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I. Implementation of sustainability assessments in total-cost auctions in practice

Through our discussions with our industry partner EcoVadis (a leading supplier sustainability assess-

ment firm) we learned that their clients (buyer firms) use a total cost of ownership approach to sustainable

procurement when selecting a supplier. Our paper is motivated by this observation. We have followed Eco-

Vadis’s operations closely over the years and had many interactions (in fact, one of the authors is on their

scientific advisory board). Thanks to these interactions, our paper closely reflects the industry practice, and

provides a rather accurate modeling of the procurement process at EcoVadis’s client firms (buyers).

Supplier sustainability assessments require deep domain expertise. EcoVadis employs technical analysts

to provide supplier sustainability ratings to buyer firms of 150 commodities by collecting information from

more than 300 qualified sources, and evaluating 21 corporate social responsibility criteria including water,

biodiversity, local pollution levels, chemicals & waste, product use, product end of life, customer health

and safety, second-tier supplier evaluations, and so on (EcoVadis(a) 2018). After the assessment process,

EcoVadis assigns a sustainability rating to the supplier (a score out of 100). In many cases, the suppliers

themselves lack the technical capability, in-house expertise, and information needed to assess and quantify

their rating. Hence, unlike many other supplier quality dimensions, without proper assessments the sustain-

ability ratings are unobservable to any party to start with. Furthermore, in contrast to many other quality
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dimensions that the suppliers can adjust in order to win a buyer’s business, they cannot change their sustain-

ability ratings in the buyer’s imminent contract term. Being unobservable to any party without assessments

and its rigid nature renders sustainability non-biddable. This is one of the reasons why supplier sustain-

ability is different from biddable supplier quality dimensions, and requires further attention in the context

of a competitive-bid process.

EcoVadis reports that their clients (buyer firms) use a weighted total-cost ranking approach in their pro-

curement auctions (which is in line with ISO20400 Sustainable Procurement Guidance, ISO (2017), see

page 26) by converting sustainability ratings into unsustainability cost markup terms (by using a cost-

multiplier) which are then added on to the price bids of the respective suppliers:

“The sustainability rating of suppliers can be integrated into different procurement processes. As it is

a score out of 100, it makes it easy for procurement professionals to use as an objective, quantifiable

metric. For example, in a RFP/tender, it can be used as a weighted percentage of the overall award

decision.” EcoVadis(b) (2018)

Various United Nations sustainable procurement resources document a similar approach to supplier selec-

tion:

“The evaluation process must provide a fair, transparent and accountable method for assessing sup-

plier bids on the basis of balancing cost with sustainability and other non-financial factors.” UN

(2017)

“The evaluation and contracting stage makes use of the standard evaluation methods; however, it

should place specific emphasis on use of weighted and ranked criteria incorporating the specific per-

formance criteria and specifications that address sustainable procurement factors.” UN (2017)

“The total points assigned for sustainability criteria have to be weighed against other possible criteria

and price. For an ambitious approach to sustainability, it is recommended that sustainability criteria

account for 20% of the weight compared to price.” UNEP (2011)

The weighted total-cost ranking approach described above is called a “Total-Cost Auction” in the pro-

curement auction literature. As evidenced above, if they choose to make a more informed supplier selection
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decision taking into account the supplier sustainability levels and the associated cost of ownership, the

buyer firms need to first use costly supplier assessments to evaluate the cost markups. To summarize, in

practice (also as modeled in our paper), the sequence of events linking supplier sustainability assessments

with total-cost auctions is as follows:

1. Buyer firm provides a list of suppliers to assess to Ecovadis.

2. EcoVadis conducts sustainability assessments on all supplier on the buyer’s list, and evaluates the

sustainability ratings.

3. Buyer uses Ecovadis’ assessments to create an additive bid markup for each supplier.

4. Buyer holds a total-cost auction in a format of her choice. Ecovadis reports that the buyers often use

sealed-bid or open-bid formats, which is in line with Beall et al. (2003) which shows these are the two

most common formats.

Further details on EcoVadis can be found at www.ecovadis.com.

II. Sealed and open-bid formats

In the sealed-bid format, suppliers submit their best and final bid only once. The buyer adds the cost

markups (if using assessments, mean cost markup if not) to the price bids to create the total-cost scores.

Suppliers cannot observe their competitors’ bids or the cost markups, and use their prior beliefs on others’

total-costs in structuring their own bids. Where needed to avoid confusion, we refer to a random variable

associated with a realized value by using a capital letter. As given in Kostamis et al. (2009), bidding with

cost markups in a sealed-bid auction takes the form of a symmetric, first-price reverse auction such that

supplier i’s bid p
(a)
i given δi, is p

(a)
i = ci +

󰁕 c0
ci+δi

(1−Γa(t))
N−1dt

(1−Γa(ci+δi))
N−1 , where Γa is the total cost distribution

with assessments. Without assessments, supplier i bids pi = ci +

󰁕 c0
ci+µ∆

(1−Γ(t))N−1dt

(1−Γ(ci+µ∆))N−1 , where Γ is the total

cost distribution without assessments. The expected assessment value under sealed-bid auction is EAVS =

Ep[min{p1:N +µ∆, c0}]−Ep(a),∆[min{(p(a) +∆)1:N , c0}].

In the open-bid format, suppliers bid their prices, and the buyer converts them to total-cost scores (with

cost markups added on top of price bids if using assessments, mean cost markup if not). Since the auction

is open, the suppliers can observe each others’ total-cost scores and can repeatedly lower their bids with
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this information. Suppliers stay in the open-bid auction until winning or reaching their production cost.

The auction ends when there is only one supplier left, and this remaining supplier wins the auction. With

independent production costs and cost markups, as in our setting, it is a weakly dominant strategy for

suppliers to bid down to their true production costs before dropping out (see for example, Kostamis et al.

(2009) and Krishna (2010)). Then, the buyer’s expected total cost is the second-lowest total cost or the

outside option, whichever is smaller. The expected assessment value under the open-bid auction is EAVO =

Ec[min{C2:N +µ∆, c0}]−Ec,∆[min{(C +∆)2:N , c0}].

III. Limiting the number of assessments on an ex ante asymmetric supply base

We now consider the possibility that the buyer faces an ex ante asymmetric supply base. This asymmetry

may be due to directly observable characteristics (e.g., having suppliers in two different countries with dif-

ferent sustainability legislations), or may be easily identifiable by the buyer using a Request for Information

stage 1 (e.g., suppliers with and without waste water treatment facilities).

Facing two ex ante asymmetric supplier pools, the buyer can then use a costly assessment to learn more

(e.g., how effective the supplier’s water treatment actually is). As we will see below, observing the asym-

metry across the two supplier pools, the buyer can fine-tune her assessment policy to strategically limit the

total number of suppliers to assess (and hence the assessment cost).

We define supplier categories τ =A and τ =B to reflect the asymmetry between two groups of suppliers

A and B, respectively (e.g., suppliers which have waste water treatment facilities and those which do not).

Supplier i’s production cost has two additive components c(τi)+󰂃ci . Random variable 󰂃ci follows cumulative

distribution function G, satisfying the standard regularity condition that 󰂃ci +
G(󰂃ci )

g(󰂃ci )
is strictly increasing.

The structural form of c(·) which maps the supplier category to a deterministic, non-negative, and additive

production cost term is publicly known, but both 󰂃ci and his category τi is supplier i’s private information.

Similarly, the cost markup associated with supplier i is comprised of two terms: ∆(τi) + 󰂃∆i . Supplier

categories and the structural form of ∆(·) (which is deterministic and non-negative) is publicly known.

1 See the Online Supplement Part IV below for a formal model of a procurement process with a Request for Information stage that

results in a setting with ex ante asymmetric suppliers like the one in this subsection.
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Neither the buyer nor the supplier can readily observe 󰂃∆i without assessments (this is because, as explained

in §1 of the main text, the suppliers cannot quantify the precise cost markups). 󰂃∆i is a random variable

symmetrically distributed around its finite mean µ󰂃∆ with cumulative distribution function F . We denote by

Λ(τi) the deterministic base-cost (i.e., c(τi)+∆(τi)) for supplier i.

To summarize, both the buyer and the supplier i observe τi (e.g., whether the supplier he has a waste

water treatment facility or not), and supplier i privately knows its additional production cost term 󰂃ci . But

assessments are needed to observe 󰂃∆i (e.g., how effective the waste water treatment facility actually is at

protecting sensitive downstream wetlands).

We define EAV(MA,MB) as the expected assessment value when the buyer assesses MA ∈ {0,NA}

category-A and MB ∈ {0,NB} category-B suppliers, respectively. Let category-A denote the supply base

with the lower total base-cost, i.e., c(A) +∆(A)≤ c(B) +∆(B). Proposition 5 characterizes the buyer’s

optimal assessment policy.

PROPOSITION 5. The buyer assesses a category-B supplier only if she also assesses all category-A sup-

pliers. The buyer’s optimal supplier assessment policy is as follows: Assess none if EAV(1,0) < K(1),

assess all if EAV(NA,NB) ≥K(NA +NB). Otherwise, if EAV(NA,0) ≤K(NA), assess M∗ category-A

suppliers where M∗ is the lowest integer such that EAV(M∗+1,0)− EAV(M∗,0)≤K(M∗+1)−K(M∗).

If EAV(NA,0)>K(NA), assess all category-A suppliers and M∗ −NA category-B suppliers where M∗ is

the lowest integer such that EAV(NA,M
∗ −NA +1)− EAV(NA,M

∗ −NA)≤K(M∗ +1)−K(M∗).

Facing two ex-ante asymmetrical supplier pools (e.g., with and without waste water treatment facilities, or

in two different countries with different sustainability legislations), a procurement manager may intuitively

think that she should use supplier assessments on the supplier pool with higher average cost markups (e.g.,

in the less sustainable pool). But, Proposition 5 shows that when deciding on which additional supplier to

assess, the buyer should prioritize the supplier category with the lower total base-cost which may indeed

be the supplier pool with lower average cost markups. Hence, the buyers can account for any ex ante

asymmetries across suppliers, and adjust their assessment policy accordingly.

IV. Using an RFI prior to assessments
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In Part III above we analyze a setting where the buyer faces an ex ante asymmetric supply base. When

this asymmetry exists but may not be directly observable, buyers, in many practical real-life settings, request

credible, certified, and documented information from suppliers during a Request for Information (RFI) stage

(prior to the auction and the assessment step). For example, in the sustainable procurement context, buyers

may request information on suppliers’ production technologies which are linked to the sustainability levels.

Suppliers report the relevant information (e.g., certified/credible information on the existence of a water

treatment facility if they have one, or simply the lack of it) in response to the buyer’s RFI in order to be able

to bid in the subsequent auction process.

In the RFI stage the buyer requests credible/certified information on τi which she can also verify with

assessments.2 Observing the supplier categories, the buyer then decides whether to use the supplier assess-

ments. Finally, the buyer runs an optimal total-cost procurement auction. Hence, the timeline with an RFI

is as follows:

1. For each supplier i, nature chooses τi, the supplier’s category, and reveals it to the supplier. Nature also

chooses 󰂃ci and 󰂃∆i , and reveals 󰂃ci to supplier i, while neither party can observe 󰂃∆i without supplier i

undergoing an assessment.

2. Each supplier i truthfully reports to the buyer his category τi during the RFI stage.

3. The buyer conducts assessments (if any) in order to further assess the suppliers (to learn the 󰂃∆i ’s).

2 Assessments allow the buyer to verify the supplier’s category τi, and this has an important implication for a powerful principal,

like the buyer we study in this paper. It gives the buyer the ability to ex post verify information that she could ask a supplier i to

divulge, namely τi. This can be used to induce suppliers to truthfully report their categories. The logic behind this is simple: If

the principal (the buyer) discovers the agent (the supplier) has misrepresented his category, the principal will severely punish the

agent (e.g., commit to never do business with the supplier again or badly damage the supplier’s reputation by widely revealing

their misrepresentation). A summary on an agent’s incentives for truthful disclosure of ex post verifiable information under the

possibility of random assessments and sanctions in a principle-agent setting can be found in Laffont and Martimort (2009) (pg.

125), tracing back to the seminal paper Becker (1968). Since our powerful buyer can ensure truthful category revelation via random

assessments carried out with vanishingly small probability, for the rest of this subsection we will ignore these random assessments,

we assume that suppliers truthfully report their categories to the buyer, and from here onwards an “assessment” refers to further

evaluations on the total cost of ownership given knowledge of the supplier categories.
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4. The buyer runs an optimal total-cost procurement auction.

It is worth noting that if the supplier categories are dependent on exogenously observable characteristics

(e.g., geographical location, past sustainability failures, etc.) the buyer can readily identify each supplier’s

category. In this case, Step 2 can be ignored.

After the suppliers disclose their categories, the buyer views the suppliers as ex ante asymmetric, as

they are in either category A or B. Then, the above results from Part III, where the buyer faces an ex ante

asymmetric supplier base, directly apply.

V. Learning the cost multiplier

In practice, once the buyer collects information from supplier assessments, she needs to translate this

information into a cost markup. For example, as we learned from discussions with a third-party supplier

sustainability assessment firm, the assessment firm provides the buyer with sustainability ratings for each

of their potential suppliers on a scale out of 100. The buyer knows that a rating of 90 is better than a rating

of 60, but she may be uncertain exactly how much better (in dollar terms). Consequently, an important

question for the buyer is what multiplier she should apply to the supplier ratings when comparing suppliers

based on total cost.

Like the issue of needing to do costly supplier assessments to gather data studied in the base model, how

the buyer uses supplier assessments in forming total cost comparisons in dollar terms is a very practical

challenge in supplier selection. Building off our base model, below we provide (to our knowledge) the first

model and analysis to address this. We uncover non-monotonicities with respect to underlying business

environment that echo what we saw in §4 (e.g., sensitivity with respect to the outside option cost), and

also explain why some sensitivities are different than in §4 (e.g., sensitivity with respect to underlying cost

distributions).

Here, we augment our base model to capture the buyer’s uncertainty on how precisely to map the assess-

ment results to a cost markup. This mapping should capture the buyer’s level of cost sensitivity to the

assessed attribute (e.g., buyer’s cost sensitivity to supplier sustainability issues) — on which buyer firms

may lack information (and which the buyer firms can choose to inform through market research, consumer

surveys, internal surveys etc.).
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To model this, we assume that the buyer does not know the value of the cost multiplier, however she

knows that the cost multiplier Θ is continuously distributed with commonly known cumulative distribution

function P (and probability density function ρ) over the finite interval [Θ(l),Θ(u)] with mean µΘ (also,

multiplier Θ and the cost markup ∆ are independent). This multiplier reflects the buyer’s underlying cost

sensitivity to non-biddable supplier attributes, and can be thought of as a weighting rule which converts the

non-biddable attributes into cost markup terms. The buyer has the option to learn about the cost multiplier

(through consumer surveys, market research, etc.) prior to the assessment stage after which she will observe

the assessment results of all suppliers. Here, in order to focus on the effect of learning the multiplier, we

assume that the buyer will assess all suppliers as in our base model. As before, we denote by F and G̃

(with supports [∆(l),∆(u)] and [J(l), J(u)]) the cost markup and the virtual production cost distributions,

respectively.

If the buyer chooses to learn the cost multiplier Θ, she assigns Θ · δi as the cost markup to supplier i. If

the buyer chooses not to learn the cost multiplier, it can be easily shown that (by appropriately modifying

the proof of Lemma 1), the buyer should assign µΘ · δi as the cost markup to supplier i.

We define the expected value of information on Θ as follows: EVI ≜E∆,J[min{µΘ∆1+J1, . . . , µΘ∆N +

JN , c0}]−E∆,J,Θ[min{Θ∆1+J1, . . . ,Θ∆N +JN , c0}]. Let us now denote by H the distribution of µΘ∆+

J , and by Ha the distribution of Θ∆+ J .

Akin to Proposition 1, Proposition 6 shows that EVI is always positive, and establishes the non-

monotonicity of EVI as the outside option increases.

PROPOSITION 6. EVI is positive for all distributions F , G̃, and P defined on non-negative intervals.

Furthermore, there exists a x1, x2 ∈ R+ such that EVI increases in c0 for c0 < x1, and EVI decreases in

c0 for x1 < c0 < x2, and EVI is constant for c0 > x2. x1 is precisely where H and Ha cross, and x2 =

Θ(u)∆(u) + J(u).

Thus far we have seen that the expected value of information on the cost multiplier (EVI) behaves very

similarly to the expected assessment value (EAV). However, below in Proposition 7, we observe that the

behavior of EVI can significantly differ from EAV in a sensitivity analysis. In §4 we saw that, in the absence
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of the outside option, EAV behaves monotonically as we scale up the cost markups. This means that scaling

up the cost markups can only make the buyer value the assessments more. However, the same is not true

when it comes to learning the cost multiplier. We show below in Proposition 7, among other results, that

increasing the magnitude of the cost markups can actually decrease the value of acquiring information about

the cost multiplier.

To illustrate this, we consider the case where the buyer does not have an outside option, and for simplicity

use normal distributions for ∆ and J (∆ ∼ Normal(µ∆,σ
2
∆), and J ∼ Normal(µJ ,σ

2
J)). We examine the

behavior of the following: EVI′ ≜E[(µΘ ·∆+ J)1:N ]−E[(Θ ·∆+ J)1:N ].

Proposition 7 first shows that when σ∆ = σJ = σ, EVI′ is monotone increasing in σ. Hence, EVI′ increases

with σ∆ and σJ when they are exactly comparable in size. Now, consider multiplying ∆ by a positive

constant γ. Intuitively, one might expect that as γ increases, γσ∆ increases, and misestimating the buyer’s

sensitivity to the cost markups (i.e., the size of Θ) becomes potentially very costly for the buyer. Thus, one

would expect that as γ increases, the buyer’s value of learning the true Θ also increases. However, we find

that this is not necessarily the case, and in fact the expected benefit from learning Θ, EVI′, is non-monotonic

in γ. A similar result holds for the multiplicative constant κ for J . The following proposition formalizes

these results.

PROPOSITION 7. In the absence of an outside option, keeping everything else the same,

• Suppose σ∆ = σJ = σ. ∂EVI′

∂σ
> 0, hence EVI′ is increasing in σ

• Replace ∆i, ∀i by γ ·∆i, where γ > 0. EVI′ is non-monotonic in γ.

• Replace Ji by κ · Ji, where κ> 0. EVI′ is non-monotonic in κ.

In particular, EVI′ is increasing (decreasing) in γ when
√
2σJ

Θ(u)
> γσ∆ (

√
2σJ

Θ(l)
< γσ∆). EVI′ is increasing

(decreasing) in κ when
√
2Θ(l)σ∆ > κσJ (

√
2Θ(u)σ∆ < κσJ ).

Proposition 7 shows that EVI′ from learning Θ is non-monotonic in γσ∆. The intuition behind this result

is as follows: for small values of γσ∆ as γ increases, the variability in the cost markups become more

important in the buyer’s supplier selection decision. Hence, learning Θ becomes increasingly valuable.

However, when γσ∆ becomes large enough to govern the total cost, cost markups become the main driver
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of the supplier selection decision. It follows that the buyer can now choose a supplier depending on the cost

markup realizations, the ranking of which does not change for different values of Θ. Hence, the value of

learning Θ decreases.

Similarly, when κσJ is low, learning Θ is not valuable to the buyer since the supplier ranking is largely

dependent on the cost markup realizations. However, as κ increases, virtual production cost realizations

become increasingly important in the supplier selection decision. Hence, the supplier ranking now depends

on the realizations of Θ. Conversely, when κσJ becomes large enough to govern the total cost, the supplier

selection decision depends mainly on the virtual production cost realizations, and the value of learning Θ

decreases.

Recapping the above, we see that greater variability can diminish the value of information when one

cost component – the cost markup or the virtual production cost – tends to “dominate” the other. It is then

interesting to ask what happens when neither dominates. In this case, when σ∆ = σJ = σ, Proposition 7

shows that EVI′ monotonically increases in σ.

The managerial takeaway is as follows: when deciding whether to invest in evaluating her cost markup

multiplier, the buyer must take a holistic look at the cost drivers and should exert some extra caution. More

dispersion can increase or decrease the benefit of evaluating the cost markup multiplier, depending on how

the price and non-price cost drivers compare in size and dispersion.

VI. Imperfect learning

Thus far we have supposed that an assessment on supplier i provides a perfect observation on the cost

markup δi. However, there may be situations where the assessments do not lead to perfect observations. For

completeness, in this subsection we adapt our base model to address this possibility. We will show that our

results from §4 carry through.

In order to formally analyze such situations, we introduce a parameter α ∈ R+ to represent the level of

assessment accuracy, and let ζi denote the observation from the assessment on supplier i. In this setting,

prior to the assessments (and without ζi), the buyer’s posterior mean cost markup E[∆|α] is a random

variable itself.
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Given an assessment accuracy level α, we now denote by Fα the distribution of the posterior mean cost

markup E[∆|α], and by Hα
a the distribution of the adjusted virtual cost with assessments (i.e., E[∆|α]+J).

As before, H denotes the distribution of µ∆ + J . For a given assessment accuracy α, the expected value of

assessing all N suppliers can similarly be defined as in equation (1):

EAV(α)≜E[TCO without assessments]−E[TCO with assessments with accuracy α],

=E[min{µ∆ + J1, . . . , µ∆ + JN , c0}]

−E[min{E[∆1|α] + J1, . . . ,E[∆M |α] + JM ,E[∆N |α] + JN , c0}].

The following result extends our previous results from §4.

PROPOSITION 8. Replace EAV with EAV(α), ∆ with E[∆|α], and Ha with Hα
a ; Lemmas 1-2 and Propo-

sitions 1-4 hold as before.

Intuitively, assessments, even though they are noisy, lead to a spread on the posterior mean of the cost

markup, and hence the total-cost distributions, which enables the buyer to differentiate between suppliers.

Further, more accurate assessments should intuitively be more valuable to the buyer (and possibly

costlier). To consider such a setting where higher assessment accuracy leads to more precise observations

on the cost markup, one can use the following information structure: for α2 > α1, the distribution of the

posterior mean with accuracy α2 is a mean-preserving spread of the distribution of the posterior mean

with accuracy α1. This holds for example, in Gaussian learning: Let ∆i ∼ Normal(µ∆,
1
β
). Suppose that by

assessing supplier i, the buyer observes a signal ζi =∆i + εi, where ε ∼ Normal(0; 1/α). Hence, higher

levels of α correspond to more accurate and more informative assessments. Having observed ζi, the buyer

updates her belief on supplier i’s cost markup, and forms her posterior mean: βµ∆+αζi
α+β

. Prior to the assess-

ments, the distribution of the posterior mean, is Normal with mean µ∆, and variance α
β(α+β)

. Furthermore,

the variance increases in the accuracy α. Hence, the distribution of the posterior mean with α2 is a mean-

preserving spread of the distribution of the posterior mean with α1, for α2 > α1. With this information

structure, higher accuracy leads to a mean-preserving spread on the adjusted virtual cost distribution, and

establishes that more accurate assessments are also more valuable for the buyer.
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VII. Additional details on EAVC

In this extension, we consider mechanisms that proceed as follows. (i) The buyer announces payment and

allocation rules; (ii) suppliers report their costs; (iii) the buyer allocates the contract and makes payments

per the suppliers’ reports; (iv) the buyer experiences the cost markup associated with the winning supplier.

Studying such mechanisms parallels our prior analyses. As before, the supplier’s private information is

limited to ci, so the buyer faces a one-dimensional mechanism design problem. In the presence of correlation

as studied in §4.4, by setting M =N and by replacing ∆ with ∆|c in the proof of Lemma 1, with this setup

it is straightforward to see that in the optimal mechanism without assessments each supplier i truthfully

reveals his private information ci, the buyer assigns supplier i a cost markup E[∆|ci], and the buyer uses

the following allocation rule:

p∗i (c) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

1 if J(ci)+E[∆i|ci]≤ Jc(cj)+E[∆j|cj],∀j ∕= i and J(ci)+E[∆i|ci]< c0,

0 otherwise.

The buyer pays the winning supplier t∗i (c) = p∗i (c)ci +
󰁕 c(u)
ci

p∗i (t,c−i)dt, where c(u) is the upper bound

on the production cost c. The buyer’s expected total cost from this optimal mechanism is Ec[min{Jc(c1)+

E[∆1|c1], . . . , Jc(cN)+E[∆N |cN ], c0}].

We denote by Ui(ĉi,c−i) supplier i’s expected payoff when he reveals ĉi as his production cost. Sim-

ilar to the proof of Lemma 1, the following incentive compatibility constraint ensures that the suppli-

ers have an incentive to truthfully reveal their production cost: Ui(ci,c−i) = Ec−i
[ti(c) − pi(c)ci] ≥

Ui(ĉi,c−i), ∀i, ĉi, ci. One can verify that (p∗, t∗) is incentive compatible if Jc(ci)+E[∆i|ci] is increasing

in ci (which ensures that p∗i (ci,c−i) is non-increasing in ci). Hence, we introduce a modified regularity

condition that the adjusted virtual cost E[∆|c] + Jc(c) is increasing in c.

It is worth noting that as |β| increases, the degree of correlation between the production cost c and ∆

increases. The correlation coefficient between the correlated variables c = 󰂃+ β∆ and ∆ is ρ = cov(c,∆)

σcσ∆
,

where cov(c,∆) is the covariance between c and ∆, and σc and σ∆ are the standard deviations of c and ∆,

respectively. Using the bilinearity of covariance, it follows that ρ = βvar(∆)

σcσ∆
= βσ∆

σc
, which increases in β

for β > 0, and decreases in β for β < 0 (note that for β = 0, correlation coefficient is 0, E[∆|c] = µ∆ and
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the EAVC reduces to the EAV in our main analysis). Consequently, the degree of correlation increases in

|β|. This means that the buyer can form more precise beliefs on the cost markup having observed c, hence

E[∆|c] becomes a more precise estimate of ∆ as |β| increases.

Note that when c = 󰂃 + β∆, and when both 󰂃 and ∆ are normally distributed, the pair (c,∆) defines

a bivariate normal distribution as c and ∆ are correlated. Further, bivariate normal distributions have the

following special property: the distribution for an unobserved variable conditioned on observed values of a

subset of variables is also normal. We exploit this property in our numerical experiments when calculating

E[∆i|ci]. In particular, conditioning on observing ci, we have E[∆i|ci] = µ∆ + σ∆ρ(ci − µc)/σc = µ∆ +

β
σ2
∆

σ2
c
(ci −µc) (see for example, Lindgren et al. (2013), page 267).

Further, for β < 0, c and ∆ are negatively correlated. For the bivariate normal distribution that we use

in our numerical experiments, for β < 0, ∂E[∆i|ci]
∂ci

=
βσ2

∆√
σ2
󰂃+β2σ2

∆

< 0, and ∂2E[∆i|ci]
∂ci∂β

=
σ2
∆σ2

󰂃

(σ2
∆
β2+σ2

󰂃)
3
2
> 0.

Hence, E[∆i|ci] decreases in ci, and the rate of this decrease increases as β < 0 decreases. Then, for small

enough β < 0, the regularity condition may be violated, and the incentive compatibility constraint may not

hold. In line with this observation, in the numerical experiments in Figure 8, we find that for β ≤−0.075,

Jc(c) +E[∆|c] can be decreasing for the parameter space we use in the numerical experiments in in §4.4.

Hence, in order to ensure that the incentive compatibility constraint holds, we use β ≥−0.05 in §4.4.

Figure 8 Jc(c)+E[∆|c] can decrease in c for β < 0.

In the absence of an outside option (or facing an outside option that is sufficiently large that for practical

purposes it can be ignored), further numerical experiments reported in Figures 9 and 10 suggest that our
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previous insights on monotonicity in cost and cost markup multipliers as given in Proposition 3 still hold

when there is correlation between the production cost and cost markups, and assessments become more

(less) valuable as the cost markup (independent production cost component 󰂃) dominates the total-cost.

Figure 9 EAVC increases in γ. Figure 10 EAVC decreases in κ.

VIII. Additional details on EAV under different auction formats

Echoing our findings in Proposition 3, additional numerical analyses as illustrated below in Figures 11

and 12 suggest that in the absence of an outside option, and for large enough N , as the dispersion of the cost

markups increases, EAV under all formats increase. Conversely, as the dispersion of the production costs

increases, EAV under all formats decrease. Note that as one might expect, the EAV gap is particularly large

(small) for high values of the cost markup (independent production cost component) multiplier.

Figure 11 EAV increases in γ. Figure 12 EAV decreases in κ.
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Online Supplement - Proofs

Proof of Lemma 1 We first derive the optimal mechanism, and then show that this mechanism can be

implemented via the auctions referred to in Lemma 1. In searching for the optimal auction mechanism, the

revelation principle (Myerson 1981) allows us to focus without loss of optimality on direct mechanisms

where each supplier truthfully reveals their private information, namely their production cost. Let pi denote

an assignment rule, and ti a transfer rule for each i: pi(c) is the probability that the supplier i wins the

auction given production cost vector c= (c1, . . . , cN); ti(c) is the payment to supplier i given c. We let c−i

denote the vector of production costs excluding ci. We denote by c0 the buyer’s cost of non-transaction (out-

side option); for example, this could correspond to the cost of forgoing the contract, or the cost of in-house

production. Using a mechanism design analysis (e.g., Myerson (1981)), the buyer’s optimal mechanism

(p∗i , t
∗
i ) when the buyer has assessments on M , 0≤M ≤N suppliers is characterized as follows:

LEMMA 3. In the optimal mechanism, the buyer assigns each bidder a cost markup as follows: si = δi if

bidder i was assessed, si = µ∆ if bidder i was not assessed. The buyer announces the following allocation

and payment rules:

The buyer allocates the contract to the supplier with the lowest adjusted virtual cost:

p∗i (c) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

1 if si + J(ci)≤ sj + J(cj),∀j ∕= i and si + J(ci)< c0,

0 otherwise.

The buyer pays the winning supplier t∗i (c) = p∗i (c)ci +
󰁕 c(u)
ci

p∗i (t,c−i)dt. The buyer’s expected total cost

from this optimal mechanism is Ec[min{s1 + J(c1), . . . , sN + J(cN), c0}].

Proof of Lemma 3 Without loss of generality, label the suppliers such that i= {1, . . . ,M}, 0≤M ≤N ,

are the assessed suppliers (with known cost markup δi), and i= {M+1, . . . ,N} are the suppliers who have

not been assessed (with unknown cost markup ∆i). Let us denote by a the vector of observations that the

buyer has on the suppliers’ cost markups, i.e., ai = δi if supplier is assessed, and ai =∆i if supplier i is not

assessed. As per the modeling assumption (and as is done in practice for transparency purposes), the buyer

informs an assessed supplier i about ai, but the supplier i cannot observe a−i (the set of observations on the
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other suppliers). Hence, an assessed supplier can observe ai = δi, and the common cost markup distribu-

tion F , but the unassesed suppliers can only observe F . Hence, in our problem the buyer (the mechanism

designer) has private information that the suppliers cannot observe. One can imagine that the buyer can

use this information to manipulate the suppliers’ beliefs about each other by the choice of her information

disclosure policy on the vector a. Skreta (2011) proves that in an independent private values setting (such

as our setting where the total cost of supplier i, ci+δi is statistically independent from other suppliers’ total

costs), the informed auctioneer’s choice of an information disclosure policy is irreverent in terms of her

outcome from the optimal mechanism: i.e, there is no loss of optimality in treating the vector a as publicly

announced (for more details, see Theorem 6 in Skreta (2011)). Hence, below in the optimal mechanism

analysis we study the case where the information the buyer collects through the assessments are publicly

known by all parties.

Let us denote by (p, t) a direct revelation mechanism. We denote by Ui(ĉi,c−i) supplier i’s expected

payoff when he reveals ĉi as his production cost. The buyer needs to optimize the following objective

function (2), over the set of feasible direct mechanisms satisfying incentive compatibility (3), participation

(4), and allocation (5) & (6) constraints.

min
(p,t)

Ec,∆M+1,...,∆N
[
M󰁛

i=1

(pi(c)δi + ti(c))+
N󰁛

i=M+1

(pi(c)∆i + ti(c))+ (1−
N󰁛

i=1

pi(c))c0] (2)

subject to:

Ui(ci,c−i) =Ec−i
[ti(c)− pi(c)ci]≥Ui(ĉi,c−i), ∀i, ĉi, ci (3)

Ui(ci,c−i)≥ 0, ∀i, (4)

N󰁛

i

pi(c)≤ 1, (5)

pi(c)≥ 0, ∀i. (6)

Using the definition of i’s utility function, the expected transfer to supplier i can be written as:

Ec−i
[ti(c)] = Ui(ci,c−i) + Ec−i

[pi(c)ci]. Then, Ec[ti(c)] =
󰁕 c(u)
c(l)

Ui(t,c−i)g(t)dt + Ec[pi(c)ci], where

g(ci) is the pdf of the production cost.
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It follows that we can rewrite (2) as follows: min(p,t)Ec,∆M+1,...,∆N
[
󰁓M

i=1 pi(c)(δi + ci) +

󰁓N

i=M+1 pi(c)(∆i + ci)+
󰁓

i

󰁕 c(u)
c(l)

Ui(ci)g(ci)dci +(1−
󰁓N

i=1 pi(c))c0].

Let us denote Ti(ci) ≜ Ec−i
[ti(c)], and Pi(ci) ≜ Ec−i

[pi(c)]. It follows that Ui(c) = Ti(c) − Pi(c)ci.

With standard manipulation (see for example Krishna (2010)), it can be shown that for an incentive com-

patible mechanism U ′
i(c) =−Pi(c).

Now, let us consider
󰁕 c(u)
c(l)

Ui(ci)g(ci)dci. Integrating by parts, for an incentive compatible mechanism

we get
󰁕 c(u)
c(l)

Ui(ci)g(ci)dci =Ui(c(u))+Ec[pi(ci,c−i)
G(ci)

g(ci)
], so the expected cost to the buyer is:

W =Ec,∆M+1,...,∆N
[
M󰁛

i=1

pi(c)(δi + ci)+
N󰁛

i=M+1

pi(c)(∆i + ci)+
N󰁛

i=1

Ui(c(u))+
N󰁛

i=1

(pi(c)
G(ci)

g(ci)
)+ (1−

N󰁛

i=1

pi(c))c0],

=Ec,∆M+1,...,∆N
[
M󰁛

i=1

pi(c)(δi + J(ci))+
N󰁛

i=M+1

pi(c)(∆i + J(ci))+ (1−
N󰁛

i=1

pi(c))c0 +
N󰁛

i=1

Ui(c(u))],

=Ec[
M󰁛

i=1

pi(c)(δi + J(ci))+
N󰁛

i=M+1

pi(c)(E[∆i] + J(ci))+ (1−
N󰁛

i=1

pi(c))c0 +
N󰁛

i=1

Ui(c(u))].

Hence, we can replace the uncertain cost markup term ∆i with its expectation E[∆i] = µ∆ for the

unassessed suppliers i = {M + 1, . . . ,N}. We define a vector s such that the cost markup si = δi if sup-

plier i is assessed, and the cost markup si = µ∆ if supplier i is not assessed. Note that W is minimized

for Ui(c(u)) = 0, and by choosing an assignment rule favoring the supplier i with the lowest si + J(ci) if

si + J(ci) ≤ c0, and awarding the contract to the outside option if si + J(ci) > c0, ∀i. This is indeed the

optimal assignment rule p∗i given in the statement of the proposition.

Characterizing the optimal transfer function t∗i follows from Ec−i
[ti(c)] = Ui(c) + Ec−i

[pi(c)ci] and

Ui(c(u),c−i) = 0. When writing the buyer’s objective function as W above we assumed that we had an

incentive compatible mechanism; one can verify that this indeed is true for (p∗, t∗), since p∗i (ci,c−i) is

non-increasing in ci.

Let j denote the index of the lowest adjusted virtual cost supplier (j = argmini{si + J(ci)}), and let l

denote the index of the second-lowest adjusted virtual supplier (l= argmini ∕=j{si+J(ci)}). Now, consider

the optimal mechanism given above. Let us denote by yi(c−i,s) = sup{ti : si+J(ti)≤ c0 and si+J(ti)≤

sj +J(cj),∀j ∕= i} the highest production cost value for supplier i that would still enable him to win under

the optimal mechanism. Then, the assignment rule under the optimal mechanism is such that:
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p∗i (c) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

1, if ci ≤ yi(c−i,s)

0, if ci > yi(c−i,s)

It follows that

󰁝 c(u)

ci

p∗i (ti,c−i)dt=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

yi(c−i,s)− ci, if ci ≤ yi(c−i,s)

0, if ci > yi(c−i,s)

Then, the transfer function under the optimal mechanism t∗i (c) = p∗i (c)ci +
󰁕 c(u)
ci

p∗i (t,c−i)dt can be

rewritten as

ti(c) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

yi(c−i,s), if pi(c) = 1

0, if pi(c) = 0.

Now, consider the transfer to the lowest score supplier (indexed by j) under the optimal mechanism:

yj(c−j,s) = sup{tj : sj + J(tj)≤ c0 and sj + J(tj)≤ si + J(ci),∀i ∕= j},

= sup{tj : tj ≤ J−(c0 − sj) and tj ≤ J−1(si + J(ci)− sj),∀i ∕= j},

=min{J−1(c0 − sj),min
i ∕=j

{J−1(si + J(ci)− sj)}},

=min{J−1(c0 − sj), J
−1(sl + J(cl)− sj)}, where sl + J(cl) is the second-lowest adjusted virtual cost.

Hence, in the optimal mechanism, the lowest adjusted virtual cost supplier j is the only supplier who

receives a payment, and this ex post payment is equal to min{J−1(c0 − sj), J
−1(sl + J(cl)− sj). Conse-

quently, the expected total cost for the buyer is Ec[min{s1 + J(c1), . . . , sN + J(cN), c0}|s]. This finalizes

the proof on the optimal mechanism as given in Lemma 3.

Then, per Lemma 3, when the buyer does not use assessments on any of the suppliers, si = µ∆ for all

i, and her expected total cost is Ec[min{µ∆ + J(c)1:N , c0}]. Substituting J as the short hand notation for

J(c), we have E[TCO without assessments] =EJ[min{µ∆ + J1:N , c0}].

Also, let us denote by yi(c−i) the highest production cost that wins against c−i. Then yi(c−i) =max{zi :

J(zi) + µ∆ ≤ c0 and ∀j ∕= i, J(zi) + µ∆ ≤ J(cj) + µ∆}. Since we have a symmetric problem, yi(c−i) =
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min{J−1(c0 − µ∆),minj ∕=i cj}. Hence, the optimal mechanism without assessments can be implemented

with a (price-only) open-descending, or sealed-bid auction with a reserve price of J−1(c0 − µ∆). This

finalizes the proof of Lemma 1.

Proof of Lemma 2 When the buyer assesses all suppliers, si = δi for all i, as defined in Lemma 3. Apply-

ing Lemma 3, the buyer’s expected total cost from the optimal mechanism is Ec[min{δ1+J(c1), . . . , δN +

J(cN), c0}|δ]. Substituting J as the short hand notation for J(c), we have E[TCO with assessments|δ] =

EJ[min{δ1 + J1, . . . , δN + JN , c0}|δ].

Proof of Proposition 5. We denote by A and B the supplier categories with lower and higher total base-

cost, respectively, i.e., Λ(A) <Λ(B) where Λ(A) ≜ c(A)+∆(A) and Λ(B) ≜ c(B)+∆(B).

If the buyer assesses supplier i, she can observe supplier i’s cost markup ∆(τi)+󰂃∆i . Note that because the

suppliers’ categories are known by the buyer, suppliers do not earn information rents for this information.

However, suppliers still earn information rents from their information on 󰂃ci . Let Ji (distributed according

to distribution G̃) now denote 󰂃ci +
G(󰂃ci )

g(󰂃ci )
, the virtual production cost of supplier i.

Facing NA category-A and NB category-B suppliers, the buyer’s EAV if she could assess only MA

category-A, and MB category-B suppliers is:

EAV (MA,MB) =EJ [min{(Λ(A) + J +µ󰂃∆)(1:NA), (Λ
(B) + J +µ󰂃∆)(1:NB), c0}]

−EJ,󰂃∆ [min{(Λ(A) + J + 󰂃∆)(1:MA), (Λ
(A) + J +µ󰂃∆)(1:NA−MA),

(Λ(B) + J + 󰂃∆)(1:MB), (Λ
(B) + J +µ󰂃∆)(1:NB−MB), c0}].

We will show that if the buyer is willing to assess one additional supplier, she is better off assessing a

category-A supplier. Below we compare the expected procurement costs in two cases: when the additional

assessment is on category-B and when the additional assessment is on a category-A supplier:

E[TCO with assessments on MA,MB +1] =EJ,󰂃∆ [min{(Λ(A) + J + 󰂃∆)(1:MA), (Λ
(A) + J +µ󰂃∆)(1:NA−MA),

(Λ(B) + J + 󰂃∆)(1:MB+1), (Λ
(B) + J +µ󰂃∆)(1:NB−MB−1), c0}]

=EJ,󰂃∆ [min{(Λ(A) + J + 󰂃∆)(1:MA), (Λ
(A) + J +µ󰂃∆)(1:NA−MA−1),
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(Λ(B) + J + 󰂃∆)(1:MB), (Λ
(B) + J +µ󰂃∆)(1:NB−MB−1), c0,

min{ΛB −ΛA + J + 󰂃∆ −µ󰂃∆ , J}+µ󰂃∆ +ΛA}]

E[TCO with assessments on MA +1,MB] =EJ,󰂃∆ [min{(Λ(A) + J + 󰂃∆)(1:MA+1), (Λ
(A) + J +µ󰂃∆)(1:NA−MA−1),

(Λ(B) + J + 󰂃∆)(1:MB), (Λ
(B) + J +µ󰂃∆)(1:NB−MB), c0}]

=EJ,󰂃∆ [min{(Λ(A) + J + 󰂃∆)(1:MA), (Λ
(A) + J +µ󰂃∆)(1:NA−MA−1),

(Λ(B) + J + 󰂃∆)(1:MB), (Λ
(B) + J +µ󰂃∆)(1:NB−MB−1), c0,

min{J + 󰂃∆ −µ󰂃∆ ,Λ
B −ΛA + J}+µ󰂃∆ +ΛA}].

Note that expressions are equivalent except for min{ΛB − ΛA + J + 󰂃∆ − µ󰂃∆ , J} and min{J +

󰂃∆ − µ󰂃∆ ,Λ
B − ΛA + J} terms. Since Λ(A) < Λ(B), ΛB − ΛA + J >FOSD J >SOSD J + 󰂃∆ −

µ󰂃∆ , ΛB − ΛA + J + 󰂃∆ − µ󰂃∆ >FOSD J + 󰂃∆ − µ󰂃∆ , and J >SOSD J + 󰂃∆ − µ󰂃∆ . Hence,

E[TCO with assessments on MA +1,MB] ≤ E[TCO with assessments on MA,MB +1]. So, given two

suppliers in different categories, the buyer prefers to assess whichever has the lowest base-cost. Thus, she

would prioritize category-A suppliers in assessments, and would assess a category-B supplier only if all

category-A suppliers are assessed.

Let HA, HA
a , HB , and HB

a denote the cumulative distribution functions of Λ(A)+J+µ󰂃∆ , Λ(A)+J+󰂃∆,

Λ(B) + J +µ󰂃∆ , and Λ(B) + J + 󰂃∆, respectively.

As in the proof of Proposition 1, we first show that d(1)MA|MA<NA
= EAV(MA + 1,0) − EAV(MA,0)

is positive. Note that EAV(MA,0) = E[TCO without assessments]− E[TCO with assessments on MA] =

󰁕 c0

0
(1 −HA(x))NA(1 −HB(x))NBdx −

󰁕 c0

0
(1 −HA

a (x))
MA(1 −HA(x))NA−MA(1 −HB(x))NBdx, so

d
(1)

MA|MA<NA
=
󰁕 c0

0
(1−HB(x))NB (1−HA(x))NA−MA−1(1−HA

a (x))
MA(HA

a (x)−HA(x))dx.

Note that HA
a is a mean preserving spread of HA, and

󰁕 c0

0
HA

a (x) − HA(x)dx ≥ 0, ∀c0. Also, note

that as per the proof of Proposition 1, there exists x
(A)
1 such that HA

a (x) ≥ HA(x) for x < x
(A)
1 , and

HA
a (x)≤HA(x) for x > x

(A)
1 . Then, for all x≤ c0 < x

(A)
1 , HA

a (x)−HA(x) is positive, and consequently

d
(1)

MA|MA<NA
=

󰁕 c0

0
(1 − HB(x))NB (1 − HA(x))NA−MA−1(1 − HA

a (x))
MA(HA

a (x) − HA(x))dx ≥ 0 for

c0 <x
(A)
1 .
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Now consider c0 > x
(A)
1 . Note that

󰁕 c0

0
HA

a (x) − HA(x)dx ≥ 0, ∀c0 and
󰁕 c0

0
HA

a (x) − HA(x)dx =

󰁕 x
(A)
1

0
HA

a (x)−HA(x)dx+
󰁕 c0

x
(A)
1

HA
a (x)−HA(x)dx≥ 0). Also note that

󰁕 x
(A)
1

0
(HA(x)−HA

a (x))dx is neg-

ative, and
󰁕 c0

x
(A)
1

(HA(x)−HA
a (x))dx is positive. Also, note that (1−HB(x))NB (1−HA(x))NA−MA−1(1−

HA
a (x))

MA ≥ 0, and is decreasing in x. Then, (1−HB(x))NB (1−HA(x))NA−MA−1(1−HA
a (x))

MA ≥ (≤

)(1−HB(x
(A)
1 ))NB (1−HA(x

(A)
1 ))NA−MA−1(1−HA

a (x
(A)
1 ))MA for x≤ (≥)x

(A)
1 . It follows that:

d
(1)

MA|MA<NA
=

󰁝 c0

0

(1−HB(x))NB (1−HA(x))NA−MA−1(1−HA
a (x))

MA(HA
a (x)−HA(x))dx

=

󰁝 x
(A)
1

0

(1−HB(x))NB (1−HA(x))NA−MA−1(1−HA
a (x))

MA(HA
a (x)−HA(x))dx

+

󰁝 c0

x
(A)
1

(1−HB(x))NB (1−HA(x))NA−MA−1(1−HA
a (x))

MA(HA
a (x)−HA(x))dx

≥ (1−HB(x
(A)
1 ))NB (1−HA(x

(A)
1 ))NA−MA−1(1−HA

a (x
(A)
1 ))MA

󰁝 x
(A)
1

0

HA
a (x)−HA(x)dx

+(1−HB(x
(A)
1 ))NB (1−HA(x

(A)
1 ))NA−MA−1(1−HA

a (x
(A)
1 ))MA

󰁝 c0

x
(A)
1

HA
a (x)−HA(x)dx

= (1−HB(x
(A)
1 ))NB (1−HA(x

(A)
1 ))NA−MA−1(1−HA

a (x
(A)
1 ))MA

󰁝 c0

0

HA
a (x)−HA(x)dx

≥ 0.

So, d
(1)

MA|MA<NA
≥ 0, and EAV(MA,0) is increasing in MA. Next consider d

(2)

MA|MA<NA
=

d
(1)

MA+1|MA+1<NA
− d

(1)

MA|MA<NA
=−

󰁕 c0

0
(1−HB(x))NB (1−HA(x))NA−MA−2(1−HA

a (x))
MA(HA

a (x)−

HA(x))2dx. Since all the terms within the integrand is positive, d(2)MA|MA<NA
is negative. It follows that,

EAV(MA,0) = E[TCO without assessments]−E[TCO with assessments on MA] is concave increasing in

MA.

Now consider EAV(NA,MB). We will first show that d
(1)

MB |MB<NB
≜ EAV(NA,MB + 1) −

EAV(NA,MB) for MB < NB is positive. Note that EAV(NA,MB) = E[TCO with assessments on NA]−

E[TCO with assessments on NA and MA] =
󰁕 c0

0
(1 − HA

a (x))
NA(1 − HB(x))NBdx −

󰁕 c0

0
(1 −

HA
a (x))

NA(1 − HB(x))NB−MB (1 − HB
a (x))MBdx, so d

(1)

MB |MB<NB
=

󰁕 c0

0
(1 − HA

a (x))
NA(1 −

HB(x))NB−MB−1(1−HB
a (x))MB (HB

a (x)−HB(x))dx.

Note that HB
a is a mean preserving spread of HB , and

󰁕 c0

0
HB

a (x) − HB(x)dx ≥ 0, ∀c0. Also, note

that as per the proof of Proposition 1, there exists x
(B)
1 such that HB

a (x) ≥ HB(x) for x < x
(B)
1 , and
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HB
a (x)≤HB(x) for x > x

(B)
1 . Then, for all x≤ c0 < x

(B)
1 , HB

a (x)−HB(x) is positive, and consequently

d
(1)

MB |MB<NB
=
󰁕 c0

0
(1−HA

a (x))
NA(1−HB(x))NB−MB−1(1−HB

a (x))MB (HB
a (x)−HB(x))dx≥ 0.

Now consider c0 >x
(B)
1 . Note that

󰁕 c0

0
HB

a (x)−HB(x)dx=
󰁕 x

(B)
1

0
HB

a (x)−HB(x)dx+
󰁕 c0

x
(B)
1

HB
a (x)−

HB(x)dx ≥ 0. Also note that
󰁕 x

(B)
1

0
HB

a (x) − HB(x)dx is positive, and
󰁕 c0

x
(B)
1

HB
a (x) − HB(x)dx is

negative, and that (1 − HA
a (x))

NA(1 − HB(x))NB−MB−1(1 − HB
a (x))MB ≥ 0, ∀x, and is decreas-

ing in x. Then, (1 − HA
a (x))

NA(1 − HB(x))NB−MB−1(1 − HB
a (x))MB ≥ (≤)(1 − HA

a (x
(B)
1 ))NA(1 −

HB(x
(B)
1 ))NB−MB−1(1−HB

a (x
(B)
1 ))MB for x≤ (≥)x

(B)
1 . It follows that:

󰁝 c0

0

(1−HA
a (x))

NA(1−HB(x))NB−MB−1(1−HB
a (x))MB (HB

a (x)−HB(x))dx

=

󰁝 x
(B)
1

0

(1−HA
a (x))

NA(1−HB(x))NB−MB−1(1−HB
a (x))MB (HB

a (x)−HB(x))dx

+

󰁝 c0

x
(B)
1

(1−HA
a (x))

NA(1−HB(x))NB−MB−1(1−HB
a (x))MB (HB

a (x)−HB(x))dx

≥ (1−HA
a (x

(B)
1 ))NA(1−HB(x

(B)
1 ))NB−MB−1(1−HB

a (x
(B)
1 ))MB

󰁝 x
(B)
1

0

HB
a (x)−HB(x)dx

+(1−HA
a (x

(B)
1 ))NA(1−HB(x

(B)
1 ))NB−MB−1(1−HB

a (x
(B)
1 ))MB

󰁝 c0

x
(B)
1

HB
a (x)−HB(x)dx

= (1−HA
a (x

(B)
1 ))NA(1−HB(x

(B)
1 ))NB−MB−1(1−HB

a (x
(B)
1 ))MB

󰁝 c0

0

HB
a (x)−HB(x)dx

≥ 0.

So, d(1)MB |MB<NB
≥ 0, and EAV(NA,MB) is increasing in MB < NB . Next consider d

(2)

MB |MB<NB
=

d
(1)

MB+1|MB+1<NB
−d

(1)

MB |MB<NB
=−

󰁕 c0

0
(1−HA

a (x))
NA(1−HB(x))NB−MB−2(1−HB

a (x))MB (HB
a (x)−

HB(x))2dx. Since all the terms within the integrand is positive for all x, d(2)MB |MB<NB
is negative. It follows

that, EAV(NA,MB) is concave increasing in MB . Since the two concave portions of EAV(MA,MB) have

different first and second increments, EAV is piecewise-concave and NA is the vertex point where the two

concave portions meet. Consequently, buyer’s optimal assessment policy follows the first order conditions

as given Proposition 5.

Proof of Proposition 6. With a slight abuse of notation, let us now denote by H the distribution of

µΘ∆+ J , and by Ha the distribution of Θ∆+ J . Then,
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EVI =E∆,J[min{(µΘ∆+ J)1:N , c0}]−E∆,J,Θ[min{(Θ∆+ J)1:N , c0}] =
󰁝 c0

0

(1−H(x))Ndx−
󰁝 c0

0

(1−Ha(x))
Ndx

We note that Θ∆+J = (Θ−µΘ)∆+µΘ∆+J , and (Θ−µΘ)∆ is a zero-mean random variable. Then,

the distribution of Θ∆+ J , i.e., Ha, is a mean-preserving spread of the distribution of µΘ∆+ J , i.e., H ,

and
󰁕 t

0
Ha(x)−H(x)dx≥ 0, ∀t∈R+. It follows that the proof of Proposition 1 applies where learning the

cost multiplier for the first M suppliers replaces the assessments on M suppliers, and EVI replaces EVA. It

follows that EVI is positive.

We now study the effect of changes of c0 on EVI:

∂EVI
∂c0

=
∂

∂c0

󰁝 c0

0

(1−H(x))Ndx−
󰁝 c0

0

(1−Ha(x))
Ndx= (1−H(c0))

N − (1−Ha(c0))
N

Ha is a mean-preserving spread of H . Hence, there exists a point x1 ∈ R+ where H(x) ≤ Ha(x) for

x < x1, and H(x)≥Ha(x) for x > x1 (see Proposition 1). Then, (1−H(c0))
N − (1−Ha(c0))

N ≥ (≤)0

for c0 < (>)x1. Hence, EVI is increasing in c0 when c0 <x1.

Let us denote Θ(u)∆(u) + J(u) by x2. Note that for c0 ≥ x2 H(c0) =Ha(c0) = 1. Then, for all c0 ≥ x2

∂EVI
∂c0

= 0. Hence, EVI is constant in c0 when c0 ≥ x2.

Note that for x2 > c0 >x1, H(c0)≥Ha(c0), and (1−H(c0))
N − (1−Ha(c0))

N ≤ 0. Then, ∂EVI
∂c0

≤ 0 for

c0 when x1 < c0 <x2. Hence, EVI is decreasing in c0 when x1 < c0 <x2.

Proof of Proposition 7. First, consider σ∆ = σJ = σ. Let us denote by E[Z1:N ] the expected first order

statistic from a standard normal distribution with N draws. The expected value of information on Θ is:

EVI′ =E∆,J [(µΘ∆+ J)1:N ]−E∆,J,Θ[(Θ∆+ J)1:N ],

=E∆,J [(µΘ∆+ J)1:N ]−
󰁝 Θ(u)

Θ(l)

E∆,J(θ∆+ J)1:Nρ(θ)dθ,

=
󰁳
µ2
Θσ

2
∆ +σ2

JE[Z1:N ] +µΘµ∆ +µJ −
󰁝 Θ(u)

Θ(l)

(
󰁳
θ2σ2

∆ +σ2
JE[Z1:N ] + θµ∆ +µJ)ρ(θ)dθ,

=E[Z1:N ]σ(
󰁳
µ2
Θ +1−

󰁝 Θ(u)

Θ(l)

√
θ2 +1ρ(θ)dθ).

Hence ∂EVI′

∂σ
=E[Z1:N ](

󰁳
µ2
Θ +1−E[

√
Θ2 +1]).

√
Θ2 +1 is a convex and strictly increasing function

of Θ, so by Jensen’s inequality,
󰁳
µ2
Θ +1−E[

√
Θ2 +1]≤ 0. Since E[Z1:N ]< 0 for N ≥ 2, ∂EVI′

∂σ
≥ 0.
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Now, consider σ∆ ∕= σJ : EVI′ =E[Z1:N ](
󰁳

µ2
Θσ

2
∆ +σ2

J −
󰁕 Θ(u)

Θ(l)

󰁳
θ2σ2

∆ +σ2
Jρ(θ)dθ).

Keeping everything else the same, consider multiplying ∆ by a positive multiplier γ. It

follows that EVI′(γ) = E[Z1:N ](
󰁳
µ2
Θγ

2σ2
∆ +σ2

J −
󰁕 Θ(u)

Θ(l)

󰁳
θ2γ2σ2

∆ +σ2
Jρ(θ)dθ). Then, ∂EVI′

∂γ
=

E[Z1:N ](
µ2
Θγσ2

∆√
µ2
Θ
γ2σ2

∆
+σ2

J

− E[
Θ2γσ2

∆√
Θ2γ2σ2

∆
+σ2

J

]). We note that Θ2γσ2
∆√

Θ2γ2σ2
∆
+σ2

J

is a convex (concave) increas-

ing function in Θ when
√
2σJ

Θ(u)
> γσ∆ (

√
2σJ

Θ(l)
< γσ∆). Then, by Jensen’s inequality, µ2

Θγσ2
∆√

µ2
Θ
γ2σ2

∆
+σ2

J

−

E[
Θ2γσ2

∆√
Θ2γ2σ2

∆
+σ2

J

]≤ (≥)0, hence ∂EVI′

∂γ
≥ (≤)0 when

√
2σJ

Θ(u)
> γσ∆ (

√
2σJ

Θ(l)
< γσ∆).

Now, keeping everything else the same in the original EVI′ expression, consider multiplying J by a

positive multiplier κ. It follows that EVI′(κ) = E[Z1:N ](
󰁳
µ2
Θσ

2
∆ +κ2σ2

J −
󰁕 Θ(u)

Θ(l)

󰁳
θ2σ2

∆ +κ2σ2
Jρ(θ)dθ).

Then, ∂EVI′

∂κ
= E[Z1:N ](

κσ2
J√

µ2
Θ
σ2
∆
+κ2σ2

J

− E[
κσ2

J√
Θ2σ2

∆
+κ2σ2

J

]). We note that κσ2
J√

Θ2σ2
∆
+κ2σ2

J

is a convex (con-

cave) decreasing function in Θ when
√
2Θ(l)σ∆ > κσJ (

√
2Θ(u)σ∆ < κσJ ). Then, by Jensen’s inequality,

κσ2
J√

µ2
Θ
σ2
∆
+σ2

J

−E[
κσ2

J√
Θ2σ2

∆
+σ2

J

]≤ (≥)0, hence ∂EVI′

∂κ
≥ (≤)0 when

√
2Θ(l)σ∆ > κσJ (

√
2Θ(u)σ∆ < κσJ ).

Proof of Proposition 8. Note that prior to assessments, the posterior mean of supplier i’s cost markup

E[∆|α] is a random variable with mean µ∆. Then, Hα
a (x) (the cdf of E[∆|α] + J) is a mean-preserving

spread of H (the cdf of µ∆ + J). Now consider EAV(α):

EAV(α)≜E[TCO without assessments]−E[TCO with assessments with accuracy α],

=E[min{µ∆ + J1, . . . , µ∆ + JN , c0}]

−E[min{E[∆1|α] + J1, . . . ,E[∆M |α] + JM ,E[∆N |α] + JN , c0}],

=

󰁝 c0

0

(1−H(x))N − (1−Hα
a (x))

Ndx.

Note that the structure of EAV(α) is identical to EAV given in (1) in §3. Further, Lemmas 1-2 and Proposi-

tions 1-4 hold for any generic H and Ha, where Ha is a mean-preserving spread of H . Hence, by substituting

E[∆|α] for ∆, Hα
a for Ha, the proofs of Lemmas 1-2 and Propositions 1-4 directly apply.


