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Abstract: We have discovered a new flex-activated mechano-
phore that releases an N-heterocyclic carbene (NHC) under
mechanical load. The mechanophore design is based upon
NHC-carbodiimide (NHC-CDI) adducts and demonstrates an
important first step toward flex-activated designs capable of
further downstream reactivities. Since the flex-activation is
non-destructive to the main polymer chains, the material can be
subjected to multiple compression cycles to achieve iterative
increases in the activation percentage of mechanophores. Two
different NHC structures were demonstrated, signifying the
potential modularity of the mechanophore design.

Polymer mechanochemistry harnesses mechanical energy to
drive chemical reactions within polymeric materials. The
ability to translate between macroscopic and microscopic
energy surfaces, combined with evolving mechanophore
designs, has fueled impressive growth in this nascent
area.[1–5] Compared to conventional reaction pathways, the
potential energy surfaces of related mechanochemical reac-
tions are altered by mechanical force. This consequently
changes the overall activation energy[6, 7] and in some cases
alters the reaction products.[8–10] Mechanophores serve as
a focal point for studying how mechanical force can be
transduced to the molecular level, since these functional
groups are intended to undergo predictable chemical reac-
tions upon geometric distortions.[11] Through judicious design,
mechanophores can collectively achieve changes in topology
such as polymer chain extension[12, 13] or cross-linking,[14–17]

shifts in glass transition temperature (Tg),[18] enhancement

of electrical conductivity,[19] photophysical changes,[20–26] and
the release of small molecule cargo.[27–33]

To date, the vast majority of mechanophore designs focus
on bond elongation to achieve activation, resulting in
cleavage of specific bonds within polymer backbones. Alter-
natively, flex-activated mechanophores mainly leverage bond
bending to facilitate mechanochemical reactions.[28–30, 34]

Therefore, flex-activation is non-destructive to the overall
macromolecular architecture and polymer backbones can
survive multiple activation cycles.[35] Flex-activation is also
accompanied by release of small molecules owing to bond
scission within pendant groups. For example, an oxanorbor-
nadiene motif incorporated into a poly(methyl acrylate)
(PMA)[28] or polyurethane matrix[29] can release a furan
derivative upon compression (Figure 1a). Within the elasto-
meric polyurethane network, successive release of furan over
multiple load cycles was observed. In addition to oxanorbor-
nadienes, phenyltriazolinedione-anthracene adducts embed-
ded in a poly(dimethylsiloxane) (PDMS) elastomer released
phenyltriazolinedione under pressure, with nearly full shape
recovery of the material after activation.[30]

Despite this progress, there is a need for further develop-
ment of flex-activated mechanophores, particularly those
capable of releasing other small molecules that have the
ability to trigger secondary reactions or polymerizations.
Since flex-activation does not require degradation of the
polymer main chain, it could be employed in drug delivery,[36]

damage detection,[33] self-healing,[37, 38] or remodeling materi-
als.[39] Herein, we report a new type of flex-activated
mechanophore based upon N-heterocyclic carbene-carbodii-
mide (NHC-CDI) adducts, a class of zwitterionic betaine-type

Figure 1. Flex-activated mechanophores.
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amidinates.[40, 41] Related structures have attracted attention
across a variety of fields including nanocatalysis,[42,43] organ-
ometallic chemistry,[44–46] and polyzwitterionic materials.[47]

NHC-CDIs based on aryl carbodiimides are bench-stable
and cleavage of the C�C bond between the NHC and CDI is
kinetically accessible at elevated temperatures.[47] Thus, we
hypothesized that bond scission could be mechanically
facilitated. Furthermore, the NHCs released from this
mechanophore represent widely used and powerful organo-
catalysts,[48–50] which provides opportunities to make diverse
mechanoresponsive materials by triggering varied reactions
upon activation. Different from previously reported mecha-
nophores that use chain scission to generate NHCs at the
chain ends of the daughter fragments,[51–55] the NHC-CDI
mechanically releases a small molecule NHC without requir-
ing destruction of the network linkages. The flex activation
design could therefore be used as a platform to release
various classes of NHCs, potentially with queued mechano-
chemical preference.

To gain an atomistic understanding of NHC-CDI flex-
activation, quantum chemical calculations were applied using
density functional theory and the force-biased growing string
method.[34, 56] Transition states (TSs), reaction paths (RPs),
and product geometries for mechanophore activation were
calculated at varying magnitudes of applied force (see SI for
full computational details). Figure 2a and 2b shows how
increasing tensile force lowers the activation energy for NHC
release in the mechanophore model. Applying force to the
reactant (Figure 2c (i!ii)) results in mechanophore stretch-
ing which effectively lowers the thermal energy required for
subsequent activation. As activation occurs (i!iii or ii!iv),
the overall length of the mechanophore increases, despite the
central CDI contracting from N�C=N to N=C=N. These
simulations therefore show that the NHC release occurs
readily, without fracturing the polymer backbone. Thus,
compounding mechanophore activation within the PMA
network can provide strain relief by releasing stored length.

To empirically verify the mechanical reactivity of the
NHC-CDI, we prepared mechanophore 3 and the control
NHC-CDI 4, both of which can be easily synthesized by the
condensation of corresponding isocyanates followed by
reaction with the desired NHC (Figure 3a). Mechanophore
3 was subsequently incorporated into a PMA network as
a crosslinking unit through free-radical polymerization ini-
tiated by azobisisobutyronitrile (AIBN). After polymeri-
zation, unreacted monomer was washed away by a mixture of
CH2Cl2 and CD3Cl multiple times until it could no longer be
detected by 1H NMR spectroscopy. During the washing step,
no unreacted mechanophore was observed, and the mecha-
nophore percentage within the PMA network was calculated
to be 5.8 mol% based on the feed ratio and the recovered
amounts of reactants. To confirm the stability of the NHC-
CDI adduct under the polymerization conditions, the control
NHC-CDI 4 was subjected to the same polymerization
conditions as 3 (Figure 3b). From the 1H NMR spectrum of
the reaction mixture, no obvious side products were observed,
and > 90 % of 4 remained after the polymerization as
determined using an internal standard (Supporting Informa-
tion, Figure S3).

With the desired polymeric material in hand, we then
chose phenyl isothiocyanate (PITC) as the trapping agent for
the NHC released via flex-activation under uniaxial com-
pression (Figure 4a). Since PITC is a liquid and more
electrophilic than the diaryl- carbodiimide,[57] it was expected
to react with the NHC faster than the carbodiimide within the
polymer backbone and consequently suppress the recombi-
nation of released NHC with the carbodiimide. Moreover,
literature reports as well as our model experiments indicated
high yield in the formation of the NHC-PITC adduct
(Section II in the Supporting Information).[58, 59] After trap-
ping the NHC, excess PITC was easily removed by reacting

Figure 2. Quantum chemical calculations were employed at the B3LYP
level of theory with the LANL2DZ basis set. For each calculation,
a tensile force was applied to the terminal carbons in the model to
simulate experimental conditions. a) Simulated activation energies (Ea)
plotted as a function of applied tensile force. b) Reaction paths for
mechanophore activation at various magnitudes of applied force. The
reaction coordinates chosen are the R distance (top) which represents
total elongation of the mechanophore and the q angle (bottom) which
represents the bond flexing that occurs as the mechanophore is
activated. These graphs represent the alterations that are made to
reaction potential energy surfaces in the presence of force. c) Geo-
metries for the NHC-CDI mechanophore before and after activation in
the ground state (no applied force) and with 4 nN of force applied.
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with solid-supported nucleophiles such as polymer-bound
benzylamine, avoiding impediments to characterization and
quantification of the NHC-PITC adduct by LC-MS. Upon
uniaxial compression at 740 MPa for 10 min, 0.41% of NHC-
CDI in the PMA network was activated, as determined by
LC-MS using 9-methylanthracene as an internal standard (see
Section V of the SI for details). To exclude the possibility that
the activation resulted from thermal or other effects during
compression, we also prepared a control PMA network that
contained 1,6-hexanediol diacrylate (HDDA) as the cross-
linker and monofunctional NHC-CDI 8 as the comonomer
(Figure 4b). NHC-CDI 8 was synthesized from the urea
derivative 6 in two steps. Because 8 only has a single styrenic
double bond, the NHC-CDI moieties within the control
network are pendent groups on the polymer chains and are
not subject to the same mechanical load. In addition,
introducing a Br group to the adduct assisted our analysis of
side products by its isotopic mass pattern. Under identical
compression conditions and using the same trapping agent,

the control PMA network only had an activation percentage
of 0.03% and no other obvious side products were observed
in the LC-MS spectra. This indicates that activation of the
NHC-CDI mechanophore is mainly induced by mechanical
force.

We next performed a series of compression experiments
at different pressures to evaluate the influence of applied
mechanical load on the mechanophore activation. As
depicted in Figure 5, no activation was observed without
compression of the sample, whereas detectable amounts of
trapped NHC were observed once 74 MPa was applied.
Additionally, the activation percentage became higher as the
applied pressure increased. These results give additional
support to the mechanochemical origins of the NHC-CDI
activation.

In our previous report using a PMA network as the
scaffold to achieve the flex-activation of oxanorbornadiene,[28]

only one compression could be applied to the material due to
its macroscopic failure after compression. However, adding
liquid PITC to the NHC-CDI containing PMA network
appeared to plasticize and improve the durability of the
material. After each compression, the flattened disc-like
sample was folded and compressed again, without obvious
signs of cracking or other macroscopic failure. A monotonic
rise in activation percentage was observed with increasing
number of compressions until reaching a plateau of activation
(1.06 %) after three compression-activation cycles (Figure 6).
The plateau of the activation may be attributed to the
heterogeneity of the local forces exerted on NHC-CDI
mechanophores within the randomly cross-linked PMA,
which concentrates force in a few polymer segments.[60, 61]

We next investigated a related NHC structure in addition
to the 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr)
of our original design. Specifically, we prepared materials
from the saturated analogue, 1,3-bis(2,6-diisopropylphenyl)I-
midazolidin-2-ylidene (SIPr). As shown in Figure 7a, SIPr-
CDI mechanophore 9 was synthesized and incorporated into
the PMA network through the same pathway as for IPr-CDI
mechanophore 3. However, the molar percentage of 9 within
the network was limited to 3.4 mol%, owing to its low
solubility in methyl acrylate. An analogue of 9, similar to IPr-

Figure 3. a) Synthesis of the mechanophore-containing PMA network
from isocyanate 1 in three steps. b) Using control NHC-CDI 4 to
confirm the stability of NHC-CDI under polymerization conditions.

Figure 4. a) Activation of NHC-CDI mechanophore 3 by compression,
using PITC as the trapping agent. b) Synthesis of the control PMA
network with monofunctional NHC-CDI 8 to confirm the mechanical
activation of NHC-CDI mechanophore.

Figure 5. Plot of mechanophore activation percentage versus compres-
sion pressure (0, 74, 370, 740 MPa). Pressure was applied for 10 min
in each experiment. Error bars represent standard deviations of results
from 3 or 6 individual experiments.

Angewandte
ChemieCommunications

13561Angew. Chem. Int. Ed. 2021, 60, 13559 –13563 � 2021 Wiley-VCH GmbH www.angewandte.org

http://www.angewandte.org


CDI 4, was also prepared to confirm the stability of SIPr-CDI
compounds under the polymerization conditions. According
to the 1H NMR analysis, > 90% of the control specimen was
recovered after polymerization, and no side products were
detected (Supporting Information, Figure S4).

After compression of the material containing SIPr-CDI 9
at 740 MPa for 10 min, 0.46 % mechanophore activation was
calculated from LC-MS results (Figure 7b). Importantly, the
control network that was made from the copolymerization of
control SIPr-CDI 11 and methyl acrylate only gave 0.003%
activation under the same compression conditions (Fig-
ure 7c), which again indicates the mechanically triggered
activation of SIPr-CDI mechanophore.

In summary, we have demonstrated a new type of flex-
activated mechanophore that features a modular NHC-CDI
adduct capable of releasing small molecule NHCs under
mechanical load. Quantum chemical calculations were
employed to examine how the mechanophore responses to
mechanical force. Mechanical activation of NHC-CDI

mechanophores showed a positive correlation with the
compression pressure as well as increases in the activation
percentage over multiple compression-activation cycles. We
anticipate that NHC-CDI mechanophores may have diverse
applications in advanced functional materials capable of self-
healing, self-strengthening and self-reporting initiated by
mechanical force. Furthermore, the nucleophilicity and Lewis
basicity for various NHCs are well-studied,[62, 63] which could
enable further research to investigate the relationship
between physical organic properties and force-modified
potential energy surfaces of systematically varied NHC-CDI
mechanophores.
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