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Key Points: 

 For an arbitrary direction of the interplanetary magnetic field the bow shock nose is 

skewed from the direction of the solar wind flow. 

 Asymptotic bow shock slope downstream from the planet in MHD approximation is 

calculated analytically in the skewed reference frame. 

 Analytical expressions are obtained for the bow shock parameters as functions of the 

solar wind parameters. 
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Abstract 

In studies of physical processes near planetary bow shocks, empirical models of the latter are 

usually used. While computational MHD or kinetic models of bow shocks are often more 

accurate, their computationally extensive nature limits their applicability to routine analysis of 

large volumes of data. We suggest an analytical model of the bow shock position based on MHD 

calculations and accurate analytical solutions. The analytical expressions for the bow shock 

position and shape include the following parameters: the distance of the bow shock nose point 

from the planet, radii of curvature and bluntnesses of the shock surface at this point and a 

parameter describing the transition to the asymptotic downstream slope of the shock. It is shown 

that for an analytical description of the surface of the shock it is sufficient to approximate its 

radius of curvature and bluntness in two perpendicular planes. Another parameter used in this 

model is the bow shock skewing angle, appearing when the interplanetary magnetic field 

directed at an angle with respect to the solar wind velocity. This parameter naturally vanishes 

when the magnetic field of the solar wind is directed either parallel or perpendicular to the 

velocity vector. The exact analytical solution for the asymptotic downstream slope of the MHD 

Mach cone is modified to take into account the skewing angle of the bow shock. 

Plain Language Summary 

The solar wind is a stream of charged particles emitted by the Sun. The interplanetary magnetic 

field embedded in the solar wind is the solar magnetic field dragged out from the solar corona. 

Bulk velocity of the solar wind is higher than sonic velocity and higher than the velocity of 

Alfven waves. Planets with their magnetospheres and ionospheres create obstacles to the solar 

wind flow, and in front of planetary magnetosphere, bow shock forms, similar to the shock wave 

formation ahead of a supersonic aircraft. To study many physical processes in the vicinity of 

planets it is necessary to have a useful physical model of the position and shape of the bow 

shock. MHD and kinetic simulations provide accurate models but they are too computationally 

extensive. To analyze experimental data empirical models are mainly used, but they are not 

equally accurate in all space. We suggest an analytical model of the bow shock position and 

shape based on MHD calculations and accurate analytical solutions. This model is easy to use 

and describes the bow shock well near the planet and far downstream. 

1 Introduction 

Studies of physical processes near the Earth and near other planets often require a robust 

and convenient bow shock model for data classification and analysis. These processes include: 

electron and ion foreshock formation, plasma wave generation by secularly and diffusely 

reflected ions, mechanisms of the solar wind deceleration in the shock foot and shock itself, 

plasma wave propagation along the shock surface, processes of shock overshoot formation, 

plasma turbulence generation inside the magnetosheath, generation of micropulsations at the bow 

shock and magnetopause, etc. 

The bow shock can be modeled using several different approaches. For example, 

magneto-hydrodynamics (MHD) description of solar wind interaction with a planet is often used 

(e.g., Stahara, 2002; Cairns and Lyon, 1995, Gombosi, 1999; Kabin et al., 2000; Chapman et al, 

2004; Ledvina et al., 2008, Mejnertsen et al., 2018). This approach usually allows achieving 

good agreement with experimental data (Winterhalter et al., 1984; Merka et al., 2003). Some 

bow shock models are based on kinetic simulations or on combinations of MHD with kinetics 
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(Brecht, 1997; Ledvina et al., 2008; Pokhotelov et al., 2013). All these computational models 

require significant processor time. They provide a reliable basis for studying the bow shock but 

cannot be used in practice to analyze a large amount of data obtained under various solar wind 

conditions. 

Another common approach to describing the bow shock shape and position utilizes 

empirical models fitted to observations. During the last 20-30 years a large amount of 

experimental data was obtained in the vicinity of planetary bow shocks (Phobos, Interball / 

Magion-4, Wind, Geotail, Mars Express Mission, Cluster, THEMIS, etc). These observations are 

accompanied by almost continuous monitoring of the undisturbed solar wind (IMP-8, Wind, 

ACE). These data served as the basis for various empirical models of the bow shock (Fairfield, 

1971, 2001; Formisano, 1979; Slavin and Holzer, 1981; Nĕmeček and Šafránková, 1991; Peredo 

et al., 1995; Chao et al., 2002; Merka et al., 2003; Chapman and Cairns, 2003; Dmitriev et al, 

2003, Jelínek et al., 2012; Meziane et al., 2014, Hall et al, 2019, Lu et al., 2019, Wang et al., 

2020). Such models are very convenient and easy to use; they also agree well with the average 

location and shape of bow shock. However, their applicability is always limited by the range of 

the solar wind parameters used in their construction. Such models often have to be scaled in 

order to agree with the observations for any particular event. The existing models do not take 

into account the bow shock slope at infinity. Besides, they do not consider the influence of 

polytropic index on the shape of the bow shock. 

To address the shortcomings of both computational and empirical models M.I. Verigin 

with co-authors developed a semiempirical approach for modeling different plasma boundaries 

and regions in space (Verigin et al., 1997a, b, 1999, 2001a,b, 2003a,b; 2004a,b, 2009, 2018; 

Verigin, 2004; Kotova et al., 2005, 2015, 2020a,b). This approach is based on maximum use of 

exact analytical solutions that describe some characteristic properties of the phenomenon, e.g., 

the asymptotic MHD Mach cone. The parameters used in these semi-empirical modes have clear 

physical meaning. 

At large Alfvén Mach numbers, Gas Dynamics (GD) provides an accurate approximation 

of the planetary bow shocks. A detailed GD analytical model of a bow shock for obstacles of 

various shapes (ranging from a hyperboloid to a stub cylinder) was developed by Verigin et al. 

(2003a). More recently, Kotova et al (2020a) used a similar approach to calculate the parameters 

of planetary bow shocks for interplanetary magnetic field either parallel or perpendicular to the 

solar wind flow. Below we present an extension of these two models for an arbitrary direction of 

the magnetic field. The resulting model is applicable for any direction of the interplanetary 

magnetic field, any polytropic index , any Alfvén MA, and sonic MS Mach numbers (𝑀𝐴
2 =

4𝜋𝜌𝑉2

𝐵2
, 𝑀𝑆

2 =
𝜌𝑉2

𝛾𝑝
, ρ – plasma mass density, V – plasma bulk velocity, B – magnetic field 

magnitude, p – plasma thermal pressure), and various shapes of the obstacle. We also ensure that 

our new model agrees with the analytic description of the bow shock slope at infinity obtained by 

Verigin et al (2003b). Thus, we propose a model for the entire surface of the bow shock, which 

can be used in a wide range of solar wind parameters for various obstacles. 

 

2 General definitions 

It is convenient to describe the bow shock using Geocentric InterPlanetary Medium 

(GIPM) coordinates. This reference frame was introduced by Bieber & Stone (1979) to study the 
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leakage of energetic electrons from the magnetosphere; it was also used for bow shock studies 

(Peredo et al., 1995; Verigin et al., 2001a, b; Dmitriev et al., 2003; and others). In GIMP 

coordinates, the velocity and magnetic field vectors of the undisturbed flow lie in the (X, Y) 

plane. The X axis is antiparallel to the undisturbed solar wind velocity vector, the Y axis is 

directed so that the magnetic field vector lies in the second - fourth quadrant of the (X, Y) plane, 

and the Z axis completes the right-hand system. The interplanetary field azimuth in GIPM 

coordinates lies either between 90° and 180° or between 270° and 360°. 

We assume that the obstacle is rotationally symmetric with respect to the X – axis, see 

figure 1. In addition to the radius of curvature, Ro, we use bluntness parameter, bo, to characterize 

the shape of the boundary as defined below. Near the nose point, the shape of the obstacle can be 

approximated using a series expansion as: 

x(𝜌) = r0 – 𝜌 2/2Ro+ bo(𝜌 4/8Ro
3)-…, 

where 𝜌 = √𝑦2 + 𝑧2. Here Ro is the radius of curvature of the obstacle at the nose point, and bo 

is the dimensionless bluntness coefficient. For a paraboloid bo = 0, for an ellipsoid bo < 0 at the 

nose, for a sphere bo = -1, and for hyperboloids bo > 0. 

If the magnetic field is either parallel or perpendicular to the solar wind velocity, the nose 

point of the bow shock is located on the X axis of the GIPM coordinates. In these cases the bow 

shock is either axially symmetric or symmetric with respect to the (X, Y) and (X, Z) planes, 

respectively. Similarly to the obstacle, we describe the subsolar shape of the bow shock using the 

radius of curvature, Rs, of the shock and its bluntness, bs. 

Following Verigin et al., (2003a) and Kotova et al. (2020a, b) we define the planetary 

bow shock shape by the expression: 

𝜌2(𝑥) = 2𝑅𝑠(𝑟𝑠 − 𝑥) + tan
2𝜔𝑎𝑠 ∙ (𝑟𝑠 − 𝑥)

2 ∙ (1 +

𝑏𝑠
tan2𝜔𝑎𝑠

−1

1+𝑑𝑠
𝑟𝑠−𝑥

𝑅𝑠

),  𝜌 = √𝑦2 + 𝑧2. 

The additional parameter ds characterizes the transition from the predominance of the parameters 

of the bow shock subsolar region to the region where the asymptotic slope dominates. Angle ωas 

is the asymptotic slope of the bow shock far downstream (Slavin et al., 1984) calculated 

following Verigin et al., 2003b. For general orientation of the interplanetary magnetic field the 

parameters of expression (1) rs, Rs, bs ds, as well as the values of ωas depend on the clock angle 

𝜑 = 𝑐𝑜𝑠−1(𝑦/𝜌). 

3 Skewing angle 

In general case of an axially symmetric obstacle for an arbitrary direction of the 

interplanetary magnetic field, the only symmetry plane of the bow shock surface is the (X, Y) 

plane of the GIPM frame containing the solar wind velocity and magnetic field vectors. 

We define the nose of the bow shock as the point behind which the plasma flows along 

the normal to the shock front. To quantify the displacement of the nose point from the X-axis we 

introduce skewing angle αvn which is defined as the angle between the upstream velocity 

direction and the direction of the shock normal at the nose point of the bow shock (Fig. 2). This 

skewing angle is an additional parameter used in our bow shock model. The angle between the 

upstream magnetic field direction and the direction of the shock normal at the nose point of the 

bow shock ϑbn = ϑbv - αvn. We furthermore define a new coordinate system frame (XS, YS, ZS) 

(1) 
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which is obtained by rotating the X and Y axis of the GIPM system around Z axis by the angle 

αvn. This reference frame is used in section 4 and later for approximating the bow shock surface 

calculated in MHD by expression (1).  

The skewing angle can be calculated using MHD Rankine-Hugoniot conditions as 

follows. At the nose point, by definition, the tangential component of the velocity behind the 

shock is equal to zero: 

 𝑉𝑡1 = 𝑉𝑡 + 𝐵𝑡
𝑉𝑛

𝐵𝑛

(1−𝜀)

(
𝜀4𝜋𝜌𝑉𝑛

2

𝐵𝑛
2 −1)

= 0, 

where the subscripts t and n refer to the tangential and normal components, respectively, of 

vectors V and B. In our paper, the upstream parameters are used without subscripts and 

downstream values marked by subscript “1”. Here ρ is the mass density, ε is an inverse 

compression ratio ε = ε(, MS, MA, bn, αvn) = ρ/ρ1 = Vn1/Vn which can be calculated from the 

following cubic equation (e.g., Petrinec and Russell (1995); Kabin, 2001):  

𝑎𝜀3 + 𝑏𝜀2 + 𝑐𝜀 + 𝑑 = 0, where 

𝑎 = (𝛾 + 1) 𝑀𝐴
6 cos6 𝛼𝑣𝑛, 

𝑏 = −(𝛾 − 1) 𝑀𝐴
6 cos6 𝛼𝑣𝑛 −(𝛾 + 2) 𝑀𝐴

4 cos4 𝛼𝑣𝑛 cos
2(𝜗𝑏𝑣−𝛼𝑣𝑛) − (𝛾 +

2 (
𝑀𝐴

𝑀𝑆
)
2

)𝑀𝐴
4 cos4 𝛼𝑣𝑛, 

𝑐 = (𝛾 − 2 + 𝛾 cos2(𝜗𝑏𝑣−𝛼𝑣𝑛))𝑀𝐴
4 cos4 𝛼𝑣𝑛 + (𝛾 + 1 +

4 (
𝑀𝐴

𝑀𝑆
)
2

)𝑀𝐴
2 cos2 𝛼𝑣𝑛 cos

2(𝜗𝑏𝑣−𝛼𝑣𝑛), 

𝑑 = −cos2(𝜗𝑏𝑣−𝛼𝑣𝑛) ((𝛾 − 1)𝑀𝐴
2 cos2 𝛼𝑣𝑛 + 2(

𝑀𝐴
𝑀𝑆
)
2

cos2(𝜗𝑏𝑣−𝛼𝑣𝑛)) 

Relation (2) can be transformed to:  

tan𝛼𝑣𝑛 = tan(𝜗𝑏𝑣 − 𝛼𝑣𝑛)
(1−𝜀)

𝜀𝑀𝐴
2 cos2 𝛼𝑣𝑛
cos2(𝜗𝑏𝑣−𝛼𝑣𝑛)

−1
, 

Equations (3) and (5) are solved to calculate αvn. 

Figure 3 presents examples of αvn calculations as a function of bv for  = 5/3 and 

different MS and MA. When the sonic Mach number is quite high and the Alfven Mach number is 

low, Figure 3 shows that the bow shock nose point can deviate by up to 30 degrees from the solar 

wind velocity direction.  

4 Asymptotic bow shock Mach cone in a skewed reference frame 

Verigin et al. (2003) derived an implicit equation, which enables the calculation of the 

asymptotic downstream slope of MHD Mach cone for any clock angle for arbitrary MS, MA, and 

bv angle. Since their calculation was done in the GIPM reference frame, it is necessary to 

reformulate the procedure for the skewed coordinate system (Fig. 2). For this derivation it is 

(2) 

(5) 

(3) 

(4) 
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convenient to use a cylindrical (XS,S,S) coordinates with the clock angle S measured from the 

+ YS direction. In this reference frame: 

𝑩 = 𝐵(−cos(𝜗𝑏𝑣 − 𝛼𝑣𝑛), sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛) cos 𝜑𝑆 , − sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛) sin 𝜑𝑆) 

𝑽 = 𝑉(− cos 𝛼𝑣𝑛, − sin 𝛼𝑣𝑛 cos𝜑𝑆 , sin 𝛼𝑣𝑛 sin 𝜑𝑆). 

Here it can be assumed that 0  bv  /2 since the velocity of the MHD waves is independent of 

the polarity of the magnetic field.  

Sufficiently far downstream (here and further far downstream means far behind the 

planet), the general bow shock surface defined as F(XS,S,S)=0 simplifies to: 

𝐹(𝑋𝑆, 𝜌𝑆, 𝜑𝑆) 𝑋𝑆 + 𝑞(𝜑𝑆)𝜌𝑆 = 0  as XS  -. 

The asymptotic slope of the shock is then defined for all clock angles as  

tan𝜔 (𝜑𝑆)𝜑𝑆=𝑐𝑜𝑛𝑠𝑡 = −
𝑑𝜌𝑆

𝑑𝑋𝑠
=

1

𝑞(𝜑𝑆)
 

Thus, computing the asymptotic MHD Mach cone reduces to determining function q(φS). 

Following Verigin et al. (2003) we proceed as follows. Using equation (7) we can calculate the 

shock normal n in the far downstream area as:  

𝒏 =
∇𝐹

|∇𝐹|
=

(1,𝑞,𝑞′)

√1+𝑞2+𝑞′2
,  𝑞 = 𝑞(𝜑𝑆), 𝑞

′ = 𝑑𝑞 𝑑𝜑𝑆⁄  

Taking into account relations (6), cosvn and cosbn can be determined as:  

cos 𝛼𝑣𝑛 = 𝐕 · 𝐧 𝑉⁄ =
−cos𝛼𝑣𝑛−𝑞 sin𝛼𝑣𝑛 cos𝜑𝑆+𝑞

′ sin𝛼𝑣𝑛 sin𝜑𝑆

√1+𝑞2+𝑞′
2

 

cos 𝜗𝑏𝑛 = 𝐁 · 𝐧 𝐵 =⁄
−cos(𝜗𝑏𝑣 − 𝛼𝑣𝑛)+𝑞 sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛) cos𝜑𝑆 − 𝑞

′ sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛) sin𝜑𝑆

√1 + 𝑞2 + 𝑞′2
 

Far downstream of the obstacle MHD Rankine-Hugoniot conditions (Landau & Lifshitz, 1984) 

permit to obtain the following relation for fast and slow MHD shocks (Verigin et al., 2003b, 

Kabin, 2001):  

(𝑀𝐴
2 +𝑀𝑆

2) cos2 𝛼𝑣𝑛 −𝑀𝐴
2𝑀𝑆

2 cos4𝛼𝑣𝑛 − cos
2 𝜗𝑏𝑛 = 0 

Relation (11) together with (10) leads to the nonlinear transcendental differential equation 

for the function q(φS):  

(𝑀𝐴
2 +𝑀𝑆

2)(−cos 𝛼𝑣𝑛 − 𝑞 sin 𝛼𝑣𝑛 cos𝜑𝑆 + 𝑞
′ sin 𝛼𝑣𝑛 sin 𝜑𝑆)

2 =
(−cos(𝜗𝑏𝑣 − 𝛼𝑣𝑛)+𝑞 sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛) cos 𝜑𝑆 − 𝑞

′ sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛) sin𝜑𝑆)
2 +

𝑀𝐴
2𝑀𝑆

2(−cos𝛼𝑣𝑛−𝑞 sin𝛼𝑣𝑛 cos𝜑𝑆+𝑞
′ sin𝛼𝑣𝑛 sin𝜑𝑆)

4

1+𝑞2+𝑞′
2  

To find a solution of equation (12) it is helpful to introduce two new functions 

𝑝 = 𝑞′ sin𝜑𝑆 − 𝑞 cos𝜑𝑆 

𝑡 = 𝑞′ cos 𝜑𝑆 + 𝑞 sin 𝜑𝑆 

Then (12) is transformed to:  

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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(𝑀𝐴
2 +𝑀𝑆

2)(−cos 𝛼𝑣𝑛 + 𝑝(𝜑𝑆) sin 𝛼𝑣𝑛)
2 = (cos(𝜗𝑏𝑣 − 𝛼𝑣𝑛) + 𝑝(𝜑𝑆) sin(𝜗𝑏𝑣 −

𝛼𝑣𝑛))
2 +

𝑀𝐴
2𝑀𝑆

2(− cos𝛼𝑣𝑛+𝑝(𝜑𝑆)sin𝛼𝑣𝑛)
4

1+𝑝(𝜑𝑆)2+𝑡(𝜑𝑆)2
, 

which can be solved for t(φS):  

𝑡(𝜑𝑆)
2 =

𝑀𝐴
2𝑀𝑆

2(−cos𝛼𝑣𝑛+𝑝(𝜑𝑆)sin𝛼𝑣𝑛)
4

𝐷(𝑝(𝜑𝑆))
− 𝑝(𝜑𝑆)

2 − 1, 

where 

𝐷(𝑝(𝜑𝑆)) = (𝑀𝐴
2 +𝑀𝑆

2)(−cos 𝛼𝑣𝑛 + 𝑝(𝜑𝑆) sin 𝛼𝑣𝑛)
2-(cos(𝜗𝑏𝑣 − 𝛼𝑣𝑛) +

𝑝(𝜑𝑆) sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛))
2 

Differentiating (15) we get 

𝑑𝑡(𝜑𝑆)
2

𝑑𝑝(𝜑𝑆)
= −2𝑝(𝜑𝑆) + 4

𝑀𝐴
2𝑀𝑆

2

𝐷(𝑝(𝜑𝑆))
(− cos 𝛼𝑣𝑛 + 𝑝(𝜑𝑆)sin𝛼𝑣𝑛)

3 sin 𝛼𝑣𝑛 −

2
𝑀𝐴
2𝑀𝑆

2

𝐷(𝑝(𝜑𝑆))
2 (− cos 𝛼𝑣𝑛 + 𝑝(𝜑𝑆)sin𝛼𝑣𝑛)

4((𝑀𝐴
2 +𝑀𝑆

2)(− cos𝛼𝑣𝑛 +

𝑝(𝜑𝑆) sin 𝛼𝑣𝑛) sin 𝛼𝑣𝑛 − (cos(𝜗𝑏𝑣 − 𝛼𝑣𝑛) + 𝑝(𝜑𝑆) sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛)) sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛)) 

Which equals 

𝑑𝑡(𝜑𝑆)
2

𝑑𝑝(𝜑𝑆)
= 2

𝑡(𝜑𝑆)

tan𝜑𝑆
  

using (13). Thus, we obtain an equation for p(φS):  

1

tan𝜑𝑆
√

𝑀𝐴
2𝑀𝑆

2

𝐷(𝑝(𝜑𝑆))
2 (− cos 𝛼𝑣𝑛 + 𝑝(𝜑𝑆)sin 𝛼𝑣𝑛)4 − 𝑝(𝜑𝑆)2 − 1 = −𝑝(𝜑𝑆) +

2𝑀𝐴
2𝑀𝑆

2

𝐷(𝑝(𝜑𝑆))
(−cos 𝛼𝑣𝑛 + 𝑝(𝜑𝑆)sin 𝛼𝑣𝑛)

3 sin 𝛼𝑣𝑛 −
𝑀𝐴
2𝑀𝑆

2

𝐷(𝑝(𝜑𝑆))
2 (− cos 𝛼𝑣𝑛 +

𝑝(𝜑𝑆)sin 𝛼𝑣𝑛)
4((𝑀𝐴

2 +𝑀𝑆
2)(−cos 𝛼𝑣𝑛 + 𝑝(𝜑𝑆) sin 𝛼𝑣𝑛) sin 𝛼𝑣𝑛 − (cos(𝜗𝑏𝑣 − 𝛼𝑣𝑛) +

𝑝(𝜑𝑆) sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛)) sin(𝜗𝑏𝑣 − 𝛼𝑣𝑛)) 

However the equation (17) can be easily solved for the inverse function φS(p) 

𝜑𝑆(𝑝) =

{
 
 

 
 tan−1

√𝑡2(𝑝)

1

2

𝑑𝑡2(𝑝)

𝑑𝑝

,               
𝑑𝑡2(𝑝)

𝑑𝑝
> 0

𝜋 − tan−1
√𝑡2(𝑝)

1

2

𝑑𝑡2(𝑝)

𝑑𝑝

,      
𝑑𝑡2(𝑝)

𝑑𝑝
< 0

 

Figure 4 presents t2(p) function (16) for MS = 6, MA = 3, bv =70°, αvn = 4.3°. Note, that only 

sections where t2>0, shown with solid lines in Figure 4, are physically meaningful. Function t2(p) 

has vertical asymptotes at 

𝑝𝑎𝑠1 =
√𝑀𝐴

2+𝑀𝑆
2 cos𝛼𝑣𝑛+cos(𝜗𝑏𝑣−𝛼𝑣𝑛)

√𝑀𝐴
2+𝑀𝑆

2 sin𝛼𝑣𝑛−sin(𝜗𝑏𝑣−𝛼𝑣𝑛)
, 

(14) 

(15) 

(16) 

(17) 

(19) 

(20) 

(18) 
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𝑝𝑎𝑠2 =
√𝑀𝐴

2+𝑀𝑆
2 cos𝛼𝑣𝑛−cos(𝜗𝑏𝑣−𝛼𝑣𝑛)

√𝑀𝐴
2+𝑀𝑆

2 sin𝛼𝑣𝑛+sin(𝜗𝑏𝑣−𝛼𝑣𝑛)
. 

There are generally four roots p1-4 of t2(p)=0 equation. S(p) dependencies calculated with 

relations (19) for values of p between the negative asymptote (20) and p1, and between p4 and the 

positive asymptote correspond to slow shocks. S(p) dependencies calculated for values of p 

between p2 and p3 correspond to fast shocks.  

Now we can calculate function p(φS) for 0  φS   and, hence, t(φS), q(φS), (φS), and 

(φS) from relations (13, 8), respectively. 

5 Fitting of MHD calculations 

Our model of the bow shock is constructed on the basis of 26 fine resolution 3D MHD 

simulations, performed at the University of Michigan. These MHD simulations used adaptive 

grids with nearly 3·106 cells (Fig.5). All linear dimensions are given in terms of ro. The MHD 

simulations used 2 types of obstacles – paraboloid of revolution and hemisphere with elongated 

cylindrical tail, 2 values of polytropic index , 5/3 and 2.0, and for different conditions in the 

solar wind: different MS, MA and magnetic field direction ϑbv.  

The determination of the parameters of the model - rs, Rs, bs, ds, αvn - is based on the 

approximation of MHD calculations of the bow shock shape and position for different obstacles 

by expression (1). Expression (1) can be used directly for fitting the calculated bow shock 

surface only if the interplanetary magnetic field is parallel to the solar wind velocity. In all other 

cases of an arbitrary magnetic field direction the parameters of expression (1) depend on the 

clock angle 𝜑 = 𝑐𝑜𝑠−1(𝑦/𝜌). In the case of magnetic field perpendicular to the flow velocity, 

Kotova et al., 2020a used the following expressions to describe the dependence of parameters Rs, 

bs, and ds on the clock angle:  

𝑅𝑠 =
𝑅𝑠𝑦𝑅𝑠𝑧

𝑅𝑠𝑦 sin2𝜑+𝑅𝑠𝑧 cos2𝜑
,   𝑏𝑠 = 𝑏𝑠𝑧 sin

2 𝜑 + 𝑏𝑠𝑦 cos
2 𝜑,   𝑑𝑠 ∼ 𝑐𝑜𝑛𝑠𝑡., 

where Rsy and Rsz are curvature radii in the plane (X, Y) containing magnetic field and velocity 

vectors and in the perpendicular plane (X, Z), respectively. The bluntnesses bsy and bsz were 

defined similarly.  

In order to account for arbitrary angle of the interplanetary magnetic field direction with 

respect to the solar wind velocity we checked the usage of relations (21) in the skewed 

coordinate system. For such checking, we fitted the bow shock profiles individually in every φs 

= const plane and thus obtain numerical functions rs(φs), Rs(φs), bs(φs) and ds(φs). Figure 6 

illustrates the accuracy of relations (21) for approximating these numerical functions. As 

expected the position of the nose point is independent of φs, while Rs(φs) and bs(φs) are 

satisfactorily approximated by expressions (21). The parameter ds did not show any clear 

dependence on φs, and it was assumed to be constant similarly to the case of magnetic field 

perpendicular to the solar wind velocity. Relations (21) make it possible to use the expression (1) 

to approximate the MHD simulations of the entire bow shock surface and to determine the 

parameters of the model: rs, Rsy, Rsz, bsy, bsz, ds, αvn. And in the following approximations we do 

not use equation (5) for the skewing angle, but instead find it as an additional fitting parameter of 

the model. 

(21) 
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Table 1 presents the parameters of the model obtained when fitting all the 26 cases of 

MHD bow shock simulations by expression (1). In all the simulations the obstacle parameters 

are: ro=1 and Ro=1. The last column presents the values of residuals σ = ΣDi
2/N (in units of ro

2) 

for our fitting procedure. Here Di stands for the distance of the i-th point (XSi, YSi, ZSi) on the 

simulated bow shock surface from the surface described by (1) and (21) with 7 fitting parameters 

rs, Rsy, Rsz, bsy, bsz, ds, αvn. N is the number of points in the related MHD simulation. N values 

vary from to 3700 to 8000 points. The values of the residuals are consistently small, indicating 

good fit obtained with equation (1) for a wide range of obstacles and upstream conditions. 

Figure 7 gives two examples of such fitting for solar wind parameters  =5/3, MS = 6, MA 

= 5, ϑbv = 30° (Fig.7a,b) and  =5/3, MS = 6, MA = 3, ϑbv =70° (Fig.7c,d). Since the bow shock is 

symmetric relative to the (X,Y) plane, in the plane (X, Z) the bow shock fitting is shown only for 

Z < 0. The calculated shock parameters are listed in Table 1, lines 3 and 9, respectively. 

Figure 7 show that the relatively simple expression (1) provides very good description of 

the bow shock shape. The accuracy of this approximation appears to be lowest near the negative 

part of the Y axis of the GIPM coordinates. This region is further discussed at the end of the next 

section. 

6 Transformation of GD bow shock parameters into the MHD regime 

To calculate the parameters of Eq.1 as functions of the upstream conditions for the MHD 

bow shock, we proceed from the formulas obtained for the gas-dynamic bow shock (Appendix, 

relations 35-43 in Verigin et al., 2003a). Parameters rs, Rsy, Rsz, bsy, bsz refer to the nose point of 

the bow shock, and, therefore, can be obtained by comparing the expansion rate of central flow 

tube after shock crossing in MHD and GD cases. 

In the case of gas-dynamic flow, the relative expansion rate of the cross-section S of the 

central flow tube behind the shock wave (e.g., Biermann et al., 1967; Wallis, 1973): 

1

𝑆

𝑑𝑆

𝑑𝑥
= −

1

𝜌𝑉

𝑑(𝜌𝑉)

𝑑𝑥
= −

2

𝑅𝑠
∙
1−𝜀

𝜀
. 

For the MHD flow this expression can be rewritten as (Kotova et al., 2020b):  

1

𝑆

𝑑𝑆

𝑑𝑥
= −

𝑅𝑠𝑦+𝑅𝑠𝑧

𝑅𝑠𝑦𝑅𝑠𝑧

1−𝜀

𝜀

1


 ,  where =(, , MA, MS, bv, vn). 

1

Γ

=
𝜀𝑀𝐴

2 cos2 𝛼𝑣𝑛

𝜀𝑀𝐴
2 cos2 𝛼𝑣𝑛 − cos

2(𝜗𝑏𝑣−𝛼𝑣𝑛)

−
sin(𝜗𝑏𝑣−𝛼𝑣𝑛)(sin(𝜗𝑏𝑣−𝛼𝑣𝑛) + tan𝛼𝑣𝑛 cos(𝜗𝑏𝑣−𝛼𝑣𝑛))(𝜀𝑀𝐴

2 cos2 𝛼𝑣𝑛 + cos
2(𝜗𝑏𝑣−𝛼𝑣𝑛))

(𝜀𝑀𝐴
2 cos2 𝛼𝑣𝑛 − cos2(𝜗𝑏𝑣−𝛼𝑣𝑛))

2

−
1

1 − 𝜀

cos(𝜗𝑏𝑣−𝛼𝑣𝑛) sin(𝜗𝑏𝑣−𝛼𝑣𝑛)(𝑀𝐴
2 cos2 𝛼𝑣𝑛 − cos

2(𝜗𝑏𝑣−𝛼𝑣𝑛))

(𝜀𝑀𝐴
2 cos2 𝛼𝑣𝑛 − cos2(𝜗𝑏𝑣−𝛼𝑣𝑛))

2 ∙ 𝜁 

where 𝜁 =
𝑎1𝜀

3+𝑏1𝜀
2+𝑐1𝜀+𝑑1

3𝑎𝜀2+2𝑏𝜀+𝑐
 with parameters a, b, c defined by (4) and:  

(22) 

(23) 

(24) 
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𝑎1 = −6(𝛾 + 1) 𝑀𝐴
6 cos5 𝛼𝑣𝑛 sin 𝛼𝑣𝑛 

𝑏1 = 2𝑀𝐴
4 cos3 𝛼𝑣𝑛 ((3(𝛾 − 1)𝑀𝐴

2 cos2 𝛼𝑣𝑛 + 2(𝛾 + 2) cos
2(𝜗𝑏𝑣−𝛼𝑣𝑛) + 2𝛾 +

4 (
𝑀𝐴

𝑀𝑆
)
2

) sin 𝛼𝑣𝑛 − (𝛾 + 2) cos 𝛼𝑣𝑛 cos(𝜗𝑏𝑣−𝛼𝑣𝑛) sin(𝜗𝑏𝑣−𝛼𝑣𝑛)), 

𝑐1 = −2𝑀𝐴
2 cos 𝛼𝑣𝑛 ((2(𝛾 − 2)𝑀𝐴

2 cos2 𝛼𝑣𝑛 +

2𝛾𝑀𝐴
2 cos2 𝛼𝑣𝑛 cos

2(𝜗𝑏𝑣−𝛼𝑣𝑛) + (1 + 𝛾 + 4 (
𝑀𝐴

𝑀𝑆
)
2

) cos2(𝜗𝑏𝑣−𝛼𝑣𝑛)) sin 𝛼𝑣𝑛 −

(𝛾𝑀𝐴
2 cos2 𝛼𝑣𝑛 + 1 + 𝛾 + 4(

𝑀𝐴

𝑀𝑆
)
2

) cos 𝛼𝑣𝑛 cos(𝜗𝑏𝑣−𝛼𝑣𝑛) sin(𝜗𝑏𝑣−𝛼𝑣𝑛)), 

𝑑1 = 2 cos(𝜗𝑏𝑣−𝛼𝑣𝑛) ((𝛾 − 1)𝑀𝐴
2 cos 𝛼𝑣𝑛 cos(𝜗𝑏𝑣−𝛼𝑣𝑛) sin 𝛼𝑣𝑛 − ((𝛾 −

1)𝑀𝐴
2 cos2 𝛼𝑣𝑛 + 4 (

𝑀𝐴

𝑀𝑆
)
2

cos2(𝜗𝑏𝑣−𝛼𝑣𝑛)) sin(𝜗𝑏𝑣−𝛼𝑣𝑛)). 

For converting the GD parameters to the MHD ones, the following procedure can be 

used: (i) the gasdynamic inverse compression ratio is replaced by the root ε of equation (3), 

corresponding to a fast shock; (ii) the parameter *= ε/(ε-1) is replaced by *Г; and (iii) Ms is 

replaced by Masy.=(1+1/tg2ωasy)
1/2, calculated for the bow shock asymptotic slope in the YS – 

direction (φS = 0°) and Masz.=(1+1/tg2ωasz)
1/2, calculated for the bow shock asymptotic slope in 

the ZS – direction (φS = 90°). Thus, the parameters of the model deduced earlier for gas-dynamic 

flow (see Appendix) are replaced: the subsolar position 𝑟𝑠𝐺𝐷(𝜀
∗, 𝛾, 𝑅𝑜 , 𝑏𝑜) by 𝑟𝑠𝐺𝐷(𝜀

∗, 𝛾, 𝑅𝑜 , 𝑏𝑜), 

the radius of curvature 𝑅𝑠𝐺𝐷(𝜀
∗, 𝛾, 𝑅𝑜 , 𝑏𝑜) by 𝑅𝑠𝐺𝐷(𝜀

∗, 𝛾, 𝑅𝑜 , 𝑏𝑜) and the bluntness 𝑏𝑠𝐺𝐷(𝑀𝑆) by 

𝑏𝑠𝐺𝐷(𝑀𝑎𝑠𝑧) or 𝑏𝑠𝐺𝐷(𝑀𝑎𝑠𝑦). Everywhere here ε is calculated from equation (3) for the MHD 

flow. The parameter 𝑑𝑠𝐺𝐷  is a function of bo only and does not change. These converted 

parameters are normalized to approximate the obtained fitting parameters of the model rs, Rsy, 

Rsz, bsy, bsz, ds. 

𝑟𝑠_𝑛𝑜𝑟𝑚 − 𝑟𝑜  =   
−2/3 · (𝑟𝑠𝐺𝐷(𝜀

∗, 𝛾, 𝑅𝑜 , 𝑏𝑜) − 𝑟𝑜) ∙ (1 + 0.37sin𝜗𝑏𝑣), 

𝑅𝑠𝑦_𝑛𝑜𝑟𝑚 =  −2 3⁄ · 𝑅𝑠𝐺𝐷(𝜀
∗, 𝛾, 𝑅𝑜 , 𝑏𝑜) · (𝑀𝑎𝑠𝑦/𝑀𝑎𝑠𝑧)

1 2⁄
,  

𝑅𝑠𝑧 = 𝑅𝑠𝑦
 sin𝑏𝑣 2⁄  

𝑏𝑠𝑧_𝑛𝑜𝑟𝑚 = 𝑏𝑠𝐺𝐷(𝑀𝑎𝑠𝑧) ∙ (
𝑀𝑎𝑠𝑦

𝑀𝑎𝑠𝑧
)
−2

+ 0.27,  𝑏𝑠𝑦 = 𝑏𝑠𝑧 − 0.72 ((
𝑀𝑎𝑠𝑦

𝑀𝑎𝑠𝑧
)
2

− 1) 

𝑑𝑠_𝑛𝑜𝑟𝑚 = 0.6𝑑𝑠𝐺𝐷(𝑏𝑜) ∙ (
𝑀𝑎𝑠𝑦

𝑀𝑎𝑠𝑧
)
2

 

Figs. 8 and 9 demonstrate good correspondence of the parameters fitting the MHD bow 

shock simulations and the normalized parameters. Parameters rs and Rsy are well fitted by 

(26) 

(29) 

(30) 

(28) 

(27) 

(25) 
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parameters rs_norm and Rsy_norm calculated by expressions (26, 27) (Fig.8a, b). Figure 8c 

demonstrates that the parameter Rsz is related to Rsy via relation (28). 

Expressions (26-28) reduce exactly to those obtained for special cases of interplanetary 

magnetic field parallel or perpendicular to plasma flow direction by Kotova et al, 2020a. 

The expressions for the parameters bsy and bsz (29) are slightly modified as compared to 

those used by Kotova et al. (2020a). Expressions (29) are checked in Fig.9a,b. For the transition 

parameter ds the expression (30) is suggested (Fig.9c). The agreement between ds and ds_norm 

however, is noticeably worse than for the other parameters.  

Finally, in order to verify the use of equation (5) as a proxy for the skewing angle, the 

fitting angles αvn (Table 1) are plotted as asterisks in Fig.3. The agreement appears to be be good 

although not excellent.  

Figure 10 is similar to Fig.7 and shows the comparison of the bow shock location 

calculated with expression (1) using relations (5, 26-30) with the bow shock locations extracted 

from the MHD simulations. The upstream condition of the MHD simulations were  =5/3, MS= 

6, MA = 5, ϑbv = 45° for Fig.10a,b and   =5/3, MS = 6, MA = 3, ϑbv =20° for Fig.10c,d (Table 1, 

lines 14 and 1, respectively). The parameters of the bow shock model were αvn = 3.0, rs = 1.31, 

Rsy = 1.74, Rsz = 1.75, bsy = - 0.46, bsz = - 0.01, ds = 1.3 for the first simulation and αvn = 6.0, rs = 

1.22, Rsy = 1.9, Rsz = 1.8, bsy = - 0.35, bsz = 0.15, ds = 1.4, for the second. 

Similarly to Fig.7, noticeable discrepancies between the MHD shock and model 

calculations are sometimes observed in a small region close to the plane (X, Y) of the GIPM 

system in the negative Y area where the blue curves (approximation) do not coincide with points 

(MHD calculations). The comparison in the (Z, Y) plane shows that these discrepancies appear 

only in a very limited area. This may be due to the fact that in MHD calculations the position of 

the shock wave is determined automatically, and it is in this region that this can lead to errors. 

Kabin (2001) considered this area in detail and it was demonstrated that fast shock wave does not 

always exist there (see Fig.10 in Kabin, 2001) and it is not always easy to find the correct bow 

shock position. It is also possible that the presented analytic model is not flexible enough to 

describe this area. Anyhow Fig.10b,d shows that these discrepancies are observed in a very 

limited area, and the model describes the bow shock well both close to the planet and far 

downstream.  

7 Summary 

A new analytical model of the bow shock shape formed in the solar wind flow upstream 

of planets is developed. Our model is shown to be accurate by comparison with high-resolution 

MHD simulations. The model does not require any significant computational resources and can 

generate the bow shock profile practically instantaneously.  Our model depends on the following 

solar wind parameters: polytrope index, sonic and Alfven Mach numbers and angle between the 

velocity and the magnetic field. If the angle between the vectors of interplanetary magnetic field 

and undisturbed solar wind velocity is arbitrary, the model has 7 parameters: the distance to the 

nose point of the shock, the skewing angle of the bow shock in the plane including solar wind 

magnetic field and velocity vectors, two curvature radii and 2 bluntnesses in that same plane and 

in the perpendicular plane, and an additional parameter describing the transition to the 

asymptotic downstream slope of the bow shock. The number of parameters reduces to 6 in the 

case of the interplanetary magnetic field perpendicular to the solar wind velocity since in this 
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case the skewing angle vanishes. In the case of the interplanetary magnetic field parallel to the 

solar wind velocity the model has only 4 parameters due to its axial symmetry. If the 

interplanetary magnetic field vanishes, the model reduced to an earlier gas-dynamic shock model 

(Verigin et al., 2003a). The current model is developed for axially symmetric obstacles, but it 

can be extended to non-axially symmetric magnetospheric obstacles in a way similar to that of a 

gas dynamic model (Verigin et al., 2003a). 
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Figure captions 

Figure 1. Bow shock parameters used in our model: ro, rs are positions of the obstacle boundary 

and bow shock nose, respectively; Ro, Rs are nose curvature radii; respectively; and Δ is the bow 

shock standoff distance; ω is the slope of the bow shock. 

Figure 2. Definitions of the additional bow shock parameters for arbitrary direction of the 

interplanetary magnetic field.. 

Figure 3. Calculations of αvn for different Mach numbers and angles bv. Asterisks mark fitting 

of skewing angles (see section 6). 

Figure 4. t2(p) function for MS = 6, MA =3, bv =70°, αvn = 4.3°. Sections of t2(p) shown with 

solid blue lines are physically meaningful; those shown with blue dashed lines do not correspond 

to real shocks. The vertical dashed lines represent the asymptotes of this function. 

Figure 5. Example of the grid. Cut cells used to fit the central body are not shown. 

Figure 6. Parameters rs(φs), Rs(φs) and bs(φs) as functions of the angle φs. Points are the 

parameters of approximation of MHD simulations in planes φs = const with a step along φs equal 

to 5°, solid lines - approximation using expressions (21). 

Figure 7. Two examples of fitting the MHD bow shock calculations (black points) with relation 

(1): a,c – blue line shows fitting in the (X,Y) plane of the GIPM system, red line shows fitting in 

the (X,Z) plane; b, d – cross-sections of the bow shock by planes X = const, hot pink points. 

Figure 8. Comparison of the parameters rs, Rsy and Rsz of the bow shock model (1) fitting the 

MHD calculations (Table 1), with the parameters calculated using the GD model. Dashed lines 

represent fitting dependencies, printed at the bottom of each panel. 

Figure 9. a - Interrelationship between the parameters bsy and bsz, b – comparison for the 

parameter bsz fitting the MHD calculations, with the parameter bsz_norm, calculated using the GD 

model, c – comparison of the fitting parameter ds with calculated parameter ds_norm. Dashed black 

lines show fitting dependencies printed at the bottom of the panels. 

Figure 10. Two examples comparing the MHD bow shock calculations (black points) with its 

location determined by relations (1, 6, 27-30): a, c – blue line shows expression (1) in the (X,Y) 

plane of GIPM system, red line shows expression (1)  in the (X,Z) plane; b, d – cross-sections of 

the bow shock by planes X = const, hot pink points - expression (1). 
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Table 1 

No  bo MS MA ϑbv rs RSY RSZ bSY bSY ds αvn αvn σ 

10-4 Shock parameters obtained by fitting the MHD 

simulations 

eq.5 

1 5/3 -1 6 3 20° 1.252 1.743 1.814 -0.234 0.41 2.65 7.3° 5.92° 8.55 

2 5/3 -1 6 5 20° 1.234 1.623 1.645 -0.348 -0.224 1.15 3.6° 2.03° 1.93 

3 5/3 0 6 5 30° 1.304 1.956 2.097 0.424 0.544 0.37 3.5° 2.68° 2.24 

4 2.0 -1 6 5 30° 1.327 1.789 1.816 -0.328 -0.142 1.05 4.0° 1.86° 1.57 

5 5/3 -1 8 5 30° 1.252 1.62 1.628 -0.544 -0.216 1.225 4.6° 2.80° 3.19 

6 5/3 0 6 5 60° 1.406 2.137 2.393 0.286 0.53 0.24 2.8° 2.48° 2.31 

7 2.0 0 6 5 60° 1.504 2.383 2.636 0.414 0.686 0.475 2.6° 1.78° 1.58 

8 5/3 -1 8 5 60° 1.322 1.685 1.75 -0.572 -0.132 0.955 4.0° 2.60° 2.77 

9 5/3 -1 6 3 70° 1.489 1.933 2.192 -0.308 0.378 0.9 5.4° 4.33° 12.5 

10 2.0 -1 6 5 70° 1.394 1.875 1.952 -0.444 -0.092 1.065 3.5° 1.31° 1.4 

11 5/3 -1 6 5 70° 1.342 1.834 1.85 -0.92 -0.164 1.6 2.9° 1.80° 2.08 

12 5/3 -1 6 2 45° 1.516 2.662 3.005 -0.982 0.366 3.075 12.9° 15.68° 10.9 

13 5/3 -1 6 3 45° 1.374 1.91 2.072 -0.646 0.322 1.6 9.5° 7.86° 27.7 

14 5/3 -1 6 5 45° 1.294 1.725 1.773 -0.568 -0.178 1.18 4.7° 2.98° 2.88 

15 2.0 0 6 5 0° 1.327 2.11 2.11 0.5 0.5 0.3 0° 0° 0.22 

16 2.0 -1 6 5 0° 1.284 1.685 1.685 -0.373 -0.373 2.56 0° 0° 0.18 

17 5/3 0 6 3 0° 1.201 1.96 1.96 0.93 0.93 0.5 0° 0° 0.2 

18 5/3 0 6 5 0° 1.238 1.88 1.88 0.404 0.404 0.16 0° 0° 0.68 

19 5/3 -1 6 3 0° 1.181 1.67 1.67 0.2 0.2 0.4 0° 0° 0.4 

20 5/3 -1 6 5 0° 1.214 1.49 1.49 -0.15 -0.15 1.5 0° 0° 0.4 

21 5/3 -1 8 5 0° 1.201 1.46 1.46 -0.03 -0.03 0.3 0° 0° 0.28 

22 2.0 -1 6 5 90° 1.431 1.858 1.934 -0.245 0.095 0.54 0° 0° 0.68 

23 5/3 0 6 5 90° 1.452 2.22 2.51 0.23 0.51 0.16 0° 0° 0.32 

24 5/3 -1 6 3 90° 1.524 1.918 2.18 -0.145 0.35 0.52 0° 0° 0.47 

25 5/3 -1 6 5 90° 1.361 1.722 1.806 -0.445 -0.005 0.86 0° 0° 0.21 

26 5/3 -1 8 5 90° 1.358 1.612 1.768 -0.18 0.01 0.22 0° 0° 0.25 
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Appendix 

Formulas for calculating the parameters of the bow shock model in the gas-dynamic 

approximation are collected here for the convenience of using our analytical model (Appendix 1 

in Kotova et al, 2020b; Eq. 35-38 in Verigin et al., 2003a, (note, that equation (36) of Verigin 

2003 had a misprint, corrected by Kotova et al, 2020b.) 

 In the gas-dynamic approximation  
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