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Abstract
Computation of the thermodynamic conse-
quences of protein mutations holds great
promise in protein biophysics and design. Al-
chemical free energy methods can give improved
estimates of mutational free energies, and are
already widely used in calculations of relative
and absolute binding free energies in small
molecule design problems. In principle, al-
chemical methods can address any amino acid
mutation with an appropriate alchemical path-
way, but identifying a strategy that produces
such a path for proline and glycine mutations
is an ongoing challenge. Most current strate-
gies perturb only side chain atoms, while pro-
line and glycine mutations also alter the back-
bone parameters and backbone ring topology.
Some strategies also perturb backbone param-
eters and enable glycine mutations. This work
presents a strategy that enables both proline
and glycine mutations and comprises two key
elements: a dual backbone with restraints and
scaling of bonded terms, facilitating backbone
parameter changes, and a soft bond in the pro-
line ring, enabling ring topology changes in
proline mutations. These elements also have
utility for core hopping and macrocycle stud-
ies in computer-aided drug design. This new
strategy shows slight improvements over an al-

ternative side chain perturbation strategy for a
set T4 lysozyme mutations lacking proline and
glycine, and yields good agreement with ex-
periment for a set of T4 lysozyme proline and
glycine mutations not previously studied. To
our knowledge this is the first report compar-
ing alchemical predictions of proline mutations
with experiment. With this strategy in hand,
alchemical methods now have access to the full
palette of amino acid mutations.

1 Introduction
The effects of amino acid mutations in proteins
are of great importance in medicine, where they
determine the mechanism of genetic diseases1
and control evolutionary pathways of drug re-
sistance,2,3 and in biotechnology, where protein
design relies on iterative mutations to optimize
target properties.4–6 The ability to predict the
effect of these mutations using computational
methods is highly desirable both to stream-
line experimental efforts and aid in their inter-
pretation. Consequently, many methods have
been developed to compute mutational free en-
ergies with physics or knowledge-based poten-
tials, machine learning, or genomic sequencing
data.3,7–12 These methods enable rapid estima-
tion of mutational free energy changes, but can
suffer in accuracy due to approximations in the
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equilibrium ensemble and force field, or from
poor generalizability to new ligands, nonnatu-
ral amino acids, and problems beyond the train-
ing data. Alchemical free energy methods can
offer better accuracy and generalizability at an
increased computational cost, and have already
found widespread use in computer-aided drug
design.13,14 This has motivated a growing inter-
est in applying alchemical methods to protein
mutations.15–22
While alchemical free energy calculations of

protein mutations have shown great promise,
none of these previous studies15–22 have been
able to treat mutations to or from proline,
and only a few included mutations to or from
glycine.17,19,20 This may seem like a minor lim-
itation in testing and validation studies and
some design studies when one can choose to
avoid inconvenient mutations, but in many
cases, such as comparing evolutionarily related
sequences23 or evaluating redesigned proteins
against their natural homologues,24,25 the se-
quences are already defined and often include a
few proline mutations. In principle there is no
reason alchemical calculations cannot address
proline mutations given an appropriate alchem-
ical pathway; the limitation lies in the pertur-
bation strategies employed in previous studies,
which do not generalize to proline. Indeed, two
previous studies have examined a single pro-
line perturbation, but they neither compared
to experimental measurement of the free energy
change, nor described the perturbation strat-
egy in sufficient detail.26,27 Consequently, de-
scription and experimental testing of a proline
perturbation strategy is needed.
In this work, we present a perturbation strat-

egy that enables treatment of proline muta-
tions. This strategy also enables glycine mu-
tations, which can be problematic for some free
energy approaches. We begin with a discussion
of alchemical free energy methods and the per-
turbation strategy. Next, the new strategy is
validated on a previous T4 lysozyme data set
lacking proline and glycine mutations to ensure
it does not degrade accuracy for mutations that
can be treated with other strategies. Finally,
the strategy is tested on a new set of ten pro-
line and glycine mutations in T4 lysozyme. We

anticipate this strategy will inspire treatment of
proline mutations for several alchemical meth-
ods, and the underlying principles will facili-
tate core hopping and macrocycle calculations
in computer-aided drug design.

2 Alchemical Methods and
a Proline Perturbation
Strategy

Alchemical methods all use a similar approach
to calculate free energy differences (Figure 1).
Because free energy is a state function, the
relative free energy difference upon mutation
for a physical process like folding can be ex-
pressed as either the difference of the horizon-
tal physical processes or the vertical alchemi-
cal processes in Figure 1. Alchemical methods
utilize the alchemical processes because they
converge much more rapidly. Most alchemi-
cal free energy methods introduce an alchem-
ical coupling parameter λ into the potential
energy function for the system that mutates
from one sequence to the other. In the conven-
tional equilibrium methods of thermodynamic
integration,28 free energy perturbation,29 and
the multistate Bennett acceptance ratio,30 sev-
eral simulations are run at closely spaced, fixed
values of λ. In nonequilibrium methods like
fast growth thermodynamic integration,31 λ is
a continuous driving variable. Finally, in the
multisite λ dynamics (MSλD) technique pio-
neered in our lab,32,33 λ is a continuous degree
of freedom that fluctuates on equal footing with
spatial degrees of freedom. While examples of
each of these methods have shown impressive
accuracy in predicting the effect of protein mu-
tations,18,19,22 MSλD is unique in that λ can
be generalized to a multidimensional alchemi-
cal space, allowing scalable and efficient treat-
ment of multiple mutations. This makes MSλD
uniquely well suited to the combinatorial se-
quence spaces encountered in protein design.
Alchemical methods allow representation of

multiple sequences by partitioning the system
into environment atoms, which are present in all
sequences, and mutating or alchemical atoms,
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Figure 1: To determine the relative free en-
ergy difference of a process like folding upon
mutation, alchemical methods take the differ-
ence of the two vertical alchemical processes
rather than the difference of the two horizon-
tal physical processes, because simulations of
the alchemical processes converge more rapidly.

which are unique to a particular mutation. For
convenience, an atom may be removed from the
environment by creating a copy of it in each
alchemical set; for example, while both mutat-
ing residues may contain a Cγ atom, it may be
more convenient to include a Cγ atom in each
alchemical set so that the same alchemical set
can be used when mutating to alanine, which
lacks a Cγ atom. Within MSλD, the potential
energy representing the hybrid system is

U =U0,0 +
M∑
s

Ns∑
i

λsi(U0,si + Usi,si)

+
M∑
s

M∑
t>s

Ns∑
i

Nt∑
j

λsiλtjUsi,tj + Ubias (1)

where λsi is the alchemical scaling parameter
of mutation i at site s, the sum of λsi over i
at each site is constrained with implicit con-
straints,34 U0,0 are the interaction terms involv-
ing only environment atoms, U0,si and Usi,si are
the interactions of mutating atoms with the
environment and among themselves, Usi,tj are
interactions between mutating atoms at differ-
ent sites, and Ubias is a biasing potential typ-
ically obtained with adaptive landscape flat-
tening (ALF) to optimize sampling.22,35 This
reduces to the potential energy function for a
particular sequence (plus some noninteracting
dummy atoms) at alchemical endpoints where
all λ values are either 0 or 1, but allows trans-
formation between sequences through nonphys-

ical alchemical intermediates where λ values are
between 0 and 1.
In practice, typically only nonbonded elec-

trostatic and Lennard-Jones interactions are
scaled by λ, while bonded interactions, refer-
ring to bonds, angles, dihedrals, impropers, and
CMAP interactions,36,37 are not scaled by λ. If
bonded terms are scaled by λ, mutating atoms
can occupy unreasonable geometries when λ is
0, which introduces serious convergence arti-
facts; for example in MSλD, λ cannot fluctu-
ate back away from 0 because of the large force
−∂U/∂λ on λ once atoms are out of position.
Conversely, artifacts can arise if the unscaled
bonded terms for an alchemical set of atoms
affect the ensemble beyond this set of atoms
when λ is 0. When a special allowed set of al-
chemical bonded terms remains unscaled and
other alchemical bonded terms are scaled to
zero, their contribution to the partition func-
tion may be factored out by a change of vari-
ables, resulting in an additive constant to the
free energy, which cancels out in the difference
between the two alchemical processes.38 This
allowed set of unscaled bonded interactions in-
cludes all bonded interactions between a set of
alchemical atoms, their bonds to one environ-
ment atom, their angles involving that atom
and one additional environment atom, and their
dihedrals involving those two atoms and one ad-
ditional environment atom. Alchemical calcula-
tions sometimes include extra unscaled bonded
interactions or restraints between an alchemical
region and the environment or other alchemical
regions, but these cannot be guaranteed to can-
cel out. The dual concerns of ensuring mutating
atoms maintain reasonable geometries yet do
not perturb the ensemble when λ is 0 strongly
influence the development of our perturbation
strategy below.
To motivate the new perturbation strategy

for proline and glycine, we outline the previ-
ous MSλD side chain perturbation strategy22

and the two fundamental problems that must
be addressed for any amino acid perturba-
tion strategy to treat proline and glycine, fol-
lowed by the new perturbation strategy that ad-
dresses these problems. Simulations were car-
ried out using the CHARMM36 forcefield39,40 in
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the CHARMM software package41,42 using the
block module. Backbone atoms (N, HN, Cα,
Hα, C, and O) were considered part of the en-
vironment, and atoms for each mutating side
chain were included with unscaled bond, an-
gle, and improper interactions. Each mutat-
ing side chain has its own Cβ atom with three
unscaled angle interactions Cβ-Cα-N, Cβ-Cα-
C, and Cβ-Cα-Hα, which is two more unscaled
angles than allowed as outlined above.38 This
effectively double counts and rigidifies these an-
gles for each Cβ present, but the high accuracy
of the approach suggests that the decreased am-
plitude of angle vibrations has similar effects
on both ensembles.22 The validity of this as-
sumption is verified below by scaling some or all
of these angles. In contrast, the double count-
ing of the φ dihedral Cβ-Cα-N-C and ψ dihe-
dral Cβ-Cα-C-O would affect not just vibra-
tions but also Ramachandran distributions, so
all perturbed dihedral interactions were scaled
by λ.
There are two fundamental problems with

this approach. First, for proline and glycine
mutations, backbone parameters change, which
cannot be implemented in the block module of
CHARMM without increasing the set of mu-
tating atoms to include the backbone, and can
also lead to problems for some other alchemical
methods implemented in NAMD43 and GRO-
MACS.44 Second, a problem for all alchemi-
cal methods is that in proline the side chain
is bonded to the backbone at both Cα and N,
which is one more bond than allowed above38
and perturbs the ensemble by preventing free
rotation around the backbone φ angle, even
when λ for proline is zero.
The first problem is that proline and glycine

mutations change parameters of backbone
atoms generally included in the environment.
Changing parameters of environment atoms
has been mostly implemented in GROMACS,45
with the notable exception of CMAP interac-
tions. Implementing changing parameters of
environment atoms within the block module
of CHARMM would have required extensive
code restructuring, so the mutating region was
expanded to include the entire residue, leading
to multiple copies of the backbone atoms. The

whole residue is connected to the environment
by two bonds, so care must be taken to avoid ar-
tifacts. A simple test system mutating glycine
to glutamine in a pentapeptide environment
revealed that dihedral and CMAP scaling were
required to obtain the correct Ramachandran
distribution. With CMAP and dihedral terms
scaled, the remaining bonded terms perturbed
the glycine N-Cα-C angle from 115.0◦ to 113.7◦,
indicating the two unscaled glutamine bonds to
neighboring residues distort the glycine even
when λ for glutamine is zero.
Therefore, we apply a strategy that allows

one to factor out the contribution of the side
chain from the partition function, followed by
factoring out the contributions of the back-
bone atoms when λ for that residue is 0, and
rigorously guarantees the endpoint ensembles
are not perturbed. Bond and angle terms are
scaled if they contain only environment and
analogous backbone atoms (N, Cα, Hα, C,
and O), but are left unscaled if they contain
any side chain atoms (or HN, which is miss-
ing from proline), while all other bonded terms
are scaled regardless. The only obstacle to
factoring out the side chain (and HN) is that
three unscaled Cβ-Cα-X angles and two un-
scaled HN-N-X angles remain when only one of
each is allowed. Three different treatments of
these unscaled angles are tested below. To pre-
vent the analogous backbone atoms from adopt-
ing distorted configurations, they are tightly
harmonically restrained together (see Support-
ing Information for details), similar to a re-
cent ligand perturbation approach in NAMD
using holonomic constraints.46 This approach
is rigorous, because after the side chain and
HN are factored out of the partition func-
tion, each analogous backbone atom is an iso-
lated harmonic oscillator that may also be fac-
tored out. For generalization to multiple muta-
tion sites, if Ns and Nt mutations to adjacent
residues are made, all Ns ×Nt inter-residue C-
N bonds are included and scaled by the prod-
uct of their λ values. While most backbone pa-
rameters can be changed as a function of λ in
GROMACS, CMAP scaling is not yet imple-
mented,45 and the distortion of the Ramachan-
dran distribution in our pentapeptide system
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highlights that CMAP scaling must be imple-
mented before glycine mutations can be per-
formed in GROMACS with the CHARMM36
force field. Furthermore, by replacing tight
harmonic restraints with holonomic constraints,
this strategy may be adapted to enable glycine
mutations NAMD.
This approach is still not sufficient for proline,

where unscaled bonds in the ring prevent free
rotation around the backbone φ dihedral even
when λ is 0, and perturb the Ramachandran
distribution of the alternative residues unphys-
ically. Fundamentally, one of the bonds in the
proline ring must be scaled to zero with λ, but
the two previous studies of a proline perturba-
tion failed to mention this or or describe their
solution.26,27 In this work, we use recently de-
veloped soft bonds47,48 to break the ring:

U =
1
2
λsi

nαk(r − r0)2

1 + (1− λsinα)(r − r0)2/rα2
(2)

where k and r0 are the bond spring constant
and equilibrium distance. Previous work chose
rα = 0.7 Å for core hopping47 and rα = 1.4
Å for macrocycle applications,48 and we choose
rα = 1 Å in this work. Previous work only in-
cluded the special case nα = 1, but we used
nα = 2 because it gives smoother free energy
profiles (see Supporting Information and Table
S1 for details). We apply the soft bond to the
Cβ-Cγ bond to avoid any dihedrals through the
soft bond that include atoms from the previous
residue, which could also be mutating. Any
Urey-Bradley interactions through this bond
are also treated with soft bonds, and other
bonded terms through this bond (e.g. angles)
are scaled linearly by λsinθ with nθ = 1, rather
than by λsinα . The two sets of side chain atoms
bonded to Cα and N can then be factored out of
the partition function separately because they
no longer interact when λ is 0. In testing soft
bonds on perturbations between 5, 6, and 7
membered ring inhibitors of BACE1 previously
studied in our lab,49 we discovered that soft-
core interactions,35 which were previously not
applied to 1-4 nonbonded interactions, had to
be applied to 1-4 interactions as well to pre-
vent serious artifacts. Thus, we apply soft-core

interactions to 1-4 nonbonded interactions to
make the approach easily generalizable, as well
as to prevent possible artifacts for 1-4 interac-
tions between Hβ and Hγ atoms that could pos-
sibly overlap.
Two control tests were performed to test the

thermodynamic rigor of the perturbation strat-
egy. First, the Ramachandran distributions
were compared for plain molecular dynamics
and the present perturbation strategy with λ
fixed at a λ = 1 endpoint to ensure the pertur-
bation strategy does not perturb the endpoint
ensemble. For 40 ns simulations of the pen-
tapeptide model of the unfolded state, devia-
tions were observed due to slow transitions be-
tween basins, but for longer 400 ns simulations,
both methods converged to the same distribu-
tion (Figure S2 & S3). Second, the free energy
around a closed thermodynamic cycle proline
to glycine to alanine and back to proline was
computed. Unlike other alchemical methods,
MSλD need not use closed thermodynamic cy-
cles to connect a network of pairwise free energy
comparisons since all perturbations can be eval-
uated in the same simulation, but cycles can
still highlight potential artifacts. We find the
proline to glycine leg exhibits substantial vari-
ability on the 40 ns time scale, while the other
legs appear converged. For longer 400 ns sim-
ulations, all legs converge to give a cycle clo-
sure error of less than 0.2 kcal/mol (Table S4).
Only one of the ten mutations examined subse-
quently involves a proline to glycine mutation,
and while we observe slightly improved agree-
ment with experiment for 400 ns simulations
(see Supporting Information), the results high-
lighted in the main text use 40 ns simulations.
This perturbation strategy incorporating

both scaled bonded interactions of restrained
analogous atoms and soft bonds allows muta-
tion between any amino acid including proline
at several sites by MSλD within the CHARMM
molecular dynamics package, and should give
insight into how to treat proline and glycine
mutations with other alchemical methods in
other software packages.
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3 T4 Lysozyme Control Mu-
tations

To test this perturbation strategy we first
sought to ensure it gave consistent results
for non-proline and glycine mutations with
the previous side chain perturbation strategy.
Therefore, the set of previously calculated T4
lysozyme point mutations were recalculated as
described previously,22 changing only the per-
turbation strategy. Simulations used parti-
cle mesh Ewald electrostatics,50 modeled the
folded alchemical transformation starting from
PDB 1L63,51 and approximated the unfolded
alchemical transformation with a capped pen-
tapeptide centered on the mutating residue.
It is often more informative to compare com-

putational results obtained with different meth-
ods with each other than to compare with ex-
periment, because the goal in methods develop-
ment (in contrast to force field development or
design applications) is to converge to the force
field correct answer, which may or may not
agree with experiment, depending on the qual-
ity of the force field. However, it is also useful
to compare with experiment, because artifacts
in the method can lead to systematic errors that
tend to increase the deviation from experimen-
tal values. Experimental values are taken from
reference 52, and Pearson correlation (R), mean
unsigned error 〈|∆x|〉 (MUE), and root mean
squared error (〈∆x2〉 − 〈∆x〉2)1/2 (RMSE) are
evaluated. We evaluate the centered RMSE,
which includes the native sequence in the aver-
ages, rather than the larger uncentered RMSE
(〈∆x2〉1/2) because it is more appropriate for
relative free energies and for consistency with
our previous study of T4 lysozyme.22 We only
include neutral mutations in the statistics, oth-
erwise statistical variation in the single M102K
mutation dominates the statistics.
To determine whether the three unscaled an-

gles through the Cβ-Cα bond to the backbone
caused artifacts, since only one is rigorously
allowed, additional simulations were run with
some or all of these angles scaled. In one
case, all but one of these angles were scaled
(see Supporting Information for details), but

this allowed free rotation of the Cα-Cβ bond
into nonphysical orientations when λ was small.
Though no chirality flips were observed, the in-
creased rigor translated to poorer results (Ta-
ble 1). Therefore another set of simulations was
run with a harmonic angular restraint between
Cα-Cβ vectors; the restraint counted as the one
allowed angle term, thus all three of the Cα an-
gles were scaled by λ. This gave comparable
results to the simulations without the angles
scaled, suggesting that there are not substan-
tial artifacts when the angles are unscaled (Ta-
ble 1).
Figure 2 shows the whole residue strategy

with scaling of all three Cα angles achieves ex-
cellent agreement with experiment, and nearly
identical results with the side chain strat-
egy without Cα angle scaling. Furthermore,
the new whole residue strategy seems to give
slightly improved results relative to the origi-
nal side chain strategy (Table 1), though this
is likely just statistical variation. These find-
ings suggest the high accuracy previously re-
ported with the side chain strategy can also be
expected from the whole residue perturbation
strategy.

4 T4 Lysozyme Proline and
Glycine Mutations

Having shown the whole residue strategy gives
comparable or improved results in T4 lysozyme
mutations previously evaluated with the side
chain strategy, we turn our attention to pro-
line and glycine mutations that could not be
addressed with the side chain strategy. As a
test set, we chose all mutations between neutral
amino acids and either proline or glycine made
to T4 lysozyme in the C54T/C97A background
listed in reference 52. This comprises ten muta-
tions: Y25P, L33G, P37G, S44G, S44P, G56M,
T59G, Q69P, L99G, and V149G. The folded
protein and unfolded pentapeptides were set up
as described previously, including protonation
states at a pH of 3.0 and 5.4.22 Two mutations
in this set were measured experimentally at a
pH of 6.5, but PROPKA calculations53 indi-
cated protonation states of all residues were the
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Table 1: Comparison with Experiment of Neutral, Non-Proline/Glycine Mutations in T4 Lysozyme

RMSE MUE R
Side chain - scale 0 Cα angles 1.08 0.91 0.896
Whole res. - scale 0 Cα angles 1.02 0.80 0.894
Side chain - scale 2 Cα angles 1.25 1.00 0.862
Whole res. - scale 2 Cα angles 1.13 0.97 0.897
Side chain - scale 3 Cα angles 1.07 0.91 0.901
Whole res. - scale 3 Cα angles 1.05 0.94 0.886
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Figure 2: For a previous mutation set lacking
proline or glycine, the whole residue perturba-
tion strategy agrees well with experiment (top)
and gives virtually identical results to the side
chain perturbation strategy (bottom). Statis-
tics exclude the two charge changing mutations,
shown as open circles. The dashed line is y = x;
experimental and side chain data are from ref-
erences 52 and 22, respectively.

same as at a pH of 5.4. Production simulations
were run with 5 independent trials of 40 ns each.
To our knowledge, this is the first alchemical
study of proline mutations that compares with
experimentally measured free energies.
MSλD simulations of proline and glycine mu-

tations agree well with experiment, but not as
well as simulations of mutations excluding pro-
line and glycine (Figure 3). The statistics of R
= 0.876, MUE = 2.05 kcal/mol, and RMSE =
1.65 kcal/mol in Figure 3 were obtained scal-
ing all Cα angles; statistics without Cα angles
scaled were comparable with R = 0.870, MUE
= 1.93 kcal/mol, and RMSE = 1.59 kcal/mol
(see Supporting Information Figure S1 and Ta-
ble S2). Two of the largest studies includ-
ing glycine mutations both observed poorer re-
sults for glycine mutations than other kinds of
mutations,17,19 and our glycine MUE of 1.97
kcal/mol (or 1.84 kcal/mol with unscaled an-
gles) is comparable to the glycine MUE of 2.1
kcal/mol in reference 19. To our knowledge this
study is the first comparison of alchemical sim-
ulations with experiment for proline, and sug-
gests that like glycine, they will also have larger
errors than other mutations.
The most likely source of increased error for

proline and glycine mutations is the strong ef-
fect on the flexibility of the backbone, though
the two worst outliers are both buried muta-
tions from leucine to glycine whose stability
changes are driven instead by creation of a
buried cavity. The destabilizing effect of pro-
line and glycine mutations is generally overpre-
dicted, suggesting the 40 ns simulations may be
too short for the protein to relax to accommo-
date the mutation. Overprediction can occur if
a relaxation process that mitigates the desta-
bilizing effect of a mutation is too slow to ob-
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serve computationally. It is also possible the
experimental results are partially responsible
for the discrepancy; free energies were reported
at high temperatures, and extrapolating back
to the simulation temperature of 300 K gives
marginally improved RMSE and substantially
improved mean signed error (see Supporting In-
formation). Overall, it is unsurprising that the
computational results are poorer for these dif-
ficult mutations, yet it is encouraging that the
results are still reasonably accurate.
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Figure 3: Comparison of MSλD with experi-
ment for proline and glycine mutations. The
whole residue strategy was required to evaluate
proline and glycine mutations. The dashed line
is y = x; experimental data is from reference
52.

5 Discussion
In this paper we described the implementa-
tion of a protocol for mutating amino acids in
proteins where one endpoint contained either
glycine or proline. Our results demonstrate
that the whole residue perturbation strategy
enables accurate computation of mutational
free energies for mutations to and from all
twenty amino acids. As mentioned in the intro-
duction, the ability to compute the effect of pro-
line mutations is useful in studies of evolution,23
where the effects of mutations including proline
constrain viable evolutionary paths. It is es-
pecially important in protein design,24,25 where
we envision MSλD refining designs from less rig-
orous, but much faster, methods like Rosetta,

because proline mutations often have larger ef-
fects than other mutations. This new perturba-
tion strategy opens these and other applications
of MSλD.
We expect this perturbation strategy will also

be relevant to studies of protein mutations with
other alchemical free energy methods. Scal-
ing bonded interactions of restrained analogous
atoms may be helpful in some alchemical soft-
ware implementations like NAMD but unneces-
sary in others where the parameters of bonded
interactions can vary as a function of λ. The
demonstration that soft bonds enable accurate
calculation of the effects of proline mutations
is useful for all alchemical methods and should
encourage future studies to include proline mu-
tations. Other details, such as noting dihe-
drals and CMAP terms should always be scaled,
that 1-4 interactions should be treated with soft
cores, and that angular restraints allow extra
angles to be scaled by λ without sacrificing sam-
pling should aid in crafting perturbation strate-
gies for other alchemical methods.
We also anticipate the two key techniques

introduced in the whole residue perturbation
strategy, namely scaling bonded interactions of
restrained analogous atoms and judicious use of
soft bonds, will be useful in many other MSλD
studies of ligand perturbations in drug design.
Scaling and restraining can be used when per-
turbations involve core atoms that cannot easily
be treated as substituents, or for atoms whose
parameters change only slightly in response to a
perturbation. Soft bonds represent a more ag-
gressive approach that is warranted when per-
turbations open, close, or resize a ring, or when
a perturbation to a core changes connectivity.
The use of soft bonds has already enabled stud-
ies of core hopping and macrocyles with free en-
ergy perturbation,47,48 and should now enable
them within the MSλD framework as well. Dur-
ing the D3R grand challenge 2, the core hop-
ping transformation between ligands 91 and 93
could have been easily achieved by scaling and
restraining, rather than the less rigorous ap-
proach that we improvised at that time.54 Soft
bonds would have been necessary to efficiently
study the macrocycle perturbations with MSλD
in the D4R grand challenge 4.55 Finally, scal-
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ing and restraining enables a broader scope of
MSλDmultisite systems, because alchemical re-
gions may be directly bonded to each other
rather than requiring two intervening environ-
ment atoms.

6 Conclusions
We have presented a perturbation strategy that
allows proline mutations, and demonstrated
that it gives accurate predictions of the effects
of mutations for all amino acids including pro-
line and glycine. The underlying principles will
also enable a wider array of small molecule
perturbations in computer-aided drug design.
With this strategy, MSλD is now poised to
study and design proteins with the full palette
of amino acid mutations.
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Supporting Information Avail-
able
Supporting information contains technical de-
tails of the implementation in CHARMM, free
energies for individual mutations, a discussion
of sources of error, and controls examining ther-
modynamic cycles and Ramachandran distribu-
tions.

7 Data Availability State-
ment|

Example CHARMM input scripts are available
for download at https://brooks.chem.lsa.
umich.edu/index.php?page=proline_and_
glycine_perturbations&subdir=articles/
resources/data

8 Note Added in Proof
After the manuscript was accepted, we became
aware of a recently published systematic al-
chemical FEP study involving 20 proline mu-
tations. See reference 56.
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