
1.  Introduction
The ocean tides are driven by time-periodic body forces resulting from the variable gravitational attraction 
of the sun and moon at a fixed point on the rotating Earth. The forces are uniform over the ocean depth and 
thus, in a flat-bottomed, frictionless “bathtub” ocean, would drive a depth-invariant, time-periodic flow at 
the 1,000–10,000 km scales of ocean basins (e.g., Egbert & Erofeeva, 2002). However, the ocean bottom is not 
flat, with 100–1,000 km scale bathymetry such as mid-ocean ridges and continental shelves, and ubiquitous 
1–100 km scale mountains in the deep ocean known as “abyssal hills” (Goff, 1991, 2010; Goff & Arbic, 2010; 
Goff & Jordan, 1988). At the scale of these abyssal hills, the astronomical body forcing that drives the tide is 
horizontally and vertically uniform, and therefore so is the flow in the absence of these hills. However, the 
addition of the bathymetry generates motion at the horizontal scales of the hills including internal waves 
(e.g., Bell, 1975), bottom turbulence (e.g., Winters & Armi, 2014), and bottom-trapped tides (Falahat & Ny-
cander, 2015). These flows can exert stresses (e.g., wave drag) that modify the horizontally averaged tidal 
flow. Here we seek to quantify these stresses and their impact on the deep ocean tide.

Shakespeare et al. (2020, hereafter, SAH) developed a theoretical model to address this question. They in-
vestigated the impact of rough topography on the horizontally and vertically averaged mean flow in the 
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spatial-mean flow (the benthic tide) strongly modified by topographic stresses, and the flow at height 
unperturbed by the presence of topography. Our results provide a framework to improve baroclinic 
tide models by (i) providing a simple parameterization for the subinertial stress which is currently not 
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Plain Language Summary  The ocean tide is a periodic motion of the water column at 
the scale of ocean basins. The amplitude of the ocean tide is determined by a balance between the 
gravitational attraction of the moon and the forces exerted when the tide flows over the rough seafloor. 
Much of the roughness in the deep ocean is due to mountains on the seafloor, 10–50 km in width, known 
as “abyssal hills.” In this study, mathematical descriptions are developed for the strength and distribution 
of the forces exerted on the ocean tide due to its interaction with these hills. These forces always act below 
the crest of the hills, leading to a sub-crest or “benthic tide” that differs from the tide above the crest of 
the hills. Our results provide a framework for improving the representation of tides in numerical ocean 
models.
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presence of a spatially uniform, time-periodic body forcing. The interaction of the mean flow with topog-
raphy was shown to induce two types of stresses on the mean flow: a “wave drag” associated with radiating 
internal waves, and a “spring force” associated with both internal waves reflecting off the ocean surface and 
subinertial, bottom-trapped tides. The term “spring force” was adopted to describe this latter stress because 
it is analogous to the force generated by the spring in a classical forced-damped harmonic oscillator; that 
is, the force is out-of-phase with the velocity of the oscillating mass (tidal flow) and absorbs and releases 
energy over the period of the motion, without extracting any net energy from the oscillator. By contrast, 
wave drag forces are in phase with the tidal velocity and always extract energy from the system, in this case, 
through the energy flux of the radiating internal waves. Prior to SAH, previous models of stresses due to 
topographic interactions (e.g., Bell, 1975; Garner, 2005; Green & Nycander, 2013; Jayne & St. Laurent, 2001) 
had only described the wave drag and had omitted the spring force. The SAH model further showed that 
the magnitude and type of stress exerted by internal-tide-generating bathymetry depends on the dissipation 
of the internal tides. SAH considered the two limits of strong and weak dissipation. For strong dissipation, 
the internal waves do not reflect and thus exert only the wave drag force. For vanishingly weak dissipation, 
the waves exert both a drag force and a spring force associated with the reflections. SAH derived simplified 
forms for the vanishing dissipation limit under a number of simplifying assumptions about the topographic 
spectrum but did not consider arbitrary levels of dissipation.

The SAH model is a depth-averaged (barotropic) model. In other words, it is assumed that the depth-mean 
tidal flow interacts with the bathymetry and generates baroclinic motion. This assumption is unlikely to 
be valid since the horizontally averaged tidal flow will vary in the vertical depending on where and what 
topographic stresses are applied. For example, if a wave drag is applied at (or just above) the bathymetry, we 
might expect the near-bottom tidal flow to be smaller than the tidal flow at height. Since it is this near-bot-
tom tidal flow that subsequently interacts with the bathymetry to generate further motion (e.g., internal 
waves) and associated stresses, this effect will result in feedback in the system, and the resulting stresses will 
differ from those that would be generated if the depth-mean flow itself interacted with the bathymetry (e.g., 
Kelly et al., 2010; Kelly & Nash, 2010). Thus, an understanding of the vertical location at which topographic 
stresses (both wave drag and spring forces) are applied is important, but currently lacking.

In recent years, astronomical tidal forcing has been implemented in a global high-resolution ocean general 
circulation models, beginning with simulations of HYCOM (Arbic et al., 2010, 2012), and now including 
simulations of MITgcm (Arbic et al., 2018; Rocha et al., 2016) and MOM6 (Adcroft et al., 2019). Such mod-
els are being used for many different applications including as preparations for the SWOT satellite mission 
(Wang et al., 2018) and to generate boundary conditions for regional models (Nelson et al., 2020). The am-
plitudes of both the barotropic and baroclinic tides in such models are sensitive to the parameterized drag 
schemes employed (e.g., Ansong et al., 2015). As more modeling centers move toward including tides in 
high-resolution general circulation models, the need to understand the impact of small-scale, unresolved 
tide-topography interactions becomes greater.

Current topographic stress parameterizations in baroclinic tide models only include the wave drag force due 
to radiating waves (Egbert et al., 2004; Garner, 2005; Green & Nycander, 2013; Jayne & St. Laurent, 2001; 
Zaron & Egbert, 2006). This stress is typically applied over an arbitrary height-scale from the ocean bottom, 
often taken as the bottom 500 m (e.g., Ansong et al., 2015; Arbic et al., 2010). It is usually argued that the 
wave drag and height-scale thereof “represents the breaking of unresolved high modes…over open ocean 
rough topography” (Ansong et al., 2015). Thus, it is argued that the stress associated with the generation of 
the internal tide is applied where the waves break and dissipate. However, there is no theoretical justifica-
tion for this assumed connection between the breaking of internal tides and the imposition of stress on the 
spatial-mean tidal flow. Instead, the argument appears to borrow from the nonacceleration theorem, which 
pertains to the case of a steady mean flow, where steady lee waves are generated, and it is well known that 
the lee wave stress is exerted where the waves dissipate (Andrews, 1983; Andrews & McIntyre, 1976, 1978; 
Boyd, 1976; Bretherton, 1969; Charney & Drazin, 1961; Eliassen & Palm, 1961; Xie & Vanneste, 2017). How-
ever, it has been shown that this theorem need not apply to lee wave generation in transient flows (e.g., 
Bölöni et al., 2016), and thus its application to an oscillatory (tidal) mean flow is questionable.

The study is laid out as follows. In Section 2, we present a summary of the SAH theory and its extension to 
include the vertical structure of topographic stress. It is shown that, while the topographic stress is indeed 
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applied immediately above the topography, it is not related to the location of dissipation of the internal tide. 
Section 3 describes the configuration of a suite of numerical simulations in MITgcm to test the extended 
theory. The results of the simulations and comparison with the theory are presented in Section 4. In Sec-
tion 5, we assess the utility of these results in developing improved stress parameterizations for baroclinic 
tidal models. We argue that while neglecting the spring forces associated with internal wave reflections (as 
is currently done) is not unreasonable, it is essential that the spring forces associated with bottom-trapped 
tides, in addition to propagating internal wave drag, are incorporated in future topographic stress parame-
terizations. We conclude in Section 6.

2.  Theory
SAH developed a barotropic model for the impact of topographic stresses on the spatial-mean time-periodic 
flow; that is, a model with velocities averaged over the full ocean depth. In this section, we investigate where 
the topographic stresses are applied, and use this knowledge to construct an extended model to capture the 
depth-dependent structure of the spatial-mean time-periodic flow. Here, we examine a quasi-2D system 
(uniform in the y direction), consistent with the numerical model to be used in Section 3, but we note that 
the results are readily generalizable to the fully 3D case using the 3D expressions from SAH.

2.1.  Where are Time-Periodic Topographic Stresses Applied?

The quasi-2D rotating fluid equations linearized about some spatial-mean periodic flow (U(t), V(t), 0) in the 
Cartesian (x, y, z) directions, and background buoyancy B = N2(z + H) (where z = −H is the mean depth of 
the ocean bottom), subject to a purely periodic body force F(t) = F0  sin ωt in the x-direction, are


     


2 ,pDu fv F u

x
� (1a)

  2 ,Dv fu v� (1b)


   


 2 ,pDw b w

z
� (1c)

  2 2 ,Db wN b� (1d)

 
 

 
0,u w

x z
� (1e)

where the linearized material derivative is

 
 
 

,D U
t x

� (1f)

(u, v, w) is the total velocity, b the total buoyancy, p the dynamic pressure, and κ the diffusivity/viscosity. 
The total fields (e.g., u, v, b) are composed of background (e.g., U, V, B) and perturbation (e.g., u′, v′, b′) 
components such that u = U + u′, v = V + v′, etcetera. Here, the body force F represents the “effective body 
force” associated with the barotropic tide in the absence of topography; that is, F = −g∂xη(x, t), where η(x, t) 
is a tidal surface elevation in the absence of topography. Thus, F may differ from the astronomical forcing, 
owing to large-scale basin resonances that tend to amplify the barotropic tide in certain locations.

Suppose some small-amplitude topography h(x) is introduced at the bottom, where ∫∀xh(x) dx = 0 such that 
the mean ocean depth (i.e., H) is unchanged. It follows that w = U∂xh at the bottom, such that there is no 
flow through the topography. An immediate corollary from Equation 1d is that

     2 2( )( )t xU b N h b� (2)
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at the boundary. Introducing a mean-flow-following frame (x0, z, t), where    0 0 ( )tx x U d  such that 

    0 0( ) ( )th x h x U d , this boundary condition on the buoyancy becomes ∂t(b′ − N2h) = κ∇2b′, or via a 

Taylor expansion of h(x) as

      2 2 2
0( ) ( ) ( ) ,t xb N h x U t O b� (3)

for ϵ = U/(ωΔx) ≪ 1 (known as the small-excursion approximation). In this limit, it is clear that there are 
two components to the solution: a nonperiodic O(1) solution, b0, and a periodic O(ϵ) solution that scales 
with U(t), b1, such that b′ = b0 + b1. The boundary condition on the nonperiodic solution is

  2
0 0,tb b� (4)

and on the periodic solution,

    2 2
1 1.t xb N U h b� (5)

Let us first consider the nonperiodic solution b0, which is associated with the diffusive topographic bounda-
ry layer. Since w0 = 0 at the boundary, and this solution is concentrated near the boundary, we will assume 
that w0 ∼ 0 throughout the fluid. It follows from Equation 1d that

  2
0 0tb b� (6)

holds throughout the fluid, and not just at the boundary (i.e., Equation 4). An additional boundary condi-
tion of zero net buoyancy flux normal to the topography must also apply, or

      2
0 0( , ) ( ,1) 0,x z xb b N h� (7)

at z = −H + h(x). For ∂xh ≪ 1 (as is always the case in geophysical settings), it follows that isopycnals are 
nearly flat, or ∂zb0 ≫ ∂xb0, and thus Equations 6 and 7 may be further simplified by neglecting the horizontal 
derivatives:

       t v zz z z H h xb b b N0 0 0
2

0 , | .( )where� (8)

The nonperiodic solution thus acts to cancel the background stratification near the topography. The ini-
tial condition on Equation 8 is that ∂zb0 is zero everywhere, except at the topography; that is, ∂zb0 = −N2 
δ(z − (−H + h(x))) at time t = 0, where δ is the Dirac delta function. Equation 8, subject to this initial con-
dition, has a well-known solution:



         
    

2
0

( ( ))1 erf ,
4

z
v

z H h xb N
t

� (9)

where the error function is defined by     
2

0erf( ) 2 / e d . The corresponding horizontal buoyancy 
gradient (which will be needed below) is



          
    

2
0

( ( ))1 erf .
4

x x
v

z H h xb N h
t

� (10)

The other fields (e.g., u0, v0) follow from Equation 1, but are not needed here. In the small-amplitude limit, 
h ≪ H, Equation 10 simplifies to



        
    

2
0 1 erf .

4
x x

v

z Hb N h
t

� (11)

For the periodic solution, Equation 1 reduces to
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 
  
          

   

2 2
2 2 2 2 2 2

12 2(( ) ) (( ) ) 0,t tN f b
x z

� (12)

where D = ∂t in the flow-following frame. SAH calculated solutions to this equation in the weakly dissi-
pative limit (κ∇2 ≪ ∂t, or Re = ω/(κk2) ≫ 1 for wavenumber k and frequency ω) whereby the boundary 
condition (Equation 5) simplifies to ∂tb1 = N2U ∂xh. The solutions are freely propagating waves for forcing 
frequencies f < ω < N, and bottom-trapped motions for other frequencies. SAH solved the more general 
form of this problem including a surface boundary to obtain expressions for the wave stress—their solutions 
will be described below. The inclusion of the surface boundary and dissipation in this model make it distinct 
from prior work (e.g., Bell, 1975; Llewellyn Smith & Young, 2002). We note that our interest here is not on 
the dynamics of the waves themselves (which is described in a separate work; Shakespeare et al., 2021), but 
purely on the impact of the associated wave stresses on the spatial mean flow.

Let us now consider the equation governing the spatial-mean periodic flow. Subtracting the nonperiodic 
solution (i.e., b0, v0) from Equations 1a, 1b leaves

 
   

 
1 1

1 ,x
u pfv F
t x

� (13a)


 


1

1 0,v fu
t

� (13b)

where we have neglected the viscous terms, consistent with the weak dissipation limit described previously. 
To obtain the equation for the spatial mean flow, we integrate the above Equation 13 in z between the ocean 
bottom at z = −H + h(x) and a time-mean isopycnal at height z = (B − b0)/N2, and then over all 0 < x < L, 
to yield

     
   


0

0

( ) ( ) ,x
U H H hfV F
t h� (14a)


 


0,V fU

t
� (14b)

where the spatial mean flow over this volume is defined as


   

2( )/0
0 1( )

0

1 ,B b NL
H h xU u dzdx

h L� (15)

where height h0 = B/N2 is the average height of the isopycnal above the ocean bottom (where we set B = 0). 
A similar expression applies for the spatial mean flow V. The stress profile τ(z) is given by

   
   

 
0 1 0

0 0 12 2
1 1 1( ) ,L Lb p bz dx p dx
L x L xN N

� (16)

for small perturbations b0 (see SAH), where the second form is obtained via integration-by-parts. The force 
exerted on the fluid at a given level is the vertical divergence of this stress; that is, the change in the stress 
over the height of a layer, Δτ/h0, as per Equation 14a. Note that when z = −H, we have ∂xb0 = −N2∂xh from 
Equation 11 and thus the “usual” expression for the topographic stress is recovered.

The magnitude of the stress (Equation 16) reduces with height according to the decay of perturbations to 
isopycnals associated with the diffusive boundary layer above the topography (Equation 11). The height 
scale of this decay is 4 vt  after time t from a uniformly stratified initial condition. In reality, this scale 
will be set by a balance between mixing and re-stratification, with only the former represented here (and 
in the simulations in the next section). The key point from this analysis is that spatial-mean time-period-
ic stresses arise from spatial correlations of oscillatory pressure variations (p1) with nonperiodic, slowly 
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varying (mean) isopycnal height gradients (∂xb0/N2). Thus, the time-periodic topographic stress is only ap-
plied within the diffusive boundary layer where these height gradients exist. Above the boundary layer, the 
stress will be zero. For a finite-amplitude topography (e.g., Equation 10), this boundary layer will span the 
region from the lowest point to the crest of the topography. This location at which the stress acts does not 
require any dissipation of the waves. As such, the generation of a time-periodic (internal tide) wave stress 
is distinct from the generation of a time-mean lee wave stress (which requires dissipation; i.e., the nonac-
celeration theorem).

2.2.  A 2-Layer Flow

In order to avoid the details of the height distribution of the stress, it is convenient to introduce a two-layer 
model of the system. Since the stress decays with height above the bottom, as long we consider a height h0 
above the bottom that is sufficiently large (i.e., above the diffusive boundary layer), then the mean isopyc-
nals will be flat (∂xb0 = 0) and the stress will be zero, τ(−H + h0) = 0. However, we observe that the wave field 
will in general still be present at this height and drive time-dependent oscillations of the isopycnals—only 
the slowly varying (mean) perturbations are zero. From Equation 14, the equations governing the volumet-
ric-mean flow below this height are simply

 
   

 0

( ) ,x
U HfV F
t h� (17a)


 


0.V fU

t
� (17b)

We will call the volumetric-mean flow in this near-topography layer the “benthic tide.” The flow at greater 
heights will be unaffected by the topography and is described by the same Equation 17 but with the stress 
term set to zero. Note that Equation 17 are precisely the same mean flow equations obtained by SAH, but in 
their case, the average was taken over the full-depth (h0 = H), whereas here we have split the flow into the 
two layers. Since here the stresses are applied over a smaller height (h0 ≪ H), we can expect that the impact 
of the stress upon the flow will be greater.

2.3.  Solutions for the Benthic Tide

Following SAH, it is more convenient to write the spatial-mean tide (Equation 17) in terms of their Fourier 
transform in time (denoted by a hat, with  1i ), whereby

      ,ˆ ˆ ˆ
xi U fV U F� (18a)

   0,ˆ ˆi V fU� (18b)

where the transform of the bottom stress has been written as    0
ˆˆ( )H h U as in SAH, and σ is called the 

“drag coefficient” defined by

   
 


    

2
2 2 2 2

0

1 | | | | ( )( ) coth( )
|

ˆ

2 |
h k N f imH H dk

Lh
� (19)

(see Equation 25 in SAH). In this expression, L is the domain width, ω is the (tidal) frequency, 2| ˆ |h  is the 
power spectrum of the topography,









2 2

2 2sgn( ) | | ,Nm k
f

� (20)

is the vertical wavenumber,
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  
 
 


 

2 2 2

2 2 2 2
(2 ) ,

2( )( )
N fm

N f
� (21)

is the wave decay rate, and

  2 2,h zA k A m� (22)

is the Rayleigh drag for Laplacian viscosity (and diffusivity, assuming a Prandtl number of one) in the hori-
zontal (Ah) and vertical (Az) directions (e.g., Shakespeare & Hogg, 2017). Note that for a periodic domain of 
length L (as will be modeled in the following sections) the horizontal wavenumbers k form a discrete set, 
k = 2nxπ/L for integer nx, and thus the integral in wavenumber in Equation 19 collapses to a discrete sum:








  2

1 1 .
2 nx

dk
L L

� (23)

Also note that the drag coefficient (Equation 19) may be written more generically for variable stratification 
as


 

      

 






1

2 0

2
2 2 2

0

Lh

h k
N H f

im zH

| | | |
sgn( ) ( ( ) )( )

coth ( )

˘

 ( ) ,z dz dk 
� (24)

where N(−H) is the buoyancy frequency at the topography.

The solution for the benthic tidal flow is now straightforward to calculate from Equation 18,
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where σ has been split into its real and imaginary parts. As pointed out in SAH, the energy extracted by the 
topographic-induced motions is  2[ ] | |ˆW UR ; that is, an imaginary drag on its own extracts no energy, 
but can influence the spatial-mean tidal velocities as per Equation 25. For these reasons, SAH termed the 
imaginary component a “spring force” and the real component a “wave drag” by analogy with the arche-
typal forced-damped harmonic oscillator. Note that the tidal flow in the y-direction always leads the flow in 
x by 90° in the 2D system, and thus it is only necessary to consider the flow in x when dealing with the 2D 
problem (these results do not follow in 3D). Relative to the case without topography, the topographic stress 
causes an amplification (or decrease) of the velocities by a factor A, where
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for small |σ|, and a phase shift of
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for small [ ]I . These solutions show that for small drag coefficients the change in amplitude is dominated by 
the imaginary part of the drag, and the change in phase is dominated by the real part. In the absence of a real 
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component to the drag coefficient, there is no change to the phase of the flow in the bottom layer. Further-
more, for  [ ] 0R  (energy extraction from the barotropic tide), the phase of the bottom layer flow will tend 
to lead the unperturbed flow (i.e., if the flow at height is e−iωt, then the benthic flow is e−i(ωt−ϕ), which leads 
for ϕ < 0). However, the amplitude may either increase or decrease depending on the sign of [ ]I . Following 
SAH, it is useful to independently consider the limits of sub-inertial (ω < f) and super-inertial (ω > f) forcing.

In the sub-inertial limit the stress arises from bottom-trapped nonpropagating internal tides. These tides 
occur poleward of the critical latitudes (∼30° for diurnal tides) and thus this sort of stress is important for 
the diurnal tide (in particular) in a sizable region of the global ocean, and especially at high latitudes where 
the diurnal tides are dominant. As shown by SAH, in this limit the viscous dissipation has negligible impact 
on the solution, since bottom-trapped tidal motions naturally decay with height above the bottom. Thus, 
letting the decay rate γ → 0 for ω < f in Equation 24 yields
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where k  is the height-weighted mean wavenumber. From Equations 26 and 27, a larger drag coefficient (e.g., 
increased N(−H) or hrms in Equation 28) will act to reduce deep tidal velocities without changing the phase 
of the deep flow with respect to that at height.

In the super-inertial limit, the topographic stress arises from propagating internal tides and the viscous 
dissipation of these waves significantly modifies the stress. In particular, in the “strongly dissipative” limit 
where internal tides do not reflect back to the ocean bottom (defined by γH → ∞) the drag coefficient is 
purely real since coth(imH + γH) → 1 in Equation 19 and thus:
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As noted by SAH, the form of the drag coefficient for propagating internal tides in the strongly dissipative 
limit (Equation 29) is identical to that for bottom trapped tides (Equation 28), but one is purely real and the 
other purely imaginary (due to the difference in frequencies). However, if reflections occur, then the drag 
coefficient for propagating internal tides also has an imaginary component (a “spring force”) due to the 
pressures these reflecting waves exert on the topography. In both cases, the amplitude and the phase of the 
benthic tide will be modified. SAH only considered the strongly dissipative (γH → ∞) and nondissipative 
(γH → 0) limits and obtained a simplified solution in the nondissipative limit by assuming the topographic 
spectrum was smooth. That assumption is invalid here where we are considering a horizontally periodic 
domain which by nature possesses a discrete (i.e., nonsmooth) spectrum of wavenumbers. Thus, here we 
consider the more general case with an arbitrary level of dissipation (i.e., with σ defined by Equation 24).

3.  Numerical Model
We use the MITgcm (Marshall et al., 1997) in nonhydrostatic mode to simulate a 100 km long, 3 km deep, 
two-dimensional (x-z) domain. The horizontal resolution is set to 97.65 m and the vertical resolution to 
1.5 m. The domain is periodic in the x-direction. Topography is introduced based on the Goff (2010) abyssal 
hill spectrum for a region of the Southern Ocean; that is,
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where ν = 0.95 is the high-wavenumber roll-off, kc = 1.65 × 10−4 m−1 is the cut-off wavenumber and hrms 
(variable) is the rms height of the topography. Phases are randomly assigned to generate a physical space 
topography as shown in Figure 1, and thereafter, we vary the rms height by scaling the topography, while 
keeping the shape the same. We also introduce some runs with high- and low-pass filtered topography. The 
mean ocean depth is kept constant, H = 2564m for all runs. Body forcing is applied as a spatially uniform 
time-periodic acceleration in the x momentum equation such that Fx = F0  sin ωt in the above equations 
(reference value of F0 = 10−6 m s−2). The flow is initialized at time zero with the velocities it would have in 
the absence of topography,




 
    

0
2 20

, 0 .
t

F
f
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The temperature (density) field is initialized to be horizontally uniform such that
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Laplacian vertical and horizontal viscosity (and diffusivity with Prandtl 
number of 1) are used and we set Az = Ah/100. The Coriolis parameter f 
is fixed at 10−4 s−1.

We run a suite of 27 simulations varying (i) topography rms height, (ii) 
stratification N2, (iii) viscosity, (iv) forcing magnitude, and (v) forcing 
frequency. The parameter values for each simulation are listed in Ta-
bles 1 and 2. The two forcing frequencies chosen are the diurnal tidal 
frequency of ω  =  7.2  ×  10−5 s−1 (sub-inertial for the chosen f) and a 
frequency of approximately twice this value, ω = 13.889 × 10−5 s−1 (su-
per-inertial for the chosen f)—this precise value is selected such that 
the flow in the absence of topography (Equation 31) is the same mag-
nitude for both frequencies. Subinertial simulations are run for 850 h 
(35 tidal periods) and super-inertial simulations are run for 3,400 h (270 
tidal periods) since the simulations with propagating waves take longer 
to equilibrate. This length of time is sufficient for the flows to develop a 
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Figure 1.  Schematic of the numerical model setup. Dashed lines indicate the mean depth and the crest of the abyssal 
hill topography. The benthic “layer 0”, which includes the diffusive boundary layer, is where all topographic forces act 
and runs from the deepest part of the domain to the crest of the topography. Above, in “layer 1” the spatial-mean tidal 
flow is unaffected by the presence of topography. The shading represents density (darker = denser) computed from the 
slowly evolving (mean) solution given by Equation 9 after t = 100 days, for κv = 10−4 m2 s−1, as used in the reference 
simulation.

Name hrms (m) N2 (10−6 s−2) h0 (m) F0 (10−6 m s−2)

1 Reference 100 3 222 1

2 2h 200 3 443 1

3 h/5 20 3 44 1

4 3N 100 27 222 1

5 N/3 100 0.333 222 1

6 Exponential N 100  5003(1 8 )
z

e 222 1

7 2F 100 3 222 2

8 3F 100 3 222 3

9 4F 100 3 222 4

10 5F 100 3 222 5

Table 1 
Sub-Inertial Runs: ω = 0.72 × 10−4 s−1, f = 10−4 s−1 and Ah = 10−2 m2s−1
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statistically steady wave field. We note that this lengthy equilibration 
time does not mean that it takes this length of time for the forces to 
act (with the exception of the stresses due to wave reflections, the 
forces act immediately), but rather that it takes a long time for the 
system to equilibrate to the imposition of the forcing, and then the 
subsequent feedbacks on the generation of the internal tide—wait-
ing until this equilibrium is reached allows a cleaner comparison 
with the theory.

3.1.  Comparison Methodology

In order to compare the numerical model results with the theo-
ry presented in the previous section, it is necessary to compute the 
spatial-mean flow averaged over the deep part of the model domain, 
up to the crest of the topography. This region includes the diffusive 
boundary layer and associated mean isopycnal perturbations, where 
the time-periodic spatial-mean stresses act (i.e., Equation 16). For ex-
ample, the slowly varying (mean) solution for the buoyancy (Equa-
tion 10) is shown in Figure 1 for the numerical model parameters (i.e., 
κv  =  10−4  m2 s−1 and hrms  =  100  m) at t  =  100  days after initializa-
tion: the corresponding height-scale of the diffusive boundary layer 
is  4 59vt m. It is apparent that essentially all mean isopycnal gra-
dients are located within the sub-crest layer for the finite amplitude 
topography shown in the figure: this result will always hold when the 
valley-to-crest height of the topography ( 2 2 rmsh ) exceeds the diffu-
sive boundary layer height (i.e., 2 2 4rms vh t ) but may not hold 
for very shallow topographies.

The spatial-mean flow for each simulation is computed as the average 
horizontal flow over the wet part of the domain at each depth, ( , )xu z t . 

We also wish to compute the volumetric average mean flow up to level z, 
which involves weighting the mean flow ( , )xu z t  at each depth by the amount of area at that depth (denoted 
by domain length l(z) in 2D), integrating, and normalizing by the total volume:
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In order to facilitate comparison with the theory for the benthic tide, we evaluate this volumetric mean flow 
at the crest of the topography; i.e.,     0( ) ( , )sim volU t u z H h t . The amplitude and phase of this flow are 
then diagnosed. The amplitude is determined via |Usim| = 〈Usim(t)〉, where the averaging operator is defined 
by

    


22
1

2 1

2 ,t
t dt

t t
� (34)

with t1 and t2 chosen to correspond to the final 30 tidal periods of each simulation. The phase is calculated 
from the zero-crossings of Usim(t) over the same time period. The phase of the benthic tide is reported as the 
phase difference from the flow at height (which is unaffected by topographic interactions), with a negative 
(positive) value denoting that the benthic flow leads (lags) the flow at height—consistent with the sign 
convention in the theory.

It was noted in Section 2, that the theoretical prediction for the benthic tide in the super-inertial regime is 
sensitive to the magnitude of the dissipation acting on the waves (i.e., the drag coefficient σ in Equation 24 
depends on the Laplacian viscosities), and this is especially true when waves are near-resonant. Figure 2 shows 
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Name
hrms 
(m) N2 (10−6 s−2)

h0 
(m)

Ah  
(m2 s−1)

F0 

 (10−6 m s−2)

1 Reference 100 3 222 0.01 1

2 2h 200 3 443 0.01 1

3 h/2 50 3 111 0.01 1

4 3N 100 27 222 0.01 1

5 N/3 100 0.333 222 0.01 1

6 3N, Ah/10 100 27 222 0.001 1

7 3N, 10Ah 100 27 222 0.1 1

8 Exponential N 100  5003(1 8 )
z

e 222 0.01 1

9 2h, 3N 200 27 222 0.01 1

10 Resonant 100 3.432 222 0.01 1

11 2F 100 3 222 0.01 2

12 3F 100 3 222 0.01 3

13 4F 100 3 222 0.01 4

14 5F 100 3 222 0.01 5

15a 2h smooth 192 3 388 0.01 1

16b 2h rough 57 3 180 0.01 1

17c 2h sponge 200 3 443 0.01 1
aTopography filtered to wavelengths exceeding 10 km.
bTopography filtered to wavelengths less than 10 km.
c10  km high domain with viscous sponge in the upper 7  km to damp 
reflections.

Table 2 
Super-Inertial Runs: ω = 1.3889 × 10−4 s−1 and f = 10−4 s−1
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the theoretical amplitude and phase of the benthic tide (i.e., Equation 25) 
as the (uniform) stratification is varied, for three different viscosities, with 
other parameters fixed to the reference values introduced above. Very large 
variations in both amplitude and phase occur near resonances (i.e., values 
of N for which integer multiplies of half-vertical-wavelengths fit into the 
ocean depth, for one of the permitted discrete horizontal wavenumbers 
k = 2nxπ/L). The amplitudes of these resonances are reduced by increased 
viscosity, which acts to dissipate waves and damp surface reflections. Strong 
amplification of the bottom flow is predicted when the vertical wavenum-
ber is slightly less than the resonant wavenumber, and strong suppression 
when the vertical wavenumber is slightly larger. In both cases, the bottom 
flow is expected to significantly lead to the unperturbed flow at height.

In such near-resonant cases, the amplitude of the wave field will be large, 
and thus nonlinear wave breaking is likely to drive enhanced wave dissipa-
tion in the simulations. To account for such enhanced dissipation we intro-
duce the concept of an “effective viscosity” for the waves. The minimum 
viscosity “seen” by the waves will be the explicit model viscosity; thus, we 
set the effective viscosity to be a factor M times the explicit viscosity, where 
1 ≤ M < ∞. We call M the viscous magnification factor. In limit M → ∞, there 
can be no reflections and the “strongly dissipative” limit studied by SAH 
is recovered. Here, we solve the theoretical problem for a range of M, to 
encompass the maximum possible spread in the theoretical solution for the 
benthic tide (i.e., the variation shown in Figure 2). This approach will allow 
calculation of a best fit solution which minimizes the difference between 
the theoretical prediction and the simulations; that is, minimizes the error 
function   2( ) ( ( ) )theory simE M U M U . We will show below that the best-fit 
M scales with the amount of wave dissipation in the numerical model.

4.  Results
Snapshots of the model u velocity are shown in Figure 3 for the reference sub- and super-inertial runs. A 
deceleration of the flow near the topography is clearly visible in the sub-inertial case (Figure 3a), but any 
changes that exist in the super-inertial case (Figure 3b) are obscured by the presence of large amplitude 
internal tides. Internal tides corresponding to the second harmonic are also visible in the subinertial case, 
but only with low amplitude (note that these waves are neglected in our theory, which is formulated in 
the small-excursion limit). The equilibration of the spatial-mean flows is shown in Figures 3c and 3d. The 
subinertial mean flow equilibrates within a few tidal periods, whereas the super-inertial flow takes ∼200 
periods since it relies on the reflection and dissipation of the propagating internal wave field.

We now compare the simulations to the theoretical predictions, starting with the subinertial cases.

4.1.  Sub-inertial Flow

Figure 4a shows the mean flow magnitude ( xu  in solid black, and volumetric mean  volu  in dashed black) 
from the reference numerical model run. The theoretical solution (red dashed line) accurately predicts the 
volumetric mean flow below the crest of the topography. Furthermore, as anticipated, the mean flow above 
the crest is unaffected by the presence of the topography (it exactly matches the red dotted “no topography” 
line). The subcrest flow slows down by 24% relative to the flow at height, which leads to an overall 2% slow-
down in the depth-integrated (barotropic) flow. The same structure of the vertical profiles is observed for 
all sub-inertial simulations. Figure 4b compares the theoretical below-crest mean velocity modulus with 
the simulation value for six different sub-inertial runs. The agreement is excellent, even in cases where the 
drag is large (e.g., 2h and 3N runs) and velocity is reduced by up to 40% (beyond the limits of validity for the 
linear theory, which assumes the change in velocity due to the drag is small). We observe that the simula-
tion with an exponential N2 profile (cyan triangle on Figure 4b) has an identical sub-crest tidal flow to the 
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Figure 2.  Amplitude and phase of bottom layer flow U predicted by 
Equation 25 for the abyssal hill topography as a function of buoyancy 
frequency N, for three different viscosities (Ah = 0.1, 1 and 10 m2s−1, 
and Az = Ah/100). Super-inertial reference parameter values are used: 
hrms = 100 m, f = 10−4 s−1, and ω = 1.3889 × 10−4 s−1.
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reference case; that is, as predicted by Equation 28, the topographic stress in the sub-inertial limit depends 
only on the bottom stratification, and not the stratification at height. The sub-crest V velocity remains 90° 
out of phase with U (to within 0.01 radians) and with an amplitude of V = Uf/ω, as predicted by theory (Fig-
ures 5a and 5b). The bottom flow also exhibits a small (≤2°) lag compared to the flow at height (Figure 5b), 
in comparison to the theoretical prediction of zero phase difference.

The flow prediction of the Jayne and St. Laurent (2001) parameterization (currently used in many global 
circulation models; GCMs) is also displayed in Figure 4b for each simulation in the sub-inertial regime (gray 
symbols). We observe that this parameterization significantly (by up to 50%) underestimates the damping of 
the flow by the topographic spring forces (which it parameterizes as dissipate drag forces). Clearly, there is a 
need to improve the current parameterization in GCMs, as we reflect on further in Section 5.

Figure 6 shows the mean bottom flow magnitude for simulations with increasing body forcing up to 5 times 
the reference value (yielding tidal flow speeds at a height of 7.5 cm/s). The theory predicts a 24% slow-down 
in the bottom flow (compared with the free stream flow at height) in all cases. However, as the forcing in-
creases, the theory begins to overestimate the stress: the observed slow-down at the highest forcing (5F) is 
only 17% (Figure 6b).

4.2.  Super-inertial Flow

Figure 7 compares the bottom layer velocity in the numerical simulations with super-inertial forcing to that 
calculated from theory. The vertical profile of mean flow for the reference (100 m rms height) run is shown 
in Figure 7a; this is a case where the below-crest mean flow is amplified by the presence of topography. The 
flow speed is more than doubled at depth in between the hills, with the volume-averaged below-crest flow 
increasing by 2 mm s−1 (∼13%). Figures 7b and 7c display the corresponding volume averaged sub-crest 
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Figure 3.  Snapshots of u velocity for the reference (a) subinertial (32 days after initialization), (b) super-inertial 
simulations (130 days after initialization). Spatial mean flow speed with time and depth for the reference (c) subinertial 
and (d) super-inertial simulations. The subinertial response establishes almost instantly, whereas the super-inertial 
response takes many tidal periods to equilibrate. The vertical white dashed line denotes the start of the final 30 tidal 
periods time-averaging used to compute results in subsequent sections.
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U flow compared with theory for ten super-inertial simulations with different parameter values. The sub-
crest V velocity in the super-inertial simulations remains 90° out of phase with U and with an amplitude 
of V = Uf/ω, as predicted by theory (Figures 5c and 5d; the one exception is the simulation with enhanced 
viscosity (3N, 10Ah; green triangle), where V is ∼20% larger than expected). Amplitudes are observed to 
increase by up to 30% (resonant) and decrease by up to 30% (2h, 3N), with phases leading by up to 10% 
of a period (0.6 radians) in the most extreme case (2h, 3N). The horizontal errorbars in the figure show 
the range of possible values for the theoretical sub-crest flow as the dissipation amplification factor M is 
varied from 1 ≤ M < ∞. The M = 1 value is shown by the colored marker and M → ∞ value (where the 
stress is defined by Equation 29) by the gray circle. The range of theoretical values is consistent with the 
numerical results except for the four runs with elevated stratification (3N), where the flow amplitude is 
underestimated by ∼20%. The best-fit flow magnitudes and phases—based on minimizing the error func-
tion   . 2( ) (| ( ) | | |)theory simE M U M U  as explained in Section 3—are shown by black “+”s (the best-fit M 
value is given in the plot legend). Since the error function does not involve the phase, the match between 
the phase of the best-fit solution and the simulation (Figure 7c) provides an independent test of whether 
the viscous amplification model is physically meaningful. The agreement in the phase is generally improved 
in the best-fit solutions compared with M = 1, but remains poor for the resonant and (2h, 3N) simulations. 
Taking the strongly dissipative limit (gray circles) also provides a comparably good measure of the benthic 
flow phase and amplitude for cases where the benthic flow is reduced—however, it fails for the resonant 
cases where the benthic flow is amplified. Nonetheless, the advantage of this approach is that there is no 
tuning parameter (i.e., factor M) and it depends only on the bottom stratification, making it more practical 
to use in developing a parameterization (as we discuss in more detail in Section 5).

In the cases discussed above, many different physical parameters are varying, and thus is hard to predict 
how viscous amplification M should vary between the solutions. To provide a clearer test of the best-fit 
methodology, we now consider a set of simulations where the body forcing F is increased, but with the 
other parameters held at the reference values (see Table 2). The time mean dissipation for each simulation 
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Figure 4.  Results for sub-inertial forcing. (a) The horizontal mean flow magnitude from the reference simulation 
( xu  in solid black; volumetric mean  volu  in dashed black) and the theoretical predictions (red). The horizontal 
dotted lines show the mean-depth (lower; blue) and the crest of the topography (upper; gray). The theory precisely 
predicts the volumetric mean flow up to the crest of topography. (b) Comparison of theoretical prediction with 
numerical simulation for each sub-inertial run. The 1:1 line is shown (dotted), as is the flow magnitude in the absence 
of topography (dashed). Grayed symbols show the flow prediction of the JSL parameterization currently used in many 
baroclinic tide models: JSL significantly underestimates the decrease in benthic flow speeds induced by the topography.
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is shown in Figure 8. The structure of the dissipation varies considerably with increasing forcing. For the 
reference value (Figure 8a), enhanced dissipation is observed along wave ray paths (associated with lin-
ear dissipation by the explicit model viscosity), with some enhanced dissipation near the topography. As 
forcing increases, this near-topography layer of enhanced dissipation deepens, and turbulent dissipation 
is observed throughout the water column. Despite these changes to the dissipation profile (Figure 8f) with 
increasing forcing, the impact of the wave-induced topographic stress on the mean flow is felt over the same 
sub-crest layer (Figure 8g); that is, the location of the wave dissipation does not affect the location where 
topographic stresses act on the mean flow. This result is consistent with our theory. However, wave dissipa-
tion does affect the magnitude of the subcrest tidal flow.

Figure 9a shows the sub-crest tidal flow magnitude for each of the simulations with varying super-inertial 
body forcing. Even at the highest forcing (5F), the bottom flow is still amplified compared to the flow aloft. 
However, the relative amplification of the bottom flow is gradually reduced as forcing increases, from 13% 
amplification in the reference case to only 3% in the 5F case. The best-fit values for the viscous amplification 
M (black “+”s on Figure 9a) scale linearly with the depth-integrated dissipation above the crest of the topog-
raphy, as shown in Figure 9b. Thus, the reduced deep tidal flow amplification with increasing forcing can be 
attributed to enhanced dissipation of the wave field. Both the simulations and theory show little variation 
in the phase of the sub-crest flow with changing forcing (ϕ = 0.1 ± 0.1 rads for all cases, or about 0%–4% of 
a tidal period; not shown).

It is instructive to consider the role of different topographic scales in controlling the sub-crest flow in the su-
per-inertial regime. As pointed out by SAH, the real part of the drag coefficient for propagating waves scales 
with the wavenumber (i.e., smaller scales have a bigger effect), whereas the imaginary (resonant/reflective) 
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Figure 5.  Comparison of benthic U and V velocities in the simulations with (a and b) sub- and (c and d) super-inertial 
forcing: (a and c) amplitude, and (b and d) phase relative to flow at height.
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part is largely independent of wavenumber (only the height of the to-
pography matters). Since larger scales have greater rms heights, it fol-
lows that the resonant effect should be larger at larger scales. In order to 
separate these two effects, we decompose our 200m rms height topogra-
phy into its small-scale rough part (wavelengths less than 10 km) and its 
large-scale smooth part (wavelengths exceeding 10 km)—and re-run the 
numerical model with these individual topographies. We also run a sim-
ulation with an extended 10 km-high domain, and a viscous sponge over 
the top 7 km to prevent reflections of internal tides from the ocean sur-
face. Snapshots of the deep stratification in each simulation are shown 
in Figure  10. Overturning is present near the topography in all cases 
but is more pronounced in the combined and sponge cases (Figures 10a 
and 10c). Intriguingly, the only case that exhibits overturning at a signif-
icant height above the topography is the smooth simulation (e.g., near 
x = 10 km and z = −1,400m in Figure 10b).

The vertical profiles of the tidal flow amplitude for each of the four cases 
are shown in Figure 11a. We note that while the mean depth (gray dotted 
line) is the same in all cases, the crest heights are different (colored dot-
ted lines). The smooth case has an amplified sub-crest flow, and strong 
sensitivity to the magnitude of dissipation (long horizontal error bar in 
Figure 11b), indicating the dominance of spring forces associated with 
large-scale wave reflections and resonance. By contrast, the rough case 
has a decreased subcrest flow and little sensitivity to dissipation (short 
horizontal error bar in Figure  11b). The “sponge” simulation is very 
similar to the rough case, with a decreased sub-crest flow. In both rough 
and sponge cases, the reflection of the large scales is absent: in one case 
because the topographic scales themselves are absent, and in the other, 
because the reflections from those scales are prevented. Without these 
large-scale reflections, the wave drag forces dominate over spring forces, 
and the benthic flow is damped. The real and imaginary parts of the drag 
coefficient from the best-fit theoretical solutions (cumulatively summed 

from small to large wavenumber) are shown in Figures 11c and 11d for each case. In the combined case (in 
green), all the imaginary drag is from large (>10 km) scales. Thus, the smooth case is dominated by imagi-
nary drag from these scales, and the rough case is dominated by real drag from the smaller scales. We note, 
however, that the rough case exhibits some imaginary drag at scales of 5–10 km which is not observed in the 
combined case. This effect is because the wave amplitude in the rough case is weaker than in the combined 
case, resulting in a smaller effective viscosity (the best-fit M is ∼ 103 times smaller; see legend) and allowing 
smaller scale waves that dissipate in the combined case, to start reflecting back to the seafloor and inducing 
spring forces in the rough case. Nonetheless, these results support neglecting the reflecting wave spring 
force when parameterizing tidal forcing in global circulation models, since its larger scale means that it will 
be the first component to be resolved by the model (as we discuss in more detail in the subsequent section).

5.  Discussion
At scales of 1–100 km the ocean floor is covered by rough bathymetry known as “abyssal hills.” These fea-
tures are often unresolved in large-scale ocean and tide models. Thus, an important question is how the 
presence of these features affects the larger-scale flow in the deep ocean, and in particular, the large-scale 
tide. Here, we have extended the work of SAH to develop a model that answers this question. Crucial to 
this endeavor is a new theory that describes the vertical structure of wave stresses, and in particular, shows 
that the tidal-frequency wave stress associated with the internal tide (that feeds back on the spatial-mean 
tidal flow) acts in the exponentially decaying diffusive boundary layer near the topography. Indeed, in all 
scenarios studied here involving finite height topography, the stress may be considered to act below the 
crest of the abyssal hills, independent of where wave dissipation is occurring (which varies significantly 
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Figure 6.  (a) Comparison of theory and simulation bottom flow speed 
for varying strength of the sub-inertial body forcing from one to five times 
the reference value. The 1:1 line is shown (dotted). (b) The fractional 
slow-down in the volumetric mean bottom flow compared with the flow at 
height (without topography). The theoretical slow-down is the same in all 
cases (dotted line, 24%).
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depending on the amplitude and nonlinearity of the wave field; e.g., Figure 8). This result illustrates the very 
significant difference of time-periodic internal tide wave stresses from time-mean internal lee wave stresses, 
which act where the lee waves dissipate. The reason for this distinction is that time-mean stresses that occur 
upon wave dissipation are associated with the deposition (upon dissipation) of the pseudo-momentum flux 
carried by the wave beam (e.g., Andrews & McIntyre, 1976), but for internal tides, this spatial-mean flux is 
zero owing to the equal and opposite nature of the generation of internal tide beams (Shakespeare, 2020; 
Shakespeare & Hogg, 2019). The action of the stress directly above the topography drives a spatial-mean 
tidal flow composed of two layers: an above-crest layer flow that does not “see” the topography, and a sub-
crest layer flow that is modified by the topographic stresses. It is the flow in this sub-crest layer—which we 
have termed the “benthic tide”—that encounters the topography and therefore is responsible for generating 
internal tides. The topographic forces acting on the sub-crest layer modify subsequent internal tide gener-
ation. The depth-mean (or barotropic) flow is the height-weighted average of the two layers, ubt = (h0/H) 
usub + ((H − h0)/H) uabove, and is thus much less influenced by the topographic stresses than the bottom 
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Figure 7.  Results for super-inertial forcing. (a) The horizontal mean flow magnitude from the reference simulation 
( xu  in solid black; volumetric mean  volu  in dashed black) and the theoretical predictions (red and blue). The 
horizontal dotted lines show the mean-depth (blue) and the crest of the topography (gray). Comparison of theoretical 
prediction of U (b) amplitude and (c) phase shift with the numerical simulation for each super-inertial run. The 1:1 
line is shown (dotted), as is the amplitude in the absence of topography (dashed). The horizontal error bars show the 
maximum and minimum possible values for varying viscous amplification factor 1 ≤ M < ∞. The colored markers show 
the value for M = 1 (explicit model viscosity only). The gray circles show the value for M → ∞. The black crosses show 
the best fit for M, with the best-fit value shown in the legend.
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layer. For example, a 40% reduction in the subcrest flow equates to a 2% reduction in the barotropic flow for 
typical height scales (e.g., 200 m benthic layer in a 4 km deep ocean).

Our theoretical model predictions were validated against a suite of numerical simulations with varying tidal 
forcing, stratification, viscosity, and topography. We first looked at the change in the benthic tide associated 
with a sub-inertial tidal forcing. In these cases, the tidal flow at height drives nonpropagating, exponentially 
decaying motions directly above the topography. Unlike propagating internal tides, these bottom-trapped 
tides extract no energy from the spatial-mean tide. However, they do exert pressures that act to significantly 
damp the magnitude of the sub-crest spatial mean flow (by up to 40% in the cases considered here; Figure 4) 
without changing the phase. The theoretical model provides near-perfect predictions of the subcrest flow at 
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Figure 8.  (a–e) Time-mean viscous dissipation (log10; W kg−1) for super-inertial simulations with increasing body forcing F. The increasing non-linearity of 
the wave field as forcing increases is evident from the structure of the dissipation. (f) The horizontal average of (a–e). (g) The horizontal mean flow magnitude 
in each simulation (i.e.,  xu ), normalized by the forcing. The vertical dashed line shows the magnitude of the flow in the absence of topography, u0. Horizontal 
dashed lines in (f and g) show the crest of the topography.

Figure 9.  (a) Comparison of theory and simulation bottom flow speed for varying strength of the super-inertial 
body forcing from 1 to 5 times the reference value. The 1:1 line is shown (dotted), along with the unperturbed flow in 
each case (dashed). Colored markers show the theoretical solution with M = 1, errorbars show the range of possible 
solutions for 1 ≤ M < ∞, and black crosses the best-fit solution. The value of M for the best-fit solution is shown in (b); 
it increases linearly with the depth-integrated dissipation above the crest of topography (correlation coefficient is 0.99; 
line of best fit shown).



Journal of Advances in Modeling Earth Systems

realistic forcing (tidal flows of ∼1.5 cm s−1) but begins to break down at large forcing (tidal flows of >2 cm 
s−1; Figure 6). The stress depends only on the properties of the topography and deep ocean stratification—it 
is independent of the ocean properties at height.

Second, we investigated the change in the benthic tide associated with a super-inertial tidal forcing that 
generates propagating internal tides. The topographic stress in this limit is associated with two distinct com-
ponents: (i) an in-phase wave drag associated with the energy flux in the radiating internal tide, and (ii) an 
out-of-phase pressure associated with reflecting internal tides (the “spring force”). This second component 
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Figure 10.  Snapshot of the stratification in the super-inertial numerical solutions for the (a) 2h, (b) 2h smooth 
(topographic scales exceeding 10 km only), (c) 2h with a 7 km deep viscous sponge at the top of the domain, and (d) 2h 
rough (topographic scales less than 10 km only).

Figure 11.  Results for combined (green), small-scale rough (blue), and large-scale smooth (red) topographies with super-inertial forcing. (a) The horizontal 
mean flow magnitude ( xu  in solid; volumetric mean  volu  in dashed). The mean depth is shown by a gray line, and the crest of each topography by color 
dotted lines. (b) Comparison of theoretical prediction with numerical simulation. The 1:1 line is shown (dotted), as is the flow magnitude in the absence of 
topography (dashed). The horizontal errorbar shows the variation in theoretical solution as the viscosity is amplified by factor 1 ≤ M ≤ ∞. The colored markers 
show the value for M = 1 (explicit model viscosity only). The gray circles show the value for M → ∞. Black crosses show the best-fit solution with respect to M, 
with the best-fit value shown in the legend. (c) The real part of the drag coefficient for the best-fit solution. (d) The imaginary part of the drag coefficient for the 
best-fit solution.
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is similar to the pressures exerted by bottom-trapped tides, but since it is associated with propagating and 
reflecting waves, unlike those pressures, its phasing is not fixed with respect to the spatial-mean tide but 
depends on the propagation path of the wave. Thus, these wave pressures can act to either decrease or 
amplify the sub-crest flow, depending on their phasing with respect to the tide at the reflection. In either 
case, since the force is out-of-phase with the tide, there is no time-mean energy exchange. Since these forces 
depend on the phasing of the internal tide, they are exceptionally sensitive to the details of the stratification 
(and presumably large-scale flows; e.g., eddies, jets) along the path of the waves, in addition to the strength 
of dissipation of the waves (since stronger dissipation implies less reflection), making them challenging to 
predict even in the idealized 2D simulations employed here (e.g., the theory is unable to precisely represent 
some of the super-inertial simulation results; e.g., Figure 7b). In some cases studied here (e.g., Figure 7) the 
sub-crest tidal flow is amplified by 30% compared with the flow at height. We also verified SAH's prediction 
that the wave pressures (spring force) are dominated by larger scale topography, whereas the wave drag forc-
es are dominated by smaller-scale topography (Figure 11). It remains to be investigated how the reflecting 
internal tide spring force is modified in more complex three-dimensional eddying flows.

We now consider how our results may be applied in developing topographic stress parameterizations for 
baroclinic tide models. One key result is that the topographic stresses act in the diffusive boundary layer 
directly above the topography, where time-mean isopycnals are tilted to satisfy the zero buoyancy flux bot-
tom boundary condition. This result confirms that topographic stress parameterizations should be applied 
in the bottom (or bottom few) layers of numerical models—which are typical of O(100)m depth—as is al-
ready done in most cases (e.g., Ansong et al., 2015; Arbic, Richman, et al., 2012, 2010). A second key result 
is that the spring forces associated with bottom-trapped tides generated at abyssal hills have a significant 
and predictable impact on the deep-ocean tidal flow, but are not included in any currently used topographic 
stress parameterization. Indeed, current parameterizations such as Jayne and St. Laurent (2001, JSL) im-
pose a propagating wave drag in such locations (poleward of critical latitudes) which is inconsistent with 
the dynamics and leads to significant errors. For example, Figure 4 shows the benthic flow predicted by JSL 
compared with our simulation results: JSL overestimates the flow speed (or equivalently, underestimates 
the impact of the topographic forces) by up to 50% in these cases. The simplicity of the correct stress for-
mulation (Equation 28) for bottom-trapped tides suggests that it would be straightforward to implement 
in baroclinic tide models. A third key result is that larger-scale (>10 km horizontal wavelength) reflecting 
internal tides create a topographic spring force that can very significantly increase or decrease the deep 
ocean spatial-mean tide, dependent on the resonant and dissipative properties of the system (i.e., the ampli-
tude and phase of the reflection). This result is problematic from a parameterization perspective since it is 
near-impossible to predict the phase of the reflected wave through a realistic 3D ocean with varying stratifi-
cation and mean flows. There is also the potential for the parameters characterizing the topography (i.e., the 
abyssal hill spectrum) to vary laterally, meaning that reflected waves encounter topography that is spectrally 
distinct from that which generated the waves, possibly damping the resonant effects described by the theory. 
The only realistic solution to these issues appears to be running a baroclinic tide model that resolves these 
scales. However, smaller-scale internal tides (<10 km horizontal wavelength) are dominated by frictional 
stresses which are largely insensitive to the details of reflections and can be readily parameterized. In the 
limit that reflections can be ignored, the internal tide drag coefficient reduces to
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identical in form to the bottom-trapped tide stress (i.e., Equation  28; except it is real, since ω  >  f). We 
showed that using this purely real drag coefficient provides a reasonable estimate of the benthic flow even 
for simulations including larger scales (e.g., gray circles in Figure 7) as long as the simulations are not near 
a resonance, where the (neglected) spring forces are large. As shown by SAH, the extant JSL parameter-
ization implements a nonfrequency dependent approximation (in the limit f ≪ ω ≪ N) of Equation 35: 
  1 2

0 ( )JSL rmsh N H kh . Based on our results, we recommend extending this parameterization to include the 
frequency dependence explicitly, and thus also incorporate both propagating internal tides (equatorward of 
critical latitudes) and nonpropagating bottom-trapped tides (poleward of critical latitudes).
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6.  Conclusions
We have presented the new theory that predicts the amplitude and vertical structure of the topographic 
stresses applied to an oscillating fluid encountering rough topography and validated this theory with ide-
alized 2D numerical simulations with time-periodic body forcing. The presence of a rough seafloor can, 
unsurprisingly, lead to a reduction in the magnitude of the large-scale tide near the ocean bottom (the ben-
thic tide), but here we have shown that the opposite can also be true: the presence of a rough seafloor can 
lead to an enhancement of the benthic tide, due to resonant reflections of internal tides. It remains to be 
determined whether the 3D form of the theory presented here will agree with fully 3D simulations of more 
realistic flows—a topic which is left to future work.

Data Availability Statement
Data are available via Zenodo at https://doi.org/10.5281/zenodo.4093543, and model configuration files are 
available at https://doi.org/10.5281/zenodo.4721932.
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