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Summary

We present a robust synthesis algorithm for uncertain linear time-varying (LTV) sys-
tems on finite horizons. The uncertain system is described as an interconnection of a
known LTV system and a perturbation. The input-output behavior of the perturbation
is specified by time-domain Integral Quadratic Constraints (IQCs). The objective is
to synthesize a controller to minimize the worst-case performance. This leads to a
non-convex optimization. The proposed approach alternates between an LTV syn-
thesis step and an IQC analysis step. Both induced 2 and terminal Euclidean norm
penalties on output are considered for finite horizon performance. The proposed
algorithm ensures that the robust performance is non-increasing at each iteration step.
The effectiveness of this method is demonstrated using numerical examples.
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1 INTRODUCTION

This paper considers robust synthesis for uncertain linear time-varying (LTV) systems on finite horizons. This problem is moti-
vated by engineering systems that follow a finite-time trajectory and for whichmodel uncertainty is a significant factor. Examples
of such systems include: aircraft landings [1], missile interceptors [2] and space-launch or reentry systems [3, 4, 5]. The Jacobian
linearization of the nonlinear dynamics along the trajectory yields an uncertain, finite horizon LTV system. Robust synthesis can
be used to ensure the stability and robustness of the linearized closed-loop over a range of parametric and dynamic uncertainties.
Many existing robust synthesis algorithms, e.g. �-synthesis [6, 7, 8, 9] have been developed for uncertain linear time-invariant
(LTI) system and infinite horizon robustness metrics. This enables the use of frequency-domain techniques. In contrast, this
paper is developed for uncertain finite horizon, LTV systems using time-domain techniques.
The specific formulation uses an uncertain system described by an interconnection of a known LTV system and a pertur-

bation. The input-output behavior of the perturbation is described by time-domain Integral Quadratic Constraints (IQCs). The
performance objective is specified by an induced gain from 2 input disturbances to a mixture of an 2 and terminal Euclidean
norm on the output. The objective is to synthesize a controller to minimize the worst-case performance over all allowable uncer-
tainties. This worst-case performance can be used to robustly bound the state at the end of a finite horizon in the presence of
external disturbances and model uncertainty.
This robust synthesis problem leads, in general, to a non-convex optimization. The proposed algorithm, presented in Section 4,

iterates between a nominal synthesis step and robustness analysis step. The nominal synthesis step relies on existing finite horizon
H∞ synthesis results which consider a control theoretic formulation [1, 10, 11, 12]. An alternative game theoretic formulation
is considered in [13] which provides equivalent synthesis conditions. These conditions can be stated in terms of two coupled
Riccati Differential Equations (RDEs) [14, 15, 16] or two coupled Riccati Differential Inequalities (RDIs) [17]. We use the two
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coupled RDEs as it provides numerical advantage over the RDI conditions. Moreover, in contrast to other work, the results
in [14, 15, 16] allow for terminal Euclidean norm penalties on the output. The robustness analysis step uses the IQC framework
introduced in [18, 19]. This framework has been extended in [20] to assess robustness of the uncertain LTV systems on finite
horizons. The approach presented in [20] will be used in this paper for the robustness analysis. Finally, a scaled plant construction
is required to link the nominal synthesis and robustness analysis steps.
The proposed method is analogous to the existing DK iteration method for uncertain LTI systems on infinite horizons. The

algorithm in this paper generalizes this method to uncertain LTV systems on finite horizons. Similar extensions have been
made in [21, 22] for Linear Parameter-Varying (LPV) systems. Two other closely related works are [23] and [24]. The work
in [23] considers an extension of the Glover-McFarlane loop-shaping method to LTV systems on infinite horizons. This leads
to a robust stabilization problem with a single full block uncertainty. The work in [24] provides convex synthesis conditions for
robust performance of uncertain LTV systems. However, [24] assumes that uncertainty lies in a contractive subset and is block
partitioned with (2, 2) block being zero. This special structure is used to convexify the synthesis optimization. The algorithm
proposed in this paper considers more general robust performance formulation than in [23] and [24], which allows us to design
output-feedback controllers that robustly bound the reachable set of a finite horizon LTV system. A MATLAB implementation
of the proposed algorithm including the numerical examples are available in the LTVTools [25] toolbox.
There are three main contributions of the paper. We propose a new iterative algorithm to synthesize robust output feedback

controllers of uncertain LTV systems on finite time horizons. This is a continuation of our preliminary work in [26]. The
distinctions from [26] are as follows: First, we use the dynamic IQC multipliers for the proposed algorithm, whereas the prior
work in [26] used the memoryless IQCs and related classes of uncertainties. Second, we use a time-varying IQC factorization
to construct a scaled plant. This step ensures that the worst-case gain at each iteration is monotonically non-increasing. Finally,
this paper provides all details and technical proofs regarding the proposed approach. The effectiveness is demonstrated using a
nonlinear robot arm example.

Notation: Let ℝn×m and Sn denote the sets of n-by-m real matrices and n-by-n real, symmetric matrices. The finite horizon
2[0, T ] norm of a (Lebesgue integrable) signal v ∶ [0, T ] → ℝn is ‖v‖2,[0,T ] ∶=

(

∫ T
0 v(t)⊤v(t)dt

)1∕2
. If ‖v‖2,[0,T ] < ∞ then

v ∈ n2[0, T ]. ℝL∞ is the set of rational functions with real coefficients that are proper and have no poles on the imaginary axis.
ℝℍ∞ ⊂ ℝL∞ contains functions that are analytic in the closed right-half of the complex plane. An abstract formulation using
standard Linear Fractional Transformation (LFT) framework [27, 28] is used throughout the paper. The notations l(G,K) and
u(N,Δ) represents lower and upper LFTs respectively. Finally, G∼ denotes the adjoint of a dynamical system G as formally
defined in Section 3.2.4 of [11].

2 PRELIMINARIES

2.1 Nominal Performance
Consider an LTV systemH defined on the horizon [0, T ]:

ẋ(t) = A(t) x(t) + B(t) d(t) (1)
e(t) = C(t) x(t) +D(t) d(t) (2)

where x(t) ∈ ℝnx is the state, d(t) ∈ ℝnd is the disturbance input, and e(t) ∈ ℝne is the performance output at time t ∈ [0, T ].
The state matrices A ∶ [0, T ] → ℝnx×nx . B ∶ [0, T ] → ℝnx×nd , C ∶ [0, T ] → ℝne×nx , and D ∶ [0, T ] → ℝne×nd are piecewise-
continuous (bounded) real matrix valued functions of time. It is assumed throughout that T <∞. Thus d ∈ 2[0, T ] implies x
and e are in2[0, T ] for any initial condition x(0) (Chapter 3 of [11]). To simplify further, zero initial conditions are assumed for
states i.e. x(0) = 0. Explicit time dependence of the state matrices is omitted when it is clear from the context. The performance
ofH will be assessed in terms of an induced gain with two components. First partition the output as follows:

[

eI (t)

eE(t)

]

=

[

CI (t)

CE(t)

]

x(t) +

[

DI (t)

0

]

d(t) (3)
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where eI (t) ∈ ℝnI and eE(t) ∈ ℝnE with ne = nE + nI . The generalized performance metric ofH is then defined as,

‖H‖[0,T ] ∶= sup
0≠d∈2[0,T ]
x(0)=0

[

‖eE(T )‖22 + ‖eI‖22,[0,T ]
‖d‖22,[0,T ]

]1∕2

(4)

This defines an induced gain from the input d to a mixture of an2 and terminal Euclidean norm on the output e. This is a useful
generalization, as many control design requirements often involve bounding the outputs at final time in addition to bounded
control effort. The example discussed in Section 5.2 uses such mixed penalties. More general quadratic cost as in [20] can also be
considered with appropriate choice of the input-output matrices (see Appendix A). Note that if nE = 0 then there is no terminal
Euclidean norm penalty on the output. This case corresponds to the standard, finite horizon induced 2 gain ofH . Similarly, if
nI = 0 then there is no 2 penalty on the output. This case corresponds to a finite horizon 2-to-Euclidean gain. This can be
used to bound the terminal output eE(T ) resulting from an 2 disturbance input. Zero feed-through from d to eE ensures that the
Euclidean penalty is well-defined at time t = T . The next theorem states an equivalence between a bound on this performance
metric ‖H‖[0,T ] and the existence of a solution to a related RDE (Theorem 3.7.4 of [11]).

Theorem 1. Consider an LTV system (1) with 
 > 0 given. LetQ ∶ [0, T ]→ Snx , S ∶ [0, T ]→ ℝnx×nd , R ∶ [0, T ] → Snd , and
F ∈ ℝnx×nx be defined as follows†.

Q ∶= C⊤
I CI , S ∶= C⊤

I DI , R ∶= D⊤
IDI − 
2Ind , F ∶= CE(T )⊤CE(T )

The following statements are equivalent:

1. ‖H‖[0,T ] < 


2. R(t) ≺ 0 for all t ∈ [0, T ]. Moreover, there exists a differentiable function P ∶ [0, T ]→ Snx such that P (T ) = F and

Ṗ + A⊤P + PA +Q − (PB + S)R−1(PB + S)⊤ = 0

This is a Riccati Differential Equation (RDE).

The nominal performance ‖H‖[0,T ] < 
 is achieved if the associated RDE solution exists on [0, T ] when integrated backward
from P (T ) = F . The assumption R(t) ≺ 0 ensures R(t) is invertible and hence the RDE is well-defined ∀t ∈ [0, T ]. Thus, the
solution of the RDE exists on [0, T ] unless it grows unbounded. The smallest bound on 
 is obtained using bisection.

2.2 Nominal Synthesis
This subsection provides conditions to synthesize a controller that is optimal with respect to the nominal performance metric
introduced in the previous subsection. Consider the feedback interconnection shown in Figure 1.

d
eI
eE

K

y u

GG

FIGURE 1 Nominal Feedback Interconnection l(G,K)

†If nI = 0 then Q = 0nx , S = 0nx×nd , and R = −

2Ind . Similarly, if nE = 0 then F = 0nx .
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The LTV system G defined on [0, T ] is given by:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẋ(t)

eI (t)

eE(t)

y(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A(t) Bd(t) Bu(t)

CI (t) 0 DIu(t)

CE(t) 0 0

Cy(t) Dyd(t) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x(t)

d(t)

u(t)

⎤

⎥

⎥

⎥

⎦

(5)

where d(t) ∈ ℝnd is the generalized disturbance, u(t) ∈ ℝnu is the control input and y(t) ∈ ℝny is the measured output.
The generalized disturbance is of the form d(t) =

[

din(t)
n(t)

]

, where n(t) ∈ ℝny is a measurement noise and din(t) represents all
other disturbance inputs. This plant structure also assumes no feedthrough from d to eE . This is required to ensure that the
nominal performance metric is well-posed. In addition, the standard H∞ synthesis framework imposes additional structure on
the matrices relating d to eI and d to y. This is done to simplify notation and is obtained via standard loop transformations under
some minor technical assumptions (Chapter 17 of [27]). This leads to the following additional structure on the plant matrices:

CI ∶=

[

0

C1

]

DIu ∶=

[

Inu
0

]

Dyd ∶=
[

0 Iny
]

The nominal synthesis problem is to find a causal linear time-varying controller K ∶ ny2 [0, T ] → nu2 [0, T ] that optimizes the
closed-loop nominal performance, i.e.:

inf
K

‖l(G,K)‖[0,T ]

As noted previously, if nE = 0 then the nominal performance metric is the (finite horizon) induced 2 gain. In this case, the
synthesis problem is equivalent to the existing finite horizon H∞ problem as considered in [11, 12]. The theorem below states
the necessary and sufficient conditions for existence of a 
-suboptimal controller for the nominal performance metric (with nE
not necessarily equal to zero). Theorem 2 is a special case of results presented in [14, 16].

Theorem 2. Consider an LTV system (5) with 
 > 0 given. Let B, Ĉ , R̄ and R̂ be defined as follows.

B ∶=
[

Bd Bu
]

, R̄ ∶= diag{−
2Ind , Inu}, Ĉ ∶=
[

C⊤
I C⊤

y

]⊤
, R̂ ∶= diag{−
2InI , Iny}

1. There exists an admissible output feedback controller K such that ‖l(G,K)‖[0,T ] < 
 if and only if the following three
conditions hold:

(a) There exists a differentiable function X ∶ [0, T ]→ Snx such that X(T ) = CE(T )⊤CE(T ),

Ẋ + A⊤X +XA −XBR̄−1B⊤X + C⊤
I CI = 0

(b) There exists a differentiable function Y ∶ [0, T ]→ Snx such that Y (0) = 0,

−Ẏ + AY + Y A⊤ − Y Ĉ⊤R̂−1ĈY + BdB⊤d = 0

(c) X(t) and Y (t) satisfy the following point-wise in time spectral radius condition,

�(X(t)Y (t)) < 
2, ∀t ∈ [0, T ] (6)

2. If the conditions above are satisfied, then the closed loop performance ‖l(G,K)‖[0,T ] < 
 is achieved by the following
central controller:

̇̂x(t) = AK (t) x̂(t) + BK (t) y(t)
u(t) = CK (t) x̂(t)

where

Z ∶= (I − 
−2Y X)−1

AK ∶= A + 
−2BdB⊤dX −ZY C⊤
y Cy − BuB

⊤
u X

BK ∶= ZY C⊤
y

CK ∶= −B⊤u X
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For a given 
 > 0, the RDEs associated with X and Y are integrated backward and forward in time, respectively. If solution
to both RDEs exist then the spectral radius coupling condition (6) is checked. If all three conditions are satisfied then the central
controller achieves a closed-loop performance of 
 . The smallest possible value of 
 is obtained using bisection. The results in
[14, 16] also consider the effect of uncertain initial conditions.

3 ROBUST PERFORMANCE

3.1 Uncertain LTV Systems
An uncertain, time-varying system u(N,Δ) is shown in Figure 2. This consists of an interconnection of a known finite horizon
LTV systemN and a perturbationΔ. This perturbation represents block-structured uncertainties and/or nonlinearities. The term

N

Δ

d

wv

eI
eE

FIGURE 2 Uncertain System Interconnection u(N,Δ)

“uncertainty” is used for simplicity when referring to Δ. It is assumed throughout that the interconnection u(N,Δ) is well-
posed. A formal definition for well-posedness is given in [27, 19]. The LTV systemN is described by the following state-space
model:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẋN (t)

v(t)

eI (t)

eE(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

AN (t) Bw(t) Bd(t)

Cv(t) Dvw(t) Dvd(t)

CI (t) DIw(t) DId(t)

CE(t) 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

xN (t)

w(t)

d(t)

⎤

⎥

⎥

⎥

⎦

(7)

In addition to notations defined earlier v ∈ ℝnv and w ∈ ℝnw are signals associated with the uncertainty Δ. The state vector is
denoted as xN ∈ ℝnN to refer to the states of systemN .

3.2 Worst-Case Gain
The robust performance of the uncertain system u(N,Δ) is assessed using the worst-case gain as defined below.

Definition 1. Let an LTV system N be given by (7) and uncertainty Δ ∶ nv2 [0, T ] → nw2 [0, T ] be in some set  . Assume the
interconnection u(N,Δ) is well-posed. The worst-case gain is then defined as:


wc ∶= sup
Δ∈

‖u(N,Δ)‖[0,T ]

The worst-case gain is the largest induced gain of the uncertain time-varying system over all uncertainties Δ in set  . This
is difficult to compute directly as it involves an optimization over the entire uncertainty set. Instead, we focus on computing an
upper bound on the worst-case gain using dissipation inequalities and IQC conditions.

3.3 Integral Quadratic Constraints (IQCs)
IQCs [18, 19] are used to describe the input-output behavior of Δ. A time-domain formulation is used here for the analysis of
the uncertain time-varying system. This formulation is based on the graphical interpretation as shown in Figure 3. Time domain
IQCs, as used in this paper, are defined for Δ by specifying a filter Ψ and a finite horizon constraint on the filter output z.
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Δ

Ψ

wv

z

FIGURE 3 Graphical Interpretation for Time Domain IQCs

The LTV dynamics of filter Ψ on the horizon [0, T ] are given as follows:

⎡

⎢

⎢

⎣

ẋ (t)

z(t)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

A (t) B v(t) B w(t)

C (t) D v(t) D w(t)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x (t)

v(t)

w(t)

⎤

⎥

⎥

⎥

⎦

(8)

where x ∈ ℝn is the state. The formal definition for a time-domain IQC is given next.

Definition 2. Consider an LTV system Ψ ∶ (nv+nw)2 [0, T ] → nz2 [0, T ] and M ∶ [0, T ] → Snz be given with M piecewise
continuous. A bounded, causal operator Δ ∶ nv2 [0, T ] → nw2 [0, T ] satisfies the time domain IQC defined by (Ψ,M) if the
following inequality holds for all v ∈ nv2 [0, T ] and w = Δ(v):

T

∫
0

z(t)⊤M(t)z(t) dt ≥ 0 (9)

where z is the output of Ψ driven by inputs (v,w) with zero initial conditions x (0) = 0.

Note that Definition 2 allows the IQC filter Ψ to be time-varying. This time-varying generalization provides an additional
degree of freedom for finite horizon robustness analysis with IQCs. Similar generalizations for LPV systems are presented in [29]
to use parameter-varying IQCs. However, exploring this additional degree of freedom is a subject of future research. Thus, the
examples discussed later in the paper are for the special case where Ψ is an LTI filter. The notation Δ ∈ (Ψ,M) is used if Δ
satisfies the IQC defined by (Ψ,M). A valid IQC (Ψ,M) can be defined for a set  such that  ⊆ (Ψ,M). Two examples
are provided below.

Example 1. Let  denote the set of LTI uncertainties Δ ∈ ℝℍ∞ with ‖Δ‖∞ ≤ 1. Let (Ψ,M) be defined as follows:

Ψ ∶=

[

Ψ11 0

0 Ψ11

]

with Ψ ∈ ℝℍnz×1
∞

M ∶=

[

M11 0

0 −M11

]

withM ∈ Snz andM11 ≻ 0

(10)

It is shown in Appendix II of [30] that the pair (Ψ,M) defines a valid time domain IQC forΔ over any T <∞ i.e.  ⊆ (Ψ,M).

Example 2. Let  be the set of LTV parametric uncertainties �(t) ∈ ℝ with a given norm-bound �(t), i.e. w(t) = �(t) ⋅ v(t),
|�(t)| ≤ �(t), ∀t ∈ [0, T ]. Let nv = nw = n andM11 ∶ [0, T ]→ Sn be piecewise continuous withM11(t) ≻ 0, ∀t ∈ [0, T ]. Then
Δ satisfies the IQC defined by the time-varying matrix:

M(t) ∶=

[

�(t)2M11(t) 0

0 −M11(t)

]

(11)

and a static filter Ψ ∶= I2n, i.e.  ⊆ (Ψ,M).

A library of IQCs is provided in [19, 31] for various types of perturbations. Most IQCs are for bounded, causal operators with
multipliersΠ specified in the frequency domain. Under mild assumptions, a valid time-domain IQC (Ψ,M) can be constructed
from Π via a J -spectral factorization [32].
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3.4 Dissipation Inequality Condition
Consider an extended system as shown in Figure 4. This interconnection includes the IQC filter Ψ but the uncertainty Δ has
been removed. The precise relation w = Δ(v) is replaced, for the analysis, by the constraint on the filter output z.

N d

wv

eI
eE

Ψ
z

FIGURE 4 Analysis Interconnection

The extended system ofN (Equation 7) and Ψ (Equation 8) is governed by the following state space model:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẋ(t)

z(t)

eI (t)

eE(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(t) (t)

z(t) z(t)

I (t) I (t)

E(t) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

x(t)
[

w(t)

d(t)

]

⎤

⎥

⎥

⎥

⎥

⎦

(12)

The extended state vector is x ∶=
[ xN
x 
]

∈ ℝn where n ∶= nN + n . The state-space matrices are given by:

 ∶=

[

AN 0

B vCv A 

]

, ∶=

[

Bw Bd
B vDvw + B w B vDvd

]

z ∶=
[

D vCv C 
]

,I ∶=
[

CI 0
]

,E ∶=
[

CE 0
]

z ∶=
[

D vDvw +D w D vDvd

]

,I =
[

DIw DId

]

The following differential linearmatrix inequality (DLMI) is used to compute an upper bound on theworst-case gain ofu(N,Δ).
[

Ṗ +⊤P + P P

⊤P 0

]

+

[

Q S

S⊤ R

]

+

[

⊤z
⊤
z

]

M
[

z z

]

≤ −�I (13)

This inequality depends on the IQC matrixM . It is compactly denoted asDLMIRob(P ,M, 
2, t) ≤ −�I . This notation empha-
sizes that the constraint is a DLMI in (P ,M, 
2) for fixed N , Ψ and (Q,S,R, F ). The next theorem states a sufficient DLMI
condition to bound the generalized (robust) induced performance measure of u(N,Δ). The proof is similar to Theorem 6 and
7 of [20] and is given below for completeness. It uses IQCs [19] and a standard dissipation argument [33, 34, 35].

Theorem 3. Consider an LTV system N given by (7) and let Δ ∶ nv2 [0, T ] → nw2 [0, T ] be an operator. Assume u(N,Δ) is
well-posed and Δ ∈ (Ψ,M). Let Q ∶ [0, T ] → Sn, S ∶ [0, T ] → ℝn×(nw+nd ), R ∶ [0, T ] → S(nw+nd ), and F ∈ ℝn×n be defined
as follows.

Q ∶= ⊤I I , S ∶= ⊤I I , R ∶= ⊤
II − 
2diag{0nw , Ind}, F ∶= E(T )⊤E(T ) (14)

If there exists � > 0, 
 > 0 and a differentiable function P ∶ [0, T ]→ Sn such that P (T ) ≥ F and,

DLMIRob(P ,M, 
2, t) ≤ −�I ∀t ∈ [0, T ] (15)

then ‖u(N,Δ)‖[0,T ] < 
 .

Proof. Let d ∈ 2[0, T ] and xN (0) = 0 be given. By well-posedness, Fu(N,Δ) has a unique solution (xN , v, w, eI , eE). Define
x ∶=

[ xN
x 
]

. Then (x, z, eI , eE) are a solution of the extended system (12) with inputs (w, d) and initial condition x(0) = 0.
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Moreover, z satisfies the the IQC defined by (Ψ,M). Define a storage function by V (x, t) ∶= x⊤P (t)x. Left and right multiply
the DLMI (13) by [x⊤, w⊤, d⊤] and its transpose to show that V satisfies the following dissipation inequality for all t ∈ [0, T ]:

V̇ +

[

x
[ w
d
]

]⊤ [
Q S

S⊤ R

][

x
[ w
d
]

]

+ z⊤Mz ≤ −� d⊤d. (16)

Use the choices for (Q,S,R) to rewrite the second term as e⊤I eI − 

2d⊤d. Integrate over [0, T ] to obtain:

x(T )⊤P (T )x(T ) +

T

∫
0

z(t)⊤M(t)z(t) dt + ‖eI‖
2
2,[0,T ] ≤ (


2 − �)‖d‖22,[0,T ].

Apply P (T ) ≥ F = E(T )⊤E(T ) and Δ ∈ (Ψ,M) to conclude:

‖eE(T )‖22 + ‖eI‖
2
2,[0,T ] ≤ (


2 − �)‖d‖22,[0,T ]. (17)

This inequality implies ‖Fu(N,Δ)‖[0,T ] < 
 .

3.5 Computational Approach
Numerical implementation using IQCs often involve a fixed choice of Ψ and optimization subject to the convex constraints on
M . Two examples are provided as follows.

Example 3. Consider an LTI uncertainty Δ ∈ ℝℍ∞ with ‖Δ‖∞ ≤ 1. By Example 1, Δ satisfies any IQC (Ψ,M) with Ψ ∶=
[

Ψ11 0
0 Ψ11

]

,M ∶=
[

M11 0
0 −M11

]

, andM11 ≻ 0. A typical choice for Ψ11 is:

Ψ11 ∶=
[

1, 1
(s + p)

,… 1
(s + p)q

]⊤

with p > 0 (18)

The analysis is performed by selecting (p, q) to obtain (fixed) Ψ and optimizing over the convex constraintM11 ≻ 0. The results
depend on the choice of (p, q). Larger values of q represent a richer class of IQCs and hence yield less conservative results but
with increasing computational cost. Note that the IQC filter Ψ is not square in general with nz = 2(q + 1) outputs.

Example 4. Conic combinations of multiple IQCs can be incorporated in analysis. Let (Ψi,Mi) with i = 1, 2,… , N defineN
valid IQCs for Δ. Hence ∫ T

0 z⊤i Mizi dt ≥ 0 where zi is the output Ψi driven by v and w = Δ(v). The multiple constraints can
be multiplied by �i ≥ 0 and combined to yield:

T

∫
0

N
∑

i=1
�iz

⊤
i Mizi dt ≥ 0 (19)

Thus a valid time-domain IQC for Δ is given by

Ψ ∶=

⎡

⎢

⎢

⎢

⎣

Ψ1
⋮

ΨN

⎤

⎥

⎥

⎥

⎦

andM(�) ∶=

⎡

⎢

⎢

⎢

⎣

�1M1

⋱

�NMN

⎤

⎥

⎥

⎥

⎦

(20)

The analysis optimizes over � given selected (Ψi,Mi).

An iterative algorithm given in [20] is used in this paper to compute the smallest upper bound on the worst-case gain. It
combines the DLMI formulation in the Theorem 3 with a related Riccati Differential Equation (RDE). The algorithm returns
the upper bound 
̄wc along with the decision variables P andM .

4 ROBUST SYNTHESIS

4.1 Problem Formulation
An uncertain feedback interconnection is shown in Figure 5 where G is an LTV system on [0, T ] and Δ is assumed to lie in
some set  that is described by valid time domain IQCs.
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G d

wv

eI
eE

K

y u

Δ

N ∶= l(G,K)

FIGURE 5 Uncertain Feedback Interconnection u(l(G,K),Δ)

The finite horizon robust synthesis problem is to synthesize a controller which minimizes the impact of both worst-case
disturbances and worst-case uncertainties, i.e.:

inf
K
sup
Δ∈

‖u(l(G,K),Δ)‖[0,T ] (21)

Let the LTV system G defined on [0, T ] be given as:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋG(t)

v(t)

eI (t)

eE(t)

y(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

AG(t) Bw(t) Bd(t) Bu(t)

Cv(t) Dvw(t) Dvd(t) Dvu(t)

CI (t) DIw(t) DId(t) DIu(t)

CE(t) 0 0 0

Cy(t) Dyw(t) Dyd(t) Dyu(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

xG(t)

w(t)

d(t)

u(t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(22)

where xG ∈ ℝnG is the state. This plant structure has no feedthrough from d to eE for well-posedness. The synthesis problem (21)
involves the worst-case gain computed over the entire uncertainty set. As noted earlier, instead we focus on minimizing worst-
case gain upper bounds. In other words, we define IQCs (Ψ,M) such that  ⊆ (Ψ,M) and maximize over Δ ∈ (Ψ,M)
in Equation (21). The goal is to design a linear time-varying controller K ∶ ny2 [0, T ] → nu2 [0, T ] to minimize the worst-case
gain upper bound on u(l(G,K),Δ). This leads to a non-convex synthesis problem and involves solving for the controller as
well as IQC multipliers.
The approach taken here is to decompose the synthesis into two subproblems. First, solve a nominal synthesis problem (on a

specially constructed scaled plant) to obtain K . Second, solve an IQC analysis problem to compute the worst-case gain upper
bound. These subproblems can be solved iteratively, similar to coordinate descent, to get a reasonable sub-optimal solution. The
proposed algorithm utilizes this approach to obtain a finite horizon sub-optimal controller. As with DK synthesis, there are no
guarantees that the coordinate-wise iteration will lead to a local optima let alone a global optima. However, it is a useful heuristic
that will enable the robust synthesis to extended naturally from LTI to finite horizon LTV systems. The following assumption
is made for the structure of IQC matrixM and filter Ψ.

Assumption 1. The IQC decision variables M ∶ [0, T ] → Snz for a specified IQC filter Ψ ∶ (nv+nw)2 [0, T ] → nz2 [0, T ] are
assumed to have the following block diagonal structure

M(t) ∶=

[

Mv(t) 0

0 −Mw(t)

]

, Ψ ∶=

[

Ψv 0

0 Ψw

]

with constraintsMv(t) ≻ 0 andMw(t) ≻ 0, ∀t ∈ [0, T ]. Moreover, Ψ has a feedthrough matrix D (t) ∶=
[

D v(t) D w(t)
]

∈
ℝnz×(nv+nw) with full column rank ∀t ∈ [0, T ].

This block diagonal assumption is made to simplify the notation. More general IQC multipliers are considered for (infinite
horizon) synthesis in [9]. As discussed in Example 3, the IQC filterΨ, is typically pre-specified by a collection of basis functions.
In this case, the worst-case gain condition in Theorem 3 is a differential LMI in the variables Mv, Mw, P , and 
2. The filter
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Algorithm 1 Finite Horizon Robust Synthesis
1: Given: G
2: Initialize:Nsyn, U (0)

v ∶= Inv , U
(0)
w ∶= Inw , 


(0)
a ∶= 1

3: for i = 1 ∶ Nsyn do
4: Scaled Plant Construction (Section 4.3): Construct a scaled plant G(i)scl using G, U

(i−1)
v , U (i−1)

w , 
 (i−1)a .
Output: G(i)scl

5: Nominal LTV Synthesis (Section 2.2): Perform nominal controller synthesis on the scaled plant G(i)scl.
Output: K (i), 
 (i)s

6: IQC Analysis (Section 3): Choose the basis functions for Ψ and perform worst-case gain iterations on
u(N (i),Δ) using iterative algorithm presented in [20] whereN (i) ∶= l(G,K (i)) denotes the closed loop LTV
system. Perform finite horizon factorization using the same Ψ and computed decision variablesM (i) to com-
pute the uncertainty channel scalings U (i)

v and U (i)
w .

Output: P (i),M (i), 
 (i)a , U
(i)
v , U

(i)
w

7: end for

Ψ is, in general, non-square with nz ≠ nv + nw. The proposed synthesis method requires a non-unique factorization such that
resulting factor is invertible square system i.e. nz = nv + nw. The finite horizon factorization (Lemma 2 in Appendix B) can be
used to construct square invertible systems Uv and Uw such that,

Ψ∼vMvΨv = U∼
v Uv

Ψ∼wMwΨv = U∼
wUw

(23)

The assumption that feedthough matrix D (t) has full column rank is required for the existence of such factorization. This
factorization is used in the proposed synthesis algorithm below to construct a scaled plant.

4.2 Algorithm
A high-level overview of the proposed iterative method is given in Algorithm 1. The uncertain finite horizon system is
u(l(G,K),Δ) with G given by Equation (22) and Δ specified by uncertainty set (Ψ,M). The robust synthesis algorithm is
specified to run a given maximum number of iterations Nsyn. It is initialized with scalings U (0)

v ∶= Inv and U
(0)
w ∶= Inw . There

is also an initial performance scaling set to 
 (0)a ∶= 1.

G 1

a

U−1
wUv

d
d̃

Gscl
w

w̃
v

ṽ
eI
eE

K
uy

FIGURE 6 LTV Synthesis on Scaled Plant Gscl

The beginning of each iteration involves the construction of a scaled plant Gscl as shown in Figure 6. This step is described
further in the next subsection. For now, it is sufficient to note that Gscl = G on the first iteration due to the initialization choices.
The next step is to perform finite horizon nominal synthesis on the scaled plant. This step is performed using the synthesis
results described previously in Section 2.2. This yields a controller K (i) and the achievable closed-loop performance 
 (i)s . Each
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iteration concludes with an IQC analysis on the uncertain closed-loop of N ∶= l(G,K (i)) and Δ as shown in Figure 5. This
closed-loop uses the original (unscaled) plant G and the controller K (i) obtained from the nominal synthesis step. The worst-
case gain upper bound 
 (i)a is computed using the algorithm in [20] as summarized in Section 3. This iterative algorithm requires
additional initialization including number of analysis iterationsNiter, stopping tolerance tol, DLMI time grid tDLMI and spline
basis function time grid tsp, which are not included in Algorithm 1. All subsequent iterations require the construction of a scaled
plant using the IQC results. The construction of this scaled plant links together the nominal synthesis and IQC analysis steps.
It is described further in Section 4.3. Algorithm 1 terminates after Nsyn iterations. More sophisticated stopping conditions can
be employed. For example, the iterations could be terminated if no significant improvement in worst-case gain is achieved. The
algorithm returns the controller of order nK that achieves the best (smallest) bound on the worst-case gain, where nK = nG+n .

4.3 Construction of a Scaled Plant
The scaled open loop plant G(i)scl is constructed as shown in Figure 6 by scaling the performance channels and uncertainty
channels of original open loop plant G using U (i−1)

v , U (i−1)
w and 
 (i−1)a obtained from the previous iteration. This scaling ensures

appropriate normalization of the performance and uncertainty channels. This is a key step which integrates the nominal synthesis
andworst-case gain problem. To simplify the notation, the superscripts (i−1)will be dropped in the remainder of this subsection.

N
1



U−1
wUv

d
d̃

w
w̃

v
ṽ
eI
eE

FIGURE 7 Scaled PlantNscl

Let N ∶= l(G,K) be the closed-loop (without uncertainty). For a given IQC filter Ψ an extended system Next similar to
Figure 4 can be constructed. The next lemma gives a formal statement connecting robust performance of the extended system
Next to nominal performance of scaled systemNscl as shown in Figure 7.

Lemma 1. Let � > 0, 
 > 0, Mv(t) ≻ 0, Mw(t) ≻ 0 and a differentiable function P ∶ [0, T ] → Sn such that P (T ) ≥ F be
given with the choice of (Q,S,R, F ) as in Equation (14). The following statements are equivalent:

1. DLMIRob(P ,M, 
2, t) ≤ −�I, ∀t ∈ [0, T ].

2. ‖Nscl‖[0,T ] ≤ 1 − �̂, for some �̂.

Proof. A proof of this lemma is given in Appendix C. It uses a time-varying factorization of (Ψ,M) to constructUv andUw.

The above lemma states that extended system given by Equation (12) satisfies the robust performance condition (15) if and only
if the scaled system has nominal performance less than 1.

4.4 Main Theorem
The plant G(1)scl = G for the robust synthesis may include the uncertainty and performance channel design weights as in standard
robust control workflow [27, 28]. These weights can be static, dynamic and/or time-varying depending on the requirement.
Typically, multiple design iterations are performed to tune these weights and yield an acceptable trade-off between robustness
and performance. Note that the first nominal LTV synthesis step in Algorithm 1 may not yield a finite performance 
 (1)s . For
example, if the uncertainty level is too high then the RDEs for nominal synthesis of G(1)scl = G may not have a solution on [0, T ]
for any finite 
 (1)s . However, in this case, finite performance can be achieved by reducing the uncertainty level and restarting the
iteration. The main theorem is presented next with a technical assumption that the first nominal synthesis step yields a finite
performance.
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Theorem 4. If the first nominal synthesis step yields a finite performance 
 (1)s then all the subsequent iterations are well-posed
at each step and worst-case gain is non-increasing, i.e.


 (i+1)a ≤ 
 (i)a ∀i ≥ 1

Proof. The first iteration (i = 1) is different from the subsequent one. Due to initialization choices G(1)scl = G. The synthesis
step is performed with no modifications and yields a controller K (1) that guarantees the closed loop performance of 
 (1)s . By
assumption, we have 
 (1)s < ∞. The IQC analysis step performed on the closed loop N (1) ∶= l(G,K (1)) uncertain plant then
achieves a finite horizon worst-case gain upper bound of 
 (1)a <∞. Thus, the first iteration is well-posed.

All subsequent iterations (i > 1) begin with the iteration count update in the for loop. The IQC analysis step from previous
iteration shows that there exists (P (i−1),M (i−1), 
 (i−1)a ) for a chosenΨ that satisfies DLMI (13). This implies that the finite horizon
factorization exists and multipliers U (i−1)

v and U (i−1)
w can be obtained using Lemma 2 in Appendix B. Using these multipliers

and worst-case gain 
 (i−1)a , scaled plant similar to Figure 7 can be constructed. By Lemma 1, this scaled plant satisfies nominal
performance < 1. Removing the controller yields the scaled open-loop plant G(i)scl. Thus, the construction of a scaled open-loop
plant as shown in Figure 6 is well-defined. The synthesis step performed on G(i)scl optimizes over all time-varying finite horizon
controllers to yield a new controller K (i) that guarantees performance 
 (i)s < 1. This new controller K (i) yields better nominal
performance than the previous controllerK (i−1) when used with the unscaled plantG. Thus, the closed loopN (i) ∶= u(G,K (i))
must satisfy the nominal performance < 1 when using 
 (i−1)a . Lemma 1 can be used backwards in the next analysis step ofN (i).
Specifically, the closed loop with unscaled plant G and K (i) satisfies the DLMI analysis condition with (P (i−1),M (i−1), 
 (i−1)a ).
Further, analysis step on N (i) ∶= l(G,K (i)) optimizes over all feasible P andM . This yields a worst-case gain 
 (i)a no greater
than the previous step 
 (i−1)a . Thus ∀i ≥ 1, we have 
 (i+1)a ≤ 
 (i)a .

5 NUMERICAL EXAMPLES

5.1 LTI Example
Consider a first order linear time-invariant (LTI) system G with the following dynamics:

ẋ(t) = 0.5 x(t) + u(t) +w(t) + din(t) (24)
v(t) = u(t) + din(t) (25)

eI (t) =

[

x(t)

0.2 u(t)

]

(26)

y(t) = x(t) + 0.01 n(t) (27)

where the performance output is eI (t) ∈ ℝ2 and measurement output is y(t) ∈ ℝ. The generalized disturbance input is d(t) ∶=
[

din(t)
n(t)

]

where din(t) ∈ ℝ is an external disturbance input and n(t) ∈ ℝ is a measurement noise. Δ is a norm bounded, time-
varying, nonlinear uncertainty with norm bound � = 0.6. The goal is to design a measurement feedback controller K that
minimizes the worst-case induced 2-gain from disturbance d to output eI .
First, an infinite horizon robust synthesis is performed to minimize the worst-case gain of the closed loop system. This is

achieved by performing bisection on the gain 
 for a scaled plant until the robust performance is equal to 1. At each bisection step,
MATLAB’s musyn function is called to optimize the structured singular value upper bound �̄. This function uses an iterative
control design process (DK-iteration) to optimizes the �̄ of the closed loop system. The infinite horizon worst-case induced 2-
gain for the designed robust controller is 0.0563. Next, finite horizon robust synthesis is performed on a relatively long horizon
(i.e. T = 300 seconds) using the method proposed in this paper. The closed-loop worst-case gain achieved by a finite horizon
time-varying controller is computed as 0.0560. This simple comparison results show that on a relatively long horizon the worst-
case gain achieved using the finite horizon controller approaches to that of the value achieved by an infinite horizon controller.
Note that the proposed method uses purely time-domain approach whereas the �-synthesis method uses the frequency gridding
approach to approximate �̄ and the associated D-scales. Thus, the close agreement between the two worst-case gains on this
example may not hold in general.
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5.2 Nonlinear Example
Consider an example of a two-link robot arm as shown in the Figure 8. The mass and moment of inertia of the itℎ link are
denoted by mi and Ii. The robot properties are m1 = 3kg, m2 = 2kg, l1 = l2 = 0.3m, r1 = r2 = 0.15m, I1 = 0.09kg ⋅ m2, and
I2 = 0.06kg ⋅ m2. The nonlinear equations of motion [36] for the robot are given by:

[

� + 2� cos(�2) � + � cos(�2)

� + � cos(�2) �

][

�̈1
�̈2

]

+

[

−� sin(�2)�̇2 −� sin(�2)(�̇1 + �̇2)

� sin(�2)�̇1 0

][

�̇1
�̇2

]

=

[

�1
�2

]

with
� ∶= I1 + I2 + m1r21 + m2(l

2
1 + r

2
2) = 0.4425 kg ⋅ m

2

� ∶= m2l1r2 = 0.09 kg ⋅ m2

� ∶= I2 + m2r22 = 0.105 kg ⋅ m
2.

The state and input are � ∶= [�1 �2 �̇1 �̇2]⊤ and � ∶= [�1 �2]⊤, where �i is the torque applied to the base of link i.

FIGURE 8 Two-link Planar Robot [36].

A trajectory �̄ of duration 5 second was selected for the tip of the arm to follow. This trajectory is shown as a solid black
line in Figure 9. An equivalent trajectory in polar coordinates is also shown in Figure 10. The equilibrium input torque �̄ can be
computed using inverse kinematics. The robot should track this trajectory in the presence of small torque disturbances din. The
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FIGURE 9 Snapshot Positions in Cartesian Coordinates
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ũ1

ũ2
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FIGURE 11 Uncertain Output Feedback Weighted Interconnection

input torque vector is � = �̄ + u+ din where u is an additional control torque to reject the disturbances. The nonlinear dynamics
(28) are linearized around the trajectory (�̄, �̄) to obtain an LTV systemH :

ẋ(t) = A(t) x(t) + B(t)
(

u(t) + din(t)
)

(28)

where x(t) ∶= �(t)−�̄(t) is the deviation from the equilibrium trajectory. An uncertain output feedback weighted interconnection
ofH is shown in the Figure 11. Let �� ∶=

[

��1
��2

]

represent first-order perturbations in angular positions, which is the output of
interest eE . The measurement is also �� but corrupted by noise n =

[ n1
n2
]

and is fed to the controller as y = ��+n. The controller
generates a commanded torque u =

[ u1
u2
]

is corrupted by input disturbance din =
[

d1
d2

]

. The second control channel gets further
corrupted by LTI input uncertainty Δ. The plant input perturbation Δ is a SISO LTI system with ‖Δ‖∞ ≤ � where uncertainty
level � = 0.8. This corresponds to the uncertainty set as discussed in Example 1. The synthesis objective is to minimize the
closed-loop, worst-case gain from the generalized disturbance d̃ ∶=

[

d̃in
ñ

]

= [ d̃1 d̃2 ñ1 ñ2 ]⊤ to the generalized error ẽ ∶=
[ ũ
ẽE

]

.
The weighted control effort ũ is penalized in an 2[0, T ] sense while ẽE is penalized with a terminal Euclidean norm at T = 5
second. Let I2 ∶=

[

1 0
0 1

]

. The following (constant) design weights are chosen for the performance channels:

Wd = 0.1 I2, Wn = 0.01 I2, Wu = 0.5 I2, WE = I2
The design weight associated with the uncertainty channels are not considered in this example, however, in general, the weights
Wv and Ww can also be used for the respective uncertainty channels. As noted earlier, these design weights can be dynamic
and/or time-varying. Let G̃ denote this weighted design interconnection for robust synthesis. It can be expressed in state-space
form as in Equation (22). Algorithm 1 is run withNsyn = 7 iterations. No significant improvement is obtained after 7tℎ iteration.
The IQC analysis step is performed based on the approach in [20] and using parameterization similar to Example 3 with p = 10,
q = 1, tol = 5 × 10−3,Niter = 10, tDLMI as 20 and �sp as 10 evenly spaced grid points on the horizon [0, 5] seconds.
Let K0.8 denote the controller obtained at the end of the robust synthesis algorithm. This controller achieves the closed-loop

worst-case performance of 
0.8 = 0.126. It took 11.7 hours to complete the 7 iterations on a standard desktop computer with
3 GHz Core i7 processor. In addition, a nominal synthesis with Δ = 0 was performed using the approach in Section 2.2. This
controller, denoted as K0, achieves a closed-loop nominal performance of 
0 = 0.089. It took 49.8 seconds to perform this
nominal synthesis. The corresponding uncertain closed-loops with the nominal and robust controllers are denoted by T̃0 ∶=
u(l(G̃, K0),Δ) and T̃0.8 ∶= u(l(G̃, K0.8),Δ). Figure 12 shows the worst-case performance versus the uncertainty level � for
the uncertain closed-loops with these two controllers. The curve for T̃0 (blue circles) has 
 = 0.089 at � = 0 as reported above.
The curve for T̃0.8 (red squares) has 
 = 0.126 at � = 0.8 as also reported above. This figure reveals the typical trade-off between
performance and robustness. The nominal controller K0 achieves better nominal performance (� = 0) than K0.8. However, K0.8
is more robust to higher levels of uncertainties.
Note that each data point in Figure 12 represents a worst-case gain induced from the generalized disturbance input d̃ to the

generalized error output ẽ. Both d̃ and ẽ have two components which can further be analyzed using induced gain for individual
input-output pairs. Table 1 shows an analysis with no uncertainty (level � = 0) performed for the closed-loops with nominal
control design T̃0 (blue) and robust control design T̃0.8 (red). It is evident that the induced gain from noise ñ to control effort ũ
dominates the overall performance for both the interconnections. Moreover, the induced 2-gain from ñ to ũ for T̃0.8 is 0.124
which is approximately 41% higher than the corresponding value for T̃0 (= 0.088). Likewise, the induced 2-to-Euclidean gain
from disturbance d̃in to ẽE(T ) is approximately 16.6% higher for T̃0.8 (= 0.077) as compared to T̃0 (= 0.066). The combined
effect of the disturbance and noise is responsible for performance degradation of the robust controller at � = 0. Table 2 shows
the worst-case gain upper bounds for robust analysis performed at an uncertainty level � = 0.8 for both interconnections. Note
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that the closed-loop with robust controller has the same worst-case induced 2-gain of 0.124 from ñ to ũ as in Table 1. Since,
the robust controller explicitly accounts for model uncertainty, it has approximately 37.8% lower worst-case induced 2-gain
from d̃in to ũ compared to the nominal controller. Similarly, the robust controller performs better in terms of bounding the
Euclidean outputs as compared to the nominal controller at � = 0.8. Overall, the disturbance rejection property for the nominal
controller is degraded more from Table 1 to Table 2 as compared to the robust controller. This observation is consistent with
known frequency domain insights for infinite horizon LTI systems, as the high frequency noise rejection properties are typically
less impacted by model uncertainties than the low frequency disturbance rejection properties.
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FIGURE 12Worst-Case Gain Comparison

T̃0 / T̃0.8 Disturbance d̃in Measurement noise ñ Generalized disturbance d̃

Euclidean output ẽE(T ) 0.066 / 0.077 0.050 / 0.047 0.082 / 0.081

Control effort ũ 0.085 / 0.087 0.088 / 0.124 0.089 / 0.124

Generalized error ẽ 0.086 / 0.097 0.088 / 0.124 0.089 / 0.124

TABLE 1 Induced Gain Upper Bounds for Different Input-Output Pairs (Nominal Analysis, � = 0)

T̃0 / T̃0.8 Disturbance d̃in Measurement noise ñ Generalized disturbance d̃

Euclidean output ẽE(T ) 0.102 / 0.093 0.068 / 0.061 0.120 / 0.120

Control effort ũ 0.190 / 0.118 0.098 / 0.124 0.202 / 0.126

Generalized error ẽ 0.190 / 0.118 0.106 / 0.125 0.202 / 0.126

TABLE 2Worst-Case Gain Upper Bounds for Different Input-Output Pairs (Robust Analysis, � = 0.8)

As noted earlier, the primary design goal was to tightly bound the states at the final time T = 5 seconds. To study this
further consider the impact of link joint disturbance din on the Euclidean output eE . Let G denote the unweighted plant which
has the same inputs/outputs as the weighted plant G̃ but with all weights set to identity. Further, let the respective uncertain
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interconnection using G be denoted as T0 ∶= u(l(G,K0),Δ) and T0.8 ∶= u(l(G,K0.8),Δ). Nominal analysis performed
for both the T0 (din→eE ) and T0.8 (din→eE ) interconnections gives both upper and lower bounds on the nominal performance. The
upper bounds are obtained as 0.656 and 0.766 respectively, which are shown as blue and red disk in Figure 13 at the final
time. The corresponding lower bounds are obtained as 0.648 and 0.763. The worst-case disturbance ‖din‖2,[0,T ] ≤ 0.5 for
both interconnections are computed by solving the two point boundary value problem as presented in [37]. These specific bad
disturbances (Figure 14) pushes the state trajectory (dashed line) as far as the computed lower bound in the LTV simulation.
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FIGURE 13 Nominal Analysis (� = 0)
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FIGURE 16Worst-Case Disturbances

A worst-case terminal Euclidean norm bound is computed for both the interconnections at the uncertainty level � = 0.8. The
corresponding upper bound using the algorithm in [20] was obtained as 1.02 and 0.93, respectively. This shows approximately
a 8.82% reduction in Euclidean norm bound. As a graphical illustration, these bounds are depicted in Figure 15 as a disk at
the final time T = 5 seconds. The bound accounts for all the disturbances din that satisfy ‖din‖2,[0,T ] ≤ 0.5 and all the LTI
uncertainties Δ with norm bound � = 0.8.
To obtain a reasonable lower bound on the worst-case gain, first 100 uncertainties are sampled randomly as first order LTI

systems with at most size 0.8. Then, uncertainty block Δ was replaced with each of sampled uncertainties and nominal LTV
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analysis was performed from din to eE for both the interconnections.Worst-case uncertainties are then obtained after maximizing
performance over the sample space. Let, the specific bad perturbation that yields to the poor performance for both T0 (din→eE ) and
T0.8 (din→eE ) be denoted as Δwc1 and Δwc2 respectively.

Δwc1 =
−0.8 s + 12.18
s + 15.23

, Δwc2 =
−0.8 s + 25.89
s + 32.36

The worst-case gain lower bound corresponding to these perturbations are obtained as 1.001 and 0.903 respectively. It is
evident that a combination of worst-case disturbance (scaled to have size 0.5) and uncertainty (of size 0.8) pushes the states of
the closed loop system (dashed line) as far as the lower bound of the worst-case gain. Overall, these simple comparison results
show a typical robustness and performance trade-off. The nominal controller performs best at no uncertainty whereas the robust
controller performs better at modeled uncertainty level.

6 CONCLUSIONS & FUTUREWORK

This paper proposed an iterative algorithm to design an output-feedback controller that bounds theworst-case gain of an uncertain
LTV system on a finite horizon. Similar design can also be done in a state-feedback formulation. The performance was specified
using both an induced2 and terminal Euclidean norm penalty on the output. Time-domain dynamic IQCs were used to describe
the input-output behavior of the uncertainty. The effectiveness of proposed approach was demonstrated using the two-link robot
arm example.
This paper opens up few new directions for further research. First, we used a block diagonal assumption for the IQC filter

and decision variables (Assumption 1). Future work will consider relaxing this assumption to include full block IQC multipliers
in the robust synthesis. Second, note that the proposed method also allows time-varying uncertainty and performance weights.
This is useful for many applications such as in many launch scenarios, where the uncertainty or performance requirements are
not evenly spread out across the time horizon. Future work in this area is required to exploit the full potential of this method.
Moreover, we recognize that proposedmethod is computationally expensive. Future research is needed to speed up the numerical
computations for such finite horizon analysis and synthesis.
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APPENDIX

A GENERIC QUADRATIC COST

This paper considers an induced norm ‖H‖[0,T ] (defined by Equation 4) as a performancemetric whereas a generic quadratic cost
is considered in [20]. This appendix describes the equivalence between these two formulations. First, consider the finite-horizon
linear quadratic optimal control problem as follows:

J ∗(
) ∶= sup
0≠d∈2[0,T ]

x(T )⊤Fx(T ) +

T

∫
0

[

x(t)

d(t)

]⊤ [
Q(t) S(t)

S(t)⊤ R(t, 
)

][

x(t)

d(t)

]

dt

s.t. ẋ(t) = A(t) x(t) + B(t) d(t) and x(0) = 0. (A1)
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where Q ∶ [0, T ]→ Snx , S ∶ [0, T ]→ ℝnx×nd , R ∶ [0, T ]⊕ℝ+ → Snd and F ∈ ℝnx×nx . We assume Q(t) ⪰ 0, for all t ∈ [0, T ]
and F ⪰ 0. Moreover, we assume a form R(t, 
) = R0(t) − 
2Ind , where 
 > 0, R0(t) ⪰ 0 and R(t, 
) ≺ 0, for all t ∈ [0, T ].
There are two directions to the equivalence. First, assume a systemH is given as defined by Equation (1) and (3). Note that the
induced norm ‖H‖[0,T ] is defined by the state-space matrices (A,B, CI , CE , DI ). Define (Q,S,R, F ) as in Theorem 1. Then for
any 
 > 0, ‖H‖[0,T ] < 
 if and only if J ∗(
) < 0. This is shown in Section 2 of [20]. Conversely, assume the generic quadratic
cost defined by Equation (A1) is given with cost matrices (Q,S,R, F ) satisfying the assumptions above. If we further assume
that Q(t) − S(t)R0(t)−1S(t)⊤ ≻ 0 then we can perform the following factorization:

[

Q(t) S(t)

S(t)⊤ R0(t)

]

=

[

CI (t)⊤

DI (t)⊤

]

[

CI (t) DI (t)
]

(A2)

In addition, define CE ∶= F
1
2 . Then the generic quadratic cost is re-written as:

J ∗(
) = sup
0≠d∈2[0,T ]

eE(T )⊤eE(T ) +

T

∫
0

eI (t)⊤eI (t) dt − 
2
T

∫
0

d(t)⊤ d(t) dt

s.t. Equation (1), (3) and x(0) = 0. (A3)

This cost satisfies J ∗(
) < 0 if and only if ‖H‖[0,T ] < 
 .

B FINITE HORIZON FACTORIZATION

For infinite horizon LTI systems, spectral factorization results are found in standard robust control textbooks [27, 28, 38]. The
following lemma provides a time-varying finite horizon generalization of this result.

Lemma 2. Consider an LTV system Ψ ∶ nd2 [0, T ]→ ne2 [0, T ] be given with state-space realization as follows:

ẋ(t) = A(t) x(t) + B(t) d(t)
e(t) = C(t) x(t) +D(t) d(t)

(B4)

with x ∈ ℝnx , e ∈ ℝne , d ∈ ℝnd andD(t) is full column rank ∀t ∈ [0, T ]. LetM ∶ [0, T ]→ Sne be a given piecewise continuous
matrix valued function withM(t) ≻ 0,∀t ∈ [0, T ]. Let Q ∶ [0, T ]→ Snx , S ∶ [0, T ]→ ℝnx×nd , R ∶ [0, T ]→ Snd be defined as
follows.

Q ∶= C⊤MC, S ∶= C⊤MD, R ∶= D⊤MD (B5)

with R(t) ≻ 0,∀t ∈ [0, T ]. The following statements hold.

1. There exist a differentiable function X ∶ [0, T ]→ Sn such that X(T ) = 0 and

Ẋ + A⊤X +XA +Q − (XB + S)R−1(XB + S)⊤ = 0 (B6)

2. Φ ∶= Ψ∼MΨ has a finite horizon factorization Φ = U∼U where U is square invertible LTV system defined on [0, T ]
with the following state-space realization:

U =
⎡

⎢

⎢

⎣

A B

W −T (B⊤X + S⊤) W

⎤

⎥

⎥

⎦

(B7)

where R(t) = W (t)⊤W (t), ∀t ∈ [0, T ].

Proof. Since R(t) ≻ 0 and by Schur complement lemma Q(t) − S(t)R(t)−1S(t)⊤ ≻ 0,∀t ∈ [0, T ], the RDE does not have a
finite escape time and thus always have a bounded unique solution regardless of the boundary condition (Corollary 2.3 of [39],
Theorem 8 in [40]). Further, it can be verified that the time-varying state-space realization of Ψ∼MΨ is related to that of a
system U∼U by a similarity transformation matrix

[ I 0
X(t) I

]

.
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C PROOF OF LEMMA 1

Lemma 1. Let � > 0, 
 > 0,Mv(t) ≻ 0,Mw(t) ≻ 0 and a differentiable function P ∶ [0, T ]→ Sn such that P (T ) ≥ F be given
with the choice of (Q,S,R, F ) as in Equation (14). The following statements are equivalent:

1. DLMIRob(P ,M, 
2, t) ≤ −�I, ∀t ∈ [0, T ].

2. ‖Nscl‖[0,T ] ≤ 1 − �̂, for some �̂.

Proof. (1 ⇒ 2) This proof is presented in two parts. First, we show that DLMIRob(P ,M, 
2, t) ≤ −�I, ∀t ∈ [0, T ] can equiv-
alently be written as a dissipation inequality with only single valid IQC. Second, the state-space realization of the extended
system Next and the scaled system Nscl are indeed the same, which allow us to rewrite the robust performance DLMI as a
nominal performance DLMI forNscl. Integrating the related dissipation inequality completes the proof.

Part (i): Define a storage function V (x, t) ∶= x⊤P (t)x. Left and right multiply the DLMI (13) by [x⊤, w⊤, d⊤] and its transpose
to show that V satisfies the following dissipation inequality for all t ∈ [0, T ]:

V̇ +

[

x
[ w
d
]

]⊤ [
Q S

S⊤ R

][

x
[ w
d
]

]

+ z⊤Mz ≤ −� d⊤d. (C8)

where x =
[ xN
x 
]

∈ ℝn is the state of extended system as shown in Figure 4. Consider the outputs of the IQC filter Ψ =
[

Ψv 0
0 Ψw

]

be partitioned as z ∶=
[ zv
zw
]

. Let Ψv have the following state-space representation with state xv, input v, and output zv:

ẋv(t) = A1(t) xv(t) + B1(t) v(t)
zv(t) = C1(t) xv(t) +D1(t) v(t)

(C9)

A similar time-varying state-space expression also holds for Ψw with matrices (A2, B2, C2, D2), state xw, input w, and output
zw. Thus the term z⊤Mz in (C8) can be expressed as:

z⊤Mz = z⊤vMvzv − z⊤wMwzw

=

[

xv
v

]⊤ [
C⊤
1

D⊤
1

]

Mv

[

C1 D1

]

[

xv
v

]

−

[

xw
w

]⊤ [
C⊤
2

D⊤
2

]

Mw

[

C2 D2

]

[

xw
w

]

(C10)

First, consider only the terms involving v and define the quadratic storage matrices as:
[

Qv Sv
S⊤v Rv

]

∶=

[

C⊤
1

D⊤
1

]

Mv

[

C1 D1

]

(C11)

By Lemma 2 in Appendix B, the conditionMv(t) ≻ 0, ∀t ∈ [0, T ] implies that there exists Xv ∶ [0, T ]→ Snxv such that:

Ẋv + A⊤1Xv +XvA1 +Qv − (XvB1 + Sv)R−1v (XvB1 + Sv)⊤ = 0, Xv(T ) = 0 (C12)

Moreover, Lemma 2 in Appendix B also implies that there exists a spectral factor Uv with a state-space realization as
(A1, B1, C̃1, D̃1) with C̃1 ∶= W −T

v (B⊤1Xv + S⊤v ), D̃1 ∶= Wv and Rv = W ⊤
v Wv. Note that xv is the state and ṽ is the output of

the spectral factor Uv. The RDE (C12) can be written in terms of the state matrices of Uv as:

Qv = −Ẋv − A⊤1Xv −XvA1 + C̃⊤
1 C̃1 (C13)

Substitute above Qv and S⊤v = D̃
⊤
1 C̃1 − B

⊤
1Xv in (C11) to obtain the following expression:

z⊤vMvzv = − xvẊvxv − (A1xv + B1v)⊤Xvxv − x⊤vXv(A1xv + B1v) + (C̃1xv + D̃1v)⊤(C̃1xv + D̃1v) (C14)

This can be simplified to the following expression:

z⊤vMvzv = −x⊤v Ẋvxv − ẋ⊤vXvxv − x⊤vXvẋv + ṽ⊤ṽ = −
d
dt

(

x⊤vXvxv
)

+ ṽ⊤ṽ (C15)

Similarly, withMw(t) ≻ 0, ∀t ∈ [0, T ] the spectral factor Uw can be obtained with a state-space realization (A2, B2, C̃2, D̃2),
states xw, and outputs w̃. The following expression holds:

z⊤wMwzw = −
d
dt

(

x⊤wXwxw
)

+ w̃⊤w̃ (C16)
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whereXw ∶ [0, T ]→ Snxw is a solution to a related RDE with respective quadratic storage matrices and the boundary condition
Xw(T ) = 0. Subtract Equation (C16) from (C15) to get the left hand side of the Equation (C10) as follows:

z⊤Mz = − d
dt

(

x⊤ Xx 
)

+ ṽ⊤ṽ − w̃⊤w̃ (C17)

where x =
[ xv
xw
]

, X(t) ∶=
[

Xv(t) 0
0 −Xw(t)

]

and X(T ) = 0. Let the modified matrix P̃ (t) be defined as follows:

P̃ (t) ∶= P (t) −

[

0 0

0 X(t)

]

(C18)

This yields a modified storage function Ṽ (x, t) ∶= x⊤P̃ (t)x. The modified storage function has the form:

Ṽ (x, t) = V (x, t) − x⊤vXvxv + x⊤wXwxw (C19)

where the second and third term can be interpreted as hidden energy stored in the IQCmultiplier. With modified storage function
Ṽ the dissipation inequality (C8) can be recast as,

̇̃V +

[

x
[ w
d
]

]⊤ [
Q S

S⊤ R

][

x
[ w
d
]

]

+

[

ṽ

w̃

]⊤

Jnv,nw

[

ṽ

w̃

]

≤ −� d⊤d (C20)

This dissipation inequality is equivalent to (C8) with a single IQC (U, Jnv,nw) where U ∶=
[

Uv 0
0 Uw

]

. Next, We show that

(U, Jnv,nw) is a valid time-domain IQC. To see this, define V (x (t), t) ∶= x (t)⊤X(t)x (t), z̃(t) ∶=
[

ṽ(t)
w̃(t)

]

and integrate
Equation (C17) both sides from 0 to T to obtain:

T

∫
0

z⊤Mz dt = −V (x (T ), T ) + V (x (0), 0) +

T

∫
0

z̃⊤Jnv,nw z̃ dt (C21)

Note that V (x (0), 0) = 0 because x (0) = 0 and V (x (T ), T ) = x (T )⊤X(T )x (T ) = 0 due to the boundary condition
X(T ) = 0n of the time-varying factorization RDE. Thus if ∫ T

0 z⊤Mz dt ≥ 0 then we have ∫ T
0 z̃⊤Jnv,nw z̃ dt ≥ 0. Finally, note

that P̃ (t) satisfies the same boundary condition as P (t) i.e. P̃ (T ) ≥ F because of the boundary condition X(T ) = 0. Thus,
Ṽ (x, t) is a valid storage function ∀t ∈ [0, T ].

Part (ii): Let the extended system ofN with spectral factor U be written in partitioned form as:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋ

ṽ

w̃

eI
eE

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

 w d

ṽ ṽw ṽd

w̃ w̃w 0

I Iw Id

E 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x

w

d

⎤

⎥

⎥

⎥

⎦

(C22)

where x =
[ xN
xv
xw

]

∈ ℝn and state-space matrices:

 ∶=

⎡

⎢

⎢

⎢

⎣

AN 0 0

B1Cv A1 0

0 0 A2

⎤

⎥

⎥

⎥

⎦

,w ∶=

⎡

⎢

⎢

⎢

⎣

Bw
B1Dvw

B2

⎤

⎥

⎥

⎥

⎦

,d ∶=

⎡

⎢

⎢

⎢

⎣

Bd
B1Dvd

0

⎤

⎥

⎥

⎥

⎦

ṽ ∶=
[

D̃1Cv C̃1 0
]

,I ∶=
[

CI 0 0
]

,w̃ ∶=
[

0 0 C̃2
]

E ∶=
[

CE 0 0
]

,ṽw ∶= D̃1Dvw,ṽd ∶= D̃1Dvd

w̃w ∶= D̃2,Iw ∶= DIw,Id = DId
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Using the choice of (Q,S,R) from Equation (14), the following partitioned DLMI is equivalent to the dissipation inequal-
ity (C20) for the state-space realization of (C22).

⎡

⎢

⎢

⎢

⎣

̇̃P +⊤P̃ + P̃ P̃w P̃d

⊤
wP̃ 0nw 0

⊤
d P̃ 0 −
2Ind

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

⊤I
⊤
Iw

⊤
Id

⎤

⎥

⎥

⎥

⎦

[

I Iw Id

]

+

⎡

⎢

⎢

⎢

⎣

⊤ṽ ⊤w̃
⊤
ṽw ⊤

w̃w

ṽd 0

⎤

⎥

⎥

⎥

⎦

Jnv,nw

[

ṽ ṽw ṽd

w̃ w̃w 0

]

≤ −�I (C23)

The conditionMw(t) ≻ 0,∀t ∈ [0, T ] is sufficient to ensure that w̃w ∶= D̃2 is nonsingular. The output equation for w can be
written as: w = −1

w̃w(w̃− w̃x). Use this relation to substitute for w in Equation (C22). This gives the following scaled system:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẋ

ṽ

eI
eE

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

 w d

ṽ ṽw ṽd

I Iw Id

E 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

L

⎡

⎢

⎢

⎢

⎣

x

w̃

d

⎤

⎥

⎥

⎥

⎦

(C24)

where the nonsingular time-varying matrix L is defined as:

L ∶=

⎡

⎢

⎢

⎢

⎣

In 0 0

−−1
w̃ww̃ −1

w̃w 0

0 0 Ind

⎤

⎥

⎥

⎥

⎦

(C25)

Equation (C24) can be rewritten as follows:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẋ

ṽ

eI
eE

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

̃ w̃ d

̃ṽ ṽw̃ ṽd

̃I Iw̃ Id

E 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x

w̃

d

⎤

⎥

⎥

⎥

⎦

(C26)

where the updated state-space matrices are defined as:

̃ ∶=

⎡

⎢

⎢

⎢

⎣

AN 0 −BwD̃−1
2 C̃2

B1Cv A1 −B1DvwD̃−1
2 C̃2

0 0 A2 − B2D̃−1
2 C̃2

⎤

⎥

⎥

⎥

⎦

, w̃ ∶=

⎡

⎢

⎢

⎢

⎣

BwD̃−1
2

B1DvwD̃−1
2

B2D̃−1
2

⎤

⎥

⎥

⎥

⎦

̃ṽ =
[

D̃1Cv C̃1 −D̃1DvwD̃−1
2 C̃2

]

, ̃I ∶=
[

CI 0 −DIwD̃−1
2 C̃2

]

ṽw̃ ∶= D̃1DvwD̃
−1
2 , Iw̃ ∶= DIwD̃

−1
2

Note that the following state-space matrices of the inverse system of Uw shows up in the above representation.

U−1
w ∶=

⎡

⎢

⎢

⎣

A2 − B2D̃−1
2 C̃2 B2D̃

−1
2

−D̃−1
2 C̃2 D̃−1

2

⎤

⎥

⎥

⎦

(C27)

Let scaled signal d̃ ∶= 
 d and state-space matrices (scl, scl, scl, scl) be defined as follows:

scl ∶= ̃, scl ∶=
[

w̃ 
−1d

]

, scl ∶=

[

̃ṽ
̃I

]

, scl ∶=

[

D̃1DvwD̃−1
2 
−1D̃1Dvd

DIwD̃−1
2 
−1DId

]

(C28)

It is readily verified that, with above definition, the scaled plantNscl has a state-space realization as follows:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ẋ
[

ṽ

eI

]

eE

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

scl scl

scl scl

E 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

x
[

w̃

d̃

]

⎤

⎥

⎥

⎥

⎦

(C29)
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Perform the congruence transformation by multiplying the DLMI (C23) on the left/right by L⊤∕L to get:

⎡

⎢

⎢

⎢

⎣

̇̃P + ̃⊤P̃ + P̃ ̃ P̃w̃ P̃d

⊤
w̃P̃ 0nw̃ 0

⊤
d P̃ 0 −
2Ind

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

̃⊤I
⊤
Iw̃

⊤
Id

⎤

⎥

⎥

⎥

⎦

[

̃I Iw̃ Id

]

+

⎡

⎢

⎢

⎢

⎣

̃⊤ṽ 0

⊤
ṽw̃ Inw̃

⊤
ṽd 0

⎤

⎥

⎥

⎥

⎦

J

[

̃ṽ ṽw̃ ṽd

0 Inw̃ 0

]

≤ −�I (C30)

This DLMI can also be written in more compact notation using the state matrices of Nscl. Multiply inequality (C30) left and
right by [x⊤, w̃⊤, d⊤] and its transpose to show that Ṽ (x(t), t) = x(t)⊤P̃ (t)x(t) satisfies the following dissipation inequality:

̇̃V + e⊤I eI − 

2d⊤d + ṽ⊤ṽ − w̃⊤w̃ ≤ −� d⊤d (C31)

Define d̃ ∶= 
 d, �̃ ∶= � 
−2 and combine the inputs w̃, d̃ together to rewrite the inequality (C31) as follows:

̇̃V +

[

ṽ

eI

]⊤ [
ṽ

eI

]

−

[

w̃

d̃

]⊤ [
w̃

d̃

]

≤ −�̃ d̃⊤d̃ (C32)

Integrate over [0, T ] to obtain the following dissipation inequality:

Ṽ (x(T ), T ) − Ṽ (x(0), 0) + ‖

[ ṽ
eI

]

‖

2
2,[0,T ] − ‖

[ w̃
d̃

]

‖

2
2,[0,T ] ≤ −�̃‖d̃‖

2
2,[0,T ] (C33)

Note that Ṽ (x(0), 0) = 0 as x(0) = 0 and Ṽ (x(T ), T ) = x(T )⊤P̃ (T )x(T ) with boundary condition P̃ (T ) ≥ F as shown earlier.
Apply this boundary condition in inequality (C33) with the definition of F from Equation (14) to conclude:

‖eE(T )‖22 + ‖

[ ṽ
eI

]

‖

2
2,[0,T ] ≤ ‖

[ w̃
d̃

]

‖

2
2,[0,T ] − �̃‖d̃‖

2
2,[0,T ] (C34)

Divide both sides by ‖
[ w̃
d̃

]

‖

2
2,[0,T ] < ∞ and define �̂ ∶= �̃‖d̃‖22,[0,T ]∕‖

[ w̃
d̃

]

‖

2
2,[0,T ] to show that ‖Nscl‖[0,T ] ≤ 1 − �̂. This proof

can be worked backwards to prove (2 ⇒ 1).

Remark 1. If the IQC decision variablesM and the state-space matrices of Ψ are constant on the given time horizon, then for
sufficiently large horizon T , the RDE solution for the finite horizon factorization converges to that of the steady state Algebric
Riccati Equation (ARE). As a result, the state-space realization of the finite horizon factorization converges to that of an infinite
horizon LTI spectral factorization. However, the ARE solution X for infinite horizon spectral factorization is sign indefinite,
thus it fails to satisfy the terminal boundary condition on P̃ . Thus, it is important to note in the above proof that in order to
satisfy the boundary condition on storage function, one must use finite horizon factorization.
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