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Abstract 

 

Acute and chronic pain are widespread and debilitating diseases that, for a large population, 

cannot be adequately managed with current pain treatments. Opioid analgesics, such as morphine, 

have long been used to treat pain and exert their effects by activating the mu-opioid receptor 

(MOR). While effective, these MOR agonists produce on-target adverse effects such as tolerance, 

physical dependence, and euphoria. Overall, the experiments described in the current thesis 

evaluated ways of minimizing opioid tolerance by targeting multiple opioid receptor types 

simultaneously (chapters 1 and 2) or different populations of opioid receptors in vivo (chapter 3). 

Previous studies demonstrated that simultaneous modulation of both the MOR and the 

delta-opioid receptor (DOR) could improve the therapeutic profile of opioid ligands. These 

experiments sought to further characterize mixed-efficacy opioid ligands, specifically ligands 

binding to both MORs and DORs with nearly equal affinity. These studies utilized multiple pre-

clinical pain models to determine antinociceptive properties of the mixed efficacy opioid ligands, 

AMB67 and AAH8, following acute and chronic administration. 

To evaluate the antinociceptive effects of AMB67 and AAH8, we used models of thermal, 

chemical, and mechanical nociception. In C57BL/6 mice, AMB67 produced dose-dependent 

antinociceptive effects in all three models of nociception. Mice chronically administered AMB67 

failed to develop tolerance to the antinociceptive effects. Chronic administration of AMB67 

produced physical dependence as mice exhibited naltrexone-precipitated withdrawal-like 

behaviors; however, these effects were significantly less than morphine. AMB67 was also less 

potent than morphine in multiple models assessing abuse potential. In contrast to AMB67, AAH8 
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significantly attenuated chemical-induced visceral pain following system administration but failed 

to produce antinociceptive effects in other pain models. Repeated administration of small doses of 

AAH8 failed to produce tolerance to the antinociceptive effects of AAH8; however, chronic 

treatment with more frequent, larger doses produced tolerance to the antinociceptive effects of 

AAH8. These data provide support that mixed-efficacy MOR-DOR ligands may offer 

improvement over current pharmacotherapies for pain management. 

Additionally, this study assessed the involvement of peripheral opioid receptors in the 

development of tolerance to the centrally-mediated antinociceptive effects of MOR agonists. This 

study used a model of acute, peripherally-mediated visceral pain, acetic acid stretch assay (AASA) 

and a centrally-mediated thermal reflex assay, warm water tail withdrawal (WWTW). Morphine 

and the peripherally restricted MOR agonist loperamide produced acute antinociceptive effects in 

the AASA, and NLX, a non-selective opioid receptor antagonist, blocked these effects. However, 

only morphine produced opioid-receptor mediated antinociceptive effects in the WWTW. Chronic 

administration of morphine (3x/day for five days) shifted the ED50 of the morphine dose-effect 

curve 2.5-fold to the right in the WWTW. Naloxone-methiodide pretreatments to chronic 

morphine prevented the rightward shift in the morphine dose-effect curve. Conversely, chronic 

administration of a peripherally active dose of loperamide (3.2 mg/kg, 4x per day for five days) 

shifted the morphine dose-effect (DE) curve to the right. Pretreatments with naloxone-methiodide 

completely reversed loperamide-induced cross-tolerance to the antinociceptive effects of 

morphine. Overall, these data suggest the involvement of peripheral opioid receptors in tolerance 

development to centrally acting opioids. 

Overall, the work presented in this thesis furthers our understanding of the in vivo 

mechanisms of opioid tolerance and potentially identifies novel, safer opioid analgesics. 
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Minimizing the adverse effects of chronic opioid use would significantly improve opioid-based 

treatment, improve the lives of those who require opioids for everyday function, and help fight the 

current opioid epidemic. 
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Chapter I: General Introduction 

 

History of Opioids and Their Clinical Utility:  

 It is impossible to speak about opioid use disorder (OUD) without the mentioning 

of Papaver somniferum, or the "poppy plant." The earliest dated use of the poppy plant spans back 

to 3,400 B.C., where the Sumerians referred to opium poppy as Hul Gil, or the "joy plant," for the 

incredible cerebral effects associated with the ingestion of the plant1. As the demand for opioid 

poppy increased, many countries throughout Asia, mass production ultimately catalyzed the 

Opium Wars. Soon after, immigration to the United States brought opium to the Americas1.  

In 1803, a brilliant German pharmacist and pioneer in alkaloid chemistry, Friedrich 

Sertürner, was the first to isolate morphine from the opium poppy2. Hailed as a miracle drug for 

its pain-relieving, cough suppressing, and sedative effects, morphine was widely prescribed by 

physicians throughout the majority of the 1800s3. However, the abuse potential of morphine, its 

use in the American Civil War, and the production of the hypodermic needle all became major 

components in the production of America’s opioid epidemic4,5. With clinicians at a standstill for 

treating pain, Charles Romley Alder Wright, an English chemist, and physicist, attempted to create 

a non-addictive form of morphine, diacetylmorphine, commonly known as heroin6.  

In 1898, Bayer Pharmaceuticals introduced heroin to the medical community for patient 

use. However, in the early 1900s heroin use reached soaring levels throughout the United States, 

leading to its illegalization in 19247. Heroin would eventually become classified as a schedule 1 
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drug under the Controlled Substances Act of 1970, and the search for improved opioid analgesics 

continues to this day. 

Acute and Chronic Pain Management  

Current opioid therapeutics have been incredibly effective for treating acute, moderate to 

severe pain. Opioids are often prescribed for postoperative pain and unpleasant conditions 

requiring emergency department or primary care services. However, chronic pain is an intractable 

problem with devastating consequences. Nearly one-third of the United States population suffers 

from pain which has become a serious concern that encompasses massive financial burdens 

including increased medical treatment and decreased work productivity8. Understanding the 

essential need for improved pain care, in 1995, Dr. James Campbell addressed the American Pain 

Society and prodded healthcare workers to include pain as a “5th vital sign”9. Unfortunately, opioid 

prescriptions rose from nearly 110 million opioid prescriptions in the United States in 1992, to 

nearly 260 million by 201210. It is quite possible that the increased demand for treating pain, fueled 

the increased demand for prescription opioids and the increase in OUD. This resulted in people 

not only suffering from pain, but also opioid addiction. With no better alternative to pain 

management, opioids continue to be the number one prescribed drug class for pain therapy.  

Clinically-used opioids used for pain therapy target and activate a specific subset of opioid 

receptors, the mu-opioid receptor (MOR). Activation of MORs produces pain relief but also 

adverse effects. These adverse effects include tolerance, physical dependence, respiratory 

depression, addiction, and constipation11,12, and these often lead to diminished life quality, OUD, 

and increases in overdose/death13. Further investigation into the interactions between opioid 

receptor subtypes may be crucial for potentially improving opioid-based pain therapy.  
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Opioid Receptor System 

 The opioid receptor system consists of 4 opioid receptor types, MOR, delta-opioid receptor 

(DOR), kappa-opioid receptor (KOR) and the (nociceptin-opioid receptor )NOP. Opioid receptors 

belong to the family of G protein-coupled receptors (GPCRs), which have seven-transmembrane 

domains and interact with intracellular heterotrimeric G proteins14. Their sensitivity to pertussis 

toxin, the ability to activate inwardly rectifying potassium channels15, inhibition of adenylyl 

cyclase16, and inhibition of calcium conductance17,18, indicates that opioid receptors couple to 

inhibitory Gi/o proteins. 

Heterotrimeric G proteins are composed of three subunits, one Gα subunit, and a 

heterodimer containing a β and γ subunit. Upon agonist binding, a conformational change in the 

receptor occurs, leading to the exchange of guanosine diphosphate (GDP), for guanosine 

triphosphate (GTP) on the Gα subunit, leading to the dissociation of the βγ subunit from the Gα 

subunit leading to downstream signaling. The Gα -GTP and βγ subunit complex interact with 

downstream intracellular signaling molecules to generate physiological effects, including 

antinociception, nausea, constipation, miosis, and respiratory depression. Opioid receptors can be 

activated by both exogenous opioids, such as morphine, or endogenous opioids that play an 

important role in mechanisms of supraspinal, spinal, and peripheral analgesia, reward-mediated 

food intake and drug addiction, and modulation of emotion and stress responses19. 

Four predominant endogenous opioid peptides were discovered in 1975, [Leu5]Enkephalin, 

[Met5]Enkephalin, βh-Endorphin, and Dynorphin A20,21. [Leu5]Enkephalin and [Met5]Enkephalin 

are derived from the precursor preproenkephalin, βh-Endorphin is derived from 

proopiomelanocortin (POMC), and Dynorphin A is derived from prodynorphin. For many decades 

it was proposed that each endogenous opioid demonstrates preferences for individual opioid 
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receptor types. Studies suggested [Leu5]Enkephalin and [Met5]Enkephalin bound to the DOR, βh-

Endorphin bound to the MOR and Dynorphin A bound to the KOR22. However, recent studies 

established promiscuous opioid receptor activity for endogenous opioid ligands and their putative 

fragments, as each fragment displayed agonist activity at all three opioid receptors, MOR, DOR, 

and KOR23. 

MORs are highly concentrated within brain regions involved in the reinforcing properties 

of drugs of abuse, including the vental tegmental area (VTA) and the nucleus accumbens 

(NAc)24,25. The VTA is a dopamine-rich brain region that sends projections to the NAc and makes 

up a dominate feature of the mesolimbic pathway, also commonly referred to as the reward 

pathway26. MOR activation in the reward pathway produces robust dopamine release from the 

VTA and the NAc27, which increases the risk of drug addiction following prolonged use of opioids.  

Expression of opioid receptors within the brain and spinal cord are important for 

modulating pain processing28. MORs are densely expressed in peripheral nerve terminals within 

the dorsal root ganglion, the dorsal horn of the spinal cord, the periaqueductal gray, rostral ventral 

medulla, thalamus, and cingulate cortex29-32. MOR agonists are effective analgesics because of 

their actions on both the ascending and descending pain pathways (Figure 1.2)33. The ascending 

pain pathway is crucial for carrying sensory information from the periphery to the brain. Peripheral 

nerve endings residing outside of the spinal cord are activated by noxious stimuli. This causes 

transduction of electrical impulses that are then transmitted to a cluster of neurons in the dorsal 

root of the spinal nerve (DRG), into the spinal cord of the dorsal horn, and eventually into 

supraspinal regions for processing. Regulation of spinal nociceptive processing occurs, either via 

facilitation or inhibition, and the final perception of pain occurs33. For example, if one were to 

break a bone in the leg, it requires an electrical impulse to send this information to the brain to 
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perceive the pain. The descending pain pathway is vital for incorporating information processed 

in the nervous system's central structures, projecting this information to the dorsal horn of the 

spinal cord. Processed information is sent down the descending pain pathway, resulting in 

behaviors to minimize further damage to the broken leg, such as limiting the amount of pressure 

placed on the leg. Proper functioning of the descending pain pathway is crucial in human health. 

It acts as a safety mechanism to deter the continuation of a presenting noxious stimuli, and studies 

suggest alterations in the functioning of the descending limb are present in patients suffering from 

chronic pain. Expression of MOR in the peripheral nervous system (PNS) is a viable target for 

treating diseases such as some bowel diseases34. However, MORs are also important for decreasing 

the transmission of painful stimuli, leading to analgesia. The impact of peripheral MORs and their 

clinical utility as viable targets for pain treatment is still being investigated. 

MORs are located in both enteric neurons and mucosal endocrine cells within the 

gastrointestinal (GI) tract35. The enteric nervous system is comprised of excitatory ascending 

motor neurons which control peristaltic contractions, and inhibitory descending motor neurons that 

control the circular muscular layer of the GI tract36. For proper peristaltic movement, acetylcholine 

and Substance P activate their corresponding receptors on ascending motor neurons, resulting in 

muscle contraction and forward movement of fecal boli. Concurrently, nitrous oxide  inhibits 

descending motor neuron function, resulting in circular smooth muscle relaxation, allowing fecal 

boli to pass. MORs located in the GI tract, upon activation, inhibit the release of the excitatory 

neurotransmitters, acetylcholine and substance P resulting in decreased peristaltic contractions37, 

and also inhibit the release of the inhibitory neurotransmitter, nitrous oxide. The net effect is 

diminished excitatory signaling of excitatory ascending motor neurons and decreased inhibitory 

effects of inhibitory descending motor neurons, resulting in decreases of gastric emptying, 
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increases of pyloric muscle tone, and ultimately delayed fecal transit through the small and large 

intestine38. Unsurprisingly, targeting MORs in the GI tract has been highly useful in treating 

patients with irritable bowel syndrome (IBS)39,40,41, accompanied by frequent diarrhea, where 

constipation effects of MOR agonists are beneficial for alleviating diarrhea associated with IBS. 

However, constipation continues to be problematic in patients chronically using opioids and is 

often a reason for patients discontinuing their prescribed medication. 

Alternative Approaches For Targeting MOR For Pain Therapy 

 For the past 100 years, selective MOR agonists have been the predominant approach for 

treating pain42. Adverse effects have hindered this clinical approach, enticing scientists to develop 

alternative approaches for pain therapy. Previously, scientists have tried to develop KOR, DOR, 

and NOPR selective agonists for treating pain, but activation of these receptors has not been shown 

to be as effective as MOR agonists in preclinical studies and have their own adverse effects43.  

 KORs play a role in modulating stressful stimuli, and the activation of the KOR induces 

aversive and depressive-like states in a variety of species, including humans and laboratory 

animals44-46. Further, antagonism of the KOR suggests potential benefit in patients suffering from 

stimulant addiction47,48. With regards to pain relief, KOR activation induces modest 

antinociceptive effects49-51, and there is a KOR agonists that is approved for use as an analgesic in 

Japan52.  

While the NOP shares ~60% sequence homology to the other opioid receptors, its 

classification as an opioid receptor was in question due it its insensitivity to naloxone53. The 

endogenous peptide for NOP is the nociceptin and orphanin FQ, or N/OFQ54. Distribution of NOP 

includes dense populations within the brain and spinal cord, as well as peripheral organs. 

Upregulation of the NOP-N/OFQ system has been shown in disease states including chronic pain 
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and depression55. Interestingly, Parkinsonian patients displayed elevated levels of N/OFQ in their 

cerebrospinal fluid, suggesting NOP may be a target for Parkinson patients61,56. NOP activation is 

also associated with suppression of basal and drug-induced dopamine release in the nucleus 

accumbens, suggesting NOP may be a useful target for patients suffering from substance abuse 

disorder57. Unfortunately, studies investigating distribution and localization of the NOP-N/OFQ 

system demonstrate vast differences between species, and these differences may play a significant 

role in translating the validation of the NOP-N/OFQ system as a potential target for different 

pathophysiological states58,59.  

Recent advances have suggested a role for the DOR in MOR-mediated behavioral effects 

following chronic administration of morphine60,61. DOR agonists, such as SNC80, have 

extensively been shown to induce antidepressant-like effects, as well as anxiolytic effects in a 

variety of species62-64, improving the clinically beneficial profile of DOR. More impressively, 

DOR activation induces significant thermal antinociceptive effects65. The antinociceptive and 

antidepressant-like effects of DOR agonists are mediated through DOR activation and are 

independent of the convulsive effects, such that suppressing DOR-mediated convulsions (with 

anticonvulsant drugs) does not alter antidepressant effects produced by DOR agonists66,67 

Unfortunately, similar to the KOR, DOR activation also induces severe CNS-mediated adverse 

effects that deter clinical use of DOR agonists for therapy purposes. Both DOR agonists 

BW373U86 and SNC80 produce convulsions in mice, rats, and monkeys66,68,69, limiting continued 

validation for selective DOR agonists as a therapeutic approach for pain management.  

Another alternative approach under investigation for improving pain treatment is the use 

of biased MOR agonists. Traditional MOR agonists bind to the orthosteric site of the receptor. The 

orthosteric site is the site on the receptor to which endogenous ligands bind to produce their effects. 
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Biased agonism is when ligands bind to the orthosteric site, they can preferentially activate some 

downstream pathways over others, such as G-protein signaling over β-arrestin signaling70. Ligands 

stabilize specific receptor conformations once bound, which results in specific signaling profiles 

based on the ligan-receptor interaction71-73. The most predominant method of measuring bias is the 

differential activation of G proteins (G protein-bias) vs arrestin proteins74. The arrestin family of 

proteins consists of 4 members, 1-4. Arrestin 1 and 4 are exclusively expressed within rod and 

cone cells within the visual system75,76. Arresting 2 and 3 ( also known as β-arrestin1 and β-

arrestin2) are predominately expressed in tissues within the central nervous system and cells within 

the periphery, including the spleen and GI tract77-80. β-arrestins also regulate CB1R and MOR 

signaling, among many other receptor types. Upon GPCR phosphorylation, β-arrestins bind to 

phosphorylated MOR, ultimately diminishing G-protein signaling, even in the presence of 

saturating concentrations of agonist81,82.  

To assess the effects of β-arrestin on MOR-mediated antinociception, antisense 

oligonucleotides and mice lacking the β-arrestin2 protein have aided in elucidating these effects83. 

Specific inhibition of β-arrestin 2 with siRNA lentivirus microinjected in mice periaqueductal gray 

significantly enhanced the antinociceptive effects of morphine84. Similarly, mice lacking the β-

arrestin2 protein display enhanced and prolonged morphine-induced antinociception in both 

supraspinal and spinal antinociceptive responses85. Further, β-arrestin2 KO mice failed to develop 

tolerance to the antinociceptive effect of morphine, suggesting β-arrestin2 has significant 

implications on the acute antinociceptive effects of morphine as well as the antinociceptive effects 

of morphine following repeated administration83. Therefore, selective MOR agonists displaying 

biased G protein signaling over β-arrestin signaling should exhibit improved antinociception with 

lessened tolerance development. Oliceridine (TRV130), a novel MOR agonist, is a biased MOR 
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agonist that preferentially activates G-protein vs. β-arrestin signaling pathways. Preclinical studies 

show TRV130 produces robust antinociception, and following 3x daily injections of 10mg/kg, 

TRV130 failed to induce tolerance86. Overall, these data suggest a biased agonism strategy at the 

MOR may provide benefit over current pharmacological interventions for pain therapy.  

Allosteric modulation of the MOR is another approach implemented for improving 

pharmacologically-based pain treatment87. As previously mentioned, typical MOR agonists, such 

as morphine and fentanyl, bind to an orthosteric binding site on the receptor. Allosteric modulation 

is a ligand that binds to a site on the receptor that is distinct from the orthosteric site88. Allosteric 

ligands fall within a large spectrum of activity, ranging from negative allostery to positive 

allostery. A positive allosteric modulator (PAM) can enhance the binding affinity or efficacy of an 

orthosteric agonist, including endogenous opioid peptides. Noxious stimuli cause the release of 

endogenous opioids in many regions important for pain alleviation such as the DRG, spinal cord, 

and midbrain89, and PAMs may be able to treat pain by enhancing the activity of endogenous 

opioids within these regions. It has been proposed that enhancing the activity of endogenous 

opioids in a spatially and temporally-controlled manner may minimize the development of 

tolerance and physical dependence that occurs during continuous treatment with exogenously 

administered MOR agonists that act at MORs throughout the body90.  

Tolerance To The Effects Of MOR Agonists 

 A significant complication of opioid use is the decrease in antinociceptive effects following 

chronic administration, such that larger doses of MOR agonist are required to produce the same 

antinociceptive effects (i.e., tolerance). Recapitulation of opioid-induced tolerance has been 

demonstrated in rodents, although studies suggest much of opioid tolerance involves opioid 

receptors within the CNS, and therefore requires drug accessibility to the CNS. The underlying 
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mechanisms for opioid tolerance still remain unclear, however early adaptive processes such as 

receptor downregulation or receptor desensitization are suggested to be key features in tolerance 

development. Receptor desensitization is characterized by a decrease in the coupling of the 

receptor to downstream signaling transduction pathways91. Receptor downregulation is the 

decrease in receptor number on the surface or total number of receptors for ligand binding, 

therefore decreasing the original baseline responses from the agonist92. Both receptor 

desensitization and downregulation results in decreased signaling of the agonist, and are thought 

to occur quite rapidly, within just a few minutes of agonist exposure. Therefore, it is relatively 

unknown if these processes contribute to long-term changes in receptor sensitivity following 

chronic exposure.  

Many studies have evaluated opioid tolerance utilizing ICV or intrathecal administration 

methods, offering direct delivery of drug to the CNS. Mice chronically administered ICV morphine 

produce robust tolerance to the antinociceptive effects of morphine93. Further, intrathecal injection 

of morphine requires increasing doses in humans94. These studies highly suggest that opioid 

tolerance is a centrally mediated mechanism. Many proposed hypotheses for how tolerance 

develops include alterations in adenylyl cyclase inhibition, voltage-gate calcium channel 

inhibition, activation of GIRK channels, cAMP sensitivity, and MAP kinase activation91. All of 

which, however, are studied in either overexpressed cell cultures or ex vivo brain slices. A few 

studies have demonstrated that peripheral opioid receptor antagonism attenuates tolerance 

development to the antinociceptive effects of morphine95. Therefore, probing the involvement of 

peripheral opioid receptors is crucial for elucidating all mechanisms involved in opioid tolerance 

and potentially improving our approaches for treating clinical pain.  
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Compared to MOR agonists, DOR agonists are inadequate analgesics for acute pain, but 

are highly effective in models of chronic pain96. However, similarly to MOR agonists, rodents 

chronically administered systemic SNC80 or ARM39097, developed tolerance to the 

antinociceptive effects98. Tolerance also limits the value of selective DOR agonists, and therefore 

other approaches are required for improving pain therapy. 

Targeting Multiple Opioid Receptors  

Since selective opioid receptor agonists have not been shown to be highly effective for 

treating pain without abuse liability, it has been suggested that simultaneously targeting multiple 

opioid receptor types (i.e., mimicking endogenous opioids) might produce pain relief with fewer 

side effects. Promising results have suggested mixed efficacy opioids may be highly beneficial for 

analgesic effects with attenuated adverse effects. In the early 1990s, it was shown that treatment 

with the DOR selective antagonist, naltrindole, prevented the development of tolerance to the 

antinociceptive effects of morphine60. In transgenic mice lacking DORs, the acute antinociceptive 

effects of morphine were preserved; however, the daily administration of morphine for eight days 

failed to induce tolerance61. These results were further validated with antisense DOP knockdown, 

which reduced tolerance development following prolonged morphine administration99. 

Collectively, these data suggest that DOR activation contributes to the development of tolerance 

to MOR agonists. Further, it may indicate that DOR signaling alters mechanisms that may 

contribute to opioid tolerance, such as receptor phosphorylation, desensitization, and/or 

downregulation. It is unclear whether the MOR-DOR interactions occur at the cellular level with 

MORs and DORs on the same cell or MOR-DOR heterodimers, or at the circuit level (i.e., MORs 

and DORs on different cells.   



 12 

Designing a single compound that binds to both MORs and DORs would be advantageous 

over coadministration of multiple ligands100. This led to the synthesis of ligands that 

simultaneously targeted both MOR and DOR, in forms of peptides like DIPPψNH2
101, bivalent 

ligands such as MDAN-21102, and the multifunctional/mixed-efficacy opioid alkaloids such 

UMB425103. However, both DIPPψNH2 and UMB425 induced significant tolerance and physical 

dependence following repeated administration. Recent studies have described a similar mixed-

efficacy ligand, VPR26, which produced significant antinociception in the WWTW without acute 

tolerance development104. While progress is still needed, present research provides a proof of 

concept that dual mixed-efficacy ligands elicit a more desirable profile than traditional selective 

MOR agonists.  

The synthesis of mixed-efficacy opioid ligands further utilized endogenous opioid peptide 

structures, such as Met-enkephalin. One feature of the endogenous peptides, such as Met-

enkephalin, is that the chemical structures offer tremendous flexibility, increasing the probability 

of interactions with all three opioid receptors. Cyclic peptides derived from Met-enkephalin 

increased rigidity of the molecule, and led to the production of DPDPE, a prototypical DOR-

agonist that displays high potency and affinity for DOR105,106. Further derivatization of DPDPE 

yielded a smaller, more drug-like peptide in JOM-13 that is roughly 600-fold-selective for DOR 

over MOR106. Computation studies were performed on JOM-13 to understand which 

pharmacophores within the JOM-13 structure were necessary for facilitating DOR activation. 

These studies resulted in the production of a more conformationally constrained peptidomimetic, 

KSKPP1E (Figure 1.1). Interestingly, KSKPP1E displayed nearly 200-fold selectivity for MOR 

over the parent compound, JOM-13, and an EC50 of 0.18nM measuring [35S]GTPyS stimulation 
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at the MOR107. This structure and in vitro profile are highly distinct from the selective DOR agonist 

it was based on.  

 KSKPP1E displayed antinociceptive effects in a model of spinal nociception in 

mice similar to that of morphine, however KSKPP1E displayed a slightly shorter duration of 

action108. Further, KSKPP1E showed slight DOR agonist activity and so further derivatization and 

optimization of the parent structure was required to eliminate the agonist activity at DOR109,110. 

Further evaluation and substitutions to KSKPP1E elucidate that substitutions N-substitutions to 

the THQ core of KSKPP1E further enhanced the binding affinity balance between MOR and 

DOR111 (Figure 1.1). Following acute in vivo screening, two promising ligands were selected for 

further characterization, AAH8 and AMB67 (Figure 1.1). Both compounds displayed improved 

affinity balances compared to KSKPP1E. AAH8 is 5-fold selective for MOR over DOR, and 

displays DOR antagonist effects, whereas AMB67 is 24-fold more selective for MOR over DOR 

and displays a DOR agonist in vitro profile; both of which are improvements over the 42-fold 

affinity difference for KSKPP1E. Because early screening demonstrated both AMB67 and AAH8 

induced antinociceptive effects, further evaluation of adverse effects including constipation, 

addiction liability and chronic treatment assessing physical dependence and tolerance development 

across a number of pain measurements was conducted. 

Studying Opioid-Mediated Effects In Vivo  

The use of preclinical models is highly important in translation research. Novel drug 

entities require preclinical evaluation and validation before being able to be tested in a human 

population. Therefore, various preclinical assays have been developed and are used to evaluate to 

the antinociceptive effects of novel ligands.   
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 Assays used to evaluate novel drugs attempt to model four main types of pain: nociceptive, 

inflammatory, neuropathic, and idiopathic pain. Nociceptive and neuropathic pain encompasses 

both pain experienced in the skin, muscles and bones (somatic) or pain residing in organs or 

abdominal cavities (visceral). Neuropathic pain can occur due to either damage or disease that 

affects the somatosensory nervous system, typically resulting in pain from normally non-painful 

stimuli, also known as allodynia. However, neuropathic pain can also be idiopathic where the cause 

of the pain cannot be determined. The benefits of categorizing pain experiences are that they differ 

in severity, location, and duration of effect. For example, nociceptive pain is typically short-term, 

whereas neuropathic and idiopathic pain are typically long-lasting. Dozens of pain assays have 

been developed to improve the approach of studying pain therapy. Nevertheless, to measure 

antinociception in non-human animals, specific behavioral readouts have been established. 

 Neuropathic assays have become more prevalent in the pharmacology field. Neuropathic 

pain assays typically involve surgery, and the first neuropathic pain model was developed in 1979, 

named the neuroma model112. Newer models of neuropathic pain focus primarily on the 

innervation of the sciatic nerve. The sciatic nerve consists of three main branches, peroneal, sural, 

and tibial nerves. The spared nerve injury model involves injury to the common peroneal and tibial 

nerves, leaving the sural nerve intact113,114. This approach to target the sciatic nerve produces a 

long-lasting, robust hypersensitivity to both mechanical and thermal stimuli and have been useful 

in studying antinociceptive effects of currently used drugs, and comparing these results to clinical 

effects as well as assessing newly developed ligands for neuropathic pain therapy115. 

  Inflammatory pain is a spontaneous hypersensitivity to pain in response to tissue damage 

and resulting inflammation. Inflammatory assays incorporate a state of inescapable pain and utilize 

agents such as formalin, capsaicin, carrageenan, and complete Freund's adjuvant. The initial use 
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of inflammatory assays mimics arthritic pain in humans; however, these approaches have failed to 

improve arthritic pain therapy in the clinical realm. However, the use of inflammatory assays still 

provides benefits for measuring the antinociceptive effects of novel ligands.  

 Recapitulating painful diseases has become a more prominent method for assay 

development. An overwhelming realization that current pain models fail to replicate existing 

conditions led researchers to develop models that directly model prevalent pain syndromes. 

Notable models include burn-related pain116, cancer pain117, chemotherapy-induced neuropathic 

pain, complex regional pain syndrome118, and spinal cord related injury119. While these assays 

have been beneficial in assessing antinociceptive properties of drugs, it is also important to 

evaluate the behavioral responses as not only nociceptive vs antinociceptive, but also as pain 

elicited vs. pain depressed behaviors.  

Pain Elicited Vs Pain Depressed Behaviors 

 Pain can stimulate nocifensive behaviors (behaviors evoked by noxious stimuli), but also 

suppresses many behaviors, such as feeding or locomotion. These have been referred to as pain-

elicited behaviors or pain-depressed behaviors. 

Pain-elicited behavior increases in rate, frequency, intensity, or duration in response to 

noxious stimuli120. Common examples and those used in these studies include measuring tail-flick 

latencies in response to thermal stimuli, paw withdrawal thresholds in response to mechanical 

stimuli, and stretching behavior in response to a chemical stimulus. Pain-elicited behaviors are 

widely used throughout drug development laboratories but can be problematic for various reasons. 

For example, drug-induced motor impairments and general sedation can be mistaken for, or 

interpreted as pain relieving effects because pain-elicited behaviors are decreased121. 
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Pain-depressed behaviors can be defined as any behavior that decreases in rate, frequency, 

intensity, or duration in response to a noxious stimulus. Common examples include decreases in 

feeding behavior, locomotion, and operant behavior122,123. This approach provides several 

advantages over pain elicited behaviors as one goal of analgesic treatment is the restoration of 

pain-depressed behavior124. Pain depressed behaviors are not limited by the locomotor depressant 

effect of drugs, hopefully minimizing the potential for false-positive antinociceptive results. 

Measuring pain-depressed behaviors may be more clinically relevant since a goal in treating pain 

in humans is to restore normal function and activity125. Approaches utilizing both pain-elicited and 

pain-depressed behaviors may provide greater benefit over using a single approach. 

Assessment of Adverse Effects In Pre-Clinical Models 

 Rewarding properties 

 Abuse liability of newly developed ligands within various animal models typically serves 

as the forerunner for subsequent clinical studies. These experiments are advantageous in that they 

provide preliminary information on abuse liability. The methods utilized within this thesis include 

drug discrimination procedures, conditioned place preference studies, and testing physical 

dependence development following repeated administration of the drug.  

Drug discrimination is a paradigm in which animals are trained to respond for a food 

reinforcer (glucose pellets) and trained to use a drug's interoceptive effects as a cue (i.e., 

discriminative stimulus) to respond on the appropriate manipulanda 

 Many drugs can elicit discriminative stimulus effects, and all drugs of abuse produce 

discriminative properties that are thought to contribute greatly to their abuse potential126. For 

example, opioids, including morphine and fentanyl, fail to generalize to the discriminative effects 
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of amphetamine and vice versa127, demonstrating that drug discrimination paradigms can separate 

interoceptive properties of different drug classes. 

 Focusing on the opioid system, MOR agonists are distinguishable from KOR 

agonists128,129. Studies have demonstrated that naloxone, and similar opioid antagonists such as 

naltrexone, can attenuate behavioral effects induced by both MOR and KOR agonists. Similarly, 

naloxone and other opioid antagonists can shift EC50 in animals trained to discriminate either 

morphine from saline or U50, 488 from water. However, in monkeys trained to discriminate a 

morphine, KOR agonist substitutions fail to generalize to the interoceptive properties of 

morphine130. In rats trained to discriminate 5.6 mg/kg U50, 488, the KOR agonist bremazocine 

fully generalizes to the discriminative effects of U50, 488, but, MOR agonists morphine and 

fentanyl fail to generalize to the discriminative stimulus effects of U-50,488131. In rats trained to 

discriminate 0.32mg/kg SNC80 from saline, both morphine and U-50,488 failed to substitute for 

SNC80. These results suggest that drug discrimination studies provide receptor-selective 

sensitivity and allow investigation of specific receptor-mediated interoceptive effects. Therefore, 

we wanted to assess mixed-efficacy opioids in similar drug discrimination paradigms.   

Conditioned place preference (CPP) is a commonly used assay to assess rewarding 

properties of a drug132,133. Typically, drugs of abuse such as cocaine or morphine produce CPP, 

whereas drugs that elicit aversive effects, such as lithium chloride or the selective KOR agonist, 

U69, 488, induce conditioned place aversion (CPA)134,135. CPP has also been established in CNS 

depressant drugs such as ethanol and diazepam, cannabinoid receptor agonist delta-9-

tetrahydrocannabinol (THC), and common opioids such as morphine and heroin136-138. 

Interestingly, studies demonstrate site-specific injections of morphine into either the ventral 
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tegmental area139 or the nucleus accumbens140 is sufficient for inducing CPP, and the authors 

suggest the MOR is important for mediating such behaviors.   

Interestingly, mice lacking the DOR show loss of morphine reward141. This suggests that 

the DOR, in part, is involved in MOR-mediated CPP. These results have aided in developing 

mixed efficacy MOR agonist/DOR antagonist ligands in hopes that antinociceptive effects will be 

retained through activation of the MOR but will not induce CPP. However, improving the 

rewarding properties of opioid-mediated antinociception is only one component to discovering the 

"holy grail" analgesic. Therefore, assessing physical dependence development is a crucial 

component to improved pain pharmacotherapy.  

Physical Dependence 

A significant confounding variable involved in opioid use disorder (OUD) is the 

development of physical dependence, and many patients experience physical dependence at 

different stages of their pain therapy142.  

Following chronic exposure or use of an opioid, abstinence from drug can produce physical 

symptoms as well as affective symptoms of withdrawal143. Assessment of physical dependence 

development can be assessed in various ways and can be quantified by the type and severity of 

withdrawal signs that emerge after the discontinuation of drug treatment or the administration of 

a pharmacological antagonist, such as naltrexone144,145. In rodents, withdrawal-like effects include 

jumping, teeth chattering, piloerection, wet dog shakes, paw tremors, and soft stool. All of which 

are robust behaviors in rodents physically dependent on MOR agonists146. A global withdrawal 

score can be calculated by including all withdrawal-like effects to assess total physical dependence 

development. 
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In contrast to the well-characterized physical dependence development to the behavioral 

effects of MOR and KOR agonists147,148, probing DOR-mediated dependence has been studied less 

extensively. Mice treated sub chronically with ICV DPDPE, a selective DOR agonist, exhibit no 

jumping behavior following naloxone administration149. Conversely, rats administered ICV 

DPDPE for 70h display precipitated withdrawal signs similar to those in rats receiving ICV 

morphine, although to a lesser degree150. However, physical dependence induced by ICV DPDPE 

may actually be due to some activity of DPDPE at MORs as the antinociceptive effects of DPDPE 

are less potent in mice lacking MORs151. 

SNC80 is a selective DOR agonist with 800-fold selective for DOR over MOR97. Rhesus 

monkeys treated chronically with SNC80 did not exhibit signs of precipitated withdrawal152. 

Interestingly, studies have suggested the DOR may be involved in morphine-induced physical 

dependence, as low dose naltrindole produced dose-dependence decreases in morphine-induced 

withdrawal-like effects following chronic administration of morphine60,153. Therefore, we wanted 

to assess if chronic administration of AMB67 induced naloxone precipitated withdrawal-like 

effects. 

Experimental Objectives of the Current Dissertation 

The overall goal of this research project is to find a safer opioid analgesic with less abuse 

liability and fewer side effects. The specific objective of the experiments described in this thesis 

are 1) to characterize the antinociceptive effects and the adverse effects of novel mixed-efficacy 

opioids ligands following acute and chronic administration in pre-clinical rodent models and 2) to 

evaluate novel mechanisms involved in opioid tolerance. These studies address downfalls of 

current pain management approaches, the adverse effects associated with chronic opioid use, and 
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elucidation of tolerance mechanisms in order to improve how pain management is conducted, 

hopefully leading to a decrease in the prevalence of OUD worldwide.  

 

Aim 1: To Characterize the antinociceptive and adverse effects of AMB67, a mixed-efficacy 

opioid ligand 

 The first study in this thesis evaluated the antinociceptive effects of AMB67 following 

acute and chronic administration and elucidated adverse effects, including tolerance development, 

physical dependence, and rewarding properties. It was hypothesized that a drug that is a MOR and 

DOR agonist would produce less tolerance and physical dependence than the MOR agonist 

morphine.  In vitro studies assessed binding affinity, potency, and efficacy of AMB67 at both the 

MOR and DOR. The present study also evaluated AMB67-induced chemical, thermal, and 

mechanical antinociception following acute and chronic administration, including assessing 

physical dependence development following repeated administration of AMB67. Antinociception 

studies included dose-effect comparisons with morphine, as well as antagonism studies following 

systemic administration. Additionally, the present study evaluated the addiction liability of 

AMB67 across multiple species and paradigms.  

 

Aim 2: Evaluate behavioral effects of AAH8, a mixed-efficacy, MOR agonist/DOR antagonist 

following acute and chronic administration.  

 In the second study, acute and chronic antinociceptive effects of AAH8 were assessed. 

Based on previous studies, it was hypothesized that chronic administration of AAH8 would not 

induce tolerance. Previous studies demonstrated AAH8 induced acute antinociceptive effects 

compared to morphine154. The present study elaborated on the behavioral effects of acute and 
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chronic AAH8, including antinociception and constipation effects. Antinociception studies 

included dose-effect comparisons with morphine, as well as pharmacological antagonism using 

both peripherally restricted and non-restricted opioid antagonist, as well as assessment of AAH8-

induced antinociception in mice lacking the MOR. Comparisons were made between the 

antinociceptive effects of AAH8 administered by intraperitoneal or intracerebroventricular routes 

of administration. Further, constipation effects of AAH8 were assessed and compared between 

intraperitoneal and subcutaneous routes of administration. 

 

Aim 3: Elucidate the role of peripheral opioid receptors in the development of tolerance to MOR 

agonists. 

 The final study of this thesis evaluated the involvement of peripheral opioid receptors in 

developing tolerance to MOR agonists. Previous studies suggested that peripheral opioid receptors 

may be involved in the production of tolerance to the antinociceptive effects of morphine95. It was 

hypothesized that antagonism of peripheral opioid receptors was sufficient for attenuating 

tolerance development to the centrally-mediated antinociceptive effects of MOR agonists. For 

these studies, centrally-mediated antinociceptive effects of morphine were assessed following 

repeated administration in a thermal pain model. Comparison of central vs. peripheral 

antinociceptive effects of morphine were assessed following pretreatments of either peripherally 

restricted or non-restricted opioid antagonists. Further, naloxone-methiodide, a peripherally 

restricted MOR antagonist, was utilized to assess if peripheral opioid receptors' antagonism was 

sufficient for attenuating morphine-induced tolerance. Additionally, loperamide, a peripherally 

restricted MOR agonist, was assessed for acute and chronic antinociceptive effects, including 

evaluating cross-tolerance to morphine.  
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Figure 1.1 Structural Evolution of the Endogenous Peptide Met-enkephalin into KSKPP1E and Eventually the Lead Compounds 

AAH8 and AMB67 
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Figure 1.2 Ascending and Descending Limbs of Pain Transmission 

Ascending and descending pain pathways. Primary afferent nociceptors respond to noxious stimuli, where transduction of noxious 

stimuli to a chemical signal occurs. Chemical signals from the periphery relay to the spinal cord. In the dorsal horn of the spinal 

cord, nociceptors synapse onto interneurons that signal to second order neurons. This information is sent up the spinal cord to the 

brain stem and thalamus. Third order neurons receive signals in the thalamus and relay them to the somatosensory cortex of the 

brain where the noxious stimuli are interpreted as pain. The descending pathway involves efferent signaling from the PAG to the 

RVM to the spinal cord and modulation of the ascending pathway  Figure adapted from International Association of Pain 
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Chapter II: Characterizing the Activity of A Novel, Multifunctional Opioid Ligand, 

AMB67 

Abstract  

 

Opioids, such as morphine, have long been used to treat pain. Opioids exert their effects 

through MORs. While effective, MOR agonists produce on-target adverse effects such as 

constipation, tolerance, physical dependence, and euphoria. Multiple studies have demonstrated 

that simultaneous modulation of both MORs and DORs could improve the therapeutic profile of 

opioid ligands. AMB67 is a peptidomimetic opioid ligand that binds to MORs and DORs with low 

nanomolar affinity. The present study characterized the acute effects of AMB67 in vitro and in 

vivo as well as the effects in vivo following repeated or chronic administration. To evaluate the 

antinociceptive effects of AMB67, we used models of thermal, chemical, and mechanical 

nociception. In C57BL/6N mice, AMB67 produced dose-dependent antinociceptive effects in all 

three pain models. The antinociceptive effects of AMB67 were attenuated with naloxone 

pretreatments and was absent in MOR KO mice. Following 5 days of administration with 

increasing doses, the ED50 for the AMB67 dose effect curve was unchanged in models of thermal 

and chemical nociception; however, following the same chronic dosing regimen, the dose effect 

curve for AMB67 in mechanical nociception was shifted 1.5-fold to the right. Naltrexone 

precipitated a greater withdrawal in morphine-treated mice as compared with AMB67-treated 

mice. After 5 days of conditioning, AMB67 was less potent than morphine in producing 

conditioned place and in morphine-like discriminative stimulus effects. Overall, AMB67 produced 

similar antinociceptive effects to morphine but produced less tolerance, physical dependence, and 
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rewarding effects than morphine. These findings highlight a compound that may have a safer 

profile of activity than typical opioid analgesics.  

 

Introduction 

 

Pain affects 100 million Americans and is a major contributor to national rates of 

morbidity, mortality, and disability1. Opioids, such as morphine, are useful for treating pain, but 

they also produce on-target, adverse effects, such as tolerance, physical dependence, respiratory 

depression, constipation and abuse liability2,3. Tolerance development to the pain-relieving effects 

of opioids contributes to the necessity for dose escalation, which may result in misuse of 

prescription opioids4. Further, continued use of opioids produces physical dependence, also 

increasing the risk of  misuse4-6. Therefore, the development of ligands that are effective for 

treating pain but produce less tolerance and physical dependence will greatly improve the 

treatment of pain. 

 The analgesic effects and adverse effects discussed above of opioid analgesics occur via 

activation of the mu-opioid receptor (MOR). Other opioid receptor types (delta, kappa, and ORL1) 

alone or in combination with MOR agonists have also been studied as alternative targets for 

treating pain. The use of selective DOR agonists for treating pain is clinically limited because they 

produce DOR-mediated convulsive behavior in mice, rats, and monkeys7,8,9. Interestingly, 

inhibition of DORs does not alter acute MOR-mediated antinociceptive effects but attenuates the 

development of tolerance and physical dependence following MOR agonist administration10-12. 

Therefore, research has focused on synthesizing multifunctional opioid ligands exhibiting a MOR 

agonist/DOR antagonist in vitro profile7,13-19 or MOR/DOR agonist activity profile20-24. There is 
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some evidence that multifunctional opioid ligands, such as SRI-22131, produce fewer adverse 

effects than selective MOR agonists following repeated administration23,25-27.  

We hypothesized, based on the literature above, that a multifunctional opioid ligand with 

nearly equal, sub nanomolar affinities at MORs and DORs would display antinociceptive 

properties similar to morphine, but lack tolerance development, physical dependence 

development, and rewarding properties. Therefore, we evaluated AMB67, a dual MOR/DOR 

agonist in mouse models of acute and chronic nociception, physical dependence, as well as 

evaluation of the rewarding properties of AMB67 using conditioned place preference and drug 

discrimination.     

 

Methods 

In Vitro Studies 

All tissue culture reagents were purchased from Gibco Life Sciences (Grand Island, NY, 

USA). Radioactive compounds were purchased from Perkin-Elmer (Waltham, MA, USA). C6-rat 

glioma cells stably transfected with a rat μ(C6-MOR) or δ(C6-DOR) opioid receptor28 and Chinese 

hamster ovary (CHO) cells stably expressing a human μ(CHO-MOR) or δ(CHO-DOR) opioid 

receptor29 were used for all in vitro assays. Cells were cultured and membranes prepared as 

previously described30 

Radioligand Binding Assays.  

Radioligand binding assays were performed as previously described30. In brief, assays were 

performed using competitive displacement of 0.2 nM [3H] diprenorphine (250μCi, 1.85 

TBq/mmol) by the test compound from membrane preparations containing opioid receptors. The 

assay mixture, containing membrane suspension (20μg of protein/well) in 50 mM Tris-HCl buffer 
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(pH 7.4), [3H ]diprenorphine, and various concentrations of test ligand, was incubated at room 

temperature for 1 h to allow binding to reach equilibrium. The samples were filtered through 

Whatman GF/C filters and washed three times with cold 50 mM Tris-HCl buffer (pH 7.4). The 

radioactivity retained on dried filters was determined by liquid scintillation counting after 

saturation with EcoLume liquid scintillation cocktail in a Wallac 1450 MicroBeta (Perkin-Elmer, 

Waltham MA, USA). Nonspecific binding was determined using 10μM naloxone. Ki values were 

calculated using nonlinear regression analysis to fit a logistic equation to the competition data 

using GraphPad Prism, version 5.01, for Windows. The results presented are the mean ± standard 

error from at least three separate assays performed in duplicate. 

 

Stimulation of [35S]GTPγS Binding.  

Agonist-induced stimulation of [35S]guanosine 5′-O-[γ-thio]triphosphate ([35S]GTPγS, 

1250 Ci,46.2 TBq/mmol) binding was measured as described previously31. Briefly, membranes 

(10−20μg of protein/well) were incubated for 1 h at room temperature in GTPγS buffer (50 mM 

Tris-HCl, 100 mM NaCl, 5 mM MgCl2, pH 7.4) containing 0.1 nM [35S]GTPγS, 30μM guanosine 

diphosphate (GDP), and varying concentrations of test peptides. Agonist-induced stimulation of 

[35S]GTPγS was compared with 10μM standard compounds [D-Ala2,N-MePhe4,Gly-

ol]enkephalin(DAMGO) at MOR and D-Pen2,5-enkephalin (DPDPE) at DOR. The reaction was 

terminated by rapidly filtering through GF/C filters and washing 10 times with cold GTPγS buffer. 

Retained radioactivity was measured as described above. The results are presented as the mean ± 

standard error from at least three separate assays each performed in duplicate; maximal stimulation 

and EC50 values were determined using nonlinear regression analysis with GraphPad Prism, 

version 5.01, for Windows. 
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Animals and Solutions for In Vivo Administration 

All animal care and experimental procedures complied with the US National Research 

Council's Guide for the Care and Use of Laboratory Animals32. Mice were group‐ housed with a 

maximum of five animals per cage in clear polypropylene cages with corn cob bedding and nestlets 

as enrichment. Mice had free access to food and water at all times. Animals were housed in 

pathogen‐ free rooms maintained between 68 and 79°F and humidity between 30 and 70% 

humidity with a 12 h light/dark cycle with lights on at 07:00 h. We conducted experiments in the 

housing room during the light cycle. All studies utilize wildtype male C57BL/6N mice from 

Envigo laboratories (formerly Harlan, Indianapolis, IN), or wildtype, heterozygous and 

homozygous male MOP-KO (B6.129S2‐ Oprm1tm1Kff/J stock number 007559; Jackson 

Laboratory). All mice used for behavioral experiments weighed between 20-30 g at 7-15 weeks 

old. All drug solutions were injected at a volume of 10ml/kg. AMB67 was dissolved in 1:9 

DMSO/saline solution. Morphine sulphate was dissolved in saline. Acetic acid was diluted in water 

to a 0.6% solution. All drugs were given either by intraperitoneal (IP) or subcutaneous (SC) 

injection, and the diluted acetic acid was given IP. 

 

Acetic Acid Stretch Assay (AASA) 

Antinociceptive effects were evaluated in the mouse acetic acid stretch assay33. Test drug 

or vehicle was given via a SC injections 30 min prior to an injection of 0.6% acetic acid (IP). 

Following acetic acid administration, mice were placed individually in clear plastic observation 

cages (10 x 6 x 8 in) with bedding. A 5 min latency period occurred prior to starting observations, 

and then the total number of stretches or writhes observed for 20 min was recorded. For antagonism 
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studies, a dose of 10 or 3.2 mg/kg naloxone or 10mg/kg naloxone-methiodide was administered 

IP 15 min before administration of test drug or vehicle.  

For the tolerance studies, mice received increasing doses of morphine (1-5mg/kg),AMB67 

(1-5mg/kg) or vehicle every 12 hours (7 am, 7 pm) for five days. No injections were administered 

the evening prior to test day. 

 

Von Frey 

For all von Frey experiments, mice were placed in a plastic box (4in x 4in x 4inch) with a 

mesh floor that was elevated sixteen-inches above the table. All mice and were habituated to the 

plastic box for two hours per day for three days and baseline (pre-CFA). mechanical withdrawal 

thresholds were assessed. To assess withdrawal threshold, each von Frey monofilament was 

applied perpendicularly to the ventral medial portion of the hind paw for approximately 3 sec. A 

withdrawal response was characterized by rapid removal of the paw from the filament within the 

3 sec time limit. The Up-Down method was used to determine all withdrawal thresholds34. 

Complete Freund’s Adjuvant (CFA, Catalog #77140, Thermo Scientific) was administered 

unilaterally in a volume of 15ul in a randomized manner. 24 hrs post CFA injections (test day),  

withdrawal thresholds were evaluated in the absence or presence of drug. 

On test day, all mice were administered saline or vehicle, and withdrawal thresholds were 

evaluated 30 min later (post-CFA baseline withdrawal threshold). Increasing doses of morphine 

or AMB67 were administered every 30 minutes in a cumulative dosing fashion, and withdrawal 

thresholds were recorded.  

For tolerance studies, on day 1 (24h post CFA administration), all mice were administered 

saline or vehicle, and withdrawal thresholds were evaluated 30 min later (post-CFA baseline 
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withdrawal threshold). Increasing doses of morphine or AMB67 were administered every 30 

minutes in a cumulative dosing fashion, and withdrawal thresholds were recorded to assess 

antinociceptive effects. Mice were then administered morphine (10mg/kg), AMB67 (10mg/kg), or 

vehicle 3x per day for five days (Days 1-5) (7am, 1pm, 7pm). No injections were administered the 

evening prior to test day to ensure no circulating drug was present during mechanical threshold 

testing. On day 6, all mice were administered saline or vehicle, and withdrawal thresholds were 

evaluated 30 min. Increasing doses of morphine or AMB67 were administered every 30 minutes 

in a cumulative dosing fashion, and withdrawal thresholds were recorded. 

 

Warm Water Tail Withdrawal (WWTW) 

To determine tail withdrawal latencies, mice were placed briefly in a cylindrical plastic 

restrainer and the distal  2-3 cm of the tail were dipped into a water bath maintained at 50° C. The 

latency to tail withdrawal or rapid tail flicking, was recorded. If a mouse did not remove its tail by   

20 sec, it was removed by the experimenter to prevent tissue damage. For time course experiments, 

morphine (10mg/kg) and AMB67 (10mg/kg) were given via SC administration, and tail-flick 

latencies were recorded over time. For dose effect curve evaluation, cumulative dosing of test 

compounds (1-32mg/kg) was given IP at 30 min intervals and tail-flick latencies were recorded at 

the end of each 30 min interval. For pharmacological antagonism studies, naloxone (3.2mg/kg) or 

naltrindole (3.2mg/kg) was administered via IP injection 15 min pretreatment prior to the agonist. 

For the tolerance studies, mice were administered morphine (10 mg/kg), AMB67 (10 mg/kg), or 

vehicle 3x per day for five days. No injections were administered the evening prior to test day to 

ensure no circulating drug was present for testing. 
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Physical Dependence 

Wild-type C57BL/6N mice were treated for five days with either saline, vehicle, or 

escalating doses of the test compound (10-50 mg/kg, IP) every 12 h (7am, 7 pm). On day 6, mice 

were given a 50mg/kg dose of test drug or saline (IP) and returned to their home cage. Two hours 

later, each mouse was given 10mg/kg naltrexone IP and placed in an empty, individual plastic 

observation cage (10 x 6 x 8 in.). Mice were observed for 30 min after naltrexone administration 

for signs of opioid withdrawal including jumping behavior, teeth chattering, piloerection, wet dog 

shakes, paw tremors and soft stool. A modified global withdrawal score was calculated for each 

animal by assigning each individual physiological response a numerical value as previously 

reported35. Teeth chattering, piloerection, wet dog shakes, paw tremors and soft stool were all 

assigned a numerical value of 1 based on presence or no presence. Total number of jumps was 

weighted as follows and global withdrawal scores are the sum across each physiological response: 

0 jumps = 0, 1-9 jumps = 1; 10-19 jumps = 2; 20-29 jumps = 3 etc. 

 

Conditioned Place Preference 

 The apparatus contained two compartments separated by a single, vertically sliding door. 

Each compartment was 72x130x72mm (med associates, MED-CPP2-3013-2). One side of the 

apparatus contained white walls with parallel rod flooring; the other side of the apparatus contained 

black walls and grid flooring. 

We utilized a modified biased design. On days 1 and 2, the mice were placed into one 

compartment (side start alternated across 2 days) and allowed to roam freely in both chambers for 

30 min. The average time spent in each compartment was calculated across both days and was 

used to determine bias. If a mouse spent more than or equal to 70% of time during bias evaluation 
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in one compartment, then that mouse was discarded from the study (~5% occurrence rate). If mice 

showed a slight preference for one side (50-69% of time spent in one compartment), then drug was 

assigned to the least preferred side. If there was no bias (50% time spent in each compartment), 

drug-paired sides were assigned at random.  

Following bias testing, mice underwent 5 conditioning days. On each conditioning day, 

animals received a SC injection of saline in the morning and immediately confined to the saline-

paired chamber. Similarly, in the afternoon, animals received a SC injection of a single dose of 

morphine, AMB67, or vehicle and were immediately confined to the drug-paired chamber. On 

Day 8, each mouse was  placed in a side of the chamber randomly and allowed access to both 

compartments of the apparatus. The amount of time spent in each compartment was recorded for 

30 min. Time spent on the drug-paired side during bias testing was subtracted from time spent on 

drug-paired side during test day to calculate a Mean Place Preference Score.  

 

Drug Discrimination Apparatus 

Drug discrimination procedures were performed in twelve standard operant conditioning 

chambers with an area of 30.5 x 24.1 x 21.0 cm (Med Associates, ENV-018MD). Each chamber 

contained stainless-steel parallel floors (ENV-008; Med Associates, St. Albans, VT) and were 

equipped with stimulus light panels (Med Associates, 3 LED lights, ENV-222M) placed directly 

over two illuminated nosepoke devices (ENV-114BM). Between the nosepoke devices, the 

chambers contained a pellet dispenser (Med Associates, ENV-203M-45), and a food receptacle 

(Med Associates, ENV-200R2M). Each chamber was contained within ventilated, sound-

attenuating boxes.  
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Operant Training  

Rats were first trained to respond for a 45 mg sucrose pellet on a fixed ratio 1 (FR1) 

schedule of reinforcement during a 30 min session. The FR schedule gradually increased to FR10 

until responding was stable (>30 pellets earned in each session). After an FR10 schedule was 

reached, the length of the session was gradually decreased to 10 min. To train drug discrimination, 

rats were injected with saline (SC) or 3 mg/kg morphine (SC) and placed immediately into the 

operant chamber. Following a 20-minute blackout period, stimulus lights turned on in each nose 

poke, and responding (FR10) on the injection-appropriate nose poke was reinforced with a 45 mg 

sucrose pellet. Incorrect nose poke responding was recorded but resulted in no scheduled 

consequences. Delivery of a sucrose pellet or completing a ratio on the incorrect nose-poke, 

resulted in a 10-s timeout (TO). Responding during the TO was recorded but had no scheduled 

consequence. 

 

Discrimination Testing and Maintenance 

Test sessions were only conducted when the following criteria were met: (1) the first 

response must be completed on the injection-appropriate nose poke for two consecutive training 

days, and (2) at least 85% of responses must be on the injection-appropriate nose poke. If, at any 

point, a training session occurred where criteria were not met, three subsequent days of meeting 

criteria was required to proceed to a test day. During test sessions, responding on either nose poke 

was reinforced with sucrose regardless of the type of injection received. Rats received no more 

than three tests per week. For tests sessions, rats were administered vehicle, saline or morphine 

(SC), or AMB67 (IP).  
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Data Analysis  

All data analyses were performed using GraphPad Prism version 8.4.3. Level of 

significance ( was set to 0.05. Repeated measures, two-way ANOVAs were conducted for all 

dose-effect curves unless otherwise stated. We conducted Tukey’s post hoc analyses to correct for 

multiple comparisons. Post hoc analyses were only performed when F values achieved p < 0.05. 

Approximate ED50 values were calculated using GraphPad Prism version 8.4.3. The 50% 

maximum effect was interpolated from the straight-line analysis and then averaged within each 

treatment group. This included 2-3 points along the linear portion of the curve only. Standard 

errors of the mean were calculated for ED50 values where stated. However, in some studies, we 

could not calculate standard errors of the mean for ED50 values because different mice were present 

at each dose. Fold shifts in dose-effect curves were calculated by dividing ED50 value of interest 

by ED50 value calculated in wild-type mice or in the presence of the agonist alone.  

Results 

In Vitro Results:  

Binding Affinity and Efficacy for AMB67 

 Binding affinity, potency, and efficacy for morphine and AMB67 were determined at both 

the rat and human MORs and DORs (Table 2.) At the rat MOR in C6 cells, morphine had a Ki of 

6.5±1.9 nM and stimulated [35S]GTPyS binding to 21.8% of DAMGO stimulation. At the rat DOR, 

morphine had a Ki of 94.6nM and showed 22.7% of DAMGO-induced G protein binding.  

   At the human MOR in CHO cells, morphine had an affinity of 4.2±1.3 nM affinity and 

98% DAMGO stimulation. However, at the human DOR, morphine exhibited a 104±9.2 nM 

affinity and 56.3% DPDPE stimulation. The potency for morphine at both the rat and human MOR, 
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as well as the human DOR was in the triple digit nanomolar range, whereas at the rat DOR was in 

the micromolar range. 

AMB67 exhibited low nanomolar affinity at both rat and human MOR and DOR. At rat 

MOR expressed in C6 cells, AMB67 displayed a Ki of 0.2±0.1 nM and 81% DAMGO stimulation. 

At the rat DOR, AMB67 displayed a Ki of 4.8±1.1 nM, however failed to stimulate [35S]GTPyS. 

At the human MOR expressed in CHO cells, AMB67 exhibited a Ki of 0.1±0.01 nM and 83% 

DAMGO stimulation. However, at the DOR in CHO cells, AMB67 displayed a Ki of 2.4±0.4 nM 

and 34.5% DPDPE stimulation. Potency for AMB67 at both rat and human MOR was in the low 

nanomolar range. Whereas at the rat DOR, AMB67 exhibited no [35S]GTPyS stimulation and 

double-digit nM potency at the human DOR. 

 

In Vivo Results: 

Acute Antinociceptive Effects of Morphine and AMB67 

The acute antinociceptive effects of AMB67 and morphine were assessed using the 

WWTW (thermal), AASA (chemical), and von Frey (mechanical) assays in male C57BL/6N mice. 

In the WWTW, 10 mg/kg AMB67 and morphine increased withdrawal latency as supported by a 

significant main effect of time [F (5, 50) = 60.3, P<0.0001] and no significant interaction [F (5, 

50) = 0.63, P=0.68] (Figure 2.1A). 

In the WWTW, dose effect curves of morphine and AMB67 were evaluated (Figure 2.1C). 

Both compounds produce dose dependent increases in tail withdrawal latency as supported by 

main effect of dose [F (4, 50) = 137, P<0.0001]. However, there were no significant differences 

between morphine and AMB67 [F (1, 50) = 1.6, P=0.21) and no significant interaction between 
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the two drugs [F (4, 50) = 0.9, P=0.5] Further, morphine had an EC50 of 6.1±0.3 mg/kg, while 

AMB67 was slightly less potent with an EC50 of 8.6±2.3 mg/kg, although this was insignificant.  

In the AASA, morphine and AMB67 produced dose-dependent decreases in acid-induced 

stretching [F (3, 40) = 40.6, P<0.001], but there was no significant difference between the 

compounds [F (1, 40) = 2.4, P=0.13) nor a significant interaction between the drugs [F (3, 40) 

P=0.36). Similar to the results in the WWTW, AMB67 was slightly less potent than morphine a 

simple linear regression analysis revealed interpolated EC50 values for morphine (0.43mg/kg) and 

AMB67 (0.62 mg/kg) (Figure 2.1B). A two-way ANOVA revealed no interaction [F (3, 42) = 0.7, 

P=0.6] but there were significant effects for dose [F (3, 42) = 40.7, P<0.0001]. (Figure 2.1B).  

In the model of mechanical nociception, morphine and AMB67 dose-dependently reversed 

CFA-induced mechanical hypersensitivity, with EC50 values of 4 mg/kg and 3.3 mg/kg, 

respectively (Figure 2.1D). Repeated measures, two-way ANOVA  revealed no significant 

interaction [F (2, 24) = 1.4, P=0.3]. However, there was a significant effect of dose [F (2, 24) = 

24.7, P<0.0001]. 

 

Receptor-Mediated Antinociceptive Effects of Morphine and AMB67 

We next assessed the opioid receptor type mediating the antinociceptive effects of 

morphine and AMB67. In the WWTW, the acute morphine dose effect curve was shifted 2.3-fold 

to the right following naloxone pretreatment. A two-way ANOVA revealed a significant 

interaction [F (4,50) = 13.4, P<0.0001] (Figure 2.2A). 

 Similarly, In the WWTW (Figure 2.2B), naloxone pretreatment produced a rightward shift 

in the AMB67 (Figure 2.2B) dose effects curve. a two-way ANOVA revealed a significant 

interaction [F (4, 55) = 31.5, P<0.0001].  
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Previous studies demonstrated that the antinociceptive effects of morphine in the WWTW 

assay are mediated by the MOR36. Therefore, we wanted to evaluate the antinociceptive effects of 

AMB67 in transgenic mice lacking the MOR (The EC50 for AMB67 was shifted 2-fold in MOR 

heterozygous (Figure 2.2G). In wild-type littermates, AMB67 increased withdrawal latency in a 

dose dependent manner (EC50 = 6.7 mg/kg). In mice expressing about 50% of MORs as compared 

with wild-type littermates, AMB67 also produce dose-dependent increases in tail withdrawal 

latencies; however, the AMB67 dose effect curve was shift approximately 3-fold to the right (EC50 

= 14.8 mg/kg) of that observed in wildtype littermates. In MOR homozygous knockout mice, 

AMB67 failed to increase withdrawal latencies up to a dose of 56 mg/kg. 

Next, we evaluated the receptor-mediated antinociceptive effects of morphine and AMB67 

in the AASA. Morphine decreased acid-induced stretching [one-way ANOVA, significant main 

effect [F (3, 20) = 34.3, P<0.0001] (Figure 2.2B). Naloxone significantly attenuated the 

antinociceptive effects morphine (p<0.0001); however, NTI did not attenuate morphine-induced 

antinociception (Figure 2.2B). AMB67 significantly decreased acid-induced stretches [F (4, 25) = 

5.2, P=0.004], and these effects were block by naloxone (p=0.02), beta-funaltrexamine (p=0.04), 

and NTI (p=0.01) (Figure 2.2E). 

Morphine and AMB67 dose-dependently reversed CFA-induced mechanical 

hypersensitivity (Figure 2.2C and D). Naloxone induced a ~3-fold shift in the morphine DE curve 

(Figure 2.2C) [interaction, F (2, 42) = 4.9, P=0.01]. Naloxone produced a ~5-fold shift was 

observed for the AMB67 DE curve [interaction, F (2, 39) = 9.4, P=0.0005] (Figure 2.2F).  

 

Antinociceptive Effects of AMB67 and Morphine Following Five Days of Repeated 

Administration 
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To test our hypothesis that a dual MOR/DOR agonist would display limited tolerance 

development, we examined the antinociceptive effects of AMB67 or morphine in all three pain 

models after 5 days of repeated administration. In the WWTW, repeated administration of 

morphine, but not saline, produced a 3-fold, rightward, parallel shift in the morphine dose-effect 

curve (Day 1 EC50=5.07±0.05 mg/kg, Day 6 EC50=14.3±1.02 mg/kg) (Figure 2.3A). A two-way 

ANOVA revealed a significant interaction between the morphine DE curve day 1 vs day 6 [F (4, 

40) = 22.7, P<0.0001] (Figure 2.3A). Repeated administration of AMB67 resulted in no significant 

interaction comparing day 1 vs day 6 [interaction, [F (4, 40) = 0.3, P=0.8], nor was there a main 

effect of day [F (1, 10) = 1.1, P=0.3]. Following five days of repeated administration, the EC50 for 

AMB67 was not significantly altered, 7.5±1.5 and 9.9±2.1 for day 1 and day 6, respectively.  

In the AASA assay, following five days of twice daily, the EC50 for morphine on day 6  

shifted ~4-fold as compared with the morphine dose effect curve on day 1 (Figure 2.3C). A two-

way ANOVA revealed a significant interaction between the morphine dose effect curves on curve 

day 1 vs day 6 [F (2, 30) = 6.8, P=0.004] (Figure 2.3E). The EC50 for AMB67 was not shifted 

following 5 days of repeated administration (2.7 mg/kg and 5mg/kg for day 1 and day 6, 

respectively). A repeated measures, two-way ANOVA revealed a significant main effect of dose 

[F (2, 32) = 82.2], <0.0001, but no main effect of Day [F (1, 32) = 0.8] or interaction of Dose x 

Day [F (2, 32) = 1.07, 0.4] (Figure 2.3D)].  

In von Frey, mice repeatedly administered 10 mg/kg morphine displayed significant 

decreases in morphine-induced mechanical hypersensitivity comparing day 1 to day 6 [F (2, 30) = 

6.8, P=0.004]. For AMB67, a repeated measures two-way ANOVA revealed 3 and 10mg/kg 

AMB67 significantly attenuated CFA-induced mechanical hypersensitivity with a significant main 
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effect of dose, [F (2.3, 27.47) = 34.5, P<0.0001]. There was no effect of day [F (1, 12) = 0.07, 

P=0.8], nor a significant main effect [F (3, 36) = 1.7, P=0.2] (Figure 2.3F). 

 

Physical Dependence Development Following Chronic Administration of AMB67  

We tested the ability of AMB67 to produce physical dependence via naltrexone-

precipitated withdrawal. Wild-type mice were treated repeatedly with increasing doses of 

morphine, or AMB67. Naltrexone, a non-selective opioid antagonist, precipitated withdrawal-like 

behaviors in mice chronically administered morphine, but not in mice chronically administered 

AMB67 (Figure 2.4) [F (2, 15) =17.5, P=0.0001]. In morphine treated mice, naltrexone 

precipitated significantly more withdrawal-like behaviors than mice treated with either saline 

(P=0.0001) or AMB67 (P=0.0024). The number of naltrexone-precipitated withdrawal-like 

behaviors in AMB67-treated mice was similar to those treated with saline. However, while 

AMB67 was not statistically different than saline, a small increase in global withdrawal score was 

observed.  

 

AMB67 and Morphine-Induced Conditioned Place Preference 

The rewarding properties of morphine and AMB67 were assessed using the CPP assay 

(Figure 2.5). Five days of conditioning with morphine  produced a significant increase in time 

spent on the morphine-paired side compared to conditioning with saline [F (5, 25) = 6.3, 

P=0.0006]. Post-hoc comparisons revealed 1, 3.2 and 10 mg/kg morphine (p <0.01) significantly 

increase mean place preference scores. A one-way ANOVA also revealed a significant increase in 

time spent on AMB67-paired chamber [F (4, 26) = 4.7, P=0.006]. 10 and 18mg/kg AMB67 (both 

p<0.05) induced significant increases in mean place preference score 
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Interoceptive Effects of AMB67 in Rats Trained To Discriminate Morphine vs Saline  

Interoceptive properties of morphine, fentanyl, SNC80, and AMB67 were examined in rats 

trained to discriminate an injection of 3 mg/kg morphine sulfate from saline. During training 

sessions, morphine engendered responding (>95%) on the morphine appropriate nose poke (Figure 

2.6A, open triangles), while saline primarily responded to the saline appropriate nose poke (Figure 

2.6A, closed, inverted triangle). Substitution tests with various doses of the MOR agonists 

morphine or fentanyl produced dose-dependent, full substitution to the morphine training dose 

with an EC50 of 1.65mg/kg±0.17 and EC50 0.016±0.001mg/kg, respectively (Figure 2.6A). SNC80, 

a selective DOR agonist, failed to generalize to the morphine discriminative stimulus at doses up 

to 18 mg/kg. Substitutions of AMB67 elicited dose-dependent substitution, morphine-appropriate 

responding  with an EC50 of 9.02mg/kg±2.04.  

We also assessed the response rate during the substitution tests. Both fentanyl and 

morphine produced dose-dependent decreases in response rates, at doses of 0.1mg/kg and 

10mg/kg, respectively (Figure 2.6B). AMB67 also produced dose-dependent rate decreasing 

effects, but unlike fentanyl and morphine, AMB67 did not induce complete suppression of 

responding up to a dose of 18 mg/kg (Figure 2.6B).  

Discussion 

First, the affinity, potency, and efficacy of AMB67 was evaluated in vitro as compared 

with morphine in cells expressed with MORs or DORs. AMB67 had low nanomolar or sub 

nanomolar affinity for MORs and DORs at both the rat and human receptors.  AMB67 had 20 to 

40-fold greater affinity for MORs and DORs as compared with morphine, depending on the MOR 

type evaluated.  
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AMB67 demonstrated similar efficacy at rat and human MORs with approximately 80% 

stimulation of G protein activation relative to DAMGO. Interestingly, morphine was ~4-fold more 

efficacious at human MORs than rat MORs. This discrepancy in the efficacy or morphine could 

be due to the number of MORs expressed in each cell line, which did not seem to alter the efficacy 

of AMB67. These data might also suggest that the receptor reserve for AMB67 is greater than that 

for morphine. At both rat and human MORs, AMB67 was approximately 100-fold more potent 

than morphine.  

At DORs, morphine was more efficacious in human DORs (56% of DPDPE) than at rat 

DORs (23%); however, morphine is not potent at either DOR with an EC50 of ~0.6-1.2 M. The 

efficacy of AMB67 differed greatly between rat and human DORs. In rat DORs, AMB67 did not 

stimulate G protein activation; however, AMB67 produced ~35% of DPDPE-induced G protein 

stimulation in human DORs. The partial agonist activity of AMB67 in human DORs was potent 

with an EC50 of 38 nM. The efficacy differences in AMB67 and morphine across rat and human 

DORs are likely due to DOR expression levels and/or receptor-G protein coupling efficiency 

between these two cell lines. These data may suggest that AMB67 and morphine have small 

receptor reserves in both rat and human DORs.   

The in vitro findings indicate AMB67 has greater affinity for both MORs and DORs than 

morphine. AMB67 is a potent, full agonist at MORs; however, its activity at DORs is less clear. 

AMB67 showed no significant activity at rat DORs but has potent, partial agonist activity at human 

DORs. These data might suggest that multiple downstream effectors should be evaluated to 

establish the activity of novel agonists. Together, these data suggest that AMB67 is a full agonist 

at MORs and a low efficacy agonist at DORs. Finally, these data highlight important differences 
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between receptor expression and cell lines that can have a critical impact on interpretations of 

potency and efficacy of novel compounds.  

Earlier studies characterizing the in vivo effects of multifunctional MOR-DOR ligands  

demonstrated mixed results with regards to tolerance development after repeated 

administration23,24. Therefore, we chose to utilize a wide array of pain models to evaluate the acute 

effects of AMB67 and tolerance development following chronic administration  

Both morphine and AMB67 induced dose-dependent antinociceptive effects in measures 

of thermal, mechanical, and chemical nociception. AMB67 was equi-potent and equi-effective as 

morphine in these assays. Similar to that previously observed with morphine37,38, activation of 

MORs mediate AMB67-induced antinociception in the WWTW. Interestingly, the antinociceptive 

effects of AMB67 in the AASA were attenuated by both a MOR and DOR antagonist. Previously, 

it was shown that selective DOR agonists, such as SNC80, have also been shown to exhibit 

antinociceptive effects in the AASA39. Further, studies show the MOR agonist, loperamide, and 

the DOR agonist, oxymorphindole, produce antinociceptive synergy in a model of thermal 

nociception40. Further, SNC80 produced modest enhancement of the antiallodynic effects of 

methadone, morphine, and nalbuphine41. Together, these data suggest activity at both receptor 

types is required for the antinociceptive effects of AMB67 or that agonist activity at DORs 

potentiate the antinociceptive effects produced by MOR agonists. Future studies should further 

elucidate the contributions of MOR and DOR for the effects induced by AMB67 and elucidate 

whether the effects of AMB67 at both receptors are additive or synergistic. Consistent with some 

of in vitro activity profiles, these results suggest that AMB67 acts as a MOR and DOR agonist in 

vivo.   
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The next studies evaluated the development of tolerance to the antinociceptive effects of 

morphine or AMB67 in these three pain assays. The same dosing paradigms to assess tolerance 

development were used for both morphine and AMB67  since they had similar duration of 

antinociceptive effects and were nearly equip-potent and equi-effective in all pain assays. In both 

all three assays, repeated administration of morphine produced tolerance development to its 

antinociceptive effects (Figure 2.3A, 2.3C, and 2.3E). Interestingly, AMB67 failed to induce 

tolerance development to its antinociceptive effects in in each of the three pain models (Figure 

2.3B, 2.3D and 2.3F). These data do not rule out the possibility that AMB67 could potentially 

induce tolerance to its antinociceptive effects if a more rigorous paradigm was utilized. 

Ultimately, we did not evaluate if the attenuated tolerance development following chronic 

AMB67 was due to its activity at the DOR, however one of the assumptions based on previous 

literature and the in vitro profile of AMB67, that the DOR activity may play a role. Other 

possibilities include differences in receptor reserve and G-protein bias. Studies have shown the 

intrinsic efficacy of opioid agonists is inversely related  to the degree of tolerance development42, 

and an increased receptor reserve for AMB67 compared to morphine may explain the lack of 

tolerance following chronic AMB67 administration. Further, studies have demonstrated that β-

arrestin signaling may contribute to opioid tolerance43-45, suggesting ligands biased toward G-

protein activation may provide benefit over ligands that recruit β-arrestin. In vitro, morphine 

displays significant bias toward β-arrestin recruitment and produces significant tolerance 

development46,47. Conversely, AMB67 displays greater bias toward G-protein activation,46 

suggesting the lack of β-arrestin recruitment following acute administration of AMB67 may 

explain the lack of tolerance development. It would be interesting to assess chronic AMB67 

administration in mice overexpressing β-arrestin to see if tolerance development occurs48.  
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Physical dependence is thought to play a crucial role in opioid use disorder and occurs 

when opioids are administered chronically7,23,49. Physical dependence was measured via 

naltrexone-precipitated withdrawal-like behaviors including jumping behavior, teeth chattering, 

piloerection, wet dog shakes, paw tremors and diarrhea/watery stool, agonists50. After 5 days of 

increasing dose administration, repeated administration of AMB67 failed to induce physical 

dependence development compared to repeated morphine or repeated saline administration.  One 

concern is that the dose of naltrexone used was not enough to displace AMB67 from MORs or that 

the affinity of naltrexone was not enough to displace AMB67 from MORs. However, further 

characterizing these effect before and after chronic AMB67 would aid in elucidating the 

differences between morphine and AMB67. 

Rewarding properties are a major limitation is the development of MOR agonists for the 

treatment of pain. It has been well established that drugs interacting with MOR display strong 

rewarding properties51,52 and have discriminative stimulus properties. AMB67 produced 

conditioned place preference and generalized to morphine-like discriminative stimulus effects; 

however, AMB67 was ~8-fold and 3-fold less potent than morphine, respectively. These data 

suggest that AMB67 produce less reward-related effects than morphine at antinociceptive doses. 

It is unclear if the activity of AMB67 at  DORs is responsible for the differences. but the literature 

suggests it to be unlikely, as the DOR agonist TAN67 dose dependently enhanced morphine-

induced place preference53. MMP2200, another previously reported dual MOR/DOR agonist, 

failed to induce conditioned place preference. Conversely, morphine-induced conditioned place 

preference is attenuated by DOR antagonists and in DOR knockout mice54,55. However, Together 

these data suggest that alterations in endogenous DOR signaling may be implicated in the 

rewarding properties of MOR agonists. Further studies are required to fully understand why dual 
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MOR/DOR agonists display attenuated CPP compared to morphine, and if the DOR, or other 

possibilities such as drug pharmacokinetics are responsible for the observed results.  

In summary, AMB67 produced robust, acute antinociceptive effects in multiple assays, 

produced less tolerance and physical dependence following chronic administration, and has less 

potent reward-related effects than the MOR agonist morphine. These results provide evidence that 

mixed-efficacy dual MOR-DOR agonists may offer an improvement over current opioid 

analgesics, and further preclinical and clinical development of AMB67 or similar compounds for 

the treatment of pain is warranted. At this time, it is unclear whether the profile of activity is due 

to its concurrent activity at DORs or whether it is due to other pharmacodynamic properties of this 

compound, e.g., greater receptor reserve or differential downstream signaling.  
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Table 2.1: Binding affinities (Ki) were obtained by competitive displacement of radiolabeled [3H]diprenorphine in the absence of 

sodium chloride. Efficacy data were obtained using [35S]GTPγS binding assay. Efficacy is presented as percent maximal stimulation 

relative to standard agonists DAMGO (MOR) and DPDPE (DOR) at 10μM. All values are expressed as the mean ± SEM of three 

separate assays performed in duplicate. dns = does not stimulate. 

 

 

 

 

 

 

 

 

Table 2.1 In Vitro Analysis of AMB67 and Morphine 
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Figure 2.1 Acute Antinociceptive Effects of Morphine and AMB67 

Figure 2.1: Antinociceptive effects and duration of action of AMB67 and morphine. C57BL/6 mice were injected IP with 

10mg/kg bolus (A), a cumulative dosing fashion (C, D) or single dose of 0.01-10 mg/kg (B). Tail-flick latencies (A, C), total 

stretches (B) and mechanical thresholds (D) were evaluated for antinociception. N=6 per group. (B) Total stretches were 

recorded after single doses of drug was administered. (D) Mechanical thresholds were assessed after CFA injection. 
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Figure 2.2. Antinociceptive effects were evaluated via tail-flick latencies (A,D,G), acid-induced stretches (B, E) and 

mechanical thresholds (C,F). Naloxone pretreatment to the antinociceptive effects of morphine in thermal (A), chemical 

(C), and mechanical (C) antinociception. Naloxone pretreatment to the antinociceptive effects of AAH8 in thermal (A), 

chemical (C), and mechanical (C) antinociception. AMB67-induced thermal antinociception in MOR WT, HET, and KO 

mice (D). N=5 or 6 per group. Naltrindole and b-FNA pretreatments to a 1mg/kg bolus dose of AMB67 (E). **** = P<0.0001 

versus vehicle control. ### = P<0.001 versus AMB67. 

 

 

 

 

 

 

 

 

Figure 2.2 Receptor-Mediated Antinociceptive Effects of Morphine and AMB67 
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Figure 2.3 Antinociceptive Effects of AMB67 and Morphine Following Five Days of Repeated Administration 

Figure 2.3: Morphine or AMB67-induced tolerance following repeated systemic administration. Cumulative dose effect 

curves of morphine, Day 1 vs Day 6, following 5 days of 3x daily administration of 10 mg/kg morphine (A, E). Cumulative 

dose effect curves of morphine, Day 1 vs Day 6, following 5 days of 2x daily administration of increasing doses (1-5 mg/kg) 

morphine (C). Cumulative dose effect curves of AMB67, Day 1 vs Day 6, following 5 days of 3x daily administration of 10 

mg/kg morphine (B, F). Cumulative dose effect curves of AMB67, Day 1 vs Day 6, following 5 days of 2x daily administration 

of increasing doses (1-5 mg/kg) (D). N=6 per group. *** = P<0.001, ** = P<0.01, * = P<0.05   versus saline control. ### = 

P<0.001, ## = P<0.01  versus same dose of Day 1 results. 
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Figure 2.4 Physical Dependence Development Following Chronic Administration of AMB67 

Figure 2.4: Naltrexone precipitated withdrawal on repeated administration of AMB67 or morphine. Drug or vehicle (IP) 

were administered to male C57BL/6 mice for 5 days in an increasing dosing paradigm. On day 6, mice were administered 

10mg/kg naltrexone (IP) for withdrawal precipitation and jumping behavior, teeth chattering, piloerection, wet dog shakes, 

paw tremors and soft stool were recorded. N=6 per group. **** = P<0.0001 versus saline control. ### = P<0.001 versus 

AMB67. 
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Figure 2.5: AMB67 exhibits decreased potency in rewarding properties in the conditioned place preference assay. Drug or 

vehicle (IP) were administered to male C57BL/6 mice and the time difference of total time spent on drug paired chamber 

on test day was compared to total time spent on drug paired chamber during bias test. Morphine and AMB67 produce dose 

dependent increases in mean place preference with ED50 values of ~0.65mg/kg and ~5mg/kg, respectively. N=6-8 per 

condition 

 

 

Figure 2.5 AMB67 and Morphine-Induced Conditioned Place Preference 
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Figure 2.6: Male Sprague Dawley rats were trained to discriminate 3mg/kg morphine from saline SC. (A) Morphine, 

fentanyl and AMB67 substitutions (B) Rates of responding for morphine, fentanyl and AMB67. N=6-8 per condition – 

within subject.  

 

 

 

Figure 2.6 Interoceptive Effects of AMB67 in Rats Trained to Discriminate Morphine vs Saline  
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Chapter III: Characterizing the Acute and Chronic Effects of the Multifunctional Opioid 

Ligand, AAH8 

Abstract 

Opioids, such as morphine, have been used to treat pain for centuries and exert their effects 

through the MOR. While the analgesic effects of such opioids are effective, these traditional MOR 

agonists produce on-target adverse effects, such as constipation and tolerance development. 

Previous reports demonstrated that the mixed-efficacy MOR agonist/DOR antagonist, AAH8, 

produced antinociceptive effects without tolerance following repeated administration. We 

conducted a further evaluation of the properties of AAH8 after acute and repeated administration. 

AAH8 produced decreased bowel movements to a similar extent as selective MOR agonists and 

was more potent than morphine. AAH8 produced antinociceptive effects in a model of visceral 

pain but had little to no antinociceptive effects in the warm water tail withdrawal assay and the  

CFA-induced mechanical hypersensitivity model. However, intracerebroventricular 

administration of AAH8  produced dose-dependent increases in tail-flick latency with an EC50 of 

6.6 mg/kg. Diluted acid-induced writhing or stretching (AASA) was evaluated following repeated 

administration of AAH8 or morphine. Following five days of repeated administration with 

increasing doses, the ED50 for the morphine dose effect curve was shifted ~3-fold, whereas the 

ED50 for AAH8 was unchanged. However, repeated administration of 10 mg/kg AAH8, three times 

per day for five days produced significant tolerance to the antinociceptive effects of 10 mg/kg 

AAH8.  Together, this study suggests that AAH8 produces antinociception and constipation effects 

through activation of peripheral MORs, and tolerance development may be delayed following 

repeated administration, but it is not completely prevented. 
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Introduction 

Opioids are a mainstay in pain management due to their robust analgesic effects1-3. 

Morphine is considered the prototypical opioid for pain management and provides antinociceptive 

effects through activation of mu-opioid receptors (MORs) within spinal and supraspinal regions4-

8. MORs are found in many different areas along the pain-processing pathway, both in the 

peripheral nervous system (PNS) and in the central nervous system (CNS)9-11. Unfortunately, 

nearly all MOR agonists, including many clinically used opioids such as fentanyl, oxycodone, and 

methadone, produce unwanted, on-target adverse effects. Repeated administration of MOR 

agonists produces tolerance and physical dependence, which can contribute to or exacerbate the 

development of opioid use disorder (OUD)12,13. Previous studies demonstrated that morphine-

induced tolerance and physical dependence development may be impacted by activity at delta-

opioid receptors (DORs) because administration of naltrindole, a DOR antagonist, attenuated the 

development of tolerance to and physical dependence on morphine14,15. The co-administration of 

MOR and DOR agonists, and even DOR antagonists, retain MOR-mediated antinociception, yet 

display reduced adverse effects15-19. For example, mice lacking the DOR display reduced 

morphine-induced tolerance and reward, suggesting important interactions between the two opioid 

receptor types20. Therefore, one goal of recent research efforts is to target both MORs and DORs 

for treatment of pain. A single chemical entity with activity at both MORs and DORs21-23 may 

provide greater benefit over co-administration of two different drugs, such as lack of drug-drug 

interactions and improved compliance.  

We have previously published a series of peptidomimetic compounds exhibiting the 

desired MOR agonist/DOR antagonist profile24,25. Within this series, a small set of compounds 

were extensively characterized in vivo26, one of which is AAH8. AAH8 was shown to be effective 
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in animal models of thermal nociception and failed to produce tolerance to its antinociceptive 

effects following repeated administration. AAH8 is a highly promising ligand and we wanted to 

further characterize the effects of AAH8 after acute and repeated administration.  

 

Methods 

Animals and Drug Solutions 

All animal care and experimental procedures complied with the US National Research Council's 

Guide for the Care and Use of Laboratory Animals27. Mice were group‐ housed with a maximum 

of five animals per cage in clear polypropylene cages with corn cob bedding and nestlets as 

enrichment. Mice had free access to food and water at all times. Animals were housed in 

pathogen‐ free rooms maintained between 68 and 79°F and humidity between 30 and 70% 

humidity with a 12 h light/dark cycle with lights on at 07:00 h. We conducted experiments in the 

housing room during the light cycle. All studies utilize wildtype male or female C57BL/6N mice 

from Envigo laboratories (formerly Harlan, Indianapolis, IN), or male and female transgenic mice 

lacking MORs (MOP-KO,B6.129S2‐ Oprm1tm1Kff/J stock number 007559; Jackson Laboratory) 

or DORs  (DOP-KO,B6.129S2‐ Oprd1tm1Kff/J stock number 007557; Jackson Laboratory, 

Sacramento, CA, USA). Mice used for behavioral experiments weighed between 20-30 g at 7-15 

weeks old. All drug solutions were injected at a volume of 10 ml/kg. AAH8 was dissolved in 1:9 

DMSO/saline solution, or 1:1:8 EtOH/DMSO/Water solution. Morphine sulphate was dissolved 

in saline. All drugs were given by either intraperitoneal (IP) or subcutaneous (SC) injection, and 

diluted acetic acid was given IP. For intracerebroventricular (ICV) injections, morphine and 

AAH8 were dissolved in DMSO. 
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Acetic Acid Stretch Assay (AASA) 

Antinociceptive effects were evaluated in the mouse acetic acid stretch assay. Diluted 

acetic acid (0.6%) was used as the noxious stimulus to induce a stretching behavior, characterized 

by constriction of the abdomen, followed by extension of the hind limbs. Test drug or vehicle was 

administered SC 30 min prior to the injection of acetic acid. Immediately after administration of 

0.6% acetic acid, IP, mice were placed individually in clear plastic observation cages (10 x 6 x 8 

in) with bedding for 5 min prior to starting a 20 min observation period. No more than three mice 

were observed simultaneously. For antagonism studies, a dose of 3.2 or 10 mg/kg naloxone, 

10mg/kg naloxone-methiodide, or 3.2 mg/kg naltrindole was administered IP 15 min before 

administration of test drug. FNA (IP) was administered as a 48-hour pretreatment prior to test 

compounds.  

Antinociceptive effects were assessed on day 1 and day 6 following repeated 

administration of morphine, AAH8 or vehicle. Two different within-subject dosing paradigms 

were utilized to evaluate tolerance development. In the first paradigm, increasing doses of 

morphine or AAH8 (1-5mg/kg) or vehicle were administered twice per day at ~7am and 7pm for 

five consecutive days. In the second paradigm, mice received either 1 mg/kg morphine or 10mg/kg 

AAH8 three times per day (at ~7am, 1pm and 7pm) for five consecutive days. In both paradigms, 

no drug administration occurred in the evening prior to test day, such that mice were 12 hours 

drug-free prior to evaluating acid-induced stretching on day 6.  

  

Von Frey 

For all von Frey experiments, mice were placed in a plastic box (4in x 4in x 4inch) with a 

mesh floor that was elevated sixteen-inches above the table. All mice and were habituated to the 
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plastic box for two hours per day for three days and baseline (pre-CFA). mechanical withdrawal 

thresholds were assessed. To assess withdrawal threshold, each von Frey monofilament was 

applied perpendicularly to the ventral medial portion of the hind paw for approximately 3 sec. A 

withdrawal response was characterized by rapid removal of the paw from the filament within the 

3 sec time limit. Directly following the measurement of pre-CFA mechanical thresholds on day 3, 

an average of pre-CFA withdrawal thresholds was calculated. Animals with an average 50% 

withdrawal threshold < 0.8g was excluded from the study (~5%). The Up-Down method was used 

to determine all withdrawal thresholds28. Complete Freund’s Adjuvant (CFA, Catalog #77140, 

Thermo Scientific) was administered unilaterally in a volume of 15ul in a randomized manner. 24 

hrs post CFA injections (test day),  withdrawal thresholds were evaluated in the absence or 

presence of drug. 

On test day, all mice were administered saline or vehicle, and withdrawal thresholds were 

evaluated 30 min later (post-CFA baseline withdrawal threshold). Increasing doses of morphine 

or AMB67 were administered every 30 minutes in a cumulative dosing fashion, and withdrawal 

thresholds were recorded.  

For tolerance studies, on day 1 (24h post CFA administration), all mice were administered 

saline or vehicle, and withdrawal thresholds were evaluated 30 min later (post-CFA baseline 

withdrawal threshold). Increasing doses of morphine or AMB67 were administered every 30 

minutes in a cumulative dosing fashion, and withdrawal thresholds were recorded to assess 

antinociceptive effects. Mice were then administered morphine (10mg/kg), AMB67 (10mg/kg), or 

vehicle 3x per day for five days (Days 1-5) (7am, 1pm, 7pm). No injections were administered the 

evening prior to test day to ensure no circulating drug was present during mechanical threshold 

testing. On day 6, all mice were administered saline or vehicle, and withdrawal thresholds were 
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evaluated 30 min. Increasing doses of morphine or AMB67 were administered every 30 minutes 

in a cumulative dosing fashion, and withdrawal thresholds were recorded. 

WWTW 

Mice were placed in a cylindrical plastic restrainer and 2-3 cm of the tail tip was immersed 

into a 50° C water bath. Withdrawal latencies were recorded with a maximum cut off time of 20 

seconds to prevent tissue damage. Dose-response curves were established via cumulative dosing 

of either morphine or AAH8 (1-32mg/kg) IP, and tail-flick latencies were recorded approximately 

30 min after each cumulative dose was administered.  

Intracerebroventricular (ICV injections were performed using the modified method of 

(Haley and McCormick, 1957)29 as described by (Laursen and Belknap, 1986)30. Morphine (0.32-

10nmol), AAH8 (1-10nmol), or DMSO was administered ICV in a volume of 3 µL and withdrawal 

latencies were recorded 30 min after drug administration. To perform ICV injections, mice were 

anesthetized in a cylindrical drop jar consisting of 0.2 ml isoflurane. Following adequate 

anesthetization, the head of the mouse was oriented in a manner to estimate the location of bregma 

based on ear orientation and distance between eyes and ears, about 1-3 mm rostral from the anterior 

base of the ears (Laursen & Belknap, 1986). After locating bregma, the Hamilton micro syringe 

(Model #1701, Reno, NV) fitted with a 26G needle was placed at a right angle to the skull and 

used to create a puncture point approximately 2 mm lateral to bregma with a depth of 4 mm (to 

the tip of the bevel) in order to deliver compounds directly into the lateral ventricle. Following 

assessment of antinociception in the WWTW, Fast Green FCF (F7252-5G, Lot # MKBX8539V) 

was delivered through the same puncture points under heavy anesthesia. Two to three minutes 

later, mice were euthanized by decapitation and the brain was removed. Coronal slices were made 

through the lateral, third, and fourth ventricles. The presence of Fast Green FCF within the lateral 



 72 

and third ventricles confirmed the appropriate site of injection. Alternatively, if Fast Green was 

not observed in the ventricles, the ICV injection was considered a missed injection site, and these 

tail-flick latency values were excluded from the data (2 mice in total were excluded from the data 

set for missed ICV injections).   

 

Constipation 

Tinted chow was made in-house, consisting of 25 g of regular chow (PicoLab Laboratory 

Rodent Diet 5L0D, 0067138), mixed with 40 ml of tap water and 0.25 ml of blue food dye. After 

food pellets were softened, the tinted chow was mixed for even distribution of food dye.  One week 

before each experiment, group-housed female C57BL/6 mice were habituated to the tinted chow 

for 24 h with continuous access to normal chow and water. Five days later, and at least 12h before 

a test, mice were placed in individual cages without bedding or food, with free access to water. On 

the morning of the experiment, mice were given 1h access to tinted food. Tinted food was then 

removed, the cages were wiped down, and the mice were given an injection of either drug or 

vehicle IP. Following access to tinted food, approximately 3 g of normal chow was made available 

for the remainder of the experiment. The weight of both the normal chow and the tinted chow was 

recorded both before and after the experiment. The number of tinted fecal boli were recorded every 

hr for 6 hrs. 

 

Data Analysis  

All data analyses were performed using GraphPad Prism version 8.4.3. Level of 

significance ( was set at 0.05 for all statistical measures. A two-way ANOVA was conducted 

for all graphs containing dose-effect curves unless otherwise stated. Tukey’s post hoc analyses 
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were used to correct for multiple comparisons and were only performed when F values achieved 

p < 0.05. Approximate ED50 values were calculated using GraphPad Prism version 8.4.3.  The 50% 

maximum effect was interpolated from the straight-line analysis of 2-3 points along the linear 

portion of the curve only. When possible (e.g., within-subject experimental designs), individual 

ED50 values were averaged across mice and reported as the group mean ED50 ± standard error of 

the mean (SEM). However, in some studies (e.g., between-subject experimental designs), 50% 

maximum effects were calculated for the group averaged data, thus a single ED50 (without SEM) 

was determined for the DE curve. Fold shifts in dose-effect curves were calculated by dividing 

ED50 value of interest by ED50 value calculated in wild-type mice or in the absence of an 

antagonist.  

Results 

In Vivo Results:  

Acute Antinociceptive Effects of AAH8 and Morphine in the Acetic Acid Stretch Assay 

The acute antinociceptive effects of AAH8 were assessed in male C57BL/6N male mice in 

the AASA. In the absence of drug, 0.6% acetic acid-induced an average of ~18 total stretches 

within the 20 min observation period. Morphine produced dose dependent decreases in stretches, 

similar to previous reports with an EC50 of ~0.4mg/kg31-33. AAH8 produced dose-dependent 

decreases in acid-induced stretches with an EC50 of ~0.5mg/kg (Figure 3.1A). A Two-Way 

ANOVA revealed a significant effect of drug [F (1, 30) = 11, P=0.002] and dose [F (2, 30) = 44.1, 

P<0.0001]. As expected, there was no significant interaction between the two drugs [F (2, 30) = 

0.9, P=0.4]. A bolus dose of 1 mg/kg dose of morphine produced significant decreases in stretches 

for up to three hours, whereas 10mg/kg morphine was effective for six hours (Figure 3.1B). AAH8 
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had a shorter duration of action as compared with morphine, such that a bolus of 1 or 10mg/kg 

AAH8 produced significant decreases in stretches up to 2 and 4hr respectively (Figure 3.1C). 

 

Opioid Receptor-Mediated Antinociceptive Effects of AAH8 and Morphine 

AAH8 (10 mg/kg) and morphine (1 mg/kg) significantly decreased acid-induced stretches 

in C56BL/6N mice (Figure 1A and B, respectively). Naloxone, a non-selective opioid receptor 

antagonist attenuated the antinociceptive effects of morphine [F (4, 26) = 28.8 P<0.0001] (Figure 

3.2B). Similarly, naloxone pretreatments attenuated AAH8-induced antinociception [F (3, 24) = 

21.4 P<0.0001] (Figure 3.2A). In transgenic mice lacking the MOR, AAH8-induced 

antinociception was abolished [F (2, 16) = 28.3, P<0.0001] (Figure 3.2B). Naltrindole, a DOR-

selective antagonist, did not alter the effects of morphine (Figure 3.2C); however, naltrindole 

partially attenuated the effects of AAH8, but this effect was not statistically significant from 10 

mg/kg AAH8 alone (P= 0.2) (Figure 3.2A).    

 

Acute Mechanical, Thermal, and Chemical Antinociceptive Effects of AAH8 and Morphine 

In Figure 3, the effects of morphine and AAH8 were evaluated in the von Frey and WWTW 

assay following peripheral administration and in the WWTW assay following central (ICV) 

administration. In the von Frey assay, a one-way ANOVA, repeated measures analysis showed a 

significant effect for morphine treatment [F (1.6, 11.1) = 20.5, P = 0.0003]. Morphine produced a 

dose-dependent reversal of CFA-induced mechanical hypersensitivity at 3.2 and 10 mg/kg (Figure 

3.3A). However, larger doses of morphine ( >10 mg/kg) could not be evaluated because of 

locomotor stimulating effects. AAH8 failed to significantly attenuate CFA-induced mechanical 

hypersensitivity up to 32 mg/kg [F (3, 21) = 1.1, P=0.4] (Figure 3.3A).  
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The effects of AAH8 and morphine in the WWTW were assessed (Figure 3.3B). A repeated 

measures, two-way ANOVA analysis revealed a significant interaction [F (4, 40) = 42.5, 

P=0.0001], main effect of dose [F (2.6, 25.7) = 104.3, P<0.0001], as well as main effect of drug 

[F (1, 10) = 36.8, P<0.0001]. In the WWTW, AAH8 produced minimal antinociceptive effects, 

with 32 mg/kg inducing a small, but significant, increase in tail flick latency (Figure 3.3B). 

Morphine produced a dose-dependent increase in withdrawal latency with an EC50 of 6 mg/kg +/- 

0.2 mg/kg (Figure 3.3B). 

Next, we assessed the antinociceptive effects of morphine and AAH8 when administered 

ICV (Figure 3.3C). Both morphine and AAH8 produced dose dependent increases in latency to 

withdrawal with EC50 of (1.6 +/- 0.3 nmol) and (6.6 +/- 0.001 nmol), respectively, demonstrating 

that AAH8 was 4-fold less potent than morphine. An ordinary Two-Way ANOVA reported a 

significant interaction [F (3, 40) = 7.9, P<0.0003], main effect of dose (F (3, 40) = 30.4, P<0.0001), 

and main effect of drug [F (1, 40) = 29.2]. 

 

Antinociceptive Effects of AAH8 and Morphine Following Five Days of Repeated 

Administration 

We next sought to assess tolerance development after repeated drug administration in the 

AASA. Acute antinociceptive effects of AAH8 or morphine were assessed on day 1. Since acetic 

acid was the noxious stimuli, only a single dose was evaluated in each mouse. Following 

assessment of acute antinociceptive effects on day 1, mice received increasing doses of morphine 

or AAH8 (1-5mg/kg) every 12 h over 5 days, and assessment of antinociceptive effects was again 

conducted on day 6 following chronic treatment (Figure 3.4A and Figure 3.4C). A three-way 

ANOVA displayed a significant dose x day x treatment [F (2, 30) = 5.85, P=0.007] comparing the 
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acute antinociceptive effects of morphine following either chronic saline or chronic morphine 

treatment. There was also a significant main effect of dose [F (2, 30) = 103.9, P<0.0001], treatment 

[F (1, 30) = 12.8, P=0.0012], and day [F (1, 30) = 17.8, P=0.0002]. Conversely, repeated AAH8 

administration failed to alter the EC50, similar to previous reports (Figure 3.4C)26. A three-way 

ANOVA revealed no significant interaction between day x dose x treating [F (2, 30) = 0.12, 

P=0.89] (figure a significant main effect of dose (F (2, 31) = 35.4, P<0.0001), but no significant 

effect of chronic treatment comparing chronic AAH8 and chronic saline [F (2, 30) = 0.32, P<0.72] 

(Figure 3.4C).   

  Further, we wanted to assess tolerance utilizing a more-robust dosing paradigm, such that 

(1 mg/kg of morphine or 10 mg/kg AAH8 3 times daily at ~7am, 1pm and 7pm) was administered 

for 5 consecutive days. In the AASA, acute antinociceptive effects of 1 mg/kg morphine or 10 

mg/kg AAH8 were assessed on day 1, and again on day 6 following chronic treatment (Figure 

3.4B and 3.4D). As expected, there was a significant difference in number of stretches measured 

after an injection of 1 mg/kg morphine on day 1 vs day 6 (Figure 4C) [F (2, 15) = 59.1, P<0.0001]. 

A One-Way ANOVA also revealed a significant reduction in the antinociceptive effects of 

10mg/kg AAH8 on day 6 as compared with day 1 (Figure 3.4D) [F (2, 15) = 36.3, P<0.0001]. 

AAH8-Induced Constipation  

It is well established that MOR agonists produce constipation. Morphine given by IP or SC 

routes of administration produced a dose-dependent decrease in the number of fecal boli produced 

over 6 h [F (4, 26) = 32.8, P<0.0001] and [F (3, 20) = 30, P<0.0001], respectively. Similarly, IP 

or SC AAH8 administration produced a dose-dependent decrease in fecal boli and an ordinary 

two-way ANOVA revealed a significant interaction between AAH8 SC and AAH8 IP [F (3, 19) = 
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3.8, 0.03], as well as a significant main effect for dose [F (3, 24) = 53.7, <0.0001] and route of 

administration [F (1, 19) = 17.8, 0.0005].   

Discussion 

This study evaluated the effects of AAH8 as compared with morphine following acute and 

repeated administration. AAH8 displayed dose-dependent antinociceptive effects with similar 

potency to morphine in the acetic acid stretch assay. The antinociceptive effects of AAH8 were 

antagonized by naloxone, suggesting opioid-mediated effects. Antinociception was also abolished 

in mice lacking MOR, suggesting that these effects were mediated by MORs. However, naltrindole 

may also attenuate some of the antinociceptive effects of AAH8; although this effect was not a 

significant change from 10mg/kg AAH8 alone. AAH8 was previously reported to be both a MOR 

agonist and DOR antagonist21,26,34, making these results intriguing. One explanation for these 

results is that AAH8 may be a high affinity, low efficacy partial agonist at the DOR. In the tail 

suspension test, 3.2 mg/kg AAH8 attenuated SNC80-induced decreases in immobility, suggesting 

DOR antagonist activity26. However, if AAH8 is a partial agonist at the DOR, then it could also 

attenuate SNC80 induced decreases in immobility if a partial agonist alone does not decrease 

immobility in the mouse forced swim test. It is possible that AAH8 displays low efficacy DOR 

agonist effects in vivo, and that in the AASA, both MORs and DORs are involved in the 

antinociceptive effects of AAH8. 

We also assessed tolerance development to the antinociceptive effects of AAH8 or 

morphine in the AASA. Using an increasing dosing paradigm (1-5mg/kg), repeated administration 

of morphine shifted the dose-response curve 5-fold to the right (Figure 3.4A). However, repeated 

administration of AAH8 did not induce tolerance, similar to previous reports (Figure 3.4C)26. 

AAH8 may have failed to induce tolerance using this paradigm perhaps due to a slightly shorter 
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duration of action than morphine (Figure 3.1C). Therefore, we chose to use a more frequent dosing 

paradigm with larger doses of AAH8. Mice administered 1 mg/kg morphine, three times per day 

for five days produced tolerance to the antinociceptive effects of 1 mg/kg morphine (Figure 3.4B). 

Mice administered 10mg/kg AAH8, three times per day for five days also produced tolerance to 

the antinociceptive effects of 10mg/kg AAH8 (Figure 3.4D). Studies show that receptor occupancy 

is an essential factor for tolerance development35,36,37. Therefore, we conclude that it may be the 

shorter duration of action for AAH8 that contributes to the limited tolerance development and that 

when dose and injection frequency are increased, tolerance development occurred. These results 

suggest that tolerance development to the antinociceptive effects of AAH8 occurs when repeated 

dosing regiments are closely matched for dose and duration of action.  

It is well established that MOR agonists can attenuate inflammatory pain in preclinical 

models38,39, but do so with very little efficacy in the human population40. Morphine was effective 

in both thermal and mechanical nociception measures (Figure 3.3A and 3.3B) as previously 

reported39,41,42. Therefore, it was surprising that AAH8 lacked acute antinociceptive effects in 

animals with inflammation-induced mechanical hypersensitivity and in the WWTW following 

systemic administration (Figure 3.3A). It is unclear why the antinociceptive effects of AAH8 in 

the WWTW previously reported could not be repeated26. Perhaps this was due to an altered 

synthesis or different people/group making AAH8. However, the current data suggest that AAH8 

may have limited ability to cross the blood brain barrier. Therefore, we chose to assess AAH8 in 

the WWTW following ICV administration. We show that in the WWTW, AAH8 (ICV) displayed 

dose-dependent increases in tail flick latency, demonstrating antinociceptive effects. We did assess 

concentrations of 100nmol, ICV, which elicited full antinociceptive effects. However, these mice 

also experienced convulsions, so further evaluation with this dose was terminated.   
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Finally, we evaluated the effects of AAH8 and morphine on gastrointestinal function by 

evaluating excretion of fecal boli over time. As expected, morphine produced constipation as 

demonstrated by a decrease in fecal boli excreted over 6 hours. The effects of morphine were 

similar whether morphine was given IP or SC. In general, AAH8 was more potent than morphine 

in producing constipation independent of route of administration; however, SC AAH8 was 

approximately 3-fold less potent than IP AAH8 (Figure 3.5). Overall, these data suggest that 

AAH8 has limited ability to activate MORs in the CNS, unless it is administered directly to the 

brain. It is well established in the literature that thermal nociception in the WWTW and mechanical 

nociception are predominately measures of spinal and supraspinal nociception43,44. It is unclear 

whether the lack of central effects of AAH8 are due to a limited ability to cross the blood brain 

barrier or if AAH8 is a substrate of P-glycoproteins. It is likely that there is delay in or limited 

absorption and/or distribution of AAH8 as suggested by the differences in potency between IP and 

SC administration to produce constipation. Future studies should directly measure AAH8 levels in 

the brain following systemic administration as AAH8 may not cross the BBB in significant 

concentrations or may be a substrate for P-glycoproteins resulting in active transport out of the 

CNS.  

Overall, this study suggests that AAH8 produces antinociception and constipation effects 

through activation of peripheral MORs. This study also suggests that AAH8 may have potential 

pharmacokinetic issues deterring the distribution of AAH8 into central regions. Further, these data 

suggest repeated activation of peripheral opioid receptors produces tolerance to the peripherally-

mediated antinociceptive effects of MOR agonists. Further studies are required to elucidate exact 

pharmacokinetic properties hindering the absorption, distribution, and CNS penetrability of AAH8 
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following systemic administration. Also, including tolerance to other peripherally mediated MOR-

induced physiological effects such as constipation and the impact of drug route administration on 

potency differences of AAH8-induced constipation. 
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Figure 3.1: Antinociceptive effects and duration of action of AAH8 and morphine in the acetic acid stretch assay. C57BL/6N 

mice were injected SC with drug. Total number of stretches were measured to evaluate antinociception (N=5-6 for each 

group).  Between subject dose response curves measuring antinociception (A). Duration of action following bolus doses of 

1mg/kg or 10mg/kg morphine (B). Duration of action following bolus doses of 1mg/kg or 10mg/kg AAH8 (C). **** = 

P<0.0001, *** = P<0.001, ** = P<0.01, * = P<0.05 versus vehicle control (BL). 

 

 

 

 

 

 

 

 

Figure 3.1  Acute Antinociceptive Effects of AAH8 and Morphine 
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Figure 3.2: Opioid receptor antagonists block the antinociceptive effects of morphine and AAH8 in the AASA assay. 

Naloxone and naltrindole pretreatments to 10mg/kg AAH8 (A). 10mg/kg AAH8 in MOR WT and KO mice (B). Naloxone 

and naltrindole pretreatments to 1 mg/kg morphine (B). (N=6 for each group) **** = P<0.0001, *** = P<0.001, versus 

vehicle control.  

 

 

 

 

 

 

 

 

 

Figure 3.2  Opioid Receptor-Mediated Antinociceptive Effects of AAH8 and 

Morphine 
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Figure 3.3: Antinociceptive effects of AAH8 and morphine in von Frey and WWTW following IP administration and in the 

WWTW following ICV administration. (A) Cumulative dose effect curves for AAH8 and morphine. %Inhibition of CFA-

induced allodynia is plotted on the y-axis. (B) Cumulative dose effect curves in the WWTW after IP administration. (C) 

Dose effect curves in the WWTW after ICV administration dose dependent mechanical antinociception. (N=6 for each 

group) **** = P<0.0001, * = P<0.05, versus vehicle control. #### = P<0.0001 ### = P<0.001, ## = P<0.01, #=P<0.05 versus 

same dose of AAH8. 

 

 

 

 

 

Figure 3.3  Acute Antinociceptive Effects of AAH8 Following Intraperitoneal or Intracerebroventricular 

Administration 
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Figure 3.4: The effects of repeated administration of AAH8 and morphine on the antinociceptive effects of AAH8 and 

morphine. (A) 5-day increasing dosing paradigm of 2 injections/day (1-5mg/kg) of morphine. (B) 5-day paradigm of 3 

injection/day of 1mg/kg morphine (C) 5 day increasing dosing paradigm of 2 injections/day (1-5mg/kg) of AAH8. (D) 5-

day paradigm of 3 injection/day of 10mg/kg AAH8. (N=6 for each group)  **** = P<0.0001, *** = P<0.001, ** = P<0.01 

versus vehicle control (BL). ### = P<0.001, ## P<0.01 versus Day1 

  

 

 

Figure 3.4  Antinociceptive Effects of AAH8 and Morphine Following Five Days of Repeated Administration 
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Figure 3.5  Opioid-Induced Constipation Effects of AAH8 

Figure 3.5: Constipation of effect of AAH8 and morphine. Y-axis displays the total number of tinted boli collected during 

the 6 hours of collection. Acute antinociceptive effects after bolus injections (IP or SC) of either AAH8 or morphine (A). 

(N=6 for each group) **** = P<0.0001, *** = P<0.001, ** = P<0.01, * = P<0.05 versus vehicle control. (  and  = 

10/10/80 vehicle), (  and  = saline vehicle 
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Chapter IV: Involvement of Peripheral Opioid Receptors in the Development of Tolerance 

to µ-Opioid Receptor Agonists 

 

Abstract  

Opioids are regarded as the most effective drugs for pain therapy. The majority of opioid 

use is in managing severe, acute pain and is considered standard of care throughout most countries. 

However, the effectiveness of opioids is greatly hindered when treating chronic pain because of 

many adverse effects, including tolerance development. Elucidating mechanisms involved in 

tolerance development will improve our knowledge of opioid pharmacology and potentially 

improve our treatment of chronic pain. This study aims to evaluate the role of peripheral opioid 

receptors in tolerance development to centrally and peripherally-acting MOR agonists. In this 

study, we used a model of acute, peripherally-mediated visceral pain, the acetic acid stretch assay 

(AASA), and a centrally-mediated, thermal reflex assay, warm water tail withdrawal (WWTW). 

In the AASA, loperamide and morphine displayed acute antinociceptive effects with ED50 values 

of 0.62 and 0.15 mg/kg, respectively. In the WWTW, following 5 days of 3x daily administration 

of morphine, the ED50 of the morphine dose-effect curve was shifted 2.5-fold to the right. 

Interestingly, naloxone-methiodide pretreatments before each chronic morphine injection 

prevented the chronic morphine-induced rightward shift in the morphine dose-effect curve. 

Additionally, chronic loperamide (5 days of 4x daily administration) produced tolerance to the 

antinociceptive effects of morphine, as displayed by a rightward shift in the morphine dose-effect 

curve. Pretreatments of naloxone-methiodide completely reversed cross-tolerance to the 

antinociceptive effects of morphine. These results suggest that repeated activation of peripheral 
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opioid receptors is sufficient for tolerance production and that peripheral opioid receptors may be 

involved in developing tolerance to clinically used opioids. 

Introduction  

Transmission of painful stimuli begins with activation of nociceptors located on primary 

afferent neurons residing within the peripheral nervous system1. Nociceptor activation sends 

electrical signals along the ascending pain pathway, to the dorsal horn and eventually many brain 

structures including the medulla, midbrain, amygdala, thalamus and the anterior cingulate cortex 

(ACC)2-4. Processed pain signals within the somatosensory cortex send projections via the 

descending pain pathway to the periaqueductal gray (PAG), rostral ventral medulla (RVM), and 

dorsal horn, where significant facilitation or inhibition of nociceptive inputs occur5. 

Opioid agonists bind to and activate MORs within the substantia gelatinosa in the dorsal 

horn of the spinal cord and modify painful stimuli along the ascending limb6. Direct activation of 

MORs in the peripheral nervous system (peripheral nerve terminals and dorsal root ganglion 

[DRG]), as well as the spinal cord level and supraspinal regions have been shown to produce 

antinociceptive effects in rodent models7,8. For example, intrathecal (IT) administration of 

morphine also produces MOR-mediated antinociceptive effects9,10. Also, morphine administered 

directly into the rostral ventral medulla (RVM) or periaqueductal gray (PAG) inhibit responses to 

nociceptive stimuli in various animal models in a MOR-mediated manner11-14.  

Repeated administration of morphine systemically induced tolerance to the antinociceptive 

effects of opioids. In vitro and in vivo studies have identified various opioid receptor-mediated 

mechanisms thought to contribute to opioid tolerance. Canonically, MOR desensitization and 

downregulation was thought to mediate tolerance development15,16. Additionally, both the MOR 

agonist, DAMGO and morphine caused robust MOR agonist-induced desensitization of G protein-
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coupled inwardly rectifying potassium channel (GIRK) channel activation following prolonged 

morphine exposure in HEK293 cells expressing rat MOR, elucidating additional mechanisms that 

may contribute to tolerance development17,18. However, MOR desensitization and down regulation 

ex vivo was not always observed following chronic MOR agonist administration in vivo19. For 

example,  mice implanted with subcutaneous morphine pellets were tolerant to the antinociceptive 

effects of morphine but there was no significant downregulation of MOR in brain slices20. 

Repeated microinjections of morphine into the ventrolateral PAG produced robust tolerance 

development to ventrolateral PAG-mediated antinociceptive effects of morphine, and this was 

accompanied with significant decreases in morphine-induced adenylyl cyclase inhibition in the 

PAG21-23. Further, reductions in morphine-induced decreases in calcium current, as well as 

decreased GIRK activation have been demonstrated in PAG neurons isolated from morphine 

tolerant mice24; these effects have also been shown in thalamus neurons isolated from morphine 

tolerant rats21. These data collectively suggest chronic systemic administration of morphine 

induces robust tolerance development via receptor desensitization in multiple brains regions 

involved in opioid-mediated nociception. However, these data do not rule out other contributing 

brain regions or neuronal circuits that may be involved in tolerance development. 

Chronic morphine administration into the PAG elicits tolerance development while chronic 

morphine administered into the RVM does not22; suggesting RVM neurons are relatively resistant 

to tolerance development and that morphine-induced tolerance may occur in neurons that precede 

the RVM along the pain pathway. Even with this understanding, the brain regions, population of 

MORs, or neuronal circuits are responsible for opioid tolerance remain unresolved. Tolerance 

development is one of the major driving forces resulting in decreased pain control and contributes 
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to opioid misuse, further elucidating mechanisms and receptor populations involved in opioid 

tolerance may help improve opioid-based pain treatments.  

Recently, studies have alluded to significant involvement of MORs expressed on primary 

afferent neurons in opioid induced tolerance and opioid induced hypersensitivity (OIH)25. When 

MORs were removed from neurons of the TRPV1 lineage (neurons expressing the TRPV1 

promoter), acute antinociceptive effects of morphine were unaltered, but opioid tolerance and OIH 

were prevented25. Further, the peripherally restricted MOR agonist, loperamide, produced robust 

tolerance to its antinociceptive effects in nerve-injured rats26. Collectively, these studies suggest 

peripheral MORs may significantly contribute to opioid tolerance. The present study aims to 

evaluate the involvement of peripheral opioid receptors in the development of tolerance to 

centrally-mediated antinociceptive effects of MOR  

Methods 

Animals and In Vivo Solutions 

All animal care and experimental procedures complied with the US National Research 

Council's Guide for the Care and Use of Laboratory Animals (Kuwahara et al., 2012)27. Mice were 

group‐ housed with a maximum of five animals per cage in clear polypropylene cages with corn 

cob bedding and nestlets as enrichment. Mice had free access to food and water at all times. 

Animals were housed in specific pathogen‐ free rooms maintained between 68 and 79°F and 

humidity between 30 and 70% humidity with a 12 h light/dark cycle with lights on at 07:00 h. We 

conducted experiments in the housing or adjoining rooms during the light cycle. All studies utilize 

wildtype male C57BL/6 mice from Envigo laboratories. Mice weighed between 20-30 g at 7-15 

weeks old at the time of use. All drug solutions were injected in a volume of 10ml/kg. Loperamide 

was dissolved in a 1:1:8 Ethanol/Castor oil/water solution. Morphine sulphate and 0.6% acetic 
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acid were dissolved in saline and water, respectively. All drugs were given by either IP or SC, as 

indicated, and the 0.6% acetic acid was given by IP injection.  

Acetic Acid Stretch Assay (AASA) 

This assay evaluated the effects of MOR agonists to alleviate stretching or writhing 

behaviors induced by intraperitoneal injection of diluted glacial acetic acid. Test drug or vehicle 

was administered SC. Thirty min later, mice were administered diluted acetic acid (IP, 0.6%) and 

were individually placed in clear plastic observation cages (10 x 6 x 8 in) containing corn cob 

bedding. Five min after acetic acid administration, total number of stretches were recorded over 

20 min. For antagonism studies, naloxone (3.2 or 10 mg/kg) or 10mg/kg naloxone-methiodide was 

administered IP 15 min before administration of test drug. 

Warm Water Tail Withdrawal 

To assess tail withdrawal latencies, mice were briefly placed in a cylindrical plastic 

restrainer and 2-3 cm of their tails were immersed into a water bath maintained at 50° C. The 

latency to tail withdrawal or a rapid flicking motion of the tail was recorded with a maximum cut 

off time of 20 seconds to prevent any tissue damage from occurring. Morphine or loperamide were 

given via SC administration in a cumulative dosing fashion (1-32mg/kg) and tail-flick latencies 

were recorded every 30 min. In antagonism studies, naloxone (3.2mg/kg) or naloxone-methiodide 

(10mg/kg) was administered via IP administration as a 15 min pretreatment to cumulative doses 

of morphine.  

For the tolerance studies, a within-subject design was used. Cumulative dose effect curves 

were established on day one in opioid naïve mice. Mice were administered morphine (10mg/kg) 

or vehicle 3x per day for five days (7am, 1pm, and 7pm) or loperamide (3.2mg/kg) 4x/ day (7am, 

1pm, 7pm, and 1am). On day 5, a cumulative morphine dose effect curve was determined. In 
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another group of animals, 10 mg/kg NLX-M (IP) was administered as 15 min pretreatments to 

either each treatment of morphine or loperamide during repeated injections. No drug treatments 

were administered the evening prior to test day. 

Data Analysis  

All data analyses were performed using GraphPad Prism version 8.4.3. Level of 

significance ( was set to 0.05 for all statistical measures. Two-way ANOVAs were conducted 

for all dose-effect curves unless otherwise stated. Post hoc analyses were conducted by Tukey’s 

post hoc tests to correct for multiple comparisons and were only performed when F values 

achieved p < 0.05. In the absence of an interaction, we did post hoc comparisons on the main 

effect of dose. To calculate approximate ED50 values, the 50% maximum effect was interpolated 

from the straight-line analysis for each individual anima, and then the ED50 values were averaged 

across all in mice in the same treatment group. This included 2-3 points along the linear portion 

of the curve only. Standard errors of the mean were calculated for ED50 values where stated. Fold 

shifts in dose-effect curves were calculated by dividing the ED50 value of interest by the ED50 

value calculated in wild-type mice or in the absence of the antagonist.  

Results 

 

Antinociceptive Effects of Morphine and Loperamide in the Acetic Acid Stretch Assay 

The effects of acute morphine or loperamide were evaluated in the AASA. Morphine 

produced dose-dependent decreases in acid-induced stretches [F (4, 25) = 40.4, P<0.0001, Figure 

4.1A] with significant decreases observed at 0.1 mg/kg morphine and larger. Loperamide also 

decreased acid-induced stretches in a dose dependent manner [F (4, 26) = 34.1, P<0.0001] with 

significant decreases at doses of 1 mg/kg and larger (Figure 4.1A). Both naloxone (3.2 mg/kg) and 
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the peripherally restricted, non-selective opioid receptor antagonist, NLX-M (10 mg/kg),  

attenuated the acute antinociceptive effects of morphine [F (3, 21) = 23.1, P<0.0001] (Figure 

4.1B). Similarly, naloxone and NLX-M significantly attenuated the acute antinociceptive effects 

of 3.2mg/kg loperamide [F (4, 26) = 34.1, P<0.0001] (Figure 4.1C). 

 

Antinociceptive Effects of Morphine and Loperamide in the WWTW 

The acute antinociceptive effects of morphine and loperamide was evaluated in the 

WWTW assay. Morphine produced dose-dependent increases in withdrawal latencies [F (4, 20) = 

117, P<0.0001] with significant effects observed at 10 and 32 mg/kg. In the WWTW, naloxone, 

but not naloxone-methiodide, shifted the morphine dose effect curve approximately 2.7-fold to the 

right. A repeated measures, two-way ANOVA revealed a significant interaction [F (4, 50) = 13.4, 

P<0.0001], main effect of dose [F (4, 50) = 153.1, P<0.0001], and a main effect of treatment [F (1, 

50) = 19.2, P<0.0001] (Figure 4.2A). However, both naloxone and naloxone-methiodide failed to 

alter the acute antinociceptive effects of loperamide [F (6, 51) = 1.02, P=0.4]. There was a 

significant main effect of dose [F (1.919, 32.63) = 124.4, P<0.0001], and 32 mg/kg loperamide 

significantly increased tail-flick latencies (Figure 4.2B).     

 

Effects of Naloxone-Methiodide on the Development of Tolerance Produced by Repeated 

Administration of Morphine on the WWTW.  

Methylnaltrexone, a peripherally restricted non-selective opioid receptor agonist, was 

previously demonstrated to attenuate morphine-induced tolerance in a model of perioperative and 

chronic pain25. To assess which opioid receptor population was involved in morphine tolerance, 

morphine-induced antinociceptive effects were assessed following repeated administration of 
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morphine +/- pretreatments of naloxone-methiodide (10mg/kg). In the WWTW, a three-way 

ANOVA revealed tail flick latency was resistant to 10 mg/kg morphine following 6 days of 

morphine treatment, which was supported by a day x dose x treatment interaction [F (4, 40) = 5.3, 

P=0.002], as well as a significant main effects of dose [F (4, 40) = 506.3, P<0.0001], treatment [F 

(1, 10) = 28.4, P=0.0003], as well as day [F (1, 10) = 7.8, P=0.02]. This effect is supported by a 

3.5-fold rightward shift in the morphine dose-effect curve following repeated morphine 

administration. following chronic morphine administration, the antinociceptive effects of 

morphine displayed an approximate 2.5-fold rightward shift in the morphine dose-effect curve 

(Figure 4.3A). In mice that received chronic administration of naloxone-methiodide and morphine, 

the day 6 morphine dose effect  curve was unaltered compared to day one [F (4, 40) = 0.7, P=0.6] 

(Figure 4.3B). However, there was a main effect of dose [F (4, 40) = 136.4, P<0.0001] but no 

effect of treatment [F (1, 10) = 0.03, P=0.9]. Chronic administration of NLX-M as a pretreatment 

to chronic saline did not alter the acute antinociceptive effects of morphine as displayed by no shift 

in the morphine DE curve [F (4, 50) = 0.5317, P=0.7130] (Figure 4.3D). There was however a 

main effect of dose [F (4, 50) = 143.2, P<0.0001]. 

 

The Antinociceptive Effects of Morphine or Loperamide Following Repeated 

Administration of 3.2mg/kg Loperamide  

To further assess the involvement of peripheral opioid receptors in opioid-mediated 

antinociception and tolerance production, we evaluated tolerance and cross-tolerance following 

repeated administration of loperamide. We initially assessed loperamide-induced cross tolerance 

to the antinociceptive effects of morphine. (Figure 4.4A and Figure 4.4B). Repeated administration 

of loperamide, 3.2mg/kg injection three times/day for five days, produced a modest rightward shift 
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in the morphine DE curve [F (4, 40) = 3.24, P=0.02] (figure 4.4A). There was no main effect of 

the day (1 vs 5) following repeated loperamide administration [F (2, 20) = 3.5, P=0.1] (Figure 4B). 

However, repeated administration of loperamide, 3.2mg/kg injection three times/day for five days, 

induced a significant rightward shift in the loperamide dose effect curve (Figure 4.4D). A two-way 

ANOVA revealed a significant interaction of day x dose [F (4, 40) = 12.1, P<0.0001], as well as 

significant main effect of day (1 vs 6) [F (1, 10) = 23.1, P=0.0007] and dose [F (4, 40) = 31.2, 

P<0.0001]. Therefore, we administered loperamide, 3.2mg/kg injection four times/day for five 

days and assessed the morphine dose effect curve on day 1 and day 6 (Figure 4.4B). Four daily 

injections of 3.2 mg/kg loperamide induced approximately a 3.5-fold rightward shift in the 

morphine DE curve (Figure 4.4B). A two-way ANOVA revealed a significant interaction [F (4, 

50) = 2.960, P=0.03], a main effect of dose [F (4, 50) = 88.84, P<0.0001], as well as a main effect 

of day (1 vs 6) [F (1, 50) = 4.543, P=0.038]. To assess possible accumulation of loperamide in the 

CNS following repeated administration, baseline tail-flick latencies were assessed following the 

first and last 3.2mg/kg injections on day 1, and day 5, respectively (Figure 4.4C). There was no 

significant difference between baseline tail-flick latencies between day 1 and day 5 (t=1.2, df=5, 

p=0.29).  

 

Effects of Chronic Naloxone-Methiodide on Loperamide-Induced Tolerance to the 

Antinociceptive Effects of Morphine 

Chronic loperamide administration produced cross tolerance to the antinociceptive effects 

of morphine following repeated systemic administration(Figure 4.4B). To confirm that this effect 

was mediated by peripheral opioid receptors, mice received pretreatments of 10 mg/kg NLX-M in 

conjunction with repeated administration of 3.2 mg/kg loperamide, four times per day for five 
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days. 10 mg/kg NLX-M attenuated loperamide-induced tolerance to the antinociceptive effects of 

morphine in the WWTW assay as displayed by a lack of shift in the morphine dose effect curve. 

A two-way ANOVA revealed a main effect of dose [F (4, 50) = 102.1, P<0.0001], but no main 

effect of day (1 vs 6) [F (1, 50) = 0.7491, P=0.4] (Figure 4.5). 

Discussion  

The present study evaluated the contribution of peripheral ORs to the development of 

tolerance to the centrally-mediated, antinociceptive effects of morphine. Morphine produced 

antinociceptive effects in both the AASA and the WWTW assay as expected28-30, and morphine 

was 10-fold more potent in the AASA as compared with the WWTW. Naloxone and the 

peripherally restricted NLX analog, NLX-M, blocked the antinociceptive effects of morphine in 

the AASA. However, only NLX attenuated the effects of morphine in the WWTW, consistent with 

previous studies31,32. Together, these data suggest that morphine produces antinociceptive effects 

in the AASA through activation of peripheral opioid receptors, but central opioid receptor 

activation is required for antinociceptive effects in the WWTW assay. While naloxone-methiodide 

is believed to be peripherally restricted, some NLX-M may cross into the CNS; however, based 

on our data, it would suggest that not enough NLX-M gets into the CNS to block the centrally-

mediated antinociceptive effects of morphine measured in the WWTW. Further, these data suggest 

that the antinociceptive effects of opioids in the AASA are peripherally mediated following 

systemic administration, consistent with previous data28.  

The MOR agonist, loperamide, the active ingredient in Imodium, causes slowing of the GI 

tract to prevent diarrhea. It is primarily restricted to the gastrointestinal tract following oral 

administration because it is a major substrate for the efflux transporter P-glycoprotein (P-gp), 

limiting its ability to be absorbed into circulation and to cross the blood-brain barrier33. Morphine 
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is also a P-gp substrate, but to a much lesser degree. Mice lacking P-gp display between a 10-fold 

and 65-fold higher concentration of loperamide in the brain following IV and SC administration, 

respectively34,35, further demonstrating the peripheral restrictiveness of loperamide in WT mice. 

In the same strain of mice, morphine concentrations in the CNS only increases 2-fold.36 When 

systematically administered, acute loperamide produced antinociceptive effects in both the AASA 

and WWTW assays. The antinociceptive effects of loperamide in the AASA were blocked by NLX 

and NLX-M, indicating that peripheral ORs mediated these effects. However, only the largest dose 

of loperamide (32 mg/kg) produced antinociceptive effects in the WWTW assay; however, neither 

NLX nor NLX-M blocked these effects. These data suggest that large doses of loperamide produce 

non-opioid receptor-mediated antinociceptive effects. Larger doses of loperamide have been 

shown to directly bind to both N-type and L-type calcium channels37. Additionally, intrathecal 

administration of the N-type calcium channel blocker, omega-conotoxin GVIA, dose dependently 

increase tail-flick latencies in the WWTW38, suggesting calcium channels may be the mechanism 

behind the antinociceptive effects of loperamide in the WWTW.  

Next, we wanted to assess whether antagonism of peripheral opioid receptors would 

modulate the development of tolerance to the centrally-mediated antinociceptive effects of 

morphine. Systemic administration of morphine at 10 mg/kg, 3x daily dosing for five days, was 

sufficient for inducing tolerance to the antinociceptive effects of morphine (Figure 4.3A). Three 

times daily administration of NLX-M alone did not alter the acute antinociceptive effects of 

morphine, nor did it alter baseline tail-flick latencies. These data suggest that repeated 

administration of NLX-M did not lead to blockade of central MORs either through drug 

accumulation or changes in the integrity of the BBB. However, NLX-M pretreatments during daily 

morphine injections completely attenuated morphine-induced tolerance, as demonstrated by a lack 
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of shift in the morphine dose-effect curve following repeated administration (Figure 4.3B). These 

data are in agreement with those published by Corder et al., 2017, suggesting antagonism of 

peripheral opioid receptors is sufficient for attenuating morphine-induced tolerance 

development25.   

To further elucidate the involvement of peripheral opioid receptors, we chronically 

activated peripheral opioid receptors with 3.2mg/kg loperamide. Loperamide produced a dose-

dependent attenuation of acid-induced stretches (Figure 4.1A). 3.2 mg/kg loperamide was fully 

effective and these effects were inhibited by NLX-M (Figure 4.1C). Further, this dose of 

loperamide was inactive in the WWTW assay.  Together, these data suggest that a dose of 3.2 

mg/kg loperamide only activates peripheral opioid receptors.  

We next further assessed the ability of loperamide to induce cross-tolerance to the 

antinociceptive effects of morphine. Three times daily systemic administration of 3.2 mg/kg 

loperamide produced modest but non-significant cross-tolerance to the antinociceptive effects of 

morphine (Figure 4.1B). However, when the frequency of loperamide dosing was increased to 

four-times daily, administration of peripherally active doses of loperamide produced tolerance to 

the centrally-mediated antinociceptive effects of both morphine and loperamide. Together, these 

data suggest that activation of peripheral opioid receptors plays a role in developing tolerance to 

the centrally-mediated antinociceptive effects of morphine.  

There have been many mechanisms proposed to be involved with opioid tolerance that 

incorporate peripheral mechanisms. Chronic administration of morphine produced robust 

tolerance development, and this effect was associated with a significant increase in brain P-gp. 

Increased P-gp concentrations in the BBB would decrease the amount of morphing reaching the 

CNS, ultimately shifting the morphine dose effect curve and giving the appearance of tolerance 
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development but might not be associated with opioid receptor desensitization or downregulation. 

These data suggest that upregulation of P-gp may reduce the central antinociceptive effects of 

morphine via an increase of morphine efflux from CNS39. Another peripherally mediated proposed 

mechanism for opioid tolerance is the involvement of the microbiome. Recent studies demonstrate 

altered gut microbiota following chronic opioid administration resulting in the compromise of the 

gut barrier40,41. Interestingly, both in germ-free mice or with the administration of probiotics, mice 

chronically administered morphine did not produce tolerance to the antinociceptive effects of 

morphine42. It is possible that NLX-M pretreatment inhibited morphine-induced compromisation 

of the gut barrier, leading to tolerance attenuation. However, studies suggest TLR4 receptors may 

also play a role in this mechanism, and no activity of NLX-M on TLR4 receptors has been 

demonstrated43. These data offer significant implications of the microbiome on opioid-mediated 

tolerance development.   

 This study demonstrated that morphine-induced tolerance was attenuated through 

antagonism of peripheral opioid receptors, similar to previous reports25. Additionally, we 

demonstrated opioid-induced tolerance through activation of peripheral opioid receptors. Previous 

work has shown antiallodynic properties of loperamide, which were attenuated with NLX-M 

suggesting a peripherally-mediated mechanism26. In the same study, chronic loperamide induced 

tolerance to its antiallodynic effects, and NTX pretreatments attenuated this effect. The study, 

however, did not assess how NLX-M might impact the tolerance development, although the study 

suggests the tolerance was induced via activation of peripheral MORs residing in the dorsal root 

ganglion, since the antinociception observed was mediated through peripheral opioid receptors26. 

This provides further evidence that peripheral opioid receptors play a role in tolerance 

development. The intriguing component of these results in this manuscript is that tolerance 
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development occurred to CNS-mediated antinociception through peripheral opioid receptor 

manipulation. This suggests that the manipulation of peripheral opioid receptors may potentially 

alter opioid-receptor function in the CNS. There are many proposed mechanisms involved in 

morphine-induced tolerance, either following repeated administration in vivo or prolonged 

exposure in vitro. Opioid receptor desensitization is a common phenomenon that occurs following 

opioid administration and has been thought of as a cause for opioid tolerance44. Down-regulation 

is the reduction of opioid receptor number, which may result in the degradation of the receptor. 

Further, down-regulation could also be due to a decrease in receptor synthesis and both could 

contribute to tolerance development. Mice administered chronic subcutaneous etorphine infusions 

produced significant antinociceptive tolerance and these effects were correlated with a significant 

down-regulation of MORs in mouse brain20. Conversely, morphine-tolerant mice who received 

either morphine pellet implantation or chronic subcutaneous infusion did not display decreases in 

MOR number20. These data suggest tolerance development can be produced through differing 

mechanisms depending on the agonist, further suggesting multiple mechanisms contributing to 

opioid tolerance. Multiple signaling pathways, including ACase inhibition, activation of MAP 

kinases, inhibition of voltage-gated calcium channels, and activation of GIRK channels, are 

utilized to measure opioid receptor desensitization45 and are instrumental measurements for future 

studies to elucidate an intracellular mechanism responsible for the effects seen in this manuscript. 

While the mechanism behind our results in this manuscript is unclear, it suggests that activation 

of peripheral opioid receptors is sufficient for inducing tolerance to centrally acting opioids. 

Concern for centrally active opioids for the use of chronic pain has risen due to adverse effects, 

and usage of peripherally restricted opioid receptor agonists has gained attention. However, it is 

imperative to elucidate the involvement of peripheral opioid receptors in developing opioid-
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induced adverse effects that hinder chronic opioid therapy's effectiveness. Future studies should 

illuminate the mechanism contributing to the tolerance demonstrated in this manuscript and to 

understand if the mechanisms are similar to those following CNS administration of opioids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 104 

 

 

Figure 4.1 Antinociceptive Effects of Morphine and Loperamide in the AASA 

 

Figure 4.1: (A) Dose effect curve of systemically administered morphine or loperamide in the AASA. (B) Pharmacological 

inhibition of morphine-induced antinociception with naloxone, or naloxone-methiodide. (C) Pharmacological inhibition of 

loperamide-induced antinociception with naloxone, or naloxone-methiodide (N=6 for each group) **** = P<0.0001, *** = 

P<0.001, ** = P<0.01, versus vehicle control. ### = P<0.001, ## = P<0.01, versus 1mg/kg morphine, or 3.2mg/kg loperamide.  
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Figure 4.2 Antinociceptive Effects of Morphine and Loperamide in the WWTW 

Figure 4.2: (A) Cumulative dose effect curves for morphine in the presence of naloxone, or naloxone methiodide measuring 

thermal nociception. Y-axis plotted at tail-flick latencies. (B) Cumulative dose effect curves for loperamide in the presence 

of naloxone, or naloxone methiodide measuring thermal nociception. Y-axis plotted at tail-flick latencies (N=6 for each 

group)  **** = P<0.0001, *** = P<0.001, * = P<0.05, versus BL control. 
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Figure 4.3 Effects of Naloxone-Methiodide on the Development of Tolerance Produced by Repeated Administration of Morphine 

in the WWTW 

Figure 4.3: Morphine-induced tolerance in the presence and absence of the peripherally restricted opioid receptor agonist, 

naloxone-methiodide. (A) Tolerance development to the antinociceptive effects of morphine following five days of repeated 

administration. (B) Morphine dose effect curve before and after pretreatments of naloxone-methiodide to repeated 

administration of morphine. (C) Acute antinociceptive effects of morphine following chronic saline treatment. (D) Acute 

antinociceptive effects of morphine following chronic naloxone-methiodide treatment (N=6 for each group)  **** = 

P<0.0001, ** = P<0.01, * = P<0.05, versus BL control. ## = P<0.01 versus same dose Day 1. 
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Figure 4.4 The Antinociceptive Effects of Morphine or Loperamide Following Repeated Administration of 3.2mg/kg Loperamide 

 

Figure 4.4: Loperamide-induced tolerance and cross tolerance to the thermal antinociceptive effects of morphine. (A) 

Cumulative dose effects curves of loperamide, Day 1 vs Day 6, following 5 days of 3x daily repeated administration of 

3.2mg/kg loperamide. (B) Cumulative dose effect curves of morphine, Day 1 vs Day 6 tail flick latencies following 5 days of 

3x daily repeated administration of loperamide. (C) Cumulative dose effect curves of morphine, Day 1 vs Day 5 tail flick 

latencies following 5 days of 4x daily repeated administration of loperamide. (D) Baseline tail-flick latencies following 

3.2mg/kg loperamide day 1, and day 5 of chronic loperamide treatment. (N=6 for each group)  **** = P<0.0001, *** = 

P<0.001, ** = P<0.01, * = P<0.05 versus BL control, ns = not significant. 
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Figure 4.5 Effects of Chronic Naloxone-Methiodide on Loperamide-Induced Tolerance to the Antinociceptive Effects of 

Morphine 

 

Figure 4.5: NLX-M attenuates loperamide-induced cross tolerance in the WWTW. (A) Naloxone methiodide pretreatments 

to repeated administration of morphine attenuate morphine induced tolerance. (N=6 for each group) **** = P<0.0001, ** 

= P<0.01, * = P<0.05 versus vehicle control. 

  



 109 

 

References 

 

1. Dubin, A.E. & Patapoutian, A. Nociceptors: the sensors of the pain pathway. J Clin 

Invest 120, 3760-72 (2010). 

2. Mansour, A., Fox, C.A., Akil, H. & Watson, S.J. Opioid-receptor mRNA expression in 

the rat CNS: anatomical and functional implications. Trends Neurosci 18, 22-9 (1995). 

3. Corder, G., Castro, D.C., Bruchas, M.R. & Scherrer, G. Endogenous and Exogenous 

Opioids in Pain. Annu Rev Neurosci 41, 453-473 (2018). 

4. Fields, H. State-dependent opioid control of pain. Nat Rev Neurosci 5, 565-75 (2004). 

5. Ossipov, M.H., Morimura, K. & Porreca, F. Descending pain modulation and 

chronification of pain. Curr Opin Support Palliat Care 8, 143-51 (2014). 

6. Kohno, T., Kumamoto, E., Higashi, H., Shimoji, K. & Yoshimura, M. Actions of opioids 

on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. 

J Physiol 518 ( Pt 3), 803-13 (1999). 

7. Matthes, H.W. et al. Loss of morphine-induced analgesia, reward effect and withdrawal 

symptoms in mice lacking the mu-opioid-receptor gene. Nature 383, 819-23 (1996). 

8. Kieffer, B.L. Opioids: first lessons from knockout mice. Trends Pharmacol Sci 20, 19-26 

(1999). 

9. Rebel, A., Sloan, P. & Andrykowski, M. Retrospective analysis of high-dose intrathecal 

morphine for analgesia after pelvic surgery. Pain Res Manag 16, 19-26 (2011). 

10. Gilmer-Hill, H.S. et al. Intrathecal morphine delivered via subcutaneous pump for 

intractable pain in pancreatic cancer. Surgical neurology 51, 6-11 (1999). 

11. Manning, B.H., Morgan, M.J. & Franklin, K.B. Morphine analgesia in the formalin test: 

evidence for forebrain and midbrain sites of action. Neuroscience 63, 289-94 (1994). 

12. Yaksh, T.L. & Rudy, T.A. Narcotic analgestics: CNS sites and mechanisms of action as 

revealed by intracerebral injection techniques. Pain 4, 299-359 (1978). 

13. Narita, M. et al. Comparative Pharmacological Profiles of Morphine and Oxycodone 

under a Neuropathic Pain-Like State in Mice: Evidence for Less Sensitivity to Morphine. 

Neuropsychopharmacology 33, 1097-1112 (2008). 

14. Cohen, S.R. & Melzack, R. Morphine injected into the habenula and dorsal 

posteromedial thalamus produces analgesia in the formalin test. Brain research 359, 131-

139 (1985). 

15. Harrison, R.S. et al. Novel helix-constrained nociceptin derivatives are potent agonists 

and antagonists of ERK phosphorylation and thermal analgesia in mice. J Med Chem 53, 

8400-8 (2010). 

16. Dang, V.C. & Christie, M.J. Mechanisms of rapid opioid receptor desensitization, 

resensitization and tolerance in brain neurons. Br J Pharmacol 165, 1704-1716 (2012). 

17. Johnson, E.A. et al. Agonist-selective mechanisms of mu-opioid receptor desensitization 

in human embryonic kidney 293 cells. Mol Pharmacol 70, 676-85 (2006). 

18. McPherson, J. et al. μ-opioid receptors: correlation of agonist efficacy for signalling with 

ability to activate internalization. Mol Pharmacol 78, 756-66 (2010). 



 110 

19. Ma, X. et al. DAMGO-induced μ opioid receptor internalization and recycling restore 

morphine sensitivity in tolerant rat. European Journal of Pharmacology 878, 173118 

(2020). 

20. Stafford, K., Gomes, A.B., Shen, J. & Yoburn, B.C. mu-Opioid receptor downregulation 

contributes to opioid tolerance in vivo. Pharmacol Biochem Behav 69, 233-7 (2001). 

21. Noble, F. & Cox, B.M. Differential desensitization of mu- and delta- opioid receptors in 

selected neural pathways following chronic morphine treatment. Br J Pharmacol 117, 

161-9 (1996). 

22. Morgan, M.M., Clayton, C.C. & Boyer-Quick, J.S. Differential susceptibility of the PAG 

and RVM to tolerance to the antinociceptive effect of morphine in the rat. Pain 113, 91-8 

(2005). 

23. Tortorici, V., Robbins, C.S. & Morgan, M.M. Tolerance to the antinociceptive effect of 

morphine microinjections into the ventral but not lateral–dorsal periaqueductal gray of 

the rat. Behavioral Neuroscience 113, 833-839 (1999). 

24. Bagley, E.E., Chieng, B.C., Christie, M.J. & Connor, M. Opioid tolerance in 

periaqueductal gray neurons isolated from mice chronically treated with morphine. Br J 

Pharmacol 146, 68-76 (2005). 

25. Corder, G. et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, 

abrogates morphine tolerance without disrupting analgesia. Nat Med 23, 164-173 (2017). 

26. He, S.Q. et al. Tolerance develops to the antiallodynic effects of the peripherally acting 

opioid loperamide hydrochloride in nerve-injured rats. Pain 154, 2477-2486 (2013). 

27. Kuwahara, S.S. Review of the guide for the care and use of laboratory animals, 8th 

edition. Journal of GXP compliance 16, 29. 

28. Labuz, D., Mousa, S.A., Schäfer, M., Stein, C. & Machelska, H. Relative contribution of 

peripheral versus central opioid receptors to antinociception. Brain Res 1160, 30-8 

(2007). 

29. Bagdas, D. et al. Expression and pharmacological modulation of visceral pain-induced 

conditioned place aversion in mice. Neuropharmacology 102, 236-43 (2016). 

30. Mosberg, H.I. et al. Opioid peptidomimetics: leads for the design of bioavailable mixed 

efficacy μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist ligands. J 

Med Chem 56, 2139-49 (2013). 

31. Lowery, J.J. et al. In vivo characterization of MMP-2200, a mixed delta/mu opioid 

agonist, in mice. J Pharmacol Exp Ther 336, 767-78 (2011). 

32. Stevenson, G.W. et al. Behavioral pharmacology of the mixed-action delta-selective 

opioid receptor agonist BBI-11008: studies on acute, inflammatory and neuropathic pain, 

respiration, and drug self-administration. Psychopharmacology 237, 1195-1208 (2020). 

33. Schinkel, A.H., Wagenaar, E., Mol, C.A. & van Deemter, L. P-glycoprotein in the blood-

brain barrier of mice influences the brain penetration and pharmacological activity of 

many drugs. J Clin Invest 97, 2517-24 (1996). 

34. Dagenais, C., Graff, C.L. & Pollack, G.M. Variable modulation of opioid brain uptake by 

P-glycoprotein in mice. Biochem Pharmacol 67, 269-76 (2004). 

35. Kalvass, J.C., Graff, C.L. & Pollack, G.M. Use of loperamide as a phenotypic probe of 

mdr1a status in CF-1 mice. Pharm Res 21, 1867-70 (2004). 

36. Xie, R., Hammarlund-Udenaes, M., de Boer, A.G. & de Lange, E.C. The role of P-

glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis 

studies in mdr1a (-/-) and mdr1a (+/+) mice. Br J Pharmacol 128, 563-8 (1999). 



 111 

37. Church, J., Fletcher, E.J., Abdel-Hamid, K. & MacDonald, J.F. Loperamide blocks high-

voltage-activated calcium channels and N-methyl-D-aspartate-evoked responses in rat 

and mouse cultured hippocampal pyramidal neurons. Mol Pharmacol 45, 747-57 (1994). 

38. Lee, S. et al. Analgesic effect of highly reversible ω-conotoxin FVIA on N type Ca2+ 

channels. Mol Pain 6, 97 (2010). 

39. Aquilante, C.L., Letrent, S.P., Pollack, G.M. & Brouwer, K.L. Increased brain P-

glycoprotein in morphine tolerant rats. Life Sci 66, Pl47-51 (2000). 

40. Banerjee, S. et al. Opioid-induced gut microbial disruption and bile dysregulation leads 

to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol 9, 

1418-1428 (2016). 

41. Wang, F. et al. Morphine induces changes in the gut microbiome and metabolome in a 

morphine dependence model. Scientific Reports 8, 3596 (2018). 

42. Zhang, L. et al. Morphine tolerance is attenuated in germfree mice and reversed by 

probiotics, implicating the role of gut microbiome. Proceedings of the National Academy 

of Sciences 116, 13523-13532 (2019). 

43. Carvalho, F.A., Aitken, J.D., Vijay-Kumar, M. & Gewirtz, A.T. Toll-like receptor-gut 

microbiota interactions: perturb at your own risk! Annu Rev Physiol 74, 177-98 (2012). 

44. Law, P.Y., Hom, D.S. & Loh, H.H. Loss of opiate receptor activity in neuroblastoma X 

glioma NG108-15 hybrid cells after chronic opiate treatment. A multiple-step process. 

Mol Pharmacol 22, 1-4 (1982). 

45. Connor, M., Osborne, P.B. & Christie, M.J. Mu-opioid receptor desensitization: is 

morphine different? Br J Pharmacol 143, 685-96 (2004). 
 

  



 112 

Chapter V: General Discussion 

 

The experiments described in this thesis sought to examine the receptor-mediated mechanisms 

responsible for the acute and chronic effects of known selective MOR agonists and novel, mixed-

efficacy opioid ligands. While the majority of this work focused on measuring antinociceptive 

effects of opioid ligands, we also evaluated physical dependence, constipation, and abuse liability. 

The data presented here demonstrate two major findings: 1) mixed-efficacy opioid ligands produce 

antinociceptive effects in number of animal models and seem to produce less tolerance, physical 

dependence, and abuse liability as compared with selective MOR agonists, and 2) peripheral opioid 

receptors play a role in the development of tolerance to the antinociceptive effects of centrally 

acting μ-opioid receptor (MOR) agonists. Together, the studies reported in this thesis identify 

potential opioid receptor targets and mechanisms that may be used to create safer, opioid-based 

treatments for pain management.  

           It is well established that MOR agonists are highly effective treatments for attenuating pain. 

Unfortunately, MOR agonist-induced adverse effects plague clinical utility for long-term, chronic 

pain patients. It was hoped that the mechanisms contributing to opioid-induced analgesia were 

distinct from the adverse effects. Nearly two centuries of work have contributed to improving 

opioid-based therapy by solely targeting the MOR. These investigations yielded higher affinity, 

more potent, and more efficacious MOR agonists, but failed to generate a safer 
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opioid analgesic. Elucidating how morphine and other opioids produce adverse effects is essential 

in the development of safer opioid analgesics. 

Antinociceptive effects and the undesired adverse effects of opioid use are primarily 

mediated through activation of the MOR, as shown by the absence of antinociceptive effects, 

rewarding effects, and withdrawal-like effects in mice lacking the MOR1. However, DOR activity 

can attenuate some of the undesired effects of MOR agonists without disrupting the acute 

antinociceptive properties. Antagonism of the DOR attenuates MOR-mediated tolerance 

development2, which was further recapitulated with ligands exhibiting MOR agonist/DOR 

antagonist profiles, such as UMB425 and VRP263,4. Our lab recently published on AAH8, a MOR 

agonist/DOR antagonist mixed-efficacy opioid ligand that produced acute antinociceptive effects 

without producing tolerance or physical dependence5.  

Interestingly, DOR agonists have been shown to increase the potency of MOR agonists to 

produce antinociceptive effects and increase the efficacy of MOR agonists2,6-8. SRI-22141, a dual 

mixed-efficacy MOR/DOR agonist exhibited enhanced efficacy in pre-clinical neuropathic pain 

models, including reduced tolerance and physical dependence development, providing an addition 

approach to mixed-efficacy opioid ligands9. These data suggest combining DOR agonist activity 

with a conventional MOR agonist may decrease the dose of the MOR agonist necessary to produce 

significant antinociception.  

Through a screening process of many mixed-efficacy opioid ligands, we found AMB67, a 

dual MOR/DOR agonist, that displayed acute antinociceptive effects in the acetic acid stretch 

assay (AASA).  Therefore, we chose to conduct an in vivo characterization of AMB67, and further 

evaluate a compound, AAH8, that our lab previously reported in the literature5. Considering the 

decreased tolerance observed with these peptidomimetic compounds, we sought to further explore 
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mechanisms of tolerance that may explain the improved profile of activity observed with 

multifunctional opioid ligands.  

In Vivo Characterization of The Dual MOR/DOR Agonist, AMB67: Acute and Chronic 

Antinociception, Physical Dependence, and Abuse Potential  

Numerous studies have reported that the therapeutic profile of MOR agonists can be 

improved with simultaneous modulation of the DOR2,10,11. These data resulted in many groups 

probing bivalent ligands12,13 and mixed-efficacy MOR-agonist/DOR-antagonist ligands. 

Generally, these compounds exhibit acute antinociceptive effects with limited tolerance and 

physical dependence development14-17. Interestingly, dual MOR/DOR agonists, such as 

MMP2200, have also been shown to display similar characterization as MOR agonist/DOR 

antagonist ligands. MMP2200 is a dual MOR/DOR agonist and produces substantial 

antinociceptive effects with reduced tolerance, physical dependence, locomotor activation, and 

self-administration18-20. Other dual MOR/DOR agonists, SRI-22141 and RV-Jim-C3, display acute 

antinociceptive effects in the tail flick and inflammatory models of pain9,21. SRI-22141 was 

effective at attenuating neuropathic pain-like states in a mouse neuropathic pain model. In vitro, 

cells exposed to prolonged SRI-22141, produced robust cAMP overshoot, an in vitro marker for 

dependence liability22. However, repeated administration of 10 mg/kg SRI-22141, 2x each day for 

4 days, produced significantly less tolerance compared to morphine, and the mice did not develop 

physical dependence9. Discrepancies between in vivo and in vitro data suggest the improved in 

vivo profiles of mixed-efficacy opioids ligands may not be selective targeting of receptors in a 

single cell, but instead the involvement of more complex neuronal circuits. In vitro, MMP2200 

also produced cAMP overshoot, however it failed to induce physical dependence in vivo20. 

However, MMP2200 is the only dual MOR/DOR agonist to have been studied for abuse potential 
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and failed to induce conditioned place preference20. To further elucidate the potential advantages 

of dual MOR/DOR agonists, Chapter II of this thesis characterizes the antinociceptive effects, as 

well as adverse effects, including abuse potential, of the dual MOR/DOR agonist, AMB67.  

Competitive binding studies using radiolabeled diprenorphine show morphine exhibited 

low nanomolar affinity at the MOR23, while AMB67 exhibited sub nanomolar affinity at the MOR. 

In rat MOR expressing C6 cells, morphine produced 48.2 ± 6.5% of DAMGO-induced 

[35S]GTPγS stimulation23, suggesting partial agonist activity. These data correlated with our results 

where morphine produced 21.8 ± 1.9% [35S]GTPγS stimulation at rat MOR expressing C6 cells. 

Also, in rat MOR expressing C6 cells, AMB67 produced 81 ± 4.3% [35S]GTPγS stimulation as 

compared to DAMGO, nearly 4-fold more efficacious at the MOR than morphine, displaying full 

agonist activity. AMB67 is nearly 100-fold more potent at the MOR than morphine. At the DOR, 

AMB67 had 21-fold higher affinity than morphine. Both morphine and AMB67 exhibited similar 

efficacy at DOR, with 56% and 34% [35S]GTPγS stimulation, respectively, and AMB67  was 

nearly 16-fold more potent at DOR than morphine. Together, these data suggest that AMB67 is 

nearly a full agonist at MORs and a low efficacy agonist at DORs. 

In vivo, AMB67 displayed antinociceptive effects in assays of chemical, thermal, and 

inflammatory nociception in C57BL/6N mice with EC50s of approximately 0.3mg/kg, 8.6 mg/kg, 

and 3.3 mg/kg, respectively. To assess drug-induced chemical antinociception, we utilized the 

AASA, where diluted acetic acid was used to produce a writhing or stretching response indicative 

of a pain-like behavior. In the AASA, naloxone, naltrindole, and FNA, attenuated AMB67-

induced antinociception, suggesting this effect is mediated through actions at both the MOR and 

the DOR, consistent with the in vitro profile of AMB67. In contrast, morphine-induced 

antinociception was attenuated by naloxone, but not naltrindole. Even though both compounds 
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exhibit modest agonist effects at the DOR in vitro, the antinociceptive effects of morphine in the 

AASA assay are likely MOR-mediated. These data suggest either potency differences between 

morphine and AMB67 measuring [35S]GTPγS stimulation may explain the lack of DOR-mediated 

effects of morphine, or that G-protein activation in this cell line does not adequately predict the in 

vivo activity of an opioid ligands.   

In the WWTW, morphine exhibited potent thermal antinociceptive effects, and studies 

show this effect is mediated through the MOR, as MOR KO mice fail to elicit morphine-induced 

antinociception24. Similarly, AMB67-induced thermal antinociception was shifted to the right in 

MOR heterozygous mice, and abolished in mice lacking the MOR, demonstrating MOR-mediated 

effects. These effects were a little surprising considering the antinociceptive effects of AMB67 in 

the AASA were at least partially mediated by DORs. However, prototypical DOR agonists, such 

as SNC80, fail to elicit increases in tail-flick latencies, suggesting that DOR activation alone 

cannot produce antinociceptive effects in thermal, spinally-mediated nociceptive assays. 

Convulsive effects of DOR agonists are common and may impact the antinociceptive effects of 

DOR agonists. It is important to note that AMB67 failed to induce convulsive behavior on its own, 

as shown by no increases in the Racine score in mice administered AMB67, up to doses of 

32mg/kg. AMB67 did slightly enhance PTZ-induced convulsions in a DOR-mediated behavior 

(data not shown). Future studies should assess AMB67 in DOR KO mice in the WWTW to 

compare and contrast DOR-mediated antinociceptive effects across different nociceptive 

measures.  

In mice administered CFA to induced mechanical hypersensitivity, both morphine and 

AMB67 exhibited significant antinociceptive effects. Morphine was more efficacious than 

AMB67; however, we were restricted in using larger morphine doses because stimulatory effects 
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impeded reliable measurements of mechanical nociception. The EC50 of both morphine and 

AMB67 in mice pretreated with naloxone was shifted to the right, suggesting opioid-receptor 

mediated effects. It was surprising AMB67 was not more effective in mice treated with CFA, given 

the DOR agonist activity of AMB67 in the AASA. It was previously shown that CFA induced an 

up-regulation of DORs in the dorsal spinal cord, suggesting a role for the DOR in nociceptive 

mechanisms of inflammation25. There is, however, contradictory data in the literature with regards 

to the effects of DOR agonists on CFA-induced mechanical allodynia and thermal hypersensitivity, 

as some studies show DOR agonists are effective in one but not the other, and vice versa25,26. Our 

studies were conducted 24h post CFA injection. It is possible that upregulation of the DOR was 

not significant at this timepoint, and if AMB67 was assessed 48h or 72h post CFA injection, 

AMB67 might have been more effective. Studies assessing the antinociceptive effects of AMB67 

in a model of inflammation in MOR KO mice would assess if the DOR is at all involved in the 

effects shown here. It would be possible that if the DOR component of AMB67 was involved, that 

mice lacking the MOR would still display modest antinociceptive effects.  

The  three pain models discussed above are models of pain elicited behavior, whereas an 

antinociceptive effect is demonstrated by decreasing a behavior induced by a noxious stimulus. 

Thus, we also assessed morphine and AMB67 in a model of pain depressed behavior. We utilized 

a pain depressed behavior where animals were conditioned to run on a running wheel and CFA 

was administered bilaterally into the hind paws to decrease the wheel-running behavior. Morphine 

significantly restored wheel running behavior but did not completely restore CFA-induced 

suppression of wheel running (See Appendix, Figure 5.1A). Conversely, AMB67 failed to restore 

wheel-running behavior in CFA-treated mice (See Appendix Figure 5.1B). The ability of morphine 

to improve the affective components of pain contributes to its antinociceptive effects27. CFA-
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induced pain depressed wheel running might incorporate affective pain to a greater extent than the 

nociceptive models utilized within this manuscript. Since AMB67 produced significantly fewer 

rewarding properties compared with morphine, this may explain the ineffectiveness of AMB67 in 

CFA-induced suppression of wheel running. Unfortunately, since AMB67 robustly suppressed 

wheel running at larger doses in the absence of pain, I was unable to evaluate larger doses. Future 

studies should assess AMB67 in a self-administration model to gain further insight into the abuse 

potential of AMB67 and if it produces less abuse potential compared to current opioid therapeutics. 

Overall, the acute antinociceptive studies demonstrated in this thesis show AMB67 

produces robust chemical, mechanical, and thermal antinociceptive effects in an opioid mediated 

manner, but was ineffective at attenuating CFA-induced suppression of wheel running. We were 

interested in assessing the antinociceptive effects of AMB67 and morphine following repeated 

administration. Repeated administration of morphine produced a rightward shift in the EC50 in all 

three pain models, recapitulating previous studies28,29. Conversely, AMB67 failed to induce 

tolerance in all models utilizing the same dosing paradigm as morphine. Based on previous 

literature, the DOR activity of AMB67 may contribute to the lack of tolerance. However, directly 

assessing the impact the DOR component of AMB67 has on tolerance development is difficult. 

Since mice lacking the DOR exhibit attenuated morphine-induced tolerance10, this limits our 

ability to use DOR KO mice to assess the contribution of the DOR activity of AMB67. Similarly, 

naltrindole attenuates morphine-induced tolerance development and therefore provides further 

limitations to our assessment. It is possible that if the dosing regimen was more strenuous, either 

increasing the number of injections per day or increasing the dose per injection, that tolerance 

development may have occurred. However, we used the same dosing and injection frequency 

paradigm for both AMB67 and morphine, suggesting AMB67 would be beneficial in a patient 



 119 

population, and therefore demonstrate an improvement in pain therapy, compared to morphine. 

However, even though AMB67 failed to elicit tolerance development when repeatedly 

administered, assessing the abuse potential of AMB67 is imperative, as euphoric effects of opioids 

have been demonstrated time and time again to induce drug abuse behavior. 

           We assessed the rewarding and abuse potential of AMB67 through two different paradigms 

and two different species. In mice, AMB67 was assessed in the conditioned place preference, 

which involves the association of one environment with a drug of abuse, followed by the 

association of a different environment with the absence of the drug, or the drug’s vehicle. Both 

compounds produced conditioned place preference, but AMB67 was nearly 10-fold less potent 

than morphine. Similarly, in a drug discrimination paradigm assessing interoceptive effects of 

morphine, AMB67 substitutions produced full generalization to the subjective effects of morphine; 

however, AMB67 was approximately 5.5-fold less potent than morphine. These data suggest that 

AMB67 may produce less rewarding effects or abuse potential than morphine. An interesting 

component of these data is the comparison of potency in rewarding effects compared to 

antinociceptive effects. While morphine and AMB67 exhibited equipotent antinociceptive effects 

across a variety of pain assays, AMB67 was consistently less potent in rewarding effects. One 

concern in the drug discrimination study is morphine was administered SC and AMB67 was 

administered IP. Drugs administered IP tend to undergo more extensive first pass metabolism, so 

it is possible less AMB67 reached the CNS compared to morphine and therefore a decrease in 

potency was shown. However, further investigation demonstrated morphine, either administered 

SC or IP, produced the same EC50, suggesting administration route does not explain the differences 

(See Appendix, Figure 5.2). However, future studies should assess CNS concentrations of AMB67 

following various routes of administration.  
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           Lastly, physical dependence was assessed. Repeated administration of morphine elicited 

withdrawal-like behaviors, indicative of physical dependence development. However, animals 

repeatedly administered AMB67 displayed minimal withdrawal-like behaviors, although this 

effect was not significant from control. One concern with these studies is the relative affinities 

between AMB67 and naltrexone (the antagonist used to elicit the withdrawal-like behaviors). 

AMB67 exhibited a roughly 2-fold greater affinity for the MOR than naltrexone and was 

administered at 5x the dose. It is possible that naltrexone was unable to displace enough of AMB67 

from the MOR to induce a significant withdrawal-like effect. Future studies should address this 

concern by potentially using a ligand with a higher affinity, such as diprenorphine. Diprenorphine 

may be sufficient in outcompeting with AMB67 for the MOR and, therefore, eliciting a significant 

withdrawal-like response. Physical dependence is a major driver for continued opioid use because 

patients will begin using drug to minimize the effects of withdrawal. Having an opioid that does 

not cause drug dependency, as determined by withdrawal symptoms in the absence of drug, is a 

major advancement in opioid-based therapy. The combination of robust antinociceptive effects, 

no tolerance development, diminished physical dependence, and lessened abuse potential makes 

AMB67 a potential candidate for treating patients’ long term. 

Continued Evaluation of The Mixed Efficacy MOR Agonist/DOR Antagonist, AAH8: 

Pharmacokinetics May Limit the Centrally Mediated Antinociceptive Effects of AAH8 

 Previous research demonstrated the mixed-efficacy opioid, AAH8, produced equipotent 

antinociceptive effects to morphine, no tolerance development following repeated administration, 

and no abuse potential5. These data strengthen the rationale for assessing mixed-efficacy opioid 

ligands as a safer alternative to current opioid therapeutics. In this section, the assessment of 

AAH8-induced antinociception was initially attempted in a chronic model of inflammatory pain. 
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However, acute AAH8 administration failed to attenuate CFA-induced mechanical allodynia, up 

to 32mg/kg, and was only modestly effective at 32mg/kg in the WWTW, contradictory to recently 

published work. Therefore, this section first assessed potential rationales for why AAH8 lacks 

antinociceptive effects in assays requiring CNS receptor activation.  

 In the AASA, AAH8 induced nearly equipotent antinociceptive effects as morphine, with 

an EC50 of approximately 0.5mg/kg. Antinociceptive effects in the AASA is predominately 

mediated through peripheral opioid receptors, as naloxone methiodide (NLX-M), a peripherally 

restricted opioids receptor antagonist, attenuated the effects of morphine. However, NLX-M failed 

to attenuate the antinociceptive effects. These data suggest that AAH8 induces antinociception via 

a central mechanism. However, systemically administered AAH8 did not produce antinociceptive 

effects in the WWTW or VF assays, suggesting that it does not reach the CNS. When administered 

ICV, AAH8 produced dose-dependent antinociceptive effects in the WWTW. These data suggest 

that when AAH8 is given in a manner that allows it to reach central MORs, it produces robust 

antinociceptive effects. A potential rationale for why NLX-M failed to attenuate the 

antinociceptive effects of AAH8 in the AASA is that AAH8 has a 3000-fold greater affinity for 

the MOR than NLX-M30,31. Therefore, at equal doses, NLX-M may not be able to compete with 

AAH8 for receptor occupancy and cannot block the antinociceptive effects of AAH8. Higher doses 

of NLX-M cannot be used as NLX-M can access the CNS if at a high enough dose. Peripherally 

acting MOR antagonist (PAMORA) usage has risen due to the effectiveness in reversing opioid-

induced constipation32. Synthesizing a PAMORA with greater affinity than those already in use 

would be an additional approach to assess how AAH8 is inducing antinociceptive effects in the 

AASA. Loperamide, a MOR selective agonist, is well characterized as a useful drug in patients 

with IBD, as it is restricted to the GI tract and induces constipation effects. The restrictiveness of 
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loperamide is due to it being a major substrate for p-glycoproteins (PGP), a protein involved in 

drug detoxification and tissue protection from administered drugs33,34. It is unknown if AAH8 is a 

substrate for PGP, but it would be interesting to assess, via microanalysis, if CNS concentrations 

of AAH8 differ between WT and PGP null mice. 

Understanding that AAH8 induced opioid receptor-mediated antinociceptive effects in a 

peripherally mediated model of pain, we were interested in assessing the constipation effects of 

AAH8 following different routes of administration. AAH8 (10mg/kg) was shown to induce 

constipation in WT mice5. We chose to assess an AAH8 dose-response curve compared to 

morphine and interestingly, AAH8 was approximately 20-fold more potent than morphine at 

inducing constipation effects. These results were unexpected, given the equipotent antinociceptive 

effects in the AASA. However, these data are consistent with the in vitro evaluation of AAH8, 

where AAH8 is approximately 100-fold more potent at activating the MOR than morphine. When 

administered IP, AAH8 was more potent than AAH8 (SC) at producing constipation effects, but 

why this was the case was puzzling. AAH8 includes a THQ core within the structure that has been 

shown to exhibit significant CYP3A4 metabolism35, an enzyme predominately found in the liver, 

with small traces in the small intestines. Drugs administered IP are subject to extensive first-pass 

metabolism within the liver via absorption through the hepatic portal system36, whereas SC 

administration bypasses first-pass metabolism. This would suggest AAH8 would undergo more 

significant metabolism following IP than SC; however, this contradicts the constipation data 

collected here. Another rationale is potential absorption issues from the injection site. Following 

SC administration, less drug reaches circulation, including the site of action in the GI tract; 

therefore, larger doses of AAH8 would be needed to produce constipation following SC 

administration. Future studies should evaluate systemic AAH8 concentrations following IP and 
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SC administration to assess if the metabolism of AAH8 differs. Additionally, studies should 

evaluate the metabolism and pharmacokinetics of AAH8 between different routes of 

administration to improve metabolic stability of future ligands. 

Elucidation of Additional Mechanisms Involved in Opioid-Induce Tolerance 

 Much research has exposed mechanisms involved in opioid tolerance37-39. In vitro 

models have been instrumental in elucidating receptor effects that contribute to tolerance 

development. Cells exposed to prolonged morphine show morphine-induced receptor 

desensitization, and these results have been recapitulated in ex vivo studies looking at various brain 

regions40,41,42,43. Opioid receptor downregulation has been shown following chronic opioid 

exposure and is proposed to be involved in tolerance. Ex-vivo studies using beta-arrestin-2 KO 

mice showed a disruption in morphine-induced tolerance and resensitization44. These effects were 

recapitulated in the same strain of mice where tolerance development following repeated 

administration of morphine was diminished in beta-arresting-2 KO mice compared to WT 

controls45. Further, the use of in vivo models has also aided in elucidating tolerance mechanisms. 

Beta-arrestin-2 proteins are crucial for regulating agonist-mediated G-protein coupled receptor 

(GPCR) signaling; both by mediating receptor desensitization and receptor resensitization34, which 

are both thought to be critical for tolerance development. Additionally, MOR residing in the DRG 

exhibited attenuated morphine-induced decreases in voltage-gated calcium currents following 

repeated administration46, but it is unknown if this effect leads to any physiologically relevant 

behavioral effect such as tolerance development to the antinociceptive effects of MOR agonists. 

The presence of opioid receptors on peripheral nerve terminals of primary afferent neurons, 

and the DRG, sparked interest in using opioid agonists that lack CNS effects for treating pain47. If 

applicable, the adverse effect profile should be improved as many of the undesired effects of 
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opioids, such as abuse liability and respiratory depressant effects, are predominately mediated in 

the CNS. Although pre-clinical studies indicate peripheral opioid receptor-mediated 

antinociception in inflammatory models48-52, clinical results of peripheral opioid treatment have 

been modest at best53-56, and appear to be most efficacious when employed for knee pain following 

knee surgery, or local infiltration following dental surgery57. Although relatively effective in some 

pain cases, peripheral opioid use may not be sustainable when chronically used because tolerance 

development may be inevitable.  

A recent study suggested antagonism of peripheral opioid receptors on primary afferent 

neurons may be sufficient for attenuating morphine-induced tolerance58, in the absence of pain and 

in a model of chronic neuropathic pain. Therefore, we continued this evaluation by assessing 

peripheral opioid receptor involvement in the development and attenuation of tolerance to the 

centrally-mediated antinociceptive effects of MOR agonists. I show, in this thesis, as have many 

others, that tolerance to the antinociceptive effects of morphine occur following repeated 

administration. 10 mg/kg morphine was administered 3 time daily, for five days and the morphine 

dose-effect curve was assessed before and after repeated administration. In both thermal and 

inflammatory pain models, the non-selective peripherally restricted opioid antagonist, naloxone-

methiodide, fully attenuated morphine-induced tolerance. These results align with those shown by 

Corder et al., 2017, and therefore we chose to assess if repeated activation of opioid receptors in 

the PNS was sufficient for inducing tolerance. To assess this, initial morphine dose-effect curves 

were established on day 1, then 3.2 mg/kg loperamide was administered 4 times daily, for 5 days. 

On day 6, we assessed the morphine dose-effect curve again in the same group of animals. 

Repeated administration of low dose loperamide (3.2mg/kg) induced tolerance and cross-tolerance 

to the antinociceptive effects of morphine. These results are the first to show that centrally-
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mediated antinociception can be disrupted through chronic activation of opioid receptors in the 

PNS. The underlying mechanism causing the rightward-shift in the morphine dose effect curve is 

unknown; however, it may be that chronic activation of opioid receptors in the PNS induce 

alterations in opioid receptor function and signaling in the CNS. For example, following 

systemically administered chronic morphine in mice, MORs in the PAG and in the DRG display 

decreased morphine-induced GIRK inhibition compared to vehicle control mice, a canonical 

mechanism involved in opioid tolerance. It would be interesting to assess morphine-induced GIRK 

inhibition and cAMP inhibition in PAG neurons vs. DRG neurons of mice chronically 

administered loperamide. This would begin to elucidate the downstream effects of chronic 

loperamide. Nonetheless, to further confirm our results are due to activation of peripheral opioid 

receptors, we demonstrated that naloxone-methiodide blocks loperamide-induced cross-tolerance 

to morphine. However, which opioid receptor is mediating this effect is still unknown. It would be 

interesting to synthesize peripherally restricted antagonists at DOR or KOR to assess the 

involvement of each receptor subtype in tolerance development to the centrally mediated 

antinociceptive effects of morphine following repeated, peripheral opioid receptor activation. 

Understanding which opioid receptors, and which population of opioid receptors promote 

tolerance development will improve our knowledge on tolerance mechanisms and potentially alter 

the way in which opioid-based treatment is conducted. 

As mentioned previously, it is imperative to elucidate all mechanisms that contribute to 

opioid tolerance to improve opioid-based therapy. These studies offer evidence that usage of 

peripheral opioid agonists may not be the best nor safest approach and that alternative methods are 

required for treating pain.   
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Conclusion: 

 MOR agonists produce significant analgesic effects, but the clinical utility is hindered due 

to unwanted effects such as constipation, respiratory depression, abuse potential, physical 

dependence, and tolerance development. Many decades of research have focused on synthesizing 

novel, selective ligands targeting the MOR for treating clinical pain. However, with no 

improvements in adverse effect profiles, new approaches are required to improve opioid-based 

therapy. Therefore, the current studies explored the contribution of other opioid receptor types and 

populations of opioid receptors contributing to the acute and chronic effects of MOR agonists. 

Literature on mixed-efficacy MOR/DOR ligands continue to show improvements in adverse effect 

profiles compared to current clinically used opioids. Further, understanding that the production 

and attenuation of tolerance development can be disrupted through actions at opioid receptors in 

the periphery, these data may shed light on potential mechanisms involved in the improved adverse 

effect profiles of mixed-efficacy opioid ligands. For example, it would be interesting if either the 

DOR or the KOR in the PNS mediate tolerance to MOR agonists, as this would evolve clinical 

approaches for pain and minimize tolerance in the human population. Implications of targeting the 

DOR in the periphery may provide a more distinct explanation as to why mixed-efficacy opioid 

ligands display a lessened adverse effect profile. Overall, the work presented in this thesis should 

benefit the generation of safer analgesics and further our understanding of opioid tolerance. The 

possibility of attenuating the crippling adverse effects associated with opioid use would greatly 

benefit opioid-based treatment, fight the opioid epidemic, and potentially save the lives of those 

who require opioids for normal, everyday function. 
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Appendix 

 

 

Figure 5.1 Acute Antinociceptive of AMB67 and Morphine in Pain-Depressed Wheel Running 

Figure 5.1: Acute Antinociceptive of AMB67 and Morphine in Pain-Depressed Wheel Running. (A) Effects of different 

doses of morphine on wheel running behavior in the absence or presence of hindpaw CFA injections. (B) Effects of different 

doses of AMB67 on wheel running behavior in the absence or presence of hindpaw CFA injections. ** p < 0.01 relative to 

CFA.  
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Figure 5.2 Drug Discriminative Properties of Morphine 

Figure 5.2: Characterization of the Drug Discriminative Properties of Morphine Following SC or IP administration. The 

% morphine responding in rats trained to discriminate the subjective effects of morphine (IP) from saline (IP) was assessed 

following either IP or SC morphine administration.  
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