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Abstract
We present a robust synthesis algorithm for uncertain linear time-varying (LTV)
systems on finite horizons. The uncertain system is described as an intercon-
nection of a known LTV system and a perturbation. The input–output behavior
of the perturbation is specified by time-domain Integral Quadratic Constraints
(IQCs). The objective is to synthesize a controller to minimize the worst-case
performance. This leads to a nonconvex optimization. The proposed approach
alternates between an LTV synthesis step and an IQC analysis step. Both induced
2 and terminal Euclidean norm penalties on output are considered for finite
horizon performance. The proposed algorithm ensures that the robust perfor-
mance is nonincreasing at each iteration step. The effectiveness of this method
is demonstrated using numerical examples.
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1 INTRODUCTION

This paper considers robust synthesis for uncertain linear time-varying (LTV) systems on finite horizons. This problem is
motivated by engineering systems that follow a finite-time trajectory and for which model uncertainty is a significant fac-
tor. Examples of such systems include: aircraft landings,1 missile interceptors,2 and space-launch or reentry systems.3-5

The Jacobian linearization of the nonlinear dynamics along the trajectory yields an uncertain, finite horizon LTV sys-
tem. Robust synthesis can be used to ensure the stability and robustness of the linearized closed-loop over a range of
parametric and dynamic uncertainties. Many existing robust synthesis algorithms, for example, 𝜇-synthesis6-9 have been
developed for uncertain linear time-invariant (LTI) system and infinite horizon robustness metrics. This enables the use
of frequency-domain techniques. In contrast, this paper is developed for uncertain finite horizon, LTV systems using
time-domain techniques.

The specific formulation uses an uncertain system described by an interconnection of a known LTV system and a
perturbation. The input–output behavior of the perturbation is described by time-domain Integral Quadratic Constraints
(IQCs). The performance objective is specified by an induced gain from 2 input disturbances to a mixture of an 2 and
terminal Euclidean norm on the output. The objective is to synthesize a controller to minimize the worst-case perfor-
mance over all allowable uncertainties. This worst-case performance can be used to robustly bound the state at the end
of a finite horizon in the presence of external disturbances and model uncertainty.

This robust synthesis problem leads, in general, to a nonconvex optimization. The proposed algorithm, presented in
Section 4, iterates between a nominal synthesis step and robustness analysis step. The nominal synthesis step relies on
existing finite horizon H∞ synthesis results which consider a control theoretic formulation.1,10-12 An alternative game
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theoretic formulation is considered in Reference 13 which provides equivalent synthesis conditions. These conditions can
be stated in terms of two coupled Riccati Differential Equations (RDEs)14-16 or two coupled Riccati Differential Inequal-
ities (RDIs).17 We use the two coupled RDEs as it provides numerical advantage over the RDI conditions. Moreover, in
contrast to other work, the results in References 14-16 allow for terminal Euclidean norm penalties on the output. The
robustness analysis step uses the IQC framework introduced in References 18,19. This framework has been extended
in Reference 20 to assess robustness of the uncertain LTV systems on finite horizons. The approach presented in Refer-
ence 20 will be used in this paper for the robustness analysis. Finally, a scaled plant construction is required to link the
nominal synthesis and robustness analysis steps.

The proposed method is analogous to the existing DK iteration method for uncertain LTI systems on infinite horizons.
The algorithm in this paper generalizes this method to uncertain LTV systems on finite horizons. Similar extensions
have been made in References 21,22 for Linear Parameter-Varying (LPV) systems. Two other closely related works are
References 23 and 24. The work in Reference 23 considers an extension of the Glover–McFarlane loop-shaping method
to LTV systems on infinite horizons. This leads to a robust stabilization problem with a single full block uncertainty. The
work in Reference 24 provides convex synthesis conditions for robust performance of uncertain LTV systems. However,
Reference 24 assumes that uncertainty lies in a contractive subset and is block partitioned with (2, 2) block being zero.
This special structure is used to convexify the synthesis optimization. The algorithm proposed in this paper considers
more general robust performance formulation than in References 23 and 24, which allows us to design output-feedback
controllers that robustly bound the reachable set of a finite horizon LTV system. A MATLAB implementation of the
proposed algorithm including the numerical examples are available in the LTVTools25 toolbox.

There are three main contributions of the paper. We propose a new iterative algorithm to synthesize robust output
feedback controllers of uncertain LTV systems on finite time horizons. This is a continuation of our preliminary work in
Reference 26. The distinctions from Reference 26 are as follows: First, we use the dynamic IQC multipliers for the pro-
posed algorithm, whereas the prior work in Reference 26 used the memoryless IQCs and related classes of uncertainties.
Second, we use a time-varying IQC factorization to construct a scaled plant. This step ensures that the worst-case gain at
each iteration is monotonically nonincreasing. Finally, this paper provides all details and technical proofs regarding the
proposed approach. The effectiveness is demonstrated using a nonlinear robot arm example.

1.1 Notation

Let Rn×m and Sn denote the sets of n-by-m real matrices and n-by-n real, symmetric matrices. The finite horizon

2[0,T] norm of a (Lebesgue integrable) signal v ∶ [0,T] → Rn is ||v||2,[0,T] ∶= (∫ T
0 v(t)⊤v(t)dt

)1∕2
. If ||v||2, [0, T ] <∞ then

v ∈ n
2[0,T]. RL∞ is the set of rational functions with real coefficients that are proper and have no poles on the imaginary

axis. RH∞ ⊂ RL∞ contains functions that are analytic in the closed right-half of the complex plane. An abstract formula-
tion using standard Linear Fractional Transformation (LFT) framework27,28 is used throughout the paper. The notations
l(G,K) andu(N,Δ) represents lower and upper LFTs, respectively. Finally, G∼ denotes the adjoint of a dynamical system
G as formally defined in section 3.2.4 of Reference 11.

2 PRELIMINARIES

2.1 Nominal performance

Consider an LTV system H defined on the horizon [0, T]:

ẋ(t) = A(t) x(t) + B(t) d(t), (1)

e(t) = C(t) x(t) + D(t) d(t), (2)

where x(t) ∈ Rnx is the state, d(t) ∈ Rnd is the disturbance input, and e(t) ∈ Rne is the performance output at time
t ∈ [0, T]. The state matrices A ∶ [0,T] → Rnx×nx . B ∶ [0,T] → Rnx×nd , C ∶ [0,T] → Rne×nx , and D ∶ [0,T] → Rne×nd are
piecewise-continuous (bounded) real matrix valued functions of time. It is assumed throughout that T <∞. Thus d ∈
2[0,T] implies x and e are in 2[0,T] for any initial condition x(0) (chapter 3 of Reference 11). To simplify further, zero
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initial conditions are assumed for states, that is, x(0)= 0. Explicit time dependence of the state matrices is omitted when
it is clear from the context. The performance of H will be assessed in terms of an induced gain with two components. First
partition the output as follows: [

eI(t)
eE(t)

]
=

[
CI(t)
CE(t)

]
x(t) +

[
DI(t)

0

]
d(t), (3)

where eI(t) ∈ RnI and eE(t) ∈ RnE with ne =nE +nI . The generalized performance metric of H is then defined as,

||H||[0,T] ∶= sup
0≠d∈2[0,T]

x(0)=0

[||eE(T)||22 + ||eI||22,[0,T]||d||22,[0,T]
]1∕2

, (4)

This defines an induced gain from the input d to a mixture of an 2 and terminal Euclidean norm on the output e. This is
a useful generalization, as many control design requirements often involve bounding the outputs at final time in addition
to bounded control effort. The example discussed in Section 5.2 uses such mixed penalties. More general quadratic cost as
in Reference 20 can also be considered with appropriate choice of the input–output matrices (see Appendix A). Note that
if nE = 0 then there is no terminal Euclidean norm penalty on the output. This case corresponds to the standard, finite
horizon induced 2 gain of H. Similarly, if nI = 0 then there is no 2 penalty on the output. This case corresponds to a
finite horizon2-to-Euclidean gain. This can be used to bound the terminal output eE(T) resulting from an2 disturbance
input. Zero feed-through from d to eE ensures that the Euclidean penalty is well-defined at time t =T. The next theorem
states an equivalence between a bound on this performance metric ||H||[0, T ] and the existence of a solution to a related
RDE (theorem 3.7.4 of Reference 11).

Theorem 1. Consider an LTV system (1) with 𝛾 > 0 given. Let Q ∶ [0,T] → Snx , S ∶ [0,T] → Rnx×nd , R ∶ [0,T] → Snd , and
F ∈ Rnx×nx be defined as follows*.

Q ∶= C⊤
I CI , S ∶= C⊤

I DI , R ∶= D⊤
I DI − 𝛾2Ind , F ∶= CE(T)⊤CE(T).

The following statements are equivalent:

1. ||H||[0,T] < 𝛾
2. R(t)≺ 0 for all t ∈ [0, T]. Moreover, there exists a differentiable function P ∶ [0,T] → Snx such that P(T)=F and

Ṗ + A⊤P + PA + Q − (PB + S)R−1(PB + S)⊤ = 0.

This is a RDE.
The nominal performance ||H||[0,T] < 𝛾 is achieved if the associated RDE solution exists on [0, T] when integrated

backward from P(T)=F. The assumption R(t)≺ 0 ensures R(t) is invertible and hence the RDE is well-defined ∀t ∈ [0, T].
Thus, the solution of the RDE exists on [0, T] unless it grows unbounded. The smallest bound on 𝛾 is obtained using
bisection.

2.2 Nominal synthesis

This subsection provides conditions to synthesize a controller that is optimal with respect to the nominal performance
metric introduced in the previous subsection. Consider the feedback interconnection shown in Figure 1.

The LTV system G defined on [0, T] is given by:

⎡⎢⎢⎢⎢⎢⎣

ẋ(t)
eI(t)
eE(t)
y(t)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

A(t) Bd(t) Bu(t)
CI(t) 0 DIu(t)
CE(t) 0 0
Cy(t) Dyd(t) 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x(t)
d(t)
u(t)

⎤⎥⎥⎥⎦ , (5)

*If nI = 0 then Q = 0nx
, S = 0nx×nd

, and R = −𝛾2Ind
. Similarly, if nE = 0 then F = 0nx

.
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F I G U R E 1 Nominal feedback interconnection l(G,K) [Colour figure can be viewed at
wileyonlinelibrary.com]

where d(t) ∈ Rnd is the generalized disturbance, u(t) ∈ Rnu is the control input, and y(t) ∈ R
ny is the measured output.

The generalized disturbance is of the form d(t) =
[

din(t)
n(t)

]
, where n(t) ∈ R

ny is a measurement noise and din(t) represents

all other disturbance inputs. This plant structure also assumes no feedthrough from d to eE. This is required to ensure
that the nominal performance metric is well-posed. In addition, the standard H∞ synthesis framework imposes addi-
tional structure on the matrices relating d to eI and d to y. This is done to simplify notation and is obtained via standard
loop transformations under some minor technical assumptions (chapter 17 of Reference 27). This leads to the following
additional structure on the plant matrices:

CI ∶=

[
0

C1

]
DIu ∶=

[
Inu

0

]
Dyd ∶=

[
0 Iny .

]
The nominal synthesis problem is to find a causal LTV controller K ∶ ny

2 [0,T] → nu
2 [0,T] that optimizes the closed-loop

nominal performance, that is:

inf
K

||l(G,K)||[0,T].
As noted previously, if nE = 0 then the nominal performance metric is the (finite horizon) induced 2 gain. In this case,
the synthesis problem is equivalent to the existing finite horizon H∞ problem as considered in References 11,12. The
theorem below states the necessary and sufficient conditions for existence of a 𝛾-suboptimal controller for the nom-
inal performance metric (with nE not necessarily equal to zero). Theorem 2 is a special case of results presented in
References 14,16.

Theorem 2. Consider an LTV system (5) with 𝛾 > 0 given. Let B, Ĉ, R, and R̂ be defined as follows.

B ∶=
[

Bd Bu

]
, R ∶= diag{−𝛾2Ind , Inu}, Ĉ ∶=

[
C⊤

I C⊤
y

]⊤
, R̂ ∶= diag{−𝛾2InI , Iny}.

1. There exists an admissible output feedback controller K such that ||l(G,K)||[0,T] < 𝛾 if and only if the following three
conditions hold:

(a) There exists a differentiable function X ∶ [0,T] → Snx such that X(T)=CE(T )⊤CE(T),

Ẋ + A⊤X + XA − XBR
−1

B⊤X + C⊤
I CI = 0.

(b) There exists a differentiable function Y ∶ [0,T] → Snx such that Y (0)= 0,

− Ẏ + AY + YA⊤ − YĈ⊤R̂−1ĈY + BdB⊤d = 0.

(b) X(t) and Y (t) satisfy the following point-wise in time spectral radius condition,

𝜌(X(t)Y (t)) < 𝛾2, ∀t ∈ [0,T]. (6)

2. If the conditions above are satisfied, then the closed loop performance ||l(G,K)||[0,T] < 𝛾 is achieved by the following
central controller:

̇̂x(t) = AK(t) x̂(t) + BK(t) y(t)
u(t) = CK(t) x̂(t),

http://wileyonlinelibrary.com
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F I G U R E 2 Uncertain system interconnection u(N,Δ) [Colour figure can be viewed at
wileyonlinelibrary.com]

where

Z ∶= (I − 𝛾−2YX)−1

AK ∶= A + 𝛾−2BdB⊤d X − ZYC⊤
y Cy − BuB⊤u X

BK ∶= ZYC⊤
y

CK ∶= −B⊤u X .

For a given 𝛾 > 0, the RDEs associated with X and Y are integrated backward and forward in time, respectively. If
solution to both RDEs exist then the spectral radius coupling condition (6) is checked. If all three conditions are satisfied
then the central controller achieves a closed-loop performance of 𝛾 . The smallest possible value of 𝛾 is obtained using
bisection. The results in References 14,16 also consider the effect of uncertain initial conditions.

3 ROBUST PERFORMANCE

3.1 Uncertain LTV systems

An uncertain, time-varying system u(N,Δ) is shown in Figure 2. This consists of an interconnection of a known
finite horizon LTV system N and a perturbation Δ. This perturbation represents block-structured uncertainties and/or
nonlinearities. The term “uncertainty” is used for simplicity when referring to Δ. It is assumed throughout that the inter-
connection u(N,Δ) is well-posed. A formal definition for well-posedness is given in References 19,27. The LTV system
N is described by the following state-space model:

⎡⎢⎢⎢⎢⎢⎣

ẋN(t)
v(t)
eI(t)
eE(t)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

AN(t) Bw(t) Bd(t)
Cv(t) Dvw(t) Dvd(t)
CI(t) DIw(t) DId(t)
CE(t) 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xN(t)
w(t)
d(t)

⎤⎥⎥⎥⎦ . (7)

In addition to notations defined earlier v ∈ Rnv and w ∈ Rnw are signals associated with the uncertainty Δ. The state
vector is denoted as xN ∈ RnN to refer to the states of system N.

3.2 Worst-case gain

The robust performance of the uncertain system u(N,Δ) is assessed using the worst-case gain as defined below.

Definition 1. Let an LTV system N be given by (7) and uncertainty Δ ∶ nv
2 [0,T] → nw

2 [0,T] be in some set  . Assume
the interconnection u(N,Δ) is well-posed. The worst-case gain is then defined as:

𝛾wc ∶= sup
Δ∈

||u(N,Δ)||[0,T].
The worst-case gain is the largest induced gain of the uncertain time-varying system over all uncertainties Δ in set  .

This is difficult to compute directly as it involves an optimization over the entire uncertainty set. Instead, we focus on
computing an upper bound on the worst-case gain using dissipation inequalities and IQC conditions.

http://wileyonlinelibrary.com
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F I G U R E 3 Graphical Interpretation for time domain Integral quadratic constraints [Colour figure
can be viewed at wileyonlinelibrary.com]

3.3 Integral quadratic constraints

IQCs18,19 are used to describe the input–output behavior of Δ. A time-domain formulation is used here for the analysis of
the uncertain time-varying system. This formulation is based on the graphical interpretation as shown in Figure 3. Time
domain IQCs, as used in this paper, are defined for Δ by specifying a filter Ψ and a finite horizon constraint on the filter
output z.

The LTV dynamics of filter Ψ on the horizon [0, T] are given as follows:

[
ẋ𝜓 (t)
z(t)

]
=

[
A𝜓 (t) B𝜓v(t) B𝜓w(t)
C𝜓 (t) D𝜓v(t) D𝜓w(t)

] ⎡⎢⎢⎢⎣
x𝜓 (t)
v(t)
w(t)

⎤⎥⎥⎥⎦ , (8)

where x𝜓 ∈ R
n𝜓 is the state. The formal definition for a time-domain IQC is given next.

Definition 2. Consider an LTV system Ψ ∶ (nv+nw)
2 [0,T] → nz

2 [0,T] and M ∶ [0,T] → Snz be given with M piecewise
continuous. A bounded, causal operator Δ ∶ nv

2 [0,T] → nw
2 [0,T] satisfies the time domain IQC defined by (Ψ,M) if the

following inequality holds for all v ∈ nv
2 [0,T] and w = Δ(v):

∫
T

0
z(t)⊤M(t)z(t) dt ≥ 0, (9)

where z is the output of Ψ driven by inputs (v, w) with zero initial conditions x𝜓 (0) = 0.

Note that Definition 2 allows the IQC filter Ψ to be time varying. This time-varying generalization provides an addi-
tional degree of freedom for finite horizon robustness analysis with IQCs. Similar generalizations for LPV systems are
presented in Reference 29 to use parameter-varying IQCs. However, exploring this additional degree of freedom is a sub-
ject of future research. Thus, the examples discussed later in the paper are for the special case where Ψ is an LTI filter.
The notation Δ ∈ (Ψ,M) is used if Δ satisfies the IQC defined by (Ψ,M). A valid IQC (Ψ,M) can be defined for a set 
such that  ⊆ (Ψ,M). Two examples are provided below.

Example 1. Let  denote the set of LTI uncertainties Δ ∈ RH∞ with ||Δ||∞ ≤ 1. Let (Ψ,M) be defined as follows:

Ψ ∶=

[
Ψ11 0

0 Ψ11

]
with Ψ ∈ RH

nz×1
∞

M∶=

[
M11 0

0 −M11

]
with M ∈ Snz and M11 ≻ 0.

(10)

It is shown in appendix II of Reference 30 that the pair (Ψ,M) defines a valid time domain IQC for Δ over any T <∞, that
is,  ⊆ (Ψ,M).

Example 2. Let  be the set of LTV parametric uncertainties 𝛿(t) ∈ R with a given norm-bound 𝛽(t), that is, w(t) =
𝛿(t) ⋅ v(t), |𝛿(t)| ≤ 𝛽(t), ∀t ∈ [0, T]. Let nv =nw =n and M11 ∶ [0,T] → Sn be piecewise continuous with M11(t)≻ 0,
∀t ∈ [0, T]. Then Δ satisfies the IQC defined by the time-varying matrix:

M(t) ∶=

[
𝛽(t)2 M11(t) 0

0 −M11(t)

]
, (11)

and a static filter Ψ ∶= I2n, that is,  ⊆ (Ψ,M).

http://wileyonlinelibrary.com


BUCH and SEILER 3017

F I G U R E 4 Analysis interconnection [Colour figure can be viewed at wileyonlinelibrary.com]

A library of IQCs is provided in References 19,31 for various types of perturbations. Most IQCs are for bounded,
causal operators with multipliers Π specified in the frequency domain. Under mild assumptions, a valid time-domain
IQC (Ψ,M) can be constructed from Π via a J-spectral factorization.32

3.4 Dissipation inequality condition

Consider an extended system as shown in Figure 4. This interconnection includes the IQC filter Ψ but the uncertainty Δ
has been removed. The precise relation w = Δ(v) is replaced, for the analysis, by the constraint on the filter output z.

The extended system of N (Equation (7)) and Ψ (Equation (8)) is governed by the following state space model:

⎡⎢⎢⎢⎢⎢⎣

ẋ(t)
z(t)
eI(t)
eE(t)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

(t) (t)
z(t) z(t)
I(t) I(t)
E(t) 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x(t)[
w(t)
d(t)

]⎤⎥⎥⎥⎦ . (12)

The extended state vector is x ∶=
[

xN
x𝜓

]
∈ Rn where n ∶= nN + n𝜓 . The state-space matrices are given by:

 ∶=

[
AN 0

B𝜓vCv A𝜓

]
, ∶=

[
Bw Bd

B𝜓vDvw + B𝜓w B𝜓vDvd

]
z ∶=

[
D𝜓vCv C𝜓

]
,I ∶=

[
CI 0

]
,E ∶=

[
CE 0

]
z ∶=

[
D𝜓vDvw + D𝜓w D𝜓vDvd

]
,I =

[
DIw DId

]
.

The following differential linear matrix inequality (DLMI) is used to compute an upper bound on the worst-case gain of
u(N,Δ). [

Ṗ +⊤P + P P
⊤P 0

]
+

[
Q S
S⊤ R

]
+

[⊤z
⊤

z

]
M

[
z z

] ≤ −𝜖I. (13)

This inequality depends on the IQC matrix M. It is compactly denoted as DLMIRob(P,M, 𝛾2, t) ≤ −𝜖I. This notation
emphasizes that the constraint is a DLMI in (P,M, 𝛾2) for fixed N, Ψ, and (Q, S, R, F). The next theorem states a suffi-
cient DLMI condition to bound the generalized (robust) induced performance measure of u(N,Δ). The proof is similar
to theorem 6 and 7 of Reference 20 and is given below for completeness. It uses IQCs19 and a standard dissipation
argument.33-35

Theorem 3. Consider an LTV system N given by (7) and let Δ ∶ nv
2 [0,T] → nw

2 [0,T] be an operator. Assume u(N,Δ) is
well-posed and Δ ∈ (Ψ,M). Let Q ∶ [0,T] → Sn, S ∶ [0,T] → Rn×(nw+nd), R ∶ [0,T] → S(nw+nd), and F ∈ Rn×n be defined as
follows.

Q ∶= ⊤I I , S ∶= ⊤I I , R ∶= ⊤
I I − 𝛾2diag{0nw , Ind}, F ∶= E(T)⊤E(T). (14)

http://wileyonlinelibrary.com
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If there exists 𝜖 > 0, 𝛾 > 0 and a differentiable function P ∶ [0,T] → Sn such that P(T)≥F and,

DLMIRob(P,M, 𝛾2, t) ≤ −𝜖I ∀t ∈ [0,T], (15)

then ||u(N,Δ)||[0,T] < 𝛾 .

Proof. Let d ∈ 2[0,T] and xN(0)= 0 be given. By well-posedness, Fu(N,Δ) has a unique solution (xN , v, w, eI , eE). Define

x ∶=
[

xN
x𝜓

]
. Then (x, z, eI , eE) are a solution of the extended system (12) with inputs (w, d) and initial condition x(0)= 0.

Moreover, z satisfies the the IQC defined by (Ψ,M). Define a storage function by V(x, t) := x⊤P(t)x. Left and right mul-
tiply the DLMI (13) by [x⊤, w⊤, d⊤] and its transpose to show that V satisfies the following dissipation inequality for all
t ∈ [0, T]:

V̇ +
⎡⎢⎢⎢⎣

x[
w
d

]⎤⎥⎥⎥⎦
⊤ [

Q S
S⊤ R

] ⎡⎢⎢⎢⎣
x[
w
d

]⎤⎥⎥⎥⎦ + z⊤Mz ≤ −𝜖 d⊤d. (16)

Use the choices for (Q, S, R) to rewrite the second term as e⊤I eI − 𝛾2d⊤d. Integrate over [0, T] to obtain:

x(T)⊤P(T)x(T) + ∫
T

0
z(t)⊤M(t)z(t) dt + ||eI||22,[0,T] ≤ (𝛾2 − 𝜖)||d||22,[0,T].

Apply P(T) ≥ F = E(T)⊤E(T) and Δ ∈ (Ψ,M) to conclude:

||eE(T)||22 + ||eI||22,[0,T] ≤ (𝛾2 − 𝜖)||d||22,[0,T]. (17)

This inequality implies ||Fu(N,Δ)||[0,T] < 𝛾 . ▪

3.5 Computational approach

Numerical implementation using IQCs often involve a fixed choice ofΨ and optimization subject to the convex constraints
on M. Two examples are provided as follows.

Example 3. Consider an LTI uncertainty Δ ∈ RH∞ with ||Δ||∞ ≤ 1. By Example 1, Δ satisfies any IQC (Ψ,M) with

Ψ ∶=
[
Ψ11 0

0 Ψ11

]
, M ∶=

[
M11 0

0 −M11

]
, and M11 ≻ 0. A typical choice for Ψ11 is:

Ψ11 ∶=
[

1, 1
(s + p)

, … 1
(s + p)q

]⊤
with p > 0. (18)

The analysis is performed by selecting (p, q) to obtain (fixed) Ψ and optimizing over the convex constraint M11 ≻ 0. The
results depend on the choice of (p, q). Larger values of q represent a richer class of IQCs and hence yield less-conservative
results but with increasing computational cost. Note that the IQC filter Ψ is not square in general with nz = 2(q+ 1)
outputs.

Example 4. Conic combinations of multiple IQCs can be incorporated in analysis. Let (Ψi,Mi) with i= 1, 2, … , N define
N valid IQCs for Δ. Hence ∫ T

0 z⊤i Mizi dt ≥ 0 where zi is the output Ψi driven by v and w = Δ(v). The multiple constraints
can be multiplied by 𝜆i ≥ 0 and combined to yield:

∫
T

0

N∑
i=1
𝜆iz⊤i Mizi dt ≥ 0. (19)
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F I G U R E 5 Uncertain feedback interconnection u(l(G,K),Δ) [Colour figure can be viewed at
wileyonlinelibrary.com]

Thus a valid time-domain IQC for Δ is given by

Ψ ∶=
⎡⎢⎢⎢⎣
Ψ1

⋮

ΨN

⎤⎥⎥⎥⎦ and M(𝜆) ∶=
⎡⎢⎢⎢⎣
𝜆1M1

⋱

𝜆N MN .

⎤⎥⎥⎥⎦ (20)

The analysis optimizes over 𝜆 given selected (Ψi,Mi).

An iterative algorithm given in Reference 20 is used in this paper to compute the smallest upper bound on the
worst-case gain. It combines the DLMI formulation in the Theorem 3 with a related RDE. The algorithm returns the
upper bound 𝛾wc along with the decision variables P and M.

4 ROBUST SYNTHESIS

4.1 Problem formulation

An uncertain feedback interconnection is shown in Figure 5 where G is an LTV system on [0, T] and Δ is assumed to lie
in some set  that is described by valid time domain IQCs.

The finite horizon robust synthesis problem is to synthesize a controller which minimizes the impact of both
worst-case disturbances and worst-case uncertainties, that is:

inf
K

sup
Δ∈

||u(l(G,K),Δ)||[0,T]. (21)

Let the LTV system G defined on [0, T] be given as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋG(t)
v(t)
eI(t)
eE(t)
y(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

AG(t) Bw(t) Bd(t) Bu(t)
Cv(t) Dvw(t) Dvd(t) Dvu(t)
CI(t) DIw(t) DId(t) DIu(t)
CE(t) 0 0 0
Cy(t) Dyw(t) Dyd(t) Dyu(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

xG(t)
w(t)
d(t)
u(t)

⎤⎥⎥⎥⎥⎥⎦
, (22)

where xG ∈ RnG is the state. This plant structure has no feedthrough from d to eE for well-posedness. The synthesis problem
(21) involves the worst-case gain computed over the entire uncertainty set. As noted earlier, instead we focus on mini-
mizing worst-case gain upper bounds. In other words, we define IQCs (Ψ,M) such that  ⊆ (Ψ,M) and maximize over
Δ ∈ (Ψ,M) in Equation (21). The goal is to design a LTV controller K ∶ ny

2 [0,T] → nu
2 [0,T] to minimize the worst-case

gain upper bound on u(l(G,K),Δ). This leads to a nonconvex synthesis problem and involves solving for the controller
as well as IQC multipliers.

The approach taken here is to decompose the synthesis into two subproblems. First, solve a nominal synthesis problem
(on a specially constructed scaled plant) to obtain K. Second, solve an IQC analysis problem to compute the worst-case
gain upper bound. These subproblems can be solved iteratively, similar to coordinate descent, to get a reasonable
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F I G U R E 6 Linear time-varying synthesis on scaled plant Gscl [Colour
figure can be viewed at wileyonlinelibrary.com]

suboptimal solution. The proposed algorithm utilizes this approach to obtain a finite horizon suboptimal controller. As
with DK synthesis, there are no guarantees that the coordinate-wise iteration will lead to a local optima let alone a global
optima. However, it is a useful heuristic that will enable the robust synthesis to extended naturally from LTI to finite
horizon LTV systems. The following assumption is made for the structure of IQC matrix M and filter Ψ.

Assumption 1. The IQC decision variables M ∶ [0,T] → Snz for a specified IQC filter Ψ ∶ (nv+nw)
2 [0,T] → nz

2 [0,T] are
assumed to have the following block diagonal structure

M(t) ∶=

[
Mv(t) 0

0 −Mw(t)

]
, Ψ ∶=

[
Ψv 0
0 Ψw

]
,

with constraints Mv(t)≻ 0 and Mw(t)≻ 0, ∀t ∈ [0, T]. Moreover, Ψ has a feedthrough matrix D𝜓 (t) ∶=
[
D𝜓v(t) D𝜓w(t)

]
∈

Rnz×(nv+nw) with full column rank ∀t ∈ [0, T].

This block diagonal assumption is made to simplify the notation. More general IQC multipliers are considered for
(infinite horizon) synthesis in Reference 9. As discussed in Example 3, the IQC filter Ψ, is typically prespecified by a
collection of basis functions. In this case, the worst-case gain condition in Theorem 3 is a differential LMI in the variables
Mv, Mw, P, and 𝛾2. The filter Ψ is, in general, nonsquare with nz ≠nv +nw. The proposed synthesis method requires a
nonunique factorization such that resulting factor is invertible square system, that is, nz =nv +nw. The finite horizon
factorization (Lemma 2 in Appendix B) can be used to construct square invertible systems Uv and Uw such that,

Ψ∼
v MvΨv = U∼

v Uv

Ψ∼
wMwΨv = U∼

w Uw.
(23)

The assumption that feedthrough matrix D𝜓 (t) has full column rank is required for the existence of such factorization.
This factorization is used in the proposed synthesis algorithm below to construct a scaled plant.

4.2 Algorithm

A high-level overview of the proposed iterative method is given in Algorithm 1. The uncertain finite horizon system is
u(l(G,K),Δ) with G given by Equation (22) and Δ specified by uncertainty set (Ψ,M). The robust synthesis algorithm
is specified to run a given maximum number of iterations Nsyn. It is initialized with scalings U (0)

v ∶= Inv and U (0)
w ∶= Inw .

There is also an initial performance scaling set to 𝛾 (0)a ∶= 1.
The beginning of each iteration involves the construction of a scaled plant Gscl as shown in Figure 6. This step is

described further in the next subsection. For now, it is sufficient to note that Gscl =G on the first iteration due to the ini-
tialization choices. The next step is to perform finite horizon nominal synthesis on the scaled plant. This step is performed
using the synthesis results described previously in Section 2.2. This yields a controller K(i) and the achievable closed-loop
performance 𝛾 (i)s . Each iteration concludes with an IQC analysis on the uncertain closed-loop of N ∶= l(G,K(i)) and Δ as
shown in Figure 5. This closed-loop uses the original (unscaled) plant G and the controller K(i) obtained from the nominal
synthesis step. The worst-case gain upper bound 𝛾 (i)a is computed using the algorithm in Reference 20 as summarized in
Section 3. This iterative algorithm requires additional initialization including number of analysis iterations N iter, stopping
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Algorithm 1. Finite horizon robust synthesis
1: Given: G
2: Initialize: Nsyn, U (0)

v ∶= Inv ,U
(0)
w ∶= Inw , 𝛾 (0)a ∶= 1

3: for i = 1 ∶ Nsyn do
4: Scaled Plant Construction (Section 4.3): Construct a scaled plant G(i)

scl using G, U (i−1)
v ,U (i−1)

w , 𝛾 (i−1)
a .

Output: G(i)
scl

5: Nominal LTV Synthesis (Section 2.2): Perform nominal controller synthesis on the scaled plant G(i)
scl.

Output: K(i), 𝛾 (i)s

6: IQC Analysis (Section 3): Choose the basis functions for Ψ and perform worst-case gain iterations on
u(N(i),Δ) using iterative algorithm presented in 20 where N(i) ∶= l(G,K(i)) denotes the closed loop LTV
system. Perform finite horizon factorization using the same Ψ and computed decision variables M(i) to
compute the uncertainty channel scalings U (i)

v and U (i)
w .

Output: P(i), M(i), 𝛾 (i)a ,U
(i)
v ,U

(i)
w

7: end for

F I G U R E 7 Scaled plant Nscl [Colour figure can be viewed at
wileyonlinelibrary.com]

tolerance tol, DLMI time grid tDLMI and spline basis function time grid tsp, which are not included in Algorithm 1. All sub-
sequent iterations require the construction of a scaled plant using the IQC results. The construction of this scaled plant
links together the nominal synthesis and IQC analysis steps. It is described further in Section 4.3. Algorithm 1 terminates
after Nsyn iterations. More sophisticated stopping conditions can be employed. For example, the iterations could be ter-
minated if no significant improvement in worst-case gain is achieved. The algorithm returns the controller of order nK
that achieves the best (smallest) bound on the worst-case gain, where nK = nG + n𝜓 .

4.3 Construction of a scaled plant

The scaled open loop plant G(i)
scl is constructed as shown in Figure 6 by scaling the performance channels and uncertainty

channels of original open loop plant G using U (i−1)
v , U (i−1)

w and 𝛾 (i−1)
a obtained from the previous iteration. This scaling

ensures appropriate normalization of the performance and uncertainty channels. This is a key step which integrates the
nominal synthesis and worst-case gain problem. To simplify the notation, the superscripts (i− 1) will be dropped in the
remainder of this subsection.

Let N ∶= l(G,K) be the closed-loop (without uncertainty). For a given IQC filter Ψ an extended system Next similar
to Figure 4 can be constructed. The next lemma gives a formal statement connecting robust performance of the extended
system Next to nominal performance of scaled system Nscl as shown in Figure 7.

Lemma 1. Let 𝜖 > 0, 𝛾 > 0, Mv(t)≻ 0, Mw(t)≻ 0 and a differentiable function P ∶ [0,T] → Sn such that P(T)≥F be given
with the choice of (Q, S, R, F) as in Equation (14). The following statements are equivalent:

1. DLMIRob(P,M, 𝛾2, t) ≤ −𝜖I, ∀t ∈ [0,T].
2. ||Nscl||[0,T] ≤ 1 − 𝜖, for some 𝜖.

Proof. A proof of this lemma is given in Appendix C. It uses a time-varying factorization of (Ψ,M) to construct Uv
and Uw. ▪

The above lemma states that extended system given by Equation (12) satisfies the robust performance condition (15)
if and only if the scaled system has nominal performance less than 1.
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4.4 Main theorem

The plant G(1)
scl = G for the robust synthesis may include the uncertainty and performance channel design weights as

in standard robust control workflow.27,28 These weights can be static, dynamic, and/or time-varying depending on the
requirement. Typically, multiple design iterations are performed to tune these weights and yield an acceptable trade-off
between robustness and performance. Note that the first nominal LTV synthesis step in Algorithm 1 may not yield a finite
performance 𝛾 (1)s . For example, if the uncertainty level is too high then the RDEs for nominal synthesis of G(1)

scl = G may
not have a solution on [0, T] for any finite 𝛾 (1)s . However, in this case, finite performance can be achieved by reducing the
uncertainty level and restarting the iteration. The main theorem is presented next with a technical assumption that the
first nominal synthesis step yields a finite performance.

Theorem 4. If the first nominal synthesis step yields a finite performance 𝛾 (1)s then all the subsequent iterations are well-posed
at each step and worst-case gain is non-increasing, that is,

𝛾
(i+1)
a ≤ 𝛾

(i)
a ∀i ≥ 1.

Proof. The first iteration (i= 1) is different from the subsequent one. Due to initialization choices G(1)
scl = G. The synthesis

step is performed with no modifications and yields a controller K(1) that guarantees the closed loop performance of 𝛾 (1)s .
By assumption, we have 𝛾 (1)s <∞. The IQC analysis step performed on the closed loop N(1) ∶= l(G,K(1)) uncertain plant
then achieves a finite horizon worst-case gain upper bound of 𝛾 (1)a <∞. Thus, the first iteration is well posed.

All subsequent iterations (i> 1) begin with the iteration count update in the for loop. The IQC analysis step from pre-
vious iteration shows that there exists (P(i− 1), M(i− 1), 𝛾 (i−1)

a ) for a chosen Ψ that satisfies DLMI (13). This implies that
the finite horizon factorization exists and multipliers U (i−1)

v and U (i−1)
w can be obtained using Lemma 2 in Appendix B.

Using these multipliers and worst-case gain 𝛾 (i−1)
a , scaled plant similar to Figure 7 can be constructed. By Lemma 1, this

scaled plant satisfies nominal performance <1. Removing the controller yields the scaled open-loop plant G(i)
scl. Thus, the

construction of a scaled open-loop plant as shown in Figure 6 is well-defined. The synthesis step performed on G(i)
scl opti-

mizes over all time-varying finite horizon controllers to yield a new controller K(i) that guarantees performance 𝛾 (i)s < 1.
This new controller K(i) yields better nominal performance than the previous controller K(i− 1) when used with the
unscaled plant G. Thus, the closed loop N(i) ∶= u(G,K(i)) must satisfy the nominal performance <1 when using 𝛾 (i−1)

a .
Lemma 1 can be used backwards in the next analysis step of N(i). Specifically, the closed loop with unscaled plant G and
K(i) satisfies the DLMI analysis condition with (P(i− 1), M(i− 1), 𝛾 (i−1)

a ). Further, analysis step on N(i) ∶= l(G,K(i)) optimizes
over all feasible P and M. This yields a worst-case gain 𝛾 (i)a no greater than the previous step 𝛾 (i−1)

a . Thus ∀i≥ 1, we have
𝛾
(i+1)
a ≤ 𝛾

(i)
a . ▪

5 NUMERICAL EXAMPLES

5.1 LTI example

Consider a first order LTI system G with the following dynamics:

ẋ(t) = 0.5 x(t) + u(t) + w(t) + din(t), (24)

v(t) = u(t) + din(t), (25)

eI(t) =

[
x(t)

0.2 u(t)

]
, (26)

y(t) = x(t) + 0.01 n(t), (27)

where the performance output is eI(t) ∈ R2 and measurement output is y(t) ∈ R. The generalized disturbance input is

d(t) ∶=
[

din(t)
n(t)

]
where din(t) ∈ R is an external disturbance input and n(t) ∈ R is a measurement noise. Δ is a norm
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F I G U R E 8 Two-link planar robot36 [Colour figure can be viewed at
wileyonlinelibrary.com]

bounded, time-varying, nonlinear uncertainty with norm bound 𝛽 = 0.6. The goal is to design a measurement feedback
controller K that minimizes the worst-case-induced 2-gain from disturbance d to output eI .

First, an infinite horizon robust synthesis is performed to minimize the worst-case gain of the closed loop system. This
is achieved by performing bisection on the gain 𝛾 for a scaled plant until the robust performance is equal to 1. At each
bisection step, MATLAB’smusyn function is called to optimize the structured singular value upper bound𝜇. This function
uses an iterative control design process (DK-iteration) to optimizes the 𝜇 of the closed loop system. The infinite horizon
worst-case-induced2-gain for the designed robust controller is 0.0563. Next, finite horizon robust synthesis is performed
on a relatively long horizon (i.e., T = 300 s) using the method proposed in this paper. The closed-loop worst-case gain
achieved by a finite horizon time-varying controller is computed as 0.0560. This simple comparison results show that on
a relatively long horizon the worst-case gain achieved using the finite horizon controller approaches to that of the value
achieved by an infinite horizon controller. Note that the proposed method uses purely time-domain approach whereas
the 𝜇-synthesis method uses the frequency gridding approach to approximate 𝜇 and the associated D-scales. Thus, the
close agreement between the two worst-case gains on this example may not hold in general.

5.2 Nonlinear example

Consider an example of a two-link robot arm as shown in the Figure 8. The mass and moment of inertia of the ith link
are denoted by mi and Ii. The robot properties are m1 = 3 kg, m2 = 2 kg, l1 = l2 = 0.3 m, r1 = r2 = 0.15 m, I1 = 0.09 kg ⋅ m2,
and I2 = 0.06 kg ⋅ m2. The nonlinear equations of motion36 for the robot are given by:[

𝛼 + 2𝛽 cos(𝜃2) 𝛿 + 𝛽 cos(𝜃2)
𝛿 + 𝛽 cos(𝜃2) 𝛿

][
�̈�1

�̈�2

]
+

[
−𝛽 sin(𝜃2)�̇�2 −𝛽 sin(𝜃2)(�̇�1 + �̇�2)
𝛽 sin(𝜃2)�̇�1 0

][
�̇�1

�̇�2

]
=

[
𝜏1

𝜏2

]
with
𝛼 ∶= I1 + I2 + m1r2

1 + m2(l2
1 + r2

2) = 0.4425 kg ⋅ m2

𝛽 ∶= m2l1r2 = 0.09 kg ⋅ m2

𝛿 ∶= I2 + m2r2
2 = 0.105 kg ⋅ m2.

The state and input are 𝜂 ∶= [𝜃1 𝜃2 �̇�1 �̇�2]⊤ and 𝜏 ∶= [𝜏1 𝜏2]⊤, where 𝜏i is the torque applied to the base of link i.
A trajectory 𝜂 of duration 5 s was selected for the tip of the arm to follow. This trajectory is shown as a solid black line

in Figure 9. An equivalent trajectory in polar coordinates is also shown in Figure 10. The equilibrium input torque 𝜏 can
be computed using inverse kinematics. The robot should track this trajectory in the presence of small torque disturbances
din. The input torque vector is 𝜏 = 𝜏 + u + din where u is an additional control torque to reject the disturbances. The
nonlinear dynamics (28) are linearized around the trajectory (𝜂, 𝜏) to obtain an LTV system H:

ẋ(t) = A(t) x(t) + B(t) (u(t) + din(t)) , (28)

where x(t) ∶= 𝜂(t) − 𝜂(t) is the deviation from the equilibrium trajectory. An uncertain output feedback weighted inter-

connection of H is shown in the Figure 11. Let 𝛿𝜃 ∶=
[
𝛿𝜃1
𝛿𝜃2

]
represent first-order perturbations in angular positions,
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F I G U R E 11 Uncertain output feedback weighted
interconnection [Colour figure can be viewed at
wileyonlinelibrary.com]

which is the output of interest eE. The measurement is also 𝛿𝜃 but corrupted by noise n =
[

n1
n2

]
and is fed to the con-

troller as y = 𝛿𝜃 + n. The controller generates a commanded torque u =
[

u1
u2

]
is corrupted by input disturbance din =

[
d1
d2

]
.

The second control channel gets further corrupted by LTI input uncertainty Δ. The plant input perturbation Δ is a
SISO LTI system with ||Δ||∞ ≤ 𝛽 where uncertainty level 𝛽 = 0.8. This corresponds to the uncertainty set as discussed
in Example 1. The synthesis objective is to minimize the closed-loop, worst-case gain from the generalized disturbance

d̃ ∶=
[

d̃in
ñ

]
=
[
d̃1 d̃2 ñ1 ñ2

]⊤ to the generalized error ẽ ∶=
[

ũ
ẽE

]
. The weighted control effort ũ is penalized in an
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F I G U R E 12 Worst-case gain comparison [Colour
figure can be viewed at wileyonlinelibrary.com]
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2[0,T] sense while ẽE is penalized with a terminal Euclidean norm at T = 5 s. Let I2 ∶=
[

1 0
0 1

]
. The following (constant)

design weights are chosen for the performance channels:

Wd = 0.1 I2, Wn = 0.01 I2, Wu = 0.5 I2, WE = I2

The design weight associated with the uncertainty channels are not considered in this example, however, in general,
the weights W v and W w can also be used for the respective uncertainty channels. As noted earlier, these design weights
can be dynamic and/or time-varying. Let G̃ denote this weighted design interconnection for robust synthesis. It can be
expressed in state-space form as in Equation (22). Algorithm 1 is run with Nsyn = 7 iterations. No significant improvement
is obtained after seventh iteration. The IQC analysis step is performed based on the approach in Reference 20 and using
parameterization similar to Example 3 with p= 10, q= 1, tol= 5× 10−3, N iter = 10, tDLMI as 20 and 𝜏sp as 10 evenly spaced
grid points on the horizon [0, 5] s.

Let K0.8 denote the controller obtained at the end of the robust synthesis algorithm. This controller achieves the
closed-loop worst-case performance of 𝛾0.8 = 0.126. It took 11.7 hours to complete the seven iterations on a standard
desktop computer with 3 GHz Core i7 processor. In addition, a nominal synthesis with Δ = 0 was performed using the
approach in Section 2.2. This controller, denoted as K0, achieves a closed-loop nominal performance of 𝛾0 = 0.089. It took
49.8 seconds to perform this nominal synthesis. The corresponding uncertain closed-loops with the nominal and robust
controllers are denoted by T̃0 ∶= u(l(G̃,K0),Δ) and T̃0.8 ∶= u(l(G̃,K0.8),Δ). Figure 12 shows the worst-case perfor-
mance versus the uncertainty level 𝛽 for the uncertain closed-loops with these two controllers. The curve for T̃0 (blue
circles) has 𝛾 = 0.089 at 𝛽 = 0 as reported above. The curve for T̃0.8 (red squares) has 𝛾 = 0.126 at 𝛽 = 0.8 as also reported
above. This figure reveals the typical trade-off between performance and robustness. The nominal controller K0 achieves
better nominal performance (𝛽 = 0) than K0.8. However, K0.8 is more robust to higher levels of uncertainties.

Note that each data point in Figure 12 represents a worst-case gain induced from the generalized disturbance input d̃
to the generalized error output ẽ. Both d̃ and ẽ have two components which can further be analyzed using induced gain for
individual input–output pairs. Table 1 shows an analysis with no uncertainty (level 𝛽 = 0) performed for the closed-loops
with nominal control design T̃0 (blue) and robust control design T̃0.8 (red). It is evident that the induced gain from noise ñ
to control effort ũ dominates the overall performance for both the interconnections. Moreover, the induced 2-gain from
ñ to ũ for T̃0.8 is 0.124 which is approximately 41% higher than the corresponding value for T̃0 (=0.088). Likewise, the
induced 2-to-Euclidean gain from disturbance d̃in to ẽE(T) is approximately 16.6% higher for T̃0.8 (=0.077) as compared
to T̃0 (=0.066). The combined effect of the disturbance and noise is responsible for performance degradation of the robust
controller at 𝛽 = 0. Table 2 shows the worst-case gain upper bounds for robust analysis performed at an uncertainty
level 𝛽 = 0.8 for both interconnections. Note that the closed-loop with robust controller has the same worst-case induced
2-gain of 0.124 from ñ to ũ as in Table 1. Since, the robust controller explicitly accounts for model uncertainty, it has
approximately 37.8% lower worst-case induced 2-gain from d̃in to ũ compared to the nominal controller. Similarly, the
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T̃0 / T̃0.8 Disturbance d̃in

Measurement
noise ñ

Generalized
disturbance d̃

Euclidean output ẽE(T) 0.066 / 0.077 0.050 / 0.047 0.082 / 0.081

Control effort ũ 0.085 / 0.087 0.088 / 0.124 0.089 / 0.124

Generalized error ẽ 0.086 / 0.097 0.088 / 0.124 0.089 / 0.124

T A B L E 1 Induced gain upper
bounds for different input–output
pairs (nominal analysis, 𝛽 = 0)

T̃0 / T̃0.8 Disturbance d̃in

Measurement
noise ñ

Generalized
disturbance d̃

Euclidean output ẽE(T) 0.102 / 0.093 0.068 / 0.061 0.120 / 0.120

Control effort ũ 0.190 / 0.118 0.098 / 0.124 0.202 / 0.126

Generalized error ẽ 0.190 / 0.118 0.106 / 0.125 0.202 / 0.126

T A B L E 2 Worst-case gain upper
bounds for different input–output
pairs (robust analysis, 𝛽 = 0.8)
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F I G U R E 13 Nominal analysis (𝛽 = 0) [Colour figure can be viewed at
wileyonlinelibrary.com]

robust controller performs better in terms of bounding the Euclidean outputs as compared to the nominal controller
at 𝛽 = 0.8. Overall, the disturbance rejection property for the nominal controller is degraded more from Tables 1 to 2
as compared to the robust controller. This observation is consistent with known frequency domain insights for infinite
horizon LTI systems, as the high frequency noise rejection properties are typically less impacted by model uncertainties
than the low frequency disturbance rejection properties.

As noted earlier, the primary design goal was to tightly bound the states at the final time T = 5 s. To study this further
consider the impact of link joint disturbance din on the Euclidean output eE. Let G denote the unweighted plant which has
the same inputs/outputs as the weighted plant G̃ but with all weights set to identity. Further, let the respective uncertain
interconnection using G be denoted as T0 ∶= u(l(G,K0),Δ) and T0.8 ∶= u(l(G,K0.8),Δ). Nominal analysis performed
for both the T0 (din→eE) and T0.8 (din→eE) interconnections gives both upper and lower bounds on the nominal performance.
The upper bounds are obtained as 0.656 and 0.766, respectively, which are shown as blue and red disk in Figure 13 at the
final time. The corresponding lower bounds are obtained as 0.648 and 0.763. The worst-case disturbance ||din||2, [0, T ] ≤ 0.5
for both interconnections are computed by solving the two point boundary value problem as presented in Reference 37.
These specific bad disturbances (Figure 14) pushes the state trajectory (dashed line) as far as the computed lower bound
in the LTV simulation.

A worst-case terminal Euclidean norm bound is computed for both the interconnections at the uncertainty level
𝛽 = 0.8. The corresponding upper bound using the algorithm in Reference 20 was obtained as 1.02 and 0.93, respectively.
This shows approximately a 8.82% reduction in Euclidean norm bound. As a graphical illustration, these bounds are
depicted in Figure 15 as a disk at the final time T = 5 s. The bound accounts for all the disturbances din that satisfy||din||2, [0, T ] ≤ 0.5 and all the LTI uncertainties Δ with norm bound 𝛽 = 0.8.

To obtain a reasonable lower bound on the worst-case gain, first 100 uncertainties are sampled randomly as first order
LTI systems with at most size 0.8. Then, uncertainty blockΔwas replaced with each of sampled uncertainties and nominal

http://wileyonlinelibrary.com
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F I G U R E 14 Worst-case disturbances [Colour figure can be
viewed at wileyonlinelibrary.com]
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F I G U R E 15 Robust analysis (𝛽 = 0.8) [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 16 Worst-case disturbances [Colour figure can be
viewed at wileyonlinelibrary.com]
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LTV analysis was performed from din to eE for both the interconnections. Worst-case uncertainties are then obtained after
maximizing performance over the sample space. Let, the specific bad perturbation that yields to the poor performance
for both T0 (din→eE) and T0.8 (din→eE) be denoted as Δwc1 and Δwc2 respectively.

Δwc1 =
−0.8 s + 12.18

s + 15.23
, Δwc2 =

−0.8 s + 25.89
s + 32.36

The worst-case gain lower bound corresponding to these perturbations are obtained as 1.001 and 0.903, respectively.
It is evident that a combination of worst-case disturbance (Figure 16) (scaled to have size 0.5) and uncertainty (of size 0.8)
pushes the states of the closed loop system (dashed line) as far as the lower bound of the worst-case gain. Overall, these
simple comparison results show a typical robustness and performance trade-off. The nominal controller performs best at
no uncertainty whereas the robust controller performs better at modeled uncertainty level.

6 CONCLUSIONS AND FUTURE WORK

This paper proposed an iterative algorithm to design an output-feedback controller that bounds the worst-case gain of
an uncertain LTV system on a finite horizon. Similar design can also be done in a state-feedback formulation. The per-
formance was specified using both an induced 2 and terminal Euclidean norm penalty on the output. Time-domain
dynamic IQCs were used to describe the input-output behavior of the uncertainty. The effectiveness of proposed approach
was demonstrated using the two-link robot arm example.

This paper opens up few new directions for further research. First, we used a block diagonal assumption for the IQC
filter and decision variables (Assumption 1). Future work will consider relaxing this assumption to include full block
IQC multipliers in the robust synthesis. Second, note that the proposed method also allows time-varying uncertainty and
performance weights. This is useful for many applications such as in many launch scenarios, where the uncertainty or
performance requirements are not evenly spread out across the time horizon. Future work in this area is required to
exploit the full potential of this method. Moreover, we recognize that proposed method is computationally expensive.
Future research is needed to speed up the numerical computations for such finite horizon analysis and synthesis.
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APPENDIX A. GENERIC QUADRATIC COST

This paper considers an induced norm ||H||[0, T ] (defined by Equation (4)) as a performance metric whereas a generic
quadratic cost is considered in Reference 20. This appendix describes the equivalence between these two formulations.
First, consider the finite-horizon linear quadratic optimal control problem as follows:

J∗(𝛾) ∶= sup
0≠d∈2[0,T]

x(T)⊤Fx(T) + ∫
T

0

[
x(t)
d(t)

]⊤ [
Q(t) S(t)
S(t)⊤ R(t, 𝛾)

][
x(t)
d(t)

]
dt

s.t. ẋ(t) = A(t) x(t) + B(t) d(t) and x(0) = 0. (A1)

where Q ∶ [0,T] → Snx , S ∶ [0,T] → Rnx×nd , R ∶ [0,T]⊕ R+ → Snd and F ∈ Rnx×nx . We assume Q(t)≽ 0, for all t ∈ [0, T]
and F ≽ 0. Moreover, we assume a form R(t, 𝛾) = R0(t) − 𝛾2Ind , where 𝛾 > 0, R0(t)≽ 0 and R(t, 𝛾) ≺ 0, for all t ∈ [0, T]. There
are two directions to the equivalence. First, assume a system H is given as defined by Equation (1) and (3). Note that the
induced norm ||H||[0, T ] is defined by the state-space matrices (A, B, CI , CE, DI). Define (Q, S, R, F) as in Theorem 1. Then
for any 𝛾 > 0, ||H||[0,T] < 𝛾 if and only if J∗(𝛾) < 0. This is shown in section 2 of Reference 20. Conversely, assume the
generic quadratic cost defined by Equation (A1) is given with cost matrices (Q, S, R, F) satisfying the assumptions above.
If we further assume that Q(t)− S(t)R0(t)−1S(t)⊤ ≻ 0 then we can perform the following factorization:[

Q(t) S(t)
S(t)⊤ R0(t)

]
=

[
CI(t)⊤

DI(t)⊤

][
CI(t) DI(t)

]
, (A2)

In addition, define CE ∶= F
1
2 . Then the generic quadratic cost is rewritten as:

J∗(𝛾) = sup
0≠d∈2[0,T]

eE(T)⊤eE(T) + ∫
T

0
eI(t)⊤eI(t) dt − 𝛾2∫

T

0
d(t)⊤ d(t) dt

s.t. Equation (1), (3), and x(0) = 0. (A3)

This cost satisfies J∗(𝛾) < 0 if and only if ||H||[0,T] < 𝛾 .

APPENDIX B. FINITE HORIZON FACTORIZATION

For infinite horizon LTI systems, spectral factorization results are found in standard robust control textbooks.27,28,38

The following lemma provides a time-varying finite horizon generalization of this result.

Lemma 2. Consider an LTV system Ψ ∶ nd
2 [0,T] → ne

2 [0,T] be given with state-space realization as follows:

ẋ(t) = A(t) x(t) + B(t) d(t)
e(t) = C(t) x(t) + D(t) d(t),

(B1)

with x ∈ Rnx , e ∈ Rne , d ∈ Rnd and D(t) is full column rank ∀t ∈ [0, T]. Let M ∶ [0,T] → Sne be a given piecewise continuous
matrix valued function with M(t)≻ 0,∀ t ∈ [0, T]. Let Q ∶ [0,T] → Snx , S ∶ [0,T] → Rnx×nd , R ∶ [0,T] → Snd be defined as
follows.

Q ∶= C⊤MC, S ∶= C⊤MD, R ∶= D⊤MD, (B2)

with R(t)≻ 0,∀ t ∈ [0, T]. The following statements hold.
1. There exist a differentiable function X ∶ [0,T] → Sn such that X(T)= 0 and

Ẋ + A⊤X + XA + Q − (XB + S)R−1(XB + S)⊤ = 0, (B3)
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2. Φ ∶= Ψ∼MΨ has a finite horizon factorization Φ = U∼U where U is square invertible LTV system defined on [0, T] with
the following state-space realization:

U =

[
A B

W−T(B⊤X + S⊤) W

]
, (B4)

where R(t)=W(t)⊤W(t), ∀t ∈ [0, T].

Proof. Since R(t)≻ 0 and by Schur complement lemma Q(t)− S(t)R(t)−1S(t)⊤ ≻ 0,∀ t ∈ [0, T], the RDE does not have a
finite escape time and thus always have a bounded unique solution regardless of the boundary condition (corollary 2.3
of Reference 39, theorem 8 in Reference 40). Further, it can be verified that the time-varying state-space realization of

Ψ∼MΨ is related to that of a system U∼U by a similarity transformation matrix
[

I 0
X(t) I

]
. ▪

APPENDIX C. PROOF OF LEMMA 1

Lemma 3. Let 𝜖 > 0, 𝛾 > 0, Mv(t)≻ 0, Mw(t)≻ 0 and a differentiable function P ∶ [0,T] → Sn such that P(T)≥F be given
with the choice of (Q, S, R, F) as in Equation (14). The following statements are equivalent:
1. DLMIRob(P,M, 𝛾2, t) ≤ −𝜖I, ∀t ∈ [0,T].
2. ||Nscl||[0,T] ≤ 1 − 𝜖, for some 𝜖.

Proof. (1⇒ 2) This proof is presented in two parts. First, we show that DLMIRob(P,M, 𝛾2, t) ≤ −𝜖I, ∀t ∈ [0,T] can equiv-
alently be written as a dissipation inequality with only single valid IQC. Second, the state-space realization of the extended
system Next and the scaled system Nscl are indeed the same, which allow us to rewrite the robust performance DLMI as
a nominal performance DLMI for Nscl. Integrating the related dissipation inequality completes the proof.

Part (i): Define a storage function V(x, t) := x⊤P(t)x. Left and right multiply the DLMI (13) by [x⊤, w⊤, d⊤] and its
transpose to show that V satisfies the following dissipation inequality for all t ∈ [0, T]:

V̇ +
⎡⎢⎢⎢⎣

x[
w
d

]⎤⎥⎥⎥⎦
⊤ [

Q S
S⊤ R

] ⎡⎢⎢⎢⎣
x[
w
d

]⎤⎥⎥⎥⎦ + z⊤Mz ≤ −𝜖 d⊤d, (C1)

where x =
[

xN
x𝜓

]
∈ Rn is the state of extended system as shown in Figure 4. Consider the outputs of the IQC filter Ψ =[

Ψv 0
0 Ψw

]
be partitioned as z ∶=

[
zv
zw

]
. Let Ψv have the following state-space representation with state xv, input v, and

output zv:

ẋv(t) = A1(t) xv(t) + B1(t) v(t)
zv(t) = C1(t) xv(t) + D1(t) v(t).

(C2)

A similar time-varying state-space expression also holds forΨw with matrices (A2, B2, C2, D2), state xw, input w, and output
zw. Thus the term z⊤Mz in (C1) can be expressed as:

z⊤Mz = z⊤v Mvzv − z⊤wMwzw

=

[
xv

v

]⊤ [
C⊤

1

D⊤
1

]
Mv

[
C1 D1

][xv

v

]
−

[
xw

w

]⊤ [
C⊤

2

D⊤
2

]
Mw

[
C2 D2

][xw

w

]
.

(C3)
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First, consider only the terms involving v and define the quadratic storage matrices as:[
Qv Sv

S⊤v Rv

]
∶=

[
C⊤

1

D⊤
1

]
Mv

[
C1 D1

]
. (C4)

By Lemma 2 in Appendix B, the condition Mv(t)≻ 0, ∀t ∈ [0, T] implies that there exists Xv ∶ [0,T] → S
nxv such that:

Ẋv + A⊤
1 Xv + XvA1 + Qv − (XvB1 + Sv)R−1

v (XvB1 + Sv)⊤ = 0, Xv(T) = 0. (C5)

Moreover, Lemma 2 in Appendix B also implies that there exists a spectral factor Uv with a state-space realization as
(A1,B1, C̃1, D̃1) with C̃1 ∶= W−T

v (B⊤1 Xv + S⊤v ), D̃1 ∶= Wv and Rv = W⊤
v Wv. Note that xv is the state and ṽ is the output of the

spectral factor Uv. The RDE (C5) can be written in terms of the state matrices of Uv as:

Qv = −Ẋv − A⊤
1 Xv − XvA1 + C̃⊤

1 C̃1. (C6)

Substitute above Qv and S⊤v = D̃⊤
1 C̃1 − B⊤1 Xv in (C4) to obtain the following expression:

z⊤v Mvzv = −xvẊvxv − (A1xv + B1v)⊤Xvxv − x⊤v Xv(A1xv + B1v) + (C̃1xv + D̃1v)⊤(C̃1xv + D̃1v). (C7)

This can be simplified to the following expression:

z⊤v Mvzv = −x⊤v Ẋvxv − ẋ⊤v Xvxv − x⊤v Xvẋv + ṽ⊤ṽ = − d
dt

(
x⊤v Xvxv

)
+ ṽ⊤ṽ. (C8)

Similarly, with Mw(t)≻ 0, ∀t ∈ [0, T] the spectral factor Uw can be obtained with a state-space realization (A2,B2, C̃2, D̃2),
states xw, and outputs w̃. The following expression holds:

z⊤wMwzw = − d
dt

(
x⊤wXwxw

)
+ w̃⊤w̃, (C9)

where Xw ∶ [0,T] → S
nxw is a solution to a related RDE with respective quadratic storage matrices and the boundary

condition Xw(T)= 0. Subtract Equation (C9) from (C8) to get the left-hand side of the Equation (C3) as follows:

z⊤Mz = − d
dt

(
x⊤𝜓Xx𝜓

)
+ ṽ⊤ṽ − w̃⊤w̃, (C10)

where x𝜓 =
[

xv
xw

]
, X(t) ∶=

[
Xv(t) 0

0 −Xw(t)

]
and X(T)= 0. Let the modified matrix P̃(t) be defined as follows:

P̃(t) ∶= P(t) −

[
0 0
0 X(t)

]
. (C11)

This yields a modified storage function Ṽ(x, t) ∶= x⊤P̃(t)x. The modified storage function has the form:

Ṽ(x, t) = V(x, t) − x⊤v Xvxv + x⊤wXwxw, (C12)

where the second and third term can be interpreted as hidden energy stored in the IQC multiplier. With modified storage
function Ṽ the dissipation inequality (C1) can be recast as,

̇̃V +
⎡⎢⎢⎢⎣

x[
w
d

]⎤⎥⎥⎥⎦
⊤ [

Q S
S⊤ R

] ⎡⎢⎢⎢⎣
x[
w
d

]⎤⎥⎥⎥⎦ +
[

ṽ
w̃

]⊤
Jnv,nw

[
ṽ
w̃

]
≤ −𝜖 d⊤d. (C13)
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This dissipation inequality is equivalent to (C1) with a single IQC (U, Jnv,nw) where U ∶=
[

Uv 0
0 Uw

]
. Next, We show that

(U, Jnv,nw) is a valid time-domain IQC. To see this, define V𝜓 (x𝜓 (t), t) ∶= x𝜓 (t)⊤X(t)x𝜓 (t), z̃(t) ∶=
[

ṽ(t)
w̃(t)

]
and integrate

Equation (C10) both sides from 0 to T to obtain:

∫
T

0
z⊤Mz dt = −V𝜓 (x𝜓 (T),T) + V𝜓 (x𝜓 (0), 0) + ∫

T

0
z̃⊤Jnv,nw z̃ dt. (C14)

Note that V𝜓 (x𝜓 (0), 0) = 0 because x𝜓 (0) = 0 and V𝜓 (x𝜓 (T),T) = x𝜓 (T)⊤X(T)x𝜓 (T) = 0 due to the boundary condition
X(T) = 0n𝜓 of the time-varying factorization RDE. Thus if ∫ T

0 z⊤Mz dt ≥ 0 then we have ∫ T
0 z̃⊤Jnv,nw z̃ dt ≥ 0. Finally, note

that P̃(t) satisfies the same boundary condition as P(t), that is, P̃(T) ≥ F because of the boundary condition X(T)= 0. Thus,
Ṽ(x, t) is a valid storage function ∀t ∈ [0, T].

Part (ii): Let the extended system of N with spectral factor U be written in partitioned form as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ṽ
w̃
eI

eE

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

 w d

ṽ ṽw ṽd

w̃ w̃w 0
I Iw Id

E 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
x

w
d

⎤⎥⎥⎥⎦ , (C15)

where x =

[xN
xv
xw

]
∈ Rn and state-space matrices:

 ∶=
⎡⎢⎢⎢⎣

AN 0 0
B1Cv A1 0

0 0 A2

⎤⎥⎥⎥⎦ ,w ∶=
⎡⎢⎢⎢⎣

Bw

B1Dvw

B2

⎤⎥⎥⎥⎦ ,d ∶=
⎡⎢⎢⎢⎣

Bd

B1Dvd

0

⎤⎥⎥⎥⎦
ṽ ∶=

[
D̃1Cv C̃1 0

]
,I ∶=

[
CI 0 0

]
,w̃ ∶=

[
0 0 C̃2

]
E ∶=

[
CE 0 0

]
,ṽw ∶= D̃1Dvw,ṽd ∶= D̃1Dvd

w̃w ∶= D̃2,Iw ∶= DIw,Id = DId.

Using the choice of (Q, S, R) from Equation (14), the following partitioned DLMI is equivalent to the dissipation
inequality (C13) for the state-space realization of (C15).

⎡⎢⎢⎢⎣
̇̃P +⊤P̃ + P̃ P̃w P̃d

⊤
wP̃ 0nw 0

⊤

d P̃ 0 −𝛾2Ind

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
⊤I
⊤

Iw

⊤

Id

⎤⎥⎥⎥⎦
[
I Iw Id

]
+
⎡⎢⎢⎢⎣
⊤ṽ ⊤w̃
⊤

ṽw ⊤
w̃w

ṽd 0

⎤⎥⎥⎥⎦ Jnv,nw

[ṽ ṽw ṽd

w̃ w̃w 0

]
≤ −𝜖I. (C16)

The condition Mw(t)≻ 0,∀ t ∈ [0, T] is sufficient to ensure that w̃w ∶= D̃2 is nonsingular. The output equation for w can
be written as: w = −1

w̃w(w̃ − w̃x). Use this relation to substitute for w in Equation (C15). This gives the following scaled
system:

⎡⎢⎢⎢⎢⎢⎣

ẋ

ṽ
eI

eE

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

 w d

ṽ ṽw ṽd

I Iw Id

E 0 0

⎤⎥⎥⎥⎥⎥⎦
L
⎡⎢⎢⎢⎣

x

w̃
d

⎤⎥⎥⎥⎦ , (C17)
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where the nonsingular time-varying matrix L is defined as:

L ∶=
⎡⎢⎢⎢⎣

In 0 0
−−1

w̃ww̃ −1
w̃w 0

0 0 Ind

⎤⎥⎥⎥⎦ . (C18)

Equation (C17) can be rewritten as follows:

⎡⎢⎢⎢⎢⎢⎣

ẋ

ṽ
eI

eE

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

̃ w̃ d

̃ṽ ṽw̃ ṽd

̃I Iw̃ Id

E 0 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x

w̃
d

⎤⎥⎥⎥⎦ , (C19)

where the updated state-space matrices are defined as:

̃ ∶=
⎡⎢⎢⎢⎣

AN 0 −BwD̃−1
2 C̃2

B1Cv A1 −B1DvwD̃−1
2 C̃2

0 0 A2 − B2D̃−1
2 C̃2

⎤⎥⎥⎥⎦ , w̃ ∶=
⎡⎢⎢⎢⎣

BwD̃−1
2

B1DvwD̃−1
2

B2D̃−1
2

⎤⎥⎥⎥⎦
̃ ṽ =

[
D̃1Cv C̃1 −D̃1DvwD̃−1

2 C̃2

]
, ̃I ∶=

[
CI 0 −DIwD̃−1

2 C̃2

]
ṽw̃∶= D̃1DvwD̃−1

2 , Iw̃ ∶= DIwD̃−1
2 .

Note that the following state-space matrices of the inverse system of Uw shows up in the above representation.

U−1
w ∶=

[
A2 − B2D̃−1

2 C̃2 B2D̃−1
2

−D̃−1
2 C̃2 D̃−1

2

]
. (C20)

Let scaled signal d̃ ∶= 𝛾 d and state-space matrices (scl, scl, scl, scl) be defined as follows:

scl ∶= ̃, scl ∶=
[
w̃ 𝛾−1d

]
, scl ∶=

[̃ ṽ

̃I

]
, scl ∶=

[
D̃1DvwD̃−1

2 𝛾−1D̃1Dvd

DIwD̃−1
2 𝛾−1DId

]
. (C21)

It is readily verified that, with above definition, the scaled plant Nscl has a state-space realization as follows:

⎡⎢⎢⎢⎢⎢⎣

ẋ[
ṽ
eI

]
eE

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
scl scl

scl scl

E 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x[
w̃
d̃

]⎤⎥⎥⎥⎦ . (C22)

Perform the congruence transformation by multiplying the DLMI (C16) on the left/right by L⊤/L to get:

⎡⎢⎢⎢⎣
̇̃P + ̃⊤P̃ + P̃̃ P̃w̃ P̃d

⊤
w̃P̃ 0nw̃ 0

⊤

d P̃ 0 −𝛾2Ind

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
̃⊤I
⊤

Iw̃

⊤

Id

⎤⎥⎥⎥⎦
[
̃I Iw̃ Id

]
+
⎡⎢⎢⎢⎣
̃⊤ṽ 0
⊤

ṽw̃ Inw̃

⊤

ṽd 0

⎤⎥⎥⎥⎦ J

[̃ ṽ ṽw̃ ṽd

0 Inw̃ 0

]
≤ −𝜖I. (C23)

This DLMI can also be written in more compact notation using the state matrices of Nscl. Multiply inequality (C23) left and
right by [x⊤, w̃⊤, d⊤] and its transpose to show that Ṽ(x(t), t) = x(t)⊤P̃(t)x(t) satisfies the following dissipation inequality:

̇̃V + e⊤I eI − 𝛾2d⊤d + ṽ⊤ṽ − w̃⊤w̃ ≤ −𝜖 d⊤d. (C24)
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Define d̃ ∶= 𝛾 d, 𝜖 ∶= 𝜖 𝛾−2 and combine the inputs w̃, d̃ together to rewrite the inequality (C24) as follows:

̇̃V +

[
ṽ
eI

]⊤ [
ṽ
eI

]
−

[
w̃
d̃

]⊤ [
w̃
d̃

]
≤ −𝜖 d̃⊤d̃. (C25)

Integrate over [0, T] to obtain the following dissipation inequality:

Ṽ(x(T),T) − Ṽ(x(0), 0) +
‖‖‖‖‖‖
[

ṽ
eI

]‖‖‖‖‖‖
2

2,[0,T]

−
‖‖‖‖‖‖
[

w̃
d̃

]‖‖‖‖‖‖
2

2,[0,T]

≤ −𝜖||d̃||22,[0,T]. (C26)

Note that Ṽ(x(0), 0) = 0 as x(0)= 0 and Ṽ(x(T),T) = x(T)⊤P̃(T)x(T) with boundary condition P̃(T) ≥ F as shown earlier.
Apply this boundary condition in inequality (C26) with the definition of F from Equation (14) to conclude:

||eE(T)||22 + ‖‖‖‖‖‖
[

ṽ
eI

]‖‖‖‖‖‖
2

2,[0,T]

≤
‖‖‖‖‖‖
[

w̃
d̃

]‖‖‖‖‖‖
2

2,[0,T]

− 𝜖||d̃||22,[0,T]. (C27)

Divide both sides by
‖‖‖‖‖
[

w̃
d̃

]‖‖‖‖‖
2

2,[0,T]
<∞ and define 𝜖 ∶= 𝜖||d̃||22,[0,T]∕ ‖‖‖‖‖

[
w̃
d̃

]‖‖‖‖‖
2

2,[0,T]
to show that ||Nscl||[0,T] ≤ 1 − 𝜖. This proof

can be worked backwards to prove (2⇒ 1). ▪

Remark 1. If the IQC decision variables M and the state-space matrices of Ψ are constant on the given time horizon, then
for sufficiently large horizon T, the RDE solution for the finite horizon factorization converges to that of the steady-state
Algebric Riccati Equation (ARE). As a result, the state-space realization of the finite horizon factorization converges to
that of an infinite horizon LTI spectral factorization. However, the ARE solution X for infinite horizon spectral factor-
ization is sign indefinite, thus it fails to satisfy the terminal boundary condition on P̃. Thus, it is important to note in the
above proof that in order to satisfy the boundary condition on storage function, one must use finite horizon factorization.


