well

suited to the combinatorial sequence spaces encountered in protein

design.

Alchemical methods allow representation of multiple sequences

by partitioning the system into environment atoms, which are present

in all sequences, and mutating or alchemical atoms, which are unique

to a particular mutation. For convenience, an atom may be removed

from the environment by creating a copy of it in each alchemical set;

for example, while both mutating residues may contain a Cγ atom, it

may be more convenient to include a Cγ atom in each alchemical set

so that the same alchemical set can be used when mutating to alanine,

which lacks a Cγ atom. Within MSλD, the potential energy rep-

resenting the hybrid system is

U=U0,0 +
XM

s

XNs

i

λsi U0,si +Usi,sið Þ

+
XM

s

XM

t> s

XNs

i

XNt

j

λsiλtjUsi,tj +Ubias

ð1Þ

where λsi is the alchemical scaling parameter of mutation i at site s,

the sum of λsi over i at each site is constrained with implicit

constraints,34 U0,0 are the interaction terms involving only environ-

ment atoms, U0,si and Usi,si are the interactions of mutating atoms with

the environment and among themselves, Usi,tj are interactions

between mutating atoms at different sites, and Ubias is a biasing

potential typically obtained with adaptive landscape flattening (ALF)

to optimize sampling.22,35 This reduces to the potential energy func-

tion for a particular sequence (plus some noninteracting dummy

atoms) at alchemical endpoints where all λ values are either 0 or

1, but allows transformation between sequences through nonphysical

alchemical intermediates where λ values are between 0 and 1.

In practice, typically only nonbonded electrostatic and Lennard–

Jones interactions are scaled by λ, while bonded interactions, referring

to bonds, angles, dihedrals, impropers, and CMAP interactions,36,37

are not scaled by λ. If bonded terms are scaled by λ, mutating atoms

F IGURE 1 To determine the relative free energy difference of a
process like folding upon mutation, alchemical methods take the
difference of the two vertical alchemical processes rather than the
difference of the two horizontal physical processes, because
simulations of the alchemical processes converge more rapidly
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can occupy unreasonable geometries when λ is 0, which introduces

serious convergence artifacts; for example in MSλD, λ cannot fluctu-

ate back away from 0 because of the large force −∂U/∂λ on λ once

atoms are out of position. Conversely, artifacts can arise if the

unscaled bonded terms for an alchemical set of atoms affect the

ensemble beyond this set of atoms when λ is 0. When a special

allowed set of alchemical bonded terms remains unscaled and other

alchemical bonded terms are scaled to zero, their contribution to the

partition function may be factored out by a change of variables,

resulting in an additive constant to the free energy, which cancels out

in the difference between the two alchemical processes.38 This

allowed set of unscaled bonded interactions includes all bonded inter-

actions between a set of alchemical atoms, their bonds to one envi-

ronment atom, their angles involving that atom and one additional

environment atom, and their dihedrals involving those two atoms and

one additional environment atom. Alchemical calculations sometimes

include extra unscaled bonded interactions or restraints between an

alchemical region and the environment or other alchemical regions,

but these cannot be guaranteed to cancel out. The dual concerns of

ensuring mutating atoms maintain reasonable geometries yet do not

perturb the ensemble when λ is 0 strongly influence the development

of our perturbation strategy below.

To motivate the new perturbation strategy for proline and gly-

cine, we outline the previous MSλD side chain perturbation strategy22

and the two fundamental problems that must be addressed for any

amino acid perturbation strategy to treat proline and glycine, followed

by the new perturbation strategy that addresses these problems. Sim-

ulations were carried out using the CHARMM36 forcefield39,40 in the

CHARMM software package41,42 using the block module. Backbone

atoms (N, HN, Cα, Hα, C, and O) were considered part of the environ-

ment, and atoms for each mutating side chain were included with

unscaled bond, angle, and improper interactions. Each mutating side

chain has its own Cβ atom with three unscaled angle interactions

Cβ Cα N, Cβ Cα C, and Cβ Cα Hα, which is two more unscaled

angles than allowed as outlined above.38 This effectively double

counts and rigidifies these angles for each Cβ present, but the high

accuracy of the approach suggests that the decreased amplitude of

angle vibrations has similar effects on both ensembles.22 The validity

of this assumption is verified below by scaling some or all of these

angles. In contrast, the double counting of the ϕ dihedral

Cβ Cα N C and ψ dihedral Cβ Cα C O would affect not just

vibrations but also Ramachandran distributions, so all perturbed dihe-

dral interactions were scaled by λ.

There are two fundamental problems with this approach. First,

for proline and glycine mutations, backbone parameters change, which

cannot be implemented in the block module of CHARMM without

increasing the set of mutating atoms to include the backbone, and can

also lead to problems for some other alchemical methods

implemented in NAMD43 and GROMACS.44 Second, a problem for all

alchemical methods is that in proline the side chain is bonded to the

backbone at both Cα and N, which is one more bond than allowed

above38 and perturbs the ensemble by preventing free rotation

around the backbone ϕ angle, even when λ for proline is zero.

The first problem is that proline and glycine mutations change

parameters of backbone atoms generally included in the environment.

Changing parameters of environment atoms has been mostly

implemented in GROMACS,45 with the notable exception of CMAP

interactions. Implementing changing parameters of environment atoms

within the block module of CHARMM would have required extensive

code restructuring, so the mutating region was expanded to include the

entire residue, leading to multiple copies of the backbone atoms. The

whole residue is connected to the environment by two bonds, so care

must be taken to avoid artifacts. A simple test system mutating glycine

to glutamine in a pentapeptide environment revealed that dihedral and

CMAP scaling were required to obtain the correct Ramachandran distri-

bution. With CMAP and dihedral terms scaled, the remaining bonded

terms perturbed the glycine N Cα C angle from 115.0∘ to 113.7∘, indi-

cating the two unscaled glutamine bonds to neighboring residues dis-

tort the glycine even when λ for glutamine is zero.

Therefore, we apply a strategy that allows one to factor out the

contribution of the side chain from the partition function, followed by

factoring out the contributions of the backbone atoms when λ for that

residue is 0, and rigorously guarantees the endpoint ensembles are

not perturbed. Bond and angle terms are scaled if they contain only

environment and analogous backbone atoms (N, Cα, Hα, C, and O),

but are left unscaled if they contain any side chain atoms (or HN,

which is missing from proline), while all other bonded terms are scaled

regardless. The only obstacle to factoring out the side chain (and HN)

is that three unscaled Cβ Cα X angles and two unscaled HN N X

angles remain when only one of each is allowed. Three different treat-

ments of these unscaled angles are tested below. To prevent the anal-

ogous backbone atoms from adopting distorted configurations, they

are tightly harmonically restrained together (see Supporting Informa-

tion for details), similar to a recent ligand perturbation approach in

NAMD using holonomic constraints.46 This approach is rigorous,

because after the side chain and HN are factored out of the partition

function, each analogous backbone atom is an isolated harmonic oscil-

lator that may also be factored out. For generalization to multiple

mutation sites, if Ns and Nt mutations to adjacent residues are made,

all Ns×Nt inter-residue C N bonds are included and scaled by the

product of their λ values. While most backbone parameters can be

changed as a function of λ in GROMACS, CMAP scaling is not yet

implemented,45 and the distortion of the Ramachandran distribution

in our pentapeptide system highlights that CMAP scaling must be

implemented before glycine mutations can be performed in

GROMACS with the CHARMM36 force field. Furthermore, by

replacing tight harmonic restraints with holonomic constraints, this

strategy may be adapted to enable glycine mutations NAMD.

This approach is still not sufficient for proline, where unscaled

bonds in the ring prevent free rotation around the backbone ϕ dihe-

dral even when λ is 0, and perturb the Ramachandran distribution of

the alternative residues unphysically. Fundamentally, one of the bonds

in the proline ring must be scaled to zero with λ, but the two previous

studies of a proline perturbation failed to mention this or describe

their solution.26,27 In this work, we use recently developed soft

bonds47,48 to break the ring:
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U=
1
2λsi

nαk r−r0ð Þ2
1 + 1−λsi

nαð Þ r−r0ð Þ2=rα2
ð2Þ

where k and r0 are the bond spring constant and equilibrium distance.

Previous work chose rα = 0.7 Å for core hopping47 and rα = 1.4 Å for

macrocycle applications,48 and we choose rα = 1 Å in this work. Previ-

ous work only included the special case nα = 1, but we used nα = 2

because it gives smoother free energy profiles (see Supporting Infor-

mation and Table S1 for details). We apply the soft bond to the

Cβ Cγ bond to avoid any dihedrals through the soft bond that include

atoms from the previous residue, which could also be mutating. Any

Urey–Bradley interactions through this bond are also treated with soft

bonds, and other bonded terms through this bond (e.g., angles) are

scaled linearly by λsi
nθ with nθ = 1, rather than by λsi

nα . The two sets of

side chain atoms bonded to Cα and N can then be factored out of the

partition function separately because they no longer interact when λ

is 0. In testing soft bonds on perturbations between 5, 6, and 7 mem-

bered ring inhibitors of BACE1 previously studied in our lab,49 we dis-

covered that soft-core interactions,35 which were previously not

applied to 1–4 nonbonded interactions, had to be applied to 1–4

interactions as well to prevent serious artifacts. Thus, we apply soft-

core interactions to 1–4 nonbonded interactions to make the

approach easily generalizable, as well as to prevent possible artifacts

for 1–4 interactions between Hβ and Hγ atoms that could possibly

overlap.

Two control tests were performed to test the thermodynamic

rigor of the perturbation strategy. First, the Ramachandran distribu-

tions were compared for plain molecular dynamics and the present

perturbation strategy with λ fixed at a λ = 1 endpoint to ensure

the perturbation strategy does not perturb the endpoint ensemble.

For 40 ns simulations of the pentapeptide model of the unfolded

state, deviations were observed due to slow transitions between

basins, but for longer 400 ns simulations, both methods converged

to the same distribution (Figures S2 and S3). Second, the free

energy around a closed thermodynamic cycle proline to glycine to

alanine and back to proline was computed. Unlike other alchemical

methods, MSλD need not use closed thermodynamic cycles to con-

nect a network of pairwise free energy comparisons since all per-

turbations can be evaluated in the same simulation, but cycles can

still highlight potential artifacts. We find the proline to glycine leg

exhibits substantial variability on the 40 ns time scale, while the

other legs appear converged. For longer 400 ns simulations, all legs

converge to give a cycle closure error of less than 0.2 kcal/mol

(Table S4). Only one of the 10 mutations examined subsequently

involves a proline to glycine mutation, and while we observe

slightly improved agreement with experiment for 400 ns simula-

tions (see Supporting Information), the results highlighted in the

main text use 40 ns simulations.

This perturbation strategy incorporating both scaled bonded

interactions of restrained analogous atoms and soft bonds allows

mutation between any amino acid including proline at several

sites by MSλD within the CHARMM molecular dynamics package,

and should give insight into how to treat proline and glycine

mutations with other alchemical methods in other software

packages.

3 | T4 LYSOZYME CONTROL MUTATIONS

To test this perturbation strategy we first sought to ensure it gave

consistent results for nonproline and nonglycine mutations with the

previous side chain perturbation strategy. Therefore, the set of previ-

ously calculated T4 lysozyme point mutations were recalculated as

described previously,22 changing only the perturbation strategy. Simu-

lations used particle mesh Ewald electrostatics,50 modeled the folded

alchemical transformation starting from PDB 1L63,51 and approxi-

mated the unfolded alchemical transformation with a capped penta-

peptide centered on the mutating residue.

It is often more informative to compare computational results

obtained with different methods with each other than to compare with

experiment, because the goal in methods development (in contrast to

force field development or design applications) is to converge to the

force field correct answer, which may or may not agree with experi-

ment, depending on the quality of the force field. However, it is also

useful to compare with experiment, because artifacts in the method

can lead to systematic errors that tend to increase the deviation from

experimental values. Experimental values are taken from reference 52,

and Pearson correlation (R), mean unsigned error < jΔx j> (MUE), and

root mean squared error (<Δx2 > − <Δx>2)1/2 (RMSE) are evaluated.

We evaluate the centered RMSE, which includes the native sequence

in the averages, rather than the larger uncentered RMSE (<Δx2>1/2)

because it is more appropriate for relative free energies and for consis-

tency with our previous study of T4 lysozyme.22 We only include neu-

tral mutations in the statistics, otherwise statistical variation in the

single M102K mutation dominates the statistics.

To determine whether the three unscaled angles through the

Cβ Cα bond to the backbone caused artifacts, since only one is rigor-

ously allowed, additional simulations were run with some or all of

these angles scaled. In one case, all but one of these angles were

scaled (see Supporting Information for details), but this allowed free

rotation of the Cα Cβ bond into nonphysical orientations when λ was

small. Though no chirality flips were observed, the increased rigor

translated to poorer results (Table 1). Therefore another set of simula-

tions was run with a harmonic angular restraint between Cα Cβ vec-

tors; the restraint counted as the one allowed angle term, thus all

three of the Cα angles were scaled by λ. This gave comparable results

to the simulations without the angles scaled, suggesting that there are

not substantial artifacts when the angles are unscaled (Table 1).

Figure 2 shows the whole residue strategy with scaling of all three

Cα angles achieves excellent agreement with experiment, and nearly

identical results with the side chain strategy without Cα angle scaling.

Furthermore, the new whole residue strategy seems to give slightly

improved results relative to the original side chain strategy (Table 1),

though this is likely just statistical variation. These findings suggest the

high accuracy previously reported with the side chain strategy can also

be expected from the whole residue perturbation strategy.
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4 | T4 LYSOZYME PROLINE AND GLYCINE
MUTATIONS

Having shown the whole residue strategy gives comparable or

improved results in T4 lysozyme mutations previously evaluated with

the side chain strategy, we turn our attention to proline and glycine

mutations that could not be addressed with the side chain strategy.

As a test set, we chose all mutations between neutral amino acids and

either proline or glycine made to T4 lysozyme in the C54T/C97A

background listed in reference 52. This comprises ten mutations:

Y25P, L33G, P37G, S44G, S44P, G56M, T59G, Q69P, L99G, and

V149G. The folded protein and unfolded pentapeptides were set up

as described previously, including protonation states at a pH of 3.0

and 5.4.22 Two mutations in this set were measured experimentally at

a pH of 6.5, but PROPKA calculations53 indicated protonation states

of all residues were the same as at a pH of 5.4. Production simulations

were run with 5 independent trials of 40 ns each. To our knowledge,

this is the first alchemical study of proline mutations that compares

with experimentally measured free energies.

MSλD simulations of proline and glycine mutations agree well

with experiment, but not as well as simulations of mutations excluding

proline and glycine (Figure 3). The statistics of R = 0.876,

MUE = 2.05 kcal/mol, and RMSE = 1.65 kcal/mol in Figure 3 were

obtained scaling all Cα angles; statistics without Cα angles scaled were

comparable with R = 0.870, MUE = 1.93 kcal/mol, and

RMSE = 1.59 kcal/mol (see Supporting Information Figure S1 and

Table S2). Two of the largest studies including glycine mutations both

observed poorer results for glycine mutations than other kinds of

mutations,17,19 and our glycine MUE of 1.97 kcal/mol (or 1.84 kcal/

mol with unscaled angles) is comparable to the glycine MUE of

2.1 kcal/mol in reference 19. To our knowledge this study is the first

comparison of alchemical simulations with experiment for proline, and

suggests that like glycine, they will also have larger errors than other

mutations.

The most likely source of increased error for proline and glycine

mutations is the strong effect on the flexibility of the backbone,

though the two worst outliers are both buried mutations from leucine

to glycine whose stability changes are driven instead by creation of a

buried cavity. The destabilizing effect of proline and glycine mutations

is generally overpredicted, suggesting the 40 ns simulations may be

too short for the protein to relax to accommodate the mutation. Over-

prediction can occur if a relaxation process that mitigates the

destabilizing effect of a mutation is too slow to observe computation-

ally. It is also possible the experimental results are partially responsible

for the discrepancy; free energies were reported at high temperatures,

and extrapolating back to the simulation temperature of 300 K gives

TABLE 1 Comparison with experiment of neutral, nonproline/
nonglycine mutations in T4 lysozyme

RMSE MUE R

Side chain—scale 0 Cα angles 1.08 0.91 0.896

Whole res.—scale 0 Cα angles 1.02 0.80 0.894

Side chain—scale 2 Cα angles 1.25 1.00 0.862

Whole res.—scale 2 Cα angles 1.13 0.97 0.897

Side chain—scale 3 Cα angles 1.07 0.91 0.901

Whole res.—scale 3 Cα angles 1.05 0.94 0.886
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marginally improved RMSE and substantially improved mean signed

error (see Supporting Information). Overall, it is unsurprising that the

computational results are poorer for these difficult mutations, yet it is

encouraging that the results are still reasonably accurate.

5 | DISCUSSION

In this paper we described the implementation of a protocol for

mutating amino acids in proteins where one endpoint contained either

glycine or proline. Our results demonstrate that the whole residue

perturbation strategy enables accurate computation of mutational

free energies for mutations to and from all 20 amino acids. As men-

tioned in the introduction, the ability to compute the effect of proline

mutations is useful in studies of evolution,23 where the effects of

mutations including proline constrain viable evolutionary paths. It is

especially important in protein design,24,25 where we envision MSλD

refining designs from less rigorous, but much faster, methods like

Rosetta, because proline mutations often have larger effects than

other mutations. This new perturbation strategy opens these and

other applications of MSλD.

We expect this perturbation strategy will also be relevant to stud-

ies of protein mutations with other alchemical free energy methods.

Scaling bonded interactions of restrained analogous atoms may be

helpful in some alchemical software implementations like NAMD but

unnecessary in others where the parameters of bonded interactions

can vary as a function of λ. The demonstration that soft bonds enable

accurate calculation of the effects of proline mutations is useful for all

alchemical methods and should encourage future studies to include

proline mutations. Other details, such as noting dihedrals and CMAP

terms should always be scaled, that 1–4 interactions should be treated

with soft cores, and that angular restraints allow extra angles to be

scaled by λ without sacrificing sampling should aid in crafting pertur-

bation strategies for other alchemical methods.

We also anticipate the two key techniques introduced in the

whole residue perturbation strategy, namely scaling bonded interac-

tions of restrained analogous atoms and judicious use of soft bonds,

will be useful in many other MSλD studies of ligand perturbations in

drug design. Scaling and restraining can be used when perturbations

involve core atoms that cannot easily be treated as substituents, or

for atoms whose parameters change only slightly in response to a per-

turbation. Soft bonds represent a more aggressive approach that is

warranted when perturbations open, close, or resize a ring, or when a

perturbation to a core changes connectivity. The use of soft bonds

has already enabled studies of core hopping and macrocyles with free

energy perturbation,47,48 and should now enable them within the

MSλD framework as well. During the D3R grand challenge 2, the core

hopping transformation between ligands 91 and 93 could have been

easily achieved by scaling and restraining, rather than the less rigorous

approach that we improvised at that time.54 Soft bonds would have

been necessary to efficiently study the macrocycle perturbations with

MSλD in the D4R grand challenge 4.55 Finally, scaling and restraining

enables a broader scope of MSλD multisite systems, because

alchemical regions may be directly bonded to each other rather than

requiring two intervening environment atoms.

6 | CONCLUSIONS

We have presented a perturbation strategy that allows proline muta-

tions, and demonstrated that it gives accurate predictions of the

effects of mutations for all amino acids including proline and glycine.

The underlying principles will also enable a wider array of small mole-

cule perturbations in computer-aided drug design. With this strategy,

MSλD is now poised to study and design proteins with the full palette

of amino acid mutations.

7 | NOTE ADDED IN PROOF

After the manuscript was accepted, we became aware of a recently

published systematic alchemical FEP study involving 20 proline muta-

tions. See reference 56.
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