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AGGREGATE DYNAMICS IN LUMPY ECONOMIES
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How does an economy’s capital respond to aggregate productivity shocks when firms
make lumpy investments? We show that capital’s transitional dynamics are structurally
linked to two steady-state moments: the dispersion of capital to productivity ratios—an
indicator of capital misallocation—and the covariance of capital to productivity ratios
with the time elapsed since their last adjustment—an indicator of asymmetric costs of
upsizing and downsizing the capital stock. We compute these two sufficient statistics us-
ing data on the size and frequency of investment of Chilean plants. The empirical values
indicate significant effects of aggregate productivity shocks and favor investment mod-
els with a strong downsizing rigidity and random opportunities for free adjustments.
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1. INTRODUCTION

ECONOMIES ARE EXPOSED to productivity, monetary, and many other aggregate shocks.
In a frictionless world, agents immediately respond to these shocks and bring the economy
back to normal without delay. In contrast, in the presence of microeconomic adjustment
frictions, agents gradually respond to these shocks slowing the economy’s transition.

Lumpiness—periods of inaction followed by bursts of activity—is one of the most per-
vasive manifestations of microeconomic adjustment frictions. Capital investment, price
and wage setting, labor hiring and firing, inventory management, consumption of durable
goods, portfolio choice, and many other economic decisions made by firms and house-
holds exhibit lumpy adjustment. How large are the effects of aggregate shocks in lumpy
environments? Understanding the role of lumpy adjustment for the propagation of aggre-
gate shocks is crucial for the design and implementation of policies aimed at stabilizing
the business cycle and promoting growth.
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We propose a new sufficient statistics approach to quantitatively assessing the role of
lumpiness for aggregate transitional dynamics. The approach consists of two steps. First,
we represent the speed of convergence of aggregate variables after an aggregate shock
as a function of two steady-state cross-sectional moments. The premise is that observing
agents’ responses to idiosyncratic shocks in steady state conveys information about their
responses to an aggregate shock. Second, we recover these steady-state cross-sectional
moments using microdata on adjustments. The premise is that the size and timing of the
actions taken by adjusters inform us about the behavior of non-adjusters during their
period of inaction.

We apply the sufficient statistics approach to investigate the propagation of produc-
tivity shocks when firms make lumpy investments. In the first step, we link the speed
of convergence of average capital following an aggregate productivity shock to (i) the
steady-state variance of log capital-to-productivity ratios, and (ii) the covariance of log
capital-to-productivity ratios with the time elapsed since their last adjustment. These suf-
ficient statistics have a meaningful economic interpretation. The variance of log capital-
to-productivity ratios reflects the degree of capital misallocation. In turn, the covariance
of log capital-to-productivity ratios with the time elapsed since their last adjustment re-
flects firms’ response to depreciation and the relative costs of shrinking and expanding the
capital stock. Thus, our theory indicates that matching these two steady-state moments is
critical for understanding the transitional dynamics of aggregate capital.1

In the second step, we recover these sufficient statistics using data on the size and timing
of investment from manufacturing plants in Chile. We discover that the empirical values
of these two steady-state moments imply that micro frictions in investment significantly
slow down the propagation of productivity shocks. Because different types of adjustment
frictions give rise to different values for these moments, the sufficient statistics also serve
as model discrimination devices. As a case in point, we find that the investment data
discriminate in favor of lumpy models with random fixed costs. Within this subclass, data
favor models that feature higher costs to downsizing than upsizing the capital stock.

In summary, when applying our methodology to the study of lumpy investment, we es-
tablish structural links between the transitional dynamics of aggregate capital that follow
an aggregate productivity shock, steady-state moments such as capital misallocation, and
the nature of capital adjustment costs. More generally, our sufficient statistics capture the
economic forces that shape aggregate dynamics, serve as model discrimination devices,
provide researchers with a unique set of moments to be targeted by lumpy models, and
guide empirical efforts to collect the most informative statistics for the theory. Next, we
explain the theory in more detail and provide economic intuitions for the results.

Sufficient Statistics for Aggregate Dynamics. Consider the following economic environ-
ment. There is a continuum of agents. Each agent’s uncontrolled state x follows a diffu-
sion, dxt = −ν dt + σ dWt , where the trend is common and the Brownian shocks are id-
iosyncratic. Payoffs depend on the state x. To control their state, agents pay an adjustment
cost. The adjustment cost is different for upward and downward adjustments, and there
are random opportunities for free adjustments that arrive at a constant rate. The decision
rule consists of (i) a constant reset point x∗, to which agents set their state when they de-
cide to adjust, and (ii) the timing of adjustments, which occur when the state reaches one

1Lanteri, Medina, and Tan (2020) made a similar point by showing that the transitional dynamics of domestic
production following an import-competition shock depend on the size of frictions in capital reallocation; and
Moll (2014) showed in a model with financial frictions that the speed of transitions and the steady-state level
of capital misallocation jointly depend on the persistence of idiosyncratic productivity.
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of two thresholds {x−�x+} or a free opportunity to adjust arrives. The economy features
a steady-state distribution of idiosyncratic states F(x). We conceptualize aggregate vari-
ables as functions of cross-sectional moments of the state (e.g., the mean, the variance, or
other higher-order moments).

In this environment, we characterize analytically the transitional dynamics of the cross-
sectional distribution after a common exogenous disturbance. Consider the following hy-
pothetical experiment. Initially, the economy is at its steady-state distribution F(x). At
time zero, an aggregate shock hits—a small, identical, and once-and-for-all change in
agents’ states—displacing the distribution away from the stationary one. As agents grad-
ually respond to the aggregate shock by actively changing their state, the distribution
follows a deterministic transition to its steady state. Assuming that agents follow their
steady-state decision rules {x−�x∗�x+} along the transition, that is, neglecting any feed-
back from the distribution to policies, what can we say about the speed of convergence to
steady state?

As a first step, following Álvarez, Le Bihan, and Lippi (2016), we define our notion of
the speed of convergence as the area under the impulse-response function of any moment
of x relative to its steady-state value. We label this object the cumulative impulse response
(CIR). The CIR is a useful metric of convergence: It summarizes in one scalar both the
impact and persistence of the economy’s response, eases comparison across models, and
represents a multiplier of aggregate shocks. In the frictionless benchmark, instantaneous
adjustment to the aggregate shock implies a CIR of zero. With adjustment frictions, the
larger the CIR, the longer it takes firms to respond to the aggregate shock, and the slower
the transitional dynamics.2

Our first theoretical result proves that the CIR can be expressed, up to first order, as
a linear combination of two steady-state cross-sectional moments. In particular, the CIR
of the average of the distribution depends on (i) the steady-state variance of the state,
Var[x], and (ii) the covariance of the state with its age a, Cov[x�a], where age is the time
elapsed since the last adjustment.

A major challenge to applying our sufficient statistics approach arises if F(x) is un-
observable, as in the majority of applications. Thus the steady-state moments cannot be
computed directly from the data. As economists, however, we have available detailed
panel data Ω = {�x�τ} with information on the size of discrete adjustments �x and the
duration of completed inaction spells τ. Our second theoretical result provides analytic
mappings from the dataΩ to moments of the invariant distribution F(x) and the stochas-
tic process parameters (ν�σ2�x∗). To obtain these mappings, we exploit, exclusively, the
properties of Markov processes and the constant reset state x∗.

Taken together, our theoretical results provide researchers with the sufficient statistics
that characterize the transitional dynamics of aggregate variables in lumpy environments,
as well as with mappings to infer the sufficient statistics and parameters using microdata.

Capital Dynamics With Lumpy Investment. To investigate the propagation of aggre-
gate productivity shocks, we set up a parsimonious partial equilibrium investment model
with adjustment costs, in the spirit of Caballero and Engel (1999) and the related litera-
ture.3 Firms produce output with capital. They are subject to depreciation, technological

2Álvarez, Le Bihan, and Lippi (2016), Baley and Blanco (2019), and Álvarez, Lippi, and Oskolkov (2020)
used the CIR to compare the effects of monetary shocks across different price-setting models.

3Similar environments have been studied by Dixit and Pindyck (1994), Bertola and Caballero (1994), Ca-
ballero, Engel, and Haltiwanger (1995), Cooper and Haltiwanger (2006), and others.
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growth, and idiosyncratic productivity shocks. To change their capital, firms pay a fixed
cost that scales with firms’ size and could be different for upward and downward adjust-
ments. Also, firms face random opportunities for free adjustments. Defining the state x as
the log capital-to-productivity ratio, the model falls into the basic environment described
above.

How does the economy’s capital respond to a permanent change in aggregate produc-
tivity? What do the data tell us about the role of micro lumpiness for capital dynamics?
And which type of investment rules best match the data?

Using plant-level investment data from Chile, we recover the two sufficient statistics
that characterize the propagation of aggregate productivity shocks: the steady-state vari-
ance of log capital-to-productivity ratios, Var[x], and the covariance of log capital-to-
productivity ratios with their age, Cov[x�a]. Concretely, we recover these sufficient statis-
tics using the following empirical moments: the average and dispersion in duration of
inaction, the dispersion and skewness of adjustment size, and the covariance between
duration of inaction and adjustment size.

The sufficient statistics inferred from the data imply significant effects of aggregate
shocks. We obtain a CIR of 3.7: A 1% decrease in aggregate productivity generates a total
deviation in capital-to-productivity ratios of 3.7% above steady state along the transition
path. The implied half-life of the aggregate capital response (assuming exponential decay)
is 2.5 years. To put these numbers in context, a symmetric fixed adjustment cost model
that matches the average frequency of inaction produces a CIR of 0.4 and a half-life of
0.3 years; these numbers are ten times smaller than what the data suggest.

Our analysis reveals that (i) capital adjustment frictions at the micro-level significantly
slow down the propagation of aggregate shocks; and that (ii) allowing for asymmetric
policies—through large downsizing costs—and randomness in adjustment—through in-
frequent opportunities for free adjustments—is key for correctly matching the sufficient
statistics that shape aggregate capital dynamics.

Contributions to the Literature. We highlight three contributions to previous work.
First, we provide sufficient statistics that capture the role of micro lumpiness for aggre-
gate dynamics. Álvarez, Le Bihan, and Lippi (2016) provided the first step in this direction
by studying the transitions of the first moment of the distribution in economies with zero
drift and symmetric policies. They showed that in a large class of price-setting models,
the CIR of real output following a monetary shock is proportional to the kurtosis of price
changes times the average price duration. Their theoretical strategy links the CIR directly
to the observables in the data. Our strategy is different because we split this challenging
problem into two simpler subproblems: from the CIR to steady-state moments and from
steady-state moments to the data. Our approach has various advantages. It improves our
understanding of the economic forces behind these links. It eases the analysis of suffi-
cient statistics in richer economic environments than previously studied, including drift
and asymmetric policies. And finally, it allows us to characterize the transitional dynam-
ics of higher-order moments beyond the average.4

Second, we strengthen the bridge between two branches of the literature that study
lumpy economies with different objectives and methodologies. The first aims to under-
stand the role of lumpiness for the propagation of aggregate shocks; see Caplin and Spul-
ber (1987), Caplin and Leahy (1991, 1997), and Caballero and Engel (1991) for early

4In a frictionless environment, Gabaix, Lasry, Lions, and Moll (2016) studied the dynamics of inequality and
provided a lower bound for the speed of convergence by the dominant eigenvalue.
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work. The second aims to quantify the role of lumpiness for productivity losses in steady
state. For example, Álvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2018) and Blanco
(2020) examined inefficient price dispersion, and Asker, Collard-Wexler, and De Loecker
(2014) examined capital misallocation. To our best knowledge, we are the first to show
theoretically the structural links that exist between transitional dynamics of higher-order
moments and the steady-state distribution of agents in lumpy economies with drift and
asymmetries. We believe our approach may engage researchers in exploiting the connec-
tions between these two dimensions of the same environment.

Third, our work speaks to the debate about the nature of capital adjustment frictions.
The response of aggregate capital to productivity shocks consists of a direct channel
(changes in the marginal product of capital) and an indirect channel (changes in the user
cost of capital). The quantitative investment literature has jointly analyzed both channels
in models calibrated to match moments that appear ex ante to be sensible choices, but
that sometimes lead to opposite conclusions.5 Instead, our approach focuses exclusively
on the direct channel. This permits us to identify precisely the empirical moments that
lumpy models must target that capture the role of lumpiness for transitional dynamics
and gauge the strength of the partial equilibrium response to aggregate shocks.

2. A PARSIMONIOUS MODEL OF LUMPY INVESTMENT

How does an economy’s capital respond to aggregate productivity shocks when firms
face capital adjustment frictions? We present a parsimonious partial equilibrium model of
lumpy investment to derive sufficient statistics that characterize the role of micro lumpi-
ness for aggregate dynamics. We first study the problem of an individual firm and char-
acterize its optimal investment policy in terms of capital-to-productivity ratios. Then we
consider the steady state of an economy with a continuum of ex ante identical firms and
perturb it with an aggregate productivity shock. Finally, we define the cumulative impulse
response (CIR) of aggregate capital, which summarizes transitional dynamics.

2.1. The Problem of an Individual Firm

Time is continuous and extends forever. Consider a firm that produces output using
capital. It faces capital adjustment frictions and a constant real interest rate r.

Technology and Shocks. The firm produces output yt using capital kt according to a
production function with decreasing returns to scale

yt = (ztet)1−αkαt � α < 1	 (1)

The firm’s total productivity is driven by aggregate zt and idiosyncratic et components.
Aggregate productivity zt grows deterministically at a rate μz > 0,

dlog(zt)= μz dt	 (2)

Idiosyncratic productivity shocks et follow a geometric Brownian motion with zero drift

5See Thomas (2002), Veracierto (2002), Gourio and Kashyap (2007), Khan and Thomas (2008), Bachmann,
Caballero, and Engel (2013), House (2014), and Winberry (2021) for different conclusions about the role of
lumpiness when GE effects are present.
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(w.l.o.g.) and volatility σ ,

dlog(et)= σ dWt� Wt ∼ Wiener	 (3)

The capital stock, if uncontrolled, depreciates at a rate ζ > 0.
The firm can control its capital stock through purchasing or selling capital. For every

change in its capital stock (investment) it ≡ �kt , the firm must pay an adjustment cost
θt that is proportional to its total productivity.6 The adjustment cost is different for posi-
tive and negative investments, and there exist random opportunities for free adjustments.
Concretely, the adjustment cost takes the form

θt ≡Θ(it��Nt)ztet� (4)

where Nt is a Poisson counter with arrival rate λ. The function Θ(it��Nt) takes the fol-
lowing values:

Θ(it��Nt)≡

⎧⎪⎨⎪⎩
0 if it = 0 or �Nt = 1�
θ− if it > 0 and �Nt = 0�
θ+ if it < 0 and �Nt = 0	

(5)

We label this type of adjustment friction—that is, asymmetric fixed costs with random
free adjustments—Bernoulli fixed costs. We consider different costs for downsizing and
upsizing the capital stock to reflect, in a parsimonious way, several asymmetric frictions
in capital adjustment. In turn, we consider random free adjustments as a proxy for fric-
tions that contain a stochastic element, for example, information or search frictions.7 Our
analysis shows that both frictions are relevant to match the data.

An advantage of this formulation is that it nests two benchmark cases of strict state- and
time-dependence within a more general framework. Setting λ = 0 shuts down the ran-
dom free adjustments and collapses the model into a standard state-dependent fixed-cost
problem, whereas in the limiting case of infinite fixed costs, that is, {θ−� θ+} → {∞�∞},
the model collapses into a standard time-dependent problem that allows adjustment only
at random dates that arrive at a rate λ > 0.8

Investment Problem. Let V (k�z� e) be the value of the firm. Given the initial condi-
tions (k0� z0� e0), the firm chooses a sequence of capital adjustment dates {Th}∞

h=1 and
investments {iTh}∞

h=1, where h counts the number of adjustments, to maximize its expected
discounted stream of profits. The sequential problem of the firm is described by

V (k0� z0� e0)= max
{Th�iTh }∞

h=1

E

[∫ ∞

0
e−rtyt dt −

∞∑
h=1

e−rTh(θTh + iTh)
]
� (6)

6For any stochastic process qt , we use the notation �qt = qt − qt− , where qt− ≡ lims↑t qs denotes the limit
from the left.

7Investment with asymmetric adjustment frictions, for example, partial irreversibility, was studied by Abel
and Eberly (1996), Bertola and Caballero (1994), Dixit and Pindyck (1994), and Lanteri (2018); investment
with information frictions was studied by Verona (2014); and investment with search frictions was studied by
Kurmann and Petrosky-Nadeau (2007) and Ottonello (2018).

8The Bernoulli fixed-cost formulation originated in the pricing literature to match the empirical distribution
of price changes. See Nakamura and Steinsson (2010) and Álvarez and Lippi (2014).
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subject to the production function (1), aggregate productivity (2), idiosyncratic produc-
tivity (3), adjustment costs (4) and (5), and the law of motion for its capital stock

log(kt)= log(k0)− ζt +
∑
h:Th≤t

log
(

1 + iTh
kT−

h

)
� (7)

which describes a period’s capital stock as a function of the firm’s initial stock k0, the
depreciation rate ζ, and the sum of the investments made at prior adjustment dates.

2.2. Optimal Policy

We solve the sequential problem in (6) recursively as a stopping-time problem using the
Principle of Optimality. The resulting investment policy is characterized by an asymmetric
inaction region

R≡ {
(k� z� e) : k−(z� e)≤ k≤ k+(z� e)

}
� (8)

where k−(z� e) and k+(z� e) are the lower and upper inaction thresholds, together with
a reset value k∗(z� e) to which capital is set upon every adjustment. Given these three
functions, {k−�k∗�k+}, adjustment happens at every date Th when the capital stock falls
outside the inaction region R or there is an opportunity of free adjustment:

Th = inf
{
t ≥ Th−1 : (kt� zt� et) /∈R or �Nt = 1

}
	 (9)

Investment iTh is the difference between the reset value and the capital immediately be-
fore adjustment:

iTh = k∗(z� e)− kT−
h
	 (10)

Given the optimal adjustment dates in (9), we define two useful notions of duration of
inaction: the duration of completed spells, denoted by τ, equal to the difference of two
consecutive adjustment dates

τh ≡ Th − Th−1 with T0 = 0� (11)

and the duration of uncompleted spells or capital age, denoted by a, equal to the time
elapsed since the last adjustment

at ≡ t − max{Th : Th ≤ t}	 (12)

After each adjustment, the capital age is reset to zero, that is, aTh = 0.

Log Capital-to-Productivity Ratio. To characterize the policy, it is convenient to reduce
the state space and recast the problem in terms of a new variable, the log of the capital-
to-productivity ratio:

x̂t ≡ log
(
kt

ztet

)
	 (13)

The problem admits the reformulation because of the homothetic production function
and the adjustment costs proportional to productivity.

Lemma 1 characterizes the firm value and the optimal investment policy in terms of
the log capital-to-productivity ratio through the standard sufficient optimality conditions.
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The firm value and the policy must satisfy: (i) the Hamilton–Jacobi–Bellman equation,
which describes the evolution of the firm’s value during periods of inaction, (ii) the value-
matching conditions, which set the value of adjusting equal to the value of not adjusting at
the borders of the inaction region, and (iii) the smooth-pasting and optimality conditions,
which ensure differentiability at the borders of inaction and the reset point. To simplify
notation, we define ν ≡ ζ +μz , which reflects the drift affecting the uncontrolled x̂’s, and
ρ ≡ r + λ − μz − σ2/2. All proofs appear in Appendices A and B of the Supplemental
Material (Baley and Blanco (2021)); each proof begins with an outline of the proof’s
strategy and an intuitive explanation.

LEMMA 1: Let V(x̂) :R → R be a function of the log capital-to-productivity ratio. If V(x̂)
and the values {x̂−� x̂∗� x̂+} satisfy the following three conditions, then the optimal policy is
{k−�k∗�k+} = ze× {exp(x̂−)�exp(x̂∗)�exp(x̂+)} and V(x̂)= V (zeexp(x̂)� z� e)/(ze):

(i) In the interior of the inaction region, V(x̂) solves the HJB equation:

ρV(x̂)= exp(αx̂)− νdV(x̂)
dx̂

+ σ2

2
d2V(x̂)

dx̂2

+ λ[V(
x̂∗) − (

exp
(
x̂∗) − exp(x̂)

)]
� ∀x̂ ∈ (

x̂−� x̂+)
	 (14)

(ii) At the borders of the inaction region, V(x̂) satisfies the value-matching conditions:

V
(
x̂−) = V

(
x̂∗) − θ− − (

exp
(
x̂∗) − exp

(
x̂−))

� (15)

V
(
x̂+) = V

(
x̂∗) − θ+ − (

exp
(
x̂∗) − exp

(
x̂+))

	 (16)

(iii) At the borders of the inaction region and the reset state, V(x̂) satisfies the smooth-
pasting and the optimality conditions:

V ′(x̂)= exp(x̂)� ∀x̂ ∈ {
x̂−� x̂∗� x̂+}

	 (17)

Notice that when expressed in terms of log capital-to-productivity ratios, the inaction
region and the reset state are constant and thus memoryless. The constant policy implies
that each adjustment completely erases the history of idiosyncratic shocks. Also notice
that adjustment dates in (9), duration of inaction in (11), and age in (12) can be written as
functions of log capital-to-productivity ratios (just exchanging k for x̂ in their expressions)
and their distributions remain unchanged. In the case of investment, the continuity of the
productivity process allows us to recover the investment rate in (7) from the change in the
log capital-to-productivity ratio as follows:

1 + iTh
kT−

h

= k∗(zTh� eTh)
kT−

h

= k∗(zTh� eTh)/(zTheTh)
kT−

h
/(zT−

h
eT−

h
)

= exp(�x̂Th)	 (18)

In the first equality, we apply the definition of investment. In the second equality, we mul-
tiply and divide by total productivity at the moment of adjustment and use the continuity
of the stochastic process in the denominator to exchange (zTh� eTh) for (zT−

h
� eT−

h
). In the

third equality, we substitute the definition of capital-to-productivity ratios.
With the problem of an individual firm fully characterized, we examine an economy

with a continuum of firms.
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2.3. Economy With a Continuum of Firms

Consider a continuum of ex ante identical firms that face the problem described in the
previous section. The stochastic processes of idiosyncratic productivity Wt and the arrival
of free adjustments Nt are independent across firms. The economy features a steady-
state distribution G(x̂), with density g(x̂), that solves the following Kolmogorov forward
equation with its boundary conditions:

ν
dg(x̂)

dx̂
+ σ2

2
d2g(x̂)

dx̂2 − λg(x̂)= 0� ∀x̂ = x̂∗�∫ x̂+

x̂−
g(x̂)dx̂= 1� g

(
x̂−) = g(x̂+) = 0	

(19)

We denote by Eg[·] the expectations computed with the steady-state density g.

Capital Gaps. Using the steady-state distribution, for every firm we define the capital
gap as its log capital-to-productivity ratio relative to the steady-state average:

xt ≡ x̂t −Eg[x̂]� (20)

where Eg[x̂] ≡ ∫ x̂+
x̂− x̂dg(x̂)dx̂. Notice that in the absence of adjustment frictions, capi-

tal gaps would always be equal to zero. Similarly, we redefine the investment policy by
centering the borders of the inaction region and the reset state around the average:(

x−�x∗�x+) = (
x̂− −Eg[x̂]� x̂∗ −Eg[x̂]� x̂+ −Eg[x̂]

)
	 (21)

From now on, we will work with capital gaps x. We use F(x) and f (x) to denote the
distribution and density of capital gaps. We will also denote by E[·] the expectations com-
puted with their steady-state distribution F . Given the centralization, the reset gap x∗ is
understood as the gap of adjusters relative to the average gap in the cross-section.

2.4. Aggregate Productivity Shock

How does aggregate capital respond to an aggregate productivity shock? Starting from
the steady state, we introduce a small and unanticipated decrease in the (log) level of
aggregate productivity of size δ > 0, which we label as δ-perturbation. We normalize its
arrival date to t = 0, so aggregate productivity is lnz0 = lnz0− −δ. The negative aggregate
productivity shock generates a homogeneous increase in the capital gap of all firms, as
they now have too much capital relative to their productivity: x0 = x0− + δ.

Let Ft(x) be the distribution t periods after the aggregate shock and Et[·] denote ex-
pectations computed with Ft . The distribution of capital gaps displaces horizontally to
the right relative to the steady-state distribution, that is, the gap distribution immediately
after the aggregate shock is F0(x) = F(x − δ).9 After the initial displacement, the gap
distribution evolves according to the firms’ policies, and eventually, it converges back to
its steady state. By assuming a constant interest rate, investment policies do not respond
to changes in the distribution and they are fixed along the transition path.

9The analysis of infinitesimal shocks that displace the cross-sectional distribution away from steady state is
closely related to the marginal response function in Borovička, Hansen, and Scheinkman (2014).
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FIGURE 1.—Distributional dynamics and the cumulative impulse response. Notes: Panel A shows the
steady-state density of the idiosyncratic state f (x) and the initial density f0(x) = f (x − δ) following the
δ-shock. It also illustrates an arbitrary mth cross-sectional moment to be tracked from its initial value E0[xm]
toward its steady-state value E[xm]. Panel B shows the transitional dynamics of the mth moment: the IRF
(solid line) and the CIR (area under the IRF).

Panel A in Figure 1 plots the steady-state density f (x) and the initial density f0(x) fol-
lowing the δ-perturbation; it also shows an arbitrary mth cross-sectional moment before
and after the shock. Our exercise consists of tracking these moments as they make their
way back to their steady-state value.

Aggregate Deviations From Steady State. We are interested in characterizing the ef-
fects of the aggregate productivity shock on the average capital-to-productivity ratio, K̂t ≡
Egt [exp(x̂)], expressed as percent deviations from its steady-state value K̂ ≡ Eg[exp(x̂)].
This deviation, up to a first-order approximation, can be expressed as the average gap:

K̂t − K̂
K̂

= Egt

[
exp(x̂)

]
Eg

[
exp(x̂)

] − 1 = Et

[
exp(x)

]
E
[
exp(x)

] − 1 ≈ Et[x]	 (22)

To obtain expression (22), the first equality applies the definition of aggregate capital-
to-productivity ratios during the transition and in steady state. The second equality is
obtained by multiplying and dividing by exp(Eg[x̂]) and writing in terms of capital gaps.
The third step uses a first-order approximation of the exponential function, that is, ex ≈
1 + x, and applies the definition of capital gaps. In this way, we connect the deviation in
the average capital-to-productivity ratio to the average capital gap.

While the aggregate capital deviations are not exactly equal to the average capital
gap, the approximation is quite helpful for exposition. To exactly compute the devia-
tion, one needs all of the moments of the capital gap distribution, as the full expansion is
Et[exp(x)] = ∑∞

n=0(Et[xm]/m!). Later in the paper, we characterize the transitions of all
moments of x.

2.5. Cumulative Impulse Response (CIR)

To analyze transitional dynamics, we consider the impulse-response function of themth
moment of capital gaps following the δ-perturbation. It is denoted by IRFm(δ� t), it is a
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function of time, and it is defined as the difference between the moment’s value at time t
and its steady-state value:

IRFm(δ� t)≡ Et

[
xm

] −E
[
xm

]
	 (23)

Following Álvarez, Le Bihan, and Lippi (2016), we define the cumulative impulse re-
sponse, denoted by CIRm(δ), as the area under the IRFm(δ� t) curve across all dates
t ∈ (0�∞):

CIRm(δ)≡
∫ ∞

0
IRFm(δ� t)dt	 (24)

Panel B in Figure 1 plots these two objects. The solid line represents the IRF, and the
area underneath it is the CIR. The CIR is a useful metric: It summarizes both the impact
and the persistence of the response in one scalar, eases the comparison of models, and
represents a multiplier of aggregate shocks. It is illustrative to compare the CIR with and
without adjustment frictions. Without frictions, individual gaps are always equal to zero.
When the aggregate shock hits the economy, all firms respond instantly to keep their gap
at zero. The impulse response is a jump with zero area underneath, that is, CIRm = 0
for all m. With frictions, the larger the CIR, the longer it takes firms to respond to the
aggregate shock through investment.

Remarks on the Definition of Gaps. Our definition of capital gaps centers log capital-
to-productivity ratios around their steady-state average. In contrast, the standard ap-
proach defines gaps using a micro target, which is usually the frictionless optimal capital
choice (Caballero, Engel, and Haltiwanger (1997), Caballero and Engel (1993), Cooper
and Willis (2004)). We base our approach on the fact that specifying a micro target is
irrelevant for the study of impulse responses centered around steady state: The micro
target cancels out as it enters the impulse response and the steady state symmetrically.
Since the micro target does not affect the investment distribution either, we only specify
the relative position of a firm’s capital-to-productivity ratio in the distribution and not its
absolute level.

3. PROPAGATION AND STEADY-STATE MOMENTS

Next, we establish the theoretical relationships between the transitional dynamics of
the average capital-to-productivity ratio following an aggregate productivity shock and
two steady-state moments of the capital gap distribution.

3.1. Characterizing the CIR

As the first step, Lemma 2 expresses the cumulative impulse response of moment m—
the CIRm defined in (24)—as the solution to a collection of stopping-time problems in-
dexed by the initial capital gap. It establishes that it is only necessary to keep track of firms
from the arrival of the aggregate shock at t = 0 until their first adjustment at t = τ, cor-
recting by the average behavior in steady state. This result is extremely convenient, since
it allows us to characterize the propagation of the aggregate shocks without tracking the
evolution of the whole distribution of capital gaps.
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LEMMA 2: Given the steady-state policies (x−�x∗�x+) and distribution F , the CIRm can
be written as

CIRm(δ)=
∫ x+

x−
vm(x)d

(
F(x− δ)− F(x))� (25)

where the function vm(x) measures the cumulative deviations of the mth moment from its
steady-state value for a firm with initial capital gap x:

vm(x)≡ E

[∫ τ

0

(
xmt −E

[
xm

])
dt

∣∣∣x0 = x
]
	 (26)

An analogous result was first shown by Álvarez, Le Bihan, and Lippi (2016) in a driftless
and symmetric environment for m = 1, noting that after the first adjustment, a firm’s
expected contribution to the average gap is zero, since positive and negative contributions
are equally likely. Thus, in their environment, the average gap conditional on adjustment
is equal to zero at every date.

What is surprising is that this property still holds in the presence of drift and asym-
metric policies. A firm’s investment fully responds to the aggregate shock with its first
adjustment. Any subsequent deviations are purely driven by idiosyncratic shocks and are
unrelated to the response to the aggregate shock. However, in contrast to the symmet-
ric and driftless case, a firm’s expected contribution to the average gap is not necessar-
ily equal to zero, and it depends on the stage of its inaction spell. Completed inaction
spells can be ignored because they are equal to the steady-state moment when averaged
across all agents; but uncompleted spells cannot be ignored. For this reason, the term
− ∫ x+

x− vm(x)dF(x) appears in the expression for the CIR in (25) to correct for the un-
completed idiosyncratic-driven deviations.10

Lemma 2 hinges exclusively on properties of Markov processes. It does not need to
assume a specific stochastic process for x, the source of the rigidity, the moment we wish
to track, or the type of initial perturbation. The crucial assumption is that an adjustment
erases the history of shocks—a property embedded in the constant reset state.

3.2. Sufficient Statistics for Aggregate Transitional Dynamics

Now we proceed to characterize the CIR as a function of steady-state moments. For
expositional purposes, we consider the joint steady-state distribution of capital gaps and
age, denoted by F(x�a), and for any two numbers k� l ∈ N, we define the joint steady-state
moments of capital gap and age as

E
[
xkal

] ≡
∫
x

∫
a

xkal dF(x�a)� ∀k� l ∈N	 (27)

For the Bernoulli fixed-cost model described in Section 2, Proposition 1 characterizes the
CIRm(δ). It considers the first-order Taylor expansion CIRm(δ)= CIRm(0)+δCIR′

m(0)+
o(δ2), where CIRm(0)= 0 and the term CIR′

m(0) is expressed as a linear combination of
two steady-state moments of the distribution F(x�a). Appendix C verifies numerically
that the first-order approximation is accurate for small δ-perturbations.

10We are in debt to Andrey Alexandrov for pointing out to us that we missed the correction term∫ x+
x− vm(x)dF(x) in expression (25) that arises from the asymptotic behavior; see Alexandrov (2020) for further

details. Appendix C of the Supplemental Material verifies numerically Lemma 2.
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PROPOSITION 1: Up to first order, the CIRm with Bernoulli fixed costs is

CIRm(δ)

δ
= E

[
xm+1

] + νCov
[
xm�a

]
σ2 + o(δ)	 (28)

Equation (28) shows that up to first order, the transitional dynamics of themth moment
of capital gaps are structurally linked to the m+ 1 steady-state moment plus a covariance
term that corrects for the presence of drift. To better understand why these two moments
are sufficient statistics for the propagation of aggregate shocks, let us focus on the case
m= 1, stated in the following corollary.

COROLLARY 1: Up to first order, the CIR1 with Bernoulli fixed costs is

CIR1(δ)

δ
= Var[x] + νCov[x�a]

σ2 + o(δ)	 (29)

Equation (29) presents the CIR of the mean of the cross-sectional distribution as a lin-
ear combination of the steady-state variance of capital gaps, Var[x], and the steady-state
covariance between capital gaps and their age, Cov[x�a]. Since aggregate shocks zt and
idiosyncratic shocks et enter symmetrically into a firm’s capital gaps, firms’ responsive-
ness to idiosyncratic shocks (encoded by steady-state moments) is informative about their
responsiveness to aggregate shocks (measured by the CIR).

Insensitivity to Idiosyncratic Shocks. To explain heuristically the link between the two
sides of equation (29), we propose the notion of insensitivity to idiosyncratic shocks. Let
W̃t ≡ (Wt − Wt−at )/σ be the sum of all shocks received by a firm since its last adjust-
ment, normalized by their volatility. We define the economy’s insensitivity to idiosyn-
cratic shocks as the covariance of capital gaps with W̃t in the population of firms, that is,
Cov[xt� W̃t]. Intuitively, if firms sluggishly incorporate changes in their productivity into
their capital stock, then the cross-section features a strong relationship between capital
gaps and idiosyncratic shocks. In that case, the covariance is large. In the opposite case
without adjustment frictions, firms are extremely sensitive to idiosyncratic shocks, so they
continuously adjust their gaps to keep them at zero, yielding a zero covariance.

Let us link our definition of insensitivity to idiosyncratic shocks to the CIR1. The
capital gap of any firm at time t can be written as xt = x∗ − νat + σ2W̃t . Multiply-
ing both sides by xt , taking the cross-sectional average, and using E[x] = 0, we ob-
tain Var[x] = −νCov[x�a] + σ2

Cov[x� W̃ ]. Rearranging, it yields Cov[x� W̃ ] = (Var[x] +
νCov[x�a])/σ2, which is exactly the expression for the CIR′

1(0) in (29).
This analysis reveals two novel insights. First, when the drift is zero, the propagation

of aggregate productivity shocks is proportional to the steady-state variance of capital
gaps, normalized by idiosyncratic volatility, that is, Var[x]/σ2. This ratio of ex post to ex
ante dispersions is a sufficient statistic for aggregate capital’s insensitivity to productivity
shocks. A large ratio signals insensitivity and slow convergence of average capital gaps.

Second, when the drift is different from zero, the propagation of aggregate productivity
shocks is also affected by the covariance of capital gaps and their age, Cov[x�a]. The co-
variance term corrects for the additional dispersion generated by the drift to identify the
insensitivity to productivity shocks. This result implies that capital depreciation ζ or tech-
nological progress μz—the two components of the drift—directly affect the propagation
of aggregate productivity shocks.
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Extreme Sensitivity. Besides the frictionless case, an environment with a large drift pa-
rameter (ν → ∞) also features extreme sensitivity to idiosyncratic shocks. In this limit-
ing case, the joint steady-state distribution of gaps and age F(x�a) weakly converges to
the distribution of an economy without idiosyncratic shocks σ2 = λ = 0. Capital gaps in
the limit are generated by dxt = −ν dt, so that they become an affine function of age,
that is, xt = x∗ − νat . Multiplying both sides by xt and taking expectations, we obtain
Var[x] = −νCov[x�a] and thus CIR′

1(0)= 0. Corollary 2 formalizes this argument.11

COROLLARY 2: With Bernoulli fixed costs, when the drift goes to infinity, then

lim
ν→∞�σ2>0

Var[x]
νCov[x�a] = −1� (30)

which implies that limν→∞�σ2>0 CIR1(δ)/δ= o(δ).

Corollary 2 speaks to a classic result in the pricing literature developed by Caplin and
Spulber (1987).12 That paper considered an environment with nonzero drift (inflation)
and zero idiosyncratic risk. The authors showed that money shocks do not affect real
output: Money is neutral. In our jargon, the CIR′

1(0) is zero when limσ2→0�ν>0(ν/σ
2)= ∞.

We replicate an analogous result by taking an equivalent limit: limν→∞�σ2>0(ν/σ
2) = ∞.

In the investment context, the neutrality result says that aggregate productivity shocks are
immediately absorbed by investment when the drift to volatility ratio goes to infinity.

In summary, the variance of capital gaps Var[x] and the covariance between capital
gaps and their age Cov[x�a] encode firms’ insensitivity to the idiosyncratic shocks, acting
as a sufficient statistic for the speed at which the mean of the cross-sectional distribution
converges back to the steady state following an aggregate productivity shock.

The CIR of Higher-Order Moments. The macro literature mainly focuses on the dy-
namics of cross-sectional averages—for example, capital, output, and inflation. There is
increasing interest, however, in the dynamics of higher-order moments. The sufficient
statistics for the CIRm in Proposition 1, for m > 1, could in principle be helpful to re-
searchers interested in measuring and characterizing higher-order dynamics using mod-
els of lumpy adjustment. For example, the CIR2—which measures the dynamics of the
second moment—relates to the steady-state third moment. This relationship could be
used to connect the cyclical fluctuations in the dispersion of investment rates (Bachmann,
Caballero, and Engel (2013), Bachmann and Bayer (2014)), marginal products of capital
(Oberfield (2013)), or prices (Vavra (2014), Nakamura, Steinsson, Sun, and Villar (2018))
to the steady-state skewness of those distributions. In turn, the CIR3—which measures the
dynamics of the third moment—relates to the steady-state fourth moment. This relation-
ship could be used to connect the cyclical fluctuations in the skewness of sales growth
(Salgado, Guvenen, and Bloom (2019)) to their steady-state kurtosis.

11Clearly, as the drift goes to infinity, the duration of inaction goes to zero as well, E[τ] → 0. This mechan-
ically makes CIR′

1(0) equal to zero, as firms are constantly adjusting. However, our proof shows a stronger
result than the one stated in Corollary 2: Even if we rescale the fixed costs such that, for every drift level,
expected duration E[τ] is constant, CIR′

1(0) also goes to zero as the drift goes to infinity. We verify this result
numerically in Appendix D.

12We thank Fernando Álvarez for suggesting to explore the connection to this limiting case.
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3.3. Sufficient Statistics as Model Discrimination Devices

Our analysis shows that the CIR1 with Bernoulli fixed costs is structurally linked to
two steady-state cross-sectional moments of the capital-to-productivity distribution. Any
configuration of this model that generates the empirical values of the sufficient statistics is
relevant to the study of aggregate dynamics. Nevertheless, the theory imposes restrictions
that can systematically rule in some model configurations and rule out others. We use two
benchmark adjustment cost structures nested in our framework to illustrate the power of
sufficient statistics in distinguishing across model configurations.

Fully State-Dependent Adjustments. The Bernoulli fixed-cost model nests the widely
used state-dependent model of investment (Caballero and Engel (1999)) by shutting
down free adjustments (λ = 0). This model does not impose any restriction on the sign
of the covariance Cov[x�a]. On the one hand, the drift reduces capital gaps as they get
older, which pushes the covariance to be negative. On the other hand, the combination
of idiosyncratic shocks with asymmetric barriers can generate either a positive or nega-
tive covariance. In particular, if downward adjustments are more expensive than upward
adjustments, then capital gaps increase as they get older, which pushes the covariance to
be positive. Therefore, the relative strength of these two opposing forces determines the
value of the covariance of gaps and age.13 This configuration, however, generates a vari-
ance of gaps Var[x] close to zero because the distribution of adjustment size concentrates
at the borders of the inaction region (in Section 4.2, Equations (39) and (41) explicitly
show the positive relationship between the variance of gaps and the variance of adjust-
ment sizes). Therefore, if the empirical variance of capital gaps is larger than what a fully
state-dependent model would predict, this configuration would fall short of explaining the
data.

Fully Time-Dependent Adjustments. Another model nested in our framework consists
of fully time-dependent adjustments (Calvo (1983)), and it is obtained when both fixed
costs go to infinity lim{θ−� θ+} → {∞�∞}. In the limit, the inaction region disappears
and adjustments occur at a constant rate λ—that is, they are exponentially distributed.
In contrast to the fully state-dependent model, this model generates a larger variance of
gaps thanks to the free adjustments (for a given expected duration). This configuration,
however, restricts the covariance between gaps and age to be negative Cov[x�a]< 0. Since
firms cannot decide when to adjust, the drift renders capital gaps negative as time goes
by.14 Therefore, if the empirical covariance is positive, this configuration would fall short
of explaining the data.

Taken together, a positive covariance of gaps and age, Cov[x�a], is a tell-tale sign of
state dependence, while a large variance of gaps, Var[x], is a tell-tale sign of time depen-
dence. We use these facts when applying the theory to the data in Section 5.

Economic Forces Behind Sufficient Statistics. Between the two extreme configurations
of fully state-dependent and fully time-dependent adjustments analyzed above, there ex-
ists a myriad of parameterizations that bring the model closer to one or the other spec-
ification. To better understand the economic forces at play, Appendix D presents com-

13In a state-dependent model without drift and with symmetric barriers, Cov[x�a] = 0.
14The covariance is Cov[x�a] = −νE[τ]2 < 0. See Appendix E.1 of the Supplemental Material for the proof.

Additionally, Appendix E.2 shows that, for any drift ν ∈ R, the sufficient statistic for the CIR1 in fully time-
dependent models is the average age of the capital gaps E[a].
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parative statics for the five fundamental parameters governing the process of idiosyn-
cratic shocks and the structure of adjustment costs (ν�σ�λ�θ+� θ−) and discusses how
they shape the sufficient statistics and the CIR.

4. STEADY-STATE MOMENTS AND MICRODATA

We have established a structural link between the CIRm and the steady-state moments
of capital gaps. The challenge ahead lies in computing these moments, as capital gaps
are difficult to observe. The actions of adjusters, however, are readily available in the
microdata. LetΩ≡ (�x�τ) denote a panel of observations of discrete capital gap changes
(or adjustment size) and the duration of completed inaction spells, and let R(Ω) denote
their distribution. This section shows how to use the distribution of observable actions
R(Ω) to infer the behavior of non-adjusters, and reverse engineer the steady-state cross-
sectional moments of F(x�a) and the parameters of the stochastic process.15

To establish the inverse mapping from dataΩ to steady-state moments and parameters,
we need two inputs: a parametric stochastic process for the uncontrolled gaps that is
Markovian and has continuous paths (in our case, a Brownian motion with drift ν and
volatility σ), and a constant reset gap x∗. These inputs are enough to pin down these
mappings. We emphasize that we do not need to assume a specific model of inaction as
long as it delivers a constant reset state. For this reason, in this part of the theory, we
consider the reset state x∗ a parameter.

Notation. To express our results succinctly, we use the following notation. We denote
with bars the cross-sectional moments computed with the distribution of adjusters R(Ω)
(e.g., E[·] and Cov[·� ·]). We denote with tildes the variables that are expressed relative to
their mean (e.g., τ̃ ≡ τ/E[τ]). Last, for any random variable y ∈ R and ψ > 0, we define
the generalized coefficient of variation as CV

ψ[y] ≡ (E[yψ] −E[y]ψ)/E[y]ψ.16

4.1. Recovering Parameters From Microdata

Proposition 2 provides mappings that allow an economist with observables Ω to make
inferences about the parameters (ν�σ2�x∗).

PROPOSITION 2: Let Ω ≡ (�x�τ) be a panel of observations of adjustment size and du-
ration of inaction. Then the drift ν and volatility σ2 of the stochastic process for capital gaps
and the reset capital gap x∗ are recovered from the data through the following system:

ν = E[�x]
E[τ] � (31)

σ2 = E
[
�x2

]
E[τ] − 2νx∗� (32)

x∗ = ν(E[τ] −E[a]) +Cov[τ̃��x]	 (33)

15Clearly, the age of gaps can be directly measured, but not the joint distribution of (x�a).
16For ψ= 2, we obtain the standard definition: CV

2[y] ≡Var[y]/E[y]2.
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Drift and Volatility. Expressions in (31) and (32) provide a mapping to infer the pa-
rameters of the stochastic process. The first expression shows that in a stationary environ-
ment, the average adjustment size E[�x] must compensate for the average drift between
two adjustments νE[τ]. Similarly, the dispersion in adjustment size E[�x2] reflects the
cumulative shocks received during the inaction period: A high dispersion in adjustment
size must mean that either idiosyncratic volatility is high or the time between two adjust-
ments is high. Álvarez, Le Bihan, and Lippi (2016) obtained an analogous expression for
idiosyncratic volatility σ2 in the symmetric and driftless environment, that is, x∗ = ν = 0,
given by σ2 = E[�x2]/E[τ]. Our mapping includes a new term −2νx∗ to correctly identify
idiosyncratic volatility from the ratio of these two statistics.

Reset Capital Gap. Equation (33) shows how to recover the reset gap x∗ from the
microdata. This object carries information about optimal behavior in environments with
nonzero drift and asymmetric policies. Its value is derived from the restriction that capital
gaps have a zero mean. Thus x∗ must compensate for the average deviations that arise by
inactivity and ensure that the mean of the stationary distribution remains at zero.

A nonzero drift and an asymmetric policy may push average deviations in opposite di-
rections. For instance, a negative drift pushes average deviations down, while an asymmet-
ric policy arising from relatively more costly downward than upward adjustment pushes
average deviations up (i.e., if θ+ � θ−, units that have positive gaps tend to get stuck and
do not want to adjust down). The reset state summarizes how firms optimally balance
these opposing forces. We examine three special cases to showcase each force separately.

Role of Policy Asymmetry. We start by discussing how the reset state reflects policy
asymmetry. We assume away the drift and free adjustments, that is, ν = λ = 0. In this
case, the reset gap is a weighted average of gap changes, with weights equal to relative
durations of inaction, that is, x∗ = E[τ̃�x]. The analysis makes use of Figure 2. Panel A
plots three distributions of capital gaps (symmetric, left-skewed, and right-skewed) that
correspond to alternative assumptions about fixed costs, which generate different policies.
Panel B plots the corresponding distributions of nonzero capital gap changes. The idea is
to use Panel B (observables) to infer Panel A (unobservables).

If the distribution of gaps is symmetric around zero (black solid line), positive and nega-
tive adjustments are equally likely (Pr(�x > 0)= Pr(�x < 0)= 1/2), implying a zero reset
gap x∗ = E[τ̃�x] = 0. If the distribution of gaps is right-skewed (gray solid line), the upper
border is further from x∗ than the lower border and we observe few negative adjustments
(Pr(�x > 0)= 4/5> Pr(�x < 0)= 1/5). The negative adjustments get weighted by their
longer relative duration, generating a negative reset gap x∗ = E[τ̃�x] = −u < 0. Thus a
negative reset gap suggests a right-skewed distribution generated by relatively more costly
downward adjustments (θ+ > θ−). An analogous argument applies for positive reset gaps
that suggest a left-skewed distribution. Overall, the sign of x∗ indicates the shape of the
gap distribution and the adjustment costs that generate it.

One may naively conjecture that the simple average gap change E[�x] provides infor-
mation about asymmetries. However, this intuition is flawed: Larger adjustments happen
with lower occurrence, so that E[�x] = 0 regardless of the policy, eliminating any possi-
bility to learn from the average gap change (see Panel B of Figure 2). Our analysis shows
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FIGURE 2.—Reset state, capital gaps, and capital gap changes (ν = λ= 0). Notes: Panel A plots three distri-
butions of capital gaps x in the Bernoulli fixed-cost model without drift and free adjustments. The symmetric
distribution (black solid line) is generated by the policy (x−�x∗�x+)= (−u�0�u); the left-skewed distribution
(gray dotted line) is generated by (x−�x∗�x+) = (−3u�u�2u); and the right-skewed distribution (gray solid
line) is generated by (x−�x∗�x+) = (−2u�−u�3u). Panel B shows the corresponding three distributions of
nonzero capital gap changes.

that appropriately reweighing the distribution of gap changes using relative durations τ̃
circumvents this identification challenge.17

Role of the Drift. Now we discuss the role of the drift by considering two polar cases
of the Bernoulli fixed-cost model with symmetric policies. In the limiting case without
idiosyncratic shocks (σ2 → 0), the duration of all inaction spells is identical for all firms—
say E[τ] = T —and evidently the covariance between duration and size in (33) disappears.
The surviving term, ν(E[τ] − E[a]), reflects how the reset gap compensates for the ex-
pected erosion caused by the drift that accumulates between adjustments. The expected
erosion is proportional to the average length of completed spells (E[τ], adjusting firms)
minus the average length of uncompleted spells (E[a], inactive firms). The reset gap be-
comes x∗ = νT −νE[a] = νT /2> 0, where E[a] = T /2 is the average age of uncompleted
spells.

Now consider the limiting case with infinite adjustment costs, lim(θ−� θ+)→ (∞�∞),
so that investments occur at a constant rate λ > 0. The i.i.d. nature of adjustment dates
makes the expected duration for adjusting and non-adjusting firms identical E[τ] = E[a].
The first term in equation (33) disappears and the reset gap is identified by the second
term: x∗ = Cov[τ̃��x]. It is easy to show that Cov[τ̃��x] = νE[τ], corroborating that this
covariance correctly identifies the effect of the drift on the average capital gap.18

We have discussed at length the forces that shape the reset state for various reasons.
They enter into the formulas for volatility and steady-state moments. They indicate the

17Appendix F presents an instructive example that computes explicitly the steady-state moments in a driftless
environment with a right-skewed distribution, as presented in Figure 2.

18See Appendix E.3 for the proof.
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shape of distribution of x. But most importantly, the forces that shape the reset point—
and the way they manifest in the data—are also responsible for determining Cov[x�a].

4.2. Recovering Steady-State Moments From Microdata

Proposition 3 provides mappings from observables Ω to steady-state moments of gaps.

PROPOSITION 3: Let Ω ≡ (�x�τ) be a panel of observations of adjustment size and du-
ration of inaction. Construct the gaps immediately before adjustment as xτ = x∗ − �x. Then
the following relationships hold for any m≥ 1:

(i) Average age relates to the average and the dispersion of duration of inaction as

E[a] = E[τ]
2

(
1 +CV

2[τ])	 (34)

(ii) With zero drift (ν = 0), the steady-state moments are given by

E
[
xm

] = 2
(m+ 1)(m+ 2)

(
E
[
xm+2
τ

] − x∗m+2

E
[
�x2

] )
� (35)

E
[
xma

] = 2E[τ]
(m+ 1)(m+ 2)

(
E
[
τ̃xm+2

τ

] −E
[
xm+2

]
E
[
�x2

] )
	 (36)

(iii) With nonzero drift (ν = 0), the steady-state moments are given by

E
[
xm

] = 1
(m+ 1)

(
x∗m+1 −E

[
xm+1
τ

]
E[�x]

)
+ mσ2

2ν
E
[
xm−1

]
� (37)

E
[
xma

] = E[τ]
(m+ 1)

(
E
[
xm+1

] −E
[
τ̃xm+1

τ

]
E[�x]

)
+ mσ2

2ν
E
[
xm−1a

]
	 (38)

Average Age. Equation (34) relates the average age (the average length of uncom-
pleted spells in the whole population) to the average and the dispersion in duration of
inaction (the length of completed spells by adjusters), where the dispersion is measured
using the coefficient of variation squared. The relationship between average age and av-
erage duration is straightforward: If adjusters take longer to adjust on average, then the
average capital gap in the cross-section will be older. Why does the dispersion in duration
also increase age? The reason is the fundamental renewal property: The probability that
a random firm has an expected duration of inaction of τ is increasing in τ—that is, many
inaction spells are short, but the average spell is attributable to firms with long duration.
Dispersion in duration implies that some firms take a longer time to adjust, and those
firms are more representative of the economy, raising the average age.

To analyze the relationships between steady-state moments and the microdata, the fol-
lowing corollary presents simplified expressions for the case m= 1 and zero reset gap.

COROLLARY 3: Assume the reset point is zero, that is, x∗ = 0, so that xτ = −�x. Then, we
recover the steady-state moments Var[x] and Cov[x�a] as follows:



1254 I. BALEY AND A. BLANCO

(i) With zero drift (ν = 0):

Var[x] = E
[
�x2

]
6

(
1 +CV

2[
�x2

])
� (39)

Cov[x�a] = E[τ]
3

(
E
[
τ̃x3

τ

] −E
[
x3

]
E
[
�x2

] )
	 (40)

(ii) With nonzero drift (ν = 0):

Var[x] = E[�x]2

3
(
1 +CV

3[�x])� (41)

Cov[x�a] = E[τ]
2

(
E
[
x2

] −E
[
τ̃x2

τ

]
E[�x]

)
+ σ2

2ν
E[a]	 (42)

Variance of Capital Gaps. The drivers behind the cross-sectional variance of capital
gaps Var[x] are described in equations (39) and (41) for the cases without and with drift.
The first term in these expressions relates to the average adjustment size (measured by
squared gap changes or gap changes squared), and the second term relates to the dis-
persion of adjustment size (measured by generalized coefficients of variation).19 Clearly,
large average adjustments signal more dispersed gaps. But what is the connection between
the dispersion in adjustment size and the dispersion of capital gaps? It is the fundamental
renewal property again: The average behavior in the economy is attributable to firms with
longer periods of inaction, which coincidentally are firms that make larger adjustments.
Accordingly, higher dispersion in x2

τ (squared gaps of adjusters) increases E[x2] (squared
gaps of non-adjusters or Var[x]).

Covariance of Capital Gaps With Their Age. The drivers behind the covariance be-
tween capital gaps and their age Cov[x�a] are described in (40) and (42). As with the
reset gap, this covariance can be positive or negative, depending on the relative impor-
tance of the drift and policy asymmetry.

When the drift is equal to zero, the covariance in (40) is proportional to the excess
asymmetry in the capital gaps of adjusters relative to non-adjusters—namely, the differ-
ence in the third moments of their respective distributions, that is, E[τ̃x3

τ] −E[x3]. A pos-
itive difference reflects a right-skewed distribution of gaps and vice versa. Note that the
distribution of adjusters is weighted by the relative duration τ̃, as with the reset state.
The two additional terms in (40) are rescaling factors: the denominator E[�x2] ensures
that the covariance is of order 1 (canceling the cubic powers in the numerator) and E[τ]
accounts for age’s dependence on σ2.

When the drift is different from zero, the covariance in (42) is obtained from different
moments, but the economic interpretation is the same. In this case, the excess asymmetry
of adjusters relative to non-adjusters is measured by the second moment of the respective
distributions, that is, E[x2] − E[τ̃x2

τ]. Again, the distribution of adjusters is reweighed by
relative duration τ̃ and there is a rescaling factor, E[�x], to ensure that the covariance

19With zero drift, the dispersion in adjustment size is measured by the generalized coefficient of variation of
�x2 with ψ= 2; with nonzero drift, it is measured by the generalized coefficient of variation of �x with ψ= 3
(this is close to the skewness, as the presence of the drift alters the notion of dispersion).
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remains linear. Lastly, the term σ2
E[a]/(2ν) compensates for the direct effect of idiosyn-

cratic volatility on second moments (see equation (32)).

4.3. The CIR in Terms of Microdata

Now we combine our main theory results—the mapping from steady-state moments to
CIR1 in Corollary 1 and the mappings from microdata to parameters in Proposition 2
and to steady-state moments in Proposition 3—to express concisely the propagation of an
aggregate productivity shock as a function of microdata Ω.

COROLLARY 4: Assume the reset point is zero, that is, x∗ = 0, so that xτ = −�x. Then the
CIR1 can be computed using microdata moments as follows:

(i) With zero drift (ν = 0):

CIR1(δ)

δ
= E[τ]

2
Kur[�x]

3
+ o(δ)	 (43)

(ii) With nonzero drift (ν = 0):

CIR1(δ)

δ
= E[τ]

2

(
CV

2[τ] − 1
2

+ E
[
�̃x

3]
E

[
�̃x

2] −Cov
[
τ̃� �̃x

2]) + o(δ)	 (44)

The previous expressions summarize many economic forces that shape the propagation
of aggregate shocks in lumpy economies and show how these forces are reflected in the
data. We use these expressions to organize a short literature review.

Zero Drift and Symmetric Policy. Álvarez, Le Bihan, and Lippi (2016) characterized
the CIR1 for zero drift and a symmetric policy (ν = x∗ = 0), and obtained their well-
known kurtosis formula, as presented in (43). In the price-setting context of their paper, x
represents the markup gap and �x represents the price change, and the formula expresses
the response of real output to a one-time monetary policy shock as the product of the
kurtosis of price changes and the expected time between adjustments.20 The kurtosis of
gap changes—which measures the dispersion in adjustment sizes—has proven to be an
extremely useful sufficient statistic in evaluating the empirical relevance of various models
of price adjustment, as long as the drift (inflation) is not too large.

Three Amplification Channels With Nonzero Drift and Asymmetric Policies. Average du-
ration of inaction matters for propagation because it reflects the average speed at which
agents adjust to the aggregate shock. According to expression (44), three additional chan-
nels shape aggregate dynamics: (i) dispersion in duration of inaction, (ii) dispersion in ad-
justment size, and (iii) the covariance between duration of inaction and adjustment size.
The first two statistics have been analyzed in the price-setting context, so we refer to this
literature for a discussion. The third statistic is a novel contribution of our analysis. We
will discuss each in turn.

20In a model with monopolistic price-setters, the average markup gap is equal, up to a first order, to aggre-
gate real output. Therefore, the CIR1 tracks the deviation of real output relative to steady state following a
monetary shock δ.
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Dispersion in the duration of inaction amplifies the CIR1 because it reflects the coex-
istence of fast and slow adjusters; the latter slow the response to the shock and they are
more representative of the economy by the renewal property. This insight was formal-
ized by Carvalho and Schwartzman (2015) and Alvarez, Lippi, and Paciello (2016) in fully
time-dependent models with zero drift. Our formula formally demonstrates that this in-
sight extends beyond fully time-dependent models and also applies to environments with
nonzero drift and asymmetric policies.

Dispersion in adjustment sizes amplifies the CIR1 because it reflects a weak selection
effect—namely, that adjusting firms are not necessarily those with the largest need for
adjustment. A weak selection effect arises if the measure of firms whose gaps lie in the
neighborhood of the adjustment thresholds is small; in that case, most firms are dispersed
away from their adjustment threshold. Hence, the distribution of the adjustment sizes
exhibits large dispersion. With zero drift, the dispersion in adjustment sizes is measured
by the kurtosis of gap changes; with nonzero drift, it is measured by the skewness of gap
changes. Quantitatively, this connection was explored in Midrigan (2011) and Luo and
Villar (2020). We formally demonstrate that accounting for the dispersion of adjustment
size (either through kurtosis or skewness) is key to studying transitional dynamics in lumpy
economies more generally, beyond price-setting models.

Lastly, the covariance between duration of inaction and adjustment size also shapes
the CIR1, as it reflects the presence of asymmetric policies. Identifying and quantifying
this channel is one of the key payoffs from our theory. A naive approach is to identify an
asymmetric policy through an asymmetric distribution of adjustments. We have already
shown, however, that this approach is incorrect because time-dependent models—which
are inherently symmetric—generate asymmetric adjustments in the presence of drift. Our
analysis shows that the correct way to identify asymmetric policies in the presence of drift
is through the excess asymmetry of adjusters relative to non-adjusters, as measured by
Cov[τ̃� �̃x2]. This statistic complements alternative methodologies that aim to diagnose
whether frictions in capital allocation mainly affect upsizing firms or downsizing firms, as
the ones put forward by Caballero and Engel (2007) and Lanteri, Medina, and Tan (2020).

5. EMPIRICAL APPLICATION

We apply the theoretical results obtained in Sections 3 and 4 using establishment-level
data from Chile. First, we construct the distributions of capital gap changes �x and dura-
tion of inaction τ from the data. Second, we use these empirical distributions as inputs into
our formulas and obtain parameters, sufficient statistics, and the CIR1 as outputs. Lastly,
we use the sufficient statistics to discriminate across configurations of the Bernoulli cost
model and settle on the best calibration to explain the data.

5.1. Data Description

Sources. We use yearly data on manufacturing plants in Chile from the Annual Na-
tional Manufacturing Survey (Encuesta Nacional Industrial Anual) for the period 1979
to 2011. Chilean National Accounts and Penn World Tables provide information on the
depreciation rates and price deflators used to construct the capital series. We examine
the total capital stock and structures, a capital category that represents 30% of all invest-
ment in the manufacturing sector and features the strongest lumpy behavior. We consider
plants that appear in the sample for at least 10 years (more than 60% of the sample) and
have more than 10 workers. The Data Appendix describes the sample selection, the vari-
able construction, and the analysis for vehicles, machinery, and equipment.
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Capital Stock and Investment Rates. We construct the capital stock series using the
perpetual inventory method. Given an initial k0, a plant’s capital stock in year t is

kt = (1 − ζ)kt−1 + It/Dt� (45)

where ζ is the depreciation rate, Dt is the gross fixed capital formation deflator, and
initial capital k0 is a plant’s self-reported nominal capital stock at current prices for the
first year in which it is nonnegative. Gross nominal investment It is based on information
on purchases, reforms, improvements, and sales of fixed assets. We define the investment
rate ιt as the ratio of real gross investment to the capital stock21

ιt ≡ It/Dt

kt−1
	 (46)

5.2. Construction of Capital Gap Changes and Duration of Inaction

To apply the theory, for each plant and each inaction spell h, we record the capital gap
change upon action �xh and the spell’s duration τh. We construct capital gap changes
with investment rates from (46):

�xh =
{

log(1 + ιh) if |ιh|> ι�
0 if |ιh|< ι	 (47)

The threshold ι > 0 reflects the idea that small maintenance investments should be ex-
cluded. Following Cooper and Haltiwanger (2006), we set ι = 0	01, such that all invest-
ment rates below 1% in absolute value are considered to be part of an inaction spell.
Given the capital gap changes, we define an adjustment date Th from �xTh = 0 and
compute a spell’s duration as the difference between two adjacent adjustment dates:
τh = Th − Th−1. Finally, we truncate the distribution at the 2nd and 98th percentiles of
the investment distribution to eliminate outliers.22

Figure 3 plots the resulting cross-sectional distribution of nonzero capital gap changes
for structures (Panel A) and total capital (Panel B). Both histograms show sizable asym-
metry and positive skewness. In each figure, we plot the distribution for two subsamples:
observations with duration of inaction above the average duration (gray bars) and below
the average duration (white bars). Notice that capital gap changes in both subsamples lie
on top of each other, which is a sign of lack of covariance between adjustment size and
duration of inaction. Below, we interpret this fact through the lens of the theory.

5.3. Putting the Theory to Work

We put the theory to work by computing the cross-sectional statistics of capital gap
changes and duration of inaction to infer the parameters and sufficient statistics related

21Note that the investment rate equals the ratio in the last term of equation (7): ιTh ≡ iTh/kT−
h

= (kTh −
kT−

h
)/kT−

h
, where kT−

h
= limt↑Th kt . In contrast to the continuous-time model, in which investment is computed

as the difference in the capital stock between two consecutive instants, in the data we compute it as the differ-
ence between two consecutive years.

22Table I in the Data Appendix presents descriptive statistics on investment rates. In particular, the inaction
rate (|ι| < 0	01) equals 77.3% for structures and 40.1% for total capital. For comparison, the table includes
numbers reported by Cooper and Haltiwanger (2006) for U.S. manufacturing plants and by Zwick and Mahon
(2017) for U.S. firms from tax records.



1258 I. BALEY AND A. BLANCO

FIGURE 3.—Empirical distribution of nonzero capital gap changes. Notes: Own calculations using estab-
lishment-level data from Chile. Sample: Firms with at least 10 years of data, truncation at 2nd and 98th per-
centiles, and an inaction threshold of ι = 0	01. Panel A plots the distribution of nonzero capital gap changes
�x for structures and Panel B for total capital. Solid bars = inaction spells with duration below average; white
bars = inaction spells with duration above average.

to the CIR1. We apply the formulas in Propositions 2 and 3. Table I summarizes the re-
sults. The left side of the table shows the inputs from the data: cross-sectional statistics
of duration and capital gap changes. The right side shows the outputs from the theory:
parameters (ν�σ2�x∗), sufficient statistics (Var[x]�Cov[x�a]), and the CIR1.

Inputs From Microdata. We focus our discussion on the values obtained for struc-
tures. The duration of inaction has an average of E[τ] = 2	51 years and a coefficient of
variation squared of CV

2[τ] = 1	11, suggesting substantial heterogeneity in the adjust-

TABLE I

INPUTS FROM MICRODATA AND OUTPUTS FROM THE THEORYa

Inputs From Data Outputs From Theory

Structures Total Structures Total

Duration Parameters
E[τ] 2	510 1	749 ν 0.095 0.119
CV

2[τ] 1	107 0	872 σ2 0.049 0.049
x∗ 0.006 0.028

Gap Changes Sufficient Statistics
E[�x] 0	239 0	207 Var[x] 0.124 0.092
E[�x2] 0	126 0	098 Cov[a�x] 0.592 0.293
E[x3

τ] −0	089 −0	057 E[a] 2.644 1.637
Kur[�x] 4	635 5	683

Covariances CIR1

Cov[τ̃��x] 0	019 0	015 Drift + Asymmetric 3.661 2.562
E[τ̃x2

τ] 0	141 0	103 Driftless + Symmetric 1.939 1.657

aNotes: Own calculations using establishment-level data from Chile. Sample: Firms with at least 10 years of data, truncation at 2nd
and 98th percentiles, and inaction threshold of i= 0	01. Gap of adjusters: xτ = x∗ −�x. Normalized duration: τ̃ ≡ τ/E[τ].



AGGREGATE DYNAMICS IN LUMPY ECONOMIES 1259

ment frequency. Adjustment size has an average of E[�x] = 0	24; a second moment of
E[�x2] = 0	13; a third moment of E[x3

τ] = −0	09 (the distribution is right-skewed); and
a kurtosis of Kur[�x] = 4	64 (the distribution is leptokurtic). The covariance between
adjustment size and relative duration is almost zero Cov[τ̃��x] = 0	02, as suggested by
Figure 3. The duration-weighted second moment of gap changes is E[τ̃x2

τ] = 0	14.
We compute average age in two ways: directly from the data and using the formula

in (34), which connects it to the duration of inaction E[a] = E[τ](1 + CV
2[τ])/2 = 2	64

(for this reason, we show it in the second column with other outputs from the theory).
We obtain similar numbers using both methods, confirming the validity of the mapping.23

Next, we input these statistics into the formulas derived in the previous section.

Outputs From Theory: Parameters. From (31), we infer a drift of ν = 0	095, which re-
flects the depreciation rate ζ, productivity growth μz , and changes in relative prices be-
tween consumption and capital goods (ignored in the model). We apply (32) to estimate
the volatility of idiosyncratic shocks as σ2 = 0	05. The volatility estimate is in line with
the value used by Khan and Thomas (2008). Lastly, using (33), we estimate a tiny reset
capital gap of x∗ = 0	006. Although small, the positive reset capital gap suggests that the
distribution of capital gaps is right-skewed and that the drift effect is overcome by policy
asymmetry (recall the discussion in Section 4.1). In particular, we infer that downward
adjustment is more costly than upward adjustment.

Outputs From Theory: Sufficient Statistics. Using (37), we infer a steady-state variance
of capital gaps of Var[x] = 0	12.24 The estimated variance of gaps is large (when compared
to a purely state-dependent model) and suggests a significant role for free adjustments.25

Using (38), we infer a covariance between capital gaps and age of Cov[x�a] = 0	60.
The positive covariance between capital gaps and age means that plants that have not ad-
justed for a long time—their capital is old—have larger capital-to-productivity ratios than
those that have recently adjusted. This observation is at odds with a pure time-dependent
model, which reinforces our assessment that it is more costly for firms to downsize in
response to negative productivity shocks than to upsize in response to positive ones.26

To summarize, the large variance of gaps Var[x] and the positive covariance with age
Cov[x�a] strongly suggest that firms follow a hybrid investment policy with both time-
and state-dependent components. Time-dependent adjustments increase the dispersion
of gaps, while state-dependent asymmetric adjustments generate a positive covariance.
Since the Bernoulli fixed-cost model nests these two alternatives, it serves as an adequate
laboratory to study the relative importance of these components. In the following section,
we search for a configuration of the Bernoulli model that best explains the data.

23We thank Francesco Lippi for suggesting this robustness exercise.
24Appendix G connects Var[x] to the notion of capital misallocation, defined as the cross-sectional disper-

sion in log marginal revenue products of capital as Std[log MPK] = (α− 1)Var[x]1/2. We compare our estima-
tion strategy that uses exclusively investment data with the standard approach that requires additional data on
value added or sales.

25A state-dependent model (λ = 0) that matches the drift, idiosyncratic volatility, and average duration
implies a variance of Var[x] = 0	072, 40% lower than what is observed in the data. See Table II.

26A time-dependent model (with infinite fixed costs) that matches the drift, idiosyncratic volatility, and
average duration implies a covariance of Cov[x�a] = −0	602, which has the opposite sign of the one observed
in the data. See Table II.
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Output From Theory: CIR1. Assuming that the Bernoulli fixed-cost model is a good
description of the data, the sufficient statistics imply that CIR1(δ)/δ= 3	66. This number
says that a negative aggregate productivity shock of 1% generates a cumulative deviation
of 3.66% in the average capital-to-productivity ratio (and in aggregate capital, up to first
order) above its steady-state value along the transition path. In other words, aggregate
productivity shocks have a long-run multiplier effect of approximately 3	7. As firms grad-
ually scale down to accommodate the fall in aggregate productivity, capital is adjusted
downward by selling it or letting it depreciate. We approximate the half-life of the re-
sponse assuming exponential decay, obtaining 2.5 years (ln(2)× CIR1).27

Notice that naively applying the kurtosis formula in (43), which is invalid for environ-
ments with nonzero drift and policy asymmetry, implies CIR1(δ)/δ= 1	94. This underes-
timates the effects of an aggregate productivity shock by about 50%.

5.4. Parameterization of the Bernoulli Fixed-Cost Model

With the estimated parameters of the stochastic process and the steady-state moments
at hand, a natural question arises: Which configuration of the Bernoulli fixed-cost model
generates the Chilean data? How important are the fixed costs relative to free adjustment
opportunities?

To answer these questions, we explore the benchmark configurations nested within the
Bernoulli fixed-cost model to assess their ability to generate the data. These special cases
illustrate the relationship between the structure of adjustment frictions and the sufficient
statistics. In all exercises, we take as given the estimated parameters of the stochastic pro-
cess and match the average duration of inaction spells. Given the parameters, matching
average duration imposes additional constraints—for example, the average adjustment
size is also matched by equation (31). Table II summarizes the calibrated parameters.

Column (I) considers a purely state-dependent model by shutting down the free adjust-
ments, λ = 0. Anticipating that this configuration generates a tiny variance of gaps, and
to give it the largest possibility of matching the positive covariance of capital gaps and
age, we set an inaction threshold for negative investments of θ+ = ∞ (this is effectively
a one-sided inaction region). To match average duration, the inaction threshold for pos-
itive investments is θ− = 0	043. The physical adjustment costs represent 0.1% of yearly
revenue.28 The implied sufficient statistics are Var[x] = 0	073 and Cov[x�a] = 0	661. The
CIR1 equals 2.734, which is 25% below the data.

Column (II) considers the limiting case with infinite fixed costs, {θ−� θ+} → {∞�∞},
which produces a purely time-dependent model. We calibrate the arrival rate of free ad-
justments λ = 0	397 to match average duration E[τ]. As expected, this model produces
a significant variance of gaps of Var[x] = 0	182, larger than in the data. However, it pro-
duces a negative covariance with age of Cov[x�a] = −0	601, which we do not observe in
the data. Surprisingly, this configuration implies a CIR1 of 2.512, which is similar to the
one obtained in the state-dependent model of Column (I).

This analysis illustrates how two extreme calibrations can generate the same CIR1 by
matching one of the two sufficient statistics. The state-dependent model correctly cap-
tures the covariance of gaps with age—but misses the variance of gaps—whereas the

27Assuming exponential decay at rate ρ, the half-life = ln(2)/ρ. Applying the definition of the CIR, we have
CIR1 = ∫ ∞

0 e−ρt dt = 1/ρ. Together, half-life = ln(2)× CIR1 = 0	69 × 3	66 = 2	54.
28Assuming an output to capital elasticity of α = 0	6 (adjusted by the absence of labor in the model), the

average yearly payment of adjustment costs relative to yearly revenue is equal to (θ− Pr[xτ = x−] + θ+ Pr[xτ =
x+])/(E[τ]Eg[exp(αx̂)])= (0	043 × 1)/(2	519 × 17)= 0	001.
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TABLE II

CONFIGURATIONS OF THE BERNOULLI FIXED-COST MODELa

(I) Bernoulli (II) Bernoulli (III) Extended
Data λ= 0 {θ−� θ+} → {∞�∞} λ− = λ+

Parameters
θ− (for it > 0) – 0	043 ∞ 0	945
θ+ (for it < 0) – ∞ ∞ ∞
λ− (for it > 0) – 0 0	397 0	800
λ+ (for it < 0) – 0 0	397 0

Moments
E[τ] 2	519 2	519∗ 2	519∗ 2	519∗

Var[x] 0	124 0	073 0	182 0	107
Cov[x�a] 0	600 0	661 −0	601 0	564
x∗ 0	005 −0	140 0	239 −0	037
CIR1 3	663 2	734 2	512 3	237

aNotes: Data from Chilean plants. Configurations: (I) State-dependent Bernoulli with λ = λ+ = λ− = 0. (II) Time-dependent
Bernoulli with lim{θ−� θ+} → {∞�∞} and λ= λ+ = λ− . (III) Extended Bernoulli with λ+ = λ− . Parameters for the stochastic pro-
cess: ν = 0	095 and σ2 = 0	050. ∗ = targeted moment.

time-dependent model does the opposite. Calibrations that lie between these two ex-
tremes only decrease the CIR1. We conclude that the Bernoulli fixed-cost model falls
short of generating the two sufficient statistics for propagation of aggregate shocks in the
data.

Extended Bernoulli Fixed-Cost Model. Can a simple modification of the Bernoulli
model enable it to explain the data? The answer is yes. The extension considers differ-
ent rates of free adjustments for positive and negative investments, λ− and λ+. We verify
numerically that the sufficient statistics for the CIR1 remain valid under this extension.29

Column (III) shows the calibration. The extended model breaks the trade-off between
asymmetry and randomness embedded in the original model, and it does an excellent job
of matching the data. The best match has fixed costs of (θ−� θ+)= (0	945�∞) and arrival
rates of free adjustments of (λ−�λ+)= (0	800�0). The average physical adjustment costs
represent 0.1% of yearly revenue. The implied sufficient statistics are Var[x] = 0	107 and
Cov[x�a] = 0	564, and the CIR1 equals 3.237, which is almost 90% of its empirical value.

As in the pure state-dependent case, we obtain a one-sided inaction region that matches
the positive covariance of gaps and age. Additionally, the free adjustments introduce a
random element in the policy that increases the variance of gaps, but it applies exclusively
to upward adjustments. Finally, notice that the reset state x∗ implied by the extended
Bernoulli model is closer to the data than in the other two configurations.

Heterogeneity and Robustness Checks. Our theory assumes that one can exploit the
cross-section to learn about the behavior of individual firms over time. In practice, fixed
heterogeneity may affect the computation and interpretation of the cross-sectional statis-
tics (Blanco and Cravino (2020)). In Appendix I, we present a multisector extension that
allows for fixed heterogeneity (e.g., across sectors or plant size) and we show how to ag-
gregate sectorial statistics. Additionally, we conduct a series of robustness checks in the

29Appendix H verifies numerically that the CIR1 in the extended Bernoulli model is well approximated by
the sufficient statistics in expression (29) for small δ shocks.
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Data Appendix. Throughout these checks, we consistently obtain similar sufficient statis-
tics.

6. CONCLUSION

We develop a parsimonious framework to study the propagation of aggregate produc-
tivity shocks when firms make lumpy investments. Through a sufficient statistics approach,
we discover that the transitional dynamics of capital are structurally linked to the degree
of steady-state capital misallocation and the relative costs of upsizing and downsizing.
Our results indicate that policies that impact the lumpiness of investment (Chen, Jiang,
Liu, Suárez Serrato, and Xu (2019)) directly affect the propagation of aggregate shocks.

Looking forward, we foresee four avenues for developments that would extend the
scope of our theory. First, we focus on a one-dimensional state. Extending the theory to
a multidimensional state would facilitate studying transitional dynamics with multiplant
firms (Kehrig and Vincent (2019)), several production inputs (Hawkins, Michaels, and
Oh (2015)), or the interaction of lumpy investment and price-setting (Sveen and Weinke
(2007)).

Second, we assume full adjustment upon action. Extending the theory to accommo-
date partial adjustments would allow for interactions of lumpiness with convex adjustment
costs, time-to-build, learning, or other features that may generate a correlation between
adjustments. Our work in Baley and Blanco (2019) made progress in this direction by
providing bounds for the CIR in environments with learning by carrying the aggregate
forecast error as an additional state.

Third, we characterize the CIR, but not the complete profile of the impulse-response
function; moreover, we only consider marginal perturbations around the steady state.
Extending the theory to characterize the full IRF and general perturbations is key to
discuss nonlinearities and different types of aggregate shocks. Contemporaneous work
makes progress in these directions: Álvarez and Lippi (2021) characterized the complete
impulse-response function using eigenvalue-eigenfunction decompositions, and Alexan-
drov (2020) studied the effect of non-marginal shocks in the presence of drift.

Finally, our theory assumes constant prices along the transition path. Appendix J re-
laxes this assumption and presents a general equilibrium model that delivers constant
prices as an equilibrium outcome. However, incorporating complex feedback from the
distribution to individual policies, for example, strategic complementarities, is likely the
most important extension ahead, but also the most challenging.
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