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Abstract

Objective: The global rise in type 2 diabetes is associated with a concomitant

increase in diabetic complications. Diabetic polyneuropathy is the most fre-

quent type 2 diabetes complication and is associated with poor outcomes. The

metabolic syndrome has emerged as a major risk factor for diabetic polyneu-

ropathy; however, the metabolites associated with the metabolic syndrome that

correlate with diabetic polyneuropathy are unknown. Methods: We conducted

a global metabolomics analysis on plasma samples from a subcohort of partici-

pants from the Danish arm of Anglo-Danish-Dutch study of Intensive Treat-

ment of Diabetes in Primary Care (ADDITION-Denmark) with and without

diabetic polyneuropathy versus lean control participants. Results: Compared to

lean controls, type 2 diabetes participants had significantly higher HbA1c

(p = 0.0028), BMI (p = 0.0004), and waist circumference (p = 0.0001), but

lower total cholesterol (p = 0.0001). Out of 991 total metabolites, we identified

15 plasma metabolites that differed in type 2 diabetes participants by diabetic

polyneuropathy status, including metabolites belonging to energy, lipid, and

xenobiotic pathways, among others. Additionally, these metabolites correlated

with alterations in plasma lipid metabolites in type 2 diabetes participants based

on neuropathy status. Further evaluating all plasma lipid metabolites identified

a shift in abundance, chain length, and saturation of free fatty acids in type 2

diabetes participants. Importantly, the presence of diabetic polyneuropathy

impacted the abundance of plasma complex lipids, including acylcarnitines and

sphingolipids. Interpretation: Our explorative study suggests that diabetic

polyneuropathy in type 2 diabetes is associated with novel alterations in plasma

metabolites related to lipid metabolism.

Introduction

Diabetic polyneuropathy (DPN) is the most prevalent

diabetes complication, affecting up to 50% of individuals

with diabetes worldwide.1 DPN is characterized by pro-

gressive, length-dependent nerve damage, which causes

pain or sensory loss in the limbs and results in severe

morbidity, falls, amputations, and a lower quality of life.1
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Hyperglycemia is a major DPN risk factor in type 1 dia-

betes (T1D), where tight glycemic control effectively slows

DPN progression.2 However, glycemic control does not

effectively slow DPN progression in type 2 diabetes

(T2D),3 suggesting that additional risk factors are

invovled.4 These studies highlight that the metabolic fac-

tors underlying DPN progression are distinct in T2D ver-

sus T1D.4

In patient cohorts, we have shown that the metabolic

syndrome (MetS) is a major independent DPN risk factor

in T2D.3,5 MetS is highly prevalent in T2D populations3,5

and is defined by five metabolic components, including

obesity and dyslipidemia, which are characterized by low

high-density lipoproteins (HDLs) and hypertriglyc-

eridemia.6 In the Danish arm of the Anglo-Danish-Dutch

study of Intensive Treatment of Diabetes in Primary Care

(ADDITION), we identified waist circumference and low

plasma HDL cholesterol, a MetS dyslipidemia component,

as T2D DPN risk factors.7 Alongside these MetS compo-

nents, elevated levels of methylglyoxal, an oxidative stress

biomarker, also correlated with T2D DPN in ADDI-

TION-Denmark, indicative of broader plasma metabolic

changes. Importantly, we most recently concluded from

an ADDITION-Denmark analysis that lipid-lowering sta-

tins do not alter DPN incidence, suggesting that hyper-

lipidemia per se may not cause DPN, but rather that

changes in specific lipids or metabolites may underlie

DPN.8 However, the specific metabolite and lipid species

associated with MetS in T2D DPN progression are not

fully understood.

In this study, we identified alterations in circulating

metabolites and lipids that correlate with T2D DPN by

conducting global metabolomics analysis on plasma from

healthy individuals and from T2D and T2D DPN partici-

pants enrolled in ADDITION-Denmark.7,9 We identified

15 metabolites that differed in T2D DPN versus T2D par-

ticipants, which included complex lipids. These data sup-

port the idea that prevalent DPN in T2D correlates with

a specific plasma metabolite and lipid profile.

Methods

Study population

This cross-sectional case–control study included partici-

pants with screen-detected T2D with or without DPN

and healthy controls. The diabetes cohort is a subpopula-

tion of participants that attended a clinical follow-up

examination between October 2015 and June 2016 at the

Aarhus study site of ADDITION-Denmark. Briefly,

ADDITION-Denmark enrolled participants (40–69 year

of age) with previously undiagnosed, screen-detected T2D

between 2001 and 2006. During the trial, which ended in

2009, general practices were randomly assigned to provide

T2D participants with routine care or a more intensive

multifactorial treatment.10 After a mean of 13 years post-

enrollment in ADDITION-Denmark, the T2D cohort

(N = 97) in the current study underwent follow-up

examination.9 Participants fasted from midnight the pre-

vious day until their examination, which involved blood

sample collection, vitals, anthropometric measurements,

and DPN assessment, which were all conducted on the

same visit. Out of 97 participants, 48 were identified with

DPN and 49 without DPN. The age- and sex-matched

healthy control participants without T2D (N = 9) were

from the same geographical area and were derived from

the original ADDITION-Denmark screen. At examination,

healthy control participants were evaluated to confirm

that they had not developed diabetes or another neuro-

logical disease and had normal nerve conduction studies

(NCS).

DPN assessment

DPN was assessed by NCS, as defined by published crite-

ria,11 using Keypoint. Net EMG equipment (Dantec,

Skovlunde, Denmark). The Z-scores of in-house age- and

height-matched normative data were used to calculate

sum scores from the average of the following six parame-

ters: peroneal, tibial, and median nerve NCVs, tibial and

median nerve minimum F-wave latencies, and sural sen-

sory nerve action potential amplitude. The ulnar nerve

was assessed instead of the median nerve when NCS indi-

cated the presence of carpal tunnel syndrome. NCS sum

Z-scores >2.0 were considered abnormal and indicated

DPN.

Vitals, basic metabolic profile, and
anthropometric measurements

Each participant received a clinical examination, which

included vitals (systolic and diastolic blood pressure),

anthropometric measurements (weight, height, BMI, waist

circumference), and metabolic measures from blood [total

cholesterol, HDL cholesterol, triglycerides, glycated hemo-

globin (HbA1c)] and urine (creatine) samples. Age, sex,

and prescribed medication (glucose-lowering drugs, sta-

tins, b-blockers, antihypertensives, and aspirin) were also

collected.

Metabolomic profiling

Plasma samples from each participant were shipped on

dry ice to Metabolon (Durham, NC), and stored at

�80°C for metabolomics profiling. For analysis, recovery

and internal standards were added to each plasma sample
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to evaluate extraction and instrument variability, respec-

tively. Methanol was added to precipitate protein and dis-

sociate protein-bound metabolites and extract chemically

diverse metabolites from solution. After centrifugation,

the supernatant was aliquoted into several portions, for

analysis by three different types of ultra-performance liq-

uid chromatography tandem mass spectroscopy (UPLC-

MS/MS). The methanol was evaporated from the super-

natant aliquot and the dry metabolite residue was recon-

stituted in solvents appropriate for each of the following:

reverse phase UPLC-MS/MS in positive and negative ion

mode electrospray ionization (ESI) and hydrophilic inter-

action liquid chromatography UPLC-MS/MS in negative

ion mode ESI. This approach analyzes nonpolar and polar

metabolites and lipids. A detailed description of Metabo-

lon’s protocols for sample preparation, quality assurance,

quality control, and data normalization are described in

File S1.

Metabolite identification and quantification

Metabolite peaks were quantified by calculating the area

under the curve. Day-to-day run variation for each

metabolite was corrected daily by equaling the median to

1.00 to normalize each metabolite data point by sample.

In total, 991 metabolites were identified by automated

comparison of ion features from each sample to a refer-

ence library of chemical standards of known specific

retention times/indexes and mass-to-charge ratios.

Metabolomics data processing

Metabolites below the detection limit (missed in over

50% of all samples) were removed from further analysis.

The remaining metabolites had less than 50% missingness

and missing values were imputed using the K-Nearest

Neighbors (KNN) algorithm.12 The 50% threshold is the

default threshold in the Metaboanalyst R package. Data

were log transformed to reduce heteroscedasticity of

metabolite values. A principal component analysis (PCA)

plot was used to detect outliers and visualize participant

group separation.13

Statistics

Statistical analysis

Descriptive statistics were used to compare demographic

and metabolic information across participant groups

(Controls, T2D, T2D DPN). Fisher’s Exact Tests were

used to compare the distribution of sex between partici-

pant groups (Control vs. T2D and T2D vs. T2D DPN),

and a Wilcoxon signed rank test was used to compare

diabetes duration between T2D participants with and

without DPN. In addition, one-way ANOVA with

Tukey’s honest significant difference tests were used to

make pairwise comparisons of age and continuous meta-

bolic factors between participant groups (Control vs. T2D

and T2D vs. T2D DPN).

Univariate analysis

Independent two-sample t-tests were used to assess the

unadjusted pairwise differences in each metabolite

between participant groups (Control vs. T2D, Control

vs.T2D DPN, and T2D vs. T2D DPN). In addition, linear

regression models were used to identify metabolites that

significantly differed between participant groups, after

adjusting for participant age, sex, and medication use.

Given a large number of comparisons, to control the false

discovery rate, we also calculated Q-values for the unad-

justed comparisons.14,15 Boxplots were used to visualize

the distribution of Q-values and p-values corresponding

to the unadjusted and adjusted pairwise comparisons.

Boxplots were also used to display the abundance of

metabolites that were significantly different across partici-

pant groups.

Feature selection and ranking

A penalized logistic regression method, “elastic net,” from

glmnet R package16 was used to select metabolites that

segregated T2D from T2D DPN participants. We per-

formed 10-fold cross-validation by tuning two penalty

parameters, alpha and lambda. Alpha sets the mixing

degree between ridge regression (alpha = 0) and lasso (al-

pha = 1), whereas lambda controls the shrink rate of

metabolite coefficients. Partial least squares discriminant

analysis (PLS-DA) was used to measure the importance

score of the metabolites selected by an elastic net.13 The

importance score indicates the contribution of each

metabolite to the model.

Classification and feature importance

Lilikoi R package17 and elastic net-selected metabolites

were used to build different classifiers using seven

machine learning algorithms, including Linear Discrimi-

nant Analysis, Support Vector Machine, Random Forest

(RF), Recursive Partitioning and Regression Trees, Predic-

tion Analysis for Microarrays, Logistic Regression, and

Gradient Boosting Machine (GBM). Classification And

REgression Training (CARET) R package18 was used to

perform cross-validation, features ranking, and training-

testing split. A 10-fold setting on the training dataset was

used to avoid overfitting. Prediction accuracy metrics
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included area under the receiver operating characteristic

curve (AUC), sensitivity, and specificity. The pROC R

package19 was employed to plot receiver operating charac-

teristic curves. The VarImp function from CARET was

implemented to rank metabolites based on their contribu-

tion to model performance.

Correlation analysis

Based on the association between DPN and MetS,3 Spear-

man’s rank correlation coefficients were computed

between the top eight elastic net metabolites to all lipids.

Heat maps were generated to plot the Spearman’s correla-

tion coefficients. Heat maps were also used to display dif-

ferences in free fatty acid and complex lipid abundance.

A t-test was used to identify significantly altered lipids in

T2D DPN compared to T2D.

Data and resource availability

The data collected from this study have been deposited to

the metabolomics workbench repository (https://www.me

tabolomicsworkbench.org/, study ID ST001411).

Ethics

The study was approved by the Committee on Health

Research Ethics in the Central Denmark Region (file nos.

20000183 and 1-10-72-63-15) and the Danish Data Pro-

tection Agency (file no. 2005-57-0002, ID185). The study

was conducted in accordance with the principles of the

Declaration of Helsinki, version 1996, and all study par-

ticipants gave written informed consent.

Results

Cohort characteristics

Cohort characteristics are presented in Table 1.7 Partici-

pants did not differ significantly by age, sex, blood pres-

sure, or urine creatine. As anticipated, HbA1c was

elevated in T2D versus healthy participants, and, although

fasting blood glucose was not recorded at the 13-year fol-

low-up appointment, we detected a distinct increase in

the glucose metabolite in T2D versus lean participants in

the metabolomics data (metabolite #1071, Table S1). BMI

and waist circumference were also higher in T2D partici-

pants compared to controls, which we expect since obe-

sity is a frequent T2D comorbidity.7,20 T2D participants

had significantly lower total cholesterol than healthy par-

ticipants; however, there was also a trending increase in

triglycerides and decrease in HDL, which did not attain

significance. The more favorable total cholesterol profile

in the T2D cohort may be due to prevalent statin use

(Fig. 1A), whereas b-blockers may have contributed to

the trending increase in triglycerides (Fig. 1B).21 Impor-

tantly, there were no significant differences in any metric

between T2D participants with or without DPN, although

there were trending increases in HbA1c, diabetes dura-

tion, and triglycerides. Although baseline or uncontrolled

hyperglycemia2 and dyslipidemia20 are T2D DPN risk fac-

tors, controlling these metabolic parameters does not nec-

essarily prevent DPN onset and progression. Thus, we

next sought to identify specific differential metabolites

and lipids in T2D participants with and without DPN by

global metabolomics.

Bioinformatics pipeline

Our bioinformatics pipeline is outlined in Figure 2. First,

untargeted global metabolomics identified 991 total

metabolites. Approximately 75 metabolites (7%) were

below the detection limit and removed from further anal-

ysis (Table S2), leaving 916 metabolites. Missing metabo-

lite values were imputed by KNN and a PCA plot was

used to visualize the results. Second, linear regression and

elastic net models identified significantly differentiated

metabolites in T2D versus T2D DPN. PLS-DA of elastic

net metabolites was used to generate metabolite impor-

tance scores. We also built classifiers using different

machine learning algorithms. Third, we assessed the pre-

dictability of the metabolites by power analysis and calcu-

lated the correlation between elastic net metabolites to

lipids metabolites.

Plasma metabolomics reveals metabolites
that differentiate T2D participants by DPN
status

PCA revealed distinct metabolite profiles between T2D

and control participants, however, there was no clear sep-

aration between T2D participants with and without DPN

(Fig. 3A). Unadjusted results from the independent two-

sample t-tests revealed there were 254 metabolites that

were significantly different between T2D and control par-

ticipants, and 28 that were significantly different between

T2D participants with and without DPN (p < 0.05)

(Table S1). Q-values for unadjusted comparison of the

254 metabolites showed that 92 metabolites that were sig-

nificantly different between lean controls and T2D partici-

pants, and 28 metabolites that were significantly different

between T2D participants with and without DPN, could

possibly be false discoveries (Fig. 3B and Table S1). After

adjusting for age, sex, and medication use, there were 124

metabolites that differed between all T2D versus control

participants and 18 that differed between T2D
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participants with and without DPN, of which 12 metabo-

lites were unique (p < 0.05) (Fig. 3C). Boxplots summa-

rizing the distribution of p-values and Q-values

corresponding to the adjusted and unadjusted participant

group comparisons are presented in Figure S1. The 12

metabolites that were different between control, T2D, and

T2D DPN participant groups are involved in lipid meta-

bolism [isoursodeoxycholate sulfate, glycosyl-N-(2-hy-

droxynervonoyl)-sphingosine (d18:1/24:1(2OH)), 3-

carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF)],

amino acids (4-methyl-2-oxopentanoate, N-acetyl-3-

methylhistidine), and energy (citrate) (Fig. 3D). We also

identified metabolites related to carbohydrates (arabinose)

and xenobiotics (tartrate, 3,5-dichloro-2,6-dihydroxyben-

zoic acid, 3-bromo-5-chloro-2,6-dihydroxybenzoic acid,

3-formylindole, sulfate of piperine).

To adjust for collinearity, we used elastic net, a regular-

ized logistic regression method, which identified eight sig-

nificantly differential metabolites in T2D versus T2D

DPN participants. These were categorized as lipids [isour-

sodeoxycholate sulfate, ximenoylcarnitine (C26:1)], energy

(citrate), amino acids (N-acetyl-3-methylhistidine, N-

acetyl-b-alanine), and xenobiotics [tartrate, perfluorooc-

tanoate (PFOA), sulfate of piperine]. A heat map demon-

strates distinct differences in the abundance of these eight

metabolites in T2D participants with and without DPN

(Fig. 4A). Analysis of their mean relative abundances

indicated five were downregulated and three were upregu-

lated in T2D participants with DPN (Fig. 4B). Next,

seven machine learning algorithms assessed the impor-

tance of the eight metabolites in T2D to DPN status

(Fig. 4C). The RF machine learning algorithm had the

highest AUC of 0.88, followed by GBM with AUC of

0.87, indicating they had the greatest predictive power for

determining metabolite importance. Isoursodeoxycholate

sulfate had the highest level of agreement across six

machine learning algorithms. RF and GBM assigned a

high importance score to six of the eight metabolites,

Table 1. Participant demographics at the time of plasma collection for global metabolomics analysis in a subcohort of ADDITION-Denmark.

Parameter Control (N = 9) T2D (N = 49) T2D DPN (N = 48) p-value

Age, mean (SD), years 71.38 � 4.34 71.28 � 6.16 71.05 � 6.05 *p = 0.999
#p = 0.9794

Sex *p = 0.6683
#p = >0.9999

Female 1 (11.11%) 11 (22.45%) 11 (22.92%)

Male 8 (88.89%) 38 (77.55%) 37 (77.08%)

Diabetes duration, mean (SD), years N/A 11.76 � 1.94 12.11 � 1.98 #p = 0.8489

HbA1c, mean (SD) 36.33 � 3.00 49.92 � 9.08 54.29 � 13.47 *p = 0.0028
#p = 0.1301

BMI, mean (SD), kg/m2 23.89 � 2.26 31.31 � 4.93 31.15 � 5.64 *p = 0.0004
#p = 0.9794

Weight, mean (SD), kg 73.17 � 10.17 91.58 � 14.98 94.44 � 19.40 *p = 0.0091
#p = 0.6817

Waist, mean (SD), cm 89.11 � 8.15 107.61 � 10.24 109.25 � 13.86 *p = 0.0001
#p = 0.7786

Blood pressure, mean (SD), mm Hg

Systolic 137.56 � 15.73 138.98 � 15.13 141.33 � 17.96 *p = 0.9694
#p = 0.7632

Diastolic 82.89 � 8.74 82.76 � 10.68 82.92 � 8.36 *p = 0.9992
#p = 0.9962

Total cholesterol, mean (SD), mmol/L 6.06 � 1.93 4.47 � 0.83 4.26 � 0.96 *p = 0.0001
#p = 0.5817

Triglycerides, mean (SD), mmol/L 1.12 � 0.44 1.69 � 0.74 1.93 � 1.18 *p = 0.2260
#p = 0.4312

HDL Cholesterol, mean (SD), mmol/L 1.78 � 0.42 1.47 � 0.46 1.39 � 0.36 *p = 0.1067
#p = 0.5840

Creatine, mean (SD), mmol/L 87.44 � 19.45 83.69 � 18.68 79.09 � 17.89 *p = 0.8400
#p = 0.4368

BMI, body mass index; DPN, diabetic polyneuropathy; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; N/A, not applicable; SD, standard

deviation; T2D, type 2 diabetes.

*Control versus T2D; #T2D versus T2D DPN; significantly different parameters are in bold.

Participant sex p-value was assessed using a Fishers Exact Test. Diabetes duration p-value was assessed using a Wilcoxon matched-pairs signed

rank test. For all other parameters, p-value was determined by using an Ordinary one-way ANOVA with Tukey’s Multiple Comparisons.
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suggesting they contributed strongly to the separation

between T2D and T2D DPN participants. The six

metabolites were isoursodeoxycholate sulfate, N-acetyl-3-

methylhistidine, tartrate, citrate, N-acetyl-b-alanine, and

ximenoylcarnitine (C26:1). The elastic net regression

identified three metabolites (N-acetyl-b-alanine,
ximenoylcarnitine (C26:1), and perfluorooctanoate) that

differed significantly between T2D and T2D DPN partici-

pant groups and were not selected in the linear regres-

sion. Therefore, linear regression identified 12

metabolites and the elastic net analysis identified three

new metabolites totaling 15 metabolites that differed

between T2D and T2D DPN. Boxplots of the relative

abundance of the metabolites that differed across partici-

pant groups are provided in Figure S2.

Plasma metabolites differentially correlate
with lipid species in T2D participants by
DPN status

Five of the eight elastic net metabolites are reported to

impact lipid and mitochondrial metabolism;22–26 thus, we

Statin use ß-blocker useA. B.

Figure 1. Medications prescribed to T2D participants in the study cohort. The percentage of type 2 diabetes participants (T2D) and T2D DPN

participants (T2D DPN) treated with statins (A) or b-blockers (B) at the time of plasma collection. Most T2D participants without DPN and T2D

participants with DPN were prescribed statins. Fewer T2D participants without DPN (9.1% female, less than 26.3% male) and T2D participants

with DPN (9.1% female; 21.6% male) received b-blockers.

STEP 1 STEP 2 STEP 3

Preprocessing:
• Missing imputation (KNN)
• Log transformation

Quality checks:
• Outlier detection (PCA)
• Density distribution

Univariate Analysis:
• Linear regression

Feature selection:
• Elastic net

Classification and 
Clustering:
• RF, SVM

Power analysis

Correlation analysis

Figure 2. Bioinformatics pipeline used to identify plasma metabolites that associate with DPN in T2D. Step 1 included quality checks using

principal component analysis (PCA), missing imputation using KNN, and log transformation. Step 2 focused on biomarker discovery by univariate

and multivariate analysis, and machine learning algorithms. Step 3 performed power analysis to identify the metabolites contributing the most to

the separation of T2D participants by DPN status. It also employed a correlation analysis to identify interconnectivity between the top elastic net

plasma metabolites to lipid alterations associated with DPN in T2D. KNN, K-Nearest Neighbors; PCA, principal component analysis; RF, random

forest; SVM, support vector machine.
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conducted a correlation analysis to explore connections

between these eight plasma metabolites to changes in the

plasma lipid profile of T2D participants by DPN status

(Fig. 5). We found significant correlations (p < 0.05)

between the eight metabolites and 473 lipid species in

T2D participants, of which 86 lipid species are depicted

(Fig. 5). There were more connections between the eight

metabolites and lipid species in T2D participants with

DPN versus without DPN, especially between ximenoyl-

carnitine (C26:1), isoursodeoxycholate sulfate, and citrate.

These metabolites connected to several lipids, suggesting

these metabolite-lipid correlations associate with T2D

DPN. For example, isoursodeoxycholate sulfate negatively

associated with sphingomyelins, citrate positively associ-

ated with metabolites of fatty acid metabolism, and

ximenoylcarnitine (C26:1) with many glycerophospholipid

and acylcarnitine species.

Plasma lipid abundance, chain length, and
saturation in T2D participants correlate to
DPN status

The association between the top eight metabolites and

alterations in specific lipid species motivated us to investi-

gate changes in abundance, chain length, and saturation

degree for all lipids from the metabolomics analysis

(Fig. 6). The global metabolomics platform we used

detects a broad range of polar and neutral lipid classes,

allowing us to assess alterations across lipid classes. The

free fatty acid (FFA) plasma profile from lean participants

showed high levels of very long-chain fatty acids greater

than 19 carbons in length and several species of medium-

chain fatty acids. Conversely, plasma from T2D partici-

pants with or without DPN was characterized by an accu-

mulation of medium- and long-chain saturated fatty acids
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(LCSFAs) ranging from 8 to 18 carbons in length

(Fig. 6A). Among complex lipids, T2D plasma contained

elevated levels of diacylglycerols (DAGs) and phos-

phatidylethanolamines (PEs) but lower levels of phos-

phatidylcholines (PCs) compared to lean participants

(Fig. 6B). Importantly, there was a decrease in all plasma

acylcarnitines, ceramides, and sphingomyelins (SMs) in

T2D participants compared to healthy controls (Fig. 6C).

Changes in all complex lipid abundance were even more

pronounced in T2D DPN participants versus controls

(Fig. 6A–C). Particularly, T2D DPN plasma was marked

by a significant reduction in two acylcarnitine species [xi-

menoylcarnitine (26:1), lignoceroylcarnitine (24:0)] and

one sphingolipid intermediate [glycosyl-N-(2-hydroxyner-

vonoyl)-sphingosine (d18:1/24:1(2OH))] compared to

T2D participants without polyneuropathy (Fig. 6D).

These results suggest that changes to the plasma lipid

profile correlate with DPN in T2D (Fig. 7).

Discussion

We conducted an explorative global plasma metabolo-

mics analysis on participants with screen-detected T2D

from ADDITION-Denmark to identify circulating

metabolites that correlate with DPN diagnosed at a fol-

low-up appointment a mean of 13 years after T2D

diagnosis.7,10 As expected, T2D status strongly influ-

enced the plasma metabolite profile compared to lean

controls, although we also identified unique metabolites

associated with DPN status among the T2D participants.

Several of these metabolites relate to metabolically active

lipid pathways. We also found that T2D and DPN sta-

tus produced changes in lipid abundance, chain length,

and saturation for plasma FFA and complex lipids,

including DAGs, sphingolipids, and acylcarnitines. Col-

lectively, these results suggest that plasma metabolite

profiles related to complex lipid metabolism are linked

to DPN in T2D, and may provide insight into DPN

pathogenesis.

In this study, our cohort was age- and sex-matched

across T2D, T2D DPN, and lean groups. The diabetes

groups exhibited the anticipated metabolic characteristics,

for example, elevated HbA1c, glucose, BMI, waist circum-

ference, which were observed in similar cohorts.7,27,28

Basic plasma lipid characteristics in the diabetes group

revealed lower total cholesterol compared to lean controls,

presumably due to statin use. Diabetes participants also

had nonsignificant increases in triglycerides and decreases

in HDL, despite taking statins. This is possibly due to b-
blocker use, which can result in trending increases in

plasma triglycerides.21,29 Although uncontrolled hyper-

glycemia2 and dyslipidemia20 are DPN risk factors, we did

citrate
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Figure 5. Correlation analysis shows associations between elastic net to lipid metabolites. Heat map of Spearman correlations (p < 0.05) was

used to assess associations between the eight elastic net metabolites to all lipid metabolites. Plasma from T2D participants and T2D DPN

participants show positive correlations (red) and negative correlations (green) between lipids.
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Figure 6. Plasma free fatty acid and complex lipid abundance, chain length, and saturation level in lean control, T2D, and T2D DPN participants.

(A) Heat maps of free fatty acid profiles in plasma from lean control, T2D, and T2D DPN participants show altered chain length and saturation of

free fatty acids. (B) Heat maps of complex lipids show increases in DAGs and PEs while PCs decrease in T2D participants. (C) SM, ceramide, and

acylcarnitine metabolites also show alterations in lean control, T2D, and T2D DPN participants. (D) Two acylcarnitine metabolites and one

sphingolipid metabolite were significantly altered in T2D DPN patients versus T2D without DPN; *p < 0.05.
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not observe significant differences in any metabolic metric

in T2D participants with or without DPN. However, there

were trends that agreed with other cross-sectional studies

of T2D participants with DPN.5,30–33 Additionally, statin

use, which influences the lipid profile, did not affect DPN

risk in another Danish cohort.8 Thus, we hypothesized

that alterations in specific lipid or metabolite species may

underlie DPN, rather than dyslipidemia or hypertriglyc-

eridemia per se, in this patient cohort.8

This led to our global plasma metabolomics analysis of

control, T2D, and T2D DPN participants to identify

specific differential metabolites and lipids by DPN status.

Age-, sex-, and medication use-adjusted univariate linear

regression and multivariate elastic net selected 12 and 8

metabolites, respectively. Three metabolites, isoursodeoxy-

cholate (a secondary bile acid), 3-formylindole (an L-

tryptophan metabolite), and CMPF (a metabolite of furan

fatty acids) are metabolized by gut microbiota suggesting

a link between DPN and the gut microbiome.23 We found

that isoursodeoxycholate, which modulates lipid absorp-

tion and belongs to the Lipid super-pathway, positively

associated with DPN status. In the KORA FF4 study, fecal

isoursodeoxycholate correlated positively with serum

triglycerides;23 indeed, herein, the T2D DPN group, which

had elevated plasma isoursodeoxycholate, also had a

trending increase in triglycerides versus T2D participants

without DPN. CMPF, another member of the Lipid

super-pathway, could also be related to microbial action

in the gut through furan fatty acid breakdown.34 Elevated

CMPF correlates with T2D and b-cell dysfunction,35,36

although there are no conclusive studies on the effect of

CMPF on DPN. Overall, the metabolite findings in this

Figure 7. Proposed mechanism for the effect of plasma metabolites on mitochondrial function within the nerve. The metabolites and lipids

altered in T2D DPN versus T2D participants may induce mitochondrial dysfunction through three pathways. First, the shift from very long-chain

and medium-chain fatty acids to LCSFAs in T2D participant plasma likely leads to mitochondrial bioenergetics overload. Second, elevated N-acetyl-

b-alanine levels may induce higher malonyl-CoA production and block CPT-1, which would reduce acylcarnitine levels and mitochondrial ATP

production, triggering mitochondrial dysfunction. Reductions in acylcarnitine and citrate levels may also impair the TCA cycle, reducing

mitochondrial ATP production. Third, elevated DAG levels stimulate de novo PE and PC synthesis. Alterations in the PC:PE ratio in the

mitochondrial membrane may also lead to mitochondrial dysfunction. CPT-1, carnitine palmitoyltranferase-1; DAGs, diacylglycerols; LCSFAs, long-

chain saturated fatty acids; PCs, phosphatidylcholines; PEs, phosphatidylethanolamines; TCA, the citric acid cycle.

1302 ª 2021 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association

Lipids Associated With Diabetic Neuropathy A. E. Rumora et al.



study strongly support future studies focused on the role

of gut microbiota in DPN.

Many selected metabolites belong to the Xenobiotics

super-pathway. One notable example is PFOA, previously

linked in preclinical studies to mitochondrial uncou-

pling,37 mitochondrial dysfunction,26 and impaired glu-

cose homeostasis.38 Epidemiological studies report

conflicting findings on PFOA exposure as a potential risk

factor for T2D development or associated microvascular

complications, although this may be due to population-

specific attributes or PFOA isomers.39 Herein, PFOA was

lower in T2D DPN versus T2D participants, which sug-

gests it does not affect diabetes complications, or DPN at

least. These findings agree with our preclinical DPN pre-

vention study using another mitochondrial uncoupler,

niclosamide ethanolamine, which had no therapeutic

effect on DPN in a T2D mouse model.40 Since partici-

pants are exposed to a multitude of complex exogenous

and endogenous xenobiotics,41 correlations between xeno-

biotics and participant groups may be unreliable due to

the small number of participants in this cohort and will

require further evaluation.

Metabolites differentiated by DPN status were also

related to energy [citrate, tricarboxylic acid cycle (TCA)]

and lipid metabolism [CMPF, ximenoylcarnitine (C26:1),

glycosyl-N-(2-hydroxynervonoyl)-sphingosine (d18:1/24:1

(2OH)]. Impaired energy homeostasis and mitochondrial

dysfunction are associated with T2D and diabetic compli-

cations, including DPN.42,43 Citrate, a crucial mitochon-

drial TCA intermediate, was significantly lower in plasma

from T2D DPN participants, paralleling our studies in

sciatic nerve from T2D DPN mice, which were deficient

in both glycolytic and TCA intermediates, including

citrate.24,44 Mitochondria are the primary site of lipid

metabolism, generating acetyl-CoA through fatty acid b-
oxidation, which feeds into the TCA cycle. Alternatively,

citrate in the cytosol can serve as a precursor for fatty

acid synthesis and has been reported to contribute to de

novo lipogenesis in models of insulin resistance45 and

diabetic complications.46 Cytosolic citrate cleaved by

ATP-citrate lyase produces oxaloacetate and acetyl-CoA.

Acetyl-CoA is then converted into malonyl-CoA by

acetyl-CoA carboxylase, a committed step in fatty acid

synthesis, which stimulates de novo lipogenesis.47 More-

over, complex metabolically active lipids also dictate

mitochondrial structure and function through membrane

curvature.48

Metabolites belonging to amino acid metabolism [in-

cluding 4-methyl-2-oxopentanoate, branched chain amino

acid (BCAA) metabolism], carbohydrate metabolism (ara-

binose, pentose metabolism), and nucleotide metabolism

(N-acetyl-b-alanine) were also identified. We found 4-

methyl-2-oxopentanoate, which is derived from L-leucine

and feeds into BCAA metabolism, was lower in T2D par-

ticipants with DPN. Clinical studies have shown that

BCAA pathway alterations are a risk for incident T2D.49

Here, the results suggest BCAA metabolism, which can

affect mitochondrial function, glucose metabolism, and

insulin sensitivity,50,51 may also be linked to DPN status.

Elevated N-acetyl-b-alanine levels, as observed in our

study, may similarly alter the TCA cycle and impair mito-

chondrial energy production,25 which could lead to nerve

injury. Importantly, when correcting for the analysis of

multiple comparisons by evaluating Q-values, we found

that many of the significant metabolites may potentially

be false discoveries. While our significant metabolite pro-

files agree with several previous studies in patients with

T2D,23,39,46,50,52 future studies, with larger sample sizes

are needed to confirm our findings.

Since we identified many metabolites centered around

mitochondrial metabolism and lipids, we next determined

the connectivity between the eight T2D DPN metabolites

identified by elastic net and plasma lipid metabolites.

Interestingly, citrate correlated positively with several acyl-

carnitines in plasma from T2D DPN participants, but not

those without DPN. Similarly, ximenoylcarnitine (C26:1)

had more correlations with acylcarnitines and glyc-

erophospholipids in T2D DPN versus T2D participants

without DPN. We previously reported alterations in

glycerophospholipid metabolism in the sciatic nerve of

neuropathic T2D murine models, suggesting glycerophos-

pholipid metabolism may be dysregulated by T2D in both

humans and mice.53 In light of these differences dictated

by DPN status, we evaluated changes in abundance, chain

length, and saturation degree of plasma FFAs and com-

plex lipids. While there were only 12 and 8 metabolites

that significantly differed by DPN status in the univariate

and multivariate analysis, respectively, we hypothesized

that the high connectivity between the metabolites and

lipid species was indicative of broader lipidomic changes

across lipid classes.

FFAs were distinctly impacted by T2D status. The FFA

profile shifted from medium and very long-chain polyunsat-

urated fatty acids in lean participants to an abundance of

long-chain saturated fatty acids in T2D, regardless of DPN

status, as previously reported.54 With regard to complex

lipids, there was an increase in DAGs and PEs and a decrease

in PCs, SMs, and ceramides comprising long-chain FAs (con-

taining 30–43 carbons in sum) in T2D plasma. Changes in

complex lipid fatty acyl chain length and saturation alter cel-

lular processes in T2D by impacting signaling pathways,

mitochondrial b-oxidation, subcellular localization, and

membrane fluidity and curvature.55 The rise we observed in

plasma DAGs is well established in T2D. DAGs are precursors

for triglyceride synthesis by diacylglycerol transferase 2

(DGAT2), which is increased in sural and sciatic nerve from
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humans and mice, respectively, with T2D DPN.53 DAGs are

also important signaling molecules that activate the family of

protein kinase C (PKC) enzymes, which are involved in a

wide range of biological vascular functions.56 Despite this

central role in diabetic complications, blocking PKC activity

does not consistently improve DPN in clinical trials.57

DAGs are also converted into PEs and PCs through the

de novo Kennedy pathway, by condensation of cytidine

5’-diphosphate (CDP)-ethanolamine and CDP-choline,

respectively.58 The increased PEs and decreased PCs in

T2D participant plasma in our study resulted in a drop

in PE:PC ratio. The drop in PE:PC ratio was steeper in

our DPN cohort, suggesting altered mitochondrial func-

tion, possibly at the neural level, in T2D DPN partici-

pants. PCs and PEs are the most abundant mitochondrial

phospholipids, and changes to the PC:PE ratio disrupts

mitochondrial respiration and ATP production.48 Indeed,

we have shown that dyslipidemic conditions impair mito-

chondrial respiratory capacity59 and ATP production60,61

in cultured sensory neurons. Additionally, genes related

to mitochondrial dysfunction are upregulated within the

sciatic nerve of T2D DPN mouse models.62

We also found that SM and ceramide metabolites were

reduced in plasma from all T2D participants, consistent

with earlier studies.52,63 As with the PC and PE trend, the

most pronounced changes were in the DPN cohort. Low

plasma SM levels may correlate with poorer neurological

outcomes.64 Moreover, ablating sphingomyelin synthase 1

in mice reduces ATP production and increases reactive

oxygen generation in b-cell mitochondria.65 Reduced

plasma SMs could result from lower lipoprotein choles-

terol7,66 or a decrease in SM synthesis from a deficiency

of sphingolipid intermediates, such as glycosyl-N-(2-hy-

droxynervonoyl)-sphingosine (d18:1/24:1(2OH)), which

was significantly lower in T2D DPN plasma in this study.

We observed that acylcarnitines ranging in chain lengths

between 2 and 26 were also decreased in T2D, indicating a

reduction in all acylcarnitine fatty acids. The decrease in

long-chain acylcarnitines in T2D DPN participants agrees

with our recent findings in a T2D cohort of American

Indians with DPN67 and diabetic nephropathy.46 It is possi-

ble that the elevated plasma levels we observed of N-acetyl-

b-alanine, a precursor to malonyl-CoA, inhibited carnitine

palmitoyltransferase 1 (CPT-1).68 Since CPT-1 catalyzes

long-chain acylcarnitine formation from long-chain fatty

acyl-CoAs, CPT-1 inhibition by malonyl-CoA may reduce

plasma acylcarnitine levels.68 Alternatively, b-alanine can

cause oxidative stress and decrease ATP levels, and impair

mitochondrial function in embryonic fibroblasts,25 a mech-

anism that may also drive mitochondrial dysfunction asso-

ciated with DPN in T2D.

Overall, the pattern in complex lipid abundance in all

T2D versus control participants intensified when the T2D

cohort was stratified by DPN status. Collectively, these

novel lipid findings support a mechanism whereby a shift

from unsaturated fatty acids to LCSFAs as mitochondrial

fuel within the nerve triggers mitochondrial dysfunction

(Fig. 7).59–61 Elevated N-acetyl-b-alanine levels in T2D

DPN participants may worsen mitochondrial dysfunction

by impairing the TCA cycle or triggering the formation of

malonyl-CoA, a potent CPT-1 inhibitor. CPT-1 inhibition

by malonyl-CoA significantly reduces acylcarnitine forma-

tion and ATP production by mitochondrial b-oxidation.
This loss of acylcarnitines as a mitochondrial energy substrate

could impair b-oxidation, resulting in energy failure, which

could contribute to DPN. The reduction in sphingolipid

intermediates also indicates that disrupted sphingolipid syn-

thesis pathways may reduce SMs and ceramides in the nerve,

contributing to T2D DPN. Collectively, these changes may

lead to mitochondrial dysfunction and energy depletion with

resulting nerve injury.

This study had limitations. The lean control group was

small, which limited our power to detect potentially

important metabolite differences between the groups. Our

cohort consisted of a disproportionate number of male

versus female participants in each group, which prevented

us from evaluating the contribution of sex differences to

plasma metabolomics and the large number of compar-

isons made across participant groups could have resulted

in false-positive discoveries. While we applied the rigor-

ous statistical methodology to limit this possibility, our

results need to be validated in larger T2D cohorts. Finally,

our DPN definition did not incorporate symptoms or

examination features, which may have led to misclassifica-

tion bias. Our DPN definition, however, utilized compre-

hensive NCS parameters, which have strong diagnostic

characteristics.11

In conclusion, plasma from T2D DPN participants

exhibited altered lipid and metabolite levels, which are

centered around lipid metabolism and mitochondrial

function. This study has important clinical implications

for T2D patients and suggests that dysfunctional lipid

metabolism is associated with T2D DPN. This exploratory

untargeted metabolomics analysis also revealed potential

links to microbiome and xenobiotic exposure. Future

directions could focus on exogenous (e.g., microbiome,

exposome) and endogenous factors that regulate complex

lipid pathways, the importance of carbon chain length,

and testing of our proposed mechanism to identify poten-

tial therapeutic T2D DPN targets, which currently lack

any tangible effective therapies.
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normalization, and metabolite identification performed by

Metabolon, Inc.

Table S1. A list of all metabolites identified by Metabo-

lon’s global metabolomics analysis. The table includes the

mean metabolite levels and a fold change comparison

between participant groups for each metabolite.

Figure S1. Boxplots showing the distribution of (A) p-

values from the linear regression analysis adjusted for age,

sex, and medication, (B) p-values from the unadjusted t-

test participant group comparisons, and (C) Q-values

from the unadjusted t-test participant group comparisons.

Figure S2. Boxplots showing the relative abundance of

the metabolites that were significantly different between

T2D and T2D DPN. Metabolites identified by linear

regression included (A) 3-formylindole, (B) tartrate, (C)

sulfate of piperine metabolite, (D) 3-carboxy-4-methyl-5-

propyl-2-furanpropanoate (CMPF)], (E) 3-bromo-5-

chloro-2,6-dihydroxybenzoic acid, (F) N-acetyl-3-methyl-

histidine, (G) isoursodeoxycholate sulfate, (H) glycosyl-

N-(2-hydroxynervonoyl)-sphingosine (d18:1/24:1(2OH)),

(I) citrate, (J) arabinose, (K) 4-methyl-2-oxopentanoate,

(L) 3,5-dichloro-2,6-dihydroxybenzoic acid. Metabolites

including (M) ximenoylcarnitine (C26:1), (N) perfluo-

rooctanoate, and (O) N-acetyl-b-alanine were identified

by elastic net analysis.

Table S2. A list of removed metabolites that were missed

in more than 50% of the samples.
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