
MINIMALIST TONAL COMPOSITION 1

A linguistic model of minimalist syntax composes Tebe Poem

Sean P. Anderson

The University of Michigan

Mentor: Somangshu Mukherji

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of
Sciences with Honors in Cognitive Science: Computation & Cognition from the University of

Michigan
2020

MINIMALIST TONAL COMPOSITION 2

Acknowledgements

There are always more people to thank than there is time and space, so I will do my best here.
Thank you foremost to Somangshu Mukherji, for expanding cognitive science to places I feared
it would never go, and for providing an avenue for my childhood dream of working to
understand creativity. You have significantly shaped how I think about the world around me, as
well as my career. Thanks also to Sam Epstein, who inspired me greatly with his humility and
joy in encouraging the project.

There are many others who’s guidance and mentorship presents themselves in threads of this
project, as well as significantly shaped the thinker and person I am today:

Thank you, Taraz Lee, for being one of the best mentors I could ever ask for. Thanks for teaching
me nearly everything I know about science, listening to all of my ideas, including the bad ones,
always taking the time to help me with whatever it is I’m doing, and bringing joy to the work.
Thank you, Colleen Seifert, for being a ceaseless advocate, listening to the ideas I didn’t tell
Taraz, and opening all the doors, including those I didn’t even know existed. You both have
shaped my career and abilities incredibly. I am forever in debt!

Thank you to the Weinberg Institute; your funding made so much of my learning (and travel)
possible, as well as your never-ending encouragement and flexibility. I never thought I’d be so
proud to be a part of a major! Thank you also to Rick Lewis, who put the seemingly opaque and
globular mess of cognitive science into clearer perspective. Thank you CogSci Community, and
Anne, Grayson, Nick, Ross, and Ty, who compassionately shared my passion for the mind; I’ll
forever cherish the long hours of debate we spent (and spend!).

Thank you, Adam Unsworth and Bryan Kennedy, for supporting me in becoming a better
musician than I thought possible, and for always believing in my ability. Thanks for showing me
just how incredible and thoughtful teachers can be, and for always going the extra mile for me,
every single time, no matter what. Thank you to the Horn studio, for being the most awesome
and talented group of people I’ve ever been a part of, and for always raising the bar of kindness
and encouragement.

Thank you, YoungEun Yook, for teaching me there’s plenty more than a single way to think, see,
and feel. Thank you for your endless support and personal encouragement. Thanks also to those
at NELP, who continue to open my mind every time we meet.

Thanks to my Packard chefs: Chuck, John, Roseanne and Priya. You kept me fed, sane, and
happy, and I am so grateful.

And, thank you, most of all, to my family, who did everything else: Mom, Dad, Neal, and
Mohra.

MINIMALIST TONAL COMPOSITION 3

Abstract

 For centuries, thinkers of many disciplines have noted the similarities between music and

language, particularly their communicative power and cultural significance. Recent work on the

Identity Thesis for Music and Language (Katz & Pesetsky, 2011; Mukherji, 2014) provides

fertile ground for formalizing and simulating computational, process-level models of musical

composition, although (to the author’s knowledge) no such simulations have been attempted

within the Minimalist Program (Chomsky, 2014b). This work proposes a model of Western tonal

composition congruent with current mathematical formalizations of Minimalist syntax in

linguistics (Collins & Stabler, 2016) and demonstrates its ability to generate valid musical

surfaces previously composed by humans (Dmitri Bortniansky’s Tebe Poem). In the light of

current artificial systems’ difficulties in computational creativity (Herremans, et al., 2017) and

statistical deep learning attempts of musical composition (e.g. Huang, et al., 2019), generative

models such as the one proposed provide avenues for future research leading not only to more

interpretable and musically compelling artificial composition systems, but also sounder theories

of musical composition and language production in humans.

Keywords: music, syntax, generative linguistics, minimalism, computational modeling

MINIMALIST TONAL COMPOSITION 4

Author’s Note

 This paper attempts to theorize a procedure broadly used by the mind, across multiple

disciplines (generative linguistics and music theory), and argues its implications reach even

broader, including engineering. I am barely a student in each of these disciplines, so I apologize

in advance if an unwarranted gross simplification or misconception is made in this paper. I

assume the reader has a basic familiarity with generative linguistics, particularly concepts

introduced in the Minimalist Program. I also assume the reader has a basic understanding of

essential concepts in music theory, such as chords, triads, intervals, cadences, and others. I

understand this is not really a fair assumption to make, so I’ve done my best to quickly explain

more elusive concepts in the text. I hope that, nevertheless, you find it understandable and easy

to follow.

MINIMALIST TONAL COMPOSITION 5

A linguistic model of minimalist syntax composes Tebe Poem

Introduction

 “Whither music?” Leonard Bernstein—a world-famous conductor and composer—

famously asked this question to begin his Norton lectures, titled “The Unanswered Question,” in

1973 (Bernstein, 1976). His talks and its reception added fuel to a debate lasting centuries on the

similarities and differences of human languages and music. Two attendants of the lectures, Ray

Jackendoff and Fred Lerdahl, met in the audience and continued to work on ideas inspired by

Bernstein’s comparison of music to generative linguistics, producing the widely known A

Generative Theory of Tonal Music (henceforth GTTM) (Lerdahl & Jackendoff, 1983). With

much insightful analysis Lerdahl and Jackendoff concluded, rather definitively, that music is not

language, despite sharing some aspects of hierarchical structure present in generative theories of

language (Chomsky, 2014a).

 Despite this strongly worded conclusion, interest in the idea continued through various

applications of generative theory to music, particularly in the Western Tonal tradition. Allan

Keiler (1978) criticized the issues with Bernstein’s approach to generative linguistics and music,

and proposed new theories based on work by the music theorist Heinrich Schenker (Keiler,

1977). Namely, Keiler proposes a binary-branching structure present in music, made up of

harmonic objects called Stufen (pl.) (Mukherji, 2014: 328). A Stufe (singular) is a “scale-step,” or

an abstract entity that acts as a precursor to the actual chords written in a composition, although

their treatment with respect to theoretical analysis in tonal music was not exactly consistent

throughout Schenker’s career (Keiler, 1983; Mukherji, 2014). Importantly, Keiler analyzed

Schenker’s theory of the Ursatz, or the “ ‘fundamental structure’ of a tonal piece” (Schenker

MINIMALIST TONAL COMPOSITION 6

1979:6, as quoted in Mukherji, 2014:115), as a phrase structure with binary branching

constituents (Keiler, 1983).

 Meanwhile, the Chomskian generative linguistics tradition produced at least two

significant changes in their approach, namely X-Bar theory (Chomsky, 1970) and later, the

Minimalist Program (Chomsky, 2014b). By reshaping generative theory into a pursuit of

efficiency and elegance in a truly derivational (rather than representational) system, the

Minimalist Program enabled significant progress on the questions of the relationship between

language and music (Mukherji, 2014). Namely, theories in the Minimalist Program do not

assume a priori particular phrase structures but demonstrate that previously studied structural

forms arise organically out of the repeated application of simple rules (Chomsky, 2014b).

 Drawing upon the Minimalist Program for linguistics, the Identity Thesis for Language

and Music was formulated (Katz & Pesetsky, 2011; Mukherji, 2014). The Identity Thesis

stipulates firstly that music theory and linguistic theory are the same, and secondly that this is

evidence for music and language being products of the same computational system present in the

human mind (Mukherji, 2014). Katz & Pesetsky (2011) apply this theoretical lens to argue earlier

GTTM theory is in fact equivalent to Minimalist syntax in linguistics, while at the same time

positing that music does not have a lexicon. Katz & Pesetsky additionally contrast their theory

with Rohrmeier’s (2007) work with Context Free Grammars (CFGs) and tonal composition,

arguing music theory concepts like “tonic” and “dominant” appear to be semantic in origin

despite Rohrmeier’s use of them directly in the grammars. Mukherji (2014) discusses a similar

issue in Keiler’s work analyzing Schenker’s Ursatz (Keiler, 1983).

MINIMALIST TONAL COMPOSITION 7

 It would not be unfair to consider all of these works, regardless of their stance, to be a

part of a growing body of literature on the Identity Thesis. Three of these works propose formal

models for tonal composition (Katz & Pesetsky, 2011; Rohrmeier, 2007; Mukherji, 2014) which

interestingly have all been supplied with their unique analysis and derivation of Bortniansky’s

Tebe Poem, an 18th century choral piece. However, limited additional examples have been

provided from the Minimalist models of additional derivations. Additionally, to the author’s

knowledge, no model of tonal composition in the Minimalist paradigm has been computationally

simulated in free composition for the purposes of advancing Minimalist theory of syntax in

music. Such a study would advance progress towards a successful “type 2: Common properties

of pieces within an idiom” (Katz & Pesetsky, 2011) grammar. It would unequivocally

demonstrate which pieces are able to be generated and which are not, based on the outputs of

such a model, effectively assigning all musical pieces between two categories: deviant and valid.

Any discrepancy between such assignments and the existence of human-composed pieces within

an idiom would motivate improvements in the theory. Additionally, if such a model were

parameterized accordingly, it could make similar implications for Katz & Pesetsky’s “type 3”

level of generative description (2011).

 Models of musical composition that are successful in this regard would also have

implications for computational creativity. As music, like language, is infinitely productive (that

is, there are infinitely many pieces that can be composed, even within most idioms), not every

piece has been composed yet. A model like the one described could write music that it predicts as

valid (i.e. interpretable) within an idiom and be used as artificially created artwork. In fact, one

issue plaguing recent systems of artificial composition in music is the inability to generate pieces

MINIMALIST TONAL COMPOSITION 8

with “long-term structure” (Herremans, et al., 2017). Despite pursuing a different goal, modeling

work in the Identity Thesis paradigm seems aptly poised to conquer this challenge, especially as

issues of semantics are tackled in both the Minimalist Program and in music.

 Here we aim to provide the foundations for future work in simulating models of tonal

composition within an Identity Thesis paradigm, and hence, the Minimalist Program of

linguistics. We take a mathematical formalization of Minimalist syntax (Collins & Stabler, 2016),

which was stipulated entirely in the domain of human language and makes no appeal to music,

and with minimal modifications formalize two models of Minimalist tonal composition. We then

simulate compositions from these models by turning them into a probability distribution over

musical pieces and sampling from this distribution via simulating derivations. We demonstrate

that our models are capable of composing pieces in the Western Tonal idiom, particularly Dmitri

Bortniansky’s Tebe Poem, and producing additional pieces on their own.

MINIMALIST TONAL COMPOSITION 9

Methods

Tasks

 Two computational models of musical composition were simulated in simple Western

tonal composition tasks. Results from the simulations are separated into two tasks. The first task,

Tebe-Composition, is to generate the chords of Bortniansky’s Tebe Poem, measures 9-16, given a

Lexical Array of the Stufen present in the piece (see below). Tebe Poem was selected since it

requires handling of chords outside of the tonic’s scale, including a diminished chord, and was

analyzed by three prior works within Identity Thesis research discussed above (Rohrmeier, 2007;

Katz & Pesetsky, 2011; Mukherji, 2014). The second task, Open-Composition, is to generate

other surface chord progressions starting from the same Lexical Array used for Task 1. This

second task aims to demonstrate musical competencies and shortfalls of the models that would

not be visible in the original task. All derivations are evaluated informally by the author. Each

simulation produced results for both tasks, as the models yield Open-Compositions in search of a

solution to Tebe-Composition. Compositions for both tasks were hand-picked by the author for

the Results section.

 Both of the models are simplifications of a prior mathematical formalization of

Minimalist syntax (Collins & Stabler, 2016) which was designed entirely for human language

and makes no discussion of music. All models were written and executed using Python (see

Appendix for code). Throughout the simulations, the models assume octave and enharmonic

equivalence; namely, different spellings of physical notes are considered equivalent (e.g. A# =

Bb) and we leave out notation of the octave. Adding treatment of octaves would be trivial;

treatment of enharmonic equivalence requires application of more advanced music theory, and

MINIMALIST TONAL COMPOSITION 10

participation in some debates that are out of this paper’s scope. Additionally, the models

compose in the key of C Major, without loss of generalization to other keys; each output of the

model could be simply transposed to another key. The same lexicon was used for both models.

Models

Lexicon

 Unlike the model proposed in Katz & Pesetsky (2011), Mukherji (2014) hypothesizes that

tonal music does in fact have a lexicon, i.e. one that differs from the lexicon used in language.

This Lexicon is based on the music theoretical work by Schenker (1973) and defines Stufen as

the inputs to both models. A Stufe is an abstract entity behind the scale and chords of a particular

key (Schenker, 1973: 133-153), and has many implications for theoretical discussion in music

outside the scope of this paper. For our purposes, Stufen (plural of Stufe) are defined more simply

as below:

Definition: Stufe

A Stufe is a 4-tuple <c5, c3, root, type> where “c5” is a circle of fifths feature, “c3” is a

circle of thirds feature (both defined below), and “root” is the note name of the Stufe it

represents, which essentially is the name of the chord that this Stufe will realize when

uttered in a surface. “type” is one of {“Major”, “minor”, “diminished”} and will be

discussed in more detail below.

c3 and c5 serve as features of the Stufe, and are uniquely defined by the root and type of the

object. We will use brackets to denote “accessing” a feature value from a Stufe object. For

example, if C = <+00, +03, “C”, “Major”>, C[c5] = +00 (see definition of Filter below).

MINIMALIST TONAL COMPOSITION 11

Importantly, each Stufe is related to each other by their placement within the Circle of Fifths,

which organizes the Lexicon (Mukherji, 2014):

[Figure 1]

Two Stufen adjacent to another on the Circle of Fifths have roots exactly one perfect fifth apart.

For example, on a piano keyboard, the notes C and G are five notes apart within the C Major

scale, counting C as one. Importantly, the G Stufe serves as the V, or “dominant,” functioning

chord in C Major, while C Major serves as the I, or “tonic.” A very common, if not most

common, harmonic progression (i.e. sequence of chords) observed in tonal music is the sequence

V-I (which, for theoretic purposes, is a type of “cadence”; for more information, see Aldwell &

Schachter, 2011). Mukherji (2014) proposes a numerical feature for each Stufe based on its

location in the Circle of Fifths (Figure 1). These features come in to play when the model decides

how to order sequences of Stufen when composing.

Definition: c5

c5, called a circle of fifths feature, is an integer value in the interval [-12, +12], which

corresponds to a location on the Circle of Fifths. In this paper, “+00” will always refer to

the position of the tonic.

The intuitive motivation behind the c5 feature is that chords that have Stufen adjacent on the

Circle of Fifths will be juxtaposed (i.e. via Merge, defined later) in the musical surface; in

Western tonal music, adjacent Stufen, when placed, will be ordered in the negative direction (e.g.

G = +01 to C = +00 and not the other way around). Since both triad chords and seventh chords

MINIMALIST TONAL COMPOSITION 12

typically operate this way in tonal music, we hypothesize that both triads and seventh chords

(e.g. C Major and C7, which are both in Tebe Poem) are instantiations of the same Stufe, one of

type “Major” (Mukherji, 2014). However, most chord progressions are not simple traversals of

the Circle of Fifths. For instance, in the C Major scale, the F Major triad often functions as a IV

chord leading to a V chord, earning the label “pre-dominant.” A F Stufe could not be placed

directly before a G Stufe if the direction and adjacency of c5 features is required. Following

Mukherji (2014), the models proposed here hypothesize that Stufen are also related by intervals

of a third. Thirds-based relationships enable prolongations of the dominant like the one described

(Mukherji, 2014). This progression could be made legal by a covert, or invisible, progression

from F Stufe to a d Stufe. Looking at the Circle of Fifths, d has a c5 value of +02, which could

then lead to a G Stufe. This progression is hypothesized because F-d-G (functionally: IV-ii-V…)

is in fact a chord progression observed often in Western tonal music, and there are reasons to

believe overt composition of ii could have been dropped as musical style changed over time (see

Mukherji, 2014: 359). For these reasons, the c3 feature is defined:

Definition: c3

c3, or circle of thirds feature, is an integer value in the interval [-12, +12].

If a Stufe C is of type “Major,” C[c3] = (c5 + 3) mod 12, or the c5 value the Stufe would

have if its root was a minor third below its own.

If C is of type “minor,” C[c3] = (c5 + 3) mod 12 also, which is the c5 value of its parallel

major Stufe.

If C is of type “diminished,” C[c3] = (c5 + 8) mod 12, or the c5 value Stufe would have if

its root was a major third below its own.

MINIMALIST TONAL COMPOSITION 13

The last part of this definition requires some explanation. Typically, diminished chords like F#º

are followed by one of four chords, including G Major (the triad with root a half step up). With a

minimal modification—the addition of D, the note a major third below the root F#—the

diminished chord becomes a D7, which would have a c5 value of +02, adjacent to G’s. The last

of these four possible progressions takes place in Tebe Poem. The c3 definition for diminished

Stufen is a significant simplification of the complex harmonic (and voice-leading) nature of these

chords; we leave defining a more accurate and elegant feature space for future work.

Model A

Model A is a much simplified version of a previous mathematical formalization of Minimalist

Syntax which was formulated entirely within linguistics, and makes no appeal to musical

phenomena nor the Identity Thesis (Collins & Stabler, 2016). In this section, we directly quote

several definitions from the formalization, replacing the number of the definition with the name

of the object defined (Collins & Stabler, 2016); for the reader’s convenience, an asterisk (*) is

added to each definition which was altered or introduced for our models. The model’s input is a

Lexical Array, which contains the Stufen required for the piece, and its output contains a binary-

branching tree structure (a Syntactic Object) linking Stufen, and its corresponding chord

sequence string read from the leaves of the tree.

*Definition: lexicon

A lexicon is a finite set of Stufen.

*Definition: lexical item token

 A lexical item token is a pair <C, k> where C is a Stufe and k is an integer.

MINIMALIST TONAL COMPOSITION 14

Definition: lexical array

A lexical array (LA) is a finite set of lexical item tokens. (p. 45)

Following the formalization in Collins & Stabler (2016), we define the objects necessary for the

simple model nearly exactly the same way:

*Definition: syntactic object

X is a syntactic object iff

(i) X is a lexical item token, or

(ii) X is an ordered pair of syntactic objects.

Definition: immediately contains relation

Let A and B be syntactic objects, then B immediately contains A iff A ∈ B.

Definition: stage

A stage is a pair S = <LA, W>, where LA is a lexical array and W is a set of syntactic

objects. We call W the workspace of S. (p. 46)

Definition: root

For any syntactic object X and any stage S = <LA, W> with workspace W, if X ∈ W, X is

a root in W. (p. 47)

Altering Syntactic Objects to ordered pairs makes it simpler to define Agree (see Model B) by

dispensing with Triggers and using a simpler Labels relation (see Collins & Stabler, 2016: 63).

We also do not need the more general “contains” relation for the model’s ability to generate,

since we only allow External Merge (see below). Objects are manipulated by two operations:

Definition: Select

Let S be a stage in a derivation S = <LA, W>.

MINIMALIST TONAL COMPOSITION 15

 If lexical token A ∈ LA, then Select(A, S) = <LA - {A}, W ∪ {A}>.

*Definition: Merge

Given any two distinct syntactic objects A, B, Merge(A, B) = (A, B). (p. 47)

Importantly, the result of Merge is a Syntactic Object as we defined. External Merge in these

models serves as a special case of Merge in Minimalist linguistic literature. Normally, Merge

would operate on any two distinct Syntactic Objects, which would allow items contained

(“contained” as Collins & Stabler (2016:46) define it) within other items to be merged together,

resulting in “Internal Merge.” It is theorized in Minimalist linguistics that the Internal Merge

case is how movement transformations take place (Collins & Stabler, 2016). These models deal

only with External Merge, and we leave the implications of Merge and all its cases for future

work.

*Definition: derivation

A derivation from lexicon L is a finite sequence of stages <S1, …, Sn> for n ≥ 1, where

each Si = <LAi, Wi>, such that

(i) For all LI and k such that <LI, k> ∈ LA1, LI ∈ L,

(ii) W1 = {} (the empty set),

(iii) for all i, such that 1 ≤ i ≤ n, either

 (derive-by-Select) for some A ∈ LAi, <LAi + 1, Wi + 1> = Select(A, <LAi, Wi>), or

 (derive-by-Merge) LAi = LAi + 1 and the following conditions hold for some A, B:

 (a) A ∈ Wi,

 (b) Wi immediately contains B,

 (c) Agree(A, B) = True, and

MINIMALIST TONAL COMPOSITION 16

 (d) Wi + 1 = (Wi - {A, B}) ∪ {Merge(A, B)}. (p. 49)

Definition: derivable relation

A syntactic object A is derivable from lexicon L iff there is a derivation <<LA1, W1>, …,

<LAn, Wn>>, where LAn = {} and Wn = {A}. (p. 50)

Our definition of derivation differs from that of Collins & Stabler (2016) in that only External

Merge is allowed (via condition (b) of derive-by-merge) and that Merge only applies when two

Syntactic Objects satisfy Agree (defined below). A derivation describes the sequence of

operations it took to generate a musical surface. The derivable relation is formalized purely to

illustrate the possibilities of studies on “type 2” grammars (Katz & Pesetsky, 2011) labeling

some musical strings valid (i.e. derivable) and all others deviant. For instance, all musical strings

generated by our models in this paper are derivable given our Stufen lexicon.

 At this point the models begin to differ substantially from the formalization. Before we

can determine what is derivable given a Lexicon or a specific Lexical Array, we need to define

how the derivation would finish, and when Merge is applicable:

*Definition: Agree (Model A version)

Given any two distinct syntactic objects A and B, Agree(A, B) = True.

Agree is formalized here to illustrate that Model B (discussed below) is a parameterization of

Model A. Effectively, Model A does not use Agree, which results in External Merge’s operation

on any pair and ordering of Syntactic Objects. To determine when a derivation has lead to a

viable musical surface, we first edit the Label operation present in the Collins & Stabler

formalization (2016):

*Definition: Label

MINIMALIST TONAL COMPOSITION 17

Label is a syntactic function from syntactic objects to lexical items tokens, defined in the

following way:

 (i) For all lexical item tokens LI, Label(LI) = LI.

 (ii) Let W be a derivable workspace. If (A, B) is contained in W, then

 Label((A, B)) = Label(B). (p. 65)

In the case of Syntactic Objects containing other Syntactic Objects, which contain others, and so

on, Label becomes a recursive operation which returns the Stufe at the deepest right-branching

leaf of the tree defined by SO. By formulating Label this way and omitting Triggers, we dispense

with “checking” of features during the course of a derivation. This effectively makes a Stufe

always encourage the same Merges, regardless of how deep it is in the tree, or how many times it

was merged previously. In the interest of efficiency, this eliminates the need for storing and

manipulating features of a Syntactic Object during the course of a derivation. More important is

that Label enforces the right member of a Merge as the “head” (Collins & Stabler, 2016:65), and

therefore the models build entirely left-branching tree structures. With a small change this could

operation could be parameterized to enforce the left member to be the head.

 Next, we introduce a Filter operation:

*Definition: LeftLeaf

LeftLeaf is a syntactic function from syntactic objects to lexical items tokens, defined in

the following way:

 (i) For all lexical item tokens LI, LeftLeaf(LI) = LI.

 (ii) For all syntactic objects SO = (A, B), LeftLeaf(SO) = LeftLeaf(A).

*Definition: Filter

MINIMALIST TONAL COMPOSITION 18

Let SO = (H, I) and I = (J, K) be syntactic objects. Filter(SO) = True iff the following

conditions are met:

 (i) Label(SO)[c5] = +00,

 (ii) Label(J)[c5] = +01, and

 (iii) LeftLeaf(SO)[c5] = +00.

Filter(SO) = False otherwise.

LeftLeaf is formalized solely for notational simplicity when defining Filter. The novel Filter

operation is the only segment of Model A that has specifically musical origins, aside the ordered

parameterization of Label. Intuitively, Filter checks if the root of the Syntactic Object is

Schenker’s Ursatz, i.e. a I-V-I progression at the hierarchical level closest to the root (Schenker,

1979; Mukherji, 2014). This effectively enforces the piece to begin with the tonic and have a full

cadence at the end. Earlier work in the Identity Thesis espouses the importance of cadences to

determining listener’s interpretation and even formalizes their requirement in models of musical

syntax (Lerdahl & Jackendoff, 1983; Katz & Pesetsky, 2011). The Ursatz arises out of

Schenker’s extensive analysis of works in the Western Tonal musical style, where it was often

exposed as the deepest level of harmonic structure in his analyzed works (Mukherji, 2014). For

linguistic purposes, particularly within Minimalist paradigms, the Ursatz Filter acts to

summarize third factor principles which encourage musical surfaces to contain the Ursatz

structural form. However, it is outside the scope of this paper to hypothesize whether this

principle or an equivalent group of principles would serve the same role in language.

 Finally, we will now describe the actual procedure that enables Model A to produce

musical surfaces:

MINIMALIST TONAL COMPOSITION 19

*Definition: Derive (Model A version)

Procedure Derive(LA) takes as input a Lexical Array of Stufen and proceeds (informally)

as follows:

1) Instantiates a Stage S = <LA, {}>.

2) Picks two random Stufen from LA, and Selects them, moving them into the

Workspace. S is now <LA - {A,B}, {A, B}>.

3) Flips a coin to decide whether to attempt External Merge (#5) or Select (#4).

4) If Select, picks a random Stufe from LA in current stage and performs Select to move

that Stufe into the Workspace. If LA is empty, does nothing. Returns to Step #3.

5) If External Merge, picks two random Syntactic Objects SO1 and SO2 immediately

contained in the Workspace, and performs Merge(SO1, SO2) to turn them into a new

Syntactic Object SO3 in the Workspace. If Filter(SO3) returns True, executes

SpellOut(SO3). If the Workspace contains less than two Syntactic Objects, does

nothing. Returns to Step #3.

6) If at Step #3 and both LA is empty and the Workspace contains less than two

Syntactic Objects, halts the procedure. If Workspace contains exactly one Syntactic

Object SO and Filter(SO) returns True, the derivation is considered a “success.”

Otherwise, the derivation is considered a “crash.”

*Definition: SpellOut

Procedure SpellOut(SO) takes as input a Syntactic Object SO and proceeds (informally)

as follows:

MINIMALIST TONAL COMPOSITION 20

1) Compute, via left-to-right tree traversal of SO, the matching surface string of SO,

which consists of each leaf Stufen’s root name and type concatenated.

2) Print the surface string (the model’s equivalent of “pronouncing” the surface).

As our goal is to simply generate viable musical surfaces, we do not formally model assigning an

interpretation to the Syntactic Object generated, unlike GTTM (Lerdahl & Jackendoff, 1983), nor

sending information to the CI interface, as posited in Minimalist linguistics (Collins & Stabler,

2016). An example of SpellOut is as follows:

Given SO = {C Major, {{d minor, G Major}, C Major} }

SpellOut(SO) = “C Major - d minor - G Major - C Major”

The attentive reader will note that by flipping coins to decide when to Select and when to

External Merge, as well as which objects to operate on, effectively turns the process model into a

probability distribution over musical surfaces and Syntactic Object trees. This presents some

worthwhile avenues for further study of similar models in both linguistics and music, particularly

with respect to “type 2” goals (Katz & Pesetsky, 2011: 5). This will be touched on in the

Discussion.

Model B

Model B is formalized exactly the same as Model A, with some small modifications. The first is

that Agree takes Stufen features into account, the second is that the Derive procedure only

executes External Merge on two objects when they Agree, and the third is a necessary change to

Derive to account for the increased situations where neither Select nor External Merge is

possible. The goal of Model B is to mathematically approximate the model proposed in Mukherji

MINIMALIST TONAL COMPOSITION 21

(2014) along the lines of Collins & Stabler's (2016) formalization of Minimalist syntax.

Formally:

*Definition: Agree (Model B version)

Operation Agree(SO1, SO2) (Model B version) operates on Syntactic Objects SO1 and

SO2. Agree(SO1, SO2) = True if and only if:

1) Labels(SO1)[c5] - Labels(SO2)[c5] = 1 or 0, OR

2) Labels(SO1)[c3] - Labels(SO2)[c5] = 1 or 0, OR

3) Labels(SO2)[type] = “minor”, SO2 is a Stufe, and Labels(SO1)[c5] - Labels(SO2)

[c3] = 1 or 0.

Agree(SO1, SO2) = False otherwise.

Agree formally defines what kinds of Merges are possible. Condition #1 is a simple progression

around the Circle of Fifths, e.g. G Major leading to C Major. Here, the c5 features and the way

Mukherji (2014) organized the lexicon begins to shape the musical surfaces composed by the

model. Condition #2 allows progressions that are not explicit in the Circle of Fifths, including

the common IV-V-I progression (e.g. F Major - G Major - C Major). Making use of c3 features is

justified by the fact that Stufen are related in more ways than the Circle of Fifths (Mukherji,

2014). Particularly, the F Major triad can become d minor through a simple 5-6 motion, which is

a common voice-leading technique observed in music (Mukherji, 2014). This 5-6 motion is

represented here by giving F Major Stufen the c5 feature it would have if the root was moved

down a minor third (see “Lexicon”), which in this case is the c5 of D. Agreeing via c3 features

can also be interpreted as a covert (i.e. invisible on the surface) progression through the Circle of

Fifths from the left Stufe to the right Stufe (Mukherji, 2014). However, this is a speculation, so

MINIMALIST TONAL COMPOSITION 22

we leave the presence of 5-6 motion as the main justification for c3 features and their handling

by Agree.

 Condition #3 is actually sort of an exception clause to enable Merges to minor chords

from their dominant-functioning chords (e.g. E Major to a minor). This is required since we

defined minor Stufen to have the same c5 feature as their relative major Stufen, resulting in their

c3 features being equal to the c5 feature of their parallel major Stufen. If Stufen cannot supply

their c3 features on the right side of a Merge to Agree, then common progressions such as E

Major - a minor would not be possible. That being said, Condition #3 implies that this

progression would occur from a major Stufe covertly to the next major Stufe on the Circle of

Fifths, which then is (overtly) realized as the relative minor Stufe. From a voice-leading

standpoint, this does not entirely make sense, since many ingredients (i.e. a leading tone) are

present that make a progression like E Major - a minor smooth. The need for this condition (in

order to generate Tebe Poem) presents an inelegant flaw in the model, and future work will

address this issue further. Furthermore, a different formulation of Agree could parameterize this

model to work in a different tonal idiom. For instance, Condition #1 could be changed to be:

“Labels(SO2)[c5] - Labels(SO1)[c5] = 1 or 0,” and the other conditions redefined accordingly. In

fact, this parameterization would switch Model B from working in the Western Tonal tradition to

the Rock tradition, based on work by Mukherji (2014). As we are only working in Western tonal

music in this paper, we leave exploration of parameterizations of this type of model for future

work.

 Lastly, we slightly rewrite Derive to ensure that Agree is used soundly in the derivations:

*Definition: Derive (Model B version)

MINIMALIST TONAL COMPOSITION 23

Procedure Derive(LA) (Model B version) is defined exactly as the Model A version,

except step #5 and step #6 are replaced with:

5) If External Merge, locates all possible ordered-pairs of Syntactic Objects SO1 and SO2

immediately contained in the Workspace for which Agree(SO1, SO2) = True. Picks

randomly from these ordered pairs and execute Merge(SO1, SO2) to turn them into a new

Syntactic Object SO3 in the Workspace. If Filter(SO3) returns True, executes

SpellOut(SO3). If the Workspace contains less than two Syntactic Objects, or no ordered

pair in the Workspace satisfies Agree, does nothing. Returns to Step #3.

6) If at Step #3 and both LA is empty and the Workspace contains either less than two

Syntactic Objects or no ordered pairs of Syntactic Objects that satisfy Agree, halts the

procedure. If Workspace contains exactly one Syntactic Object SO and Filter(SO) returns

True, the derivation is considered a “success.” Otherwise, the derivation is considered a

“crash.”

MINIMALIST TONAL COMPOSITION 24

Results

Model A

Task 1

 As described in Methods, we provided Model A with the requisite Lexical Array for Tebe

Poem, which is:

LA = {C, C, F, D, G, E, a, F#º, G, C}

We executed Derive(LA) for 200,000 iterations or until the model correctly printed the surface

chord progression string of Tebe Poem, whichever occurred first. As expected, Model A

successfully composed Tebe Poem’s chords, yielding the tree structure (Figure 2):

[Figure 2]

 Importantly, the tree structure does not correspond at all with interpretations of Tebe

Poem in prior work (Katz & Pesetsky, 2011; Rohmeier, 2007; Mukherji, 2014). Notably, F#º is

merged to a minor, while three previous analyses within the Identity Thesis paradigm show F#º

merged directly to G Major. There is a strong precedence for this in harmonic analyses within

music theory, as it demonstrates how diminished chords are often used: the leading tone in the

bass resolves one half step up to the bass (and root) of the following chord in the string, G. In

fact, a automated harmonic analysis system based on the Context Free Grammars (CFG)

proposed by Rohrmeier (2007) assigns F#º to the phrase with a minor before (i.e. farther from

the root node of the tree) the phrase with G Major (Bas De Haas, et al., 2013). But Model A’s

derivation of Tebe differs from the structure of that phrase by assigning G Major as leading to E

MINIMALIST TONAL COMPOSITION 25

Major. E Major is shown in all four of the previous analyses discussed as leading to A Major;

they would not predict D Major and G Major as being members of a phrase prolonging E Major,

which serves as a left-branching prolongation of F#º. Nor, in the spirit of music theory, is this

passage intuitively heard this way.

 Clearly, this interpretation and its implications about each chord’s prominence is

problematic from a musical standpoint. If D-structure is believed to share some resemblance of

the hierarchical and non-adjacent ways Stufen are related in a surface piece, at first glance it

appears that Merge cannot apply willy-nilly as it is here. That is, in order to satisfy basic

conventions of Western Tonal harmony, the Filter proposed in Model A is not enough to filter out

deviant interpretations. However, for the Minimalist paradigm, this does not present a problem.

The model simply labeled Tebe Poem as a valid musical surface, within the Western Tonal idiom.

Whether the model will determine other chord progressions to be deviant or valid (by virtue of

what it generates) is a question for Task 2.

Task 2

 During simulations of Model A in generating Tebe Poem, other derivations reaching

SpellOut (printed to the screen) were recorded. A handful of them picked by the author are

discussed here (Figure 3, 4):

[Figure 3]

MINIMALIST TONAL COMPOSITION 26

Above is the simplest and shortest surface possibly generated by Model A. It is a direct

replication of the Ursatz, and is expected as a result of Filter.

[Figure 4]

 While this derivation (Figure 4) successfully met the conditions of the Ursatz Filter, there

are clear issues with the surface generated. Ignoring the grouping of surface chords into phrases,

the piece finishes with F#º - C. This would be moving the root by a tritone (a very dissonant,

crunchy sounding interval), which presents an issue for voice-leading. Additionally, the

diminished VII chord (which F#º is to C Major) nearly never serves the function of dominant, let

alone in a cadence ending a piece. However, because of the Ursatz Filter, Model A selects G

several chords earlier as the main dominant-serving chord to the ending tonic, leaving F - C - D -

F#º - C as a harmonic prolongation of the tonic. From both a voice-leading standpoint and a

harmonic standpoint, this is deviant. This collection of chords would usually appear in a pre-

dominant section of a piece. Additionally, the first four chords are labeled as a prolongation of E

Major (since E Major is the head of that phrase) but neither C Major nor G Major are contained

in the E Major scale, so that does not make sense either. In Open-Composition, Model A

produces both viable and deviant chord progressions, likely by allowing more Stufe merge-pairs

to be generated than is reasonable, resulting in overgeneration.

Model B

Task 1

MINIMALIST TONAL COMPOSITION 27

 Again, we provided Model B with the Lexical Array required to compose Tebe Poem. We

ran the Derive procedure 200,000 times or until surface chord string of Tebe was printed,

whichever occurred first. As this model closely aims to replicate the model described in

Mukherji (2014), we expect Tebe to be generated (Figure 5):

[Figure 5]

 As expected, Model B terminated with the surface string matching Tebe Poem. This tree

structure nearly exactly corresponds to Rohrmeier’s (2007) derivation of the same piece using a

CFG, with the only difference being our handling of the first two Stufen, C Major and C7, as

separate entities in the starting Lexical Array (which results in the leftmost C-C-F constituent

being a tonic prolongation in C in Model B, rather than a subdominant prolongation in the key of

C as in Rohrmeier’s model). In fact, this derivation from Model B matches Rohrmeier’s (2007)

analysis of all chords before F#º being a prolongation of a minor, rather than C Major which

starts and ends the piece (although another model proposed in Rohrmeier (2011) claims the

opposite). It is this interpretation that differs between Model B’s generation and Mukherji’s

(2014) analysis of Tebe Poem. This is further evidence that the constituent structure (e.g. F#º

leading correctly to G Major, E Major leading to a minor, etc.) much more closely matches what

is heard by the listener, or even generated by the composer than the structure proposed by Model

A. However, the only goal is to successfully generate the Tebe surface; Tebe is possible and

labeled valid by its parameterization of Agree and Filter.

MINIMALIST TONAL COMPOSITION 28

Task 2

 Similarly to our simulations with Model A, we recorded some of the compositions

reaching SpellOut in simulations of Model B. A handful are discussed here (Figure 6, 7):

[Figure 6]

 Here we see all three different clauses of Agree at work. F#º Merges as the model

intended to G Major, via the implied covert progression to D major encapsulated in the c3

feature. This c3 feature and its corresponding clause (#2) in Agree also result in a merge from F

Major (c5 = -01) to D Major (effectively a IV-ii progression in the key of C Major), which was

also an intention of the c3 design. We see also that the constituent tree headed by D Major (c5 =

+02) Merges with E Major (c5 = +04). This is again, made possible by D Major’s c3 feature

which is equal to +05, or the c5 feature assigned to B Major. Clause #3 enables this E Major (c5

= +04) constituent to merge with a minor, which uses its c3 = +03 feature (borrowing from its

parallel major, A Major, c5 = +03).

[Figure 7]

 This derivation (Figure 7) demonstrates some merges that may not be within the Western

Tonal idiom, and issues ripe for future work in Minimalist composition models. On the surface, it

does not make sense for C Major to travel to a minor and back again, without other chords

enabling such a modulation. However, this is not immediately grasped from the tree structure as

MINIMALIST TONAL COMPOSITION 29

a minor is buried within a constituent headed by D Major (serving a pre-dominant role).

Furthermore, F#º is merged with D Major, which is not expected in Western Tonal music (S.

Mukherji, personal communication, July 30, 2020) illustrating a potential flaw in Agree’s c3

clause for diminished chords (#2). F#º’s c3 feature is, like F# Major’s, +02. D Major’s c5 is +02.

Agree is quite flexible in allowing Stufen of equivalent features to merge together (which is

necessary for the C Major to C Major merge at the root of Mukherji’s (2014) analysis of Tebe

Poem). In this case, we could try to repair the issue by hoping merges via equivalent feature

values are covert progressions and F#º would not be “pronounced.” This would potentially solve

another possible issue with this derivation: E Major currently prolongs D Major via its merge to

F#º (which was also enabled by Agree clause #2), which could be unexpected in the Western

Tonal tradition. Without F#º’s Merge to D Major, this type of prolongation would no longer be

predicted by the model, which instead could find another way to prolong D Major in this piece.

MINIMALIST TONAL COMPOSITION 30

Discussion

 We hypothesized that a model of Minimalist linguistic syntax with no musical mechanics

would be capable of composing a pre-existing work in Western Tonal music. Our two models

demonstrated that this is indeed possible for Bortniansky’s Tebe Poem with minimal

modifications to the original model. Additionally, we demonstrated that our models both

compose original (with respect to the model itself, not to human composition) chord progressions

as well as overgenerate compositions, with a restrictive Ursatz Filter and Agree formulation. Our

proposed lexicon, made of Stufen with numerical harmonic feature values, provides a starting

point for successful Minimalist models of both musical and linguistic syntax.

 Both Model A and Model B produced chord progressions beyond that of Tebe Poem in

the Open-Composition task. We believe this is an advantage for our models, as successful

Minimalist models should be able to compose valid pieces that have not been written before by

humans. While Model B appears to be capturing some aspects of harmonic activity in Western

Tonal music, there are some issues that present areas for improvement. For instance, in Model

B’s first Task 2 derivation (Figure 6), the author has the sensation that B Major needs to be overt

(or with some clever voice-leading, introducing some tones of figuration) for the progression to

E Major to be justified. Additionally the resolution of G Major is delayed for at least three chords

before it deceptively cadences into a minor, and this takes a toll on the ear. Katz & Pesetsky

(2011) propose a Tonal Harmonic Component (THC) which encourages Internal Merge to create

cadences within constituent phrases. If Model B were to be modified to produce more

interpretable musical surfaces, we would speculate that an Internal Merge (movement) of the a

minor Stufe to the constituent immediately headed by G Major would solve the issue of delayed

MINIMALIST TONAL COMPOSITION 31

cadence in Model B’s piece. Perhaps this would be the movement encouraged by a modified

version of Tonal Harmonic Component for this model.

 The models’ derivations (Model B in particular) were heavily driven by the nature of the

Lexicon we defined. The Stufen lexicon bears theoretical assumptions about how precursors to

musical harmonic activity might interact which were motivated by music theory (Mukherji,

2014). These assumptions draw upon the logic of a particular school of thought, specifically

Schenkerian analysis, yet there are many other approaches to tonal analysis which would have

differing implications about a lexicon in a Minimalist grammar (e.g. see Cohn cycles and

Riemannian theory, Mukherji, 2014: 177-181).

 While this study provided advances towards a successful “type 2” description of grammar

(Katz & Pesetsky, 2011), Task 1 was rather limited in that it only tested one example. Future

work should aim to test models of composition on more examples (as accomplished in

Rohrmeier (2011) and others) or potentially a corpus of thousands of examples. However, the

creation of such a corpus warrants a sizable effort, since decisions about which paradigm of

harmonic analysis is desired as well as which pieces to group into a single idiom must be made.

The difficulty of assembling such a corpus should not discourage simulation as a method of

studying Identity Thesis theories. By formulating the models with a stochastic process, we

effectively created a probability distribution over linguistic and musical surfaces. Models

fashioned out of formalizations in generative linguistics and engaged with stochastic processes

could easily be used if a probability greater than zero is assigned to a given surface, then that

surface is predicted by the model to be a member of the parameterized idiom. By collecting a

MINIMALIST TONAL COMPOSITION 32

corpus and representing the distribution of true musical surfaces, it could be easier to see where

current theories are falling short and what modifications need to be made.

 In tandem, Task 2 was limited in that we only gave the models the Lexical Array

hypothesized for Tebe Poem. Future study should more thoroughly test the models’ capabilities

of open-composition by providing many different Lexical Arrays, possibly in a systematic

manner. However, the models’ ability to discover multiple pieces that can be composed with the

same starting Stufen is certainly advantageous as it demonstrates that we have yet to understand

fully the limits of musical composition models in the Minimalist paradigm.

 Therefore, this study serves only as a proof of concept that Minimalist tonal composition

is possible, and leaves a more thorough exploration and confirmation of the viability of

Minimalist Identity Thesis theories of musical composition and language. For instance, any

notion of phonological or semantic interpretability (i.e. “Full Interpretation,” see Chomksy,

2014:24) is summarized in our use of the Ursatz Filter; while there is extensive work in

Schenkerian music theory to justify its use (Mukherji, 2014), whether our models’ Ursatz Filter

corresponds at all to the hypothesized conceptual and phonetic interpretability of Western Tonal

music remains a topic for further research. As we only used a simplified form of a single

mathematical formalization, it is also likely that there are operations or qualities generally

accepted within Minimalist linguistics that are not included or addressed here. Alterations to our

models based on other work may significantly change the models’ ability to perform. Future

work should keep pace with current developments in the Minimalist Program to ensure the

congruency of the model with linguistic syntax as well as emerging results in music theory.

MINIMALIST TONAL COMPOSITION 33

 This study has several implications for future research on the Identity Thesis as well as

engineering systems for computational creativity. Our tasks, Tebe-Composition and Open-

Composition, are rather naive ways to test the full capabilities and issues of the model as

artificial composition systems. Better tasks, such as those that involve expert opinion (Wiggins,

et al., 2009), need to be developed for effective development of successful systems. Meanwhile,

Minimalist models of tonal composition seem well poised to conquer issues of long-term

structure and are much more easily interpretable than deep learning systems (Herremans, et al.,

2017). The challenge of writing pieces with compelling long-term structure may require a model

of tonal composition that functions the way the mind is theorized to compose. In this way work

in the Identity Thesis bridges three disciplines: engineering, generative linguistics, and music

theory.

MINIMALIST TONAL COMPOSITION 34

References

Aldwell, E., Schachter, C., & Cadwallader, A. (2011). Harmony and Voice Leading (4th ed.).

Cengage Learning.

Bernstein, L. (1976). The unanswered question: Six talks at Harvard (Vol. 33). Harvard

University Press.

Bortniansky, D. (1751-1825). Tebe Poem.

Chomsky, N. (2014a). Aspects of the Theory of Syntax (Vol. 11). MIT press.

Chomsky, N. (2014b). The minimalist program. MIT press.

Chomsky, N., Jacobs, R. A., & Rosenbaum, P. S. (1970). Remarks on nominalization. 1970, 184,

221.

Collins, C., & Stabler, E. (2016). A formalization of minimalist syntax. Syntax, 19(1), 43-78.

De Haas, W. B., Magalhães, J. P., Wiering, F., & C. Veltkamp, R. (2013). Automatic functional

harmonic analysis. Computer Music Journal, 37(4), 37-53.

Herremans, D., Chuan, C. H., & Chew, E. (2017). A functional taxonomy of music generation

systems. ACM Computing Surveys (CSUR), 50(5), 1-30.

Huang, C. Z. A., Cooijmans, T., Roberts, A., Courville, A., & Eck, D. (2019). Counterpoint by

convolution. arXiv preprint arXiv:1903.07227.

Keiler, A. (1977). The syntax of prolongation I. Theory Only, 3(5), 3-27.

Keiler, A. (1978). Bernstein’s “The unanswered question” and the problem of Musical

competence. The Musical Quarterly, 64(2), 195-222.

Keiler, A. (1983). On some properties of Schenker's pitch derivations. Music perception, 1(2),

200-228.

MINIMALIST TONAL COMPOSITION 35

Mukherji, S. (2014). Generative Musical Grammar-A Minimalist Approach. PhD Diss. Princeton

University.

Pesetsky, D., & Katz, J. (2011). The Identity Thesis for Language and Music. Unpublished draft.

Rohrmeier, M. (2007). A generative grammar approach to diatonic harmonic structure. In H.

Spyridis, A. Georgaki, G. Kouroupetroglou, & C. Anagnostopoulou (Eds.), Proceedings

of the 4th Sound and Music Computing Conference (pp. 97-100).

Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics

and Music, 5(1), 35-53.

Schenker, H. (1973). Harmony, edited and annotated by O. Jonas, translated by EM Borgese.

Schenker, H. (1979). Free Composition:(der Freie Satz): Heinrich Schenker; Translated and

Edited by Ernst Oster. Longman.

Wiggins, G. A., Pearce, M. T., & Müllensiefen, D. (2009). Computational modeling of music

cognition and musical creativity (pp. 383-420). na.

Lerdahl, F., & Jackendoff, R. S. (1983). A generative theory of tonal music. MIT press.

MINIMALIST TONAL COMPOSITION 36

Figures

Figure 1. Circle of Fifths with c5 features (“cf”), reprinted with permission from Mukherji

(2014: 338). Each Stufe is related to others by intervals of a perfect fifth. Top: Major Stufen,

Bottom: minor Stufen. Diminished Stufen and c3 values not pictured.

MINIMALIST TONAL COMPOSITION 37

Figure 2. Model A, Task 1 (Tebe-Composition) derivation. Letters indicate Stufen root names;

lowercase indicates minor, º indicates diminished, and capital indicates major types. Numbers

indicate c5 value. Model A successfully generates surface chord ordering of Tebe Poem;

however, it posits a confusing harmonic structure.

MINIMALIST TONAL COMPOSITION 38

Figure 3. Model A Task 2 (Open-Composition) derivation, first example. Letters indicate Stufen

root names, numbers indicate c5 value. Model A demonstrates Ursatz form.

MINIMALIST TONAL COMPOSITION 39

Figure 4. Model A Task 2 (Open-Composition) derivation, second example. Letters indicate

Stufen root names; lowercase indicates minor, º indicates diminished, and capital indicates major

types. Numbers indicate c5 value. Model A overgenerates musical pieces; this example has both

a surface ordering and a deep harmonic structure that disagrees with expectations from music

theory.

MINIMALIST TONAL COMPOSITION 40

Figure 5. Model B, Task 1 (Tebe-Composition) derivation. Letters indicate Stufen root names;

lowercase indicates minor, º indicates diminished, and capital indicates major types. Numbers

indicate c5 value. Model B is able to derive both the surface chord ordering of Tebe Poem and a

sensible deep harmonic structure.

MINIMALIST TONAL COMPOSITION 41

Figure 6. Model B, Task 2 (Open-Composition) derivation, first example. Letters indicate Stufen

root names; lowercase indicates minor, º indicates diminished, and capital indicates major types.

Numbers indicate c5 value under nodes with solid lines. Nodes with dotted lines indicate use of

c3 value by parent Stufe (e.g. F Major used c3 = +02 to Merge with D).

MINIMALIST TONAL COMPOSITION 42

Figure 7. Model B, Task 2 (Open-Composition) derivation, second example. Letters indicate

Stufen root names; lowercase indicates minor, º indicates diminished, and capital indicates major

types. Numbers indicate c5 value under nodes with solid lines. Nodes with dotted lines indicate

use of c3 value by parent Stufe.

MINIMALIST TONAL COMPOSITION 43

Appendix: Model Code

Model A

import random

class Stufe:
 """Musical equivalent of "Lexical Item"
 Chromatic edition"""
 # Circle of Fifths in sharps, octave equivalence
 FIFTHS_NAMES = ['C', 'G', 'D', 'A', 'E', 'B',
 'F#', 'C#', 'G#', 'D#', 'A#', 'F']
 FIFTHS_NAMES_MINOR = ['a', 'e', 'b', 'f#', 'c#', 'g#',
 'd#', 'a#', 'f', 'c', 'g', 'd']

 def __init__(self, c5=0, major=True, dim=False):
 # default ctor
 self.is_major = major
 # setting to Major overrides diminished
 self.is_dim = dim if not major else False
 # circle of fifths value
 self.c5 = c5
 # circle of thirds value represents the c5 value
 # that this chord would have after a "covert progression"
 # (Mukherji, 2014: 358) down a minor third.
 if self.is_dim:
 self.c3 = (c5 + 8) % 12
 else:
 # minor and major have same c3
 self.c3 = (c5 + 3) % 12

 self.name = self.get_name()

 def get_name(self):
 # should work for negative cf too
 if self.is_major:
 return self.FIFTHS_NAMES[self.c5 % 12]
 elif self.is_dim:
 return self.FIFTHS_NAMES[self.c5 % 12] + "-dim"
 else:
 return self.FIFTHS_NAMES_MINOR[self.c5 % 12]

 def __str__(self):
 return f"{self.name}: c5 = {self.c5}"

class SyntacticObject:
 def __init__(self, m1, m2):
 """
 Represents the output of Merge.

 :param m1: a Stufe or SyntacticObject
 :param m2: a Stufe or SyntacticObject
 """

 self.items = (m1, m2)

MINIMALIST TONAL COMPOSITION 44

 # Latter object projects syntactic features
 self.c5 = m2.c5
 self.c3 = m2.c3

 def __str__(self):
 # recursively access contained stufen
 return f"[{str(self.items[0])}, {str(self.items[1])}]"

 def spell_out(self):
 """
 Returns a string of the surface chords in this SO.
 String does not represent tree structure.

 :return: str
 """
 return self._spell_out_helper(self)[:-1]

 def _spell_out_helper(self, so):
 """
 Recursively access string of surface chord
 :param so: SyntacticObject
 :return: str
 """
 if isinstance(so, Stufe):
 return so.name + ' '
 else:
 return self._spell_out_helper(so.items[0]) \
 + self._spell_out_helper(so.items[1])

"""
class LexicalArray:
 # make Lexical Array explicit
 def __init__(self, items):

 default ctor
 :param items: collection of Stufe

 self.items = set(items)

class Workspace:
 # make Workspace explicit
 def __init__(self, items):

 default ctor
 :param items: collection of syntactic objects

 self.items = set(items)
"""

class Composer:
 """
 Model A:
 Stochastic Free-Merge composer dispensing with Agree, indexing,
 and internal Merge (transformations). SpellOuts SyntacticObjects
 that pass Ursatz Filter. For simplicity, derivations are completed

MINIMALIST TONAL COMPOSITION 45

 in C Major/A minor (WLOG to other keys).
 """
 class Stage:
 # For Select to operate on, to be consistent with C&S 2011
 def __init__(self, la=set(), workspace=set()):
 """
 default ctor
 :param la: set of Stufe objs
 :param w: set of SyntacticObject and Stufe objs
 """
 # Lexical Array
 self.la = la
 # Workspace
 self.workspace = workspace

 def __str__(self):
 return f"<{str(self.la)}, {str(self.workspace)}>"

 def print(self):
 # print stage contents nicely
 print("<{", end='')
 # lexical array
 print(*self.la, sep=', ', end='}, {')
 # workspace
 print(*self.workspace, sep=', ', end='}>\n')

 def __init__(self):
 self.stage_i = 0

 def filter(self, so) -> bool:
 """
 Returns true if so is "fully interpretable." In this case,
 whether it exhibits the Ursatz at the root.

 :param so: SyntacticObject
 :return: bool
 """

 is_tonic = (so.c5 == 0)
 has_dominant = False
 starts_with_tonic = False

 if isinstance(so.items[1], SyntacticObject):
 has_dominant = (so.items[1].items[0].c5 == 1)

 if is_tonic and has_dominant:
 starts_with_tonic = self._filter_helper(so.items[0])

 return is_tonic and has_dominant and starts_with_tonic

 def _filter_helper(self, so) -> bool:
 """
 recursively check for tonic Stufe in left branches

 :param so: SyntacticObject or Stufe
 :return: bool
 """
 if isinstance(so, Stufe):

MINIMALIST TONAL COMPOSITION 46

 return so.c5 == 0
 else:
 return self._filter_helper(so.items[0])

 def select(self, item: Stufe, stage: Stage) -> Stage:
 """
 Select as defined in C&S. Moves an item from LA into
 Workspace.
 R: item in Stage.la

 :param item: Stufe
 :param stage: Stage
 :return: Stage
 """
 stage.la = stage.la - {item}
 # Stufe doesn't have == overloaded, so workspace
 # will store distinct copies of otherwise equivalent stufen
 stage.workspace.add(item)
 return stage

 def select_random(self, stage: Stage) -> Stage:
 """
 Moves a random Stufe from the LexicalArray to
 the Workspace.
 R: not Stage.la.empty()

 :param stage: Composer.Stage
 :return: Composer.Stage
 """
 # oof TODO: consider not using hash tables
 item = random.choice(tuple(stage.la))
 return self.select(item, stage)

 def merge(self, so1, so2, stage: Stage) -> SyntacticObject:
 """
 Performs external Merge on two SO's in stage.workspace
 as defined in C&S.
 REQUIRES: s01, s02 in stage.workspace
 MODIFIES: stage

 :param s01: Stufe or SyntacticObject
 :param s02: Stufe or SyntacticObject
 :param stage: Composer.Stage
 :return: SyntacticObject
 """
 stage.workspace = ((stage.workspace - {so1}) - {so2})
 new_so = SyntacticObject(so1, so2)
 stage.workspace.add(new_so)
 return new_so

 def merge_random(self, stage: Stage) -> SyntacticObject:
 """
 Performs Merge on two random SO's in stage.workspace.

 :param stage: Stage
 :return: stage
 """
 # oof TODO: consider not using hash tables

MINIMALIST TONAL COMPOSITION 47

 so1, so2 = random.sample(tuple(stage.workspace), 2)
 return self.merge(so1, so2, stage)

 def derive(self, la, verbose=True):
 """
 Executes a derivation starting with LexicalArray la.
 Every SO generated that passes Filter will be spelled out.

 :param la: collection of Stufe objs
 :return: collection of derivations, bool
 """

 if len(la) < 2:
 print("Error: You need more than 2 Stufen to compose")
 return list()

 # set up (select 2)
 derivations = list()
 current = Composer.Stage(la=set(la), workspace=set())
 current = self.select_random(current)
 current = self.select_random(current)
 self.stage_i = 2

 # derivation
 while len(current.la) > 0 or len(current.workspace) != 1:
 flip = random.choice([0,1])
 if flip and len(current.la) > 0:
 # Select
 current = self.select_random(current)
 elif not flip and len(current.workspace) != 1:
 # Merge
 new_so = self.merge_random(current)
 # Filter and spell out
 if self.filter(new_so):
 # found a valid derivation!
 derivations.append(new_so)

 self.stage_i += 1
 if verbose:
 print(f"Stage #{self.stage_i}:")
 print(current)
 print()

 # end of derivation
 if self.filter(list(current.workspace)[0]): # awk
 print("Derivation finished")
 return derivations, True
 else:
 # derivation crashed
 print("Derivation crashed")
 return derivations, False

def tebe_search(model: Composer) -> (int, int, list):
 """
 Continuously generates surfaces until Tebe poem is found.
 :param model: Composer
 :return: SyntacticObject

MINIMALIST TONAL COMPOSITION 48

 """
 # all stufen hypothesized to be in Bortniansky's Tebe Poem
 lexicon = [(0, True), (0, True), (-1, True),
 (2, True), (1, True), (4, True), (0, False),
 (6, True), (1, True), (0, True)]
 TEBE = "C C F D G E a F# G C"
 lexical_array = list()

 for c5, is_major in lexicon:
 lexical_array.append(Stufe(c5=c5, major=is_major))

 #all_derivations = list()
 spelled = list()
 count = 0

 # check for tebe, derive again if necessary
 while TEBE not in spelled:
 count += 1
 new, success = model.derive(lexical_array, verbose=False)
 spelled = [d.spell_out() for d in new]
 #all_derivations.extend(new)

 return spelled, count, new

def main():
 # tebe testing
 # all stufen hypothesized to be in Bortniansky's Tebe Poem
 lexicon = [(0, True), (0, True), (-1, True),
 (2, True), (1, True), (4, True), (0, False),
 (6, True), (1, True), (0, True)]
 lexical_array = list()

 for c5, is_major in lexicon:
 lexical_array.append(Stufe(c5=c5, major=is_major))

 model = Composer()
 derivations, success = model.derive(lexical_array)

 print("All Derivations\n===============")
 print(derivations)
 if len(derivations) > 0:
 print(derivations[-1].spell_out())

 print("\nSearch for tebe\n===============")
 model = Composer()
 completed, count, so_list = tebe_search(model)
 print("Search for tebe finished")
 print(f"Found surface: {completed}\nafter {count} attempts\n")
 print([str(so) for so in so_list])

 return 0

if __name__ == "__main__":
 main()

MINIMALIST TONAL COMPOSITION 49

Model B

import random
import itertools

from model import Composer, Stufe, SyntacticObject

class ComposerB(Composer):
 # Mukherji (2014) model
 def agree(self, so1, so2) -> bool:
 """
 Stufen-based Agree. Returns whether so1 and
 so2 are Merge-able in the order specified.

 :param so1: Stufe or SyntacticObject
 :param so2: Stufe or SyntacticObject
 :return: bool
 """

 # Western Tonal music parameterization
 do_agree = (0 <= so1.c5 - so2.c5 <= 1) or (0 <= so1.c3 - so2.c5 <= 1)
 # relative major clause for minor Stufen
 if not do_agree and isinstance(so2, Stufe):
 do_agree = not so2.is_major and not so2.is_dim \
 and (0 <= so1.c5 - so2.c3 <= 1)
 return do_agree

 def get_mergables(self, stage: Composer.Stage) -> (bool, list):
 """
 Checks if a merge is possible with items in stage.workspace.
 Returns false if no possible merges exist. Returns a list of
 SO pairs if true.

 :param stage: Composer.Stage
 :return: bool, list of tuples
 """

 success = False
 merges_possible = list()
 # order matters
 for so1, so2 in itertools.permutations(stage.workspace, r=2):
 if self.agree(so1, so2):
 # TODO: stop at first pair found?
 success = True
 merges_possible.append((so1, so2))

 return success, merges_possible

 def derive(self, la, verbose=True):
 """
 Executes a derivation starting with Lexical Array la.
 Flips a coin to decide whether to Select or to Merge.
 If Merging, merges agreeing SO's if possible, otherwise
 makes no operation. Every SO generated that passes Filter
 will be spelled out.

 :param la: collection of Stufe objs

MINIMALIST TONAL COMPOSITION 50

 :param verbose: bool
 :return: collection of derivations, bool
 """

 if len(la) < 2:
 print("Error: You need more than 2 Stufen to compose")
 return list()

 # set up (select 2)
 derivations = list()
 current = Composer.Stage(la=set(la), workspace=set())
 current = self.select_random(current)
 current = self.select_random(current)
 self.stage_i = 2

 # derivation
 while len(current.la) > 0 or len(current.workspace) != 1:
 flip = random.choice([0,1])
 if flip and len(current.la) > 0:
 # Select
 current = self.select_random(current)
 elif not flip and len(current.workspace) != 1:
 # Merge
 merge_possible, mergeables = self.get_mergables(current)
 if merge_possible:
 so1, so2 = random.choice(mergeables)
 new_so = self.merge(so1, so2, current)
 # Filter and spell out
 if self.filter(new_so):
 # found a valid derivation!
 derivations.append(new_so)
 else:
 # crash clause
 if len(current.la) == 0:
 break

 self.stage_i += 1
 if verbose:
 print(f"Stage #{self.stage_i}:")
 current.print()
 print()

 # end of derivation
 if len(current.workspace) > 1 or not self.filter(list(current.workspace)[0]):
awk
 # derivation crashed
 print("Derivation crashed")
 return derivations, False
 else:
 print("Derivation finished")
 return derivations, True

def tebe_search(model: ComposerB) -> (int, int, list):
 """
 Continuously generates surfaces until Tebe poem is found.
 :param model: Composer
 :return: SyntacticObject

MINIMALIST TONAL COMPOSITION 51

 """
 # all stufen hypothesized to be in Bortniansky's Tebe Poem
 lexicon = [(0, True, False), (0, True, False), (-1, True, False),
 (2, True, False), (1, True, False), (4, True, False), (0, False,
False),
 (6, False, True), (1, True, False), (0, True, False)]
 TEBE = "C C F D G E a F#-dim G C"
 lexical_array = list()

 for c5, is_major, is_dim in lexicon:
 lexical_array.append(Stufe(c5=c5, major=is_major, dim=is_dim))

 #all_derivations = list()
 spelled = list()
 count = 0

 # check for tebe, derive again if necessary
 while TEBE not in spelled:
 count += 1
 new, success = model.derive(lexical_array, verbose=False)
 spelled = [d.spell_out() for d in new]
 #all_derivations.extend(new)

 return spelled, count, new

def main():
 # tebe testing
 # all stufen hypothesized to be in Bortniansky's Tebe Poem
 lexicon = [(0, True, False), (0, True, False), (-1, True, False),
 (2, True, False), (1, True, False), (4, True, False), (0, False,
False),
 (6, False, True), (1, True, False), (0, True, False)]
 lexical_array = list()

 for c5, is_major, is_dim in lexicon:
 lexical_array.append(Stufe(c5=c5, major=is_major, dim=is_dim))

 model = ComposerB()
 derivations, success = model.derive(lexical_array)

 print("All Derivations\n===============")
 print(derivations)
 if len(derivations) > 0:
 print(derivations[-1].spell_out())

 print("\nSearch for tebe\n===============")
 model = ComposerB()
 completed, count, so_list = tebe_search(model)
 print("Search for tebe finished")
 print(f"Found surface: {completed}\nafter {count} attempts\n")
 print([str(so) for so in so_list])

 return 0

if __name__ == "__main__":

MINIMALIST TONAL COMPOSITION 52

 main()

