
1. Introduction
Studies of physical processes near the Earth and near other planets often require a robust and convenient 
bow shock model for data classification and analysis. These processes include: Electron and ion foreshock 
formation, plasma wave generation by secularly and diffusely reflected ions, mechanisms of the solar wind 
deceleration in the shock foot and shock itself, plasma wave propagation along the shock surface, processes 
of shock overshoot formation, plasma turbulence generation inside the magnetosheath, generation of mi-
cropulsations at the bow shock and magnetopause, etc.

The bow shock can be modeled using several different approaches. For example, magneto-hydrodynamics 
(MHD) description of solar wind interaction with a planet is often used (e.g., Cairns & Lyon, 1995; Chapman 
et al., 2004; Gombosi, 1999; Kabin et al., 2000; Ledvina et al., 2008; Mejnertsen et al., 2018; Stahara, 2002). 
This approach usually allows achieving good agreement with experimental data (Merka et al., 2003; Winter-
halter et al., 1984). Some bow shock models are based on kinetic simulations or on combinations of MHD 
with kinetics (Brecht, 1997; Ledvina et al., 2008; Pokhotelov et al., 2013). All these computational models 
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require significant processor time. They provide a reliable basis for studying the bow shock but cannot be 
used in practice to analyze a large amount of data obtained under various solar wind conditions.

Another common approach to describing the bow shock shape and position utilizes empirical models fitted 
to observations. During the last 20–30 years, a large amount of experimental data was obtained in the vi-
cinity of planetary bow shocks (Phobos, Interball/Magion-4, Wind, Geotail, Mars Express Mission, Cluster, 
THEMIS, etc.). These observations are accompanied by almost continuous monitoring of the undisturbed 
solar wind (IMP-8, Wind, ACE). These data served as the basis for various empirical models of the bow 
shock (Chao et al.,  2002; Chapman & Cairns, 2003; Dmitriev et al.,  2003; Fairfield, 1971, 2001; Formis-
ano, 1979; Hall et al., 2019; Jelínek et al., 2012; Lu et al., 2019; Merka et al., 2003; Meziane et al., 2014; 
Nĕmeček & Šafránková, 1991; Peredo et al., 1995; Slavin & Holzer, 1981; Wang et al., 2020). Such models 
are very convenient and easy to use; they also agree well with the average location and shape of bow shock. 
However, their applicability is always limited by the range of the solar wind parameters used in their con-
struction. Such models often have to be scaled in order to agree with the observations for any particular 
event. The existing models do not take into account the bow shock slope at infinity. Besides, they do not 
consider the influence of polytropic index on the shape of the bow shock.

To address the shortcomings of both computational and empirical models M. I. Verigin with co-authors 
developed a semiempirical approach for modeling different plasma boundaries and regions in space  
(G. Kotova et al., 2005, 2020; G. A. Kotova et al., 2015, 2020; M. Verigin, 2004; M. Verigin et al., 1997, 2001, 2004; 
Verigin, Slavin, Szabo, Gombosi, et al., 2003; Verigin, Slavin, Szabo, Kotova, et al., 2003; M. I. Verigin et al.,  
1997, 1999, 2001, 2004, 2009, 2018). This approach is based on maximum use of exact analytical solutions 
that describe some characteristic properties of the phenomenon, for example, the asymptotic MHD Mach 
cone. The parameters used in these semi-empirical modes have clear physical meaning.

At large Alfvén Mach numbers, Gas Dynamics (GD) provides an accurate approximation of the planetary 
bow shocks. A detailed GD analytical model of a bow shock for obstacles of various shapes (ranging from 
a hyperboloid to a stub cylinder) was developed by M. Verigin, Slavin, Szabo, Gombosi, et al. (2003). More 
recently, G. A. Kotova et al. (2020) used a similar approach to calculate the parameters of planetary bow 
shocks for interplanetary magnetic field either parallel or perpendicular to the solar wind flow. Below we 
present an extension of these two models for an arbitrary direction of the magnetic field. The resulting mod-
el is applicable for any direction of the interplanetary magnetic field, any polytropic index γ, any Alfvén MA, 

and sonic MS Mach numbers ( 
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, ρ—plasma mass density, V—plasma bulk velocity, 

B—magnetic field magnitude, p—plasma thermal pressure), and various shapes of the obstacle. We also 
ensure that our new model agrees with the analytic description of the bow shock slope at infinity obtained 
by M. Verigin, Slavin, Szabo, Kotova, et al. (2003). Thus, we propose a model for the entire surface of the bow 
shock, which can be used in a wide range of solar wind parameters for various obstacles.

2. General Definitions
It is convenient to describe the bow shock using Geocentric InterPlanetary Medium (GIPM) coordinates. 
This reference frame was introduced by Bieber and Stone (1979) to study the leakage of energetic electrons 
from the magnetosphere; it was also used for bow shock studies (Dmitriev et al., 2003; Peredo et al., 1995; 
M. Verigin et al., 2001; M. I. Verigin et al., 2001; and others). In GIMP coordinates, the velocity and magnetic 
field vectors of the undisturbed flow lie in the (X, Y) plane. The X axis is antiparallel to the undisturbed solar 
wind velocity vector, the Y axis is directed so that the magnetic field vector lies in the second–fourth quad-
rant of the (X, Y) plane, and the Z axis completes the right-hand system. The interplanetary field azimuth in 
GIPM coordinates lies either between 90° and 180° or between 270° and 360°.

We assume that the obstacle is rotationally symmetric with respect to the X-axis, see Figure 1. In addition to 
the radius of curvature, Ro, we use bluntness parameter, bo, to characterize the shape of the boundary as de-
fined below. Near the nose point, the shape of the obstacle can be approximated using a series expansion as:

        2 4 3
0 – / 2 / 8 ,o o ox r R b R
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where   2 2y z . Here, Ro is the radius of curvature of the obstacle 
at the nose point, and bo is the dimensionless bluntness coefficient. For a 
paraboloid bo = 0, for an ellipsoid bo < 0 at the nose, for a sphere bo = −1, 
and for hyperboloids bo > 0.

If the magnetic field is either parallel or perpendicular to the solar wind 
velocity, the nose point of the bow shock is located on the X axis of the 
GIPM coordinates. In these cases, the bow shock is either axially symmet-
ric or symmetric with respect to the (X, Y) and (X, Z) planes, respectively. 
Similarly to the obstacle, we describe the subsolar shape of the bow shock 
using the radius of curvature, Rs, of the shock and its bluntness, bs.

Following G. Kotova et al. (2020); G. A. Kotova et al. (2020) and M. Ver-
igin, Slavin, Szabo, Gombosi, et al. (2003), we define the planetary bow 
shock shape by the expression:
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The additional parameter ds characterizes the transition from the pre-
dominance of the parameters of the bow shock subsolar region to the 
region where the asymptotic slope dominates. Angle ωas is the asymptotic 

slope of the bow shock far downstream (Slavin et al., 1984) calculated following M. Verigin, Slavin, Szabo, 
Kotova, et al. (2003). For general orientation of the interplanetary magnetic field the parameters of expres-
sion (1) rs, Rs, bs ds, as well as the values of ωas depend on the clock angle    1cos /y .

3. Skewing Angle
In general case of an axially symmetric obstacle for an arbitrary direction of the interplanetary magnetic 
field, the only symmetry plane of the bow shock surface is the (X, Y) plane of the GIPM frame containing 
the solar wind velocity and magnetic field vectors.

We define the nose of the bow shock as the point behind which the plasma flows along the normal to the 
shock front. To quantify the displacement of the nose point from the X-axis we introduce skewing angle αvn 
which is defined as the angle between the upstream velocity direction and the direction of the shock normal 
at the nose point of the bow shock (Figure 2). This skewing angle is an additional parameter used in our 
bow shock model. The angle between the upstream magnetic field direction and the direction of the shock 
normal at the nose point of the bow shock ϑbn = ϑbv − αvn. We furthermore define a new coordinate system 

frame (XS, YS, ZS) which is obtained by rotating the X and Y axis of the 
GIPM system around Z axis by the angle αvn. This reference frame is used 
in Section 4 and later for approximating the bow shock surface calculated 
in MHD by expression (1).

The skewing angle can be calculated using MHD Rankine-Hugoniot con-
ditions as follows. At the nose point, by definition, the tangential compo-
nent of the velocity behind the shock is equal to zero:
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Figure 1. Bow shock parameters used in our model: ro, rs are positions of 
the obstacle boundary and bow shock nose, respectively; Ro, Rs are nose 
curvature radii; respectively; and Δ is the bow shock standoff distance; ω is 
the slope of the bow shock.

Figure 2. Definitions of the additional bow shock parameters for arbitrary 
direction of the interplanetary magnetic field.
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where the subscripts t and n refer to the tangential and normal components, respectively, of vectors V and 
B. In our paper, the upstream parameters are used without subscripts and downstream values marked by 
subscript “1.” Here ρ is the mass density, ε is an inverse compression ratio ε = ε(γ, MS, MA, ϑbn, αvn) = ρ/
ρ1  =  Vn1/Vn which can be calculated from the following cubic equation (e.g., Kabin, 2001; Petrinec and 
Russell, 1997):

 (3)

where

 (4)

Relation (2) can be transformed to:

 (5)

Equations 3 and 5 are solved to calculate αvn.

Figure  3 presents examples of αvn calculations as a function of ϑbv for 
γ = 5/3 and different MS and MA. When the sonic Mach number is quite 
high and the Alfven Mach number is low, Figure 3 shows that the bow 
shock nose point can deviate by up to 30° from the solar wind velocity 
direction.

4. Asymptotic Bow Shock Mach Cone in a Skewed 
Reference Frame
M. Verigin, Slavin, Szabo, Kotova, et al. (2003) derived an implicit equa-
tion, which enables the calculation of the asymptotic downstream slope 
of MHD Mach cone for any clock angle for arbitrary MS, MA, and ϑbv an-
gle. Since their calculation was done in the GIPM reference frame, it is 
necessary to reformulate the procedure for the skewed coordinate sys-
tem (Figure  2). For this derivation it is convenient to use a cylindrical 
(XS,ρS,φS) coordinates with the clock angle φS measured from the + YS 
direction. In this reference frame:

 (6)

 

Here, it can be assumed that 0 ≤ ϑbv ≤ π/2 since the velocity of the MHD 
waves is independent of the polarity of the magnetic field.
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Figure 3. Calculations of αvn for different Mach numbers and angles ϑbv. 
Asterisks mark fitting of skewing angles (see Section 6).
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Sufficiently far downstream (here and further far downstream means far behind the planet), the general 
bow shock surface defined as F(XS,ρS,φS) = 0 simplifies to:

           , , 0 as .S S S S S S SF X X q X (7)

The asymptotic slope of the shock is then defined for all clock angles as

   
 

   
1tan S

S constS
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d
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Thus, computing the asymptotic MHD Mach cone reduces to determining function q(φS). Following M. 
Verigin, Slavin, Szabo, Kotova, et al. (2003) we proceed as follows. Using Equation 7, we can calculate the 
shock normal n in the far downstream area as:
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Taking into account relations (6), cosαvn and cosϑbn can be determined as:
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Far downstream of the obstacle MHD Rankine-Hugoniot conditions (Landau & Lifshitz, 1984) permit to 
obtain the following relation for fast and slow MHD shocks (Kabin, 2001; M. Verigin, Slavin, Szabo, Kotova, 
et al., 2003):

       2 2 2 2 2 4 2cos cos cos 0A S vn A S vn bnM M M M (11)

Relation (11) together with (10) leads to the nonlinear transcendental differential equation for the function 
q(φS):
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To find a solution of Equation 12 it is helpful to introduce two new functions
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which can be solved for t(φS):
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Differentiating (15) we get
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Which equals
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using (13). Thus, we obtain an equation for p(φS):

 (18)

However, the Equation 17 can be easily solved for the inverse function φS(p)
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Figure 4 presents t2(p) function (16) for MS = 6, MA = 3, ϑbv = 70°, αvn = 4.3°. Note, that only sections where 
t2 > 0, shown with solid lines in Figure 4, are physically meaningful. Function t2(p) has vertical asymptotes at
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(20)

There are generally four roots p1-4 of t2(p) = 0 equation. φS(p) depend-
encies calculated with relations (19) for values of p between the nega-
tive asymptote (20) and p1, and between p4 and the positive asymptote 
correspond to slow shocks. φS(p) dependencies calculated for values of p 
between p2 and p3 correspond to fast shocks.

Now we can calculate function p(φS) for 0 ≤  φS ≤  π and, hence, t(φS), 
q(φS), ρ(φS), and ω(φS) from relations (13, 8), respectively.

5. Fitting of MHD Calculations
Our model of the bow shock is constructed on the basis of 26 fine reso-
lution 3D MHD simulations, performed at the University of Michigan. 
These MHD simulations used adaptive grids with nearly 3  ×  106 cells 
(Figure  5). All linear dimensions are given in terms of ro. The MHD  
simulations used two types of obstacles—paraboloid of revolution and 

hemisphere with elongated cylindrical tail, two values of polytropic index γ, 5/3 and 2.0, and for different 
conditions in the solar wind: different MS, MA and magnetic field direction ϑbv.

The determination of the parameters of the model—rs, Rs, bs, ds, αvn—is based on the approximation of 
MHD calculations of the bow shock shape and position for different obstacles by expression (1). Expression 
(1) can be used directly for fitting the calculated bow shock surface only if the interplanetary magnetic field 
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Figure 4. t2(p) function for MS = 6, MA = 3, ϑbv = 70°, αvn = 4.3°. Sections 
of t2(p) shown with solid blue lines are physically meaningful; those shown 
with blue dashed lines do not correspond to real shocks. The vertical 
dashed lines represent the asymptotes of this function.

Figure 5. Example of the grid. Cut cells used to fit the central body are not shown.



Journal of Geophysical Research: Space Physics

KOTOVA ET AL.

10.1029/2021JA029104

8 of 17

Figure 6. Parameters rs(φs), Rs(φs), and bs(φs) as functions of the angle φs. Points are the parameters of approximation of magneto-hydrodynamics simulations 
in planes φs = const with a step along φs equal to 5°, solid lines—approximation using expressions (21).

No γ bo MS MA ϑbv

rs RSY RSZ bSY bSY ds αvn αvn σ 
10–4Shock parameters obtained by fitting the MHD simulations Equation 5

1 5/3 −1 6 3 20° 1.252 1.743 1.814 −0.234 0.41 2.65 7.3° 5.92° 8.55

2 5/3 −1 6 5 20° 1.234 1.623 1.645 −0.348 −0.224 1.15 3.6° 2.03° 1.93

3 5/3 0 6 5 30° 1.304 1.956 2.097 0.424 0.544 0.37 3.5° 2.68° 2.24

4 2.0 −1 6 5 30° 1.327 1.789 1.816 −0.328 −0.142 1.05 4.0° 1.86° 1.57

5 5/3 −1 8 5 30° 1.252 1.62 1.628 −0.544 −0.216 1.225 4.6° 2.80° 3.19

6 5/3 0 6 5 60° 1.406 2.137 2.393 0.286 0.53 0.24 2.8° 2.48° 2.31

7 2.0 0 6 5 60° 1.504 2.383 2.636 0.414 0.686 0.475 2.6° 1.78° 1.58

8 5/3 −1 8 5 60° 1.322 1.685 1.75 −0.572 −0.132 0.955 4.0° 2.60° 2.77

9 5/3 −1 6 3 70° 1.489 1.933 2.192 −0.308 0.378 0.9 5.4° 4.33° 12.5

10 2.0 −1 6 5 70° 1.394 1.875 1.952 −0.444 −0.092 1.065 3.5° 1.31° 1.4

11 5/3 −1 6 5 70° 1.342 1.834 1.85 −0.92 −0.164 1.6 2.9° 1.80° 2.08

12 5/3 −1 6 2 45° 1.516 2.662 3.005 −0.982 0.366 3.075 12.9° 15.68° 10.9

13 5/3 −1 6 3 45° 1.374 1.91 2.072 −0.646 0.322 1.6 9.5° 7.86° 27.7

14 5/3 −1 6 5 45° 1.294 1.725 1.773 −0.568 −0.178 1.18 4.7° 2.98° 2.88

15 2.0 0 6 5 0° 1.327 2.11 2.11 0.5 0.5 0.3 0° 0° 0.22

16 2.0 −1 6 5 0° 1.284 1.685 1.685 −0.373 −0.373 2.56 0° 0° 0.18

17 5/3 0 6 3 0° 1.201 1.96 1.96 0.93 0.93 0.5 0° 0° 0.2

18 5/3 0 6 5 0° 1.238 1.88 1.88 0.404 0.404 0.16 0° 0° 0.68

19 5/3 −1 6 3 0° 1.181 1.67 1.67 0.2 0.2 0.4 0° 0° 0.4

20 5/3 −1 6 5 0° 1.214 1.49 1.49 −0.15 −0.15 1.5 0° 0° 0.4

21 5/3 −1 8 5 0° 1.201 1.46 1.46 −0.03 −0.03 0.3 0° 0° 0.28

22 2.0 −1 6 5 90° 1.431 1.858 1.934 −0.245 0.095 0.54 0° 0° 0.68

23 5/3 0 6 5 90° 1.452 2.22 2.51 0.23 0.51 0.16 0° 0° 0.32

24 5/3 −1 6 3 90° 1.524 1.918 2.18 −0.145 0.35 0.52 0° 0° 0.47

25 5/3 −1 6 5 90° 1.361 1.722 1.806 −0.445 −0.005 0.86 0° 0° 0.21

26 5/3 −1 8 5 90° 1.358 1.612 1.768 −0.18 0.01 0.22 0° 0° 0.25

Table 1 
Bow Shock Parameters Obtained by Fitting the Magneto-Hydrodynamics (MHD) Simulations
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is parallel to the solar wind velocity. In all other cases of an arbitrary magnetic field direction the parameters 
of expression (1) depend on the clock angle    1cos /y . In the case of magnetic field perpendicular 
to the flow velocity, G. A. Kotova et al. (2020) used the following expressions to describe the dependence of 
parameters Rs, bs, and ds on the clock angle:

 
 

   


2 2
2 2 , sin cos , .,

sin cos
sy sz

s s sz sy s
sy sz

R R
R b b b d const

R R (21)

where Rsy and Rsz are curvature radii in the plane (X, Y) containing magnetic field and velocity vectors and 
in the perpendicular plane (X, Z), respectively. The bluntnesses bsy and bsz were defined similarly.
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Figure 7. Two examples of fitting the magneto-hydrodynamics bow shock calculations (black points) with relation (1): 
(a and c) Blue line shows fitting in the (X, Y) plane of the Geocentric InterPlanetary Medium system, red line shows 
fitting in the (X, Z) plane; (b and d) cross-sections of the bow shock by planes X = const, hot pink points.
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In order to account for arbitrary angle of the interplanetary magnetic field direction with respect to the solar 
wind velocity we checked the usage of relations (21) in the skewed coordinate system. For such checking, 
we fitted the bow shock profiles individually in every φs = const plane and thus obtain numerical functions 
rs(φs), Rs(φs), bs(φs) and ds(φs). Figure 6 illustrates the accuracy of relations (21) for approximating these 
numerical functions. As expected the position of the nose point is independent of φs, while Rs(φs) and bs(φs) 
are satisfactorily approximated by expressions (21). The parameter ds did not show any clear dependence on 
φs, and it was assumed to be constant similarly to the case of magnetic field perpendicular to the solar wind 
velocity. Relations (21) make it possible to use the expression (1) to approximate the MHD simulations of 
the entire bow shock surface and to determine the parameters of the model: rs, Rsy, Rsz, bsy, bsz, ds, αvn. And 
in the following approximations we do not use Equation 5 for the skewing angle, but instead find it as an 
additional fitting parameter of the model.

Table 1 presents the parameters of the model obtained when fitting all the 26 cases of MHD bow shock 
simulations by expression (1). In all the simulations the obstacle parameters are: ro = 1 and Ro = 1. The 
last column presents the values of residuals σ = ΣDi

2/N (in units of ro
2) for our fitting procedure. Here, Di 

stands for the distance of the i-th point (XSi, YSi, ZSi) on the simulated bow shock surface from the surface 
described by (1) and (21) with seven fitting parameters rs, Rsy, Rsz, bsy, bsz, ds, αvn. N is the number of points 
in the related MHD simulation. N values vary from to 3,700 to 8,000 points. The values of the residuals 
are consistently small, indicating good fit obtained with Equation 1 for a wide range of obstacles and 
upstream conditions.

Figure 7 gives two examples of such fitting for solar wind parameters γ = 5/3, MS = 6, MA = 5, ϑbv = 30° (Fig-
ures 7a and 7b) and γ = 5/3, MS = 6, MA = 3, ϑbv = 70° (Figures 7c and 7d). Since the bow shock is symmetric 
relative to the (X, Y) plane, in the plane (X, Z) the bow shock fitting is shown only for Z < 0. The calculated 
shock parameters are listed in Table 1, lines 3 and 9, respectively.

Figure 7 shows that the relatively simple expression (1) provides very good description of the bow shock 
shape. The accuracy of this approximation appears to be lowest near the negative part of the Y axis of the 
GIPM coordinates. This region is further discussed at the end of the next section.

6. Transformation of GD Bow Shock Parameters Into the MHD Regime
To calculate the parameters of Equation 1 as functions of the upstream conditions for the MHD bow shock, 
we proceed from the formulas obtained for the GD bow shock (Appendix A, relations 35–43 in M. Verigin, 
Slavin, Szabo, Gombosi, et al. [2003]). Parameters rs, Rsy, Rsz, bsy, bsz refer to the nose point of the bow shock, 
and, therefore, can be obtained by comparing the expansion rate of central flow tube after shock crossing 
in MHD and GD cases.

In the case of GD flow, the relative expansion rate of the cross-section S of the central flow tube behind the 
shock wave (e.g., Biermann et al., 1967; Wallis, 1973):

  
 


    

1 1 2 1 .
s

d VdS
S dx V dx R

 (22)

For the MHD flow this expression can be rewritten as (G. Kotova et al., 2020):




 
 

1 1 1
Γ

sy sz

sy sz

R RdS
S dx R R (23)

where Γ = Γ(ε, γ, MA, MS, ϑbv, αvn).
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For converting the GD parameters to the MHD ones, the following procedure can be used: (i) the gasdynam-
ic inverse compression ratio is replaced by the root ε of Equation 3, corresponding to a fast shock; (ii) the 
parameter ε* = ε/(ε − 1) is replaced by ε*Г; and (iii) Ms is replaced by Masy = (1 + 1/tg2ωasy)1/2, calculated for 
the bow shock asymptotic slope in the YS-direction (φS = 0°) and Masz = (1 + 1/tg2ωasz)1/2, calculated for the 
bow shock asymptotic slope in the ZS-direction (φS = 90°). Thus, the parameters of the model deduced earli-
er for GD flow (see Appendix A) are replaced: the subsolar position   , , ,s o oGDr R b  by   Γ , , , ,s o oGDr R b  

the radius of curvature   , , ,s o oGDR R b  by   Γ , , ,s o oGDR R b  and the bluntness  s SGDb M  by  s aszGDb M  
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Figure 8. Comparison of the parameters rs, Rsy, and Rsz of the bow shock model (1) fitting the magneto-hydrodynamics calculations (Table 1), with the 
parameters calculated using the gas dynamics model. Dashed lines represent fitting dependencies, printed at the bottom of each panel.



Journal of Geophysical Research: Space Physics

or  s asyGDb M . Everywhere here ε is calculated from Equation 3 for the MHD flow. The parameter sGDd  is 
a function of bo only and does not change. These converted parameters are normalized to approximate the 
obtained fitting parameters of the model rs, Rsy, Rsz, bsy, bsz, ds.

          2/3
_ Γ · (Γ , , , ) 1 0.37sin ,s norm o s o o o bvGDr r r R b r (26)

     
1/22/3

_ Γ · Γ , , , · / ,sy norm s o o asy aszGDR R R b M M (27)




sin /2Γ bv
sz syR R (28)

 
                      

2 2

_ 0.27, 0.72 1asy asy
sz norm s asz sy szGD

asz asz

M M
b b M b b

M M
 (29)

   
    

 

2

_ 0.6 asy
s norm s oGD

asz

M
d d b

M
 (30)

Figures 8 and 9 demonstrate good correspondence of the parameters fitting the MHD bow shock simula-
tions and the normalized parameters. Parameters rs and Rsy are well fitted by parameters rs_norm and Rsy_norm 
calculated by expressions (26, 27) (Figures 8a and 8b). Figure 8c demonstrates that the parameter Rsz is 
related to Rsy via relation (28).

Expressions (26–28) reduce exactly to those obtained for special cases of interplanetary magnetic field par-
allel or perpendicular to plasma flow direction by G. A. Kotova et al. (2020).

The expressions for the parameters bsy and bsz (29) are slightly modified as compared to those used by G. A. 
Kotova et al. (2020). Expressions (29) are checked in Figures 9a and 9b. For the transition parameter ds the 
expression (30) is suggested (Figure 9c). The agreement between ds and ds_norm however, is noticeably worse 
than for the other parameters.

Finally, in order to verify the use of Equation 5 as a proxy for the skewing angle, the fitting angles αvn (Ta-
ble 1) are plotted as asterisks in Figure 3. The agreement appears to be good although not excellent.

Figure 10 is similar to Figure 7 and shows the comparison of the bow shock location calculated with expres-
sion (1) using relations (5, 26–30) with the bow shock locations extracted from the MHD simulations. The 
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Figure 9. (a) Interrelationship between the parameters bsy and bsz, (b) comparison for the parameter bsz fitting the magneto-hydrodynamics calculations, with 
the parameter bsz_norm, calculated using the gas dynamics model, (c) comparison of the fitting parameter ds with calculated parameter ds_norm. Dashed black lines 
show fitting dependencies printed at the bottom of the panels.
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upstream condition of the MHD simulations were γ = 5/3, MS = 6, MA = 5, ϑbv = 45° for Figures 10a and 10b 
and γ = 5/3, MS = 6, MA = 3, ϑbv = 20° for Figures 10c and 10d (Table 1, lines 14 and 1, respectively). The 
parameters of the bow shock model were αvn = 3.0, rs = 1.31, Rsy = 1.74, Rsz = 1.75, bsy = −0.46, bsz = −0.01, 
ds = 1.3 for the first simulation and αvn = 6.0, rs = 1.22, Rsy = 1.9, Rsz = 1.8, bsy = −0.35, bsz = 0.15, ds = 1.4, 
for the second.

Similarly to Figure  7, noticeable discrepancies between the MHD shock and model calculations are  
sometimes observed in a small region close to the plane (X, Y) of the GIPM system in the negative Y area 
where the blue curves (approximation) do not coincide with points (MHD calculations). The comparison 
in the (Z, Y) plane shows that these discrepancies appear only in a very limited area. This may be due to  
the fact that in MHD calculations the position of the shock wave is determined automatically, and it is  
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Figure 10. Two examples comparing the magneto-hydrodynamics bow shock calculations (black points) with its 
location determined by relations (1, 6, 27–30): (a and c) blue line shows expression (1) in the (X, Y) plane of Geocentric 
InterPlanetary Medium system, red line shows expression (1) in the (X, Z) plane; (b and d) cross-sections of the bow 
shock by planes X = const, hot pink points - expression (1).
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in this region that this can lead to errors. Kabin (2001) considered this area in detail and it was demonstrat-
ed that fast shock wave does not always exist there (see Figure 10 in Kabin [2001]) and it is not always easy 
to find the correct bow shock position. It is also possible that the presented analytic model is not flexible 
enough to describe this area. Anyhow Figures 10b and 10d show that these discrepancies are observed in a 
very limited area, and the model describes the bow shock well both close to the planet and far downstream.

7. Summary
A new analytical model of the bow shock shape formed in the solar wind flow upstream of planets is devel-
oped. Our model is shown to be accurate by comparison with high-resolution MHD simulations. The model 
does not require any significant computational resources and can generate the bow shock profile practically 
instantaneously. Our model depends on the following solar wind parameters: Polytrope index, sonic and 
Alfven Mach numbers and angle between the velocity and the magnetic field. If the angle between the vec-
tors of interplanetary magnetic field and undisturbed solar wind velocity is arbitrary, the model has seven 
parameters: The distance to the nose point of the shock, the skewing angle of the bow shock in the plane 
including solar wind magnetic field and velocity vectors, two curvature radii and two bluntnesses in that 
same plane and in the perpendicular plane, and an additional parameter describing the transition to the 
asymptotic downstream slope of the bow shock. The number of parameters reduces to six in the case of the 
interplanetary magnetic field perpendicular to the solar wind velocity since in this case the skewing angle 
vanishes. In the case of the interplanetary magnetic field parallel to the solar wind velocity, the model has 
only four parameters due to its axial symmetry. If the interplanetary magnetic field vanishes, the model re-
duced to an earlier GD shock model (M. Verigin, Slavin, Szabo, Gombosi, et al., 2003). The current model is 
developed for axially symmetric obstacles, but it can be extended to non-axially symmetric magnetospheric 
obstacles in a way similar to that of a GD model (M. Verigin, Slavin, Szabo, Gombosi, et al., 2003).

Appendix A: Formulas for Calculating the Parameters of the Bow Shock 
Model in the Gas-Dynamic Approximation
Formulas for calculating the parameters of the bow shock model in the gas-dynamic approximation are 
collected here for the convenience of using our analytical model (Appendix A in G. Kotova et al. [2020]; 
Equations 35–38 in M. Verigin, Slavin, Szabo, Gombosi, et al. [2003]. Note that Equation 36 of M. Verigin, 
Slavin, Szabo, Gombosi, et al. [2003] and M. Verigin, Slavin, Szabo, Kotova, et al. [2003] had a misprint, 
corrected by G. Kotova et al. [2020]).

In the gas-dynamic approximation
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