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AGGREGATE DYNAMICS IN LUMPY ECONOMIES

Isaac Baley and Andrés Blanco

How does an economy’s capital respond to aggregate productivity shocks when

firms make lumpy investments? We show that capital’s transitional dynamics

are structurally linked to two steady-state moments: the dispersion of capital to

productivity ratios—an indicator of capital misallocation—and the covariance of

capital to productivity ratios with the time elapsed since their last adjustment—

an indicator of asymmetric costs of upsizing and downsizing the capital stock.

We compute these two sufficient statistics using data on the size and frequency

of investment of Chilean plants. The empirical values indicate significant effects

of aggregate productivity shocks and favor investment models with a strong

downsizing rigidity and random opportunities for free adjustments.

Keywords: inaction, lumpiness, transitional dynamics, sufficient statistics,

non-convex adjustment costs, investment, state-dependence, time-dependence.

1. INTRODUCTION

Economies are exposed to productivity, monetary, and many other aggregate shocks. In

a frictionless world, agents immediately respond to these shocks and bring the economy

back to normal without delay. In contrast, in the presence of microeconomic adjustment

frictions, agents gradually respond to these shocks slowing the economy’s transition.

Lumpiness—periods of inaction followed by bursts of activity—is one of the most per-

vasive manifestations of microeconomic adjustment frictions. Capital investment, price

and wage setting, labor hiring and firing, inventory management, consumption of durable

goods, portfolio choice, and many other economic decisions made by firms and households

exhibit lumpy adjustment. How large are the effects of aggregate shocks in lumpy envi-

ronments? Understanding the role of lumpy adjustment for the propagation of aggregate

shocks is crucial for the design and implementation of policies aimed at stabilizing the

business cycle and promoting growth.

We propose a new sufficient statistics approach to quantitatively assessing the role of

lumpiness for aggregate transitional dynamics. The approach consists of two steps. First,
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we represent the speed of convergence of aggregate variables after an aggregate shock as

a function of two steady-state cross-sectional moments. The premise is that observing

agents’ responses to idiosyncratic shocks in steady state conveys information about their

responses to an aggregate shock. Second, we recover these steady-state cross-sectional

moments using microdata on adjustments. The premise is that the size and timing of the

actions taken by adjusters inform us about the behavior of non-adjusters during their

period of inaction.

We apply the sufficient statistics approach to investigate the propagation of produc-

tivity shocks when firms make lumpy investments. In the first step, we link the speed

of convergence of average capital following an aggregate productivity shock to (i) the

steady-state variance of log capital-to-productivity ratios, and (ii) the covariance of log

capital-to-productivity ratios with the time elapsed since their last adjustment. These suf-

ficient statistics have a meaningful economic interpretation. The variance of log capital-

to-productivity ratios reflects the degree of capital misallocation. In turn, the covariance

of log capital-to-productivity ratios with the time elapsed since their last adjustment re-

flects firms’ response to depreciation and the relative costs of shrinking and expanding the

capital stock. Thus, our theory indicates that matching these two steady state moments

is critical for understanding the transitional dynamics of aggregate capital.1

In the second step, we recover these sufficient statistics using data on the size and timing

of investment from manufacturing plants in Chile. We discover that the empirical values

of these two steady-state moments imply that micro frictions in investment significantly

slow down the propagation of productivity shocks. Because different types of adjustment

frictions give rise to different values for these moments, the sufficient statistics also serve

as model discrimination devices. As a case in point, we find that the investment data

discriminates in favor of lumpy models with random fixed costs. Within this subclass,

models that feature higher costs to downsizing than upsizing the capital stock.

In summary, when applying our methodology to the study of lumpy investment, we

establish structural links between the transitional dynamics of aggregate capital that fol-

1Lanteri, Medina and Tan (2019) make a similar point by showing that the transitional dynamics

of domestic production following an import-competition shock depend on the size of frictions in capital

reallocation; and Moll (2014) shows in a model with financial frictions that the speed of transitions and the

steady-state level of capital misallocation jointly depend on the persistence of idiosyncratic productivity.
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low an aggregate productivity shock, steady-state moments such as capital misallocation,

and the nature of capital adjustment costs. More generally, our sufficient statistics cap-

ture the economic forces that shape aggregate dynamics, serve as model discrimination

devices, provide researchers with a unique set of moments to be targeted by lumpy mod-

els, and guide empirical efforts to collect the most informative statistics for the theory.

Next, we explain the theory in more detail and provide economic intuitions for the results.

Sufficient statistics for aggregate dynamics. Consider the following economic environment.

There is a continuum of agents. Each agent’s uncontrolled state x follows a diffusion, dxt =

−ν dt + σ dWt, where the trend is common and the Brownian shocks are idiosyncratic.

Payoffs depend on the state x. To control their state, agents pay an adjustment cost.

The adjustment cost is different for upward and downward adjustments, and there are

random opportunities for free adjustments that arrive at a constant rate. The decision rule

consists of (i) a constant reset point x∗, to which agents set their state when they decide to

adjust, and (ii) the timing of adjustments, which occur when the state reaches one of two

thresholds {x−, x+} or a free opportunity to adjust arrives. The economy features a steady-

state distribution of idiosyncratic states F (x). We conceptualize aggregate variables as

functions of cross-sectional moments of the state (e.g., the mean, the variance, or other

higher-order moments).

In this environment, we characterize analytically the transitional dynamics of the cross-

sectional distribution after a common exogenous disturbance. Consider the following hy-

pothetical experiment. Initially, the economy is at its steady-state distribution F (x). At

time zero, an aggregate shock hits—a small, identical, and once-and-for-all change in

agents’ states—displacing the distribution away from the stationary one. As agents grad-

ually respond to the aggregate shock by actively changing their state, the distribution

follows a deterministic transition to its steady state. Assuming that agents follow their

steady-state decision rules {x−, x∗, x+} along the transition, that is, neglecting any feed-

back from the distribution to policies, what can we say about the speed of convergence

to steady state?

As a first step, following Álvarez, Le Bihan and Lippi (2016), we define our notion of the

speed of convergence as the area under the impulse-response function of any moment of
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x relative to its steady-state value. We label this object the cumulative impulse response

(CIR). The CIR is a useful metric of convergence: It summarizes in one scalar both the

impact and persistence of the economy’s response, eases comparison across models, and

represents a multiplier of aggregate shocks. In the frictionless benchmark, instantaneous

adjustment to the aggregate shock implies a CIR of zero. With adjustment frictions, the

larger the CIR, the longer it takes firms to respond to the aggregate shock, and the slower

the transitional dynamics.2

Our first theoretical result proves that the CIR can be expressed, up to first order, as

a linear combination of two steady-state cross-sectional moments. In particular, the CIR

of the average of the distribution depends on (i) the steady-state variance of the state,

Var[x], and (ii) the covariance of the state with its age a, Cov[x, a], where age is the time

elapsed since the last adjustment.

A major challenge to applying our sufficient statistics approach arises if F (x) is un-

observable, as in the majority of applications. Thus the steady-state moments cannot

be computed directly from the data. As economists, however, we have available detailed

panel data Ω = {∆x, τ} with information on the size of discrete adjustments ∆x and the

duration of completed inaction spells τ . Our second theoretical result provides analytic

mappings from the data Ω to moments of the invariant distribution F (x) and the stochas-

tic process parameters (ν, σ2, x∗). To obtain these mappings, we exploit, exclusively, the

properties of Markov processes and the constant reset state x∗.

Taken together, our theoretical results provide researchers with the sufficient statistics

that characterize the transitional dynamics of aggregate variables in lumpy environments,

as well as with mappings to infer the sufficient statistics and parameters using microdata.

Capital dynamics with lumpy investment. To investigate the propagation of aggregate

productivity shocks, we set up a parsimonious partial equilibrium investment model with

adjustment costs, in the spirit of Caballero and Engel (1999) and the related literature.3

Firms produce output with capital. They are subject to depreciation, technological growth,

2Álvarez, Le Bihan and Lippi (2016), Baley and Blanco (2019), and Álvarez, Lippi and Oskolkov (2020)

use the CIR to compare the effects of monetary shocks across different price-setting models.
3Similar environments have been studied by Dixit and Pindyck (1994); Bertola and Caballero (1994);

Caballero, Engel and Haltiwanger (1995); Cooper and Haltiwanger (2006); and others.
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and idiosyncratic productivity shocks. To change their capital, firms pay a fixed cost that

scales with firms’ size and could be different for upward and downward adjustments.

Also, firms face random opportunities for free adjustments. Defining the state x as the log

capital-to-productivity ratio, the model falls into the basic environment described above.

How does the economy’s capital respond to a permanent change in aggregate produc-

tivity? What do the data tell us about the role of micro lumpiness for capital dynamics?

And which type of investment rules best match the data?

Using plant-level investment data from Chile, we recover the two sufficient statistics

that characterize the propagation of aggregate productivity shocks: The steady-state vari-

ance of log capital-to-productivity ratios, Var[x], and the covariance of log capital-to-

productivity ratios with their age, Cov[x, a]. Concretely, we recover these sufficient statis-

tics using the following empirical moments: the average and dispersion in duration of

inaction, the dispersion and skewness of adjustment size, and the covariance between

duration of inaction and adjustment size.

The sufficient statistics inferred from the data imply significant effects of aggregate

shocks. We obtain a CIR of 3.7: A 1% decrease in aggregate productivity generates a total

deviation in capital-to-productivity ratios of 3.7% above steady state along the transition

path. The implied half-life of the aggregate capital response (assuming exponential decay)

is 2.5 years. To put these numbers in context, a symmetric fixed adjustment cost model

that matches the average frequency of inaction produces a CIR of 0.4 and a half-life of

0.3 years; these numbers are ten times smaller than what the data suggest.

Our analysis reveals that (i) capital adjustment frictions at the micro-level significantly

slow down the propagation of aggregate shocks; and that (ii) allowing for asymmetric

policies—through large downsizing costs—and randomness in adjustment—through in-

frequent opportunities for free adjustments—is key for correctly matching the sufficient

statistics that shape aggregate capital dynamics.

Contributions to the literature. We highlight three contributions to previous work. First,

we provide sufficient statistics that capture the role of micro lumpiness for aggregate

dynamics. Álvarez, Le Bihan and Lippi (2016) provide the first step in this direction by

studying the transitions of the first moment of the distribution in economies with zero
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drift and symmetric policies. They show that in a large class of price-setting models,

the CIR of real output following a monetary shock is proportional to the kurtosis of price

changes times the average price duration. Their theoretical strategy links the CIR directly

to the observables in the data. Our strategy is different because we split this challenging

problem into two simpler subproblems: From the CIR to steady-state moments and from

steady-state moments to the data. Our approach has various advantages. It improves our

understanding of the economic forces behind these links. It eases the analysis of sufficient

statistics in richer economic environments than previously studied, including drift and

asymmetric policies. And finally, it allows us to characterize the transitional dynamics of

higher-order moments beyond the average.4

Second, we strengthen the bridge between two branches of the literature that study

lumpy economies with different objectives and methodologies. The first aims to under-

stand the role of lumpiness for the propagation of aggregate shocks; see Caplin and Spulber

(1987); Caplin and Leahy (1991, 1997); and Caballero and Engel (1991) for early work.

The second aims to quantify the role of lumpiness for productivity losses in steady state.

For example, Álvarez, Beraja, Gonzalez-Rozada and Neumeyer (2018) and Blanco (2020)

examine inefficient price dispersion and Asker, Collard-Wexler and De Loecker (2014) ex-

amine capital misallocation. To our best knowledge, we are the first to show theoretically

the structural links that exist between transitional dynamics of higher-order moments and

the steady-state distribution of agents in lumpy economies with drift and asymmetries.

We believe our approach may engage researchers in exploiting the connections between

these two dimensions of the same environment.

Third, our work speaks to the debate about the nature of capital adjustment frictions.

The response of aggregate capital to productivity shocks consists of a direct channel

(changes in the marginal product of capital) and an indirect channel (changes in the user

cost of capital). The quantitative investment literature has jointly analyzed both channels

in models calibrated to match moments that appear ex ante to be sensible choices, but

that sometimes lead to opposite conclusions.5 Instead, our approach focuses exclusively

4In a frictionless environment, Gabaix, Lasry, Lions and Moll (2016) studies the dynamics of inequality

and provide a lower bound for the speed of convergence by the dominant eigenvalue.
5See Thomas (2002); Veracierto (2002); Gourio and Kashyap (2007); Khan and Thomas (2008); Bach-

mann, Caballero and Engel (2013); House (2014); and Winberry (2021) for different conclusions about
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on the direct channel. This permits us to identify precisely the empirical moments that

lumpy models must target that capture the role of lumpiness for transitional dynamics

and gauge the strength of the partial equilibrium response to aggregate shocks.

2. A PARSIMONIOUS MODEL OF LUMPY INVESTMENT

How does an economy’s capital respond to aggregate productivity shocks when firms

face capital adjustment frictions? We present a parsimonious partial equilibrium model

of lumpy investment to derive sufficient statistics that characterize the role of micro

lumpiness for aggregate dynamics. We first study the problem of an individual firm and

characterize its optimal investment policy in terms of capital-to-productivity ratios. Then

we consider the steady state of an economy with a continuum of ex ante identical firms

and perturb it with an aggregate productivity shock. Finally, we define the cumulative

impulse response (CIR) of aggregate capital, which summarizes transitional dynamics.

2.1. The problem of an individual firm

Time is continuous and extends forever. Consider a firm that produces output using

capital. It faces capital adjustment frictions and a constant real interest rate r.

Technology and shocks. The firm produces output yt using capital kt according to a pro-

duction function with decreasing returns to scale

(1) yt = (ztet)
1−αkαt , α < 1.

The firm’s total productivity is driven by aggregate zt and idiosyncratic et components.

Aggregate productivity zt grows deterministically at a rate µz > 0,

(2) dlog(zt) = µz dt.

Idiosyncratic productivity shocks et follow a geometric Brownian motion with zero drift

(w.l.o.g) and volatility σ,

(3) dlog(et) = σ dWt, Wt ∼ Wiener.

the role of lumpiness when GE effects are present.
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The capital stock, if uncontrolled, depreciates at a rate ζ > 0.

The firm can control its capital stock through purchasing or selling capital. For every

change in its capital stock (investment) it ≡ ∆kt, the firm must pay an adjustment cost θt

that is proportional to its total productivity.6 The adjustment cost is different for positive

and negative investments, and there exist random opportunities for free adjustments.

Concretely, the adjustment cost takes the form

(4) θt ≡ Θ (it,∆Nt) ztet,

where Nt is a Poisson counter with arrival rate λ. The function Θ (it,∆Nt) takes the

following values:

(5) Θ (it,∆Nt) ≡


0 if it = 0 or ∆Nt = 1,

θ− if it > 0 and ∆Nt = 0,

θ+ if it < 0 and ∆Nt = 0.

We label this type of adjustment friction—i.e., asymmetric fixed costs with random free

adjustments—Bernoulli fixed costs. We consider different costs for downsizing and up-

sizing the capital stock to reflect, in a parsimonious way, several asymmetric frictions in

capital adjustment. In turn, we consider random free adjustments as a proxy for frictions

that contain a stochastic element, e.g., information or search frictions.7 Our analysis shows

that both frictions are relevant to match the data.

An advantage of this formulation is that it nests two benchmark cases of strict state-

and time-dependence within a more general framework. Setting λ = 0 shuts down the

random free adjustments and collapses the model into a standard state-dependent fixed

cost problem, whereas in the limiting case of infinite fixed costs, i.e., {θ−, θ+} → {∞,∞},
the model collapses into a standard time-dependent problem that allows adjustment only

at random dates that arrive at a rate λ > 0.8

6For any stochastic process qt, we use the notation ∆qt = qt − qt− , where qt− ≡ lims↑t qs denotes the

limit from the left.
7Investment with asymmetric adjustment frictions, e.g., partial irreversibility, is studied by Abel and

Eberly (1996); Bertola and Caballero (1994); Dixit and Pindyck (1994); and Lanteri (2018); investment

with information frictions is studied by Verona (2014); and investment with search frictions is studied by

Kurmann and Petrosky-Nadeau (2007) and Ottonello (2018).
8The Bernoulli fixed-cost formulation originated in the pricing literature to match the empirical dis-

tribution of price changes. See Nakamura and Steinsson (2010) and Álvarez and Lippi (2014).
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Investment problem. Let V (k, z, e) be the value of the firm. Given the initial conditions

(k0, z0, e0), the firm chooses a sequence of capital adjustment dates {Th}∞h=1 and invest-

ments {iTh}∞h=1, where h counts the number of adjustments, to maximize its expected

discounted stream of profits. The sequential problem of the firm is described by

(6) V (k0, z0, e0) = max
{Th, iTh}

∞
h=1

E

[∫ ∞
0

e−rtyt dt −
∞∑
h=1

e−rTh (θTh + iTh)

]
,

subject to the production function (1), aggregate productivity (2), idiosyncratic produc-

tivity (3), adjustment costs (4 and 5), and the law of motion for its capital stock

(7) log(kt) = log(k0) − ζt +
∑
h:Th≤t

log

(
1 +

iTh
kT−h

)
,

which describes a period’s capital stock as a function of the firm’s initial stock k0, the

depreciation rate ζ, and the sum of the investments made at prior adjustment dates.

2.2. Optimal Policy

We solve the sequential problem in (6) recursively as a stopping-time problem using the

Principle of Optimality. The resulting investment policy is characterized by an asymmetric

inaction region

(8) R ≡
{

(k, z, e) : k−(z, e) ≤ k ≤ k+(z, e)
}
,

where k−(z, e) and k+(z, e) are the lower and upper inaction thresholds, together with

a reset value k∗(z, e) to which capital is set upon every adjustment. Given these three

functions, {k−, k∗, k+}, adjustment happens at every date Th when the capital stock falls

outside the inaction region R or there is an opportunity of free adjustment:

(9) Th = inf {t ≥ Th−1 : (kt, zt, et) /∈ R or ∆Nt = 1} .

Investment iTh is the difference between the reset value and the capital immediately before

adjustment:

(10) iTh = k∗(z, e)− kT−h .
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Given the optimal adjustment dates in (9), we define two useful notions of duration of

inaction: the duration of completed spells, denoted by τ , equal to the difference of two

consecutive adjustment dates

(11) τh ≡ Th − Th−1, with T0 = 0,

and the duration of uncompleted spells or capital age, denoted by a, equal to the time

elapsed since the last adjustment

(12) at ≡ t−max{Th : Th ≤ t}.

After each adjustment, the capital age is reset to zero, i.e., aTh = 0.

Log capital-to-productivity ratio. To characterize the policy, it is convenient to reduce the

state space and recast the problem in terms of a new variable, the log of the capital-to-

productivity ratio:

(13) x̂t ≡ log

(
kt
ztet

)
.

The problem admits the reformulation because of the homothetic production function and

the adjustment costs proportional to productivity.

Lemma 1 characterizes the firm value and the optimal investment policy in terms of

the log capital-to-productivity ratio through the standard sufficient optimality conditions.

The firm value and the policy must satisfy: (i) the Hamilton-Jacobi-Bellman equation,

which describes the evolution of the firm’s value during periods of inaction, (ii) the value-

matching conditions, which set the value of adjusting equal to the value of not adjusting

at the borders of the inaction region, and (iii) the smooth-pasting and optimality con-

ditions, which ensure differentiability at the borders of inaction and the reset point. To

simplify notation, we define ν ≡ ζ +µz, which reflects the drift affecting the uncontrolled

x̂’s, and ρ ≡ r + λ − µz − σ2/2. All proofs appear in Appendices A and B; each proof

begins with an outline of the proof’s strategy and an intuitive explanation.

Lemma 1 Let V(x̂) : R→ R be a function of the log capital-to-productivity ratio. If V(x̂)

and the values {x̂−, x̂∗, x̂+} satisfy the following three conditions, then the optimal policy

is {k−, k∗, k+} = ze× {exp(x̂−), exp(x̂∗), exp(x̂+)} and V(x̂) = V (ze exp(x̂), z, e)/(ze).
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(i) In the interior of the inaction region, V(x̂) solves the HJB equation:

ρV(x̂) = exp(αx̂) − ν
dV(x̂)

dx̂
+

σ2

2

d2V(x̂)

dx̂2
(14)

+ λ [V(x̂∗)− (exp(x̂∗)− exp(x̂))] , ∀x̂ ∈
(
x̂−, x̂+

)
.

(ii) At the borders of the inaction region, V(x̂) satisfies the value-matching conditions:

V(x̂−) = V(x̂∗) − θ− −
(
exp(x̂∗)− exp(x̂−)

)
,(15)

V(x̂+) = V(x̂∗) − θ+ −
(
exp(x̂∗)− exp(x̂+)

)
.(16)

(iii) At the borders of the inaction region and the reset state, V(x̂) satisfies the smooth-

pasting and the optimality conditions:

(17) V ′(x̂) = exp(x̂), ∀x̂ ∈ {x̂−, x̂∗, x̂+}.

Notice that when expressed in terms of log capital-to-productivity ratios, the inaction

region and the reset state are constant and thus memoryless. The constant policy implies

that each adjustment completely erases the history of idiosyncratic shocks. Also notice

that adjustment dates in (9), duration of inaction in (11), and age in (12) can be written as

functions of log capital-to-productivity ratios (just exchanging k for x̂ in their expressions)

and their distributions remain unchanged. In the case of investment, the continuity of the

productivity process allows us to recover the investment rate in (7) from the change in

the log capital-to-productivity ratio as follows:

(18) 1 +
iTh
kT−h

=
k∗(zTh , eTh)

kT−h
=

k∗(zTh , eTh)/(zTheTh)

kT−h
/(zT−h

eT−h
)

= exp(∆x̂Th).

In the first equality we apply the definition of investment. In the second equality, we mul-

tiply and divide by total productivity at the moment of adjustment and use the continuity

of the stochastic process in the denominator to exchange (zTh , eTh) for (zT−h
, eT−h

). In the

third equality, we substitute the definition of capital-to-productivity ratios.

With the problem of an individual firm fully characterized, we examine an economy

with a continuum of firms.

2.3. Economy with a continuum of firms

Consider a continuum of ex ante identical firms that face the problem described in the

previous section. The stochastic processes of idiosyncratic productivity Wt and the arrival
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of free adjustments Nt are independent across firms. The economy features a steady-

state distribution G(x̂), with density g(x̂), that solves the following Kolmogorov forward

equation with its boundary conditions:

ν
dg(x̂)

dx̂
+

σ2

2

d2g(x̂)

dx̂2
− λg(x̂) = 0 ∀x̂ 6= x̂∗,(19) ∫ x̂+

x̂−
g(x̂) dx̂ = 1, g(x̂−) = g(x̂+) = 0.

We denote by Eg [·] the expectations computed with the steady-state density g.

Capital gaps. Using the steady-state distribution, for every firm we define the capital gap

as its log capital-to-productivity ratio relative to the steady-state average:

(20) xt ≡ x̂t − Eg[x̂],

where Eg[x̂] ≡
∫ x̂+
x̂−

x̂ dg(x̂) dx̂. Notice that in the absence of adjustment frictions, capi-

tal gaps would always be equal to zero. Similarly, we redefine the investment policy by

centering the borders of the inaction region and the reset state around the average:

(21) (x−, x∗, x+) = (x̂− − Eg[x̂], x̂∗ − Eg[x̂], x̂+ − Eg[x̂]).

From now on, we will work with capital gaps x. We use F (x) and f(x) to denote the

distribution and density of capital gaps. We will also denote by E [·] the expectations

computed with their steady-state distribution F . Given the centralization, the reset gap

x∗ is understood as the gap of adjusters relative to the average gap in the cross-section.

2.4. Aggregate productivity shock

How does aggregate capital respond to an aggregate productivity shock? Starting from

the steady state, we introduce a small and unanticipated decrease in the (log) level of

aggregate productivity of size δ > 0, which we label as δ-perturbation. We normalize

its arrival date to t = 0, so aggregate productivity is ln z0 = ln z0− − δ. The negative

aggregate productivity shock generates a homogeneous increase in the capital gap of all

firms, as they now have too much capital relative to their productivity: x0 = x0− + δ.

Let Ft(x) be the distribution t periods after the aggregate shock and Et [·] denote

expectations computed with Ft. The distribution of capital gaps displaces horizontally to
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the right relative to the steady-state distribution, i.e., the gap distribution immediately

after the aggregate shock is F0(x) = F (x − δ).9 After the initial displacement, the gap

distribution evolves according to the firms’ policies, and eventually, it converges back to

its steady state. By assuming a constant interest rate, investment policies do not respond

to changes in the distribution and they are fixed along the transition path.

Panel A in Figure 1 plots the steady-state density f(x) and the initial density f0(x)

following the δ-perturbation; it also shows an arbitrary m-th cross-sectional moment be-

fore and after the shock. Our exercise consists of tracking these moments as they make

their way back to their steady-state value.

Figure 1.— Distributional Dynamics and Cumulative Impulse Response

Capital gaps

A. Distribution of State

steady state after δ-shock

E[xm] E0[xm]

CIRm(δ) =
∫∞

0 IRFm(δ, t) dt

Time

B. Cumulative Impulse Response

IRFm(δ) = Et[xm]− E[xm]

Notes: Panel A shows the steady-state distribution of the idiosyncratic state f(x) and an initial dis-

tribution f0(x) = f(x − δ) following the δ-shock. It also illustrates an arbitrary m-th cross-sectional

moment to be tracked from its initial value E0[xm] toward its steady-state value E[xm]. Panel B shows

the transitional dynamics of the m-th moment: the IRF (solid line) and the CIR (area under the IRF).

Aggregate deviations from steady state. We are interested in characterizing the effects

of the aggregate productivity shock on the average capital-to-productivity ratio, K̂t ≡
Egt [exp(x̂)], expressed as percent deviations from its steady-state value K̂ ≡ Eg [exp(x̂)].

This deviation, up to a first-order approximation, can be expressed as the average gap:

(22)
K̂t − K̂
K̂

=
Egt [exp(x̂)]

Eg [exp(x̂)]
− 1 =

Et [exp (x)]

E [exp (x)]
− 1 ≈ Et[x].

9The analysis of infinitesimal shocks that displace the cross-sectional distribution away from steady-

state is closely related to the marginal response function in Borovička, Hansen and Scheinkman (2014).
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To obtain expression (22), the first equality applies the definition of aggregate capital-

to-productivity ratios during the transition and in steady state. The second equality is

obtained by multiplying and dividing by exp(Eg[x̂]) and writing in terms of capital gaps.

The third step uses a first-order approximation of the exponential function, i.e., ex ≈ 1+x,

and applies the definition of capital gaps. In this way, we connect the deviation in the

average capital-to-productivity ratio to the average capital gap.

While the aggregate capital deviations are not exactly equal to the average capital

gap, the approximation is quite helpful for exposition. To exactly compute the deviation,

one needs all of the moments of the capital gap distribution, as the full expansion is

Et[exp(x)] =
∑∞

n=0 (Et[xm]/m!). Later in the paper, we characterize the transitions of all

moments of x.

2.5. Cumulative Impulse Response (CIR)

To analyze transitional dynamics, we consider the impulse response function of the m-

th moment of capital gaps following the δ-perturbation. It is denoted by IRFm(δ, t), it is

a function of time, and it is defined as the difference between the moment’s value at time

t and its steady-state value:

(23) IRFm(δ, t) ≡ Et [xm]− E[xm].

Following Álvarez, Le Bihan and Lippi (2016), we define the cumulative impulse response,

denoted by CIRm(δ), as the area under the IRFm(δ, t) curve across all dates t ∈ (0,∞):

(24) CIRm(δ) ≡
∫ ∞
0

IRFm(δ, t) dt.

Panel B in Figure 1 plots these two objects. The solid line represents the IRF, and the

area underneath it is the CIR. The CIR is a useful metric: It summarizes both the impact

and the persistence of the response in one scalar, eases the comparison of models, and

represents a multiplier of aggregate shocks. It is illustrative to compare the CIR with and

without adjustment frictions. Without frictions, individual gaps are always equal to zero.

When the aggregate shock hits the economy, all firms respond instantly to keep their gap

at zero. The impulse response is a jump with zero area underneath, i.e., CIRm = 0 for all

m. With frictions, the larger the CIR, the longer it takes firms to respond to the aggregate
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shock through investment.

Remarks on the definition of gaps. Our definition of capital gaps centers log capital-to-

productivity ratios around their steady-state average. In contrast, the standard approach

defines gaps using a micro target, which is usually the frictionless optimal capital choice

(Caballero, Engel and Haltiwanger, 1997; Caballero and Engel, 1993; Cooper and Willis,

2004). We base our approach on the fact that specifying a micro target is irrelevant for the

study of impulse responses centered around steady-state: The micro target cancels out as

it enters the impulse response and the steady state symmetrically. Since the micro target

does not affect the investment distribution either, we only specify the relative position of

a firm’s capital-to-productivity ratio in the distribution and not its absolute level.

3. PROPAGATION AND STEADY-STATE MOMENTS

Next, we establish the theoretical relationships between the transitional dynamics of

the average capital-to-productivity ratio following an aggregate productivity shock and

two steady-state moments of the capital gap distribution.

3.1. Characterizing the CIR

As the first step, Lemma 2 expresses the cumulative impulse response of momentm—the

CIRm defined in (24)—as the solution to a collection of stopping-time problems indexed

by the initial capital gap. It establishes that it is only necessary to keep track of firms

from the arrival of the aggregate shock at t = 0 until their first adjustment at t = τ ,

correcting by the average behavior in steady state. This result is extremely convenient,

since it allows us to characterize the propagation of the aggregate shocks without tracking

the evolution of the whole distribution of capital gaps.

Lemma 2 Given the steady-state policies (x−, x∗, x+) and distribution F , the CIRm can

be written as

(25) CIRm(δ) =

∫ x+

x−
vm(x) d(F (x− δ)− F (x)),

where the function vm(x) measures the cumulative deviations of the m-th moment from
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its steady-state value for a firm with initial capital gap x:

(26) vm(x) ≡ E
[∫ τ

0

(xmt − E[xm]) dt
∣∣∣x0 = x

]
.

An analogous result was first shown by Álvarez, Le Bihan and Lippi (2016) in a driftless

and symmetric environment for m = 1, noting that after the first adjustment, a firm’s

expected contribution to the average gap is zero, since positive and negative contributions

are equally likely. Thus, in their environment, the average gap conditional on adjustment

is equal to zero at every date.

What is surprising is that this property still holds in the presence of drift and asym-

metric policies. A firm’s investment fully responds to the aggregate shock with its first

adjustment. Any subsequent deviations are purely driven by idiosyncratic shocks and are

unrelated to the response to the aggregate shock. However, in contrast to the symmetric

and driftless case, a firm’s expected contribution to the average gap is not necessar-

ily equal to zero, and it depends on the stage of its inaction spell. Completed inaction

spells can be ignored because they are equal to the steady-state moment when averaged

across all agents; but uncompleted spells cannot be ignored. For this reason, the term

−
∫ x+
x−

vm(x) dF (x) appears in the expression for the CIR in (25) to correct for the un-

completed idiosyncratic–driven deviations.10

Lemma 2 hinges exclusively on properties of Markov processes. It does not need to

assume a specific stochastic process for x, the source of the rigidity, the moment we wish

to track, or the type of initial perturbation. The crucial assumption is that an adjustment

erases the history of shocks—a property embedded in the constant reset state.

3.2. Sufficient statistics for aggregate transitional dynamics

Now we proceed to characterize the CIR as a function of steady-state moments. For

expositional purposes, we consider the joint steady-state distribution of capital gaps and

age, denoted by F (x, a), and for any two numbers k, l ∈ N, we define the joint steady-state

10We are in debt with Andrey Alexandrov for pointing out to us that we missed the correction term∫ x+

x− vm(x) dF (x) in expression (25) that arises from the asymptotic behavior; see Alexandrov (2020) for

further details. Appendix C verifies numerically Lemma 2.
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moments of capital gap and age as

(27) E[xkal] ≡
∫
x

∫
a

xkal dF (x, a), ∀k, l ∈ N.

For the Bernoulli fixed-cost model described in Section 2, Proposition 1 characterizes the

CIRm(δ). It considers the first-order Taylor expansion CIRm(δ) = CIRm(0) + δCIR′m(0) +

o(δ2), where CIRm(0) = 0 and the term CIR′m(0) is expressed as a linear combination

of two steady-state moments of the distribution F (x, a). Appendix C verifies numerically

that the first-order approximation is accurate for small δ-perturbations.

Proposition 1 Up to first order, the CIRm with Bernoulli fixed costs is

(28)
CIRm(δ)

δ
=

E [xm+1] + νCov [xm, a]

σ2
+ o(δ).

Equation (28) shows that up to first order, the transitional dynamics of the m–th

moment of capital gaps are structurally linked to the m + 1 steady-state moment plus a

covariance term that corrects for the presence of drift. To better understand why these

two moments are sufficient statistics for the propagation of aggregate shocks, let us focus

on the case m = 1, stated in the following Corollary.

Corollary 1 Up to first order, the CIR1 with Bernoulli fixed costs is

(29)
CIR1(δ)

δ
=

Var [x] + νCov [x, a]

σ2
+ o(δ).

Equation (29) presents the CIR of the mean of the cross-sectional distribution as a lin-

ear combination of the steady-state variance of capital gaps, Var [x], and the steady-state

covariance between capital gaps and their age, Cov [x, a]. Since aggregate shocks zt and

idiosyncratic shocks et enter symmetrically into a firms’ capital gaps, firms’ responsive-

ness to idiosyncratic shocks (encoded by steady-state moments) is informative about their

responsiveness to aggregate shocks (measured by the CIR).

Insensitivity to idiosyncratic shocks. To explain heuristically the link between the two

sides of Equation (29), we propose the notion of insensitivity to idiosyncratic shocks.

Let W̃t ≡ (Wt − Wt−at)/σ be the sum of all shocks received by a firm since its last
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adjustment, normalized by their volatility. We define the economy’s insensitivity to id-

iosyncratic shocks as the covariance of capital gaps with W̃t in the population of firms,

i.e., Cov[xt, W̃t]. Intuitively, if firms sluggishly incorporate changes in their productivity

into their capital stock, then the cross-section features a strong relationship between cap-

ital gaps and idiosyncratic shocks. In that case, the covariance is large. In the opposite

case without adjustment frictions, firms are extremely sensitive to idiosyncratic shocks,

so they continuously adjust their gaps to keep them at zero, yielding a zero covariance.

Let us link our definition of insensitivity to idiosyncratic shocks to the CIR1. The

capital gap of any firm at time t can be written as xt = x∗−νat+σ2W̃t. Multiplying both

sides by xt, taking the cross-sectional average, and using E[x] = 0, we obtain Var[x] =

−νCov[x, a] + σ2Cov[x, W̃ ]. Rearranging, it yields Cov[x, W̃ ] = (Var[x] + νCov[x, a])/σ2,

which is exactly the expression for the CIR′1(0) in (29).

This analysis reveals two novel insights. First, when the drift is zero, the propagation

of aggregate productivity shocks is proportional to the steady-state variance of capital

gaps, normalized by idiosyncratic volatility, i.e., Var[x]/σ2. This ratio of ex post to ex

ante dispersions is a sufficient statistic for aggregate capital’s insensitivity to productivity

shocks. A large ratio signals insensitivity and slow convergence of average capital gaps.

Second, when the drift is different from zero, the propagation of aggregate productivity

shocks is also affected by the covariance of capital gaps and their age, Cov[x, a]. The

covariance term corrects for the additional dispersion generated by the drift to identify

the insensitivity to productivity shocks. This result implies that capital depreciation ζ or

technological progress µz—the two components of the drift—directly affect the propaga-

tion of aggregate productivity shocks.

Extreme sensitivity. Besides the frictionless case, an environment with a large drift pa-

rameter (ν →∞) also features extreme sensitivity to idiosyncratic shocks. In this limiting

case, the joint steady-state distribution of gaps and age F (x, a) weakly converges to the

distribution of an economy without idiosyncratic shocks σ2 = λ = 0. Capital gaps in

the limit are generated by dxt = −ν dt, so that they become an affine function of age,

i.e., xt = x∗ − νat. Multiplying both sides by xt and taking expectations, we obtain
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Var[x] = −νCov[x, a] and thus CIR′1(0) = 0. Corollary 2 formalizes this argument.11

Corollary 2 With Bernoulli fixed costs, when the drift goes to infinity, then

(30) lim
ν→∞,σ2>0

Var[x]

νCov[x, a]
= −1,

which implies that limν→∞,σ2>0 CIR1(δ)/δ = o(δ).

Corollary 2 speaks to a classic result in the pricing literature developed by Caplin and

Spulber (1987).12 That paper considers an environment with nonzero drift (inflation) and

zero idiosyncratic risk. The authors show that money shocks do not affect real output:

Money is neutral. In our jargon, the CIR′1(0) equals zero when limσ2→0,ν>0 (ν/σ2) = ∞.

We replicate an analogous result by taking an equivalent limit: limν→∞,σ2>0 (ν/σ2) =∞.

In the investment context, the neutrality result says that aggregate productivity shocks

are immediately absorbed by investment when the drift to volatility ratio goes to infinity.

In summary, the variance of capital gaps Var[x] and the covariance between capital

gaps and their age Cov[x, a] encode firms’ insensitivity to the idiosyncratic shocks, acting

as a sufficient statistic for the speed at which the mean of the cross-sectional distribution

converges back to the steady state following an aggregate productivity shock.

The CIR of higher-order moments. The macro literature mainly focuses on the dynamics of

cross-sectional averages—e.g., capital, output, and inflation. There is increasing interest,

however, in the dynamics of higher-order moments. The sufficient statistics for the CIRm

in Proposition 1, for m > 1, could in principle be helpful to researchers interested in

measuring and characterizing higher-order dynamics using models of lumpy adjustment.

For example, the CIR2—which measures the dynamics of the second moment—relates to

the steady-state third moment. This relationship could be used to connect the cyclical

fluctuations in the dispersion of investment rates (Bachmann, Caballero and Engel, 2013;

11Clearly, as the drift goes to infinity, the duration of inaction goes to zero as well, E[τ ] → 0. This

mechanically makes CIR′1(0) equal to zero, as firms are constantly adjusting. However, our proof shows

a stronger result that the one stated in Corollary 2: Even if we rescale the fixed costs such that for every

drift level expected duration E[τ ] is constant, CIR′1(0) also goes to zero as the drift goes to infinity. We

verify this result numerically in Appendix D.
12We thank Fernando Álvarez for suggesting to explore the connection to this limiting case.
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Bachmann and Bayer, 2014), marginal products of capital (Oberfield, 2013), or prices

(Vavra, 2014; Nakamura, Steinsson, Sun and Villar, 2018) to the steady-state skewness

of those distributions. In turn, the CIR3—which measures the dynamics of the third

moment—relates to the steady-state fourth moment. This relationship could be used to

connect the cyclical fluctuations in the skewness of sales’ growth (Salgado, Guvenen and

Bloom, 2019) to their steady-state kurtosis.

3.3. Sufficient statistics as model discrimination devices

Our analysis shows that the CIR1 with Bernoulli fixed costs is structurally linked to

two steady-state cross-sectional moments of the capital-to-productivity distribution. Any

configuration of this model that generates the empirical values of the sufficient statistics is

relevant to the study of aggregate dynamics. Nevertheless, the theory imposes restrictions

that can systematically rule in some model configurations and rule out others. We use two

benchmark adjustment cost structures nested in our framework to illustrate the power of

sufficient statistics in distinguishing across model configurations.

Fully state-dependent adjustments. The Bernoulli fixed-cost model nests the widely used

state-dependent model of investment (Caballero and Engel, 1999) by shutting down free

adjustments (λ = 0). This model does not impose any restriction on the sign of the

covariance Cov[x, a]. On the one hand, the drift reduces capital gaps as they get older,

which pushes the covariance to be negative. On the other hand, the combination of id-

iosyncratic shocks with asymmetric barriers can generate either a positive or negative

covariance. In particular, if downward adjustments are more expensive than upward ad-

justments, then capital gaps increase as they get older, which pushes the covariance to be

positive. Therefore, the relative strength of these two opposing forces determines the value

of the covariance of gaps and age.13 This configuration, however, generates a variance of

gaps Var[x] close to zero because the distribution of adjustment size concentrates at the

borders of the inaction region (in Section 4.2, equations (39) and (41) explicitly show

the positive relationship between the variance of gaps and the variance of adjustment

sizes). Therefore, if the empirical variance of capital gaps is larger than what a fully state-

13In a state-dependent model without drift and with symmetric barriers, Cov[x, a] = 0.

ectaart.cls ver. 2006/04/11 file: ECTA17344_source.tex date: March 2, 2021



21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

dependent model would predict, this configuration would fall short of explaining the data.

Fully time-dependent adjustments. Another model nested in our framework consists of

fully time-dependent adjustments (Calvo, 1983), and it is obtained when both fixed costs

go to infinity lim{θ−, θ+} → {∞,∞}. In the limit, the inaction region disappears and

adjustments occur at a constant rate λ—i.e., they are exponentially distributed. In con-

trast to the fully state-dependent model, this model generates a larger variance of gaps

thanks to the free adjustments (for a given expected duration). This configuration, how-

ever, restricts the covariance between gaps and age to be negative Cov[x, a] < 0. Since

firms cannot decide when to adjust, the drift renders capital gaps negative as time goes

by.14 Therefore, if the empirical covariance is positive, this configuration would fall short

of explaining the data.

Taken together, a positive covariance of gaps an age, Cov [x, a], is a tell-tale sign of state

dependence, while a large variance of gaps, Var[x], is a tell-tale sign of time dependence.

We use these facts when applying the theory to the data in Section 5.

Economic forces behind sufficient statistics. Between the two extreme configurations of

fully state-dependent and fully time-dependent adjustments analyzed above, there exists a

myriad of parametrizations that bring the model closer to one or the other specification. To

better understand the economic forces at play, Appendix D presents comparative statics

for the five fundamental parameters governing the process of idiosyncratic shocks and the

structure of adjustment costs (ν, σ, λ, θ+, θ−) and discusses how they shape the sufficient

statistics and the CIR.

4. STEADY-STATE MOMENTS AND MICRODATA

We have established a structural link between the CIRm and the steady-state moments

of capital gaps. The challenge ahead lies in computing these moments, as capital gaps

are difficult to observe. The actions of adjusters, however, are readily available in the

microdata. Let Ω ≡ (∆x, τ) denote a panel of observations of discrete capital gap changes

14The covariance is Cov[x, a] = −νE[τ ]2 < 0. See Appendix E.1 for the proof. Additionally, Appendix

E.2 shows that, for any drift ν ∈ R, the sufficient statistic for the CIR1 in fully time-dependent models

is the average age of the capital gaps E[a].
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(or adjustment size) and the duration of completed inaction spells, and let R(Ω) denote

their distribution. This section shows how to use the distribution of observable actions

R(Ω) to infer the behavior of non-adjusters, and reverse engineer the steady-state cross-

sectional moments of F (x, a) and the parameters of the stochastic process.15

To establish the inverse mapping from data Ω to steady-state moments and parame-

ters, we need two inputs: A parametric stochastic process for the uncontrolled gaps that

is Markovian and has continuous paths (in our case, a Brownian motion with drift ν and

volatility σ), and a constant reset gap x∗. These inputs are enough to pin down these

mappings. We emphasize that we do not need to assume a specific model of inaction as

long as it delivers a constant reset state. For this reason, in this part of the theory, we

consider the reset state x∗ a parameter.

Notation. To express our results succinctly, we use the following notation. We denote with

bars the cross-sectional moments computed with the distribution of adjusters R(Ω) (e.g.,

E[·] and Cov[·, ·]). We denote with tildes the variables that are expressed relative to their

mean (e.g., τ̃ ≡ τ/E[τ ]). Lastly, for any random variable y ∈ R and ψ > 0, we define the

generalized coefficient of variation as CVψ
[y] ≡ (E[yψ]− E[y]ψ)/E[y]ψ.16

4.1. Recovering parameters from microdata

Proposition 2 provides mappings that allow an economist with observables Ω to make

inferences about the parameters (ν, σ2, x∗).

Proposition 2 Let Ω ≡ (∆x, τ) be a panel of observations of adjustment size and

duration of inaction. Then the drift ν and volatility σ2 of the stochastic process for capital

gaps and the reset capital gap x∗ are recovered from the data through the following system:

ν =
E[∆x]

E[τ ]
,(31)

σ2 =
E[∆x2]

E[τ ]
− 2νx∗,(32)

x∗ = ν(E[τ ]− E[a]) + Cov [τ̃ ,∆x] .(33)

15Clearly, the age of gaps can be directly measured, but not the joint distribution of (x, a).
16For ψ = 2, we obtain the standard definition: CV2

[y] ≡ Var[y]/E[y]2.
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Drift and volatility. Expressions in (31) and (32) provide a mapping to infer the parame-

ters of the stochastic process. The first expression shows that in a stationary environment,

the average adjustment size E[∆x] must compensate for the average drift between two

adjustments νE[τ ]. Similarly, the dispersion in adjustment size E[∆x2] reflects the cumu-

lative shocks received during the inaction period: A high dispersion in adjustment size

must mean that either idiosyncratic volatility is high or the time between two adjust-

ments is high. Álvarez, Le Bihan and Lippi (2016) obtain an analogous expression for

idiosyncratic volatility σ2 in the symmetric and driftless environment, i.e. x∗ = ν = 0,

given by σ2 = E[∆x2]/E[τ ]. Our mapping includes a new term −2νx∗ to correctly identify

idiosyncratic volatility from the ratio of these two statistics.

Reset capital gap. Equation (33) shows how to recover the reset gap x∗ from the microdata.

This object carries information about optimal behavior in environments with nonzero drift

and asymmetric policies. Its value is derived from the restriction that capital gaps have a

zero mean. Thus x∗ must compensate for the average deviations that arise by inactivity

and ensure that the mean of the stationary distribution remains at zero.

A nonzero drift and an asymmetric policy may push average deviations in opposite di-

rections. For instance, a negative drift pushes average deviations down, while an asymmet-

ric policy arising from relatively more costly downward than upward adjustment pushes

average deviations up (i.e, if θ+ >> θ−, units that have positive gaps tend to get stuck

and do not want to adjust down). The reset state summarizes how firms optimally balance

these opposing forces. We examine three special cases to showcase each force separately.

Role of policy asymmetry. We start by discussing how the reset state reflects policy asym-

metry. We assume away the drift and free adjustments, i.e., ν = λ = 0. In this case, the

reset gap is a weighted average of gap changes, with weights equal to relative durations

of inaction, i.e., x∗ = E[τ̃∆x]. The analysis makes use of Figure 2. Panel A plots three

distributions of capital gaps (symmetric, left-skewed, and right-skewed) that correspond

to alternative assumptions about fixed costs, which generate different policies. Panel B

plots the corresponding distributions of non-zero capital gap changes. The idea is to use

Panel B (observables) to infer Panel A (unobservables).
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If the distribution of gaps is symmetric around zero (black solid line), positive and

negative adjustments are equality likely (Pr(∆x > 0) = Pr(∆x < 0) = 1/2), implying a

zero reset gap x∗ = E[∆x] = 0. If the distribution of gaps is right-skewed (gray solid line),

the upper border is further from x∗ than the lower border and we observe few negative

adjustments (Pr(∆x > 0) = 4/5 > Pr(∆x < 0) = 1/5). The negative adjustments get

weighted by their longer relative duration, generating a negative reset gap x∗ = E[τ̃∆x] =

−u < 0. Thus a negative reset gap suggests a right-skewed distribution generated by

relatively more costly downward adjustments (θ+ > θ−). An analogous argument applies

for positive reset gaps that suggest a left-skewed distribution. Overall, the sign of x∗

indicates the shape of the gap distribution and the adjustment costs that generate it.

Figure 2.— Reset State, Capital Gaps, and Capital Gap Changes (ν = λ = 0)

Capital gap (x)

f
(x

)

A. Distribution of Capital Gaps

symmetric

left-skewed

right-skewed

−3u −2u −u

x∗ = −u

0

x∗ = 0

u

x∗ = u

2u 3u

Capital gap change (∆x)

P
r(

∆
x

)
B. Distribution of Non-Zero Gap Changes

−4u −u

1/5

0

1/2 1/2

4/5 4/5

u 4u

1/5

Notes: Panel A plots three distributions of capital gaps x in the Bernoulli fixed-cost model without

drift and free adjustments. The symmetric distribution (black solid line) is generated by the policy

(x−, x∗, x+) = (−u, 0, u); the left-skewed distribution (gray dotted line) is generated by (x−, x∗, x+) =

(−3u, u, 2u); and the right-skewed distribution (gray solid line) is generated by (x−, x∗, x+) =

(−2u,−u, 3u). Panel B shows the corresponding three distributions of non-zero capital gap changes.

One may naively conjecture that the simple average gap change E[∆x] provides infor-

mation about asymmetries. However, this intuition is flawed: Larger adjustments happen

with lower occurrence, so that E[∆x] = 0 regardless of the policy, eliminating any possi-

bility to learn from the average gap change (see Panel B of Figure 2). Our analysis shows
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that appropriately reweighing the distribution of gap changes using relative durations τ̃

circumvents this identification challenge.17

Role of the drift. Now we discuss the role of the drift by considering two polar cases

of the Bernoulli fixed-cost model with symmetric policies. In the limiting case without

idiosyncratic shocks (σ2 → 0), the duration of all inaction spells is identical for all firms—

say E[τ ] = T—and evidently the covariance between duration and size in (33) disappears.

The surviving term, ν(E[τ ]−E[a]), reflects how the reset gap compensates for the expected

erosion caused by the drift that accumulates between adjustments. The expected erosion

is proportional to the average length of completed spells (E[τ ], adjusting firms) minus

the average length of uncompleted spells (E[a], inactive firms). The reset gap becomes

x∗ = νT −νE[a] = νT /2 > 0, where E[a] = T /2 is the average age of uncompleted spells.

Now consider the limiting case with infinite adjustment costs, lim(θ−, θ+) → (∞,∞),

so that investments occur at a constant rate λ > 0. The iid nature of adjustment dates

makes the expected duration for adjusting and non adjusting firms identical E[τ ] = E[a].

The first term in equation (33) disappears and the reset gap is identified by the second

term: x∗ = Cov[τ̃ ,∆x]. It is easy to show that Cov[τ̃ ,∆x] = νE[τ ], corroborating that

this covariance correctly identifies the effect of the drift on the average capital gap.18

We have discussed at length the forces that shape the reset state for various reasons. It

enters into the formulas for volatility and steady-state moments. It indicates the shape of

distribution of x. But most importantly, the forces that shape the reset point—and the

way they manifest in the data—are also responsible for determining Cov[x, a].

4.2. Recovering steady-state moments from microdata

Proposition 3 provides mappings from observables Ω to steady-state moments of gaps.

Proposition 3 Let Ω ≡ (∆x, τ) be a panel of observations of adjustment size and

duration of inaction. Construct the gaps immediately before adjustment as xτ = x∗−∆x.

Then the following relationships hold for any m ≥ 1:

17Appendix F presents an instructive example that computes explicitly the steady-state moments in

a driftless environment with a right-skewed distribution, as presented in Figure 2.
18See Appendix E.3 for the proof.
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(i) Average age relates to the average and the dispersion of duration of inaction as

(34) E[a] =
E[τ ]

2

(
1 + CV2

[τ ]
)
.

(ii) With zero drift (ν = 0), the steady-state moments are given by

E[xm] =
2

(m+ 1)(m+ 2)

(
E [xm+2

τ ]− x∗m+2

E [∆x2]

)
,(35)

E[xma] =
2E[τ ]

(m+ 1)(m+ 2)

(
E [τ̃xm+2

τ ]− E[xm+2]

E[∆x2]

)
.(36)

(iii) With nonzero drift (ν 6= 0), the steady-state moments are given by

E[xm] =
1

(m+ 1)

(
x∗m+1 − E [xm+1

τ ]

E [∆x]

)
+
mσ2

2ν
E[xm−1],(37)

E[xma] =
E[τ ]

(m+ 1)

(
E[xm+1]− E [τ̃xm+1

τ ]

E[∆x]

)
+
mσ2

2ν
E[xm−1a].(38)

Average age. Equation (34) relates the average age (the average length of uncompleted

spells in the whole population) to the average and the dispersion in duration of inaction

(the length of completed spells by adjusters), where the dispersion is measured using the

coefficient of variation squared. The relationship between average age and average duration

is straightforward: If adjusters take longer to adjust on average, then the average capital

gap in the cross-section will be older. Why does the dispersion in duration also increase

age? The reason is the fundamental renewal property: The probability that a random firm

has an expected duration of inaction of τ is increasing in τ—i.e., many inaction spells

are short, but the average spell is attributable to firms with long duration. Dispersion in

duration implies that some firms take a longer time to adjust, and those firms are more

representative of the economy, raising the average age.

To analyze the relationships between steady-state moments and the microdata, the

following Corollary presents simplified expressions for the case m = 1 and zero reset gap.

Corollary 3 Assume the reset point is zero, i.e., x∗ = 0, so that xτ = −∆x. Then,

we recover the steady-state moments Var[x] and Cov[x, a] as follows:
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(i) With zero drift (ν = 0):

Var[x] =
E[∆x2]

6

(
1 + CV2 [

∆x2
])
,(39)

Cov[x, a] =
E[τ ]

3

(
E [τ̃x3τ ]− E[x3]

E[∆x2]

)
.(40)

(ii) With nonzero drift (ν 6= 0):

Var[x] =
E[∆x]2

3

(
1 + CV3

[∆x]
)
,(41)

Cov[x, a] =
E[τ ]

2

(
E[x2]− E [τ̃x2τ ]

E[∆x]

)
+

σ2

2ν
E[a].(42)

Variance of capital gaps. The drivers behind the cross-sectional variance of capital gaps

Var[x] are described in equations (39) and (41) for the cases without and with drift.

The first term in these expressions relates to the average adjustment size (measured by

squared gap changes or gap changes squared), and the second term relates to the disper-

sion of adjustment size (measured by generalized coefficients of variation).19 Clearly, large

average adjustments signal more dispersed gaps. But what is the connection between the

dispersion in adjustment size and the dispersion of capital gaps? It is the fundamental

renewal property again: The average behavior in the economy is attributable to firms with

longer periods of inaction, which coincidentally are firms that make larger adjustments.

Accordingly, higher dispersion in x2τ (squared gaps of adjusters) increases E[x2] (squared

gaps of non-adjusters or Var[x]).

Covariance of capital gaps with their age. The drivers behind the covariance between

capital gaps and their age Cov[x, a] are described in (40) and (42). As with the reset gap,

this covariance can be positive or negative, depending on the relative importance of the

drift and policy asymmetry.

When the drift is equal to zero, the covariance in (40) is proportional to the excess

asymmetry in the capital gaps of adjusters relative to non-adjusters—namely, the differ-

ence in the third moments of their respective distributions, i.e., E [τ̃x3τ ]−E[x3]. A positive

19With zero drift, the dispersion in adjustment size is measured by the generalized coefficient of

variation of ∆x2 with ψ = 2; with nonzero drift, it is measured by the generalized coefficient of variation

of ∆x with ψ = 3 (this is close to the skewness, as the presence of the drift alters the notion of dispersion).
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difference reflects a right-skewed distribution of gaps and vice versa. Note that the distri-

bution of adjusters is weighted by the relative duration τ̃ , as with the reset state. The two

additional terms in (40) are rescaling factors: the denominator E[∆x2] ensures that the

covariance is of order 1 (canceling the cubic powers in the numerator) and E[τ ] accounts

for age’s dependence on σ2.

When the drift is different from zero, the covariance in (42) is obtained from different

moments, but the economic interpretation is the same. In this case, the excess asymmetry

of adjusters relative to non-adjusters is measured by the second moment of the respec-

tive distributions, i.e., E[x2] − E [τ̃x2τ ]. Again, the distribution of adjusters is reweighed

by relative duration τ̃ and there is a rescaling factor, E[∆x], to ensure that the covari-

ance remains linear. Lastly, the term σ2E[a]/(2ν) compensates for the direct effect of

idiosyncratic volatility on second moments (see equation 32).

4.3. The CIR in terms of microdata

Now we combine our main theory results—the mapping from steady-state moments to

CIR1 in Corollary 1 and the mappings from microdata to parameters in Proposition 2

and to steady-state moments in Proposition 3—to express concisely the propagation of

an aggregate productivity shock as a function of microdata Ω.

Corollary 4 Assume the reset point is zero, i.e., x∗ = 0, so that xτ = −∆x. Then the

CIR1 can be computed using microdata moments as follows:

(i) With zero drift (ν = 0):

(43)
CIR1(δ)

δ
=

E[τ ]

2

Kur[∆x]

3
+ o(δ).

(ii) With nonzero drift (ν 6= 0):

(44)
CIR1(δ)

δ
=

E[τ ]

2

CV2
[τ ]− 1

2
+

E
[
∆̃x

3
]

E
[
∆̃x

2
] − Cov[τ̃ , ∆̃x

2
]

+ o(δ).

The previous expressions summarize many economic forces that shape the propagation

of aggregate shocks in lumpy economies and show how these forces are reflected in the

data. We use these expressions to organize a short literature review.
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Zero drift and symmetric policy. Álvarez, Le Bihan and Lippi (2016) characterize the

CIR1 for zero drift and a symmetric policy (ν = x∗ = 0), and obtain their well-known

kurtosis formula, as presented in (43). In the price-setting context of their paper, x repre-

sents the markup gap and ∆x represents the price change, and the formula expresses the

response of real output to a one-time monetary policy shock as the product of the kur-

tosis of price changes and the expected time between adjustments.20 The kurtosis of gap

changes—which measures the dispersion in adjustment sizes—has proven to be extremely

useful sufficient statistic in evaluating the empirical relevance of various models of price

adjustment, as long as the drift (inflation) is not too large.

Three amplification channels with nonzero drift and asymmetric policies. Average dura-

tion of inaction matters for propagation because it reflects the average speed at which

agents adjust to the aggregate shock. According to expression (44), three additional chan-

nels shape aggregate dynamics: (i) dispersion in duration of inaction, (ii) dispersion in

adjustment size, and (iii) the covariance between duration of inaction and adjustment

size. The first two statistics have been analyzed in the price-setting context, so we refer to

this literature for a discussion. The third statistic is a novel contribution of our analysis.

We will discuss each in turn.

Dispersion in the duration of inaction amplifies the CIR1 because it reflects the coex-

istence of fast and slow adjusters; the latter slow the response to the shock and they are

more representative of the economy by the renewal property. This insight is formalized

by Carvalho and Schwartzman (2015) and Alvarez, Lippi and Paciello (2016) in fully

time-dependent models with zero drift. Our formula formally demonstrates that this in-

sight extends beyond fully time-dependent models and also applies to environments with

nonzero drift and asymmetric policies.

Dispersion in adjustment sizes amplifies the CIR1 because it reflects a weak selection

effect—namely, that adjusting firms are not necessarily those with the largest need for

adjustment. A weak selection effect arises if the measure of firms whose gaps lie in the

20In a model with monopolistic price-setters, the average markup gap is equal, up to a first order, to

aggregate real output. Therefore, the CIR1 tracks the deviation of real output relative to steady state

following a monetary shock δ.
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neighborhood of the adjustment thresholds is small; in that case, most firms are dispersed

away from their adjustment threshold. Hence, the distribution of the adjustment sizes

exhibits large dispersion. With zero drift, the dispersion in adjustment sizes is measured

by the kurtosis of gap changes; with nonzero drift, it is measured by the skewness of gap

changes. Quantitatively, this connection is explored in Midrigan (2011) and Luo and Villar

(2020). We formally demonstrate that accounting for the dispersion of adjustment size

(either through kurtosis or skewness) is key to studying transitional dynamics in lumpy

economies more generally, beyond price-setting models.

Lastly, the covariance between duration of inaction and adjustment size also shapes

the CIR1, as it reflects the presence of asymmetric policies. Identifying and quantifying

this channel is one of the key payoffs from our theory. A naive approach is to identify an

asymmetric policy through an asymmetric distribution of adjustments. We have already

shown, however, that this approach is incorrect because time-dependent models—which

are inherently symmetric—generate asymmetric adjustments in the presence of drift. Our

analysis shows that the correct way to identify asymmetric policies in the presence of drift

is through the excess asymmetry of adjusters relative to non-adjusters, as measured by

Cov[τ̃ , ∆̃x
2
]. This statistic complements alternative methodologies that aim to diagnose

whether frictions in capital allocation mainly affect upsizing firms or downsizing firms, as

the ones put forward by Caballero and Engel (2007) and Lanteri, Medina and Tan (2019).

5. EMPIRICAL APPLICATION

We apply the theoretical results obtained in Sections 3 and 4 using establishment-

level data from Chile. First, we construct the distributions of capital gap changes ∆x

and duration of inaction τ from the data. Second, we use these empirical distributions

as inputs into our formulas and obtain parameters, sufficient statistics, and the CIR1 as

outputs. Lastly, we use the sufficient statistics to discriminate across configurations of the

Bernoulli cost model and settle on the best calibration to explain the data.

5.1. Data description

Sources. We use yearly data on manufacturing plants in Chile from the Annual National

Manufacturing Survey (Encuesta Nacional Industrial Anual) for the period 1979 to 2011.
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Chilean National Accounts and Penn World Tables provide information on the deprecia-

tion rates and price deflators used to construct the capital series. We examine the total

capital stock and structures, a capital category that represents 30% of all investment in

the manufacturing sector and features the strongest lumpy behavior. We consider plants

that appear in the sample for at least 10 years (more than 60% of the sample) and have

more than 10 workers. The Data Appendix describes the sample selection, the variable

construction, and the analysis for vehicles, machinery, and equipment.

Capital stock and investment rates. We construct the capital stock series using the per-

petual inventory method. Given an initial K0, a plant’s capital stock in year t is

(45) Kt = (1− ζ)Kt−1 + It/Dt,

where ζ is the depreciation rate, Dt is the gross fixed capital formation deflator, and initial

capital K0 is a plant’s self-reported nominal capital stock at current prices for the first

year in which it is nonnegative. Gross nominal investment It is based on information on

purchases, reforms, improvements, and sales of fixed assets. We define the investment rate

ιt as the ratio of real gross investment to the capital stock 21

(46) ιt ≡
It/Dt

Kt−1
.

5.2. Construction of capital gap changes and duration of inaction

To apply the theory, for each plant and each inaction spell h, we record the capital gap

change upon action ∆xh and the spell’s duration τh. We construct capital gap changes

with investment rates from (46):

(47) ∆xh =

log (1 + ιh) if |ιh| > ι,

0 if |ιh| < ι.

The threshold ι > 0 reflects the idea that small maintenance investments should be ex-

cluded. Following Cooper and Haltiwanger (2006), we set ι = 0.01, such that all investment

21Note that the investment rate equals the ratio in the last term of equation (7): ιTh
≡ iTh

/kT−
h

=

(kTh
−kT−

h
)/kT−

h
, where kT−

h
= limt↑Th

kt. In contrast to the continuous-time model, in which investment

is computed as the difference in the capital stock between two consecutive instants, in the data we

compute it as the difference between two consecutive years.
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rates below 1% in absolute value are considered to be part of an inaction spell. Given the

capital gap changes, we define an adjustment date Th from ∆xTh 6= 0 and compute a

spell’s duration as the difference between two adjacent adjustment dates: τh = Th−Th−1.
Finally, we truncate the distribution at the 2nd and 98th percentiles of the investment

distribution to eliminate outliers.22

Figure 3 plots the resulting cross-sectional distribution of non-zero capital gap changes

for structures (Panel A) and total capital (Panel B). Both histograms show sizable asym-

metry and positive skewness. In each figure, we plot the distribution for two subsamples:

observations with duration of inaction above the average duration (gray bars) and below

the average duration (white bars). Notice that capital gap changes in both subsamples lie

on top of each other, which is a sign of lack of covariance between adjustment size and

duration of inaction. Below, we interpret this fact through the lens of the theory.

Figure 3.— Empirical Distribution of Non-Zero Capital Gap Changes

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3
A. Distribution of Gap Changes (Structures)

τ < E[τ ]

τ > E[τ ]

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3
B. Distribution of Gap Changes (Total)

τ < E[τ ]

τ > E[τ ]

Notes: Own calculations using establishment-level data from Chile. Sample: Firms with at least 10 years

of data, truncation at 2nd and 98th percentiles, and an inaction threshold of ι = 0.01. Panel A plots the

distribution of non-zero capital gap changes ∆x for structures and Panel B for total capital. Solid bars

= inaction spells with duration below average; white bars = inaction spells with duration above average.

22Table I in the Data Appendix presents descriptive statistics on investment rates. In particular, the

inaction rate (|ι| < 0.01) equals 77.3% for structures and 40.1% for total capital. For comparison, the

table includes numbers reported by Cooper and Haltiwanger (2006) for US manufacturing plants and by

Zwick and Mahon (2017) for US firms from tax records.
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5.3. Putting the theory to work

We put the theory to work by computing the cross-sectional statistics of capital gap

changes and duration of inaction to infer the parameters and sufficient statistics related

to the CIR1. We apply the formulas in Propositions 2 and 3. Table I summarizes the

results. The left side of the table shows the inputs from the data: cross-sectional statistics

of duration and capital gap changes. The right side shows the outputs from the theory:

parameters (ν, σ2, x∗), sufficient statistics (Var[x],Cov[x, a]), and the CIR1.

TABLE I

Inputs from Micro Data and Outputs from the Theory

Inputs from Data Outputs from Theory

Structures Total Structures Total

Duration Parameters

E[τ ] 2.510 1.749 ν 0.095 0.119

CV2
[τ ] 1.107 0.872 σ2 0.049 0.049

x∗ 0.006 0.028

Gap Changes Sufficient Statistics

E[∆x] 0.239 0.207 Var[x] 0.124 0.092

E[∆x2] 0.126 0.098 Cov[a, x] 0.592 0.293

E[x3τ ] -0.089 -0.057 E[a] 2.644 1.637

Kur[∆x] 4.635 5.683

Covariances CIR1

Cov[τ̃ ,∆x] 0.019 0.015 Drift + Asymmetric 3.661 2.562

E[τ̃x2τ ] 0.141 0.103 Driftless + Symmetric 1.939 1.657

Notes: Own calculations using establishment-level data from Chile. Sample: Firms with at

least 10 years of data, truncation at 2nd and 98th percentiles, and inaction threshold of

i = 0.01. Gap of adjusters: xτ = x∗ −∆x. Normalized duration: τ̃ ≡ τ/E[τ ].

Inputs from microdata. We focus our discussion on the values obtained for structures.

The duration of inaction has an average of E[τ ] = 2.51 years and a coefficient of vari-

ation squared of CV2
[τ ] = 1.11, suggesting substantial heterogeneity in the adjust-

ment frequency. Adjustment size has an average of E[∆x] = 0.24; a second moment of
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E[∆x2] = 0.13; a third moment of E[x3τ ] = −0.09 (the distribution is right-skewed); and

a kurtosis of Kur[∆x] = 4.64 (the distribution is leptokurtic). The covariance between

adjustment size and relative duration is almost zero Cov[τ̃ ,∆x] = 0.02, as suggested by

Figure 3. The duration-weighted second moment of gap changes is E[τ̃x2τ ] = 0.14.

We compute average age in two ways: directly from the data and using the formula

in (34), which connects it to the duration of inaction E[a] = E[τ ](1 + CV2
[τ ])/2 = 2.64

(for this reason, we show it in the second column with other outputs from the theory).

We obtain similar numbers using both methods, confirming the validity of the mapping.23

Next, we input these statistics into the formulas derived in the previous section.

Output from theory: Parameters. From (31), we infer a drift of ν = 0.095, which reflects

the depreciation rate ζ, productivity growth µz, and changes in relative prices between

consumption and capital goods (ignored in the model). We apply (32) to estimate the

volatility of idiosyncratic shocks as σ2 = 0.05. The volatility estimate is in line with the

value used by Khan and Thomas (2008). Lastly, using (33), we estimate a tiny reset cap-

ital gap of x∗ = 0.006. Although small, the positive reset capital gaps suggests that the

distribution of capital gaps is right-skewed and that the drift effect is overcome by policy

asymmetry (recall the discussion in Section 4.1). In particular, we infer that downward

adjustment is more costly than upward adjustment.

Outputs from theory: Sufficient statistics. Using (37), we infer a steady-state variance of

capital gaps of Var[x] = 0.12.24 The estimated variance of gaps is large (when compared

to a purely state-dependent model) and suggests a significant role for free adjustments.25

Using (38), we infer a covariance between capital gaps and age of Cov[x, a] = 0.60. The

positive covariance between capital gaps and age means that plants that have not adjusted

for a long time—their capital is old—have larger capital-to-productivity ratios than those

23We thank Francesco Lippi for suggesting this robustness exercise.
24Appendix G connects Var[x] to the notion of capital misallocation, defined as the cross-sectional

dispersion in log marginal revenue products of capital as Std[log MPK] = (α− 1)Var[x]1/2. We compare

our estimation strategy that uses exclusively investment data with the standard approach that requires

additional data on value added or sales.
25A state-dependent model (λ = 0) that matches the drift, idiosyncratic volatility, and average duration

implies a variance of Var[x] = 0.072, 40% lower than what is observed in the data. See Table II.
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that have recently adjusted. This observation is at odds with a pure time-dependent

model, which reinforces our assessment that it is more costly for firms to downsize in

response to negative productivity shocks than to upsize in response to positive ones.26

To summarize, the large variance of gaps Var[x] and the positive covariance with age

Cov[x, a] strongly suggest that firms follow a hybrid investment policy with both time-

and state-dependent components. Time-dependent adjustments increase the dispersion

of gaps, while state-dependent asymmetric adjustments generate a positive covariance.

Since the Bernoulli fixed-cost model nests these two alternatives, it serves as an adequate

laboratory to study the relative importance of these components. In the following section,

we search for a configuration of the Bernoulli model that best explains the data.

Output from theory: CIR1. Assuming that the Bernoulli fixed-cost model is a good de-

scription of the data, the sufficient statistics imply that CIR1(δ)/δ = 3.66. This number

says that a negative aggregate productivity shock of 1% generates a cumulative devia-

tion of 3.66% in the average capital-to-productivity ratio (and in aggregate capital, up

to first order) above its steady-state value along the transition path. In other words, ag-

gregate productivity shocks have a long-run multiplier effect of approximately 3.7. As

firms gradually scale down to accommodate the fall in aggregate productivity, capital is

adjusted downward by selling it or letting it depreciate. We approximate the half-life of

the response assuming exponential decay, obtaining 2.5 years (ln(2)× CIR1).
27

Notice that naively applying the kurtosis formula in (43), which is invalid for environ-

ments with nonzero drift and policy asymmetry, implies CIR1(δ)/δ = 1.94. This underes-

timates the effects of an aggregate productivity shock by about 50%.

5.4. Parametrization of the Bernoulli fixed-cost model

With the estimated parameters of the stochastic process and the steady-state moments

at hand, a natural question arises: Which configuration of the Bernoulli fixed-cost model

26A time-dependent model (with infinite fixed costs) that matches the drift, idiosyncratic volatility,

and average duration implies a covariance of Cov[x, a] = −0.602, which has the opposite sign of the one

observed in the data. See Table II.
27Assuming exponential decay at rate ρ, the half-life = ln(2)/ρ. Applying the definition of the CIR,

we have CIR1 =
∫∞
0
e−ρt dt = 1/ρ. Together, half-life = ln(2)× CIR1 = 0.69× 3.66 = 2.54.
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generates the Chilean data? How important are the fixed costs relative to free adjustment

opportunities?

To answer these questions, we explore the benchmark configurations nested within the

Bernoulli fixed cost model to assess their ability to generate the data. These special cases

illustrate the relationship between the structure of adjustment frictions and the sufficient

statistics. In all exercises, we take as given the estimated parameters of the stochastic

process and match the average duration of inaction spells. Given the parameters, matching

average duration imposes additional constraints—e.g., the average adjustment size is also

matched by equation (31). Table II summarizes the calibrated parameters.

Column I considers a purely state-dependent model by shutting down the free adjust-

ments, λ = 0. Anticipating that this configuration generates a tiny variance of gaps, and

to give it the largest possibility of matching the positive covariance of capital gaps and

age, we set an inaction threshold for negative investments of θ+ = ∞ (this is effectively

a one-sided inaction region). To match average duration, the inaction threshold for pos-

itive investments is θ− = 0.043. The physical adjustment costs represent 0.1% of yearly

revenue.28 The implied sufficient statistics are Var[x] = 0.073 and Cov[x, a] = 0.661. The

CIR1 equals 2.734, which is 25% below the data.

Column II considers the limiting case with infinite fixed costs, {θ−, θ+} → {∞,∞},
which produces a purely time-dependent model. We calibrate the arrival rate of free

adjustments λ = 0.397 to match average duration E[τ ]. As expected, this model produces

a significant variance of gaps of Var[x] = 0.182, larger than in the data. However, it

produces a negative covariance with age of Cov[x, a] = −0.601, which we do not observe

in the data. Surprisingly, this configuration implies a CIR1 of 2.512, which is similar to

the one obtained in the state-dependent model of Column (1).

This analysis illustrates how two extreme calibrations can generate the same CIR1

by matching one of the two sufficient statistics. The state-dependent model correctly

captures the covariance of gaps with age—but misses the variance of gaps—whereas the

time-dependent model does the opposite. Calibrations that lie between these two extremes

28Assuming an output to capital elasticity of α = 0.6 (adjusted by the absence of labor in the model),

the average yearly payment of adjustment costs relative to yearly revenue is equal to (θ− Pr[xτ = x−] +

θ+ Pr[xτ = x+])/(E[τ ]Eg[exp(αx̂)]) = (0.043× 1)/(2.519× 17) = 0.001.
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TABLE II

Configurations of the Bernoulli Fixed-cost Model

Parameters Data (I) Bernoulli (II) Bernoulli (III) Extended

λ = 0 {θ−, θ+} → {∞,∞} λ− 6= λ+

θ− (for it > 0) — 0.043 ∞ 0.945

θ+ (for it < 0) — ∞ ∞ ∞
λ− (for it > 0) — 0 0.397 0.800

λ+ (for it < 0) — 0 0.397 0

Moments

E[τ ] 2.519 2.519∗ 2.519∗ 2.519∗

Var[x] 0.124 0.073 0.182 0.107

Cov[x, a] 0.600 0.661 −0.601 0.564

x∗ 0.005 −0.140 0.239 −0.037

CIR1 3.663 2.734 2.512 3.237

Notes: Data from Chilean plants. Configurations: (I) State-dependent Bernoulli with λ = λ+ = λ− = 0.

(II) Time-dependent Bernoulli with lim{θ−, θ+} → {∞,∞} and λ = λ+ = λ−. (III) Extended Bernoulli

with λ+ 6= λ−. Parameters for the stochastic process: ν = 0.095 and σ2 = 0.050. ∗ = targeted moment.

only decrease the CIR1. We conclude that the Bernoulli fixed-cost model falls short of gen-

erating the two sufficient statistics for propagation of aggregate shocks in the data.

Extended Bernoulli fixed-cost model. Can a simple modification of the Bernoulli model

enable it to explain the data? The answer is yes. The extension considers different rates of

free adjustments for positive and negative investments, λ− and λ+. We verify numerically

that the sufficient statistics for the CIR1 remain valid under this extension.29

Column III shows the calibration. The extended model breaks the trade-off between

asymmetry and randomness embedded in the original model, and it does an excellent job

of matching the data. The best match has fixed costs of (θ−, θ+) = (0.945,∞) and arrival

rates of free adjustments of (λ−, λ+) = (0.800, 0). The average physical adjustment costs

represent 0.1% of yearly revenue. The implied sufficient statistics are Var[x] = 0.107 and

Cov[x, a] = 0.564, and the CIR1 equals 3.237, which is almost 90% of its empirical value.

As in the pure state-dependent case, we obtain a one-sided inaction region that matches

29Appendix H verifies numerically that the CIR1 in the extended Bernoulli model is well approximated

by the sufficient statistics in expression (29) for small δ shocks.
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the positive covariance of gaps and age. Additionally, the free adjustments introduce a

random element in the policy that increases the variance of gaps, but it applies exclusively

to upward adjustments. Finally, notice that the reset state x∗ implied by the extended

Bernoulli model is closer to the data than in the other two configurations.

Heterogeneity and robustness checks. Our theory assumes that one can exploit the cross-

section to learn about the behavior of individual firms over time. In practice, fixed het-

erogeneity may affect the computation and interpretation of the cross-sectional statistics

(Blanco and Cravino, 2020). In Appendix I we present a multisector extension that allows

for fixed heterogeneity (e.g., across sectors or plant size) and we show how to aggregate

sectorial statistics. Additionally, we conduct a series of robustness checks in the Data

Appendix. Throughout these checks, we consistently obtain similar sufficient statistics.

6. CONCLUSION

We develop a parsimonious framework to study the propagation of aggregate productiv-

ity shocks when firms make lumpy investments. Through a sufficient statistics approach,

we discover that the transitional dynamics of capital are structurally linked to the degree

of steady-state capital misallocation and the relative costs of upsizing and downsizing.

Our results indicate that policies that impact the lumpiness of investment—e.g., invest-

ment tax credits (Chen, Jiang, Liu, Suárez Serrato and Xu, 2019)—directly affect the

propagation of aggregate shocks.

Looking forward, we foresee four avenues for developments that would extend the scope

of our theory. First, we focus on a one-dimensional state. Extending the theory to a

multidimensional state would facilitate studying transitional dynamics with multiplant

firms (Kehrig and Vincent, 2019), several production inputs (Hawkins, Michaels and Oh,

2015), or the interaction of lumpy investment and price-setting (Sveen and Weinke, 2007).

Second, we assume full adjustment upon action. Extending the theory to accommodate

partial adjustments would allow for interactions of lumpiness with convex adjustment

costs, time-to-build, learning, or other features that may generate a correlation between

adjustments. Our work in Baley and Blanco (2019) makes progress in this direction by

providing bounds for the CIR in environments with learning by carrying the aggregate
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forecast error as an additional state.

Third, we characterize the CIR, but not the complete profile of the impulse-response

function; moreover, we only consider marginal perturbations around the steady state.

Extending the theory to characterize the full IRF and general perturbations is key to

discuss non linearities and different types of aggregate shocks. Contemporaneous work

makes progress in these directions: Álvarez and Lippi (2019) characterizes the complete

impulse response function using eigenvalue-eigenfunction decompositions, and Alexandrov

(2020) studies the effect of non-marginal shocks in the presence of drift.

Finally, our theory assumes constant prices along the transition path. Appendix J re-

laxes this assumption and presents a general equilibrium model that delivers constant

prices as an equilibrium outcome. However, incorporating complex feedback from the

distribution to individual policies, e.g., strategic complementaries, is likely the most im-

portant extension ahead, but also the most challenging.
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