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55 Abstract

56 Introduction: Phenomena related to reward responsiveness have been extensively studied in 

57 their associations with substance use and socioemotional functioning. One important task in this 

58 literature is the Monetary Incentive Delay (MID) task. By cueing and delivering performance-

59 contingent reward, the MID task has been demonstrated to elicit robust activation of neural 
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60 circuits involved in different phases of reward responsiveness. However, systematic evaluations 

61 of common MID task contrasts have been limited to between study comparisons of group-level 

62 activation maps, limiting their ability to directly evaluate how researchers’ choice of contrasts 

63 impacts conclusions about individual differences in reward responsiveness or brain-behavior 

64 associations. 

65 Methods: In a sample of 104 participants (Age Mean= 19.3, SD = 1.3), we evaluate similarities 

66 and differences between contrasts in: group- and individual-level activation maps using Jaccard’s 

67 similarity index, region-of-interest (ROI) mean signal intensities using Pearson’s r, and 

68 associations between ROI mean signal intensity and psychological measures using Bayesian 

69 correlation. 

70 Results: Our findings demonstrate more similarities than differences between win and loss cues 

71 during the anticipation contrast, dissimilarity between some win anticipation contrasts, an 

72 apparent deactivation effect in the outcome phase, likely stemming from the blood oxygen level-

73 dependent undershoot, and behavioral associations that are less robust than previously reported. 

74 Conclusion: Consistent with recent empirical findings, this work has practical implications for 

75 helping researchers interpret prior MID studies and make more informed a priori decisions about 

76 how their contrast choices may modify results.

77 Key words: Monetary Incentive Delay, Reward Processing, Approach, Avoidance, Prediction 

78 Error, fMRI, Measurement

79

80 1. Introduction

81 1.1. Purpose

82 Due to the hypothesized role of reward systems in wanting, liking, and learning about 

83 rewarding stimuli, neural measurements of reward processing have become a central focus in the 

84 study of various psychopathologies and problem behaviors (Berridge & Robinson, 2003; Ernst & 

85 Luciana, 2015). The Monetary Incentive Delay (MID) task, specifically, has been frequently 

86 used to measure neural substrates of approach and avoidance mechanisms during reward 

87 processing (Knutson et al., 2000). Univariate contrasts (e.g., Big Win versus Neutral 

88 anticipation) that index neural activation during different stages of the MID task have been 

89 widely employed to study dysfunction in reward related processes and various maladaptive 
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90 behaviors (Balodis & Potenza, 2015; Dugré et al., 2018). More recently, the task has been 

91 incorporated into large scale longitudinal studies to index developmental changes in reward 

92 mechanisms and their links with negative behavioral outcomes (Casey et al., 2018; Schumann et 

93 al., 2010). Despite frequent use of univariate contrasts from this task, there are relatively few 

94 studies that have examined how methodological choices made by investigators (e.g., researcher 

95 degrees of freedom), such as contrast choice, may impact the underlying results and 

96 interpretations about their findings. Therefore, this study aims to clarify the interaction between 

97 methodological and interindividual variability in MID task contrast maps and how these 

98 interactions affect their associations with psychological measures including substance use and 

99 socioemotional functioning.

100 1.2. The MID task and Theories of Reward Processing

101 As of this publication, the MID task has been used in functional magnetic resonance 

102 imaging (fMRI) research for almost 20 years and is considered a robust measure of incentive 

103 motivation (Knutson et al., 2000; Knutson & Greer, 2008). As an instrumental-reward task, the 

104 MID delivers rewards that are contingent on performance involving a timed button response 

105 (Richards et al., 2013), whereby different neural regions are recruited depending on whether the 

106 reward is being anticipated (i.e., wanted) or consumed (i.e., liked) (Haber & Knutson, 2010). The 

107 task was designed to localize reward-related brain activation in substance use populations 

108 (Knutson & Heinz, 2015) and identify correlates of individual differences in positive and 

109 negative arousal (Wu et al., 2014). A central assumption of the task, inspired in part by the 

110 literature on Pavlovian conditioning (Pavlov, 1927) and dopamine responses to positive cues 

111 (Schultz, 1998), is that there are brain regions responsible for anticipating and responding to 

112 salient stimuli that have positive or negative valence. Projections from the dopamine (DA) rich 

113 ventral tegmental area (VTA) are thought to enhance activation in striatal regions that respond to 

114 reward anticipation (e.g., tones or cues that predict incentives) and in mesial prefrontal regions 

115 that respond to reward outcomes (Breiter et al., 1996; Knutson et al., 2000). The task allows a 

116 comparison of valence (positive valence, such as winning, or negative valence, such as losing, 

117 across big or small rewards) and temporal phase (anticipation or outcome). 

118 Activation patterns within anticipation and outcome phases would be expected to align 

119 with recent theories of reward processing. For instance, the first stage during cue presentation 
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120 (prior to probe, or response phase), may be modeled as a ‘wanting’ phase, eliciting motivation 

121 (or saliency of the reward cue). This anticipation phase should evoke robust activation in striatal 

122 regions as DA has been shown to have robust effects on wanting (or incentive salience) in both 

123 animals and humans in the ventral striatum (VS) and ventral pallidum (Berridge, 2007, 2019; 

124 Berridge & Kringelbach, 2015). However, during negative arousal (e.g., loss cue) the MID 

125 would elicit avoidance behavior which is reflected by activation in the insula (Knutson & Greer, 

126 2008). Conversely, when modeling the outcome phase (or liking), one would expect less 

127 activation of VS (as only ~10% of neurons in nucleus accumbens facilitate pleasure) in response 

128 to the pleasure of reward. Hedonic ‘hot-spots’ are more likely to be represented in the insula and 

129 OFC (Berridge & Kringelbach, 2015) which are reported to be modulated by opioid receptors 

130 (Berridge et al., 2010; Buchel et al., 2018; Korb et al., 2020). 

131 It is notable that the specific univariate contrasts used to index reward-related 

132 psychological constructs often vary considerably between studies (see Supplemental Table S2). 

133 In cases of wanting rewards, reward anticipation is operationalized using contrasts such as: All 

134 Win versus Neutral (Bourque et al., 2017; Martz et al., 2018; Xu et al., 2017), Big Win versus 

135 Neutral (Cao et al., 2019; Cope et al., 2019; Papanastasiou et al., 2018) or Big Win versus Small 

136 Win cues (Martz et al., 2016; Stevens et al., 2018; van Hulst et al., 2015). Likewise, in the case 

137 of reward consumption, reward feedback is operationalized using contrasts such as: Reward Hit 

138 versus Neutral Hit (Chan et al., 2016; Mikita et al., 2016; Swartz et al., 2019) or Reward Hit 

139 versus Reward Miss cues (Mikita et al., 2016; Navas et al., 2018; Richards et al., 2016). The use 

140 of different contrasts to probe the same reward-related constructs is one major source of 

141 variability in the MID literature.

142 The vast majority of fMRI analyses using the MID task focus on specific, unmodulated 

143 phases of the task. However, previous work suggests that modulators based on formal models of 

144 reinforcement learning may be important to incorporate into the task to account for individual 

145 variability not captured in standard subtraction analysis (Bjork et al., 2010; Oldham et al., 2018). 

146 Although reinforcement learning models have been successfully applied to the MID task (Cao et 

147 al., 2019), the utility of prediction error is still debated (Berridge & O’Doherty, 2014) and it 

148 remains to be seen how expected value and prediction error model parameters (positive or 

149 negative) modulate the signal in the anticipation and outcome phases. Such modulators may be 

150 critical in accounting for individual level variation that drives performance and learning values 
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151 that may be represented in subcortical and cortical neural signatures (Balleine & O’Doherty, 

152 2010). As contingencies in the MID are based on performance, and therefore relatively uncertain, 

153 the MID differs from traditional reinforcement learning paradigms used to investigate prediction-

154 errors as the expectancies are less reliable. Therefore, the MID task may be considered a proxy to 

155 a true temporal-difference learning task that engenders more reliable expectancies. Nonetheless, 

156 previous work has recommended the use of modulators in the MID task (Bjork et al., 2010; 

157 Oldham et al., 2018), and recent studies have found that prediction error was positively related to 

158 activation in the bilateral VS (Cao et al., 2019) and substance use problems in young adults (Cao 

159 et al., 2020) on the MID.

160 1.3. Differential use and Researcher Degrees of Freedom in MID Task

161 Although the MID task has been used extensively to study dysfunctional reward 

162 processing in populations with substance use disorders (Balodis & Potenza, 2015), it has also 

163 been incorporated into other studies of neurodevelopment and broader psychopathology. Various 

164 versions of the MID task have been used to investigate reward related changes as a function of 

165 age (Bjork et al., 2010; Dhingra et al., 2019; Heitzeg et al., 2014), social versus non-social 

166 rewards (Schwartz et al., 2019), psychosocial characteristics of impulsivity and sensation seeking 

167 (Büchel et al., 2017; Cao et al., 2019; Joseph et al., 2016), early adversity (Boecker et al., 2014; 

168 Gonzalez et al., 2016), substance use (Aloi et al., 2019; Cope et al., 2019; Heitzeg et al., 2014; 

169 Karoly et al., 2015; Nestor et al., 2019; Sauder et al., 2016; Swartz et al., 2019), depression 

170 (Chan et al., 2016; Colich et al., 2017; Landes et al., 2018; Mori et al., 2016) and other 

171 psychiatric symptoms (Bourque et al., 2017; Lancaster et al., 2016; Maresh et al., 2019; Mikita et 

172 al., 2016; Papanastasiou et al., 2018; Stevens et al., 2018; Urošević et al., 2016; Veroude et al., 

173 2016; von Rhein et al., 2015; Xu et al., 2017). Across these studies, a wide range of brain-

174 behavior effects are reported. In addition to using different versions of the MID task, the studies 

175 cited above often used different univariate contrasts to derive activation maps . This raises the 

176 question: To what extent do analytic methods, such as variation in univariate contrast selection, 

177 inform differences and/or similarities in conclusions about psychological characteristics?

178 Empirical evidence suggests that analytic decisions may result in substantially different 

179 interpretations of fMRI analyses. Carp (2012) demonstrated that the analytic flexibility in fMRI 

180 can generate thousands of statistical maps that can be used in subsequent analyses. As shown by 
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181 Botvinik-Nezer et al. (2020), the level of flexibility in task-based fMRI analyses can produce 

182 different outcomes even when researchers start with identical data and hypotheses. Specifically, 

183 seventy different teams analyzed identical fMRI data with pre-defined hypotheses regarding 

184 risky decision-making. Despite the similarities across data and hypotheses, between lab 

185 differences in contrast selection and region of interest specification altered the interpretation of 

186 results. Thus, without a clear understanding of how analytic decisions impact our results and 

187 interpretations, the flexibility of fMRI analyses (e.g., “researcher’s degrees of freedom”) may 

188 result in an unacceptable number of false positives (Gelman & Loken, 2014). 

189 In the MID task, it is not well understood how investigators’ analytic choice of contrasts 

190 (for example, defining anticipation of reward as: $5 Win Cue versus Neutral Cue, or both Win 

191 Cues [$5 & $0.20] versus Neutral Cue) may impact their inferences about the association 

192 between the neural response to reward and behavior. FMRI activation maps differ as a function 

193 of reward type/magnitude (Bartra et al., 2013; Bjork et al., 2010) and recent reviews suggest 

194 there is substantial variability across studies in the techniques used to derive such maps (Balodis 

195 & Potenza, 2015; Dugré et al., 2018; Oldham et al., 2018). Contrast selection is important to the 

196 interpretation of the reported effects because experimental and baseline conditions are 

197 hypothesized to reveal components of a cognitive process which are reflected in the neural 

198 activation (Caplan, 2007). Yet, different reward contrasts, such as Big Win versus Neutral or Big 

199 Win versus Small Win cues, may be used interchangeably to operationalize reward anticipation. 

200 Combined with publication biases, the diverse sets of analyses may contribute to underreported 

201 contrasts and associations with behavior that may relate to the arbitrary decisions in the analytic 

202 pipeline (Simmons et al., 2011). Therefore, it is important to quantify how univariate contrast-

203 related variation in activation maps within a given sample influences the relative utility of these 

204 maps for predicting behavioral outcomes. This would demonstrate whether there is a) stability 

205 within estimates of activation at each phase of the task (anticipation or outcome); b) consistency 

206 between conceptually-related contrasts in the level of activation in specific regions of interest 

207 (ROI; such that there is higher correlation within win than between win and loss anticipation); 

208 and c) whether choice between contrasts that, in theory, probe a shared cognitive process, such as 

209 anticipating rewards, alters associations between neural activation and a psychological 

210 characteristic. 
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211 This would be difficult to deduce from a meta-analysis for several reasons. First, meta-

212 analyses typically assess spatial overlap between contrasts and/or assess relations between 

213 different contrast activations and external covariates (e.g., behavioral scales or clinical 

214 disorders), but do not assess whether activations from these contrasts represent distinct versus 

215 largely overlapping individual difference dimensions. Second, most empirical studies report a 

216 constrained number of MID contrasts, while in some cases making post-hoc justifications for 

217 why a particular contrast, or set of contrasts, was included in the paper. Hence, conclusions from 

218 meta-analyses obfuscate the influence of researcher degrees of freedom linked to contrast choice 

219 and selective reporting.

220 1.4. Current Study

221 Previous reviews of the MID task have evaluated general utilization of the task in studies 

222 of reward responsiveness (Lutz & Widmer, 2014), between-study, temporal, and phase-related 

223 differences in MID activation effects (Oldham et al., 2018), dynamics of reward versus loss 

224 (Dugré et al., 2018), and influences of substance use (Balodis & Potenza, 2015) and psychosis 

225 profiles (Radua et al., 2015) on activation differences. However, the extent to which contrast 

226 choice contributes to variability in activation maps, impacts the measurement of behaviorally 

227 relevant individual difference dimensions, and alters conclusions about associations between 

228 neural responses and behavior, is still unclear. The current study leverages a community sample 

229 of late adolescents/emerging adults to examine variability across various univariate contrast 

230 activation maps in the MID task.

231 In order to delineate variability across contrast types (which is difficult to evaluate between 

232 samples/studies), we perform multiple common analyses that focus on the anticipation, outcome, 

233 and prediction error parameters, with data from the same individuals. Due to the a) prominent 

234 role of motivation (or anticipation of reward) in this task; b) the critical role of dopamine in 

235 anticipation (“wanting”) and not feedback (“liking”) (Berridge & Kringelbach, 2015); c) 

236 difficulty to temporally differentiate the outcome phase (Bjork et al., 2010); and d) the drop in 

237 power during the outcome phase as each anticipatory trial is split into “hit” or “miss” trial 

238 outcome, 50% of contrasts focus on the anticipation phase of the MID task. These activation 

239 maps are thresholded to compare the degree to which statistical maps (from ten contrasts) a) vary 

240 within a phase (for example, anticipation Big Win > Neutral versus Big Loss > Neutral contrasts) 
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241 and b) vary between phases of the task (for example, anticipation versus outcome). The degree of 

242 variability is assessed at the individual- and group-level to quantify the general pattern in overlap 

243 of active voxels between two given contrast’s activation maps. Then, mean signal intensity 

244 values for key regions from previous reviews, such as the insula, mPFC, OFC, VS, and amygdala 

245 (Balodis & Potenza, 2015; Dugré et al., 2018; Oldham et al., 2018) are extracted to evaluate 

246 whether activation in these ROIs from different contrasts index convergent or divergent 

247 dimensions of cognitive processing (such as reward anticipation). Finally, Bayesian correlations 

248 between these ROI mean signal intensities and self-reported measures are assessed to determine 

249 the impact of contrast choice on the association with psychological measures including substance 

250 use, psychosocial, and socioemotional functioning. 

251  While meta-analyses have proposed region specific activations for positive and negative 

252 values across fMRI tasks (Bartra et al., 2013), a recent review of the MID yielded overlapping 

253 networks across positive and negative values (Oldham et al., 2018). Given the within-sample 

254 comparison of contrasts, instead of testing specific hypotheses within a null hypothesis 

255 significance test framework in these analyses, similarities and differences are presented as an 

256 index of overlap (Jaccard’s similarity coefficient), and statistical association across ROIs and 

257 behavior (Pearson’s r coefficient; heat maps of r point estimates for inter-ROI relationships and 

258 posterior distributions of r values for associations of ROIs with behavioral covariates). Our broad 

259 goal is to improve the field’s understanding of how and where there is within-task variability as a 

260 function of MID task contrast choice, and, in doing so, to inform the interpretation of existing 

261 MID studies and better guide researchers’ a priori decisions about which specific contrasts the 

262 hypotheses are based on in future studies. This exploratory analysis can provide inferences about 

263 how contrast selection, which typically precedes the reporting of results and increases researcher 

264 degrees of freedom, affects the activation maps. Due to the exploratory nature of the analyses, 

265 the background, methods and analytic plan were preregistered on the Open Science Framework 

266 (https://osf.io/xh7bz). However, we elected not to preregister specific hypotheses related to 

267 brain-behavior associations because the intended purpose of the study was to use exploratory 

268 analyses to provide a holistic overview of how researcher degrees of freedoms impact 

269 interpretation of MID task results (Thompson et al., 2020). 

270 2. Methods
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271 Participants in this neuroimaging study are from a subsample of the Adolescent Health 

272 Risk Behavior (AHRB) study. AHRB consists of a nonprobability sample of 2,017 (Age Mean = 

273 16.8, SD = 1.1; Female 56%) 10th and 12th grade students recruited from nine public school 

274 districts across eight Southeastern Michigan counties, using a quota sampling method to enhance 

275 sample diversity. Phase I, described elsewhere (Demidenko et al., 2019), collected demographic, 

276 psychosocial, neurocognitive and behavioral information across three waves of survey data 

277 collection. From Phase I of the study, a subsample of 115 adolescents, who were characterized as 

278 high and average/low risk, were recruited to participate in the neuroimaging phase of the study 

279 (elapsed time between Wave 1 and neuroimaging section (Months): M = 30.9 months SD = 5.0 

280 months). Of the 115 adolescents that participated, 108 completed the magnetic resonance 

281 imaging (MRI) portion of the visit. Seven participants were ineligible or unable to participate in 

282 the MRI due to not meeting MRI safety eligibility. Of the 108 participants that completed the 

283 MRI, four participants were excluded from the analyses due to: artifacts in the images that were 

284 not recoverable, and one participant that stopped responding during the second run of the task. 

285 The final fMRI subsample (N = 104; Age Mean = 19.3, SD = 1.3; Female 57%) was included in 

286 the subsequent analyses and did not differ from the full sample in age, gender, or time from the 

287 original survey. The bulk of code used in the subsequent analyses are made available online 

288 (https://github.com/demidenm/MIDContrasts).

289 2.1. Self-Reported Psychological Measures

290 Substance Use. Substance use behaviors (marijuana and alcohol) are assessed via the item: 

291 “On how many occasions (if any) have you [used marijuana or hashish/had any alcoholic 

292 beverage to drink—more than just a few sips] during the last 12 months?” Responses are 

293 reported on a seven-point scale ranging from (1) = “0 occasions” to (7) = “40 or more 

294 occasions”. Substance use items are identical to those used in the annual, national Monitoring 

295 the Future surveys (Johnston et al., 2019). Marijuana and alcohol scores were z-scored, and then 

296 a substance use aggregate measure was created by averaging the z-scored items across Wave 1 – 

297 Wave 3. 

298 Impulsivity. The Barratt Impulsiveness Scale-Brief (BIS-B) is an 8-item, unidimensional 

299 measure of impulsiveness (Steinberg et al., 2013) based on a reduced item set obtained from the 

300 Barratt Impulsiveness Scale (BIS), 11th revision. Items were rated on a 4-point Likert-type scale: 

301 (1) = rarely/never, (2) = occasionally, (3) = often, and (4) = almost always/always. A mean score 
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302 was computed (range: 1 – 4), higher scores indicated lower self-reported impulsivity (α = .79). 

303 BIS-B items were z-scored and then aggregated by averaging scores across Wave 1 – Wave 3.

304 Sensation Seeking. The Brief Sensation Seeking Scale (BSSS) is an 8-item self-report 

305 measure of sensation seeking (Hoyle et al., 2002) based on a reduced item set of the Zuckerman 

306 Sensation Seeking Scale (SSS). The items measure dimensions of sensation seeking: experience 

307 seeking, boredom susceptibility, thrill and adventure seeking, and disinhibition. Responses were 

308 on a 5-point Likert-scale: (1) = strongly disagree, (2) = disagree, (3) = neither disagree nor agree, 

309 (4) = agree, and (5) = strongly agree. A mean score was computed (range: 1–5), with higher 

310 scores indicated higher self-reported sensation seeking (α = .78). BSSS items were z-scored and 

311 then aggregated by averaging scores across Wave 1 – Wave 3.

312 Socioemotional problems. Socioemotional problems were assessed using the Youth Self-

313 Report (YSR; Achenbach & Rescorla, 2001) to characterize externalizing and internalizing 

314 problems. The YSR is a widely utilized, 112-item self-report measure assessing emotional and 

315 behavioral difficulties in 11-18-year-olds. The YSR includes two broadband scales: internalizing 

316 problems (e.g., withdrawn/depressed) and externalizing problems (e.g., attentional 

317 deficit/hyperactivity problems, oppositional defiant problems). Raw scores are normalized to 

318 provide a common metric with higher scores indicating greater psychopathology. Validity and 

319 reliability of the YSR broadband, syndrome, and DSM-oriented scales are well documented 

320 (Achenbach, 2013; Achenbach & Rescorla, 2001) with adequate internal consistency (α = .70 - 

321 .86) and test-retest reliability (α = .67 - .88). An aggregate score was created from population-

322 standardized z-scores for internalizing and externalizing by averaging scores across Wave 1 – 

323 Wave 3. In the present study, Cronbach’s alphas of .91 and .88 were obtained for the 

324 internalizing and externalizing scales, respectively.

325 2.2. fMRI Task

326 A modified version of MID task (Knutson et al., 2000) was used to model neural 

327 signatures of the anticipation and outcome of monetary rewards. The modified version in this 

328 study is currently being employed in the national Adolescent Brain Cognitive Development 

329 (ABCD) study to measure the development of adolescent reward processing (Casey et al., 2018). 

330 Identical to the task described in Casey et al. (2018), the task in this study consists of three 

331 phases: anticipation, probe and outcome (that is, feedback). Each trial starts with a cue type (Win 

332 $5, Win $0.20, Lose $5, Lose $0.20, or No Money At Stake). There are twelve trial orders of the 
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333 task, consisting of 50 contiguous trials and 10 trial types per run (5minutes 42 seconds long). 

334 Participants completed two runs of the MID task during the scan (100 trials and 20 trial types). 

335 The task is individualized to reach around 60% accuracy rate by adjusting the difficulty (that is, 

336 probe duration). See Section 1.1 in Supplementary Materials for more information on task 

337 paradigm and administration. A key difference between the current version of the MID (and the 

338 one used in the ABCD study) and that used in the IMAGEN sample (Cao et al., 2019), is the 

339 IMAGEN study only includes Win and Neutral trials, thus excluding Loss trials. Furthermore, in 

340 the IMAGEN, study performance was rewarded with “points” that were exchanged for 

341 M&M’s/candy in contrast to a concrete reward for task performance (e.g., money).

342 2.3. fMRI Data Acquisition and Preprocessing 

343 Data was acquired using a GE Discovery MR750 3.0 Tesla scanner with a standard adult-

344 sized coil (Milwaukee, WI). A full-brain high-resolution T1 SPGR PROMO scan was acquired 

345 that is used in preprocessing (TR = 7,000 ms, TE = 2,900 ms, flip angle = 8°, FOV = 25.6 cm, 

346 slice thickness = 1 mm, 208 sagittal slices; matrix = 256x256). Before the MID task, a fieldmap 

347 was acquired using spin-echo EPI (TR = 7400 ms, TE = 80 ms, FOV = 21.6 cm, 90x90 matrix) 

348 with opposite phase encoding polarity (AP, PA). Two functional T2*-weighted BOLD MID 

349 runs were acquired in the axial plane following structural and a faces task using a multiband EPI 

350 sequence (MB factor = 6) of 60 contiguous axial 2.4 mm slices (TR = 800 ms, TE = 30 ms, flip 

351 angle = 52°, FOV = 21.6 cm, 90x90 matrix, volumes = 407). 

352 fMRI Data Analyses

353 FMRI data were reconstructed, realignment and fieldmap correction was applied in 

354 SPM12 to each T2* run to recover inhomogeneity of signal in the B0 field, and physiological 

355 noise was removed using RETROICOR (Glover et al., 2000). Preprocessing steps were 

356 completed using FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl) FEAT (FMRI 

357 Expert Analysis Tool) Version 6.00. After volumes were (1) reconstructed, (2) realigned, (3) 

358 physiological noise was removed and (4) field map correction was applied, the following 

359 preprocessing steps were performed: (6) registration to high resolution structural and standard 

360 space MNI 152 image using FLIRT using a Full search 12 DOF (Jenkinson et al., 2002; 

361 Jenkinson & Smith, 2001), (6) motion correction using MCFLIRT (Jenkinson et al., 2002), (7) 

362 non-brain removal using BET (Smith, 2002), (8) spatial smoothing using a Gaussian kernel of 

363 FWHM 5 mm, (9) grand-mean intensity normalisation of the entire 4D dataset by a single 
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364 multiplicative factor and (10) high-pass temporal filtering (Gaussian-weighted least-squares 

365 straight line fitting, with sigma = 50.0 s). 

366 3. fMRI Analyses

367 Subjects were excluded from analyses if a subject’s mean framewise displacement (FD) 

368 values exceeded > .9 within any given run (Mean FD Pre- & Post-preprocessing included in 

369 Supplementary Section 1.2), all subjects mean post FD were < .9. We focused on commonly 

370 used contrasts (Table 1) from a recent review (Oldham et al., 2018) and those from our review of 

371 studies using the MID (PubMed 2015 – 2019; Supplementary Table S2), such as reward 

372 anticipation (such as Big Win ($5) or All Win ($5 & $0.20) versus Neutral anticipation), Win 

373 outcome hit (such as $5 versus Neutral hit outcome, loss conditions (such as $5 or $0.20) and 

374 alternative contrasts that may be comparable to test for similarities within a group, for example, 

375 win or big win conditions. It should be noted that using anticipation versus outcome phase yields 

376 estimates that are often powered differently, as a function of the target accuracy of the task 

377 (60%) leading to individual variation in hit/miss trials. Furthermore, since the outcome phase is 

378 often difficult to deconvolve in the task and modeled in various ways (see Supplementary Table 

379 S2), we include one type of outcome contrast focusing on gain and loss, as it is not a central 

380 focus of these analyses and often not the focus in contrasts in the literature.

381 First-level analyses were performed by using FEAT. Time-series statistical analysis was 

382 carried out using FILM with local autocorrelation correction (Woolrich et al., 2001). Similar to 

383 other studies (Cao et al., 2019; Hagler et al., 2019; Lamm et al., 2014), both anticipation and 

384 outcome events were modeled (15 explanatory variables) and modulated prediction error signal 

385 of EV, PPE and NPE (see Table 1), in addition to six motion parameters (translations and 

386 rotations in x, y, z directions) and the derivatives of the motion parameters. The modeled 

387 contrasts and design matrix are described in greater detail in Supplementary Section 1.3. We 

388 included prediction error explanatory variables based on a recent review suggesting the MID is 

389 considered to be an implicit reinforcement learning (RL) paradigm (Balodis & Potenza, 2015), 

390 and others recommending use of modulators (Bjork et al., 2010; Oldham et al., 2018). However, 

391 as noted in the introduction, the MID is not a true RL design but only a proxy. To incorporate 

392 these recommendations, the RL modulators included: Expected Value (EV) and Prediction Error 

393 (PE). To derive estimates of EV and PE for this task, the behavioral data were modeled for each 

394 participant (100 trials – trial-by-trial) to calculate parametric modulators (EV for anticipation; PE 
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395 for Received Reward (RR); pGain = probability gain,  = learning rate (0.7)). Similar to Cao et 

396 al. (2019), we used a RL model trained by reward cues and outcomes (Rescorla & Wagner, 

397 1972):

398 ��� =  ������ ×  ����
399  ��� =  ��� ×  ���
400 ������ + 1 =  ������ + ( ×

�������) 

401 To average across the two runs that are used in subsequent stages, a second-level model 

402 was defined for each participant for each of the ten contrasts (see Supplementary Section 1.3) 

403 using fixed effect analysis in FEAT. A group-level analysis was performed using FMRIB’s 

404 Local Analysis of Mixed Effects (FLAME 1) to generate a mean level activation across subjects 

405 for a given contrast. Considering the large array of contrasts that are modeled, abbreviations 

406 from the first column of Table 1 are referred to when referencing contrasts henceforth. 

407 To provide a direct observation of the BOLD signal and signal-to-noise information of 

408 subcortical regions, we include complementary post-hoc analyses evaluating raw BOLD signal 

409 (see Section 2.8 in Supplemental Materials). We extract the mean signal for VS and mPFC in the 

410 timeseries for VS and plot it for 15 TRs. Likewise, for cortical mPFC and subcortical VS we 

411 extract and present the distribution of the signal-to-noise ratios (SNR) for each individual and 

412 run to confirm that SNR is within an acceptable range (see Section 2.5 in Supplemental 

413 Materials).

414 3.1. Individual Level and Group Estimates 

415 In order to compare overlap between thresholded activation maps for each contrast at the 

416 individual and group level, we thresholded activation maps produced by the second level and 

417 group level analyses. For the individual level, subjects' second level maps (zstat) for each 

418 contrast are thresholded at p < .01 (z = 2.3) and group level contrasts are thresholded at p < .001 

419 (z = 3.1). We selected a lower threshold for individual maps due to more variability in estimates 

420 within an individual map that may substantially alter the Jaccard’s Similarity Indices. These 

421 thresholded maps are binarized (using fsl -bin) and compared to derive Jaccard’s Similarity 

422 Indices (described below).

423 3.2. Calculating Similarity
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424 One of the aims for this study is to compare similarity, or spatial overlap, between 

425 different activation maps of the MID task within individuals and at the group level. This is to 

426 provide an easy to interpret index of how similar (or different) activations are across contrast 

427 types. Similar to a previous work (Grady et al., 2020), we calculate a percent overlap using 

428 Jaccard’s similarity index (JSI) (Maitra, 2010) between contrasts. The JSI calculates the number 

429 of voxels that overlap across two thresholded statistical maps. One of the major advantages of 

430 using the JSI is that the percent overlap results obtained from this technique are intuitive and 

431 physically interpretable (Maitra, 2010). The percent overlap between any two activation maps is 

432 defined from a set theoretical point of view, where the overlap  is defined by the well-�(�,�)
433 known relation as:

434 �(�,�) =
� ∩ �� ∪ �

435

436 As we used JSI point estimates to evaluate activated voxels across different thresholded 

437 contrasts, we propose a bootstrapping based confidence interval calculation for identifying the 

438 95% confidence intervals of the overlap measures across all subjects in our sample (DiCiccio & 

439 Efron, 1996). The bootstrapped JSI would provide reliable estimates of the range and shape of 

440 the distribution of percent overlap and a physical interpretation of the JSI obtained across all of 

441 the subjects. Although the thresholded maps are impacted by power in the design, similarity can 

442 be assessed within phases, such as anticipation or outcome, given the number of trials is 

443 comparable within each phase (with the exception of the all win contrast).

444 3.3. Region of Interest and Behavioral Associations

445 Central voxel coordinates from Neurosynth.org for a priori ROI’s: bilateral insula, OFC, 

446 VS, and mPFC and ACC (see Supplemental Table S1 and Figure S1), were used to create 10mm-

447 diameter spheres. For each ROI, the voxels from each contrast mask (using z-statistics produced 

448 by Feat Second Level) are averaged to create a mean signal intensity value and extracted using 

449 fslmeants. Correlations (point estimates of Pearson’s r) across ROIs were analyzed in R version 

450 3.6.1 (R Core Team, 2019) and were visualized using a heatmap. 

451 ROI mean level signal intensity values across ten contrast types (described above), were 

452 used to assess associations between neural activity and self-reported aggregate z-scores of a) 

453 substance use, b) sensation seeking, c) impulsivity, d) externalizing, and e) internalizing 
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454 problems. Bayesian correlation analyses implemented in JASP (JASP Team, 2019; Ly et al., 

455 2018) were used to estimate posterior distributions for the Pearson’s r value of each predictive 

456 association. Default, non-informative priors (uniform distributions spanning the values from -1 

457 to 1) were used for all correlation analyses. Median values of the posterior distribution, which 

458 indicate the most likely r value, and 95% credible intervals, which represent the lower and upper 

459 bounds of the range which has a .95 probability of containing the r value, are reported below to 

460 quantify the strength of, and uncertainty about, these predictive associations. As analyses are not 

461 intended to be formal tests of hypotheses, we will refrain from reporting either Bayes factors or 

462 frequentist p-values. 

463 4. Results

464 4.1. Demographics, Task Behavior and General Overview

465 The demographic characteristics for the full sample (n = 104) are provided in 

466 Supplementary Section 2.2, Table S3. For the anticipation phase (A1-A5) and prediction error 

467 models (P8-P10), all 104 individuals were included (Note: we remind the reader to refer to Table 

468 1 for contrast descriptions). However, for the feedback phase (F6 & F7) four subjects were 

469 excluded due to underpowered conditions resulting in anomalies in the estimated [First & 

470 Second Level] statistical maps, resulting in only N = 100 for the feedback contrasts. The 

471 behavioral performance statistics from the MID task are included in Supplementary Section 2.3, 

472 Table S4 and Figure S2. Although the average accuracy for the task, 57%, was below the 

473 targeted 60%, the Big Win ($5) and Big Loss ($5) conditions were at or above the target, 62% 

474 and 60% accuracy, respectively. As expected, accuracy was lower (48%) and more variable 

475 during the neutral condition. Mean response times are not reported, as the E-Prime data wasn’t 

476 collected for incorrect (‘miss’) trials during the MID task.

477 JSI similarity matrices and activation maps are displayed in Supplementary Figure S4 

478 and Figure 1, respectively. Associations between individual differences in ROI mean-level 

479 activation from each contrast are reported at https://osf.io/a5wem/ and in Figure 2 and are 

480 selectively reported below for clarity. Correlations between ROI mean signal intensity estimates 

481 and behavioral criterion measures are reported in Figure 3 (subset of four regions, five 

482 anticipatory contrasts across our five behaviors; full figure reported in Supplement Figure S5, 

483 section 2.7) and available at https://osf.io/d9k3v/. There were four notable patterns present in 
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484 these results: 1) Win and Loss anticipation demonstrate comparable striatal/insula activation and 

485 task-negative deactivation (see NeuroVault statistical map: 

486 https://neurovault.org/images/359858/); 2) outcome phase contrasts consistently imply 

487 deactivation of striatal regions (potentially due to artifact related to signal spill-over); 3) the Big 

488 versus Small Win contrast appears less meaningful than, and unrelated to, other anticipation 

489 phase contrasts; and 4) individual differences in ROI activation, across different contrasts, 

490 demonstrate relatively weak associations with behavior. The aforementioned are expanded in 

491 greater detail below. Notably, the activation maps of the prediction error models were extremely 

492 variable in activation and relatively weak in their associations with mean ROI activation from 

493 other contrasts; therefore, they are not discussed below. The contrast maps are available online 

494 and results presented in Figures 2-3.

495 4.2. Big Win and Loss Anticipation Engage Similar Neural Systems

496 The thresholded masks (p < .001) of A2:BW>N and A5:LB>N group maps had a Jaccard’s 

497 similarity Coefficient of .16 (Supplemental Figure S4). This similarity is also apparent in the 

498 group level activation maps, demonstrated by shared patterns of activation (Figure 1). Although 

499 the peak left striatal activation in the A2:BW>N is greater than in the A5:BL>N (based on 

500 magnitude of z-statistic in activation maps), in their direct comparison 

501 (https://neurovault.org/images/359858/) the difference is relatively small. The greatest difference 

502 between these two contrasts was increased activation in the mPFC in A2:BW>N as compared to 

503 A5:LB>N. Furthermore, contrasts A2:BW>N and A5:BL>N show similar activation of 

504 supplementary motor area (SMA), the insular cortex, thalamus and cerebellar regions. Similar to 

505 the shared positive activation of these contrasts, they, too, share comparable deactivation in the 

506 task-negative, angular gyrus, an effect that is not seen in the A3:BW>SM (Figure 1). This 

507 activation in the striatal regions and deactivation in task negative regions is comparable to a 

508 recent meta-analysis (open source activation maps: https://neurovault.org/collections/4258/) 

509 showing similar robust patterns of activation and deactivation in both win and loss anticipation 

510 (Wilson et al., 2018). 

511 Consistent with these similarity analyses in group level activation, correlations of mean 

512 signal intensity values from ROIs across A2:BW>N and A5:BL>N (Figure 2, full matrix 

513 available at https://osf.io/a5wem/) also suggested that neural responses from these contrasts 

514 index similar individual difference dimensions. Positive correlations in neural responses between 
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515 the contrasts were identified (Figure 2) in the anterior cingulate cortex (ACC; r = .58), medial 

516 prefrontal cortex (mPFC; r = .26), bilateral Insula (Right: r = .57; Left: r = .44), bilateral 

517 orbitofrontal cortex (OFC; Right: r = .43, Left: r = .50), and bilateral ventral striatum (VS; 

518 Right: r = .57, Left: r = .49). The similarity between A2:BW>N and A5:BL>N is consistent with 

519 a recent meta-analyses (Oldham et al., 2018).

520 4.3. Reward and Loss Outcome is Paradoxically Linked to Striatal Deactivation 

521 Contrary to past work focused on striatal activation during win conditions, our contrasts 

522 during outcome phase, F6:BWH>NH & F7:BLH>NH, demonstrated a deactivation of the 

523 striatal regions. Based on the Jaccard’s similarity Coefficient, .34, the regions that were 

524 deactivated were comparable in F6:BWH>NH and F7:BLH>NH (Figure 1, and Supplemental 

525 Figure S4). Although the mean level deactivation of the striatal region in the F6:BWH>NH 

526 contrast was relatively weak (t = -2.68), in the F7:BLH>NH condition the deactivation was 

527 relatively robust (t = -5.8). As a control comparison in change of activation, we reference the 

528 angular gyrus, which has a relatively weak mean level activation in both F6:BWH>NH and 

529 F7:BLH>NH, demonstrating that there is a more profound change in activation in the striatal 

530 region between the anticipation and outcome phase (see Figure 1). In a direct comparison of 

531 F6:BWH>NH & F7:BLH>NH (https://neurovault.org/images/359858/), F6:BWH>NH 

532 demonstrates greater activation in the left parahippocampal (z = 4.3) and right nucleus 

533 accumbens (z = 3.4). These two feedback contrasts demonstrated some associations (Figure 2) in 

534 individual differences analyses of mean signal intensity in the ACC (r = .33), mPFC (r =.55), 

535 and bilateral VS (Left r = .45; Right r = .46). Notably, this deactivation is likely to be a function 

536 of the spill-over from the anticipatory phase given the short interval between anticipation and 

537 outcome stimuli, as can be observed in the BOLD signal change in Figure S6.

538 4.4 Anticipation Big Win versus Small Win Contrast Is Distinct from other Anticipation 

539 Contrasts

540 Despite its variable use in the literature, A3:BW>SM was unique when compared to 

541 other contrasts in anticipation phase (Figure 1). The A3:BW>SM had the lowest Jaccard 

542 Coefficient with other contrasts modeling the anticipation phase, <.02 (Figure S4). Further, in 

543 the group-level activation, compared to A1:W>N, A2:BW>N, and A5:BL>N anticipation 

544 phases, the A3:BW>SM had the weakest group-level striatal and insular activation, and no task-
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545 negative activation. The task-negative activation difference is unique, as all of the other contrasts 

546 demonstrate this profile of task-negative activation in the anticipation phase. 

547 However, with respect to individual differences in ROI mean-level activation, depending 

548 on the contrast, there are similarities between A3:BW>SM and other contrasts. For example, the 

549 mean-level activation between A1:W>N and A3:BW>SM is negligible: ACC (r = .15), mPFC (r 

550 = -.05), bilateral insula (Left r = .07; Right r = .08), bilateral OFC (Left r = .02; Right = .06) and 

551 bilateral VS (Left r = .06; Right = .15). Yet, there is a strong association between A2:BW>N and 

552 A3:BW>SM in the ACC (r = .64), mPFC (r = .65), bilateral insula (Left r = .63; Right r = .58), 

553 OFC (Left r = .60; Right r = .62), and bilateral VS (Left r = .59; Right = .66). Despite the 

554 similarity discussed between A2:BW>N and A5:BL>N above, there is a negligible association 

555 between ROI’s in A3:BW>SM and A5:BL>N (r = -.11 to .19). Which suggests that the 

556 similarities between A2:BW>N and A3:BW>SM may arise from the shared Big Win cue in the 

557 subtraction.

558 4.5 Across Contrasts, Activations Show Only Weak to Negligible Correlational 

559 Relationships with Behavioral Criterion Measures

560 The aggregated scores for psychological characteristics in this sample were associated in 

561 the direction expected (Supplementary Section 2.4, Table S5). More specifically, there was a 

562 strong positive association between internalizing and externalizing problems (r = .51), sensation 

563 seeking and impulsivity (r = .44), externalizing and substance use (r = .51), and substance use 

564 and sensation seeking (r = .38) and impulsivity (r = .24). 

565 Figure 3 shows a subset of correlational relationships between ROI activation estimates 

566 and behavioral criterion measures (for complete figure, see Supplemental Figure S5). It shows 

567 posterior medians and 95% credible intervals (CIs) of Pearson’s r values, which represent the 

568 most likely r value and range in which there is a .95 probability that the r value falls, respectively 

569 (full results available at https://osf.io/d9k3v/; complimentary bootstrapped values are provided at 

570 https://osf.io/dr5y2/). Although the interpretation of individual associations is complicated by the 

571 large number of tests reported in Figure S5, several general patterns are apparent. First, 71% of 

572 the most likely r values fell at or well below the threshold for what is typically considered a 

573 “small-sized” effect, |r| = .10 (Supplemental Table S6). Similarly, the bulk of most CIs also fell 

574 in this general range. In fact, there was not a single association for which the most likely r value 

575 indicated a moderately-sized” effect (|r| >= .30), and few CIs overlapped with this “moderate” 
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576 criterion. It is also notable that only a handful of CIs (less than 5%) did not overlap with 0, 

577 suggesting that even these cases, which might be interpreted as showing promising evidence for 

578 a non-negligible effect, are likely due to multiple testing rather than reflecting true relationships. 

579 Indeed, as typical Bayesian CIs do not take into account the probability that the null (r = 0) is 

580 true (van den Bergh et al., 2019), the effect size estimates we report are, if anything, likely to be 

581 overly optimistic. Hence, consistent with other emerging findings from large, diverse 

582 neuroimaging data sets (Nees et al., 2012; Paulus et al., 2019; Paulus & Thompson, 2019), these 

583 patterns of results suggest that direct associations of MID task activations with relevant 

584 behavioral criterion measures are less robust than what has been previously thought, and that 

585 even if these associations exist, effect sizes are likely to be small. 

586 Second, coupled with the small effects, decisions in contrasts can weaken or alter the 

587 brain-behavior results and thus the underlying interpretation. For instance, as can be observed in 

588 Figure 3 the median r for the relation between anticipatory win activation in the ventral striatum, 

589 and sensation seeking flips from negative to positive between A1:W>N (Right r = -.10) and 

590 A3:BW>SW (Right r = .12). This example, and the high degree of variability in median r 

591 between ROI and behaviors presented in Figure 3, indicates that caution should be taken when 

592 selecting contrasts as they may invariably change interpretations even in the context of these 

593 small effects.

594 4.6 Post-Hoc Analyses

595 In light of prior meta-analytical comparisons of base contrasts within individuals, such as 

596 gain versus outcome phases (Knutson & Greer, 2008; Wilson et al., 2018), we compared these 

597 differences in the anticipation phase, A2:BW>N versus A5:BL>N; outcome phase, 

598 F6:BWH>NH versus F7:BLH>NH; win anticipation versus win outcome, A2:BW>N versus 

599 F6:BWH>NH; and loss anticipation versus loss gain outcome, A5:BL>N versus F7:BLH>NH. 

600 We provide these for reference online https://neurovault.org/collections/JVXLTPHC/. Notably, 

601 in a direct comparison of the A2: BW>N versus A5: BL>N signal we find no substantial 

602 differences in VS or Insula as a function of reward and loss.

603 Due to recent concerns that some multiband sequences may alter the BOLD signal in 

604 subcortical regions (Risk et al., 2018), signal-to-noise ratios and plotted time-series from the VS 

605 to provide a direct observation of signal for each anticipation condition are provided. With 

606 respect to the direct observation of the BOLD signal, we find appropriate separation in 
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607 anticipation of Big Win and Neutral cues (Figure 4) and signal-to-noise ratio in the VS region 

608 (Supplementary Figure S3). With respect to the anticipation phase, we see the expected peak in 

609 BOLD separation between Big Win and Neutral cues around 7-8seconds after cue onset (Figure 

610 4). Such that, this separation is significant from TR 6 (p < .01) to TR 11 (p < .001) in the Right 

611 VS, and TR 6 (p < .001) to TR 10 (p < .001) in the Left VS, before the undershoot at TR 14. This 

612 separation, as expected, does not occur in the mPFC. The nature of the anticipation signal 

613 bleeding into the feedback phase is apparent in the bilateral VS when the anticipation cues are 

614 locked to the feedback phase (Supplementary Figure S9). 

615 5. Discussion

616 In this study of the MID task, we performed an evaluation of similarities and differences 

617 between commonly used univariate contrasts, focusing on spatial overlap, individual differences 

618 in mean ROI signal intensity, and correlations between ROI activations and behavioral criterion 

619 measures. After identifying ten candidate contrasts that have precedent in the previous literature, 

620 our study provides the first detailed within-study comparison of these common MID task 

621 contrasts. The findings demonstrate similarity between positively and negatively arousing 

622 anticipation cues, apparent deactivation of striatal regions during the outcome phase, 

623 dissimilarity between Big Win > Small Win anticipation and other anticipation effects, and 

624 relatively weak associations between MID task activations and self-reported behaviors. These 

625 findings are generally consistent with previously reported MID task-specific conceptual findings 

626 (Bjork et al., 2010; Oldham et al., 2018) and also have implications for task-general theoretical 

627 problems (Hedge et al., 2018; Price & Friston, 1997). 

628 A relatively similar pattern of group-level activation was observed during the Big Win 

629 anticipation and the Big Loss anticipation phase. A direct comparison of Big Win versus Neutral 

630 and Big Loss versus Neutral anticipation contrasts revealed negligible differences between the 

631 activation in the VS and insula in the group level activation maps, and only a small Win-related 

632 increase in activation in the mPFC. This similarity in activation profiles during anticipation of 

633 both positive and negative stimuli is consistent with a recent meta-analysis demonstrating that 

634 approach and avoidance behavior have considerable overlap in activation (Oldham et al., 2018), 

635 and other studies reporting similar activation patterns in young adults (Joseph et al., 2016; 

636 Murray et al., 2020) and populations at risk to substance use (Bjork et al., 2008). The similarity 

637 in the neural activation to the anticipation of Big Win and Loss cues is also consistent with the 
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638 hypothesis that certain regions may display roughly equivalent activation at the extreme ends of 

639 value (Bartra et al., 2013). This may suggest alternative cognitive processes (such as attention or 

640 motivation) that may be involved during the anticipation phase (Abler et al., 2006; Breckel et al., 

641 2011; Krebs et al., 2012; Schouppe et al., 2014), as the VS may facilitate detection and attention 

642 to cues (Peters et al., 2011) as it serves as a limbic-motor interface that converts signals into 

643 action (Floresco, 2015). The overlap between win and loss group-level activation suggests the 

644 activation maps are more comparable than different which may correspond to a shared cognitive 

645 process (Price & Friston, 2005). 

646 However, there was one notable instance in which our analysis revealed dissimilarity 

647 between contrasts in the anticipation. Although the Big Win versus Small Win contrast activated 

648 striatal regions, the contrast demonstrated a limited association with other contrasts in the 

649 anticipation phase. Specifically, in group-level activation, there was much greater similarity 

650 between Big Win versus Neutral and Big Loss versus Neutral contrasts than the similarity 

651 between Big Win versus Neutral and Big Win versus Small Win contrasts. Given that the MID 

652 task activates a broad set of regions involved in effortful initiation and anticipation (Suzuki et al., 

653 2020), subtraction of cues with lower effort and greater variability (e.g., neutral stimuli) from 

654 higher effort and lower variability (e.g., Big Win), versus with those with slightly more effort 

655 (e.g., Small Win), may change the amount of preparatory signal subtracted from the contrast 

656 map. It is likely that beyond the cognitive process of ‘wanting’, there are co-occurring cognitive 

657 processes in these cues which may violate assumptions when using subtraction to infer reward 

658 sensitivities (Caplan, 2007). 

659 Our comparison of positively and negatively valenced reward feedback revealed 

660 widespread deactivation throughout the brain during the outcome phase. These patterns were 

661 counter to a recent meta-analysis, using activation likelihood estimation (based on nine studies), 

662 that reported increased activation in reward outcome (Oldham et al., 2018). Oldham et al. (2018) 

663 reported increased activation during the outcome phase in the reward hit versus reward miss or 

664 reward hit versus neutral contrasts (see Table 2 in Oldham et al., pg 3404). However, our 

665 deactivation results differed from Oldham et al. (2018) in that we focused on the reward hit 

666 versus neutral hit feedback contrast. The observed deactivation of the reward hit versus neutral 

667 hit contrast during the feedback phase is likely the spill-over BOLD signal from the anticipatory 

668 phase which captures the undershoot (Buxton, 2012). In direct plots of BOLD of outcome 
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669 within-condition (e.g. Big Win hit and Big Win miss signal) this undershoot is still apparent. 

670 Although comparing within condition outcomes, or more complicated contrasts (Bjork et al., 

671 2011; Veroude et al., 2016), are more appropriate when modeling the outcome phase, researchers 

672 should remain cognizant that these trials are still unbalanced (e.g., more hit versus miss trials) 

673 and underpowered (anticipation trial is bifurcated during outcome). Given the undershoot, if the 

674 neural process of interest is specific to the outcome phase, designs that temporally separate the 

675 outcome phase should be considered (Bjork et al., 2010; Murray et al., 2020). 

676 Bearing in mind that our sample is at the developmental peak of sensation-seeking 

677 (Romer, 2010; Steinberg et al., 2018), a psychological characteristic that is hypothesized to be 

678 central to the motivation towards reward (Casey, 2015; Ernst & Luciana, 2015; Spear, 2011), it 

679 is worth to consider how the association between reward activation and sensation seeking 

680 changes across anticipatory contrasts. While we found a negligible association between sensation 

681 seeking and bilateral VS activation during Big Win versus Neutral contrast (r < |.03|), Big Loss 

682 versus Neutral has a notable negative association with sensation seeking. (r = -.09 - .10). In the 

683 latter case, this may be consistent with the hypothesis that higher sensation seekers would be less 

684 motivated by negative rewards (e.g., loss). Meanwhile, in the context of the right VS, activation 

685 during Big Win versus Small Win contrast and sensation seeking are positively associated (r = 

686 .12). This is not consistent with the hypothesis that sensation seekers are more sensitive to larger 

687 rewards elicited by this contrast. However, while these distinctions may be well reasoned from a 

688 neurodevelopmental perspective (Casey, 2015) and other work reporting neural associations with 

689 sensation seeking (Cservenka et al., 2013; Hawes et al., 2017; Tapia León et al., 2019), the 

690 similarity in the negative association between right VS activity and sensation seeking across the 

691 All Win versus Neutral (r = .10) and Big Loss versus Neutral (r =.09) makes it difficult discern 

692 what the key distinguishing factor is in this brain-behavior association. Although the 

693 aforementioned examples refer to the most probable r-values, it is important to remember that 

694 the 95% confidence interval in all cases crossed zero and so in some samples the association may 

695 include results in the opposite observed direction, which should limit our confidence in the 

696 interpretation.

697 Hence, it is critical to consider how patterns of activation across task phases/conditions 

698 relate to behaviors, since the task is used in a broad clinical and behavioral literature. In our 

699 analysis using psychosocial and clinical criterion measures, we found limited evidence for 
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700 associations with activations across different phases and conditions. Specifically, the majority of 

701 associations between neural activation during the MID task and behavior were likely to be 

702 relatively small or negligible. As the original task design focused on clinical populations 

703 (Knutson & Heinz, 2015) and reviews suggest a robust role of limbic regions in substance use 

704 (Balodis & Potenza, 2015) and psychosis (Radua et al., 2015), this may in part explain the weak 

705 effects found in our young adult community sample. Although we cannot rule out that this lack 

706 of robust associations with behavior may have been due to features of our sample or measures, it 

707 stands in stark contrast to the large array of previous studies reporting associations of MID task 

708 activations with various real-world outcomes (Boecker et al., 2014; Büchel et al., 2017). Further, 

709 our findings are broadly consistent with recent work that has reported a distinct contrast between 

710 the effects found in studies with and without preregistration (median r = .16 versus .36; Schäfer 

711 & Schwarz, 2019) and with findings in large, diverse data sets which indicate that neuroimaging 

712 markers often explain only very small portions of the variance in behavioral outcomes of interest 

713 (Marek et al., 2020; Nees et al., 2012; Paulus et al., 2019; Paulus & Thompson, 2019). This has 

714 led some to suggest that small effects are the “new normal” in clinical neuroscience research 

715 (Paulus & Thompson, 2019) and that MRI studies require especially large sample sizes (>2000) 

716 to identify meaningful effects in brain-behavior associations (Marek et al., 2020). However, this 

717 issue needs to be explored further, as some proposed sample sizes of >160 in univariate fMRI 

718 analyses to be reasonable (Grady et al., 2020). 

719 One reason for discrepancy between our results and prior reports of more robust MID 

720 task associations with behavior is that effect sizes may have been overestimated in previous 

721 studies with smaller samples. Some studies have reported relatively moderate to large effect sizes 

722 (r > .25) with respect to brain-behavior associations (Cope et al., 2019; Karoly et al., 2015), but 

723 despite the numerous brain-behavior tests performed here that focused on related behavior 

724 constructs, our effect sizes (97% out of 400 observations r < .20) were consistently substantially 

725 lower. Until recently, neuroimaging studies of individual differences have frequently been 

726 underpowered (Cremers et al., 2017; Yarkoni, 2009), with a median sample size of < 50 (Szucs 

727 & Ioannidis, 2020), which tends to cause the size and replicability of effects to be dramatically 

728 overestimated due to a combination of noise in small samples and the “statistical significance 

729 filter” (Gelman & Loken, 2014; Vasishth et al., 2018). Our findings suggest that researchers 

730 should be prepared for relationships between MID task activations and clinical or real-world 
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731 outcomes of interest to be of small size and design their studies accordingly. The use of large 

732 data sets from collaborative efforts (e.g., ABCD: Casey et al., 2018) may be preferable to smaller 

733 samples collected by individual labs (Beltz & Weigard, 2019; Paulus & Thompson, 2019), and 

734 would be valuable in reexamining the results presented here to understand how effects change. 

735 Beyond the possibility that effect sizes in previous MID studies may have been inflated 

736 by small sample sizes and flexible selection of contrasts, the lack of relationships may also be 

737 attributed to problematic validity of fMRI-based tasks and the underlying assumptions about the 

738 cognitive processes involved, such as positive or negative valence. A large proportion of tasks in 

739 fMRI are experiment based, whereby conditions are manipulated to evoke excitation of a specific 

740 cognitive process (Price & Friston, 1997). Although the MID task evokes distinct neural 

741 processes that are consistent with current conceptualizations of the mesolimbic system (Knutson 

742 & Greer, 2008), the classic metric of validity, namely that a test measures the psychological trait 

743 that it claims to measure (Cronbach & Meehl, 1955; Kelley, 1927), appears to be underexplored 

744 in the implementation of this paradigm for assessing brain-behavior relationships. In fMRI 

745 studies of individual variation, such as behavioral differences that may be associated with neural 

746 measures of reward, the combination of experimental and correlational methods is required, 

747 work that arises from two distinct traditions in psychology (Cronbach, 1957). Correlation 

748 research attempts to increase between individual variation, whereas experimental work attempts 

749 to limit or control for the between-individual variation; the latter methodological approach 

750 practice has been argued to contribute to poor predictive effect of cognitive measures in 

751 correlational research (Dang et al., 2020). Together, the weak predictive effect of cognitive tasks 

752 and poor test re-test of fMRI (Elliott et al., 2020) can contribute to the unreliable estimates of 

753 different task contrasts and the interchangeable use of contrasts will inevitably result in playing 

754 ‘20 questions with nature’ (Newell, 1973).

755 The inferential processes in task-based fMRI pose conceptual challenges. It has been 

756 argued that the standard approaches in task-based fMRI that utilize the technique of subtracting 

757 conditions are fundamentally flawed in achieving the isolation of the neural substrates of specific 

758 mental functions (for discussion, see: Cacioppo et al., 2003; Caplan, 2007; Price & Friston, 

759 2005). Poldrack & Yarkoni (2016) suggest that there are basic conceptual difficulties within 

760 subtraction applied in task-based fMRI ‘that remain widely underappreciated within the 

761 neuroimaging community’ (pg. 589). This is observed in the MID task, as conceptually the 
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762 subtraction intends to measure approach and avoidance of positive and negative conditions 

763 (Knutson & Greer, 2008), but this is not consistent in the activation patterns of valence (insula) 

764 and approach (VS/Nucleus Accumbens) structures that, at the group-level, are activated similarly 

765 in both conditions (Murray et al., 2020; Oldham et al., 2018). Although using monetary value 

766 allows control of magnitude, probability and timing (Knutson & Greer, 2008), adding a discrete 

767 step with positive or negative monetary cues (i.e., “pure insertion assumption”; Price & Friston, 

768 1997) may not be sophisticated enough to identify valence and approach over and above 

769 processes of attention and/or motivation within an individual. While the MID task measures 

770 distinct positive and negative valenced systems in two distinct phases, the nature to which these 

771 phenomena vary or are consistent across specific behaviors has not been well characterized. And 

772 in fact, our work in a community sample of young adults suggests that they may not significantly 

773 differ in terms of the structures that are involved.

774 Although our findings suggest a high level of variability between contrast choices and 

775 behavioral associations, several measures can be taken that may improve the generalizability of 

776 results in the MID task literature. First, an immediate step that can be taken by researchers is 

777 increasing sample sizes in task-based fMRI research. Currently, a large proportion of fMRI 

778 studies are substantially underpowered for finding the effect they are testing (Szucs & Ioannidis, 

779 2017, 2020). Second, researchers would benefit from assessing how the MID contrast values fit 

780 in a larger nomological network of neural and behavioral constructs (Poldrack & Yarkoni, 2016), 

781 beyond an abstract subtraction processes that presumes a process of motivation or consumption 

782 of reward and preregister these hypotheses in advanced. Third, multivariate methods, such as 

783 dimensionality reduction and cross-validated predictive modeling, may help with the 

784 reproducibility of theorized neural substrates of cognitive processes (Hong et al., 2019). 

785 Multivariate, cross-validated analyses can provide a priori activation patterns and locations that 

786 can be confirmed out of sample, reducing the possibility of exploring multiple hypotheses. 

787 Finally, if the goal is to characterize individual variability in neural function, researchers should 

788 implement functional organization techniques to explain changes in behavior and cognitive 

789 processes (Beltz et al., 2016; Yip et al., 2019; Zhang et al., 2019). Network models of task-based 

790 fMRI may be particularly helpful for uncovering the neural architecture of cognitive processes 

791 (Greene et al., 2018; Medaglia et al., 2015). By using individual and group level estimates of 

792 connectivity patterns (Beltz et al., 2016), task-based analyses may improve the identification and 
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793 replication of neural signatures that will aid researchers studying developmental and clinical 

794 differences (Yip et al., 2019; Zhang et al., 2019).

795 5.1 Limitations

796 Although the findings here pose significant implications, there are multiple limitations. 

797 First, the nature of our findings are tested only in a modified version of MID task that was 

798 administered in a young adult sample, so the implications should be considered and confirmed in 

799 a separate sample(s) to determine which effects converge between samples and which are limited 

800 to a sample. Future work should examine these associations in a larger sample and at different 

801 developmental stages using the ABCD study data. Second, the correlates between ROI activation 

802 and self-reported behavior may be underestimated, such that behavior that is collected 

803 contemporaneously with the scan acquisition or in the nature that the brain predicts behavior may 

804 produce different effects. Moreover, due to a combination of increased number of voxels and 

805 alternative methods for controlling the false positive rate, the whole brain statistical analyses 

806 exploring brain-behavior associations may reveal findings that an ROI constrained analysis may 

807 overlook. Third, only a subset of common a priori contrasts were selected from the literature. 

808 Alternative contrasts, such as the linear combination of winning or alternative contrasts during 

809 the outcome phase, should be considered in future work. Since the anticipation and outcome 

810 phase in this task were not jittered, we could not directly contrast these phases at the individual 

811 level (only group level), due to risk of collinearity. Finally, due to the outcome phase containing 

812 variable number of trials as a function of 60% accuracy rate, the activation patterns may be 

813 influenced by the surprise of the event(s) (Vassena et al., 2020), which should be considered in 

814 future work.

815 It is worth noting that some of the differences between positive and negative cues in our 

816 and previous studies may depend on age-related factors and sample characteristics. For instance, 

817 while our results did not demonstrate a meaningful difference in the activation of the VS or 

818 insula between Big Win and Big Lose anticipation phases, age related differences have been 

819 previously reported using this task, such that increases in activation during Big Win anticipation 

820 trials were greater in older adults (Bjork et al., 2010), and reduced activation in response to Big 

821 Lose anticipation in 9-12 year old’s (Cope et al., 2019). This suggests patterns of activation 

822 during the MID task within and between sample comparisons has been considered when age-

823 related effects are present, as qualitative differences between some contrasts may not be easily 
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824 apparent. Furthermore, whereas these analyses focus on a community-recruited young adult 

825 sample, previous reviews focused on clinical population (Balodis & Potenza, 2015; Radua et al., 

826 2015), and these results should be considered in the future within a clinical population to assess 

827 how associations would change in light of clinical factors.

828 5.2 Conclusion

829 Although univariate fMRI contrasts from the MID task are often used to measure neural 

830 substrates of reward processing, modeling techniques have varied substantially between studies. 

831 The structure of the task has been proposed to separately measure the constructs of arousal and 

832 valence. However, it is still unclear whether these dimensions are easily separable using different 

833 task contrasts, and whether findings from different contrasts can be easily generalized between 

834 studies. Our within-sample comparison of MID contrasts during multiband fMRI revealed more 

835 similarities than differences between positive and negative cues during the anticipation contrast, 

836 dissimilarity of the specific Big Win versus Small Win contrast during the anticipation phase, a 

837 robust deactivation effect in the outcome phase, and behavioral associations that are less robust 

838 than previously thought. These findings point to the need for caution in future work that make 

839 attempts at generalization and encourage researchers to power their studies for effects that may 

840 be smaller than previously hypothesized. 
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1332  Table 1: Contrast Modeled in the Monetary Incentive Delay Task

Contrasts Phases of MID Modeled

Contrast 1 (A1) - Ant Win (W; $5 & $0.20) > Neutral (N) (W>N)

Contrast 2 (A2) - Ant Big Win (BW; $5) > Neutral (N) (BW>N)

Contrast 3 (A3) - Ant Big Win (BW; $5) > Small Win (SW; ($0.20) (BW>SW)

Contrast 4 (A4) - Ant Big Win (BW; $5) > Implicit Baseline (BW>IB)

Contrast 5 (A5) - Ant Big Loss (BL; $5) > Neutral (N) (BL>N)

Contrast 6 (F6) – Out Big Win (BW; $5) Hit > Neutral (N) Hit (BWH>NH)

Contrast 7 (F7) – Out Big Loss (BW; $5) Hit > Neutral (N) Hit (BWH>NH)

Contrast 8 (P8) - PE Expected Value – BW & SM Modulated (EV)

Contrast 9 (P9) - PE Positive Prediction Error (PE) - BW & SM Modulated (PPE)

Contrast 10 (P10) - PE Negative Prediction Error (PE) - BL & SL Modulated (NPE)
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1333 Ant = Anticipation; Out = Outcome; Individual contrasts modeled in FSL, see section 1.4 in Supplementary for list of Events 

1334 Modeled in GLM. A = Anticipation; F = Feedback; P = Prediction Error
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