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1 | INTRODUCTION

Late middle age adults commonly experience chronic health conditions as well as declining cognitive abilities. Factors known
to be associated with accelerated decrease in cognitive abilities include smoking, high alcohol consumption, physical inactiv-
ity, high dietary intake of sodium and saturated fats, low dietary intake of fruits and vegetables"; hypertension, elevated serum
cholesterol, diabetes, obesity, cerebrovascular and cardiovascular disease? depression, lower socioeconomic status, and expo-
sure to acute stressful life events and chronic perceived stress®. In particular, the acute stress of a sudden decrease in wealth —
“a negative wealth shock” — may have a negative impact on the cognitive ability of late middle aged adults. Because income
typically exceeds consumption at this stage in life, there are fewer remaining years left to replenish the lost wealth®, The stress
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of losing substantial wealth during the savings period of the life cycle coupled with the pressure to replenish the lost wealth can
lead to stress-related health conditions which in turn reduces the cognitive ability of an individual®.

To investigate the effect of a negative wealth shock on the cognitive ability of late middle age US adults, we used the Health
and Retirement Study (HRS). The HRS is a biennial survey that began in 1992 and collects detailed financial status and health
information from US adults age 50 and older®. Three issues arose when we tried to estimate the causal effect of a negative
wealth shock on cognitive ability using this dataset. First, there was a lack of randomization. Negative wealth shocks are not
randomly distributed in the population, but rather are confounded by factors such as gender and socio-economic status. Second,
due to time-dependent confounding, the risk of the wealth shock at any point in time may depend on the prior cognitive ability
up to the point. Finally, a sufficiently large fraction of our population will die during follow-up, leading to “censoring by death”
implying that their cognitive ability measure would be missing. This “missingness” is different from the measure of cognition
being “missing” due to dropout, where the cognitive ability measure exists but is unobserved. Note further that subjects observed
to have survived in the absence of a negative wealth shock include: 1) subjects that would survive regardless of whether they
received a negative wealth shock and 2) subjects that would survive only in the absence of a negative wealth shock. Because
death may be positively associated with variables that increase the risk of a negative wealth shock, increased cognitive ability
decline, and the experience of a negative wealth shock, the censored cognitive ability outcome may be confounded by death.

Methods dealing with these three types of barriers to causal inference have been developed requiring varying assumption.
Under the assumption that, conditional on available covariates, negative wealth shocks would truly be random, conditioning
on the probability of receiving a negative wealth shock as a function of these covariates — the propensity scores — can be
used to remove the effect of confounding, either by regression, matching, or weighting®. For the second issue — time-dependent
confounding — marginal structural models MSM,® and more recently, penalized spline of propensity methods in treatment
comparisons PENCOMP, Y, have been used to account for confounding by the time-dependence association of the cognitive
measures. For censoring by death, MSMs have typically been extended by multiplying the treatment assignment weights with
the inverse of the predicted probability of death™!. The issue with this approach — perhaps under appreciated — is that the result-
ing pseudo-population is not only balanced with respect to exposure “assignment”, but also “immortal”, in the sense that those
more likely to die are upweighted so that the population over time resembles that would have been obtained in the absence of
death up till time 12, This is arguably not a sensible population for inference, at least from a policy and public health perspective.
We shall elaborate on this point using a synthetic example in Subsection 1.1.

A more refined approach would be to compare the effect of negative wealth shock on cognitive ability among subjects who
would have survived whether they experienced a negative wealth shock or not. This approach uses the potential outcomes
definition of Neyman''J and Rubin'#, which defines causal effects as the within-subject difference of an outcome at a particular
time under different exposure or treatment regimen, averaged over the population. The result will be the recognition that the
treatment effect for some subjects will be non-existent and hence should not be included in the calculation of the average treat-
ment effect. This idea is not new'’ and can be viewed as a specific example of the principal stratification (PS) method discussed
in Frangakis and Rubin''®, Our innovation here is to embed this in a longitudinal setting where time-dependent confounding is
present. We view this as a large missing data problem where survival status and, among survivors, unobserved outcomes under
a given exposure pattern, are imputed. We shall illustrate the necessity for this refinement using a short synthetic example.

1.1 | MSM approach versus Principal Strata approach

Suppose we have an exposure Z = {0, 1}, negative wealth shock in our context, with O representing no wealth shock and
1 representing wealth shock. We use S(Z) = {0, 1} to denote the potential outcome of whether the subject survives with 0
representing the subject died and 1 representing the subject survived. The refinement PS introduces is the recognition that there
are four possible strata based on the combination of (S(0), S(1)): (S(0) = 0,5(1) = 0) — subject dies regardless of whether
they are shocked or not, (S(0) = 0, S(1) = 1) — subject survives only when they are shocked, (S(0) = 1, 5(1) = 0) — subject
survives only when they are NOT shocked, and (S(0) = 1,.5(1) = 1) — subject survives regardless. Note that stratum (S(0) =
0,8(1) = 1) is arguably not sensible and we assume this group of subjects do not exist. (This is the monoticity assumption
which we shall elaborate in Section 3.) This refined grouping gives rise to a slightly more elaborate potential outcomes notation,
Y(Z,(S5(0),S(1))), the outcome under different exposure and different PS. The idea of MSM still fits into this framework since
PS is just the refinement of subjects in the population into 3 different strata (in our context). Table [I|shows a synthetic example
of the potential outcomes under all the 3 possible strata.
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TABLE 1 Synthetic data set with censoring by death to illustrate the necessity of the principal stratification framework.

Subject | S(0) | S(1) | Y(0,(S0), () | Y(I,SO,SMY) | z | S| ¥
1 1 1 1 6 0 1] -1
2 1 1 2 7 ol1] 2
3 1 1 3 8 11| -8
4 1 1 4 9 11| -9
5 1 1 5 -10 1]1]-10
6 1 0 11 6 0l1]-11
7 1 0 12 7 0ol1]-12
8 1 0 13 -8 10| 2
9 1 0 14 9 110 2
10 1 0 15 -10 1o} 2
11 0 0 11 6 0olo] 2
12 0 0 12 7 0lo]| 2
13 0 0 13 -8 110 2
14 0 0 _14 9 10| 2
15 0 0 15 -10 110 2

Subjects 1 to 5 belong to the always survivors group, i.e. (S(0) = 1,.5(1) = 1), Subjects 6 to 10 belong to the helped group,
ie. (S(0) =1,S(1) = 0), and finally Subjects 11 to 15 belong to the doomed group, i.e. (5(0) = 0, S(1) = 0). Columns 2 to 5 of
Table [T show the potential outcomes while columns 6 to 8 show the observed outcomes. When running a study, the researcher
only observes columns 6 to 8 and is unable to observe columns 2 to 5 although these columns are precisely the information the
researcher needs in order to obtain valid and practical results. Suppose the researcher takes the naive approach and ignores the
missing data in column 8 and then calculates E[Y|Z = 1]— E[Y|Z = 0]. This yields an average treatment effect of -2.5. This is
misleading because if we looked at the potential outcomes for this population, E[Y (1, (S(0), S(1)))] — E[Y (0, (S(0), S(1)))] =
1.67, which suggests a completely opposite effect. In fact, 1.67 will be the estimated effect MSM produces assuming that MSM
is able to accurately recover all the counterfactuals, i.e. the Y (0, (S(0),.S(1)))s and Y (1, (S(0), S(1)))s that we did not observe
due to the exposure allocation as well as death. To understand the result produced by MSM a little better, let us interpret it in
context: if we hypothetically gave all subjects the exposure of a negative wealth shock as well as somehow kept them alive and
then take the average of their cognitive score; and then we compare this average score with the hypothetical situation where we
prevented negative wealth shock from all subjects, kept them alive, and then measured the average cognitive score produced, we
will find that allocating subjects to a negative wealth shock produces a cognitive score which is 1.67 higher on average compared
to when we prevented negative wealth shocks in the population.

One may claim this to be valid, which it is, be content and report the result to policy makers. But it is clear that there
is a huge issue with this interpretation. Unless researchers are able to somehow manipulate death, the potential outcomes
Y (0, (S(0),S(1))) and Y (1, (S(0), S(1))) for subjects 11 to 15 can never be realized in a real-life setting because these sub-
jects will die regardless of allocation to negative wealth shock or the prevention of one. Similarly, the potential outcome
Y (1, (S5(0), S(1))) for subjects 6 to 10 can never be realized in the real world because they will die under such a setting. So
although the solution produced by MSM is valid, it is not useful for the policy maker because it describes a situation which is
not replicable in the real world and worse, might produce the wrong conclusion because if we used E[Y(1,(S(0) =1,5() =
1)] — E[Y(0,(S(0) = 1,S(1) = 1))] instead, we can see that it is -5. This estimand can be interpreted as: given the hypothet-
ical situation where we allocated all subjects to a negative wealth shock and then compare this with the hypothetical situation
where we prevented all subjects from receiving a wealth shock, keeping only subjects who survived under these two hypotheti-
cal situations, and then take the difference in the average cognitive score of the two groups, we will find that population average
cognitive ability score of subjects having exposed to a negative wealth shock will be -5 lower compared to the cognitive abil-
ity average score of the population where we hypothetically prevented all negative wealth shocks; which is clearly much more
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sensible, negative wealth shock reduces cognitive ability, and a better representation of the real world effect of the policy on the
population compared to the naive or MSM approach.

We organize our paper as follows. In Section 2, we set up the framework for our problem, and provide a brief review of the
methods we require in our proposed algorithm. We develop our proposed method in Section 3. Section 4 explores some of the
empirical properties of our proposed method compared to a naive method and MSM using a simulation study. We then discuss
how negative wealth shock and cognitive ability were determined as well as present the results of our analysis in Section 5.
Section 6 discusses the implication of our results and identifies future work.

2 | REVIEW OF RELEVANT METHODS

2.1 | Notation

Let V be the set of baseline covariates, Z () be our exposure at time ¢t = 1, ..., T where Z(¢) = 1 indicates a subject receiving
a negative wealth shock at # and Z(#) = 0 indicates no negative wealth shock, and W (f) be the covariates that may vary with
time, but are unaffected by the exposure. For any variable U, we use U(t) = {U(1),...,U®}, U = {UQD),...,U(T)}, and
U@ ={U@+1),...,U(T)} to denote the profile of the variable at time ¢, the full profile until time 7', and the profile from time
t+ 1 to T respectively. Let Z be a possible realization from Z, X be the covariates that are affected by the exposure profile Z,
and Y be the potential cognitive ability measure (cognitive score) profile under exposure profile z. Finally, we let Sz(T—l) be the
potential survival profile for our dataset. We also assumed that our variables occur in the following sequence, v, w(1), z(1), x(1),
(D), s(1), ..., s(T = 1), w(T), z(T), x(T), y(T). Similar to Poll et al.1Z, we assume that a negative wealth shock is an “absorbing
state” so that once a subject receives a negative wealth shock at time ¢ (Z(f) = 1), the subject would be “forever” shocked,
i.e. Z(t) = 1. In addition, subjects who die at time ¢ will have structurally missing data for the future time-varying outcomes
and covariates i.e. S(¢) = 0 implies Z(t) = W () = zzm(t) = sz(t) = NA, where ‘NA’ indicates a structurally missing
observation. We begin our discussion with the independent continuous outcomes BART. We argue that BART is flexible because
it is able to handle non-linear main effects and multi-way interactions without much input from researchers. To demonstrate
how BART handles these model features, we explain using a visual example of a regression tree. We then illustrate the concept
of a sum of regression trees using a simple example with two regression trees. We next show how a sum of regression trees
accommodate non-linear main and multi-way interaction effects. We provide two perspectives to show how BART determines
these non-linear effects automatically. First, we discuss the BART mechanism using a visual and detailed breakdown of the
BART algorithm at work with a simple example, providing the intuition for each step along the way. Second, we provide a more
rigorous explanation of the BART MCMC algorithm by discussing the prior distribution used for BART and how the posterior
distribution can be calculated. Finally, we show how BART handles independent binary outcomes.

2.2 | Penalized Spline of Propensity Methods for Treatment Comparison (PENCOMP)

To tackle the time-dependent confounding on observational longitudinal studies, Zhou, Elliott, and Little''” proposed the Penal-
ized Spline of Propensity Methods for Treatment Comparison (PENCOMP). In brief, PENCOMP views the time-dependent
confounding issue as a big missing data problem and then employs identifying assumptions to construct valid imputation models
for the counterfactuals. In order to enhance the robustness of the imputed counterfactuals, Zhou, Elliott, and Little 1] proposed
to use the penalized splines of propensity prediction (PSPP) proposed by Zhang and Little'!® as the imputation method. PSPP is
a doubly robust method that imposes a penalized spline on the propensity score of missingness (treatment allocation in the con-
text of causal inference) and then combines this with predictors of the outcome in a regression model. We describe a particular
implementation of PENCOMP in the Appendix.
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3 | CENSORING BY DEATH

3.1 | Identifiability assumptions

Before we introduce our proposed algorithm proper, we require a few identifying assumptions in order to allow us to construct
valid imputation models. First, we require

Pr(S -1y = Z( = 1), Fa_py» Ks_py 0 = 1),0) > 0 (1)

and Pr(Z(t) = 1|z(t - 1), Vze-1) = 0, X541y, W — 1),0) > 0 for any Z(7) i.e. the probability of survival under wealth shock
profile Z(t — 1) and the probability of wealth shock at time ¢ are bounded away from 0. This is an extension of the standard
positivity assumption to allow that at least some subjects will be observed to have survived under all exposure profiles we are
interested in, and that wealth shocks are possible if they have not already occurred. Second, we require no interference between
subjects, Y; = Y3, i.e. the potential outcome of subject i is independent of whatever exposure subject j is allocated to i # j as
well as X; = X. Third, we need the no unmeasured confounding and sequential randomization condition: Y, L Z(1)|z(t —
1), Pz¢-1)» Xz¢—1y> W — 1), v. In addition, we also require that

Y201 X 20| Xz0-1)> Pz—1)» 20, 0 (2)
and
XZ(,)lZ(t)|)_cz(,_1),)_lz(,_l),z(t -1,v. 3)
Finally, we assume “monotonicity”:
fzZ)<Z'(1),ZQ) < Z'Q),.... Zt - 1)< Z'(t = Dthen Sz, > Sz €))

Z (i) # Z'(i) for any i. That is, for subjects observed to have survived a negative wealth shock, we assume they would also
survive in the absence of that wealth shock.

3.2 | Determining the principal strata

Table 2] shows the set of potential outcomes and structural missing values for # = 3 and no time-varying covariates. In this table,
‘x’ indicates an observed value, ‘7’ represent a missing observation which needs to be imputed, and ‘NA’ indicates a structurally
missing observation. The goal of our analysis is to provide inference about contrasts where both potential outcomes exist, that
is E[Ym) - Yz/(x)|52(z—1) = Sz = 11, where z(I) # z'(I) for at least one / with / = 1, ..., i.e. we condition on subjects who
would potentially survive under two different exposure profiles z(¢) and z’(¢). Thus, the distribution of (S =1y Sz (—1)) form our
principal strata. For example, if we want to estimate the effect for a negative wealth shock at t = 2 versus no negative wealth
shock by t = 2, that is E[Y;; — Y0 S, = 1], we restrict to subjects who survive if they did not receive a negative wealth shock
att = 1 i.e. subjects with S, = 1 (Subjects 1-12 in Table. Note that the definition, E[Y ) — Y5 Sz 1) = Szq_p) = 11, is
different from the parameter MSM estimates which is E[Y;,) — Yz 1.



TABLE 2 Sample example of a censoring by death dataset until # = 3 where Z, = 1 indicates a subject having experienced a negative wealth shock and Z, = 0 indicates

a subject have not experienced any negative wealth shock till time ¢

VIZA) Y, [ Y [ S| S | ZQ) | Yoo | Yo | Yii [ Soo | Sor | S | ZB) | Yoo | Yoor | You | Yin
Subject 1 | x 1 x | ? 1 1 1 ? ? X 1 1 1 1 ? ? ? X
Subject 2 | x 0 ?7 1 x 1 1 1 ? X ? 1 1 1 1 ? ? X ?
Subject3 | x 1 x | ? 1 1 1 ? ? X 1 1 0 NA ? ? ? NA
Subject4 | x 0 ?7 1 x 1 1 1 ? X ? 1 1 0 1 ? ? X NA
Subject5 | x 0 7] x 1 1 0 X ? ? 1 0 1 0 X ? NA ?
Subject 6 | x 0 ?7 | x 1 1 0 X ? ? 0 1 1 NA | NA | NA ?
Subject 7 | x 0 ?7 | x 1 1 0 X ? ? 0 1 1 NA | NA | NA ? ?
Subject 8 | x 0 ?7 | x 1 1 0 X ? ? 1 0 0 0 X ? NA | NA
Subject 9 | x 1 x| ?210 1 NA ? ?7 | NA| 1 1 0 NA ? ? NA
Subject 10 | x 1 x| ?21]0 1 NA ? ? [NA| O 1 0 NA | NA | NA NA
Subject 11 | x 0 71 x| 0 1 1 ? x |[NA| O 1 0 1 NA | NA X NA
Subject 12 | x 0 2?1 x| 0 1 0 X ? [NA| O 1 0 NA | NA | NA ? NA
Subject 13 | x 1 x | ? 1 0 1 NA | NA | x 0 0 1 1 NA | NA | NA X
Subject 14 | x 0 ?7 | x 1 0 | NA | NA | NA | ? 0 0 1 NA | NA | NA | NA ?

101[[g pue ‘J00d ‘uedeuue[] ‘ue],
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3.3 | Proposed method

Our proposed method estimates E [Yz(r) - Yz,(,)|S 2-1) = Szg—1y = 1] by imputing the survival status of each subject at the
current time ¢ and then, together with the observed survival status, estimate which principal stratum a subject would belong
to. To improve the robustness of this method for our data analysis, we then use a Bayesian additive regression tree or BART-
modified PENCOMP approach to impute the counterfactual outcomes among the potentially surviving subjects to account for
the bias due to time-dependent confounding. This approach is doubly robust and reduces the burden of model specification by
the researcher!?2, Subsequently, the average difference in the exposure effect within the desired principal strata is calculated.
Variance is estimated using Rubin’s combine rule to account for the imputation uncertainty“!. Detailed steps for our method are
given below.

1.

2.

10.

11.

Generate a bootstrap sample b from the data by sampling the units with replacement.

Estimate the model X _u;,|z®(1), w®(1),v®. Use this model to compute the counterfactual of X ¢, for bootstrap
sample b.

. Estimate the distribution of Z® (1)|w® (1), v®. Use this model to estimate the propensity of exposure Z®(1) = z®)(1)

as P}, o =Pz ®(1) = z®)|w®(1), v®). Note that we did not perform a logit transformation to obtain P;/,)(l) (See

PENCOMP, Appendix A.2, Steps 2 and 5). This is because by using PENCOMP modified with BART to predict the
outcomes, the non-linear effect of the propensity of exposure will be handled automatically.

. Estimate the model Y| P’ ,z0(1), X o1)» w®(1), v® using BART to take care of any linear or non-linear main

zd(1)
effects as well as linear or non-linear interactions. PENCOMP (See Appendix A.2) is constructed using a non-linear spline

specification on the propensity of exposure combined with possible linear interactions between the propensity of exposure
and remaining covariates. This fits well with the type of estimation problem that BART was designed to solve. We then
use the model produced by BART-modified PENCOMP to compute the counterfactual of Y, for bootstrap sample b.

. Estimate the distribution for S_u ;)12 (1), Y,01y» X o1 w® (1), v Use this model to generate a survival status for the

counterfactual of S, taking into account the assumption of monotonicity in Equation (E[) i.e. if .S, is observed and
Sy = 0then S| = 0. Similarly, if .S, is observed and .S, = 1 then S, = 1.

. Estimate the model X ;i) 1Z%(2), Y01)> X o1 0" (2), v'?. Use the respective models to impute the counterfactual of

X z(2)> using any previously imputed values for the unobserved exposure profiles and restricting to the subjects that are
observed and predicted to survive under the given exposure profile of interest at t = 1.

. Estimate the distribution of Z®(2)|z¥(1), y®(1), xP(1), w®(2), v®. Use this model to estimate the propensity to be

assigned exposure Z"(2) = zP(Q2) as Py = PH(ZP(Q2) = zPQ2)|X 0, 22 (1), w” (1), v®). The probability of

5(b) . _
exposure z%)(2) is denoted as P, o = Poe P, W

. Estimate the model Y., | P* z®0)(2), Y o1y X 262)s w®(2), v® again restricting to subjects that are observed and

z()(2)’
predicted to survive under the exposure profiles of interest at # = 2. Use the respective models to impute the counterfactual

of YZ(”)(Z)‘

. Using a similar procedure for steps 5-8, with the restriction determined by S _1) = Syw 1) = 1 for time ¢ where at

least one z"(t) # z'® (1), extend the estimation until the desired time point # = T.

Repeat Steps 1-9 to obtain B bootstrap values for Az(b)(,)’zr(m(,) = E[Yzo ) — Yz Sz00) = Szeq) = 1] with associated
pooled variance Q 20,2 B 1)

; . X B Ao .
The estimate of Ay 71y = E[Yz() = Y210 |Sz4-1) = Sz1g-1y = 11is then Aoy o3 = 2y —=—2, and the esti-
. — . = = B 2wp/w
mate of the variance of A v, 2wy p 18 Tp = Qz0:s) 701y g+ (1+1/B) Doy 201y, 8- Where Qzan vy = 2ipey %
and
- , R - _

B Byl oro Do 008" o Db om Dm0 Q. Bws 2
D. 5 = — - : with = - — ~t,v=(B-1)(1+4+ —2———),
00,200, zb:l B-1 VTs v ( X Dy, ) p(BTD
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4 | SIMULATION

We conducted a simulation study to investigate how well our method would perform under three scenarios: 1) weak association
between exposure and confounder as well as exposure and survival status; 2) strong association between exposure and confounder
as well as exposure and survival status; and finally 3) strong association between exposure and confounder, exposure and survival
status, and an interaction between exposure, confounder, and survival status. We compared our method with the naive method
and MSM (See Appendix for details on how we implemented MSM). We expect all three methods to perform well in the first
scenario because there is little to no confounding. For the second scenario, we expect MSM and our proposed method to perform
well because there is no difference in the exposure effect between the principal strata, and other stratification groups. The naive
method should not perform well due to the strong association between exposure and confounder as well as exposure and survival
status. Finally, for scenario three, we expect only our proposed method to perform well because an association between the
exposure effect and principal strata, Sz,_;) = Sz_;) = 1, is induced by the stronger interaction effect between exposure,
confounder, and survival status.

To focus our investigation on these scenarios, we did not include any dropouts or complicated non-linear and multi-way
interaction effects in our simulation. Although these simulation setups would provide us with more realistic results, we feel
that including dropouts or complicated non-linear and multi-way interaction effects in our simulation setup will divert attention
away from the censoring by death issue we are trying to tackle. Hence, out estimation methods replaced BART with linear and
logistic regression models; we reserve the use of BART for the application. Details of our simulation setup can be found in our
online supplementary materials.

Using E[Y)— Y |S5._1) = Sz(_1) = 1] as the true average treatment effect, we measured performance using the empirical
bias, root mean squared error (RMSE), 95% coverage, and the average 95% Confidence Interval (CI) length (AIL). 1000 simu-
lations were used to estimate these quantities. Under each simulation, a simple random sample of 4,000 (online supplementary
materials) or 8,000 (sample size of eligible HRS data we used was 7,106) subjects was drawn from the target population data.
All methods were then implemented on the sampled data to obtain the effect estimates. We assumed correct model specification
for MSM and our proposed method. Codes to implement our simulation scenarios can be found in the online supplementary
materials.

4.1 | Results

Table 3] shows the results with the sample size set to 8,000, approximately the sample size in our application. All three methods
under Scenario 1 were relatively unbiased and achieved similar RMSE. MSM and our proposed method reported slightly greater
than nominal coverage due to the wider AIL for time point 3 estimates. Under Scenario 2, the absolute bias and RMSE of the
naive method was always larger than MSM and our proposed method and coverage was often far below the nominal 95% value.
Finally, under Scenario 3, the naive method was clearly biased with poor RMSE and coverage. MSM performed slightly better
compared to the naive method but absolute bias clearly increased compared to Scenario 2. Coverage for some exposure effects
were poor as well. Our proposed method remained unbiased, produced a lower RMSE compared to the other two methods,
and reached nominal coverage under Scenario 3. Comparing these results with sample size 4,000 (See online supplementary
materials for results), we found that bias relationship for the three methods remained relatively the same when the sample size
decreased, though reduction in sample size reduces the impact of bias and results in better (though still below normal) coverage.

S | DETERMINING THE EFFECT OF A NEGATIVE WEALTH SHOCK ON COGNITIVE
SCORE FOR HEALTH AND RETIREMENT STUDY SUBJECTS

For our analysis, we used HRS data collected from 1996 to 2002 because consistent collection of a subject’s cognitive ability
measure began in 1996. We treated the variables collected in 1996 as the baseline for our analysis and excluded subjects who
did not have longitudinal measurements for net worth in 1992, because we were unable to distinguish whether they have already
experienced a negative wealth shock; subjects with zero or negative net worth at baseline, because we did not know if these
subjects have lifelong asset poverty or experienced a negative wealth shock prior to study entry; and subjects who experienced
a negative wealth shock and death between 1992 to 1996, because they were no longer at risk for a negative wealth shock or
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TABLE 3 Simulation results for sample size 8,000

Scenario 1 Naive MSM Proposed
Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
Ay 0 -1.497 -0.001 0.023 94.2 0.087 0.0003 0.023 94.0 0.087 0.0003 0.023 96.2 0.100
Ap1.00 -1.499 -0.002 0.036 95.3 0.143 -0.001 0.036 94.8 0.143 -0.001 0.037 95.5 0.151
A11,00 -1.005 -0.002 0.034 94.8 0.134 -0.0007 0.034 95.1 0.134 -0.001 0.035 98.7 0.183
A1101 0.493 0.001 0.034 94.6 0.134 0.002 0.034 94.4 0.134 0.002 0.035 98.6 0.184
A001,000 -1.502 0.005 0.057 95.0 0.222 0.005 0.057 99.0 0.289 0.005 0.058 95.4 0.235
011,000 -1.008 0.004 0.051 94.5 0.201 0.004 0.051 98.4 0.260 0.004 0.052 97.1 0.246
A111.000 -0.504 0.005 0.051 95.1 0.201 0.007 0.052 98.3 0.261 0.006 0.053 99.7 0.369
Ay 1,001 0.495 -0.002 0.051 94.6 0.200 -0.002 0.051 99.1 0.260 -0.002 0.052 97.8 0.247
Ar11,001 1.000 -0.001 0.052 942 0.201 0.0001 0.052 98.7 0.261 -0.0005 0.054 99.8 0.369
Aq11,011 0.502 0.003 0.046 93.8 0.177 0.004 0.047 98.4 0.229 0.004 0.048 99.8 0.308

Scenario 2 Naive MSM Proposed
Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
Ao -3.367 -0.047 0.055 59.6 0.109 0.002 0.029 94.0 0.113 0.003 0.029 95.9 0.125
Ap1,00 -1.727 -0.036 0.045 734 0.105 -0.031 0.041 78.8 0.106 -0.001 0.026 96.1 0.113
A11,00 -1.199 -0.134 0.139 4.0 0.142 -0.018 0.041 92.4 0.144 -0.001 0.036 96.9 0.161
A1 01 0.528 -0.098 0.105 219 0.140 0.013 0.038 94.0 0.142 -0.001 0.036 97.4 0.158
001,000 -1.727 -0.029 0.049 87.9 0.156 -0.024 0.047 932 0.170 0.0001 0.038 96.2 0.160
Ao11,000 -1.183 0066 0075 54.3 0.141 -0.048 0.060 717 0.153 -0.001 0.036 97.7 0.156
Apy 1,000 -1.169 -0.166 0.173 7.8 0.193 -0.040 0.065 90.4 0.215 -0.003 0.049 98.9 0.246
801,001 0544 -0.038 0.050 815 0.131 0.025 0.042 92.1 0.142 -0.002 0.032 97.2 0.145
Ar11,001 0.558 -0.137 0.145 17.3 0.186 -0.017 0.050 96.7 0.208 -0.005 0.046 98.7 0.233
Ar11.011 0.013 -0.098 0.108 38.0 0.174 0.010 0.046 96.4 0.194 0.0004 0.044 98.2 0.210

Scenario 3 Naive MSM Proposed
Parameter True value Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL Bias RMSE 95% Coverage AIL
Ao -2.347 -0.123 0.126 1.5 0.113 0.002 0.029 94.5 0.113 0.003 0.029 95.7 0.124
Ap1,00 -2.559 -0.114 0.118 34 0.117 -0.060 0.067 49.3 0.113 -0.001 0.028 96.1 0.115
A11.00 -3.062 -0.230 0234 0.1 0.164 -0.032 0.052 86.5 0.159 -0.004 0.040 97.3 0.183
A11,01 -0.502 -0.118 0.125 19.4 0.164 0.026 0.048 91.0 0.160 -0.003 0.040 98.2 0.184
A001,000 -2.820 -0.125 0.133 16.6 0.171 -0.063 0.076 783 0.192 -0.002 0.039 95.6 0.157
A011,000 -3.605 -0.143 0.147 22 0.140 -0.087 0.093 40.8 0.159 -0.007 0.032 96.7 0.142
A111,000 -4.032 -0.290 0.296 0.1 0.225 -0.081 0.099 815 0.265 -0.010 0.057 98.7 0.282
Ap11,001 -0.785 -0.018 0.044 93.4 0.159 -0.024 0.047 94.7 0.181 -0.005 0.037 97.0 0.161
App 1,001 -1.217 -0.160 0.171 224 0.238 -0.013 0.062 97.1 0.278 -0.008 0.059 98.7 0.311
Ar11,011 -0.432 -0.142 0.152 264 0.216 0.011 0.056 97.9 0.255 -0.006 0.052 98.7 0.264

death. 7,106 participants (72.9%) were eligible for our analysis. Details and descriptive statistics for this dataset can be found in
our online supplementary materials.

To determine whether a subject experienced a negative wealth shock from the previous follow-up period to the current follow-
up period, we first obtained data from the module assessing net worth administered at every wave of HRS. Measured assets
include housing value, net value of businesses, individual retirement accounts, checking/savings accounts, certificates of deposits
and savings bonds, investment holdings, net value of vehicles, and the value of any other substantial assets. From this asset total,
debts were subtracted, including home mortgages, other home equity loans, and unsecured debt values, like credit card balances,
student loans, and medical debts. Missing values for wealth were imputed at the level of each asset or debt, using an unfolding
bracket imputation method?. Wealth data were not imputed for those who do not participate in a given wave. Negative wealth
shock was measured and then dichotomized (yes or no) for each time point. Loss of 75% or more of total wealth between two
consecutive waves was used as the cut-point for negative wealth shock?3. Subjects were considered at risk for negative wealth
shock until they have experienced a negative wealth shock or reached age 65. With this definition of a negative wealth shock,
about 7% of subjects in our analysis ever experienced a negative wealth shock.

The cognitive ability of a subject is assessed in HRS using the Telephone Interview for Cognitive Status (TICS). Unfortunately,
the full HRS cognitive battery is not available for participants under 65. Hence, we used an abbreviated measure that included
questions about episodic memory (Immediate Word recall [10 points] and Delayed Word recall [10 points]) and mental status
(Serial 7’s [5 points], backwards counting from 20 [2 points])2%. All responses were combined to create a composite score
ranging from 0 to 27, with a higher score indicating higher cognitive ability. We treated this measure as continuous and normally
distributed.

5.1 | Analysis

We were interested in how a negative wealth shock would affect the cognitive ability of late middle aged adults in the HRS
during the six years of follow-up as well as how the duration of a negative wealth shock affects cognitive ability. We employed
four different methods to make inference about this effect: 1) the naive method, where all subjects who died under their observed
negative wealth shock status were removed from analysis; 2) the baseline adjusted method, where all subjects who died were
removed from analysis but the mean cognitive score was adjusted using a model that included all baseline covariates; 3) the
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MSM method, where negative wealth shock allocation, missingness, and censoring by death were accounted for by inverse
probability weighting; and 4) our proposed method including the PENCOMP modification described in Section 3.2. We assumed
that depression was the time-varying covariate that depends on the negative wealth shock status (X 7 in Section 2 and the rest of
the time-varying covariates are: self-reported health status, whether subject was insured, labor force status of subject, income,
level of alcohol consumption, current smoking status, and number of health conditions (W in Section 3)). We also assumed that
the cognitive score is missing at random given the baseline variables, past negative wealth shock status, time-varying covariates,
and cognitive score. For MSM, we accounted for this missingness by modeling the propensity of response while for our proposed
method, we imputed the missing cognitive score by using the modified version of PENCOMP discussed in Section 3.2. All our
models (baseline adjusted, MSM, and our proposed method) were specified using BART. For the naive, baseline adjusted, and
MSM method, we employed 1,000 bootstrap samples to calculate the mean and the 95% Confidence Interval (CI). The 95%
CI was determined by taking the 2.5 and 97.5 percentile. For our proposed method, we estimated the effect and accounted for
our uncertainty using our algorithm described in Section 3.2. Codes to implement all data analysis can be found in the online
supplementary materials.

5.2 | Results

Table ] shows the adjusted effect estimate of a negative wealth shock on cognitive score depending on the duration of the shock
for late middle aged adults in the original HRS cohort from 1996 to 2002. In general, the naive and baseline adjusted method
suggests that experiencing a negative wealth shock has a much larger negative effect on the cognitive score of subjects in our
sample compared to the adjusted estimates reported by MSM and our proposed method. In addition, we observed that MSM
produced slightly wider CIs compared to our proposed method. The naive and baseline adjusted method produced very similar
results suggesting low association between cognitive score and the baseline covariates. The effect for subjects who experienced
a negative wealth shock within the first 2 years of follow up versus no shock (6 years vs. no shock), subjects who experienced
a negative wealth shock within the first 2 years of follow up versus subjects who experienced a negative wealth shock between
the second and fourth year of follow up (6 years vs. 2 years), and subjects who experienced a negative wealth shock within the
first 2 years of follow up versus subjects who experienced a negative wealth shock between the fourth and sixth year of follow
up (6 years vs. no shock), were significantly larger than 0 under the naive and baseline adjusted method. For MSM and our
proposed method all effects were reported to be not significant. This suggests that there is a substantial amount of “confounding
by exposure” in the HRS data, where health status at earlier times influences risk of wealth shock, but little effect of “censoring
by death”, with the potential outcomes among the survivors not differing greatly from the potential outcomes among those who
would die under alternative exposure regimes once confounding by exposure is accounted for.



TABLE 4 Effect estimate of negative wealth shock on cognitive score for late middle aged adults in original Health Retirment Study cohort from 1996 to 2002.

Naive Baseline adjusted’ MSM* Proposed*
Estimate 95% C1 Estimate 95% C1 Estimate 95% CI Estimate 95% CI
2 years vs. no shock -0.51 (-1.45,0.35) -0.51 (-1.37,0.3) -0.01 (-1.18, 1.07) -0.13 (-0.83,0.58)
4 years vs. no shock -0.69 (-1.45,0.05) -0.7 (-1.4,0.03) -0.31 (-1.23,0.58) 0.18 (-0.73, 1.09)
6 years vs. no shock -1.95 (-2.62, -1.25) -1.94 (-2.6, -1.26) -0.12 (-1.12,0.89) -0.18 (-0.87,0.51)

4 years vs. 2 years 0.18  (-1.33,1.04) | -0.19  (-126,094) | -03  (-1.78,1.15) | 031  (-0.58, 1.20)
6 years vs. 2 years 145 (2.54,-038) | -143  (246,-04) | -0.1  (-1.61,1.36) | -0.03  (-0.83,0.78)
6 years vs. 4 years 126 (2.27,-02) | -124  (22,-024) | 019  (-1.11,1.61) | 038  (-1.36,0.61)

*Adjusted by gender, education category, race, cognitive score, BMI, self-reported health status, alcohol consumption, insurance status, depression status, income, labor force status, marital status, age, smoking status, diabetes
status, heart condition, HBP status, psychological problem status, and stroke status at baseline as well as time-varying self-reported health status, alcohol consumption, insurance status, income, labor force status, smoking
status, number of health conditions, and depression.

tAdjusted by gender, education category, race, cognitive score, BMI, self-reported health status, alcohol consumption, insurance status, depression status, income, labor force status, marital status, age, smoking status, diabetes

status, heart condition, HBP status, psychological problem status, and stroke status at baseline.
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6 | DISCUSSION

In this paper, we were interested in how a negative wealth shock affects the cognitive ability of late middle aged Americans
participating in the HRS from 1996 to 2002. The main difficulty we faced was the presence of death in some subjects causing
their cognitive score to be censored. Because it is very possible that subjects with lower cognitive ability and/or experience of
a negative wealth shock would have a higher risk of death, accounting for censoring by death is required. This is because, even
with randomization or its conditional equivalent, subjects who did not experience a wealth shock and were observed to have
survived are a mix of those who would survive regardless of whether they experienced a negative wealth shock and those who
would survive only if they did not experience a negative wealth shock. As a result, if we remove only the subjects we observed
to die from our analysis, the effect of the negative wealth shock on cognitive ability that we measure would be confounded by
death. Although MSM is commonly employed to weight the subjects who survived, this approach is arguably not sensible and
would likely produce biased estimates when the effect depends on the principal strata as well as when adjustments on the weights
have to be employed in order to stabilize the MSM estimate. To overcome these issues, we propose a new method to estimate the
effect by imputing the counterfactual survival status of each subject in order to compare outcomes among individuals who would
survive regardless of whether they experience a wealth shock. Our method remained unbiased for all the simulation scenarios
we tried and produced reasonable coverage. When applied to the HRS dataset, our method suggested that the effect of a negative
wealth shock on the cognitive ability is close to null.

One shortcoming of our approach is our failure to incorporate the HRS sample design, in particular the sampling weights, in
our inference. Given that a key use of weights in regression-type analysis is to reduce the effect of model misspecification®>, we
hope that our use of BART will minimize the degree of model misspecification. We leave the incorporation of such features in a
general approach to future work. Another aspect of our method which could be improved is to allow our method to be applicable
to studies where the follow-up time is not fixed. In such a situation, Cox based survival models would have to be employed and
time would have to be included as a covariate in the survival and outcome models. The difficulty in this extension would be
how to develop a systematic way, applicable to all subjects, to determine the relation in time between exposure, measuring the
outcome, and death.

Finally, we would like to point out an interesting question regarding the use of imputed potential outcomes as the covariates for
predicting the potential outcomes at the next time point. At first glance, there may be the risk of bias or “aggregated” uncertainty
at later time points. We argue that under most situations, when the imputed potential outcomes at the previous time point is
within the “space” of the covariates in the potential outcomes prediction model, this risk would be negligible. However, if the
imputed potential outcomes are based on covariates at the far edge of the covariate space, then there may be a risk that bias
introduced at the current time point will aggregate to the later time points. We know of little work in this regards and believe it
would constitute an interesting area for further research.
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