
Chess Robot
ME 450 Section 2 Team 5 - Winter 2021

University of Michigan

Sam Goldman, Andrew Kwolek, Kenji Otani, Ian Ross, Jack Zender

Executive Summary
Chess is perhaps the most standardized board game on the market consisting of only 2 players,
an 8x8 square board, and 32 total pieces. There is no hidden information, and the game is
reduced to pure skill and strategy with minimal luck factoring in. Although standardized, Chess
is extremely complex. With over 10120 potential games of chess, nearly each game is novel.
Chess is still thriving and is more popular than ever, despite being over 1,500 years old. Perhaps
the most beneficial aspect of Chess is its application in child development. Chess is a game that
develops children’s (and adults’) problem-solving skills, concentration, decision making,
creativity, and memory. A plethora of studies have been conducted to prove these benefits. In
recent years, technology and mobile applications have transitioned the game of chess from a
board to our phones and computers. This increase of accessibility has further popularized the
game. The virtual chess applications allow kids to play the computer (or even other humans)
when they don’t have a physical opponent around them to play. This shift to online chess has
become even more relevant amidst the COVID pandemic as playing over-the-board (in person
chess) has turned impossible. This shift, although benefiting children in certain ways, has
increased screen times and decreased the relative benefits of over-the-board chess. This project
aims to connect the benefits of online chess with a reduction of screen time to help with chess
education.

The Chess Robot is designed to be an autonomous robotic arm that is able to compete in a chess
match against a human. The robot moves their own pieces and captures the opponent’s pieces in
efforts to win a standard game of chess. Robotic arms that play chess have been created before,
but are either industrial grade and expensive or very cheap/homemade and slow. This project
aimed to create a functional chess robot that maximizes speed at a relatively low cost. It was also
designed with potential for mass manufacturing in mind. With additional design and
development, the skill of the robot should be easily changed, since the software is easily
customized; thus, as the player improves, so will the robot. There will also be an opportunity to
play chess against other humans through two intermediary robots or for one player to play while
making use of an online chess platform. This feature, if fully developed, will enable chess
instructors to play with children and not be limited by geographical proximity, further expanding
the reach of chess education.

With a clear project objective and developed list of requirements and engineering specifications
determined, a series of solution concepts were ideated, developed, and evaluated such that an
initial prototype design began to emerge. First, the project was broken into key mechanical and
software subsystems, and functional decompositions were developed. With these in mind,
several potential subsystems were brainstormed with an emphasis on design heuristics and
consideration of our functional requirements. These ideas were initially generated independently
of their function in the larger project, but then developed based on the feasibility of integrating
all the subsystems. This development resulted in a few emergent design categories for each

2

subsystem, with a focus on the mechanical movement of the robot between board squares, the
gripping of different chess pieces, securing the robot to a given surface or table, and the best
software and controller system to use. These more thought out solutions were then evaluated
against one another using pugh matrices and final subsystem design decisions were reached.

Following a complete and thorough concept generation process, a parallel development of a
mechanical systems model in CAD and a software base for our robot was initiated. The CAD
model was developed in SolidWorks and went through multiple design iterations with the help of
staff and peer feedback, as well as rapid physical prototyping. With the development of a
physical prototype, design problems related to the system kinematics that could not be seen in
SolidWorks were identified. In conjunction with this process, a software base was developed to
actuate the robot, as well as manage the status of an ongoing chess match. To achieve this,
software from a similar project that integrated a chess engine with a robotic system was adopted
to our mechanical design. With a finalized CAD design, the appropriate actuators and controllers
were determined via engineering analysis. A bill of materials and list of parts for procurement
that would fit within our budget was also compiled. The parts were acquired, and an initial
prototype was built.

Once the mechanical prototype was fully assembled, all mechatronic components were wired
together and programming was completed such that testing could commence. Initially, all
subsystems were tested independently to ensure each of the components was functioning as
desired. There were a few critical errors encountered during this testing phase, which required
extensive revisions and retesting. Most notably, one of the system actuators became permanently
unresponsive and required the removal of a controllable ‘wrist’ joint from the system. After
redesigning the mechanical system to accommodate this, testing continued on the independent
subsystems. The robotic arm was able to lift pieces and move them to directed squares, and the
slider mechanism was able to move back and forth between columns of the chess board. Overall,
additional testing and redesign is necessary to achieve the full, cohesive functionality prescribed
in the requirements and specifications. A plan for this development is outlined in the report.

3

Table of Contents
Executive Summary 2

Table of Contents 4

Problem Definition 6
Problem Description and Background 6

Problem Statement 6
Stakeholder Engagement and Outreach 6
Requirements and Specifications 9

Must-Haves 9
Nice to Haves 11
Long Term and Aspirational 11

Concept Exploration 13
Subsystems Approach to Concept Generation 13
Concept Generation 14
Concept Development 16
Concept Evaluation and Selection 18

Mechanical Movement Mechanism 18
Piece Gripping Mechanism 19
Programming and Brain Decisions 20

Solution Development 22
Overall Solution Development Approach 22
Mechanical Arm 23
Base and Slider Mechanism 33

Engineering Analysis | Slider Speed 34
Design Changes For Manufacturing 35

Design Review and Verification 37
Risk Assessment 37
Detailed Design Solution 37
Verification 46
Discussion and Recommendations 47

Conclusion 48

Authors 50
Sam Goldman 50
Andrew Kwolek 50
Kenji Otani 51
Ian Ross 51
Jack Zender 52

4

Works Cited 53
Information Sources 53

Appendices 56
Appendix A: Gantt Chart Enlarged 56
Appendix B: Concept Generation Jamboard 57
Appendix C: Preliminary Software For Chess Engine / API 60

Filename : chess_play_vs_stockfish.py 60
Appendix D: Eco Audit 62
Appendix E: Compliance Verification Matrix 63
Appendix F: Bill of Materials 65
Appendix G: Risk Assessment 67

Appendix XXXXX: Deleted Content 68
Appendix H: Github links for Source Code 71
Appendix I: Arm Coordinate System Analysis 72
Appendix J: Mechanical Drawings and Manufacturing Plans 73

5

Problem Definition

Problem Description and Background
The game of chess as most people recognize it today began being played around the world in the
early 6th century. Chess consists of an 8x8 grid of checkered squares and 32 pieces of six types
and requires exactly two players. The game’s premise is entirely strategy based, as all rules and
conditions are available to both players and no information is hidden. [1] In addition to an
ability to think several moves ahead of their opponent, the best chess players must also be able to
recognize a variety of complex board positions, as there are over 10120 legal and distinct
configurations of pieces. In recent years, chess has gained significant popularity on digital
platforms, with companies like ‘chess.com’ and ‘chess24’ allowing players to connect and
compete with each other across the world.

While the development of chess into an online market has been beneficial for long-distance
connection, game accessibility, and chess engine software integration, it has also created
drawbacks in the areas of physical health and chess education. The extended screen time
associated with virtual chess can cause eye-strain, fatigue, sleep problems [2], and be detrimental
to brain development in young people [3]. Furthermore, there are concerns related to ethics and
cheating during remote play, as virtual players could rely on a chess engine or other illegal aid
without their opponent’s knowledge. The purpose of this project is to address the challenges
presented with primarily virtual chess while still encouraging the benefits of chess education;
such as strategic thinking, problem solving skills, creativity, and memory.

To achieve this goal our team developed a robot that can play autonomous games of chess with
the aid of open-source chess engine software. Our robot addresses the concerns related to
increased screen time, while also encouraging the cognitive development related to chess
education at a young age. The product, with some additional development, will be usable by
players of a variety of skill levels and age groups, including young children first learning to play
chess.

Problem Statement
After analyzing the effects of both online chess and over-the-board chess, a clear problem has
been revealed. Our finalized design objective which guided the project development was to
“Continue developing Chess education while minimizing online-chess’s added screen time and
keeping its long-distance multiplayer benefits.”

Stakeholder Engagement and Outreach
To best address our project goals, we identified a few key stakeholders in chess education
products or services and sought their feedback to best inform our work. First, we conducted a

6

http://www.cnn.com/2010/TECH/05/13/sleep.gadgets.ipad/index.html.
https://healthmatters.nyp.org/what-does-too-much-screen-time-do-to-childrens-brains/
https://healthmatters.nyp.org/what-does-too-much-screen-time-do-to-childrens-brains/

research interview with Evan Rabin, a chess National Master and the CEO of Premier Chess [4],
a chess education company that partners with individuals, schools, and corporate organizations to
teach chess and the valuable skills that come from chess play. Evan shared some of his concerns
related to remote chess and gave a great deal of insight to our initial design conversations. His
input was critical in the decision to integrate a chess clock as a ‘must-have’ for our project, as
well as the importance of a fast moving mechanism to ensure our device was able to compete
effectively in timed games. Furthermore, Evan cited the importance of standard chess notation in
the educational process, even stating that some students will not play their first move until they
have a sufficient knowledge of proper notation and terminology. Evan explained that players are
required to write their moves in standard notation in competitive games, all online platforms use
chess notation to record games, and that chess notation is universal. We determined that
incorporating chess notation into our robot was a necessity. He also explained that there are
various time controls on games (1, 3, 5, 15, 30, 60, 120+ minutes). He noted that the robot must
make a move in around 5 seconds to ensure that the game can be completed in the restricted time
control. He further mentioned that it would be very beneficial, but not strictly necessary, for the
robot to be able to play out old games to assist in studying positions, learning openings, and
improving as a chess player. We took this into consideration when defining our requirements and
determined that this was an aspirational function since Evan noted it wasn not critical to creating
a meaningful product. Evan finally explained that each player is a different skill and if they were
playing the robot, not a multiplayer game, the robot should be at their skill level. We agreed and
determined that varying skill levels is a necessary function of our product. Evan enjoyed our
conversation and encouraged us to continue our conversation with him throughout the design
process. We valued his opinions and incorporated them into our problem definition.

We also hoped to speak with parents of young children who play chess, such that they could
provide us with insight about safety and usability concerns. We spoke with our own parents who
provided insight into buying a chess robot and what features would need to be in place in order
to feel comfortable leaving their child alone with the machine. One parent noted that while their
child loves chess, they strongly dislike how much time they spend playing on their phone. They
also mentioned that they need safety mechanisms, although not being sure exactly how to
implement them, that restrict the robots range of motion to protect their child. [5] This comment
further proved why safety restrictions were a must-have requirement. The parent continued in
saying that they would want the robot to be portable since they would not want the robot in their
kitchen or living room forever; upon asking where they would like to store the robot
permanently, the parent indicated that a shelf or closet would be suitable. We took this feedback
into consideration when defining our requirements and engineering specifications.

Another stakeholder was The Latin School of Chicago high school Chess Team, a team that Sam
Goldman founded six years ago. After recently winning their state tournament, the team reached
out to Sam for advice on continuing their chess education in college. They are likewise

7

http://premierchess.com/about-us

extremely interested in assisting in developing the Chess Robot and providing insight into its
potential uses on their team for practice, casual play, and competition. Many of the current
members are aspiring engineers as well, so their input into the solution development process had
additional value from a technical perspective.

We also conducted some early patent research that has given us some insight into potential
subsystem designs, including a design for robotic arm [6] and cartesian slide system with
magnetic piece inserts [7]. Neither of these contained any schematics but served as useful
ideation aids in our brainstorming phase.

Finally, we conducted some research of existing designs that would help achieve some of our
project goals. These included other chess-playing robots [8] as well as a computer-vision
algorithm developed for chess boards by a student at Stanford University [9].

8

https://patents.google.com/patent/CN203611250U/en
https://patents.google.com/patent/CN103611290A/en
https://patents.google.com/patent/CN103611290A/en
https://www.youtube.com/watch?v=svEf53gvRgc
https://web.stanford.edu/class/cs231a/prev_projects_2016/CS_231A_Final_Report.pdf

Requirements and Specifications
Our project requirements and specifications were focused on creating a robotic chess opponent
that is safe for users of all ages and compatible with a variety of skill levels. Due to the open
ended nature of this project, we decided to split our requirements into three tiers: must haves,
nice to haves, and long term and aspirational. These tiers provided us with stretch goals for
functions of the robot and gave structure to our design priorities as defined by research and
stakeholder input. Each requirement has an associated specification that is tangible, measurable,
and unambiguously defined. A justification for these quantifiable specifications is also included,
with external resources referenced accordingly. The subsections below will showcase the
different tiers.

Must-Haves
This tier contains all of the most highly prioritized requirements which we have identified as
necessary functions or characteristics of our product. In order for our project and design to
minimally solve the presented problem, the must-have requirements needed to be met. The
requirements, engineering specifications and corresponding justifications, as well as embedded
links are presented in Table 1 below.

9

Table 1: “Must Have” Requirements, Specifications, and Justifications.
Requirement Specification Justification

Portable

■ Carriable by an average child across a
room (<= 4.5 kg)

■ Foldable for storage (<= 0.03 m3 volume
folded)

■ Based on doctor’s recommendations
for max backpack weight [10]

■ Should rest comfortable on a shelf
with depth of 0.3 m [11]

Durable

■ Must not fall over due to own inertia
while the arm is moving

■ Functional runtime of ~2000 hours before
recalibration

■ Mechanism should be stable and not
come loose from any motion

■ Runtime of 2000 hrs accounts for 40
hrs a week for a year

Function Using Standard
Size Chess Board and

Pieces

■ Standard USCF tournament set has 5.7
cm squares and a king's height of 9.5 cm

■ Robot plays on standard tournament
[12] set to simulate a setting the
player would realistically play in

Autonomously Lift and
Move Pieces In the

Correct Orientation and to
the Correct Location

■ Lift pieces with 0.635 cm clearance over
all other pieces based on two kings
clearing each other

■ Execute response moves within 5 seconds
■ Place each piece upright with its center 5

mm or less from the end move square’s
center

■ Must be able to lift pieces of 52g with a
1.75x safety factor (91g) .

Clearance and the deviation of pieces
from the square’s center based on
research for other PID controlled
robotic arms [13]
5 second move time recommended by
stakeholder
Piece weight range determined by
double-weighted standard tournament
pieces [14] with a 1.75x safety factor
[15]

Receive Manual Input in
Standard Algebraic Chess

Notation From Human
Player

■ Standard algebraic chess notation
■ Ex. f4 e5 = White pawn to square f4,

black pawn to square e5

■ Robot should understand and use
chess’ universal notation [16]

Play Timed
Chess Games

■ Uses one chess clock as ‘trigger’ for
robot to make a move

■ Standard games are in increments of
30s,1min,5min,10min,15min,30min (per
player)

■ Timer interaction [17] is
fundamental to competitive chess
and the device should simulate that
environment

Play Game of Chess
According to all Standard

Rules

■ 7thEdition of the US Chess Federation’s
Official Rules of Chess [18]

■ Important for device to simulate
official tournament chess rules

Autonomously Make its
Own Decisions When

Playing a Move

■ Plays one legal move per turn with max
10 second delay from player’s previous
move.

■ Crux of the problem; core
component of overall functionality

■ 3 seconds to “think”, 7 to move

Have a Mechanical
Structure that Allows for

Safe and Restricted
Movement

■ Zero exposed wires and sharp edges
■ OSHA spec for robotic arm movement

[19]

■ Needs to be safe for children to use
when playing chess

■ Cited as stakeholder priority

Vary Levels of Difficulty
Prior to Game

■ Software depth 1 (ELO increment ~66)
[20]

■ The robot should be accommodating
to players of different skill levels

10

https://www.sutterhealth.org/health/childrens-health/how-heavy-is-too-heavy-for-a-childs-backpack#:~:text=A%2050%2Dpound%20child%20should,a%20maximum%20of%2022.5%20pounds.
http://www.brezlin.com/design/shelvingguidelines.html
http://www.brezlin.com/design/shelvingguidelines.html
https://www.chess.com/article/view/chess-board-dimensions
https://www.tandfonline.com/doi/pdf/10.1080/15599610802301243
https://www.tandfonline.com/doi/pdf/10.1080/15599610802301243
https://www.wholesalechess.com/pieces-and-weights.html
https://www.wholesalechess.com/pieces-and-weights.html
https://www.motioncontroltips.com/faq-choose-safety-factor-motor-design-lasts/#:~:text=Most%20documentation%20and%20motor%20selection,to%20output%20enough%20energy%20for.
https://en.wikipedia.org/wiki/Algebraic_notation_(chess)
https://www.chess.com/terms/chess-time-controls
http://www.uschess.org/index.php/Official-Rules/US-Chess-Rulebook-The-Official-Rules-of-Chess-7th-Edition-Tim-Just-Chief-Editor.html
http://www.uschess.org/index.php/Official-Rules/US-Chess-Rulebook-The-Official-Rules-of-Chess-7th-Edition-Tim-Just-Chief-Editor.html
https://www.osha.gov/enforcement/directives/std-01-12-002
http://web.ist.utl.pt/diogo.ferreira/papers/ferreira13impact.pdf

Nice to Haves
This tier contains requirements that we find to be technically realistic, but may not be able to be
achieved in the timespan of one semester. We have determined that these requirements would be
beneficial to implement, but are not detrimental if neglected. Our project will still be a success
with simply the must have requirements, but we strived to satisfy these requirements as well and
believed that they were achievable. The nice-to-have requirements, engineering specifications
and corresponding justifications, and embedded links are presented in Table 2 below.

Table 2: “Nice to Have” Requirements, Specifications, and Justifications.

Requirements Specification Justification

Limit Cost of Functional
Prototype to $400

■ Make all efforts to keep price below $400

■ Reach out to potential sponsors (Chess.com,
other professors, high school chess team)
and apply for grants

■ Given budget is $400 so we must
attempt to stay without these
limits

■ If we see that we are likely going
over budget, then we will attempt
to gain funding from other sources

■ Although this is nice-to-have, it is
a must have that we either limit
cost to 400 or find gain additional
funding

Can Adjust Skill Level
Mid-Game to Meet
Real-Time Player
Performance

■ Dynamically determine ELO 200-2800 and
increment 100

■ Can run engine up to depth 25

■ Creates a more dynamic game and
educational experience consistent
with that of playing a real human
that can make adjustments on the
fly

Can Play Chess Variant
Games

■ Chess 960, bughouse, begin with missing
pieces

■ Adds breadth to the robot’s
functionality, noted as stakeholder
interest

■ Chess Variants [21]

Long Term and Aspirational
This tier contains all of the desired requirements that are potentially out of scope of our semester
timeline. These requirements would be necessary if we continue developing the Chess Robot
after the semester concludes but were not necessary to show its basic functionality and indicate
successful project completion. The presented long-term requirements would be very difficult to
satisfy but would significantly improve functionality and use. The long-term and aspirational
requirements, engineering specifications and corresponding justifications, and embedded links
are presented in Table 3 on the following page.

11

https://www.chess.com/article/view/chess-variants

Table 3: Long-Term and Aspirational Requirements, Specifications, and Justification.

Requirements Specifications Justification

Can Play a Complete, Fully
Autonomous Game

■ Can identify start of turn, location of all
pieces, and make a move with 0 manual
intervention

■ Simulates a fully autonomous
player, making it more
user-accessible

Can Play Games With Any
Size of Board and Pieces

■ Ability to identify board grid
autonomously and break into 64 squares

■ Can autonomously translate moves into
distances on the board and place pieces
with 100% accuracy

■ Allows for wider functionality and
use for any type of chess set

■ Not necessary to implement for
desired functionality given
constraints

Can Store Games Digitally
and Upload For Analysis

■ Can store ‘pgn’ files or ‘txt’ files for 100
games at a time

■ Adds a unique feature for player
improvement

12

Concept Exploration

Subsystems Approach to Concept Generation
Developing the robot’s mechanical and software elements required a complex breakdown of
many subsystems. There were functions related to the controls of the robot, from user input to
software output, and a few key mechanical subsystems that are essential in executing board
moves. To play a complete and autonomous game of chess, several different components must
work in functional and physical synchronization. As a result, a wide variety of potential design
solutions needed to be explored and evaluated. Concept generation and development for each
major subsystem was therefore carried out independently of each other, preventing any ideation
from being limited by systems integration concerns. Concept evaluation and selection therefore
relied in some capacity on each subsystem’s ease of manufacturing and assembly into the larger
robot. With this in mind, two functional decompositions were developed to aid in the breakdown
of the robot into its most critical parts. Shown below in Figure 1 is the functional decomposition
of mechanical subsystems in the robotic chess arm. It includes the Brain/User Interface, House
Software/API, Position Controller, and Gripper along with each core function associated with
them. This functional decomposition also demonstrates how each function communicates with
other functions from the same or different subsystem. Essentially, a roadmap of functions is
constructed to help piece together all of the different parts of the overall system.

Fig. 1. A functional decomposition of the robot’s mechanical subsystems by function

A second functional decomposition was also developed to focus more on the software
subsystems’ functionality. The software’s functionality isn’t as dependent on the design decisions
as some of the other subsystems so a more detailed functional decomposition was developed and

13

is shown below in Figure 2. The house software handles player interaction, communication with
chess engines and API’s, and passes instructions to the controller subsystem which in turn relays
instructions to the mechanism to physically move the robot. The main inputs to the house
software (i.e. the piece of software we will be writing ourselves to drive the project), are a
player’s move at a point in time, and the desired difficulty setting prior to the game. When a
player plays and inputs a move, the house software checks the validity of a given move, then
requests a move from a chess engine. It then takes that move and converts it into a set of
coordinates or instructions that the controller and mechanism must carry out. This functional
decomposition outlines the basic functionality of the software systems. In reality, developing the
code base for this project was an intensive endeavour.

Fig. 2. A functional decomposition of the robot’s house software and integration with Chess API
as well as user input

With a clear breakdown of the robot’s required functions into subsystem categories, different
concepts for potential solutions were then considered.

Concept Generation
After adequately dividing our robot into subsystems, we generated potential solution concepts
through initial brainstorming. Individually, we developed as many ideas as possible and did not
limit our ideation to feasible solutions. Although we all had some preliminary ideas based on our
prior understanding of robotic arms and existing chess robots, we challenged ourselves to think
out of the box in the brainstorming stage. An example of an individual brainstorming list

14

separated by subsystem is shown below in table 4, and related images and sketches can be found
in appendix B.

Table 4: List of brainstormed ideas organized by robot function.

Mechanical Arm Piece Grabbing

1. Cartesian plane sliding mechanism
2. Polar arm mechanism
3. Linkage arm
4. Materials - durability

a. Aluminum
b. Plastic
c. PVC
d. Steel

5. Types of motors - durability
6. Horizontal Movement plane Arm
7. Arm on Rail
8. Pneumatics
9. Wheels on Table that move a drop down

gripper
10. Magnets under table
11. Squares actually move and slide with pieces

on them

1. Gripper
a. What kind of claw? 2,3,4 prong etc.
b. How do we execute a claw mechanism?

2. Magnetic
a. Custom pieces? 3D printed
b. Embed magnets in bought pieces
c. Solenoid mechanism

3. Scooper
a. Scoop the pieces up from underneath
b. Scoop from under head of piece

4. Expandable rod that goes into the piece and
expands and then retracts to release it

5. Vacuum sealed to pick up pieces
6. Small pushing mechanism to push every piece
7. Each piece has a wheel under it to move itself,

without need for a gripper

Attachment to Table Piece Location

1. Weights on the mechanism
2. Suction cups
3. Velcro
4. Vice grips and clamps
5. Glue
6. Bolt into table

1. Computer vision
2. Rfid on pieces
3. Manual notation based
4. Pressure plates
5. Capacitor sensors
6. QR sensors on each piece

After individually brainstorming ideas based on subsystems, we attempted to generate even more ideas
through the use of design heuristics. We took our individual list and expanded on it by considering each
existing idea and going through the list of design heuristics to edit/add to them. For example when
considering idea 1b above (polar arm mechanism) and thinking about design heuristic 65, telescoping,
and 32, expand and collapse, we added the following ideas:

a. Arm that contracts each segment when it is not moving to save space
b. Arm segments that when turned completely vertically can collapse into the base

15

c. Arm segments that can be separated and clicked together easily for easy storage but also easy
assembly

Another example of utilizing design heuristics occurred when considering a vertical gripper and design
heuristic 19, change flexibility. We added the following ideas to our list:

a. Gripper that matches shape of each individual piece for custom grip
b. Adjusted shape of gripper surface to match base of pieces
c. Adjusted flexibility of claw-like gripper end pieces to add friction and better grasp piece’s surface

After cycling through the design heuristics, our lists grew significantly. We proceeded to meet as a team
and compile our ideas to determine the overlaps and talk through our ideas in efforts of combining the
ideas and building even more. Through this discussion we generated even more ideas for all subsystems.
After compiling and generating ideas as a team, we overlaid our subsystems and ideas on our functional
decomposition to identify gaps and red flags. Since the functional decomposition is meant to identify all
functions that our robot must satisfy as well as how those functions relate to each other each, it is critical
that our design ideas satisfy all functions and integrations appropriately. To do this, we took each square
in the functional decomposition and used them to further categorize our subsystems and ideas. Through
this process we identified that we had not developed sufficient ideas for the controlling aspect of our
robot. We then generated more controller and integration ideas and ensured that those ideas satisfied the
remainder of the squares on the functional decomposition.

Concept Development
Once we were comfortable with the diversity and quantity of generated ideas, we quickly filtered
out the non-feasible solutions. For every subsystem, we selected the feasible solutions that would
satisfy our functional requirements. For the main arm structure, there are three potential solutions
and are shown in Figures 3, 4, and 5, below:

Fig. 3. 1D Track with
Rotating Arm

Fix. 4. Polar Base and Arm Fig. 5. 2D Track with Rigid
Arm

The 1D track with rotating arm (1D Track for short) has a base that moves along a track in the Y
direction. The arm will extend by having rotating joints at the base and at the top of the arm,
allowing the arm to reach out in X to access each individual square. This design simplifies

16

control as we only need to define the location of 8 squares in X and divide the board into 8
distinct files in Y. For example the only difference between square a8 and c8 is the distance the
base travels on the track. The Polar Base and Arm (Polar for short) is the most similar to an
industrial robotic arm. While the arm remains the same as the 1D Track, the base is fixed in X,Y
but can rotate to ensure that each square is accessible. The Polar design is the hardest to control
as each square must be defined independently. The Polar arm would also be the fastest but
hardest to manufacture and assemble. The final feasible design is the 2D Track with Rigid Arm.
The 2D Track consists of a base that is slightly larger than the size of the chess board and a rigid
arm. The rigid arm requires that there be a gripper that can move vertically to grab pieces and lift
them over the others. This design proves to be the simplest to control as each position on the
board directly corresponds to the position of the base on the track.

For the gripper subsystem, we limited our concepts to three primary designs, as shown below in
Figures 6, 7 and 8.

Fig. 6. Diametric Gripper Fig. 7. Top-Down
Gripper

Fig. 8. Magnetic grippers: Ball and
socket (left), rack and pinion (right)

The Diametric Gripper grabs each piece from the side by expanding and contracting its opening
depending on the piece size. This gripper can be used easily in conjunction with the 1D Track
and the Polar Arm and can be used with the 2D track if a lowering mechanism is employed. This
solution would be difficult to manufacture in-house and there were limited off the shelf options.
Next, the top down gripper can be lowered to the piece and grab it from above. Like the
diametric gripper, it can be used with the 1D track and the polar arm with no modification, but a
lowering mechanism must be employed to use with the 2D track. While the top-down gripper
would have been very difficult to manufacture in house, there were numerous off-the-shelf
options available. There is also potential to add additional foam inserts to better shape and grip
each respective piece. Finally, the magnetic grippers designs utilize an electromagnet that can be
engaged to lift pieces and disengaged to release them. This design requires that the pieces be
modified such that there is a magnet on top of each piece. The ball and socket option allows for
easier placement of the pieces as there is more room for error in placement. The rack and pinion
version allows for integration with all three potential arm structures. For both versions, there was
potential to manufacture in-house but also have off-the-shelf options.

17

The remainder of the subsystems were the safety restrictions, integration with chess clock, and
securement to the table. For these subsystems, the design decisions were made in the solution
development phase. For example, to secure the robot to the table, we generated many ideas
including the use of suction cups, C-Clamps, velcro, weights, and magnets. After further
development of our overall design, we will have more information about selecting the
appropriate method. Similarly for safety restrictions we generated ideas including hard stops,
laser cages, torque sensors, ultrasonic sensors, time sensor, velocity limits, physical padding, and
a panic button. For integration with the chess clock, we can either utilize a real clock and engage
using the gripper, or we can use a virtual clock through the players API and not physically
engage with it. Implementation of these ideas will be made in later stages of the design process.

Concept Evaluation and Selection
After the concepts were developed, a metric was required to determine which of the different
concepts, for each category, would be the most suited for pursuit as a fully realized mechanical
design. For some of the concept categories, no major decisions needed to be made because they
are not mutually exclusive, such as the safety aspect, where multiple different safety features can
be implemented without impeding the functionality of other ones. We decided to use a
customized Pugh Charts to help us evaluate and ultimately decide on specific designs. The
following sections contain information regarding the evaluation and selection of specific designs
generated during our concept exploration phase.

Mechanical Movement Mechanism
The mechanical design of the arm was rated on categories based on the requirements and
specifications. The weight of them were arbitrarily determined based on the amount that the
criteria affects the original specifications. Additionally, we made sure to prioritize safety at all
costs, so safety was maxed to 5 to ensure that safety was highly considered. In general, safety of
a mechanism was determined by analysing the degrees of freedom, the predictability of
movement, and volume of space that would be dangerous to the user. The criteria that were
deemed nice to have, but not absolutely necessary to reach the original specifications, such as
controllability and appearance, were given a lower score because they are mostly inconveniences
towards our work rather than the final product. The rest of the criteria were given three point
weights for the pugh matrix. One idea deemed to be the most neutral idea was decided to be the
baseline arm design, with all other ideas being compared against it over all of the criterias. Table
5 shows the pugh matrix for the consolidated design idea for the overall arm design shown in
Figures 3, 4, and 5.

As shown in Table 5 on the following page, the arm design that was selected by this process was
the 1D Cartesian Motion w/ Rotating Arm design. This is the overall arm design that was
developed in the solution development phase of this project.

18

Table 5: Pugh Matrix for the overall arm design.

Overall Arm Design

Criteria Weight Polar Base and Arm 2D Cartesian Motion w/
Drop Down Gripper

1D Cartesian Motion w/
Rotating Arm

Weight 3 + - 0
Speed 3 + - 0
Size 3 + - 0

Safety 5 - + 0
Manufacturability 3 - 0 0

Controllability 1 - + 0
Cost 3 - 0 0

Appearance 1 + - 0
+ 10 6 0
0 0 6 22
- 12 10 0

Total -2 -4 0

Piece Gripping Mechanism
Once the ideal mechanical subsystem for reaching specific board squares was determined, we
then had to consider how best to move all the different types of pieces between squares. The
pieces needed to be lifted vertically to avoid knocking into each other and had to be lifted high
enough such that two kings could clear each other with 0.635 cm of clearance. After developing
our brainstormed ideas into three major categories (diametric gripper, top-down gripper, and
magnetic collection), we also researched other possibilities and discovered a universal gripper
which uses granular solid and a flexible balloon to grab items. Having these four major
categories we developed a pugh matrix to select our best piece gripping mechanism. Criteria
were considered for this matrix based on stakeholder input and design criteria as researched in
our problem definition phase. Weights were assigned to these criteria on a 1-5 scale, with 5 being
the most important and 1 being the least. Each criteria for each design option was then assigned a
+, -, or 0 score based on how that design would theoretically perform compared to a ‘baseline’
design. To calculate the scores each weight was multiplied by a +, -, or 0 accordingly and the
total positive and negative points combined then compared. The baseline design, in this case the
diametric gripper, was assigned 0 scores throughout and the remaining designs were then
assessed. The final scores for each gripper design option, as well as their ratings in each criterion
can be found on the following page in Table 6.

As shown in table 6 on the following page, the gripper design that was selected by this process
was the top-down gripper, a design for which many off-the-shelf options are available within our
price range and sold with an accompanying actuator.

19

Table 6: Pugh Matrix for the gripping mechanism

Gripping Mechanism

Criteria Weight Diametric
Gripper Top-Down Gripper Magnetic Universal Gripper

Weight 3 0 + + -
Speed 1 0 0 + +
Size 3 0 + + -

Safety 5 0 0 + +
Controllability 1 0 0 + +

Piece Modification 5 0 0 - 0
Cost 3 0 0 + -

Motors 3 0 + + -
Manufacturability 3 0 + 0 -
Satisfies Nice to

Have 3 0 0 - +

+ 0 12 19 10
0 30 18 3 5
- 0 0 8 15

Total 0 12 11 -5

Programming and Brain Decisions
The first design decision for the programming and controller brain subsystems was to determine
the coding environment for the house software. Python was quickly determined to be the
optimum programming language for this project. Python offers a very useful library called
python-chess, which offers an easy to use framework for coding in the “language” of chess and
easy API and engine interaction [22].

The next design decision was which controller brain to use for the project. A pugh chart was
used to choose between using an Arduino or a Raspberry Pi. Three criteria were determined:
Linkability to Python, Reference Material available, and project group Familiarity. The criteria
were weighted on a five point scale with weights of five, three, and one respectively. Linkability
to Python received a five because python is the environment chosen for the project and the less
languages being implemented simultaneously the better. Reference Material received a three
because having source material makes building a code base easier. Familiarity received a one
because the group has a lot of programming experience. Raspberry Pi’s run on python, which
was seen as a large advantage given our house software is being written in python. Using an
Arduino board that runs C code would be more difficult to link to the other parts of our code
base. The next advantage for the Raspberry Pi was a wealth of source code material for building
chess robots using a Raspberry Pi board. The project RaspberryTurk has an open source git
repository that will be very helpful for building our own code base [23]. The project team was
less familiar with using Raspberry Pis, but this was identified as a less important heuristic for

20

determining which board to use. From the pugh chart below in Table 7, it was determined that
the best board to use was the Raspberry Pi.

Table 7: Pugh Matrix for the controller brain

Controller Brain
Criteria Weight Arduino Raspberry Pi

Linkable to Python 5 0 +
Reference Material 3 0 +

Familiarity 1 0 -
+ 0 8
0 9 0
- 0 1

Total 0 7

21

Solution Development

Overall Solution Development Approach
Through concept exploration, we determined the structure of the arm, slider mechanism, and
overall control systems. After the high-level design selection was complete, we moved into
solution development to create a detailed final design of the Chess Robot. As a team, we
delegated each subsystem to individuals and pairs of teammates. We believed that while the arm
and the slider needed to be integrated, the detailed design of each should not affect the function
and design of the other subsystem, excluding the connecting interface. Thus, we completed
parallel development in designing each subsystem before creating the combined design.

We began subsystem detail design by creating an initial virtual prototype. To ensure consistency
and version control, each subsystem was modeled using the latest Solidworks version and a
grabcad folder was created. We first created a model of a standard chess board with standard size
pieces so each subsystem could be sized appropriately. Initial Arm and Slider subsystems were
then developed and assembled together, as shown in Figures 9, 10, and 11 below.

Fig. 9. Basic arm structure Fig. 10. Slider Subsystem Fig. 11. Initial complete assembly

After creating the initial assembly in Solidworks, we were able to all visualize the same robot.
Previously, we each had our own distinct thoughts on what the Chess Robot should look like, so
creating a very basic assembly provided a foundation for our detailed design. The initial design
was also useful in ensuring no major mistakes regarding range of motion, interference, tipping,
and durability were made before the detailed design. Following the initial virtual design, we met
as a team to create a physical mockup to further analyze the basic design and prepare to move
into detailed design. Our physical mockup is shown in Figures 12 and 13 below.

22

Fig. 12. Side view of to scale physical mockup Fig. 13. Front view of to scale physical mockup

The physical mockup enabled us to analyze the structure of our design, joint design, and identify
areas of potential failure. Even more, we were able to meet in person with a basic physical
prototype to further discuss transmission and actuation and final design decisions. In particular,
the physical mockup presented potential problems from driving links. As we rotated the links, it
was evident that the complementing link would lag behind and had potential to fail and present
control errors. We sought to drive both links in tandem to solve this problem. Our solution to this
problem is explored in depth on Page 25. Similarly, we identified struggles with joint design as
small radial motions would compound and present significant control accuracy problems at the
end of the linkage. We aimed to simplify joint design to minimize these effects. At this meeting,
we were also provided with a similar slider system from a previous ME 450 project. We then
analyzed the provided slider and motor and determined that it could successfully be adapted for
our purposes. Full design and engineering analysis of the slider is explored on Page 33.

After creating the physical mockup, we continued developing the virtual mockups while
completing significant engineering analysis to justify design decisions. We continued our
subsystem design approach and came together throughout to ensure integration would be
successful. We developed a simplistic solution that maximizes reliability and controllability
while working to meet all engineering specifications. The upcoming sections dive into detailed
design and analysis of each subsystem and the software development process.

Mechanical Arm
The mechanical arm subsystem of our robot was designed to perform most of the kinematic
functions related to picking up, moving, and replacing pieces on the board. Having decided on a
motorized arm and top-down gripper which would operate in a plane perpendicular to the linear
base slide, the next decision was around arm degrees of freedom and number of actuators to be
used. We ultimately decided that having three degrees of freedom and three actuators would

23

maximize the controllability while still ensuring a simplistic and compact design. A side view of
our final arm highlighting the degrees of freedom is shown in Figure 14 below.

Fig. 14. Side view of the Chess Robot highlighting notable degrees of freedom in the arm.
Where the right two actuators control overall arm positioning while the left actuator controls
the angle of the gripper.

Having three degrees of freedom ensured that each piece in each square could be reached.
Further kinematic analysis is explored on Page 26. After determining the overall structure,
motion, and degrees of freedom for the chess robot, we attempted to select actuators. After
researching actuators that are optimal for our control purposes (easy to program, precice, work
well in tandem with other actuators, and are compact), we determined that Dynamixel actuators
would provide the ideal control for the Chess Robot purpose. They are cheap, compact, have
small resolution, integrate with other Dynamixel actuators well, and have a variety of motor
mounts. Although we determined the most ideal brand of actuators, we had to determine which
model would best suit our purpose. Ultimately we decided to use the AX-12A actuator which
allows for direct control and no transmission; the speed and torque analysis that led to this
decision is shown on Pages 27-29. Next, from our physical mockup, we realized that there may
be control and lag issues if we only drove a single side of the robot link (one of the two links).
Thus, we aimed to mount the actuators to directly drive both links at all three driving locations.
Thus, we used multiple Dynamixel axles to achieve this functionality. The mounting positions
are shown in Figures 15, 16, and 17 below.

24

Fig. 15. Base actuator driving
both primary links in unison

Fig. 16. Reach joint actuator
driving both reach links in
unison

Fig. 17. Actuator driving
gripper rotation uniformly

The AX-12A provides convenient mounting capabilities and assisted us in ensuring reliable
actuation and control. The mounts will be fastened to the respective links and bases using
provided screws. Also shown in Figures 16 and 17 is a slot for adjustable positioning and a
locating feature for our predetermined optimal positioning. While kinematic analysis has been
completed at the given rotational positioning, there is flexibility to make length adjustments as
needed, which we felt was an important design feature. This mounting platform used to connect
each link and stabilize and control the position of the actuators in Figures 16 and 17 and shown
in Figure 18 below.

Fig. 18. Aluminum actuator mount with threaded holes on face and on side

Next, the base links and reach links are shown below in Figures 19 and 20 below.

25

Fig. 19. Aluminum base links Fig. 20. ABS or Acrylic reach links

The base links were made of aluminum to adequately lift and support the actuators, reach links,
and gripper. The reach links, though, were made from acrylic as they have a longer moment arm
to the base, are not lifting as much mass, and with the goal of minimizing weight and tipping
potential. Material selection analysis and tipping analysis have been completed and are shown on
Pages 29 and 30.

The entire assembly in an isometric view is shown in Figure 21 below.

Figure 21: Final CAD assembly shown in a front-facing and rear-facing isometric views.

26

Engineering Analysis | Kinematic Analysis
To verify the mechanical arm’s effectiveness at fulfilling our requirements and specifications, it
was first put through a virtual kinematic test to verify that all necessary arm positions could be
reached. This included testing each of the six types of pieces at each of the eight board depths,
or a total of 48 different locations. The arm was able to reach all of these locations without
inflecting at any joints, binding, or interfering with itself. Images detailing the arm’s position in
the most extreme cases of motion can be seen on the following page in Figure 22.

Fig. 22. The mechanical arm is positioned in the most extreme cases of piece location and joint
articulation, shown for the tallest piece at the farthest rank (left) and the shortest piece at the
closest rank (right).

Engineering Analysis | Required Speed and Torque Requirements
Next the required rotational speed of the arm needed to be calculated such that a torque analysis
could be conducted with reasonable parameters. Considering our specification that the robot
needed to make its moves in 7 seconds, and the slider mechanism would require roughly 4.5
seconds to make it’s movements, the mechanical arm needed to complete its range of motion in
2.5 seconds. To understand the maximum angular range the arm would have to operate in, the
law of cosines was used to calculate a range at each joint. The equation for the law of cosines is

(1) [24]𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏𝑐𝑜𝑠γ

where a,b, and c are side lengths in inches, and is the angle between two sides in degrees,γ
assuming notation outlined in the figure associated with the reference material. Considering this
equation, c values were calculated for the most extreme board positions to understand the full
angular rotational needs of the system. The maximum c value was determined to be ~19 inches
and the minimum value was determined to be ~3 inches, as verified using the Solidworks model.
Given these values, angle measurements for gamma and beta were determined using the law of
cosines, resulting in the values listed below in Table 8.

27

Table 8. Joint distances for the arm’s base joint and gripper joint and the corresponding joint
angles for the base and reach joints, in degrees.

Distance from Gripper Joint
to Base Joint (c)

Resulting Reach Joint
Angle ()γ

Resulting Base Joint
Angle ()β

3 inches 15.50° 62.96°

19 inches 129.52° 23.95°

Given these parameters and knowing that the maximum articulation in a single, non-capturing
move would be associated with moving from one end of the board to another and back again, the
maximum joint articulations were determined. They are 228.04° at the reach joint and 78.02° at
the reach and base joints, respectively. When considered with the 2.5 second time limit for
articulation, this equates to a rotational speed requirement of 91.22°/s at the reach joint and
31.21°/s at the base joint. This is equivalent to 15.2 RPM at the reach joint and 5.2 RPM at the
base joint.

With an understanding of the rotational speed requirements of the arm, and having verified the
kinematic movement of the system, a motion simulation analysis could then be reasonably
conducted in Solidworks. This analysis assumed standard Earth gravity in the constant negative
y direction and a constant rotational velocity of 15 rpm, a quantity verified based on our speed
requirements. Furthermore, the simulation was conducted for the two extreme conditions of the
arm’s actuation, namely lifting a king piece on the farthest rank and lifting a pawn piece on the
closest rank. The torque experienced by the motor was determined by rotating the system about
the joint’s center and rotating at a constant speed to avoid any unwanted additional system
torques. This analysis yielded torque curves are shown in Figure 23 on the following page,
showing torque versus time over a nominally-chosen one second span that includes key moments
of inflection in the system.

28

Fig. 23. The model of the mechanical arm was tested under constant rotational speed with
standard gravity conditions to determine the torque experienced by the base actuator.

The test was conducted for the greatest reaching (left) and contracting (right) positions. The
greatest torque experienced in either case was roughly 9 lb-in, or roughly 1.02 Nm.

Engineering Analysis | Rotational Speed and Torque Verification
With knowledge that the maximum torque experienced by the base joint will be roughly 1.02
Nm, and considering that the Dynamixel AX-12A actuator has a rated stall torque of 1.5 Nm
[25], it was reasonable to state that the AX-12A would be a sufficient actuator for our needs at
the base, reach, and gripper rotation joints. This assumption was able to be made because the
greatest system loads for the mechanical arm will be experienced at the base joint, where both
pairs of links and three actuators are applying torque on the system. At the reach joint and
gripper rotational joints, significantly less mass is applying torque, so it is reasonable to assume
that this actuator will be sufficient.

In addition to knowing that the AX12-A would provide sufficient torque to the system at these
key joints, the speed requirements also needed to be considered. To evaluate if the actuator
would permit the required rotational speed at this torque, a torque-speed curve for the actuator
was graphed using the provided actuator specifications [25]. This plot can be found below in
Figure 24.

29

Fig. 24. The torque versus speed curve for the Dynamixel AX-12A actuator, shown in blue,
with the operating point of our system at 1.02 Nm, shown in red. At this point, the motor can
operate at a maximum speed of 19 RPM.

Given that the 19 RPM limit is significantly greater than the 5.2 RPM base joint speed
requirement calculated previously, it was reasonable to state that the AX-12A would provide
both the required torque and rotational speed necessary to fulfill the movement time
requirements set forth in our problem definition phase.

Engineering Analysis | Center of Mass Location and Tipping Conditions
To ensure that the entire robot system would not tip during regular use, a center of mass analysis
was conducted using the Solidworks model of the system, the results of which can be seen below
in Figure 25.

30

Fig. 25. The center of mass for the entire Chess Robot in both its extended and retracted
positions with accompanying center of mass location. In the retracted position (right), the
center of mass is located directly above the slider mechanism, and in the extended position
(left), the center of mass is located roughly 2 inches from the slider base.

There was notable concern that in the extended position, the robot might have tipped over due to
the system center of mass being extended beyond the robot’s feet. To resolve this we extended
the slider base feet to prevent the system from tipping over during normal operation.

Engineering Analysis | Reach Link Material Validation
The reach links of the mechanical arm were designed to be significantly lighter than the base
links, both to limit the total torque required to actuate the system at the base and reach joints, and
to prevent the center of mass from being too far from the slider base. The two primary
candidates for reach link material were ABS plastic and acrylic. These have been chosen
because they could be easily manufactured using 3D printing or laser cutting, were fairly cheap
to acquire, and are significantly lighter than aluminum. To verify that both of these materials are
valid candidates, a torque analysis under loaded conditions was performed on the reach link
geometry. This analysis assumed that the link was parallel to the ground, such that the line of
action from the joint to the application of force was greatest, maximizing torque. The link was
assumed to be a fixed cantilever, with the maximum bending moment applied just beyond the
joint itself. The system was also assumed to be accelerating from 0 to 15.2 RPM in 1 second.
To convert this to translational acceleration, we consider that 15.2 RPM is roughly equal to 1.6
rad/s. We then considered the center of the 10 inch link is located 5 inches or 12.7 cm from the
joint. This means that the tangential acceleration applied to the reach link is given by the
Equation 2 on the following page

31

(2)[26]𝑎
𝑡

= 𝑟 * α

where alpha is the angular acceleration in rad/s2, is the tangential acceleration in m/s2, and r is𝑎
𝑡

the radius, in meters. Given this equation, the tangential acceleration applied to the link at its
center of mass is roughly 20.32 m/s2 at the center of mass and roughly 40.64 m/s2 at the location
of the gripper. Given this value, and using mass and area moment of inertia values evaluated in
Solidworks, the following diagram shown in Figure 26 can be constructed .

Fig. 26. The reach link from a side view, with a diagram of the applied forces and the distance
from the reach joint to the point of application.

Given this diagram, we can calculate the total torque applied to the reach link at the location of
maximum bending. This maximum moment is calculated using the following expression.

𝑀 = [0. 127𝑚 * (0. 018𝑘𝑔) * (9. 8𝑚/𝑠2 + 20. 32𝑚/𝑠2)] + [0. 254𝑚 * (0. 19𝑘𝑔) * (9. 8𝑚/𝑠2 + 40. 64

Solving this equation for M gives a total moment just beyond the joint of 2.50 Nm. To find the
total stress applied by this moment, we can use the equation for stress applied to a beam by a
bending moment, shown in Equation 3:

(3)[27]σ = 𝑀𝑦/𝐼

where is the applied stress, M is the applied moment, y is the distance from the centroid to theσ
point of application in m, and I is the area moment of inertia in m4. Given this and considering a
y value of 8.1mm as diagrammed, and an I value of 2193.54 mm4 as calculated in Solidworks,
we calculate the stress to be 3.057 MPa, or roughly 9.25 MPa. With this knowledge we
compared the predicted applied stress to the yield strength of both materials to verify they are
both valid choices for our reach links. This validation can be visualized below in Table 9.

32

Table 9. The applied bending stress of our reach link, and the yield strengths of ABS and
Acrylic.

Reach Link Maximum
Applied Stress

ABS Plastic Yield
Strength

Acrylic Yield Strength

9.25 MPa 18.5 - 51 MPa [28] 64.8 - 83.4 MPa [29]

The information shown in this table clearly demonstrates that under maximum stress conditions,
both the ABS plastic and the acrylic would not yield. This made them both viable candidates as
materials for our reach links, but we selected acrylic because of its readily available stock
material, and extremely simplistic manufacturing through laser cutting.

Base and Slider Mechanism
For the linear motion of the arm to navigate between squares, our team decided to mount the arm
to cart on a slider track. There were many methods of linear movement, but we decided to go
with this one due to its simplicity, and high speed relative to other options, such as a power
screw. This high speed is important to meet our move timing for the requirement “Autonomously
Make its Own Decisions When Playing a Move”.

After the design of the arm, we realized that our budget would be tight for the base, so we sought
out recycled parts. A previous ME 450 team constructed an inverted pendulum machine, but the
project was unfinished and the parts were laying around the shop. With the permission of our
advisor, we were able to recycle the parts used in their project for ours. This saved money on
prototyping, and with additional validation served to supplement functional parts.

The structure of the base was composed from two legs made of aluminum plate, and an
Actobotic Xrail which was supported by these two legs. A cart ran along the Actobotic Xrail, and
was attached to a timing belt, which was driven by a motor on one of the two legs. The
mechanical arm is mounted onto the cart. Figure 27 below shows the CAD model of the base.

Fig 27. The slider mechanism for the Chess Robot. The timing belt is not included in this figure.

33

Engineering Analysis | Slider Speed

To meet the move timing portion of the “Autonomously Make its Own Decisions When Playing
a Move”, we ensured that the robot was able to make a move within 7 seconds. It needed to
move back and forth across the board a maximum of 3 times per move to ensure that it can
handle the most complex action possible, which is capturing a piece with a pawn, and promoting
it to a queen. This required the removal of 2 pieces from the board, and the placement of a piece
from the sidelines onto the far side of the board. The board is calculated to require a maximum
travel of 21.25 inches when accounting for the size of the slider and the extra columns of squares
on the side that will be used for piece storage and placement of the chess clock. It would have to
do this action three times, for each individual portion, so it would only have 2.33 seconds for that
action. Therefore, the speed that the arm can move on the slider needed to meet or exceed 9.107
inches per second.

The motor that is being used is a BILDA 5201 Series with an attached encoder and a 26:1
gearbox. This model is discontinued from production, but came with the spare parts we acquired.
The spare parts also came with a set of timing belt pulleys that have a radius of 0.5 inches from
the center of the pulley to the center of the timing belt. The motor has a no load speed of 210
RPM, so assuming that the wheels on the slider cart are frictionless, we can estimate that the top
speed of the arm when attached to this motor will be 10.99 inches per second, which was faster
than the required speed to meet our requirements.

However, speed was not the only important factor to consider. The motor also needed to
accelerate to that speed quickly, otherwise it would have been effectively much slower than the
estimations suggest. To ensure that this doesn’t cause any problems, we also analyzed the torque
of the motor to ensure that it could reach top speed in a short period of time. Equation 4 below
was created using a combination of Newton’s second law, the motor torque-speed curve, and
geometric formulas to model the acceleration of the mechanical arm on the slider system.

𝑟 * 𝑚𝑥'' = 𝑡
𝑠𝑡𝑎𝑙𝑙

− 𝑘 (60 𝑠𝑒𝑐
𝑚𝑖𝑛) 𝑥'

2π𝑟
(4)

This differential equation was solved in Matlab to show the velocity over a period of time to see
how fast the mechanism reaches top speed. Figure 28 below shows velocity of the mechanism in
respect to time.

34

Fig. 28. Time versus velocity of the mechanism. As clearly shown, the mechanism reaches
maximum speed within 0.15 seconds, and will not cause any significant reduction in the
performance of the slider.

Design Changes For Manufacturing
Prior to manufacturing, the legs of the base require the holes to be relocated to match the holes
on the parts provided from the recycled parts. Additionally, the base must be extended towards
the player to prevent the robot from tipping during normal operation of the robot. Once these two
modifications are made and analysis is redone with all of the changes taken into account, then
drawings can be drafted of the parts. These mechanical drawings will be used for fabrication of a
functioning prototype, which will be used to verify the robot’s capability to fulfil the functional
requirements and specifications.

Design Context Factor Analysis
An initial design context factor analysis was conducted for Design Review 3. An Engineering
Inclusivity assessment was made in order to evaluate the Incorporation of Inclusive Design of
our Stakeholder Interaction and Problem Definition and Design Decisions. An Environmental
Context assessment was also conducted to evaluate two driving questions: Does the system make
significant progress towards an unmet and important environmental or social challenge? and Is
there potential for the system to lead to undesirable consequences in its lifecycle, overshadowing
benefits?

Engineering Inclusivity
The Incorporation of Inclusive Design was the main evaluation point for assessing the
Engineering Inclusivity of the Chess Robot project process. For Stakeholder Interaction, we
assessed that due to the inherent student-driven nature of the Chess Robot project, stakeholders
and their respective impact on the project would be limited. In order to combat this, we see the

35

potential to make an effort to bring in more stakeholders and increase the inclusivity of the
design project. An example of this effort would be the recent addition of the Latin School of
Chicago’s chess team as a stakeholder. We hope that this addition increases the inclusivity of our
design by allowing voices to be heard from the target audience of the Chess Robot product. We
also identified that inclusivity could be increased by adding more mentor-like stakeholders and
parents of differently abled children (specifically to gain more insight on how we could bring
robot aided chess to everyone). During the Problem Definition and Design Decisions phases of
the project, we made an effort to focus on the ideas of financial, usage, and geographic
inclusivity. We intend to build a chess robot for as little money as possible such that anyone of
any economic background could afford a robotic chess companion. Portability was an important
part of these processes focusing on producing a lightweight and compact robot to promote
inclusivity of children and differently abled persons. The robot is also marketed to all chess
players in all locations and communities with the goal of maximizing long distance chess
competition through a robotic physical medium.

Environmental Context Assessment
The Environmental Context Assessment of the Chess Robot project focussed on the evaluation
of the questions: Does the system make significant progress towards an unmet and important
environmental or social challenge? and Is there potential for the system to lead to undesirable
consequences in its lifecycle, overshadowing benefits? We believe that the system makes
significant progress towards the unmet and important challenge of excessive screen time being
harmful for children. Having a physical chess robot to interact with gives children an alternative
to playing chess on a screen. We also believe that building a system compliant with its
requirements would result in a product that provides a physical chess companion over its
lifecycle. There does not seem to be undesirable consequences at this point in time. In order to
further evaluate the environmental impact of the system, an ADAMS power consumption
analysis will be conducted and the results used to conduct a lifecycle eco-audit. In response to
feedback from the Design Review 3 presentation, we have determined that the end-of-life
procedure for the system will be to recycle or reuse plastic and metal components and electronic
components will be taken to an electronic waste disposal facility for proper recycling.

Additionally, we conducted an Eco Audit to more accurately estimate the environmental impact
and costs associated with producing the Chess Robot. The results of the eco audit are shown in
Appendix D. Notably, the robot has a CO2 footprint of approximately 131 lb/year and total

environmental energy burden of 7.27 kcal/year with the majority caused from the “use”× 105

stage. The material, manufacture, and transportation impact is fairly standard.

36

Design Review and Verification

Risk Assessment
A detailed risk assessment was carried out by identifying potential risks and describing them,
then assessing how each risk could be influenced by designers, how likely each risk was to
occur, and how severe the impact of each risk would be. A general mitigation strategy was also
proposed for each of the listed risks. This assessment was considered for both design-end and
user-end concerns, including issues of safety, functionality, and affordability. Overall, most of the
identified risks had a high-degree of designer control, but also a significant potential impact.
With more time and resources, it is likely that most if not all of these risks could be significantly
mitigated or eliminated. The complete risk assessment can be found in table form in appendix G.

Detailed Design Solution
The final design solution consisted of several key components that each played a key role in the
overall functionality of the system. On the mechanical side, the key components consisted of the
slider and traveller along with their corresponding motor, the arm links and associated actuators,
and the gripper mechanism. The hardware components consisted of a Raspberry Pi Model 3,
Arbotix-M Robocontroller, a bread board, and a limit switch. For testing purposes, we used an
Arduino Leonardo to prototype both mechanical systems simultaneously. Lastly, the software
consisted primarily of python scripts repurposed from the Raspberry Turk project by Joey Meyer,
with some C code written for the slider mechanics. Figure 29 below shows the full assembly in
its entirety.

Fig. 29. Full chess robot assembly with all components attached.

37

Mechanical System
The following section will present the final mechanical system including the base and slider, the
mechanical arm, and the gripper. The goal of the base and slider was to accurately and efficiently
translate between files while balancing the weight of the mechanical arm given any of its
possible configurations. The mechanical arm was tasked with operating within the full length of
the chess board and having easy access to any rank on the board, while being able to provide
sufficient torque at all positions to return to its original state. Finally, the gripper was responsible
for picking up any piece with sufficient force such that it could move the piece to any square on
the board.

As discussed earlier in the report, we wanted to use the slider to simplify the control of the
mechanical arm while supplying the system with smooth translation in the x direction. The slider
was manufactured in house and constructed to operate along an Actobotics X-Rail and driven by
a rubber belt drive. The belt drive was powered by a servo motor which was programmed in C
and operated by an Arduino controller. A simple limit switch was also contained in the circuit to
recalibrate the slider after each successful move. The final slider design is seen below in Figure
30 and the base can be seen in Figure 31.

Fig. 30: Slider Cart subassembly CAD

38

Fig. 31: Slider Base subassembly CAD

The mechanical arm design was constructed using two links of different material. The link closer
to the base was made of Aluminum because it needed to bear a larger load and thus needed a
strong material. The link farther from the base was made using Acrylic such that the motors
would not have to provide as much torque to lift larger loads at the end of the arm. The shoulder,
elbow, and wrist joints were all fastened such that the motors were mounted directly to them and
could drive the links without any transmission. This strategy allowed us to avoid extra
mechanical design and make a more concise overall system. The overall arm design was difficult
to maintain and control, but it was very important to us that the robot resembled an arm to offer a
bit more a personable experience. This design decision was factored into our pugh charts along
with other reasons of why the arm and slider design was selected which can be referenced earlier
in the report.

The actuators used for the arm were Dynamixel AX-12A Robot actuators which provided a fixed
range from 0° to 300° and 0 to 1023 encoder counts. This resulted in a precision of 0.29°/count
which allowed for the fine degree of control we were looking for. In order to utilize this
precision, we needed to generate a conversion system which allowed us to convert from the
encoder counts of the shoulder and elbow motors to the position in xz coordinates such that we
could accurately pick up the chess pieces. The analysis on how that coordinate system was
derived can be found in Appendix I and the final design of the mechanical arm is shown below in
Figure 32.

39

Fig. 32: Arm subassembly construction CAD

Finally, the gripper mechanism was attached to the end of the mechanical arm. It used the same
actuator as the arm joints and was assembled in house using a kit supplied by the manufacturer.
The gripper operated between 512 counts and 900 counts which gave it a smaller range of
motion than the arm motors. Rather than being concerned with the degrees of rotation of the
motor, we converted the counts to millimeters in order to accurately measure the amount the
gripper closed per count. Given that the gripper when fully open was 32.91 mm with a range of
388 counts, we estimated that the precision of the gripper was approximately 0.239 mm/count.
With this information, we were able to control how far the gripper closed based on which piece it
was tasked with picking up. This process was touched upon previously in the software
development section. Adhesive pads were also supplied as a part of the gripper and they were
fitted to the inside of the plastic edges to allow for a bit more compliance as well as provide
additional friction to ensure the pieces would not be released prematurely.

The gripper was initially meant to be positioned using a third Dynamixel motor which would act
as the wrist joint. However, after running into technical issues, we decided to make a device that
would always center the gripper over the square no matter the arm’s orientation. We did this
using a bolt and nut, which allowed the gripper to hang freely, and a rubber band to provide some
damping as well as offset the gripper’s center of mass since it was not symmetrical. This design

40

alternative ended up being very effective and worked as intended. The final gripper design is
shown below in Figure 33.

Fig. 33: PhantomX Parallel AX-12 Gripper CAD

Hardware Components
The three primary components of the circuitry are the Raspberry Pi 3, the ArbotiX-M
robocontroller, and the H-Bridge circuit board. The Raspberry Pi 3 is powered with a 12 volt
barrel plug, and sends the command information through a serial bus to the ArbotiX-M
microcontroller. The Raspberry Pi is programmed using python. The ArbotiX-M is coded in C,
and is the primary control component in the hardware. It takes in the serial output of the
Raspberry Pi as commands and encoder information from the slider, and sends the signals
required to run the Dynamixel servos and the slider motor. The ArbotiX-M runs a combination of
code to convert the python input into commands for the Dynamixel servos, and a PID controller
for the slider motor. The ArbotiX-M sends PWM information to the H-Bridge circuit, which both
sends a PWM signal to the slider motor at 12 V, and also controls the direction of the motor for
precise control. Figure 34 below shows the overall circuit arrangement.

41

Fig. 34: Idealized hardware diagram design to control all components.

Software Components
The Software Development process culminated in a robust code base that accomplished all
features as determined by the requirements and specifications of the project except for variable
difficulty ratings. The general development process began with forking Joey Mayer’s
Raspberryturk source code repository. His code supported event driven automation with
computer vision using a background daemon process (essentially a program that runs on its own
with no user input). Due to lack of time and funds for the semester, computer vision was ruled
out for our project. The first step in the development process was converting the Raspberryturk
source code to support manual input for human moves instead of computer vision. This also
meant that we wouldn’t need the event driven daemon process and thus that was removed as

42

well. A basic user interface was developed and is shown below in Figure 35.

Fig. 35. User interface for manual input of human moves. Human inputs a move and the
stockfish AI plays a move in return and the process repeats.

After development of the user interface, attention was immediately turned to the movement
engine portion of the source code. The raspberryturk solved an inverse kinematics problem in the
xy plane to map points on the board to encoder counts for it’s two servos. Our implementation
has an arm moving in the xz plane so this kinematics problem was converted to our coordinate
system and the source code was updated accordingly. We then added support for the gripper
which has a similar driver as the arm servos. Slider support was added using raspberry pi GPIO
output to the arduino running C code sourced from ME350 that then takes instructions from the
GPIO and converts it to positioning the slider to the right column on the board. After rigorous
unit testing of the arm and slider code drivers. We focused our attention to updating the
movement engine. The movement engine converts chess moves outputted by stockfish into
usable instructions for the arm, gripper, and slider drivers. This is done by converting a move to
a set of single movements (to square, from square, type of piece). Then converting the squares to
a point for the arm to move to and a column for the slider to move to. The gripper then grabs the
piece and the process is repeated to move to the right square to drop the piece off.

43

A flowchart for the software process is shown below in Figure 36.

Fig. 36. Flowchart for the software component.

The directory tree for the project source code is shown below in Figure 37.

Fig. 37. Directory tree for project source code.

44

A file by file breakdown of code functions is provided below in Table 10.

Table 10: Purpose of each file in the directory tree.

Filename Function and Purpose

__init__.py Set up file paths for use by the program

__main__.py Command line processing and starts program

core/__init__.py Placeholder for module compiling

core/game/__init__.py Placeholder for module compiling

core/game/human_player.py Support for human controlling of Robot’s moves

core/game/player.py Defines player class, human and stockfish inherit this class and
defines its functions

core/game/stockfish_player.py Support for ai controlling of Robot’s moves

embedded/__init__.py Placeholder for module compiling

embedded/agent.py Executes perception-action sequence

embedded/raspberryturkd.py Has support for event-driven daemon process but creates Agent
object that then calls the perception-action sequence for our
purposes

embedded/game/__init__.py Contains helper functions for manipulating the board file and game
(get_board, get_game, start_new_game, apply_move etc.)

embedded/motion/__init__.py Placeholder for module compiling

embedded/motion/arm.py Uses the arm movement engine to manipulate servos
(move_to_point, set_speed, return_to_rest, etc.)

embedded/motion/gripper.py Support for picking up and dropping pieces (grab_piece,
release_piece, etc.)

embedded/motion/slider.py Support for telling slider C code on arduino where to move
(move_to_column, etc.)

embedded/motion/arm_moveme
nt_engine.py

Uses the .kdtree and .npy files to solve the inverse kinematics
problem and converts points to servo instructions

embedded/motion/coordinater.p
y

Coordinates arm, gripper, and slider objects to execute a single
movement (move_piece, execute_move, etc.)

embedded/motion/pypose This folder contains the serial protocol used to communicate with
the servos

45

The source code github links for this project and the unit testing environment is provided in
Appendix H.

Verification
To verify that our project was successful, we were able to perform a demonstration of all of the
individual components of the functionality of the robot. This included slider motion, arm motion,
piece gripping, and chess engine implementation. This was done in person within the X50 lab on
campus. From this, we were able to show that all of the individual components were functioning,
and that remaining work that needed to be done to reach full verification was the integration of
the three primary systems to work as one.

The chess robot currently does not meet most of the specifications chosen at the start of the
project. A verification compliance matrix was used to determine whether or not we were able to
meet our specifications. A verification compliance matrix was made as a tool for design
verification and was used to make sure that all technical and stakeholder requirements are met.
The verification compliance matrix is also a useful tool for the project team to stay up to date on
the compliance of each requirement as well as the action needed to work towards compliance on
a specific requirement. Another important aspect of the verification compliance matrix is that it
allows stakeholders to see that their requirements are met with justification at a quick glance.
Table 11 below shows the results of the verification compliance matrix, which can be found in
full the Appendix D.

Table 11: Final Results of compliance matrix

Category Count

Total # Requirements 10

Total # Compliant 3

Total # Intend to Comply 4

Total # Partial Compliant 2

Total # Non-Compliant 1

Each requirement reported as compliant as successfully tested based on metrics determined
based on the original requirements and specifications. The portability requirement (R1) was met
after finding the final mass of the robot to be 1.275 kg, and the overall depth footprint being 0.23
m. These two metrics ensure that a child could carry the chess robot and that it would fit on a
shelf of standard depth. The “Function using standard chess board and pieces” requirement (R3)

46

was met by testing the gripper to ensure that it could grab every kind of piece (Pawn, Knight,
Bishop, Rook, Queen, King) and be able to reach all ranks from 1 to 8. Finally, the chess robot
met the “Receive Manual Input in Standard Algebraic Chess Notation From Human Player”
requirement (R5) by being able to play a complete game of chess using standard algebraic
notation within the Raspberry Pi testing environment.

Discussion and Recommendations
Creating the Chess Robot as our Mechanical Engineering Capstone Project was a well-rounded
culmination of the University of Michigan Mechanical Engineering undergraduate education. We
aimed to solve a real world problem by creating a tangible solution. Through this process we
utilized an array of our developed skills and experiences to help guide our decision making.
Specifically, we harnessed concepts and experiences from many courses including static
mechanics, dynamics and vibrations, controls, and prior design and manufacturing courses. For
many team members, creating the Chess Robot proved to even better represent our time at
Michigan by combining mechanical engineering with computer science. We chose a challenging
systems integration problem since the majority of us have either the computer science major or
minor and we wanted to find a successful way to involve it in our capstone project. Additionally,
this capstone project was an open ended project in which we were able to combine our personal
passions (of Chess) with our educational background. Considering all of these factors, we were
excited to pursue this project and worked hard to successfully complete it.

While we set out to make a fully functional Chess Robot that could compete in an entire standard
game against a human, we ultimately came up a little short. At the end of the semester we had
created a successful mechanical system and controls for many movements for both the arm and
the slider, but failed to combine everything into a fully functional prototype. Specifically, our
robot can make individual moves in each respective file (or column) on the board but currently is
not set to move across columns to make a non-vertical move. The primary reason for this is
because we were unable to properly integrate the slider mechanism with the arm. So while we
can move the slider between individual files and can move the arm across individual ranks
(rows), we cannot accomplish them simultaneously. This primary problem stemmed from a few
different factors including working with a burnt-out robocontroller, difficulty controlling the
individual subsystems, a broken actuator, and communicating across languages and hardware.
We did not anticipate as many uncontrollable issues occurring and our schedule was set back
significantly. While we planned out our schedule aggressively throughout the semester, these
problems caused significant setbacks specifically at the end of the semester. One primary lesson
we learned and would have redone is working to finish creating the mechanical system as early
as possible to leave buffer time for the inevitable mechatronics problems. The mechanical design
and manufacturing was effective and according to schedule, so in hindsight, we would reallocate
the time to leave more room for control. Another significant unanticipated problem was the
overworking of our base actuator. The actuator that rotates the entire arm would often overheat

47

and shut itself down. During our solution development and engineering analysis phase, we
confirmed that the actuator had enough torque to lift the arm at its fully extended state in the
required time, but we neglected to consider that it would be constantly used. Upon redesign, we
would add a larger safety factor for max torque and would likely use the Dynamixel MX-64
actuator for the base actuator. The Dynamixel MX-64 would be a successful alternative as the
controls and integration would remain similar and it is suited to operate at our required max
torque for longer periods of time (specs show that it can operate successfully at ⅕ * stall torque,
or 1.46 Nm which is greater than our max torque requirement). As each of these problems arose,
we were extremely agile in debugging, coming up with creative solutions, and were determined
to make it work. We continually challenged our engineering thinking, analysis, and creativity.

We reflected on this progress and despite not meeting many of the requirements that we had
defined, we determined that our project was a success nonetheless. At its core, the Chess Robot
is a compact electromechanical system that, with the proper controls, can play a game of chess.
At its current state, it can do many individual tasks and with a few more weeks, we are confident
that the Chess Robot would be nearly fully functional. Notably, the gripper can grip each piece,
the arm can move to the correct position with increasing accuracy, and the slider controls are
improving as well. As a team we believe we developed a robust mechanical design, highlighted
by firm joints, minimal pinch-points, and plenty of room for adjustability. Upon redesign we
would have used a more powerful actuator, created a 3D-printer cover for appearance and cable
management, and worked to create a less-wobbly slider-roller.

Taking the feedback from peers, instructors, stakeholders, and ourselves, we aim to continue
integrating our subsystems and aim to finish developing the Chess Robot over the summer.
Throughout this semester, we have gained skills in project management, problem definition,
creative solution generation, engineering analysis, manufacturing, and control. Even more, we
learned to manage our aggressive goals by way of tiered requirements, organized and efficient
team meetings, and dedication from each team member. We managed to create a semi-functional
Chess Robot with primarily virtual communication and limited lab hours, while managing to stay
safe and healthy. The Chess Robot proved to be a successful capstone project that we are thrilled
to finalize in the months to come.

Engineering Standards
Our team considered a few standards during our concept generation process. We wanted to make
sure that our robot would follow the OSHA guidelines for robotics safety to the best of our
ability, while also keeping in mind the power of the robot. Many of the standards are designed
around large industrial robots, but some of the guidelines like proximity sensors, hard stops,
emergency stop buttons, and emergency braking. For the full listing of the engineering standard
that we looked at, refer to Appendix K.

48

Conclusion
Our team has completed the Problem Definition and Concept Exploration components of the ME
450 Chess Education Robot project. As part of the Problem Definition component, we have
defined our Problem Statement to be “Continue developing Chess education while minimizing
online-chess’s added screen time and keeping its long-distance multiplayer benefits”. We have
conducted stakeholder engagement and outreach. We interviewed Premier Chess CEO, Evan
Rabin, receiving critical feedback that helped us prioritize our requirements and specifications
and intend to conduct interviews with parents to gain more information about pricing
requirements. We’ve developed a comprehensive list of Requirements and Specifications using a
three tiered approach. The “Must-Have” requirements are a set of requirements fundamental to
the functionality of the Chess Education Robot. The “Nice-to-Have” requirements are upgrades
on some of the “Must-Have” requirements that could be completed in the semester if time
permits. The “Long Term and Aspirational” requirements are requirements that bring advanced
functionality to the Chess Education Robot but are unrealistic to achieve in the scope of one
semester. As for the Concept Exploration component, we decided to take a subsystem approach
to concept generation by developing functional decompositions for the mechanical and software
subsystems. We then conducted brainstorming sessions and techniques to postulate solution ideas
for each subsystem. These ideas were iterated on and sketched out various design ideas in the
concept development phase. Lastly, in the concept and evaluation phase, we used pugh charts to
determine final design decisions for the various subsystems. The next step for the project is the
Solution Development phase, where we begin developing physical solutions for the project. The
Overall Solution Development Approach was to develop the various subsystems in parallel and
to produce initial virtual prototypes in Solidworks. A physical mockup was generated to help all
team members visualize the same system. Then, each subsystem was iterated on and engineering
analysis was conducted in order to drive a final system solution. After arriving at a final solution,
we manufactured and assembled the system before moving on to controls and testing. Ultimately
we produced a robust electromechanical system and created efficient controls for many
individual motions. Due to numerous unanticipated problems with sourced items and in control,
we were unable to fully integrate all of the desired functionality. Over the upcoming months, our
team plans to continue the design process and finish created a fully autonomous chess robot.

49

Authors

Sam Goldman

Sam Goldman is a senior Mechanical Engineering student with a
minor in Computer Science. He grew up in Chicago, Illinois
where he was drawn to math, science, and chess. Sam founded
his high school chess team and competed in the Illinois State
Chess tournament. He aims to combine his passions for
engineering and chess in this student initiated project. Sam has
previously engaged in biomechanical research with the goal of
determining if elderly subjects were at risk of falling. Most
recently, Sam worked as a hardware engineering intern at GE
Healthcare where he designed an alignment fixture stand for CT
assembly. Sam served as the president of his fraternity and is
involved in the Jewish Heritage Program on campus. Outside of
engineering and his campus involvement, he enjoys competing in
sports, trying new food, and most of all, playing chess.

Andrew Kwolek

Andrew Kwolek is a senior dual degree student in Mechanical
Engineering and Computer Science. He grew up in Northbrook,
Illinois where he gained an affinity for math and science at a
young age. Upon graduation, Andrew plans to use his
experience to pursue a career in autonomous robotics. Andrew
has worked in both independent research, where he designed a
subsystem for a fully robotic prosthetic ankle, and on a design
team, where he was a member of the University of Michigan
Solar Car Team. Most recently, Andrew worked as a robotics
intern at Sarcos Robotics in Salt Lake City, UT, where he aided
in controls development of a full-body exoskeleton. Outside of
his professional life, Andrew volunteered as a COE peer mentor,
where he guided incoming freshmen through their first semester
of undergraduate life. He also enjoys watching sports, and
making music in his free time.

50

Kenji Otani
Kenji Otani is a senior in mechanical engineering with a minor in
computer science. He grew up in the metro Detroit area. Kenji has
been fascinated by robotics since he was a child, and wants to
pursue a career in mechanical design, mechatronics, and robotics.
He has tailored a career path that he hopes will help him design
robots for in the future. Kenji has worked on both the SAE Baja and
SPARK electric racing design teams located in the Wilson Center.
Additionally, he has worked with the student chapter of ASME over
the duration of his time at the University of Michigan, climbing to
the External Vice President of the chapter. Outside of engineering,
Kenji is also the vice president of a student band that plays music
inspired from modern japanese culture, and is also a participant
with the Kendo Club at the University of Michigan, competing
against students of other clubs and universities across the midwest.

Ian Ross
Ian Ross is a senior studying mechanical engineering with a
minor in business. He grew up on Long Island, New York. Ian
has experience with robotics dating back to middle school and
has played chess for most of his life. He is working towards a
future that allows him to employ his engineering and business
studies to solve big-picture problems and better the
communities he is a part of. Additionally, he is a member of
Fraternity and Sorority Life at Michigan, having served as the
president of his chapter of Beta Theta Pi and of Michigan’s
Interfraternity Council. Ian also volunteers with the Michigan
Men program, a branch of SAPAC focused on peer-facilitated
dialogues about masculine identity, healthy relationships,
values-driven communities, and personal wellness.

51

Jack Zender

Jack Zender is a senior studying mechanical engineering with
a minor in computer science. He was born in Chicago and
moved to Ann Arbor in 2010 where he attended high school
and then the University of Michigan. He is very interested in
mechanical theory, controls systems, and using computer
science as a way to enhance mechanical engineering
solutions. Jack was able to put both his mechanical
engineering background and computer science skills to use
last summer while interning for Traxen. a small startup based
out of Plymouth, MI. He worked closely with the controls
team developing software for the intelligent cruise control
product IQ-Cruise for semi-trucks. Jack’s largest achievement
during his internship was developing a python GUI script that
built off of existing code to provide an easy to use tool for
converting raw CAN trace data into CSV format for further
analysis. After graduating, Jack hopes to build a career in a
space where he can use all of his skills to come up with
unique solutions to whatever problem he’s given.

52

Works Cited

Information Sources
[1] Gendler, Alex. “A history of chess.” TED: Ideas Worth Spreading, Sep. 2019,

https://www.ted.com/talks/alex_gendler_a_brief_history_of_chess?language=en

[2] Sutter, John D. “Trouble Sleeping? Maybe It's Your IPad.” CNN, Cable News Network, 13

May 2010, www.cnn.com/2010/TECH/05/13/sleep.gadgets.ipad/index.html.

[3] 11 Min Read Children's Health. “What Does Too Much Screen Time Do to Kids' Brains?”

NewYork-Presbyterian, 5 Oct. 2020,

healthmatters.nyp.org/what-does-too-much-screen-time-do-to-childrens-brains/.

[4] Evan Rabin. Personal Interview. 01 February 2021.

[5] Parents, Anonymous. Personal Interview. 06 February 2021.

[6][18] 朱其罡 . Robot for Playing Chess. 28 May 2014.

[7] 江兴方 , et al. Chinese Chess Robot Device Based on Real Chessboard Man-Machine Chess

Playing. 19 Oct. 2016.

[8] Quayle, Chris. Chess Robot Full Video, Chris Quayle, 23 July 2017,

www.youtube.com/watch?v=svEf53gvRgc.

[9] Ding, Jialin. ChessVision: Chess Board and Piece Recognition. Stanford,

web.stanford.edu/class/cs231a/prev_projects_2016/CS_231A_Final_Report.pdf.

[10] Barone, Cara. “How Heavy Is Too Heavy for a Child's Backpack?” Sutter Health, Sutter

Health,

www.sutterhealth.org/health/childrens-health/how-heavy-is-too-heavy-for-a-childs-backpack.

[11]”Shelf Design Guidelines” Brezlin, www.brezlin.com/design/shelvingguidelines.html.

[12] Team, Chess.com. “Chess Board Dimensions: Basics and Guidelines.” Chess.com,

Chess.com, 5 June 2019, www.chess.com/article/view/chess-board-dimensions.

[13] Chaiyapol Kulpate , Raman Paranjape & Mehran Mehrandezh (2008) Precise 3D

Positioning of a Robotic Arm Using a Single Camera and a Flat Mirror, International Journal

of Optomechatronics, 2:3, 205-232

[14] “Chess Pieces and Their Weights.” Chess Pieces: Triple Weighted vs Unweighted |

Wholesale Chess, 2021, www.wholesalechess.com/pieces-and-weights.html.

53

https://www.ted.com/talks/alex_gendler_a_brief_history_of_chess?language=en

[15] Khan, Zak. “FAQ: How to Choose a Safety Factor so a Motor Design Lasts?” Motion

Control Tips,

www.motioncontroltips.com/faq-choose-safety-factor-motor-design-lasts/#:~:text=Most%20

documentation%20and%20motor%20selection,to%20output%20enough%20energy%20for.

[16] “Algebraic Notation (Chess).” Wikipedia, Wikimedia Foundation, 26 Jan. 2021,

en.wikipedia.org/wiki/Algebraic_notation_(chess).

[17] “Time Controls in Chess - Chess Terms.” Chess.com,

www.chess.com/terms/chess-time-controls.

[18] Mikolyzk, Thomas. “US Chess Rulebook: The Official Rules of Chess, 7th Edition, Tim

Just, Chief Editor.” US Chess Federation, United States Chess Federation, 19 July 2019,

www.uschess.org/index.php/Official-Rules/US-Chess-Rulebook-The-Official-Rules-of-Ches

s-7th-Edition-Tim-Just-Chief-Editor.html.

[19] “Department of Labor Logo UNITED STATES DEPARTMENT OF LABOR.” Guidelines

For Robotics Safety | Occupational Safety and Health Administration, 21 Sept. 1987,

www.osha.gov/enforcement/directives/std-01-12-002.

[20] Ferreira, Diogo R. “The Impact of the Search Depth on Chess Playing Strength.” ICGA

Journal, vol. 36, no. 2, 2013, pp. 67–80., doi:10.3233/icg-2013-36202.

[21] Chess.com https://www.chess.com/article/view/chess-variants

[22] Niklasf. “Niklasf/Python-Chess.” GitHub, 19 Feb. 2021, github.com/niklasf/python-chess.

[23] Meyer, Joey. “Joeymeyer/Raspberryturk.” GitHub, github.com/joeymeyer/raspberryturk.

[24] “About - Stockfish.” Stockfish, stockfishchess.org/about/.

[25] “Dynamixel AX-12A Robot Actuator.” From Robotis,

www.trossenrobotics.com/dynamixel-ax-12-robot-actuator.aspx.

[26]OpenStax. “Angular Acceleration.” Lumen,

courses.lumenlearning.com/physics/chapter/10-1-angular-acceleration/.

[27]“Calculate Bending Stress of a Beam Section: SkyCiv Cloud Structural Analysis Software.”

SkyCiv Cloud Structural Analysis Software | Cloud Structural Analysis Software and

Calculators, 18 Feb. 2021,

skyciv.com/docs/tutorials/stress-tutorials/calculate-bending-stress-of-a-beam-section/.

54

https://www.chess.com/article/view/chess-variants

[28] Dielectric Manufacturing. “Material Properties of ABS - Acrylonitrile-Butadlene-Styrene.”

Dielectric Manufacturing, Dielectric Manufacturing, 24 Mar. 2020,

dielectricmfg.com/knowledge-base/abs/.

[29] “Overview of Materials for Acrylic, Cast.” MatWeb,

www.matweb.com/search/datasheet.aspx?bassnum=O1303&ckck=1.

55

Appendices

Appendix A: Gantt Chart Enlarged

56

Appendix B: Concept Generation Jamboard

57

58

59

Appendix C: Preliminary Software For Chess Engine / API

Filename : chess_play_vs_stockfish.py

import chess
import chess.engine

def is_SAN():
TODO Takes: SAN string move Returns: if valid SAN move
takes: move string, Returns: if the move is a valid SAN move
return True

def is_legal_move(move, board):
Takes, UCI move, board object Returns: if UCI move is legal
return move in board.legal_moves

def get_stockfish_move(board):
engine =

chess.engine.SimpleEngine.popen_uci("/usr/local/bin/stockfish")
move = engine.play(board, chess.engine.Limit(time=0.1))
engine.quit()
return move

def get_move(player, board):
asks player for move in SAN, converts to UCI and checks if its legal

and returns UCI move
while True:

move = input("What is your move " + player + "? \n")
m = board.parse_san(move)
if is_legal_move(m, board) and is_SAN():

return m
print("Error: wrong move format or illegal move \n")

def main():

board = chess.Board()
while True:

first_move = get_move("Player 1", board)
board.push(first_move)
if board.is_checkmate():

print("Player 1, your move was", first_move)

60

print("\nPlayer 1 wins")
print(board)
return 0

second_move = get_stockfish_move(board)
board.push(second_move.move)
if board.is_checkmate():

print("Player 1, your move was", first_move)
print("Stockfish, your move was", second_move.move)
print("\nStockfish wins")
print(board)
return 0

print("\nPlayer 1, your move was", first_move)
print("Stockfish, your move was", second_move.move)
print(board)
print("\n")

if __name__ == "__main__":
main()

61

Appendix D: Eco Audit

62

Appendix E: Compliance Verification Matrix
Ref. # Requirement Specification Compliance Status Risk Level Justification Action

R1 Portable

Based on doctor’s
recommendations for max
backpack weight [10]

Should rest comfortable on
a shelf with depth of 0.3 m
[11]

Compliant Medium

Currently compliant
with weight and size
but design isn't
complete

Continue development
and take steps to stay
within portable
guidelines

R2 Durable

Mechanism should be
stable and not come loose
from any motion

Runtime of 2000 hrs
accounts for 40 hrs a week
for a year

Intend to Comply Medium

Some durability
analysis completed
such as tipping point
and yield strength
but more needed

Determine initial
analysis' to conduct to
verify durability
requirement (may
require research)

R3
Function Using
Standard Size Chess
Board and Pieces

Robot plays on standard
tournament [12] set to
simulate a setting the player
would realistically play in

Compliant Medium
CAD Model
Supports Standard
Size Chess Board

Continue development
and ensure functionality
with standard board

R4

Autonomously Lift
and Move Pieces In
the Correct
Orientation and to
the Correct Location

Clearance and the deviation
of pieces from the square’s
center based on research
for other PID controlled
robotic arms [13]

5 second move time
recommended by
stakeholder

Piece weight range
determined by
double-weighted standard
tournament pieces [14] with
a 1.75x safety factor [15]

Intend to Comply Medium

CAD Model and
initial analysis show
that it is possible to
move any piece to
any location but
physical verification
needed

Continue physical
model development and
software development
to ensure proper piece
moving

R5

Receive Manual
Input in Standard
Algebraic Chess
Notation From
Human Player

Robot should understand
and use chess’ universal
notation [16]

Compliant Medium

Basic software
developed to take
and parse manual
inputs

Incorporate with
raspberryturk source
code

R6
Play Timed Chess
Games

Timer interaction [17] is
fundamental to competitive
chess and the device should
simulate that environment

Partial Compliant High

Similar to Lift and
Move pieces, this
process is
theoretically possible
but no physical
verification as of
now

The largest hurdle will
be software handling of
timer interaction. Must
research and spend
time on piece of code
handling this

R7
Play Game of Chess
According to all
Standard Rules

Important for device to
simulate official tournament
chess rules

Intend to Comply Medium

As long as Lift and
Move and Timed
Chess Games
requirements are
compliant this will
bank on software
competency

Make sure software
plays the game
according to Chess
Rules

63

https://www.chess.com/article/view/chess-board-dimensions
https://www.chess.com/article/view/chess-board-dimensions
https://en.wikipedia.org/wiki/Algebraic_notation_(chess)
https://en.wikipedia.org/wiki/Algebraic_notation_(chess)
https://en.wikipedia.org/wiki/Algebraic_notation_(chess)
https://www.chess.com/terms/chess-time-controls

R8

Autonomously Make
its Own Decisions
When Playing a
Move

Crux of the problem; core
component of overall
functionality

3 seconds to “think”, 7 to
move

Intend to Comply Medium

Basic software
developed to receive
moves from
stockfish

Incorporate with
raspberryturk source
code

R9

Have a Mechanical
Structure that Allows
for Safe and
Restricted
Movement

Needs to be safe for
children to use when playing
chess

Cited as stakeholder priority

Partial Compliant Medium

Safety measures
incorporated in the
CAD but no physical
verification or safety
testing as of now

Get physical system
and software working
then run safety test
suite

R10
Vary Levels of
Difficulty Prior to
Game

The robot should be
accommodating to players
of different skill levels

Non-Compliant High

Proving difficult to
implement varied
skill because of
limitations in chess
engine
communication

Further Research into
chess engine
interaction and engine
theory

64

Appendix F: Bill of Materials

Part Name Qty. Material Source Acquired Est. cost

1 Left Foot 1 Aluminum Manufactured Shop Stock $9.29

2 Right Foot 1 Aluminum Manufactured Shop Stock $15.49

3 Base Leg 2 Aluminum Manufactured Shop Stock $4.37

4 Slider Rail 1 Aluminum
Servocity +
Manufactured Purchased $10.99

5 Slider Base 1 Aluminum Manufactured Shop Stock $3.41

6 Base Link 2 Aluminum Manufactured Shop Stock $7.29

7 Reach Link 2 Acrylic Plastic Manufactured Shop Stock $0.50

8 Base Link Connector 1 Aluminum Manufactured Shop Stock $0.69

9 Reach Link Connector 1 Aluminum Manufactured Shop Stock $0.83

P1 Raspberry Pi 3 Model B 1 Circuit Board Microcenter Purchased $29.99

P2
RobotiX-M
Robocontroller 1 Circuit Board Trossen Robotics Purchased $39.95

P3
Dynamixel AX-12A
Robot Actuator x 3 3 Complex Trossen Robotics Purchased $134.70

P4 FTDI Cable 5V 1 Cable Trossen Robotics Purchased $17.95

P5
PhantomX Parallel
AX-12 Gripper w/ servo 1 Plastic Trossen Robotics Purchased $64.95

P6 Bioloid Frame F8 1 Plastic Trossen Robotics Purchased $1.75

P7 Bioloid Frame F3 (Metal) 3 Aluminum Trossen Robotics Purchased $14.85

P8 Bioloid Frame F2 (Metal) 1 Aluminum Trossen Robotics Purchased $4.95

P9 V-Wheel Kit A 1
Steel + Plastic
+ Aluminum Servocity

Recycled
Project $34.99

P10
X-Rail Roller Bracket (2
Pack) 1 Aluminum Servocity

Recycled
Project $9.99

P11
90° Single Angle Pattern
Bracket 2 Aluminum Servocity

Recycled
Project $3.78

P12
0.250" 15 Tooth Pinion
Pulley 2 Aluminum Servocity

Recycled
Project $17.98

65

P13
1206 Series Pattern
Adaptor (16-1) 2 Aluminum Servocity

Recycled
Project $9.98

P14 63" x 3/8 in Timing Belt 1
Neoprene +
Fiberglass Servocity

Recycled
Project $11.85

P15

5202 Series Yellow Jacket
Planetary Gear Motor
(26.9:1) 1 Complex Servocity

Recycled
Project $39.99

P15 XL Belt Mount B 2 Aluminum Servocity
Recycled
Project $7.98

P16

Stainless Steel Round
Shafting (1/4" Diameter x
2") 1 Stainless Steel Servocity

Recycled
Project $1.09

P17 Screws 34 Steel Hardware Store
Recycled
Project $3.00

Total Cost: $502.58

66

Appendix G: Risk Assessment

67

Appendix H: Github links for Source Code

Project Source Code: https://github.com/jackzend/raspberryturk/tree/raspi_local_version

Unit Testing Environment: https://github.com/jackzend/arm_testing

68

https://github.com/jackzend/raspberryturk/tree/raspi_local_version
https://github.com/jackzend/arm_testing

Appendix I: Arm Coordinate System Analysis

The main function of this analysis is to convert the encoder counts of the shoulder motor s1 and
the encoder counts of the elbow motor s2, to coordinates in the yz-plane.

𝑠
1
, 𝑠

2
= 𝑔(𝑧, 𝑦)

This problem becomes a reverse kinematics problem, and since we know the lengths of the
links, we can determine the coordinates in terms of the angles of rotation.

𝑓
𝑧
(θ

1
, θ

2
) = 𝑧

𝑜𝑓𝑓𝑠𝑒𝑡
+ 𝑐𝑜𝑠(θ

1
) · 𝑙

1
+ 𝑐𝑜𝑠(θ

1
+ θ

2
) · 𝑙

2

𝑓
𝑦
(θ

1
, θ

2
) = 𝑦

𝑜𝑓𝑓𝑠𝑒𝑡
+ 𝑠𝑖𝑛(θ

1
) · 𝑙

1
+ 𝑠𝑖𝑛(θ

1
+ θ

2
) · 𝑙

2

The length of the link connected to the shoulder motor is represented as l1 and the length of the
link connected to the elbow motor is l2. The next step is to find the rotational offset of the motors
given the position of the links. In other words, we must figure out how far the motor is rotated
from its zero position given its mounted orientation. We did this by finding the distance between
our axis and the motor’s default axis. We found that the rotational offsets were as follows:

θ
1
' = − 111. 14◦, θ

2
' = 237. 35◦

With the rotational offsets we can find the conversion for each servo from encoder counts to
degrees of rotation.

θ
1
(𝑠

1
) =

1023−𝑠
1

1023 · 300◦ + θ
1
'

θ
2
(𝑠

2
) = θ

2
' −

1023−𝑠
2

1023 · 300◦

We can now find the final equations which convert the encoder counts of each motor to
coordinates.

𝑓
𝑧
(𝑠

1
, 𝑠

2
) = 𝑧

𝑜𝑓𝑓𝑠𝑒𝑡
+ 𝑐𝑜𝑠(

1023−𝑠
1

1023 · 300◦ + θ
1
') · 𝑙

1
+ 𝑐𝑜𝑠((

1023−𝑠
1

1023 · 300◦ + θ
1
') + (θ

2
' −

1023−𝑠
2

1023 · 300◦)) · 𝑙
2

𝑓
𝑦
(𝑠

1
, 𝑠

2
) = 𝑦

𝑜𝑓𝑓𝑠𝑒𝑡
+ 𝑠𝑖𝑛(

1023−𝑠
1

1023 · 300◦ + θ
1
') · 𝑙

1
+ 𝑠𝑖𝑛((

1023−𝑠
1

1023 · 300◦ + θ
1
') + (θ

2
' −

1023−𝑠
2

1023 · 300◦)) · 𝑙
2

69

Appendix J: Mechanical Drawings and Manufacturing Plans

70

71

72

73

74

75

76

77

78

79

80

81

82

Appendix K: Safety Standards
OSHA instruction STD 01-12-002: Guidelines For Robotics Safety

Guidelines for Robotics Safety

U.S. Department of Labor

Occupational Safety and Health Administration

Washington, D.C.

A - 1
OSHA Instruction PUB 8-1.3 SEP 21,1987 Office of Science and Technology Assessment

FOREWORD

The purpose of this instruction is to inform OSHA compliance officers and employers and
employees about safety concerns that have arisen with the growing use of robotics systems in
manufacturing. Industrial robots can be used to perform hazardous tasks but in doing so they can
create new hazards. With the burgeoning use of robots in industry, it is feared that without
adequate guarding and personnel training, injury rates for employees working with robots may
increase.

Current guidelines for robot safety include the American National Standards Institute (ANSI)
ANSI-RIA R15.06-1986, "American National Standard for Industrial Robots and Robot Systems
- Safety Requirements," and the National Institute for Occupational Safety and Health (NIOSH)
December, 1984 Alert "Request for Assistance in Preventing the Injury of Workers by Robots."
Copies of the ANSI Standard are available from the American National Standards Institute, Inc.,
1430 Broadway, New York, NY 10018. The NIOSH Alert was prepared by its Division of Safety
Research, 944 Chestnut Ridge Road, Morgantown, WV 26505.

This instruction provides general introductory material describing the features of robots and
robotics systems which present unusual hazards and will describe some of the more common
safety systems employed to alleviate these hazards. The ANSI Standard defines consensus
provisions for the construction, reconstruction, modification, installation, safeguarding, care,
testing, and start-up of robots and robotics systems as well as training for robot and robotics
systems operations and maintenance personnel. The NIOSH Alert contains safety
recommendations that are based on its field evaluation of the first identified robot-related fatality
in the United States.

83

INTRODUCTION

Robots are reprogrammable, multifunctional, mechanical manipulators that typically employ one
or more means of power: electromechanical, hydraulic, or pneumatic. Industrial robots have been
used chiefly for spray painting, spot-welding, and transfer and assembly tasks. A robot performs
its tasks in a physical area known as the robot operating work envelope. This work envelope is
the volume swept by all possible programmable robot movements. This includes the area where
work is performed by robot tooling.

A robot can have one or more arms which are interconnected sets of links and powered joints.
Arms are comprised of manipulators which support or move wrists and end-effectors. An
end-effector is an accessory tool specifically designed for attachment to a robot wrist to enable
the robot to perform its intended task. Examples of end-effectors include grippers, spot-weld
guns, and spray paint guns. The ANSI R15.O6-1986 Standard defines an industrial robot system
as that which includes industrial robots, end-effectors, and any equipment, devices and sensors
required for the entire robot system to perform its tasks.

A-2
OSHA Instruction PUB 8-1.3 SEP 21, 1987 Office of Science and Technology Assessment

Most robots are set up for an operation by the teach-and-repeat technique. In this technique, a
trained operator (programmer) typically uses a portable control device (commonly referred to as
a teach pendant) to manually key a robot and its tasks. Program steps are of the up-down,
left-right, in-out, and clockwise-counterclockwise variety. Robot speeds during these
programming sessions are required to be slow. The ANSI Standard currently recommends that
this slow speed should not exceed 10 in/sec (250 mm/sec).

The very nature of robotics systems operations has introduced a new type of employee into the
industrial workplace, the corrective maintenance worker. This individual is normally present
during all operations of a robotics system and is responsible for assuring continuing operation -
adjusting speeds, correcting grips, and freeing jam-ups. The corrective maintenance worker may
also be the trained programmer who guides a robot through the teach-and-repeat technique. It is
necessary for this individual to be near the robot from time to time, which raises concerns about
his or her safety and the safety of other workers who may also be exposed.

Recent studies in Sweden and Japan indicate that many robot accidents do not occur under
normal operating conditions but rather during programming, adjustment, testing, cleaning,
inspection, and repair periods. During many of these operations, the operator, programmer or
corrective maintenance worker may temporarily be within the robot work envelope while power
is available to moveable elements of the robot system.

84

This guideline describes some of the elements of good safety practices and techniques used in
the section and installation of robots and robot safety systems, control devices, robot
programming and employee training. A comprehensive list of safety requirements is provided in
the ANSI R15.06-1986 Standard.

TYPICAL ACCIDENTS

The following are documented accidents involving robots that occurred recently in Japan,
Sweden, and the United States:

- A worker attempted to remove an imperfectly formed piece from a conveyor with both hands

while the operation limit switch of a material feed and removal robot remained in its active

position. The worker's back was forced against the robot.

- After adjusting a metal shaving machine, an operator was caught between the machine and a

just-extended arm of a material feed and removal robot.

A-3
OSHA Instruction PUB 8-1.3 SEP 21, 1987 Office of Science and Technology Assessment

- A welding robot went functionally awry and its arm flung a worker against another machine.

- A worker removed the cover of an operating assembly robot to retrieve a fallen part and caught

his hand in the robot's drive train.

- A worker attempted to retrieve a part needed in an ongoing assembly without shutting off an

assembly robot's power supply. His hand was caught between the robot's arm and the unit being

assembled.

- A robot's arm functioned erratically during a programming sequence and struck the operator.

- A fellow employee accidentally tripped the power switch while a maintenance worker was

servicing an assembly robot. The robot's arm struck the maintenance worker's hand.

85

- An operator performing troubleshooting on a metal plater robot maneuvered the robot's arm

into a stopped position. This triggered the robot's emergency stop mode which delayed venting

of a pneumatic air storage device. When the return mode was activated, the robot's arm moved

suddenly and jammed the operator's thumb against a structural member.

- An automatic welder robot operator made a manual adjustment without stopping the robot. He

was hit in the head by one of the robot's moving parts when the next batch of weldments arrived.

- A materials handling robot operator entered a robot's work envelope during operations and was

pinned between the back end of the robot and a safety pole.

SAFETY SYSTEMS

The proper selection of an effective robotics safety system must be based on hazard analysis of
the operation involving a particular robot. Among the factors to be considered in such an analysis
are the task a robot is programmed to perform, the start-up and the programming procedures,
environmental conditions and location of the robot, requirements for corrective tasks to sustain
normal operations, human errors, and possible robot malfunctions. Sources of robot hazards
include:

1. Human errors;

2. Control errors;

3. Unauthorized access;

4. Mechanical hazards;

5. Environmental hazards; and

6. Electric, hydraulic, and pneumatic power sources.

A-4

86

OSHA Instruction PUB 8-1.3 SEP 21, 1987 Office of Science and Technology Assessment

An effective safety system protects operators, engineers, programmers, maintenance personnel,
and others who could be exposed to hazards associated with a robot's operation. A combination
of methods may be used to develop an effective safety system. Redundancy and backup systems
are recommended, particularly if a robot can create serious hazardous conditions.

Guarding Methods:

1. Interlocked Barrier Guard

This is a physical barrier around a robot work envelope incorporating gates equipped with

interlocks. These interlocks are designed so that all automatic operations of the robot and

associated machinery will stop when any gate is opened. Restarting the operation requires

closing the gate and reactivating a control switch located outside of the barrier. A typical

practical barrier is an interlocked fence designed so that access through, over, under, or around

the fence is not possible when the gate is closed.

2. Fixed Barrier Guard

A fixed barrier guard is a fence that requires tools for removal. Like the interlocked barrier

guard, it prevents access through, over, under, or around the fence. It provides sufficient

clearance for a worker between the guard and any robot reach, including parts held by an

end-effector, to perform a specific task under controlled conditions.

3. Awareness Barrier Device

This is a device such as a low railing or suspended chain that defines a safety perimeter and is

intended to prevent inadvertent entry into the work envelope but can be climbed over, crawled

under, or stepped around. Such a device is acceptable only in situations where a hazard analysis

indicates that the hazard is minimal and inter locked or fixed barrier guards are not feasible.

Interlocked or fixed barrier guards provide a positive protection needed to prevent worker

exposure to robotic systems hazards.

4. Presence Sensing Devices

The presence detectors that are most commonly used in robotics safety are pressure mats and

light curtains. Floor mats (pressure sensitive mats) and light curtains (similar to arrays of

87

photocells) can be used to detect a person stepping into a hazardous area near a robot. Proximity

detectors operating on electrical capacitance, ultrasonics, radio frequency, laser, and

A-5
OSHA Instruction PUB 8-1.3 SEP 21, 1987 Office of Science and Technology Assessment

television principles are currently undergoing reliability testing in research laboratories because

of recognized limitations in their capability of detecting the presence of personnel. Although

some of these devices are already available in the safety equipment marketplace, care must be

used in their selection to insure adequate safety and reliability. At this time, such proximity

detectors are not recommended for such use unless a specific analysis confirms their

acceptability for the intended use.

Effective presence sensing devices stop all motion of the robot if any part of a worker's body

enters the protected zone. Also, they are designed to be fail-safe so that the occurrence of a

failure within the device will leave it unaffected or convert it into a mode in which its failed state

would not result in an accident. In some cases this means deactivation of the robot. Factors

which are considered in the selection of such devices include spatial limitations of the field,

environmental conditions affecting the reliability of the field, and sensing field interference due

to robot operation.

5. Emergency Robot Braking

Dangerous robot movement is arrested by dynamic braking systems rather than simple power

cut-off. Such brakes will counteract the effects of robot arm inertia. Cutting off all power could

create hazards such as a sudden dropping of a robot's arm or flinging of a workpiece.

6. Audible and Visible Warning Systems

Audible and visible warning systems are not acceptable safeguarding methods but may be used

to enhance the effectiveness of positive safeguards. The purposes of audible and visible signals

need to be easily recognizable.

88

CONTROL DEVICES

The following characteristics are essential for control devices:

1. The main control panel is located outside the robot system work envelope in sight of the robot.

2. Readily accessible emergency stops (palm buttons, pull cords, etc.) are located in all zones
where needed. These are clearly situated in easily located positions and the position
identifications are a prominent part of personnel training. Emergency stops override all other
controls.

A-6
OSHA Instruction PUB 8-1.3 SEP 21, 1987 Office of Science and Technology Assessment

3. The portable programming control device contains an emergency stop.

4. Automatic stop capabilities are provided for abnormal robot component speeds and robot
traverses beyond the operating envelope.

5. All control devices are clearly marked and labeled as to device purpose. Actuating controls are
designed to indicate the robot's operating status.

6. Controls that initiate power or motion are constructed and guarded against accidental
operation.

7. Each robot is equipped with a separate circuit breaker that can be locked only in the "off"
position.

8. User-prompt displays are used to minimize human errors.

9. The control system for a robot with lengthy start-up time is designed to allow for the isolation
of power to components having mechanical motion from the power required to energize the
complete robot system.

10. Control systems are selected and designed so that they prevent a robot from automatically
restarting upon restoration of power after electrical power failure. The systems also prevent
hazardous conditions in case of hydraulic, pneumatic or vacuum loss or change.

11. A robot system is designed so that it could be moved manually on any of its axes without
using the system drive power.

12. All control systems meet OSHA 29 CFR 1910 Subpart S standards for electrical grounding,
wiring, hazardous locations, and related requirements.

INSTALLATION, MAINTENANCE AND PROGRAMMING

Good installation, maintenance, and programming practices include the following:

89

1. The robot is installed in accordance with the manufacturer's guidelines and applicable codes.
Robots are compatible with environmental conditions.

2. Power to the robot conforms to the manufacturer's specifications.

3. The robot is secured to prevent vibration movement and tip over.

4. Installation is such that no additional hazards are created such as pinch points with fixed
objects and robot components or energized conductor contact with robot components.

A-7
OSHA Instruction PUB 8-1.3 SEP 21, 1987 Office of Science and Technology Assessment

5. Signs and markings indicating the zones of movement of the robot are displayed prominently
on the robot itself and, if possible, on floors and walls.

6. Stops are placed on the robot system's axes to limit its motions under rated load and maximum
speed conditions.

7. A lock-out procedure is established and enforced for preventive maintenance or repair
operations.

8. The robot manufacturer's preventive maintenance schedule is followed rigorously.

9. A periodic check of all safety-critical equipment and connections is established.

10. Stored energy devices, such as springs and accumulators, are neutralized before robot
servicing.

11. Only programmers have access to the work envelope and full control of the robot when it is
in the teach mode.

12. All robot motion initiated from a teach pendant used by a programmer located within the
robot work envelope is subject to the current ANSI slow speed recommendation of 10 in/sec
(250 mm/sec).

TRAINING

Effective accident prevention programs include training. Some points to be considered in training
programs include:

1. Managers and supervisors in facilities that use robots are trained in the working aspects of
robots so that they can set and enforce a robotics safety policy from an informed viewpoint.

2. The employer insures that his or her company has a written robotics safety policy that has
been explained to all personnel who will be working with robots. This safety policy states by
name which personnel are authorized to work with robots.

90

3. Robot programming and maintenance operations are prohibited for persons other than those
who have received adequate training in hazard recognition and the control of robots.

A-8
OSHA Instruction PUB 8-1.3 SEP 21, 1987 Office of Science and Technical Assessment

4. Robot operators receive adequate training in hazard recognition and the control of robots and
in the proper operating procedure of the robot and associated equipment.

5. Training is commensurate with a trainee's needs and includes the safeguarding method(s) and
the required safe work practices necessary for safe performance of the trainee's assigned job.

6. If it is necessary for an authorized person to be within the work envelope while a robot is
energized, for example during a programming sequence, training is provided in the use of slow
robot operation speeds and hazardous location avoidance until the work is completed. Such
training also includes a review of emergency stops, and a familiarization with the robot system's
potentially hazardous energy sources.

REFERENCES

- National Institute for Occupational Safety and Health (NIOSH) Alert "Request for Assistance
in preventing the Injury of Workers by Robots." National Institute for Occupational Safety and
Health, Division of Safety Research, 944 Chestnut Ridge Road, Morgantown, West Virginia
26505.

- American National Standards Institute (ANSI) American National Safety Standard ANSI-RIA
R15.06-1986, "Industrial Robots and Industrial Robot Systems - Safety Requirements."
American National Standards Institute, Inc., 1430 Broadway, New York, New York 10018.

- Robotic Industries Association, 900 Victors Way, P.O. Box 3724, Ann Arbor, Michigan 48106.

- Occupational Safety and Health Administration publication 3067, Concepts and Techniques of
Machine Safeguarding, U.S. Department of Labor, 1980 (reprinted 1983). Superintendent of
Documents, U.S. Government Printing Office, Washington, DC 20210.

91

