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Abstract 

Objective: The global rise in type 2 diabetes is associated with a concomitant increase in 

diabetic complications. Diabetic polyneuropathy is the most frequent type 2 diabetes 

complication and is associated with poor outcomes. The metabolic syndrome has emerged as a 

major risk factor for diabetic polyneuropathy; however, the metabolites associated with the 

metabolic syndrome that correlate with diabetic polyneuropathy are unknown. 

Methods: We conducted a global metabolomics analysis on plasma samples from a sub-cohort 

of participants from the Danish arm of Anglo-Danish-Dutch study of Intensive Treatment of 

Diabetes in Primary Care (ADDITION-Denmark) with and without diabetic polyneuropathy 

versus lean control participants. 

Results: Compared to lean controls, type 2 diabetes participants had significantly higher HbA1c 

(P = 0.0028), BMI (P = 0.0004), and waist circumference (P = 0.0001), but lower total 

cholesterol (P = 0.0001). Out of 991 total metabolites, we identified 15 plasma metabolites that 

differed in type 2 diabetes participants by diabetic polyneuropathy status, including metabolites 

belonging to energy, lipid, and xenobiotic pathways, among others. Additionally, these 

metabolites correlated with alterations in plasma lipid metabolites in type 2 diabetes participants 

based on neuropathy status. Further evaluating all plasma lipid metabolites identified a shift in 

abundance, chain length, and saturation of free fatty acids in type 2 diabetes participants. 

Importantly, the presence of diabetic polyneuropathy impacted the abundance of plasma 

complex lipids, including acylcarnitines and sphingolipids. 

Interpretation: Our explorative study suggests that diabetic polyneuropathy in type 2 diabetes 

is associated with novel alterations in plasma metabolites related to lipid metabolism.

Introduction
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Diabetic polyneuropathy (DPN) is the most prevalent diabetes complication, affecting up to 50% 

of individuals with diabetes worldwide.1 DPN is characterized by progressive, length-dependent 

nerve damage, which causes pain or sensory loss in the limbs and results in severe morbidity, 

falls, amputations, and a lower quality of life.1 Hyperglycemia is a major DPN risk factor in type 1 

diabetes (T1D), where tight glycemic control effectively slows DPN progression.2 However, 

glycemic control does not effectively slow DPN progression in type 2 diabetes (T2D),3 

suggesting that additional risk factors are invovled.4 These studies highlight that the metabolic 

factors underlying DPN progression are distinct in T2D versus T1D.4

In patient cohorts, we have shown that the metabolic syndrome (MetS) is a major 

independent DPN risk factor in T2D.3, 5 MetS is highly prevalent in T2D populations3, 5 and is 

defined by five metabolic components, including obesity and dyslipidemia, which are 

characterized by low high-density lipoproteins (HDLs) and hypertriglyceridemia.6 In the Danish 

arm of the Anglo-Danish-Dutch study of Intensive Treatment of Diabetes in Primary Care 

(ADDITION), we identified waist circumference and low plasma HDL cholesterol, a MetS 

dyslipidemia component, as T2D DPN risk factors.8 Alongside these MetS components, 

elevated levels of methylglyoxal, an oxidative stress biomarker, also correlated with T2D DPN in 

ADDITION-Denmark, indicative of broader plasma metabolic changes. Importantly, we most 

recently concluded from an ADDITION-Denmark analysis that lipid-lowering statins do not alter 

DPN incidence, suggesting that hyperlipidemia per se may not cause DPN, but rather that 

changes in specific lipids or metabolites may underlie DPN.9 However, the specific metabolite 

and lipid species associated with MetS in T2D DPN progression are not fully understood.

In the current study, we identified alterations in circulating metabolites and lipids that 

correlate with T2D DPN by conducting global metabolomics analysis on plasma from healthy 

individuals and from T2D and T2D DPN participants enrolled in ADDITION-Denmark.8, 10 We 

identified 15 metabolites that differed in T2D DPN versus T2D participants, which included 

complex lipids. These data support the idea that prevalent DPN in T2D correlates with a specific 

plasma metabolite and lipid profile. 

Methods

Study population

This cross-sectional case-control study included participants with screen-detected T2D with or 

without DPN and healthy controls. The diabetes cohort is a sub-population of participants that 
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attended a clinical follow-up examination between October 2015 and June 2016 at the Aarhus 

study site of ADDITION-Denmark. Briefly, ADDITION-Denmark enrolled participants (40-69 year 

of age) with previously undiagnosed, screen-detected T2D between 2001 and 2006. During the 

trial, which ended in 2009, general practices were randomly assigned to provide T2D 

participants with routine care or a more intensive multifactorial treatment.11 After a mean of 13 

years post enrollment in ADDITION-Denmark, the T2D cohort (N = 97) in the current study 

underwent follow-up examination.10 Participants fasted from midnight the previous day until their 

examination, which involved blood sample collection, vitals, anthropometric measurements, and 

DPN assessment, which were all conducted on the same visit. Out of 97 participants, 48 were 

identified with DPN and 49 without DPN. The age- and sex-matched healthy control participants 

without T2D (N = 9) were from the same geographical area and were derived from the original 

ADDITION-Denmark screen. At examination, healthy control participants were evaluated to 

confirm that they had not developed diabetes or another neurological disease and had normal 

nerve conduction studies (NCS).

DPN assessment

DPN was assessed by NCS, as defined by published criteria,12 using Keypoint.Net EMG 

equipment (Dantec, Skovlunde, Denmark). The Z-scores of in-house age- and height-matched 

normative data were used to calculate sum scores from the average of the following six 

parameters: peroneal, tibial, and median nerve NCVs, tibial and median nerve minimum F-wave 

latencies, and sural sensory nerve action potential amplitude. The ulnar nerve was assessed 

instead of the median nerve when NCS indicated the presence of carpal tunnel syndrome. NCS 

sum Z-scores >2.0 were considered abnormal and indicated DPN. 

Vitals, basic metabolic profile, and anthropometric measurements 

Each participant received a clinical examination, which included vitals (systolic and diastolic 

blood pressure), anthropometric measurements (weight, height, BMI, waist circumference), and 

metabolic measures from blood [total cholesterol, HDL cholesterol, triglycerides, glycated 

hemoglobin (HbA1c)] and urine (creatine) samples. Age, sex, and prescribed medication 

(glucose-lowering drugs, statins, β-blockers, antihypertensives, and aspirin) were also collected. 
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Metabolomic profiling

Plasma samples from each participant were shipped on dry ice to Metabolon (Durham, NC), 

and stored at -80C for metabolomics profiling. For analysis, recovery and internal standards 

were added to each plasma sample to evaluate extraction and instrument variability, 

respectively. Methanol was added to precipitate protein and dissociate protein-bound 

metabolites and extract chemically diverse metabolites from solution. After centrifugation, the 

supernatant was aliquoted into several portions, for analysis by three different types of ultra-

performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS). The methanol 

was evaporated from the supernatant aliquot and the dry metabolite residue was reconstituted 

in solvents appropriate for each of the following: reverse phase UPLC-MS/MS in positive and 

negative ion mode electrospray ionization (ESI) and hydrophilic interaction liquid 

chromatography UPLC-MS/MS in negative ion mode ESI. This approach analyzes non-polar 

and polar metabolites and lipids. A detailed description of Metabolon’s protocols for sample 

preparation, quality assurance, quality control, and data normalization are described in 

Supplementary File 1.

Metabolite identification and quantification

Metabolite peaks were quantified by calculating the area under the curve. Day-to-day run 

variation for each metabolite was corrected daily by equaling the median to 1.00 to normalize 

each metabolite data point by sample. In total, 991 metabolites were identified by automated 

comparison of ion features from each sample to a reference library of chemical standards of 

known specific retention times/indexes and mass-to-charge ratios. 

Metabolomics data processing 

Metabolites below the detection limit (missed in over 50% of all samples) were removed from 

further analysis. Remaining metabolites had less than 50% missingness and missing values 

were imputed using the K-Nearest Neighbors (KNN) algorithm.13 The 50% threshold is the 

default threshold in the Metaboanalyst R package. Data were log transformed to reduce 

heteroscedasticity of metabolite values. A principal component analysis (PCA) plot was used to 

detect outliers and visualize participant group separation14. 
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Statistics:

Statistical Analysis 

Descriptive statistics were used to compare demographic and metabolic information across 

participant groups (Controls, T2D, T2D DPN). Fisher’s Exact Tests were used to compare the 

distribution of sex between participant groups (Control vs. T2D and T2D vs. T2D DPN), and a 

Wilcoxon signed rank test was used to compare diabetes duration between T2D participants 

with and without DPN. In addition, one-way ANOVA with Tukey's honest significant difference 

tests were used to make pairwise comparisons of age and continuous metabolic factors 

between participant groups (Control vs. T2D and T2D vs. T2D DPN).

Univariate analysis 

Independent two-sample t-tests were used to assess the unadjusted pairwise differences in 

each metabolite between participant groups (Control vs. T2D, Control vs.T2D DPN, and T2D vs. 

T2D DPN). In addition, linear regression models were used to identify metabolites that 

significantly differed between participant groups, after adjusting for participant age, sex, and 

medication use. Given the large number of comparisons, to control the false discovery rate, we 

also calculated Q-values for the unadjusted comparisons.15, 16 Boxplots were used to visualize 

the distribution of Q-values and P-values corresponding to the unadjusted and adjusted pairwise 

comparisons. Boxplots were also used to display the abundance of metabolites that were 

significantly different across participant groups.

Feature selection and ranking

A penalized logistic regression method, “elastic net”, from glmnet R package17 was used to 

select metabolites that segregated T2D from T2D DPN participants. We performed 10-fold 

cross-validation by tuning two penalty parameters, alpha and lambda. Alpha sets the mixing 

degree between ridge regression (alpha=0) and lasso (alpha=1), whereas lambda controls the 

shrink rate of metabolite coefficients. Partial least squares discriminant analysis (PLS-DA) was 

used to measure the importance score of the metabolites selected by elastic net.14 The 

importance score indicates the contribution of each metabolite to the model. 

Classification and feature importance 
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Lilikoi R package18 and elastic net-selected metabolites were used to build different classifiers 

using seven machine learning algorithms, including Linear Discriminant Analysis, Support 

Vector Machine, Random Forest (RF), Recursive Partitioning and Regression Trees, Prediction 

Analysis for Microarrays, Logistic Regression, and Gradient Boosting Machine (GBM). 

Classification And REgression Training (CARET) R package19 was used to perform cross-

validation, features ranking, and training-testing split. A 10-fold setting on the training dataset 

was used to avoid overfitting. Prediction accuracy metrics included area under the receiver 

operating characteristic curve (AUC), sensitivity, and specificity. The pROC R package20 was 

employed to plot receiver operating characteristic curves. The VarImp function from CARET 

was implemented to rank metabolites based on their contribution to model performance.

Correlation analysis 

Based on the association between DPN and MetS,3 Spearman’s rank correlation coefficients 

were computed between the top eight elastic net metabolites to all lipids. Heat maps were 

generated to plot the Spearman’s correlation coefficients. Heat maps were also used to display 

differences in free fatty acid and complex lipid abundance. A t-test was used to identify 

significantly altered lipids in T2D DPN compared to T2D. 

Data and resource availability

The data collected from this study have been deposited to the metabolomics workbench 

repository (https://www.metabolomicsworkbench.org/, study ID ST001411).

Ethics

The study was approved by the Committee on Health Research Ethics in the Central Denmark 

Region (file nos. 20000183 and 1-10-72-63-15) and the Danish Data Protection Agency (file no. 

2005-57-0002, ID185). The study was conducted in accordance with the principles of the 

Declaration of Helsinki, version 1996, and all study participants gave written informed consent.

Results

Cohort characteristics 
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Cohort characteristics are presented in Table 1.8 Participants did not differ significantly by age, 

sex, blood pressure, or urine creatine. As anticipated, HbA1c was elevated in T2D versus 

healthy participants, and, although fasting blood glucose was not recorded at the 13-year follow-

up appointment, we detected a distinct increase in the glucose metabolite in T2D versus lean 

participants in the metabolomics data (metabolite #1071, Supplementary Table 1). BMI and 

waist circumference were also higher in T2D participants compared to controls, which we 

expect since obesity is a frequent T2D comorbidity.7, 8 T2D participants had significantly lower 

total cholesterol than healthy participants; however, there was also a trending increase in 

triglycerides and decrease in HDL, which did not attain significance. The more favorable total 

cholesterol profile in the T2D cohort may be due to prevalent statin use (Fig 1A), whereas β-

blockers may have contributed to the trending increase in triglycerides (Fig 1B).21 Importantly, 

there were no significant differences in any metric between T2D participants with or without 

DPN, although there were trending increases in HbA1c, diabetes duration, and triglycerides. 

Although baseline or uncontrolled hyperglycemia2 and dyslipidemia7 are T2D DPN risk factors, 

controlling these metabolic parameters does not necessarily prevent DPN onset and 

progression. Thus, we next sought to identify specific differential metabolites and lipids in T2D 

participants with and without DPN by global metabolomics. 

  

Bioinformatics pipeline 

Our bioinformatics pipeline is outlined in Fig. 2. First, untargeted global metabolomics identified 

991 total metabolites. Approximately 75 metabolites (7%) were below the detection limit and 

removed from further analysis (Supplementary Table 2), leaving 916 metabolites. Missing 

metabolite values were imputed by KNN and a PCA plot was used to visualize the results. 

Second, linear regression and elastic net models identified significantly differentiated 

metabolites in T2D versus T2D DPN. PLS-DA of elastic net metabolites was used to generate 

metabolite importance scores. We also built classifiers using different machine learning 

algorithms. Third, we assessed the predictability of the metabolites by power analysis and 

calculated the correlation between elastic net metabolites to lipids metabolites. 

Plasma metabolomics reveals metabolites that differentiate T2D participants by DPN 

status
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PCA revealed distinct metabolite profiles between T2D and control participants, however, there 

was no clear separation between T2D participants with and without DPN (Fig 3A). Unadjusted 

results from the independent two-sample t-tests revealed there were 254 metabolites that were 

significantly different between T2D and control participants, and 28 that were significantly 

different between T2D participants with and without DPN (P < 0.05) (Supplementary Table 1). 

Q-values for unadjusted comparison of the 254 metabolites showed that 92 metabolites that 

were significantly different between lean controls and T2D participants, and 28 metabolites that 

were significantly different between T2D participants with and without DPN, could possibly be 

false discoveries (Fig 3B and Supplementary Table 1). After adjusting for age, sex and 

medication use, there were 124 metabolites that differed between all T2D versus control 

participants and 18 that differed between T2D participants with and without DPN, of which 12 

metabolites were unique (P < 0.05) (Fig 3C). Boxplots summarizing the distribution of P-values 

and Q-values corresponding to the adjusted and unadjusted participant group comparisons are 

presented in Supplementary Fig 1. The 12 metabolites that were different between control, T2D 

and T2D DPN participant groups are involved in lipid metabolism [isoursodeoxycholate sulfate, 

glycosyl-N-(2-hydroxynervonoyl)-sphingosine (d18:1/24:1(2OH)), 3-carboxy-4-methyl-5-propyl-

2-furanpropanoate (CMPF)], amino acids (4-methyl-2-oxopentanoate, N-acetyl-3-

methylhistidine), and energy (citrate) (Fig 3D). We also identified metabolites related to 

carbohydrates (arabinose) and xenobiotics (tartrate, 3,5-dichloro-2,6-dihydroxybenzoic acid, 3-

bromo-5-chloro-2,6-dihydroxybenzoic acid, 3-formylindole, sulfate of piperine). 

To adjust for collinearity, we used elastic net, a regularized logistic regression method, 

which identified eight significantly differential metabolites in T2D versus T2D DPN participants. 

These were categorized as lipids [isoursodeoxycholate sulfate, ximenoylcarnitine (C26:1)], 

energy (citrate), amino acids (N-acetyl-3-methylhistidine, N-acetyl-β-alanine), and xenobiotics 

[tartrate, perfluorooctanoate (PFOA), sulfate of piperine]. A heat map demonstrates distinct 

differences in abundance of these eight metabolites in T2D participants with and without DPN 

(Fig 4A). Analysis of their mean relative abundances indicated five were downregulated and 

three were upregulated in T2D participants with DPN (Fig 4B). Next, seven machine learning 

algorithms assessed the importance of the eight metabolites in T2D to DPN status (Fig 4C). The 

RF machine learning algorithm had the highest AUC of 0.88, followed by GBM with AUC of 

0.87, indicating they had the greatest predictive power for determining metabolite importance. 

Isoursodeoxycholate sulfate had the highest level of agreement across six machine learning 

algorithms. RF and GBM assigned a high importance score to six of the eight metabolites, 

suggesting they contributed strongly to the separation between T2D and T2D DPN participants. 
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The six metabolites were isoursodeoxycholate sulfate, N-acetyl-3-methylhistidine, tartrate, 

citrate, N-acetyl-β-alanine, and ximenoylcarnitine (C26:1). The elastic net regression identified 

three metabolites (N-acetyl--alanine, ximenoylcarnitine (C26:1), and perfluorooctanoate) that 

differed significantly between T2D and T2D DPN participant groups and were not selected in the 

linear regression. Therefore, linear regression identified 12 metabolites and the elastic net 

analysis identified three new metabolites totaling 15 metabolites that differed between T2D and 

T2D DPN. Boxplots of the relative abundance of the metabolites that differed across participant 

groups are provided in Supplementary Fig 2. 

Plasma metabolites differentially correlate with lipid species in T2D participants by DPN 

status

Five of the eight elastic net metabolites are reported to impact lipid and mitochondrial 

metabolism;22-26 thus, we conducted a correlation analysis to explore connections between 

these eight plasma metabolites to changes in the plasma lipid profile of T2D participants by 

DPN status (Fig 5). We found significant correlations (P < 0.05) between the eight metabolites 

and 473 lipid species in T2D participants, of which 86 lipid species are depicted (Fig 5). There 

were more connections between the eight metabolites and lipid species in T2D participants with 

DPN versus without DPN, especially between ximenoylcarnitine (C26:1), isoursodeoxycholate 

sulfate, and citrate. These metabolites connected to several lipids, suggesting these metabolite-

lipid correlations associate with T2D DPN. For example, isoursodeoxycholate sulfate negatively 

associated with sphingomyelins, citrate positively associated with metabolites of fatty acid 

metabolism, and ximenoylcarnitine (C26:1) with many glycerophospholipid and acylcarnitine 

species.

Plasma lipid abundance, chain length, and saturation in T2D participants correlate to 

DPN status

The association between the top eight metabolites and alterations in specific lipid species 

motivated us to investigate changes in abundance, chain length, and saturation degree for all 

lipids from the metabolomics analysis (Fig 6). The global metabolomics platform we used 

detects a broad range of polar and neutral lipid classes, allowing us to assess alterations across 

lipid classes. The free fatty acid (FFA) plasma profile from lean participants showed high levels 

of very long-chain fatty acids greater than 19 carbons in length and several species of medium 
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chain fatty acids. Conversely, plasma from T2D participants with or without DPN was 

characterized by an accumulation of medium- and long-chain saturated fatty acids (LCSFAs) 

ranging from 8 to 18 carbons in length (Fig 6A). Among complex lipids, T2D plasma contained 

elevated levels of diacylglycerols (DAGs) and phosphatidylethanolamines (PEs) but lower levels 

of phosphatidylcholines (PCs) compared to lean participants (Fig 6B). Importantly, there was a 

decrease in all plasma acylcarnitines, ceramides, and sphingomyelins (SMs) in T2D participants 

compared to healthy controls (Fig 6C). Changes in all complex lipid abundance was even more 

pronounced in T2D DPN participants versus controls (Fig 6A-C). Particularly, T2D DPN plasma 

was marked by a significant reduction in two acylcarnitine species [ximenoylcarnitine (26:1), 

lignoceroylcarnitine (24:0)] and one sphingolipid intermediate [glycosyl-N-(2-hydroxynervonoyl)-

sphingosine (d18:1/24:1(2OH))] compared to T2D participants without polyneuropathy (Fig 6D). 

These results suggest that changes to the plasma lipid profile correlate with DPN in T2D (Fig 7). 

Discussion

We conducted an explorative global plasma metabolomics analysis on participants with screen-

detected T2D from ADDITION-Denmark to identify circulating metabolites that correlate with 

DPN diagnosed at a follow-up appointment a mean of 13 years after T2D diagnosis.8, 11 As 

expected, T2D status strongly influenced the plasma metabolite profile compared to lean 

controls, although we also identified unique metabolites associated with DPN status among the 

T2D participants. Several of these metabolites relate to metabolically active lipid pathways. We 

also found that T2D and DPN status produced changes in lipid abundance, chain length, and 

saturation for plasma FFA and complex lipids, including DAGs, sphingolipids, and 

acylcarnitines. Collectively, these results suggest that plasma metabolite profiles related to 

complex lipid metabolism are linked to DPN in T2D, and may provide insight into DPN 

pathogenesis.  

In this study, our cohort was age- and sex-matched across T2D, T2D DPN, and lean groups. 

The diabetes groups exhibited the anticipated metabolic characteristics, e.g., elevated HbA1c, 

glucose, BMI, waist circumference, which were observed in similar cohorts.8, 27, 28 Basic plasma 

lipid characteristics in the diabetes group revealed lower total cholesterol compared to lean 

controls, presumably due to statin use. Diabetes participants also had non-significant increases 

in triglycerides and decreases in HDL, despite taking statins. This is possibly due to β-blocker 

use, which can result in trending increases in plasma triglycerides.21, 29 Although uncontrolled 

hyperglycemia2 and dyslipidemia7 are DPN risk factors, we did not observe significant 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

differences in any metabolic metric in T2D participants with or without DPN. However, there 

were trends that agreed with other cross-sectional studies of T2D participants with DPN.5, 30-33 

Additionally, statin use, which influences the lipid profile, did not affect DPN risk in another 

Danish cohort.9 Thus, we hypothesized that alterations in specific lipid or metabolite species 

may underlie DPN, rather than dyslipidemia or hypertriglyceridemia per se, in this patient 

cohort.9 

This led to our global plasma metabolomics analysis of control, T2D, and T2D DPN 

participants to identify specific differential metabolites and lipids by DPN status. Age-, sex-, and 

medication use-adjusted univariate linear regression and multivariate elastic net selected 12 

and 8 metabolites, respectively. Three metabolites, isoursodeoxycholate (a secondary bile 

acid), 3-formylindole (an L-tryptophan metabolite), and CMPF (a metabolite of furan fatty acids) 

are metabolized by gut microbiota suggesting a link between DPN and the gut microbiome.23 

We found that isoursodeoxycholate, which modulates lipid absorption and belongs to the Lipid 

super-pathway, positively associated with DPN status. In the KORA FF4 study, fecal 

isoursodeoxycholate correlated positively with serum triglycerides;23 indeed, herein, the T2D 

DPN group, which had elevated plasma isoursodeoxycholate, also had a trending increase in 

triglycerides versus T2D participants without DPN. CMPF, another member of the Lipid super-

pathway, could also be related to microbial action in the gut through furan fatty acid 

breakdown.34 Elevated CMPF correlates with T2D and -cell dysfunction,35, 36 although there are 

no conclusive studies on the effect of CMPF on DPN. Overall, the metabolite findings in our 

current study strongly support future studies focused on the role of gut microbiota in DPN. 

Many selected metabolites belong to the Xenobiotics super-pathway. One notable example 

is PFOA, previously linked in preclinical studies to mitochondrial uncoupling,37 mitochondrial 

dysfunction,26 and impaired glucose homeostasis.38 Epidemiological studies report conflicting 

findings on PFOA exposure as a potential risk factor for T2D development or associated 

microvascular complications, although this may be due to population-specific attributes or PFOA 

isomers.39 Herein, PFOA was lower in T2D DPN versus T2D participants, which suggests it 

does not affect diabetes complications, or DPN at least. These findings agree with our 

preclinical DPN prevention study using another mitochondrial uncoupler, niclosamide 

ethanolamine, which had no therapeutic effect on DPN in a T2D mouse model.40 Since 

participants are exposed to a multitude of complex exogenous and endogenous xenobiotics,41 

correlations between xenobiotics and participant groups may be unreliable due to the small 

number of participants in this cohort and will require further evaluation.
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Metabolites differentiated by DPN status were also related to energy [citrate, tricarboxylic 

acid cycle (TCA)] and lipid metabolism [CMPF, ximenoylcarnitine (C26:1), glycosyl-N-(2-

hydroxynervonoyl)-sphingosine (d18:1/24:1(2OH)]. Impaired energy homeostasis and 

mitochondrial dysfunction are associated with T2D and diabetic complications, including DPN.42, 

43 Citrate, a crucial mitochondrial TCA intermediate, was significantly lower in plasma from T2D 

DPN participants, paralleling our studies in sciatic nerve from T2D DPN mice, which were 

deficient in both glycolytic and TCA intermediates, including citrate.24, 44 Mitochondria are the 

primary site of lipid metabolism, generating acetyl-CoA through fatty acid β-oxidation, which 

feeds into the TCA cycle. Alternatively, citrate in the cytosol can serve as a precursor for fatty 

acid synthesis and has been reported to contribute to de novo lipogenesis in models of insulin 

resistance45 and diabetic complications.46 Cytosolic citrate cleaved by ATP-citrate lyase 

produces oxaloacetate and acetyl-CoA. Acetyl-CoA is then converted into malonyl-CoA by 

acetyl-CoA carboxylase, a committed step in fatty acid synthesis, which stimulates de novo 

lipogenesis.47 Moreover, complex metabolically active lipids also dictate mitochondrial structure 

and function through membrane curvature.48

Metabolites belonging to amino acid metabolism [including 4-methyl-2-oxopentanoate, 

branched chain amino acid (BCAA) metabolism], carbohydrate metabolism (arabinose, pentose 

metabolism), and nucleotide metabolism (N-acetyl-β-alanine) were also identified. We found 4-

methyl-2-oxopentanoate, which is derived from L-leucine and feeds into BCAA metabolism, was 

lower in T2D participants with DPN. Clinical studies have shown that BCAA pathway alterations 

are a risk for incident T2D.49 Here, the results suggest BCAA metabolism, which can affect 

mitochondrial function, glucose metabolism, and insulin sensitivity,50, 51 may also be linked to 

DPN status. Elevated N-acetyl-β-alanine levels, as observed in our study, may similarly alter the 

TCA cycle and impair mitochondrial energy production,25 which could lead to nerve injury. 

Importantly, when correcting for the analysis of multiple comparisons by evaluating Q-values, 

we found that many of the significant metabolites may potentially be false discoveries. While our 

significant metabolite profiles agree with several previous studies in patients with T2D23, 39, 46, 50, 

52, future studies, with larger sample sizes are needed to confirm our findings.

Since we identified many metabolites centered around mitochondrial metabolism and lipids, 

we next determined the connectivity between the eight T2D DPN metabolites identified by 

elastic net and plasma lipid metabolites. Interestingly, citrate correlated positively with several 

acylcarnitines in plasma from T2D DPN participants, but not those without DPN. Similarly, 

ximenoylcarnitine (C26:1) had more correlations with acylcarnitines and glycerophospholipids in 
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T2D DPN versus T2D participants without DPN. We previously reported alterations in 

glycerophospholipid metabolism in the sciatic nerve of neuropathic T2D murine models, 

suggesting glycerophospholipid metabolism may be dysregulated by T2D in both humans and 

mice.53 In light of these differences dictated by DPN status, we evaluated changes in 

abundance, chain length, and saturation degree of plasma FFAs and complex lipids. While 

there were only 12 and 8 metabolites that significantly differed by DPN status in the univariate 

and multivariate analysis, respectively, we hypothesized that the high connectivity between the 

metabolites and lipid species were indicative of broader lipidomic changes across lipid classes.

FFAs were distinctly impacted by T2D status. The FFA profile shifted from medium and very 

long-chain polyunsaturated fatty acids in lean participants to an abundance of long-chain 

saturated fatty acids in T2D, regardless of DPN status, as previously reported.54 With regards to 

complex lipids, there was an increase in DAGs and PEs and a decrease in PCs, SMs, and 

ceramides comprising long-chain FAs (containing 30-43 carbons in sum) in T2D plasma. 

Changes in complex lipid fatty acyl chain length and saturation alters cellular processes in T2D 

by impacting signaling pathways, mitochondrial -oxidation, subcellular localization, and 

membrane fluidity and curvature.55 The rise we observed in plasma DAGs is well established in 

T2D. DAGs are precursors for triglyceride synthesis by diacylglycerol transferase 2 (DGAT2), 

which is increased in sural and sciatic nerve from humans and mice, respectively, with T2D 

DPN.53 DAGs are also important signaling molecules that activate the family of protein kinase C 

(PKC) enzymes, which are involved in a wide range of biological vascular functions.56 Despite 

this central role in diabetic complications, blocking PKC activity does not consistently improve 

DPN in clinical trials.57 

DAGs are also converted into PEs and PCs through the de novo Kennedy pathway, by 

condensation to cytidine 5’-diphosphate (CDP)-ethanolamine and CDP-choline, respectively.58 

The increased PEs and decreased PCs in T2D participant plasma in our study resulted in a 

drop in PE:PC ratio. The drop in PE:PC ratio was steeper in our DPN cohort, suggesting altered 

mitochondrial function, possibly at the neural level, in T2D DPN participants. PCs and PEs are 

the most abundant mitochondrial phospholipids, and changes to the PC:PE ratio disrupts 

mitochondrial respiration and ATP production.48 Indeed, we have shown that dyslipidemic 

conditions impair mitochondrial respiratory capacity59 and ATP production60, 61 in cultured 

sensory neurons. Additionally, genes related to mitochondrial dysfunction are upregulated within 

the sciatic nerve of T2D DPN mouse models.62
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We also found that SM and ceramide metabolites were reduced in plasma from all T2D 

participants, consistent with earlier studies.52, 63 As with the PC and PE trend, the most 

pronounced changes were in the DPN cohort. Low plasma SM levels may correlate with poorer 

neurological outcomes.64 Moreover, ablating sphingomyelin synthase 1 in mice reduces ATP 

production and increases reactive oxygen generation in β-cell mitochondria.65 Reduced plasma 

SMs could result from lower lipoprotein cholesterol8, 66 or a decrease in SM synthesis from a 

deficiency of sphingolipid intermediates, such as glycosyl-N-(2-hydroxynervonoyl)-sphingosine 

(d18:1/24:1(2OH)), which was significantly lower in T2D DPN plasma in this study. 

We observed that acylcarnitines ranging in chain lengths between 2 and 26 were also 

decreased in T2D, indicating a reduction in all acylcarnitine fatty acids. The decrease in long-

chain acylcarnitines in T2D DPN participants agrees with our recent findings in a T2D cohort of 

American Indians with DPN67 and diabetic nephropathy.46 It is possible that the elevated plasma 

levels we observed of N-acetyl-β-alanine, a precursor to malonyl-CoA, inhibited carnitine 

palmitoyltransferase 1 (CPT-1).68 Since CPT-1 catalyzes long-chain acylcarnitine formation from 

long-chain fatty acyl-CoAs, CPT-1 inhibition by malonyl-CoA may reduce plasma acylcarnitine 

levels.68 Alternatively, β-alanine can cause oxidative stress and decrease ATP levels, and 

impair mitochondrial function in embryonic fibroblasts,25 a mechanism that may also drive 

mitochondrial dysfunction associated with DPN in T2D.

Overall, the pattern in complex lipid abundance in all T2D versus control participants 

intensified when the T2D cohort was stratified by DPN status. Collectively, these novel lipid 

findings support a mechanism whereby a shift from unsaturated fatty acids to LCSFAs as 

mitochondrial fuel within the nerve triggers mitochondrial dysfunction (Fig 7).59-61 Elevated N-

acetyl-β-alanine levels in T2D DPN participants may worsen mitochondrial dysfunction by 

impairing the TCA cycle or triggering the formation of malonyl-CoA, a potent CPT-1 inhibitor. 

CPT-1 inhibition by malonyl-CoA significantly reduces acylcarnitine formation and ATP 

production by mitochondrial -oxidation. This loss of acylcarnitines as a mitochondrial energy 

substrate could impair β-oxidation, resulting in energy failure, which could contribute to DPN. 

The reduction in sphingolipid intermediates also indicates that disrupted sphingolipid synthesis 

pathways may reduce SMs and ceramides in the nerve, contributing to T2D DPN. Collectively, 

these changes may lead to mitochondrial dysfunction and energy depletion with resulting nerve 

injury. 

This study had limitations. The lean control group was small, which limited our power to 

detect potentially important metabolite differences between the groups. Our cohort consisted of 
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a disproportionate number of male versus female participants in each group, which prevented 

us from evaluating the contribution of sex differences to plasma metabolomics and the large 

number of comparisons made across participant groups could have resulted in false positive 

discoveries. While we applied rigorous statistical methodology to limit this possibility, our results 

need to be validated in larger T2D cohorts. Finally, our DPN definition did not incorporate 

symptoms or examination features, which may have led to misclassification bias. Our DPN 

definition, however, utilized comprehensive NCS parameters, which have strong diagnostic 

characteristics.12

In conclusion, plasma from T2D DPN participants exhibited altered lipid and metabolite 

levels, which are centered around lipid metabolism and mitochondrial function. This study has 

important clinical implications for T2D patients and suggests that dysfunctional lipid metabolism 

is associated with T2D DPN. This exploratory untargeted metabolomics analysis also revealed 

potential links to microbiome and xenobiotic exposure. Future directions could focus on 

exogenous (e.g., microbiome, exposome) and endogenous factors that regulate complex lipid 

pathways, the importance of carbon chain length, and testing of our proposed mechanism to 

identify potential therapeutic T2D DPN targets, which currently lacks any tangible effective 

therapies. 
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Figure legends

Fig 1. Medications prescribed to T2D participants in the study cohort. The percentage of 

type 2 diabetes participants (T2D) and T2D DPN participants (T2D DPN) treated with statins (A) 

or β-blockers (B) at the time of plasma collection. Most T2D participants without DPN and T2D 

participants with DPN were prescribed statins. Fewer T2D participants without DPN (9.1% 

female, less than 26.3% male) and T2D participants with DPN (9.1% female; 21.6% male) 

received β-blockers. 

 

Fig 2. Bioinformatics pipeline used to identify plasma metabolites that associate with 

DPN in T2D. Step 1 included quality checks using principal component analysis (PCA), missing 

imputation using KNN, and log transformation. Step 2 focused on biomarker discovery by 

univariate and multivariate analysis, and machine learning algorithms. Step 3 performed power 

analysis to identify the metabolites contributing the most to the separation of T2D participants by 

DPN status. It also employed a correlation analysis to identify interconnectivity between the top 

elastic net plasma metabolites to lipid alterations associated with DPN in T2D. KNN, K-Nearest 

Neighbors; PCA, principal component analysis; RF, random forest; SVM, support vector 

machine.

 

Fig 3. Linear regression identified differences in metabolites in plasma from lean control, 

T2D, and T2D DPN participants. (A) PCA plot of metabolites separated by lean control, T2D, 

or T2D DPN participant groups. (B) Venn diagram depicting the number of significant 

metabolites that are unique or shared across all groups (Q < 0.05) from an unadjusted t-test 

analysis. (C) Venn diagram of the number of significant shared and unique metabolites across 

groups (P < 0.05) determined by a linear regression model adjusted for age, sex, and 

medications. (D) Log fold-change (FC) of the 12 unique metabolites differentially regulated 

between T2D participants with and without DPN. Metabolites marked by asterisks (*) represents 

uncertainties in metabolite quantification and identification.

PCA, principal component analysis, Sulfate of piperine metabolite, formula C16H19NO3 (3). 

Sulfate of piperine metabolite, formula C16H19NO3 (3).
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Fig 4. Elastic net analysis identified 8 unique metabolites that differentiate T2D 

participants by DPN status. (A) The relative abundance of the 8 elastic net metabolites in 

individual participants with T2D (left) and T2D DPN (right) plotted as a heat map. (B) The 

relative abundance of the 8 metabolites from T2D participants (left) and T2D DPN participants 

(right) were averaged and displayed as a mean value. (C) Seven different machine learning 

algorithms were trained to classify T2D and T2D DPN using the 8 elastic net metabolites. The 

importance scores of elastic net metabolites were extracted from seven different machine 

learning models, including Random Forest (RF), Gradient Boosting Machine (GBM), Logistic 

Regression (LOG), Prediction Analysis for Microarrays (PAM), Recursive Partitioning and 

Regression Trees (RPART), Linear Discriminant Analysis (LDA), and Support Vector Machine 

(SVM). The importance scores represent the contribution of metabolites to the performance of 

the machine learning model. Importance scores range from 0 representing “no importance” to 1 

representing “high importance”. Metabolites marked by asterisks (*) represent uncertainties in 

metabolite quantification and identification. Sulfate of piperine metabolite, formula C16H19NO3 

(3).

Fig 5. Correlation analysis shows associations between elastic net to lipid metabolites. 

Heat map of Spearman correlations (P < 0.05) was used to assess associations between the 8 

elastic net metabolites to all lipid metabolites. Plasma from T2D participants and T2D DPN 

participants show positive correlations (red) and negative correlations (green) between lipids. 

Fig 6. Plasma free fatty acid and complex lipid abundance, chain length, and saturation 

level in lean control, T2D, and T2D DPN participants. (A) Heat maps of free fatty acid profiles 

in plasma from lean control, T2D, and T2D DPN participants show altered chain length and 

saturation of free fatty acids. (B) Heat maps of complex lipids show increases in DAGs and PEs 

while PCs decrease in T2D participants. (C) SM, ceramide, and acylcarnitine metabolites also 

show alterations in lean control, T2D, and T2D DPN participants. (D) Two acylcarnitine 

metabolites and one sphingolipid metabolite were significantly altered in T2D DPN patients 

versus T2D without DPN; *P < 0.05. 
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Fig 7. Proposed mechanism for the effect of plasma metabolites on mitochondrial 

function within the nerve. The metabolites and lipids altered in T2D DPN versus T2D 

participants may induce mitochondrial dysfunction through three pathways. First, the shift from 

very long-chain and medium chain fatty acids to LCSFAs in T2D participant plasma likely leads 

to mitochondrial bioenergetics overload. Second, elevated N-acetyl-β-alanine levels may induce 

higher malonyl-CoA production and block CPT-1, which would reduce acylcarnitine levels and 

mitochondrial ATP production, triggering mitochondrial dysfunction. Reductions in acylcarnitine 

and citrate levels may also impair the TCA cycle, reducing mitochondrial ATP production. Third, 

elevated DAG levels stimulate de novo PE and PC synthesis. Alterations in the PC:PE ratio in 

the mitochondrial membrane may also lead to mitochondrial dysfunction. CPT-1, carnitine 

palmitoyltranferase-1; DAGs, diacylglycerols; LCSFAs, long-chain saturated fatty acids; PCs, 

phosphatidylcholines; PEs, phosphatidylethanolamines; TCA, the citric acid cycle.

Supplementary file legends:

Supplementary File 1: A detailed description about sample preparation, normalization, and 

metabolite identification performed by Metabolon, Inc. 

Supplementary Table 1: A list of all metabolites identified by Metabolon’s global metabolomics 

analysis. The table includes mean metabolite levels and a fold change comparison between 

participant groups for each metabolite.

Supplementary Fig 1. Boxplots showing the distribution of (A) P-values from the linear 

regression analysis adjusted for age, sex, and medication, (B) P-values from the unadjusted t-

test participant group comparisons, and (C) Q-values from the unadjusted t-test participant 

group comparisons.

Supplementary Fig 2. Boxplots showing the relative abundance of the metabolites that were 

significantly different between T2D and T2D DPN. Metabolites identified by linear regression 

included (A) 3-formylindole, (B) tartrate, (C) sulfate of piperine metabolite, (D) 3-carboxy-4-

methyl-5-propyl-2-furanpropanoate (CMPF)], (E) 3-bromo-5-chloro-2,6-dihydroxybenzoic acid, 

(F) N-acetyl-3-methylhistidine, (G) isoursodeoxycholate sulfate, (H) glycosyl-N-(2-

hydroxynervonoyl)-sphingosine (d18:1/24:1(2OH)), (I) citrate, (J) arabinose, (K) 4-methyl-2-

oxopentanoate, (L) 3,5-dichloro-2,6-dihydroxybenzoic acid. Metabolites including (M) 

ximenoylcarnitine (C26:1), (N) perfluorooctanoate, and (O) N-acetyl--alanine were identified by 

elastic net analysis.
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Supplementary Table 2: A list of removed metabolites that were missed in more than 50% of 

the samples.

Table 1. Participant demographics at the time of plasma collection for global metabolomics 

analysis in a sub-cohort of ADDITION-Denmark. 

Parameter Control (N=9) T2D (N=49) T2D DPN (N=48)     P-value

Age, mean (SD), 

years
71.38 ± 4.34 71.28 ± 6.16 71.05 ± 6.05

 *P= 0.999

 #P= 0.9794

Sex
 *P= 0.6683

 #P= >0.9999

Female 1 (11.11%) 11 (22.45%) 11 (22.92%)

Male 8 (88.89%) 38 (77.55%) 37 (77.08%)

Diabetes duration, 

mean (SD), years
N/A 11.76 ± 1.94 12.11 ± 1.98 #P= 0.8489

HbA1c, mean (SD) 36.33 ± 3.00 49.92 ± 9.08 54.29 ± 13.47
*P= 0.0028

#P= 0.1301

BMI, mean (SD), 

kg/m2
23.89 ± 2.26 31.31 ± 4.93 31.15 ± 5.64

*P= 0.0004

#P= 0.9794

Weight, mean (SD), 

kg
73.17 ± 10.17 91.58 ± 14.98 94.44 ± 19.40

*P= 0.0091

#P= 0.6817

Waist, mean (SD), 

cm
89.11 ± 8.15 107.61 ± 10.24 109.25 ± 13.86

*P= 0.0001

#P= 0.7786

Blood pressure, 

mean (SD), mm Hg

Systolic 137.56 ± 15.73 138.98 ± 15.13 141.33 ± 17.96
*P= 0.9694

#P= 0.7632

Diastolic 82.89 ± 8.74 82.76 ± 10.68 82.92 ± 8.36
*P= 0.9992

#P= 0.9962
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Total cholesterol, 

mean (SD), mmol/l
6.06 ± 1.93 4.47 ± 0.83 4.26 ± 0.96

*P= 0.0001

#P= 0.5817

Triglycerides, mean 

(SD), mmol/l
1.12 ± 0.44 1.69 ± 0.74 1.93 ± 1.18

*P= 0.2260

#P= 0.4312

HDL Cholesterol, 

mean (SD), mmol/l
1.78 ± 0.42 1.47 ± 0.46 1.39 ± 0.36

*P= 0.1067

#P= 0.5840

Creatine, mean 

(SD), mmol/l
87.44 ± 19.45 83.69 ± 18.68 79.09 ± 17.89

*P= 0.8400

#P= 0.4368

BMI, body mass index; DPN, diabetic polyneuropathy; HbA1c, hemoglobin A1c; HDL, high-

density lipoprotein; N/A, not applicable; SD, standard deviation; T2D, type 2 diabetes.

*Control versus T2D; #T2D versus T2D DPN; significantly different parameters are in bold.

Participant sex P-value was assessed using a Fishers Exact Test. Diabetes duration P-value 

was assessed using a Wilcoxon matched-pairs signed rank test. For all other parameters, P-

value was determined by using an Ordinary one-way ANOVA with Tukey’s Multiple 

Comparisons.
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Preprocessing:

• Missing imputation (KNN)

• Log transformation

Quality checks:

• Outlier detection (PCA)

• Density distribution

Univariate Analysis:

• Linear regression

Feature selection:

• Elastic net

Classification and 

Clustering:

• RF, SVM

Power analysis

Correlation analysis
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nitine (C10)nitine (C12)

cis−4−decenoylcarnitine (C10:1)

undecenoylcarnitine (C11:1)

5−dodecenoylcarnitine (C12:1)

myristoleoylcarnitine (C14:1)*

palmitoleoylcarnitine (C16:1)*

oleoylcarnitine (C18:1)

eicosenoylcarnitine (C20:1)*

nervonoylcarnitine (C24:1)*

linoleoylcarnitine (C18:2)*

linolenoylcarnitine (C18:3)*

dihomo−linoleoylcarnitine (C20:2)*

dihomo−linolenoylcarnitine (C20:3n3 or 6)*

arachidonoylcarnitine (C20:4)
acetylcarnitine (C2)

1−myristoyl−2−palmitoyl−GPC (14:0/16:0)

1,2−dipalmitoyl−GPC (16:0/16:0)

1−palmitoyl−2−palmitoleoyl−GPC (16:0/16:1)*

1−palmitoyl−2−stearoyl−GPC (16:0/18:0)

1−palmitoyl−2−oleoyl−GPC (16:0/18:1)

1−myristoyl−2−arachidonoyl−GPC (14:0/20:4)*

1−stearoyl−2−oleoyl−GPC (18:0/18:1)

1−stearoyl−2−linoleoyl−GPC (18:0/18:2)*

1−palmitoyl−2−dihomo−linolenoyl−GPC (16:0/20:3n3 or 6)*

1,2−dilinoleoyl−GPC (18:2/18:2)

1−palmitoyl−2−arachidonoyl−GPC (16:0/20:4n6)

1−linoleoyl−2−linolenoyl−GPC (18:2/18:3)*

1−palmitoyl−2−linoleoyl−GPC (16:0/18:2)

1−stearoyl−2−arachidonoyl−GPC (18:0/20:4)

1−palmitoyl−2−docosahexaenoyl−GPC (16:0/22:6)

1−stearoyl−2−docosahexaenoyl−GPC (18:0/22:6)

1−oleoyl−2−docosahexaenoyl−GPC (18:1/22:6)*

1−palmitoyl−2−stearoyl−GPE (16:0/18:0)*

1−palmitoyl−2−oleoyl−GPE (16:0/18:1)

1−palmitoyl−2−linoleoyl−GPE (16:0/18:2)

1−stearoyl−2−oleoyl−GPE (18:0/18:1)

1−stearoyl−2−linoleoyl−GPE (18:0/18:2)*

1−oleoyl−2−linoleoyl−GPE (18:1/18:2)*

1,2−dilinoleoyl−GPE (18:2/18:2)*

1−palmitoyl−2−arachidonoyl−GPE (16:0/20:4)*

1−stearoyl−2−arachidonoyl−GPE (18:0/20:4)

1−oleoyl−2−arachidonoyl−GPE (18:1/20:4)*

1−palmitoyl−2−docosahexaenoyl−GPE (16:0/22:6)*

1−stearoyl−2−docosahexaenoyl−GPE (18:0/22:6)*

1−oleoyl−2−docosahexaenoyl−GPE (18:1/22:6)*

sphingomyelin (d17:1/14:0, d16:1/15:0)*

sphingomyelin (d18:1/14:0, d16:1/16:0)*

sphingomyelin (d18:2/14:0, d18:1/14:1)*
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