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Abstract

The increasing availability of healthcare data has provided a great opportunity for the

development of data-driven models to guide health policy and medical practice. The

objective of this dissertation is to present new methods that use these data to make bet-

ter healthcare decisions at a population and patient level. We first model the supply,

demand, and allocation of organs for transplantation using data from the Organ Pro-

curement and Transplantation Network and the US Census Bureau. Then, we introduce

personalized treatment plans and genetic testing strategies for the management of cardio-

vascular diseases. We evaluate the clinical and policy implications of the treatment and

testing strategies at a population level using data from the National Health and Nutrition

Examination Survey. Lastly, we propose a modeling framework to consider physicians’

judgment and patients’ preferences in the implementation of treatment protocols. To

illustrate how this method can be implemented in medical practice, we find ranges of

near-optimal antihypertensive treatment choices for 16.72 million adults in the US. This

research has the potential to improve healthcare practice by giving flexible and achievable

guidelines to policymakers and medical professionals based on patient and population-

level data.
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Chapter 1

Introduction

The increasing accessibility of data in our society provides the opportunity to use these
data to inform decisions across multiple domains, such as supply chain, transportation,
and healthcare (Stobierski, 2019). Within the healthcare field, data-driven approaches
have been proposed to predict the availability and need of resources, model patients’
disease progression, support clinical and public health decisions, as well as to evaluate
the effectiveness of interventions (Galetsi and Katsaliaki, 2020). More generally, these
approaches can be categorized based on the level of granularity of the data. In this
dissertation, we present new methods that use population and patient-level data to make
better healthcare decisions. Using population-level data, we focus on modeling the supply
and demand of organs for transplantation in the US. Based on patient-level data, we aim to
personalize treatment and genetic testing strategies for the management of cardiovascular
diseases.

1.1 Using Population-Level Data to Model the Supply and

Demand of Organs for Transplantation

Population changes may impact the need and availability of resources. Within a health-
care system, resources may range from providers to organs available for transplantation.
While demographic changes may affect various resources in our healthcare system, in this
dissertation we center on the supply and demand of organs for transplantation.

Organ transplantation is a life-saving and cost-effective intervention for patients with
organ failure. There are six types of solid organs that can be transplanted in the US:
kidneys, liver, heart, lungs, pancreas, and intestines (Keller, 2015). Liver failure is the
second most common reason to enroll in the organ transplantation waiting list (U.S.
Organ Procurement and Transplantation Network, 2019).
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Despite the number of organs available for liver transplantation (LT), the demand for
livers greatly outweighs its supply. At the end of 2019, 9,675 livers were donated while
12,941 patients were added to the LT waiting list. There has been a gap between the
amount of livers donated and the number of candidates added to the LT waiting list for
more than 15 years. This has led to prolonged waiting times for LT and higher rates of
waiting list dropout due to patient death or deteriorating medical conditions (U.S. Organ
Procurement and Transplantation Network, 2019). There is a clear gap between the supply
and demand of livers in the US. Moreover, there is a potential for further exacerbation of
this disparity given the aging population and obesity epidemic in the US (Parikh et al.,
2015).

In this dissertation, we present data-driven methods to understand how the expected
population changes in the US may impact liver availability and demand in the future.
These methods are built based on data from the Organ Procurement and Transplantation
Network (OPTN), the US Census Bureau, and the University of Virginia’s Weldon Cooper
Center for Public Service.

1.2 Using Patient-Level Data for the Management of Car-

diovascular Diseases

According to the National Vital Statistics, atherosclerotic cardiovascular disease (ASCVD),
constituting coronary heart disease (CHD) and stroke, is the leading cause of death in the
US (Kochanek et al., 2019). The Heart Disease and Stroke Statistics 2020 Update reports
that CHD and stroke account for 42.6% and 17.0% of deaths attributable to cardiovascular
diseases in the US, respectively (Virani et al., 2020). The management of ASCVD can be
improved by (1) incorporating novel procedures, such as genetic testing, and (2) providing
physicians and their patients with flexibility in the implementation of protocols.

Research has found that ASCVD has genetic and familial components (The CARDIo-
GRAMplusC4D Consortium, 2013; MacRae and Vasan, 2016). However, the role of genetic
testing in the prevention and treatment of ASCVD is not well understood yet (Jarmul et al.,
2018). Recently, a genetic risk score (GRS) that helps predict ASCVD was developed (Mega
et al., 2015; Khera et al., 2016; Natarajan et al., 2017). This GRS may also help characterize
which patients will likely receive the greatest benefit from cholesterol treatment. High
blood cholesterol is one of the main controllable risk factors of ASCVD. Approximately
29.4% of adults in the US have high low-density lipoprotein (LDL) cholesterol (Virani
et al., 2020). High LDL is the main concern while having high blood cholesterol. This
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dissertation includes data-driven methods to determine who should receive genetic test-
ing and how patients’ cholesterol should be treated with or without genetic information.
Using data from the National Health and Nutrition Examination Survey (NHANES), we
illustrate the clinical and policy impact of genetic testing across different populations in
the US.

Another main controllable risk factor of ASCVD is the patients’ blood pressure (BP).
Using the definition from the 2017 Hypertension Clinical Practice Guidelines, 45.6% of
adults in the US have hypertension or high BP (Whelton et al., 2018). These guidelines
have generated considerable controversy among practitioners (Ioannidis, 2018; Cohen and
Townsend, 2018; Solberg and Miller, 2018; Wilt et al., 2018). In addition, the 2017 Hyper-
tension Clinical Practice Guidelines (Whelton et al., 2018) provide conflicting recommen-
dations regarding when to initiate pharmacological interventions with other guidelines
such as Williams et al. (2018). Controversy and conflicting recommendations complicate
the already difficult problem of deciding how to manage patients’ BP. Further, physicians’
opinion and patients’ preferences may influence the selection of treatment plans, inde-
pendently of the guidelines’ suggestions (Cabana et al., 1999). To benefit from clinicians’
expertise and account for any potentially conflicting recommendations, this dissertation
introduces a data-driven method to obtain personalized ranges of near-optimal treatment
options.

1.3 Organization and Contributions

The organization of this dissertation is shown in Figure 1.1. This dissertation is divided
into two parts. The first part of the dissertation (Chapter 2) focuses on the development of
models to predict the supply and demand of organs for transplantation, with an emphasis
on liver transplantation. The second part of the dissertation (Chapters 3 and 4) centers on
the management of ASCVD. In terms of the level of granularity of the data, the first part of
the dissertation uses population-level data, and the second part uses patient-level data to
address healthcare questions. The work in this dissertation is done in collaboration with
experts from the Department of Industrial and Operations Engineering, the Department
of Statistics, the Medical School, and the School of Public Health at the University of
Michigan, as well as from the US Department of Veterans Affairs and the Department of
Medicine at Harvard Medical School. We now briefly describe to contents of each chapter
as well as our contributions.
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1.3.1 Part 1: Using Population-Level Data to Model the Supply and

Demand of Organs for Transplantation

In Chapter 2, we develop data-driven models to predict future organ supply and demand
of organs for transplantation. We first use data on the expected demographic trends in
the US and past donation rates to make projections on liver availability in the US. Then,
we forecast the future burden of non-alcoholic steatohepatitis (NASH) related cirrhosis,
one of the leading causes of additions to the LT waitlist in the US. Afterwards, we present
a population-based approach to understand the impact of redistricting and demographic
changes on the number of donors available in the US. Lastly, we aim to improve the
prediction of deceased donor organ yield, a key performance metric in the organ donation
system. Increasing organ yield is a potential way to reduce the gap between organ supply
and demand. The main contributions of Chapter 2 are as follows.

• We design a heuristic model to make predictions based on population-level data.

• We present a modeling technique that integrates machine learning and stochastic
simulation methods to make predictions.

• We forecast the supply and demand of livers for transplantation.

• We create a computationally efficient (through parallel computing) machine learning
framework to predict how many organs one can expect to recover from a deceased
donor.

The projection of liver supply was published in Liver Transplantation (Parikh et al.,
2015), the forecast of NASH in Hepatology (Parikh et al., 2017), and the prediction of liver
supply under the allocation policies was published in Transplantation (Parikh et al., 2017).
A preliminary version of the estimation of the expected organ yield was published as an
In Brief in Transplantation (Marrero et al., 2018). The complete organ yield analysis and
results will be submitted to a medical journal.

1.3.2 Part 2: Using Patient-Level Data for the Management of Cardio-

vascular Diseases

In Chapter 3, we design cholesterol treatment plans and genetic testing strategies for the
management of ASCVD. We first develop risk-based threshold treatment and testing
strategies on the basis of the US Preventive Services Task Force (USPSTF) Guidelines
(Bibbins-Domingo et al., 2016). Then, we develop cholesterol treatment plans using a
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Markov decision process (MDP) model and perform genetic testing based on the USPSTF
Guidelines as well as based on the demographic information of patients. Finally, we
present a framework to obtain simultaneous cholesterol treatment plans and genetic test-
ing strategies by combining dynamic programming with value of information (VoI) anal-
ysis. This chapter makes the following contributions:

• We develop a framework to incorporate genetic information to the risk of adverse
events based on conventional factors.

• We create and thoroughly validate a simulation model to evaluate the implications
of genetic testing in the US.

• We quantify of the impact of genetic information across different populations in the
US.

• We design a framework to simultaneously make optimal cholesterol treatment and
genetic testing decisions.

The risk-based threshold treatment and testing strategies is a working manuscript and
will be submitted to a medical journal, the cholesterol treatment plans using MDP models
and the simulation model to evaluate the effect of genetic information was published
in the Proceedings of the 2019 Winter Simulation Conference (Marrero et al., 2019), and the
framework to make simultaneous treatment and testing decisions is under review in
Health Care Management Science.

In Chapter 4, we propose a new framework for identifying sets of near-optimal treat-
ment choices. This framework integrates simulation-based dynamic programming (SBDP)
and statistical multiple comparisons to provide clinicians’ and their patients’ with flexi-
bility in the implementation of protocols. Overall, the contributions of this work are as
follows.

• We develop a new SBDP algorithm, which we will refer to as the simulation-based
backwards induction (SBBI).

• We provide finite sample, convergence, and asymptotic structural properties of the
SBBI algorithm.

• We design a new multiple comparisons with a control (MCC) method, which we
will refer to as the simulation-based multiple comparisons with a control (SBMCC)
algorithm.
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• We present a new notion of near-optimality by formulating stochastic optimization
problems as hypothesis testing problems.

• We offer convergence and asymptotic structural properties of the SBMCC algorithm.

• We show the scalability of our approach to find ranges of near-optimal actions by
applying our method to the management of hypertension.

This work will be submitted to an engineering journal.
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Chapter 2

Modeling Supply, Demand, and Allocation in
Liver Transplantation

In this chapter, we first present a heuristic model to forecast the future availability of
livers in the US. We apply historical donation rates to the US Census Bureau population
projections to estimate the future supply of livers. Then, we present a model based on
linear regression and stochastic simulation to make projections of the future potential
burden of NASH, one of the main causes of additions to the LT waiting list. We identify
the population-based temporal relationship between obesity and NASH related cirrhosis
requiring LT listing in the US. We also present a population-based approach to understand
the impact of redistricting and demographic changes in the US on the number of livers
donors available. Lastly, we compare several machine learning methods to predict overall
deceased donor organ yield.

2.1 Background

There has been a decrease in the availability of deceased organ donors for LT in the
US for more than a decade (Wong et al., 2014). The decrease in donor availability has
increased the disparity among the number of patients listed for LT and the number of
liver transplants performed (Dienstag and Cosimi, 2012). One factor contributing to the
decrease in the availability of deceased organ donors for LT has been the decrease in
the utilization of grafts. Factors contributing to the decrease in the utilization of grafts
include the aging population, the obesity epidemic, and the increased prevalence of
diabetes (Orman et al., 2013). The US population is expected to continue to age according
to the projected demographic trends, thus likely exacerbating the availability of donors
(US Census Bureau, 2011; Rayhill et al., 2007). Nonetheless, there is little understanding
on the impact of demographic trends on future liver availability.
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It is estimated that more than 20% of patients listed for LT will drop off the waiting list
and approximately 17% will die before receiving a liver transplant each year (Northup
et al., 2015; Kim et al., 2015). One of the main causes of addition to the waiting list for LT is
NASH cirrhosis. NASH is the fastest growing indication for LT, becoming the 6th leading
cause of additions to the waiting list for LT in 2014 and contributing 14.3% of the total
additions (U.S. Organ Procurement and Transplantation Network, 2019). This condition
resembles alcoholic liver disease, but occurs in people who drink little or no alcohol.
NASH is characterized by fat in the liver, along with inflammation and damage. Given
the historical rise of obesity in the US, the incidence of NASH is expected to increase.
However, there are no studies on the future burden of NASH in the US.

Given the aging US population and better therapies for liver diseases, the demand for
LT may fluctuate (Su et al., 2016). These factors vary geographically and have an impact on
liver availability (Parikh et al., 2015). Estimating future liver availability as a function of
the total population may provide additional insights into geographic inequities in organ
availability.

2.2 Organization of the Chapter

This remainder of this chapter is organized as follows. Section 2.3 provides a review of the
relevant literature. We study liver supply and demand in Sections 2.4 and 2.5. Then, we
used our modeling approach for liver supply in Section 2.4 to understand the implications
of geographic redistricting in Section 2.6. While we did not model the effect of geographic
redistricting on liver demand, better allocation of livers could potentially reduce the liver
transplantation waiting list. Finally, in Section 2.7, we aimed to improve the prediction of
deceased donor organ yield. Better prediction of deceased donor organ yield may serve
as an aid to improve future liver availability. The organization of this chapter, after the
background and literature review, is shown in Figure 2.1.

2.3 Literature Review

The relevant literature in this chapter falls into two domains: (i) development of predictive
models of organ supply and demand; and (ii) application of operations research (OR)
models to organ transplantation.
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Figure 2.1: Organization and connections between sections in Chapter 2.

2.3.1 Predictive Models for Organ Supply and Demand

There is limited research regarding the use of predictive modeling to forecast future organ
availability. Yee et al. (2010) developed a logistic regression model to predict the time
of death after withdrawal of life-sustaining measures. This model could then be used to
forecast the number of donors after cardiac death that would be available, which may
be an indication for viable liver donors. However, this model does not forecast future
liver availability itself. In addition, this model does not consider population changes or
variation on donation rates to predict how many donors would be available in the future.

From the point of view of demand for organs, most of the work has been done in kidney,
rather than liver. Tom and Kumar (2016) addressed the growth and style of cadaveric
kidney demand in Kerala, India using a time series model. The results obtained during
this study presented an increasing linear trend on the overall demand in Kerala. Abellan
et al. (2004) addressed the problem of predicting the demand for kidney transplantation in
Spain using discrete event simulation. Surprisingly, their results indicated that the waitlist
was expected to decrease in the short term. Additionally, Roderick et al. (2004) created
a discrete simulation model to estimate the future demand for renal replacement for a
range of scenarios in England. According to their model, the acceptance rates and dialysis
survival were the most influencing factors in future patient demand. Nevertheless, none of
these models forecast demand for LT or consider demographic trends in their projections.

From an OR perspective, most of the predictive modeling work has been done in
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graft survival, which can be used to determine which patients should have priority in
the waiting lists when organs become available. Models to predict the graft survival of
hearts, heart-lungs and kidney have been developed in several studies (Medved et al.,
2016; Oztekin et al., 2009; Decruyenaere et al., 2015; Grams et al., 2012; Marrero et al.,
2016; Rao et al., 2014). Raji and Chandra (2016) predicted the survival of liver grafts
after transplantation using an artificial neural network. Their model showed an accuracy
of 99.74% when evaluated using 10-fold cross-validation, while the current model for
predicting liver graft survival presented an accuracy of 79.17%. The problem of predicting
patient survival after LT was also addressed by Cruz-Ramı́rez et al. (2013). The authors
used models based on artificial neural networks to develop a rule-based system to allocate
organs. In addition, Kim et al. (2015) created classifiers based on several machine learning
methods in an effort to improve the simulated allocation models for liver.

2.3.2 Application of Operations Research Models to Organ Transplan-

tation

Several optimization models have been developed with the purpose of designing the
optimal geographical partition of the US. Kong et al. (2010) created a mixed-integer pro-
gramming model to maximize the efficiency of intraregional transplants by redesigning
the liver allocation regions. Gentry et al. (2013, 2015) also used a mixed-integer program-
ming model to divide the donor service areas (DSAs) into sharing districts that minimize
the disparity in liver availability among districts. They evaluated and compared their
models with a discrete-event simulation tool that represents liver allocation at a per-
person, per-organ level. On the other hand, Akan et al. (2012) designed a multi-class fluid
model of overloaded queues to model the waiting list for liver transplants. The authors
used a bi-criteria objective function with the goal of minimizing the total number of patient
deaths while waiting for LT and maximizing the total quality-adjusted life years (QALYs).
Other optimization models in organ allocation are surveyed in Alagoz et al. (2009).

Other OR models related to liver transplantation are also available in literature. Alagoz
et al. (2004) developed a model to determine the best time to accept a liver from a living
donor with the goal of maximizing the patient’s total reward (e.g. quality-adjusted life
expectancy). The authors continued their work when they also addressed the problem
of accepting or declining a liver of some quality from a patient’s perspective (Alagoz
et al., 2007b). The authors further extended their work by considering the problem of
choosing between a liver from a living or a deceased donor from a patient’s point of
view (Alagoz et al., 2007a). While OR has provided many valuable insights in the field of
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organ transplantation, none of the models directly address how to use the available data
to understand changes in the supply and demand of organs.

2.4 Modeling Liver Supply

Although it is common perception that organ availability is decreasing, there are very few
studies that quantify the expected organ availability. Moreover, little research has been
done on the implications of demographic trends on the utilization of donors in the US
over the next decade. Thus, our objective is to leverage the expected demographic trends
and past donation rates to make projections on liver availability in the US over the next
decade.

2.4.1 Data Sources

2.4.1.1 Historical Population Data

Data from the US Census Bureau is used to obtain 2002-2014 national population estimates.
We use two US Census Bureau data sets for this purpose: (1) Intercensal Estimates of the
Resident Population by Single Year of Age, Sex, Race, and Hispanic Origin for the United
States: April 1, 2000 to July 1, 2010 and (2) Monthly Population Estimates by Age, Sex,
Race, and Hispanic Origin for the United States: April 1, 2010 to July 1, 2014 (US Census
Bureau, 2018, 2020). These data is stratified by race/ethnicity (white, black, Hispanic,
and other), sex, and age group (18-34, 34-50, 50-64, and 65-84 years old). The population
estimates by race/ethnicity, sex, and age group are used to calculate overall donation rates.

2.4.1.2 Historical National Population Obesity Prevalence Data

We segregate the historical population into obese and non-obese population using data
from the NHANES from 1999 to 2010 (Flegal et al., 2012). The historical population data
is then segregated by body mass index (BMI) (<30 or ≥ 30 kg/m2), race, sex, and age
group. The data from Continuous NHANES is directly measured and collected in two-
year cycles, thus we divide each cycle according to the time period the data is collected.
We assume that data collected from November 1 through April 30 is representative of the
first year of the cycle and data collected from May 1 to October 31 is representative of the
second year of the cycle. We only include the records of adult individuals between ages
18-74 years with BMI less than 60 kg/m2 in our estimates of obesity prevalence. NHANES
entries with any missing BMI data are excluded from this calculation (n = 869; 2.1%).
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2.4.1.3 Donor Utilization Data

Liver utilization rates are obtained using the OPTN database from 2000 to 2012. We
determine the utilization rates of whole and split livers for all donors with at least one
organ transplanted. These rates are calculated as a percentage of the overall population
per year.

2.4.1.4 Population Projections by Age, Sex and Race

Population projections in the US from 2014 to 2025 are derived using data from the US
Census Bureau stratified by age, sex, and race (US Census Bureau, 2014). The population
projections from the US Census Bureau provide three series of projections: the middle
series, the high series, and the low series. We use the middle series of the population
projections as the base case of our analysis.

2.4.2 Projection Development

We first forecast overall donor availability from 2014 to 2025 using the US population-
based rates of donation (donors transplanted/total population) per year. We stratify the
average donation rates from 2008 to 2012 by age group, race/ethnicity, sex, and BMI
to obtain an estimate of overall donor availability. We then project future liver donor
availability using the historic liver utilization rates (liver donors/total donors) segregated
by age group, race/ethnicity, sex, and BMI. We use the average liver utilization rate from
2008 to 2012, and the best and worst liver utilization from 2000 to 2012 to forecast liver
donors from 2014 to 2025.

2.4.3 Sensitivity Analysis

We perform four separate sensitivity analyses, varying the proportion of obese adults,
proportion of Hispanic adults, overall US adult population growth over the projection
period, and varying the change in liver utilization rate over time. For the first sensitivity
analysis we vary the rate of BMI changes over the next decade. The ranges for the
sensitivity analysis of BMI are derived from the average annual rate of increase in the
US population BMI in the obese range (>= 30) from 1999-2010, which is approximately
0.75% per year (Flegal et al., 2012). The ranges for sensitivity analysis for the proportion
of Hispanic adults are obtained from US Census Bureau high and low race/ethnicity
projections (US Census Bureau, 2012). We focus the sensitivity analysis on the proportion
of US Hispanics because this population is projected to be the most dynamic in the US
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over the coming decade, relative to other racial/ethnic groups. For the overall population
growth sensitivity analyses we use the high and low population projections from US
Census Bureau data. Since liver utilization has been decreasing over the last 7 years and
there has not been a clear nadir in utilization, we perform a sensitivity analysis varying
the rate of liver utilization. We calculate the average change in liver utilization from
2007-2012, which is a mean decrease of 0.72% per year. We then conduct our projections
increasing or decreasing the liver utilization by 0.72% per year.

2.4.4 Monte Carlo Simulation

We perform a Monte Carlo simulation to measure the combined impact of uncertainty in
population projections, BMI, donation rates, and utilization rates on the projected donors.
Each input variable in our model is defined a distribution. The population projections
are modeled as a multivariate Gaussian distribution with mean as the middle series of
the population projections stratified by age group, sex, and race, and standard deviation
as one quarter of the difference between the high and low series. The parameters for
the proportion of obese population (BMI ≥ 30 kg/m2) for each age, sex, and race group
are sampled from normal distributions with means and standard deviations matching
those in the NHANES study (Flegal et al., 2012). We sample with replacement the annual
donation and utilization rates from 2000 to 2012.

2.4.5 Liver Supply Projections Results

The projected liver donor availability is depicted in Figure 2.2. Our base-case forecast is
made using the average liver utilization rates from 2008 to 2012. We also use the best
(2012) and worst (2004) liver utilization rates from 2002 to 2012 as alternative scenarios of
future liver availability. All cases show a steady increase in the expected number of liver
grafts available from 6,129 (6,047-6,462) in 2014 to 6,500 (6,429-6,833) in 2025. We forecast
an overall increase in the percentage of available livers for transplantation of 6.8%.

Table 2.1 shows a comparison between the projected donor and adult population
growth in the US. We estimate that the US population growth will surpass the growth in
potential liver donors from 2014 to 2025. The number of utilized liver grafts is expected
to increase in 6.1% and the number of available donors in 5.8%. On the other side, we
estimate that the adult population with ages 18-75 in the US will increase in 7.1% from
2014 to 2025. This age range is considered acceptable at most US centers for receiving
liver transplantation.
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Figure 2.2: Projections of liver organ availability.

Table 2.1: Projected population and donor growth from 2014 to 2025.

Year
Number
of Livers

% Liver Donor
Growth (Average)

% Total Donor
Growth

% Population
Growth

(18-75 Years Old)
2014 6129 0.7 0.7 0.9
2015 6168 0.6 0.6 0.8
2016 6207 0.6 0.6 0.8
2017 6245 0.6 0.6 0.8
2018 6284 0.6 0.6 0.8
2019 6320 0.6 0.5 0.6
2020 6351 0.5 0.5 0.6
2021 6383 0.5 0.5 0.6
2022 6413 0.5 0.4 0.6
2023 6442 0.5 0.4 0.3
2024 6471 0.5 0.4 0.4
2025 6500 0.4 0.4 0.4
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The results of the sensitivity analysis for BMI are shown in Figure 2.3a. The results
show that donor availability is sensitive to increases or decreases in the proportion of
adults with a BMI over 30 with a 6.2% range in projected liver donors. The results for
the sensitivity analysis for changes in the proportion of the US Hispanic population are
shown in Figure 2.3b. Changes in the Hispanic population do not result in a dramatic
change in the projected number of liver grafts with a 0.62% range in projected liver
donors. The impact of changes in total US population growth is shown in the sensitivity
analysis in Figure 2.3c. The availability of donors is also fairly insensitive to changes
in these parameters with a 1.4% range in projected liver donors. Figure 2.3d shows the
sensitivity analysis of changes in liver utilization rate over time. With this projection,
the 2025 utilization would be 90.12% in the utilization growth scenario and 73.32% in the
utilization decline scenario. The results show that liver donor availability is sensitive to
utilization with a 19.6% range at the end of the projection time period.

(a) BMI sensitivity analysis. (b) Hispanic population sensitivity analysis.

(c) Population growth sensitivity analysis. (d) Liver utilization sensitivity analysis.

Figure 2.3: Results of sensitivity analyses.

The Monte Carlo simulation is shown in Figure 2.4. Incorporating uncertainty in all
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the input projection variables, the projections using the Monte Carlo simulation are very
similar to our base case projections shown in Figure 2.2.

Figure 2.4: Monte Carlo simulation of liver availability.

2.4.6 Discussion

Liver transplantation remains the best life-saving therapy for patients with end-stage liver
disease, however the ability to perform transplantation is limited by donor availability.
While there is a perception that donor availability will continue to worsen with future
demographic changes in the US population, this has not been objectively studied. We
found that while the donor population will increase over the next 12 years, general
population growth will outstrip projected donor growth, thus potentially exacerbating
the donor shortage and increasing wait times for LT nationally. Sensitivity analyses were
sensitive to population changes in BMI and liver utilization rate, but not changes in the
proportion of the US Hispanic population or changes in the overall population growth.

Strategies to increase the donor pool are warranted to help alleviate the anticipated
shortage in donors to decrease waitlist mortality. These include increasing donor enroll-
ment and public awareness regarding organ donation (Salim et al., 2014; Li et al., 2013);
optimizing processes of organ retrieval and allocation (Doyle et al., 2014); and utilization
of technologies to increase viability of organs with prolonged cold ischemia time and
donation after cardiac death donor organs (Graham and Guarrera, 2014). We otherwise
do not anticipate a major expansion in the utilization of donation after cardiac death liv-
ers, given the inferior outcomes seen with these grafts. Expansion of living donor liver
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transplantation could also help alleviate the projected shortage, however risks to donors
remain a concern in the US (Hall et al., 2014; Abecassis et al., 2012). Broader regulatory
changes that may lead to variance in risk aversion with respect to marginal grafts are more
difficult to project; however with the increased focus in outcomes and quality of care and
links to reimbursement, we anticipate that risk aversion may worsen moving forward
(Bardach et al., 2013; Jha, 2013; Calikoglu et al., 2012).

There are many strengths and weaknesses of our study. We compiled unique data
elements from many sources to complete our projections, and thus many of our input
variables are dependent on single source data. The projections of organ availability assume
no major changes in donor availability or breakthroughs in procurement technologies
that could dramatically increase liver utilization rates. We accounted for incremental
changes that would affect liver utilization with our final sensitivity analysis, varying
the utilization rate over time. A significant breakthrough resulting in major changes
in utilization could significantly alter these projections. However, we do not anticipate
approval and widespread adoption of new technologies during the relatively short time-
horizon of this study. In addition, BMI is an imperfect measure and is has decreased
validity in elderly populations due in part to sarcopenic obesity (Janssen et al., 2005).
Increased hepatic steatosis at lower BMIs in the elderly population may lead to lower
than predicted availability of liver allografts. We also did not account for any other
potential changes in public policy such as implied consent for donation that may increase
the pool of donors available (Starzl, 1984).

Projecting the need for LT in the future is more uncertain, given the rapidly changing
landscape of chronic hepatitis C and the emergence of non-alcoholic fatty liver disease
(NAFLD). There is the possibility that the number of patients requiring transplantation
will decrease, thus partially alleviating the donor shortage, despite our predictions. With
new potent anti-viral agents against hepatitis C under development and recently approved
(Afdhal et al., 2014), the need for LT in this population will likely diminish. However,
NASH related cirrhosis has emerged as a leading indication for LT, and continued growth
may cause further expansion of the LT recipient waitlist further (Wong et al., 2014a;
Agopian et al., 2012). In the next section, we now study the possible impact of NASH in
the LT waiting list.

2.5 Modeling Liver Demand

Obesity has become highly prevalent in the US. It is estimated that 38% of adults in the US
have a BMI greater than 30 (Flegal et al., 2016). Obesity is associated with the development
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of the metabolic syndrome, which includes dyslipidemia, hypertension, insulin resistance,
and hepatic steatosis (Grundy, 2004). Individuals with hepatic steatosis can develop
NASH, which over time leads to hepatic fibrosis and increased risk of development of
hepatocellular carcinoma (HCC) (Tetri et al., 2008; Starley et al., 2010). Therefore, NASH
is expected to become a leading indication for LT in the US and other countries with rising
obesity rates (Flegal et al., 2016; Belli et al., 2016; Goldberg et al., 2017).

The metabolic syndrome and obesity are positively correlated with the development
of NASH related cirrhosis and HCC (Hassan et al., 2010, 2015). Nonetheless, the temporal
relationship between the prevalence of obesity in the population and the rise in NASH
related cirrhosis is still unclear. Several developed and developing countries worldwide
are experimenting increases in the prevalence of obesity. However, the lag in years
between development of obesity in the population and increases in the number of patients
that present for LT due to NASH is not yet characterized. Thus, we propose to identify
the population-based temporal relationship between obesity and NASH related cirrhosis
requiring LT listing in the US. In addition, we aim to forecast future additions to the LT
waitlist due to NASH related cirrhosis.

2.5.1 Data Sources

2.5.1.1 Waiting List Data

We use data from the OPTN database from 2000 to 2014 to obtain the historic number of
additions to the waiting list due to NASH each year. Since previous studies have shown
that a significant proportion of the patients diagnosed with cryptogenic cirrhosis likely
represented undiagnosed NASH cirrhosis, we use a modified definition of NASH that
includes obese cryptogenic patients (Wong et al., 2014b). We include all adult waiting list
additions between 18 and 74 years of age whose BMI is less than 60 kg/m2 in our analysis.

2.5.1.2 Historical National Population Obesity Prevalence Data

We once again use data from Continuous NHANES from 1999 to 2014 to estimate the
national obesity prevalence per year. Please refer to Section 2.4 for details. We stratify the
data from Continuous NHANES according to the following BMI categories 30 to <35, 35
to <40, and 40+ kg/m2. These categories are consistent with the obesity categories used
by the CDC (Kuczmarski and Flegal, 2000).
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2.5.1.3 Historical Population Data

In this section, we also we use data from the US Census Bureau to obtain 2002-2014
national population estimates (see Section 2.4 for details). We apply the obesity prevalence
percentages obtained from Continuous NHANES to the national population estimates
from the US Census Bureau to obtain an estimate of the national obese population. We
use the Continuous NHANES data on obesity prevalence stratified by BMI categories
to estimate the obese population by BMI category from the US Census Bureau national
population estimates.

2.5.2 Model Selection

We examine the relationship among obese population estimates and NASH additions to
the waiting list from 0 to 10 lagged years (i.e. a rise in obesity led to a rise in NASH
additions 0 to 10 years later) using scatter diagrams. This range of lag years is limited
by the availability of data on NASH additions to the waiting list. Scatter diagrams show
that there is a linear association between obesity and NASH additions to the waiting list
at all the time lags considered. Hence, we use a linear regression model to predict NASH
additions to the waitlist based on obese population.

2.5.2.1 National Analysis

We evaluate the association between obese population and NASH additions to the wait-
ing list using a linear regression model. The predictive performance of national obese
population to forecast NASH additions to the waiting list is assessed using leave-one-out
cross-validation methodology under different lag times (0 to 10 years). We choose the lag
time that minimizes the internal validation root mean squared error (rMSE) (Refaeilzadeh
et al., 2009).

Based on historical data, the adult obese population in the US increased linearly from
2000 to 2014. We therefore assume that time is a predictor for obese population. The adult
obese population in the US is modeled as a function of time for future projections using
linear regression.

2.5.2.2 Sensitivity Analysis on Obese Population

Although our data does not provide direct evidence for this behavior, studies suggest that
the obesity epidemic has plateau in recent years and it may stabilize due to nationwide
programs increasing the awareness about obesity prevalence. To address the potential
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stabilization in obese population, we added a quadratic term to our regression model of
obese population as a function of time.

2.5.2.3 Categorical Obesity Analysis

With the purpose of better understanding the impact of each BMI category on the projected
additions to the waitlist, we perform an analysis that stratifies the general obese population
by BMI. The obese population by BMI category (30 to 35, 35 to 40, and 40+ kg/m2) is
estimated using linear regression with time as the predictor. We develop univariate and
multivariate models to examine the relationship of each obese population BMI category
and the additions to the waitlist due to NASH.

2.5.3 Projections and Stochastic Simulation

The additions to the waiting list due to NASH for those lagged years with data on
obese population available are forecasted using linear regression. We calculate prediction
intervals using a standard regression methodology (Faraway, 2009). However, there is no
closed form solution to the prediction intervals of NASH additions to the waiting list for
the cases where the lagged obese population is estimated by linear regression. Therefore,
the point estimates and prediction intervals of NASH additions to the waiting list of these
cases are estimated using stochastic simulation.

We simulate the NASH additions to the waitlist using linear regression models. Point
estimates for the obese population are first simulated. Let pi denote the obese population in
year yi in the dataset (i = 1, 2, . . . ,n1). We fit a linear regression to the US obese population
to obtain the intercept of the model, β̂0, the coefficient for the year of prediction, β̂1, and
the mean square error of the regression model, σ̂2

1. To simulate the obesity population at
year k(k > n1), p̂k, we use the following expression:

p̂k B β̂0 + β̂1yk + tν1 σ̂1

√
1 +

1
n1

+
(yk − ȳ)2∑n1
i=1(yi − ȳ)2

, (2.1)

where σ̂1 is the standard deviation of the obese population model, ȳ is the average
year in which we fit the regression, n1 is the number of years used to fit the regression
model, and tν1 is a simulated random variable from the standard student-t distribution
with ν1 = n1 − 2 degrees of freedom.

The additions to the waiting list due to NASH are simulated in a similar way. Using
the obese population at year i, pi, we forecast NASH additions to the waiting list, with a
lag of L years, at year i + L (i = 1, 2, . . . ,n2). We fit a linear regression model to get the
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intercept of the model, δ̂0, the coefficient of obese population, δ̂1, and the mean square
error of the regression model, σ̂2

2. The future NASH additions to the waiting list at year
k + L , N̂k+L, are obtained based on the point estimates of the lagged obese population, p̂k.
The future additions to the waiting list due to NASH at year k + L are simulated from:

N̂k+L B δ̂0 + δ̂1p̂k + tν2 σ̂2

√
1 +

1
n2

+
(p̂k − p̄)2∑n2
i=1(pi − p̄)2

, (2.2)

where p̂k is obtained from equation 2.1, σ̂2 is the standard deviation of the NASH
additions to the waiting list model, pi is the obese population from the ith year used to
fit the model, p̄ is the average obese population in which we fit the regression, n2 is the
number of years used to fit the regression model, and tν2 is a simulated value from the
standard student-t random variable with ν2 = n2 − 2 degrees of freedom.

For the multivariate case, equation 2.2 becomes

N̂k+L B P′0δ̂ ± tν2 σ̂2

√
1 + P′0(P′P)−1P0, (2.3)

where P′0 B [1, p01, p02, . . . ] is a vector of new observations, δ̂ B [δ̂0, δ̂1, δ̂2, . . . ] is a
vector of regression coefficients, and P is the design matrix of the linear model.

We replicate the simulation using 2.1 and 2.2 or 2.3 10,000 times. We obtain point
estimates by averaging the simulated values and 95% prediction intervals by taking the
2.5% and 97.5% quantiles of the replications.

2.5.4 Model Accuracy Measures

We evaluate the predictive accuracy of our models at each time lag using leave-one-
out cross-validation (Refaeilzadeh et al., 2009). Our dataset is divided into training and
testing sets at each replication. The testing set at each replication is composed of a
single observation selected at random from the dataset. The cross-validation procedure is
replicated until all the observations are used as the testing set. The predictive performance
of our models is assessed by calculating the average rMSE in the testing set across all the
cross-validation replications. Additionally, we evaluate how well the models fit the data
using the adjusted coefficient of determination R2 and the average rMSE in the training
set across all the cross-validation replications.
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2.5.5 Liver Demand Projection Results

2.5.5.1 Lag Time Selection

Using linear regression and leave-one-out cross-validation we find that NASH is best
explained and predicted using obese population from 9 years before, e.g., NASH additions
to the waiting list at 2009 are associated with obese population at 2000. The relationship
between the NASH additions to the waitlist and obese population from 9 years before
from 2009 to 2014 is depicted in the scatter plot in Figure 2.5.

Figure 2.5: Relationship between NASH additions to the waiting list and obese population
in the US using a 9-year lag.

Predicting NASH additions to the waiting list using obese population from 9 years
before, we obtain an adjusted R2 value of 0.9 and average rMSE of 50.49 in the training
sets and of 86.49 in the testing sets. The performance of the model under all the time lags
considered during our analysis (0 to 10 years) is included in Table 2.2.

2.5.5.2 National Projection of NASH Waitlist Additions

The number of additions to the LT waiting list due to NASH is expected to increase
by 71.9% (1,354 to 2,327) from 2016 to 2030 (Figure 2.6). The point estimates and 95%
confidence intervals from 2016 to 2023 are obtained with linear regression (before dashed
line) and from 2024 to 2030 with stochastic simulation (after dashed line).
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Table 2.2: Performance under different time lags.

Time Lag (Years) rMSE Training rMSE Validation Adjusted R2

0 199.56 227.31 0.74
1 177.23 199.27 0.78
2 184.11 223.60 0.75
3 204.32 257.25 0.63
4 182.39 218.48 0.63
5 102.66 125.05 0.85
6 141.98 184.41 0.64
7 179.15 274.42 0.28
8 117.14 168.35 0.62
9 50.49 86.49 0.90
10 52.72 83.78 0.82

Figure 2.6: Point estimates and prediction intervals of NASH additions to the waiting list
from 2016 to 2030.
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2.5.5.3 Sensitivity Analysis on Obese Population

Figure 2.7 shows the point estimates and 95% prediction intervals for the additions to the
waitlist due to NASH from 2024 to 2030, assuming a stabilization is the obesity prevalence
in the US. As in our base case, these estimates are obtained using stochastic simulation.
If the obesity prevalence in the US plateaus, we would expect a decrease of 3.2% (from
1,995 to 1,932) in 2024 and a decrease of 9.9% (from 2,327 to 2,104), when compared to the
linear growth case.

Figure 2.7: Point estimates and prediction intervals of NASH additions to the waiting list
from 2024 to 2030 given plateau in obesity prevalence.

2.5.5.4 BMI Categorical Analysis

We find that the number of individuals with BMI 30 to <35 and BMI 35 to <40 are both
significant predictors of additions to the waitlist due to NASH (both P < 0.01) in our
univariate analysis. Nevertheless, the number of individuals in the BMI 40+ category is
not a statistically significant predictor of NASH additions to the waitlist (P = 0.16). We
also find that no single BMI category is a significant predictor of NASH additions to the
waitlist with a 9-year lag if they all are included in our multivariate analysis. However,
when we perform a stepwise removal of BMI categories from the multivariate model,
only the number of individuals in the US population with BMI 30 to <35 is a significant
predictor of NASH additions to the waitlist (P < 0.01).
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2.5.6 Discussion

NASH-related cirrhosis and HCC are the fastest growing indication for liver transplan-
tation in the US and many countries worldwide (Wong et al., 2014b; Doycheva et al.,
2017; Goldberg et al., 2017). Our analysis provides epidemiological insight into the re-
lationship between obesity in the general population and the NASH-related additions
to transplant waitlists. We demonstrated, an increase in NASH-related liver transplant
waitlist additions is expected to occur 9 years after population-level increases in obesity.
This has potential future implications for the US and other countries around the world
where obesity prevalence are rising (Malik et al., 2013). We have shown the impact on
rising obesity with our projections of a 71.9% increase NASH related LT waitlist additions
in the US over the next 15 years, likely making NASH the dominant indication for LT
in the US in coming years. Given limited donor supply in the US, reductions in obe-
sity on a population-level are particularly important to reduce the burden of NASH and
NASH-related complications.

In our BMI categorical analysis, we found obesity classes I and II (BMI 30 to < 35 and
BMI 35 to < 40 kg/m2) are predictive of NASH-related waitlist additions, while class III
obesity (BMI> 40 kg/m2) is not predictive. This likely reflects the fact that many transplant
centers do not consider extremely obese individuals for LT and patients very rarely lose
significant amounts of weight (Schlansky et al., 2016; Thuluvath, 2007). Patients who have
a BMI > 40 have a low likelihood of dropping in BMI category over a 9-year period, have
a higher competing risk of non-liver related mortality, and thus are typically selected out
of being added to the transplant waitlist (Marchesini et al., 2016).

This study quantifies the burden of NASH on the future transplant list, which is only
a proxy of the overall burden NASH will have on the US healthcare system. Only a
minority of patients with cirrhosis will be eligible liver transplantation due age, obesity,
other comorbidities, or psychosocial barriers. This may be especially salient in patients
with NASH as cirrhosis tends to occur in obese, older patients with cardiovascular comor-
bidities (VanWagner et al., 2016; Musso et al., 2013). Furthermore, our analysis underlies
the need for better diagnostic and screening tools for identifying those with NASH in
order to provide earlier interventions, such as weight loss strategies (Ajmera et al., 2017;
Noureddin et al., 2016). Unfortunately, most patients who have NASH are unaware of
their diagnosis and many only present when they have hepatic decompensation or de-
velop advanced stage HCC, at which time there are few options that can modify the
disease course. Thus, the overall impact of the increase in NASH is underestimated by
this analysis, however we have provided an important estimation of the impact will have
on LT in the US.
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Our study has many notable strengths and weaknesses that warrant attention. The
correlation between obesity and NASH additions to the waitlist, while biologically plau-
sible, is an association and we have not proven causation. The data used for our historical
analysis and development of projections are based on single source data from the US
Census Bureau and the OPTN, thus we lack the ability to pool data sources for ranges
in sensitivity analyses. Our model had high R2 values and low rMSE, suggesting high
performance, and results were consistent across subanalyses; however, it is well known
that model performance is lower in validation cohorts than derivation cohorts. We per-
formed internal cross-validation but could not externally validate our results. Given lack
of adequate granular data we were forced to use different methods (i.e. linear regression
and stochastic simulation) for point estimates and prediction intervals for the NASH LT
addition projections.

Another potential limitation of our study is the possibility of historical misclassifica-
tion between NASH and alcoholic liver disease. Potential misclassifications could affect
the relationship between obesity and NASH. Future studies may explore potential ways
of examining whether a substitution effect may be present. Finally, our analyses assume
the current state of NASH-related care. Public health efforts to reduce obesity prevalence
could affect our projections, as weight loss is associated with decreased steatosis and pos-
sible regression of fibrosis (Patel et al., 2015; Promrat et al., 2010). However, such efforts
have largely failed thus far as seen in our historical analysis of obesity prevalence. Simi-
larly, several new investigational treatments are being studied for the treatment of NASH
which, if effective, could significantly impact our projections (Lazaridis and Tsochatzis,
2017).

How likely a patient is to receive a liver transplant can vary widely depending on
where in the country the patient is listed. As a result, a proposal was presented to
change how organs are allocated in the US. In the next section, we study the implications
of geographical redistricting in liver availability using an extension of the liver supply
model introduced in Section 2.4.

2.6 Modeling Liver Supply in Allocation Models

There are currently 11 geographical regions and 58 DSAs used for organ allocation in the
US (U.S. Organ Procurement and Transplantation Network, 2019) The median Model of
End-stage Liver Disease (MELD) score at transplant can vary from 22 to 32 depending on
which of the 11 regions a patient is listed on nationally (Yeh et al., 2011). Previous studies
have shown that the 90-day likelihood of being transplanted in the intermediate MELD
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score range (18-30) can vary from 15% to 70% between regions (Massie et al., 2011) This
variability can be translated to wide variations in risk of death while waiting for a LT
(Massie et al., 2011; Rana et al., 2015).

This geographic inequity has led to the proposal of geographically redistricting the
regions established by the United Network for Organ Sharing (UNOS). The proposal
suggest that the allocation system of the nation should be modified from the current 11-
region model into an 8-region model (Gentry et al., 2013). Figure 2.8 shows the current and
proposed allocation systems. A 5-year liver simulation allocation model of the regional
proposal suggests that the proposed 8-region model could achieve a net decrease in
waitlist deaths, when compared to the current 11-region model (Gentry et al., 2013).
While this analysis measures the potential impact of the redistricting proposal on waiting
list mortality, it does not account for demographic shifts in the US population, such as
changes in age, obesity prevalence, and racial distribution. Consequently, we aim to use
a population-based approach to understand the impact of redistricting and demographic
changes in the US on the number of liver donors available.

2.6.1 Liver Donor Projections by District Model

2.6.1.1 Historical Population

Similar to Section 2.4, we use data from the US Census Bureau to obtain 2002-2014 na-
tional population estimates. We also use data from the US Census Bureau to derive the
population estimates by state and county. Three datasets are used for this purpose: (1)
Intercensal Estimates of the Resident Population by Five-Year Age Groups, Sex, Race and
Hispanic Origin: April 1, 2000 to July 1, 2010; (2) Annual State Resident Population Esti-
mates for 6 Race Groups by Age, Sex, and Hispanic Origin: April 1, 2010 to July 1, 2014;
and (3) Annual County Resident Population Estimates by Age, Sex, Race, and Hispanic
Origin: April 1, 2010 to July 1, 2014. These datasets are used to calculate donation rates
by county, state, and region.

We first divide our data by region and group it by regional model (8 or 11). The
8-region and 11-region maps are illustrated in Figure 2.8. The data is then stratified by
race, sex and age group (18-34, 35-49, 50-64, 65-84 years old). The 18-34 age group of our
models overlaps between two different age groups in the US Census Bureau dataset from
2002 to 2009. We account for this overlap by estimating the 18-34 age group by region
based on the proportion of the remaining age groups (35-49, 50-64, 65-84 years old) by
region to the total population of the 35-84 age group across all regions. Since data on
county population is not available from 2002 to 2009, we assume that the population of
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Figure 2.8: Liver allocation systems.

the states that extended along more than one region is divided according to the average
proportion of the population (relative to the total state population), which lived in those
counties from 2010 to 2014.

2.6.1.2 Population Projections

We use state population projections from 2010 to 2030 from the University of Virginia’s
Weldon Cooper Center for Public Service to estimate the proportion of the total popula-
tion projection that corresponds to each OPTN region (Weldon Cooper Center for Public
Service, 2013). The population projections are stratified by OPTN region, race, sex and age
group. Since the population projections by state only include information for years 2010,
2020 and 2030, we assume linear growth to estimate the population projections from 2014
to 2019 and 2021-2025. The proportions of the population projections by OPTN region are
then applied to the US Census Bureau population projections to maintain consistency on
the total population projected.
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2.6.1.3 Donor Availability

We once again use data from the OPTN database from 2002 to 2014 to determine the uti-
lization rates of whole and split livers for all donors with at least one organ transplanted
(see Section 2.4). We calculate donation rates as the number of livers donated per total
population stratified by age groups, BMI, sex, and race/ethnicity. Donors are regionally
localized based on their registered zip code in the OPTN database. We use donor perma-
nent address rather than site of procurement to maintain consistency in our projections.
Only 6.4% of patients have a regional discrepancy between permanent residence and site
of procurement in the OPTN database.

2.6.2 Exploratory Analysis of Geographic Inequity

With the purpose of better understanding the leading contributors to geographic inequity,
we perform an analysis where we standardize liver donation and utilization rates across
the regions in both regional models. We use the average national donation rates, average
national utilization rates, and both average national donation and utilization rates from
2010 to 2014. We then use the coefficient of variation to estimate the geographic variation
in terms of donors per 100,000 population (D/100K) in each regional allocation model.

2.6.3 Liver Allocation Results

2.6.3.1 Regional Projected Donor Availability

The donor availability forecast using national population growth projections is shown in
Figure 2.9. We estimate that the D/100K is going to decrease nationally over time from
2.53 in 2016 to 2.49 in 2025. Nonetheless, due to population growth, the overall number
of liver donors is projected to increase from 6,133 in 2016 to 6,507 in 2025.

2.6.3.2 Geographic Inequity in Allocation Models

We project that the regional variation, in terms of D/100K, is going to decrease slightly
from 20.3% in 2016 to 20.2% in 2025 in the 11-region model. In contrast, the geographic
heterogeneity is projected to increase slightly from 13.2% in 2016 to 13.3% by 2025 in the
proposed 8-region model (Figure 2.10).

30



Figure 2.9: Projected National Changes in D/100K US Population and Liver Donors Avail-
able from 2016-2025.

Figure 2.10: Projected Change in Regional Variation in D/100K US Population in each
Allocation Model from 2016 to 2025.
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2.6.3.3 Exploratory Analysis of Geographic Inequity

We aim to better understand the magnitude of regional disparity in donation and utiliza-
tion rates. The expected effect of using the 2010-2014 national average rates of donation,
utilization, and both on geographic variability in the regional models is summarized in
Table 2.3. We estimate that standardizing utilization rates would reduce the geographic
heterogeneity in 2016 by 2.2% to 11.0% in the 8-region model and by 3.0% to 17.3% in
the current 11-region model. In contrast, standardizing national donation rates would
reduce geographic heterogeneity by 5.7% to 7.5% in the 8-region model and by 11.5% to
8.8% in the current 11-region model. Moreover, using both national average donation and
utilization rates would have the greatest impact in reducing geographic heterogeneity, re-
ducing geographic variance to 4.9% in the 8-region model and 4.6% in the current model.
A similar impact would be expected in both regional models in 2025.

Table 2.3: Effect of standardizing liver utilization rates, liver donation rates, and both on
geographic variation in D/100K.

2016 High-Low
D/100K

% Coefficient
of Variation

2025 High-Low
D/100K

% Coefficient
of Variation

National Average Utilization Rates and Regional Donation Rates
8-Region Model 2.12-2.87 11.0% 2.10-2.83 11.2%
Current Model 1.88-3.16 17.3% 1.85-3.14 17.2%
National Average Donation Rates and Regional Utilization Rates
8-Region Model 2.24-2.87 7.5% 2.21-2.84 7.6%
Current Model 2.21-2.91 8.8% 2.18-2.89 9.1%
National Average Donation and Utilization Rates
8-Region Model 2.33-2.72 4.9% 2.26-2.65 4.9%
Current Model 2.33-2.71 4.6% 2.27-2.64 4.7%

2.6.4 Discussion

Regional variation in LT leads to inequity in organ distribution and excess waitlist dropout.
The recent national redistricting proposal from UNOS attempts to address this inequity by
redrawing the regional lines into an 8-region model. Using a population based approach
we have shown that the geographic inequity in donor availability will be drastically de-
creased with the 8-region model. This finding confirms the notion that larger regions will
lead to less geographic inequity in liver graft availability. The geographic inequity in the
next decade is projected to fall slightly in the current 11-region model while geographic
inequity is projected to increase slightly in the 8-region system. While our modeling con-
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firms the desired effects of redistricting on improvement in geographic inequity, there are
many barriers to implementing redistricting. These challenges must be weighed against
the goal of decreasing waitlist mortality. Some of the same concerns were expressed with
the implementation of “Share 35”, however early results are encouraging with diminished
mortality in the high MELD patients (Rana et al., 2015).

In our exploratory analysis to better understand the root cause of geographic inequity,
we found that standardization of donation and utilization rates would lead to a greater
reduction in geographic heterogeneity than redistricting. We found that variation in liver
donation rates plays a bigger role in contributing to geographic inequity than utilization,
suggesting that improving donation rates in lower performing regions may be impactful
to improve geographic inequity. Similarly, focused interventions to improve transplant
center organ utilization in low performing regions, would also aid in reducing inequity.
Although these are not easy metrics to change, interventions to improve organ donation
and utilization may be more palatable to many transplant centers and other stakeholders
than redrawing the regional allocation maps. Such interventions, if successful, would also
lead to an overall increase in number of donors and number of organs used – ultimate
goals that would not be achieved with redistricting. In fact, there is some evidence from
the liver simulated allocation model (LSAM) analysis of redistricting, there may be a net
decrease in the number of transplants conducted (Goldberg et al., 2016). Our historical
data shows that even low performing regions have at some point been near or above
national averages in liver utilization, indicating that every region can perform at a higher
level and measures to consistently improve practices in these regions can be successful.
Improving donation rates in the low performing regions may be more difficult, as these
regions have consistently lower donation than national averages in our historical data.
Systematic evaluation of donor recruitment practices in these regions may be an important
first step in improving donor authorization rates. Variations in regional demographics
accounts for the remainder of the geographic inequity. However, our data suggest this is a
relatively minor factor when compared to variation in liver utilization and liver donation
rates.

Several prior studies have explored the challenges and implications surrounding re-
districting and geographic inequity in LT. An inevitable consequence of sharing organs
within larger regions are increased cold ischemia time and transportation costs for grafts
(DuBay et al., 2015). However, a study showed that there would be cost-savings over-
all to the healthcare system due to shorter wait times for high-MELD patients, though
some transplant centers might experience higher costs (Gentry et al., 2016). One concern
with redistricting is that organs would flow from poor performing organ procurement
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organizations (OPOs) to better performing OPOs. Gentry et al. (2015) used the LSAM to
determine whether OPO import volume would change depending on the OPO perfor-
mance metrics. They found that OPO performance would not impact flow of liver grafts,
rather livers would flow from OPOs with lower than expected waitlist deaths to those with
higher than expected waitlist deaths. Our study confirms that geographic differences in
donor availability would decrease with redistricting. However, better aligning donation
and utilization nationally may have more of an impact without increasing cold-ischemia
time and possibly the cost of transplantation. None of the studies on the impact of redis-
tricting have addressed the concern that redistricting may potentially decrease donation
because organs cannot stay local. This would not be a concern if efforts to decrease ge-
ographic inequity focus on bringing low performing OPOs to national average donation
and utilization rates.

Our study has many strengths and weaknesses that warrant attention. We compiled
unique data elements from many sources to estimate historical and projected donor avail-
ability, and thus many of our input variables are dependent on single source data. We
were unable to conduct a DSA-level analysis due to lack of historical or projected general
population statistics on a DSA-level. We also used the donor zip code to identify their re-
gion, which does not account for donor regional sharing (Massie et al., 2015). It is unclear
to what extent sharing would occur in the 8-region system or change in coming years,
thus we used the donor registration site as a proxy for donor availability. We also did not
use eligible deaths as defined by the OPTN as a proxy for potential donor availability in
our analysis, given the increasing proportion of donors who may fall out of that definition
(i.e., age greater than 70) as the population changes in the coming decade.

Our population-based analysis and projections are based on historical donation trends,
thus donor authorization rates (donors/eligible deaths) are implicit in this analysis. The
projections of liver availability assume no major changes in donor availability or break-
throughs in procurement technologies that could dramatically increase liver utilization
rates. We do not anticipate approval or widespread adoption of new technologies dur-
ing the relatively short time-horizon of this study. There has been a recent increase in
donor availability due to the national epidemic opioid overdoses, a trend which bears
monitoring and may impact our projections (Rudd et al., 2016). Finally our measure of
equity, D/100K adult population, assumes that LT demand is proportional to the total
population; however there are wide variations in demand depending on several socio-
demographic factors (Axelrod et al., 2008; Hirose et al., 2016). Balancing donation rates
would decrease geographic heterogeneity in donation, but would likely not completely
balance geographic inequity in the ratio of eligible deaths to waitlist recipients. Dif-
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ferential regional demographics, disease prevalence, urban/rural population, insurance
coverage, and density of transplant centers may impact demand that is not captured by
our model. However, with the changing landscape of chronic liver disease in the US, and
changes in the availability in medical insurance with the adoption of the Affordable Care
Act, D/100K may be a complementary metric to consider in evaluating organ allocation
policies (Axelrod et al., 2010).

In this section, we found that improving regional donation and utilization rates may
have a more profound effect on liver availability, without the logistical challenges of
redistricting. Another approach to improve donor potential and reduce the gap between
organ supply and demand is to increase the overall organ yield, or the number of organs
transplanted per donor. But before improving overall organ yield, models to accurately
predict such metric are needed. In the next section, we present a machine learning
approach to predicting deceased donor organ yield.

2.7 Improving the Prediction of Deceased Donor Organ

Yield

Since 2006, the United States Department of Health and Human Services (HHS) and the
Centers for Medicare and Medicaid Services (CMS) have used the overall organ yield as a
primary outcome measure to evaluate and recertify the OPOs coordinated by the OPTN
(Centers for Medicare & Medicaid Services and United States Department of Health and
Human Services, 2006).

Overall organ yield is also assessed internally by the OPTN Membership Professional
Standards Committee (MPSC). The MPSC compares the observed and expected overall
yield to evaluate the performance of each OPO in the U.S. The MPSC reviews any OPO with
an observed yield of less than 10 organs per 100 donors compared to the expected yield,
an observed yield more than 10% lower than the expected yield, and an observed yield
significantly different from the expected yield (Organ Procurement and Transplantation
Network, 2020). The 2019 HHS and CMS revisions to the outcome measure requirements
propose to evaluate OPOs according to these measures as well (Centers for Medicare &
Medicaid Services and United States Department of Health and Human Services, 2019).
Thus, the prediction of expected organ yield is a key element in accurately assessing organ
procurement performance.

The first published model designed to predict organ yield used ordinary least squares
regression with variables in the OPTN database to predict the number of organs trans-
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planted per donor (Selck et al., 2008). This model was then extended with the development
of overall and organ-specific yield models (Messersmith et al., 2011). The authors used
ordinal logistic regression to predict the overall and kidney yields, and binomial logistic
regression to predict lung, pancreas, and liver yield. Most recently, the Scientific Registry
of Transplant Recipients (SRTR) developed another set of organ-specific yield models (Sci-
entific Registry of Transplant Recipients, 2019). The SRTR also predicted heart, intestine,
lung, pancreas, and liver yields with binomial logistic regression, but predicted kidneys
yield using multinomial logistic regression. The overall yield was modeled as the sum of
the individual organ-specific yields.

Although these techniques have been shown to have reasonable performance in pre-
dicting overall and organ-specific yield, other modeling approaches may improve on
the accuracy of prediction. In particular, the overall yield can be modeled as counts,
which allows for the consideration of a wide range of machine learning models. In this
study, we aim to evaluate different modeling techniques to determine which has the best
performance in predicting overall deceased donor organ yield.

2.7.1 Methods

2.7.1.1 Data Source and Study Design

Our analysis is performed using data from the OPTN database from 2000 to 2018 (U.S.
Organ Procurement and Transplantation Network, 2019). The inclusion criteria for the
study are adult deceased donors between 18 and 84 years of age that have at least one
organ procured for transplantation.

The outcome of interest during this analysis is the number of organs transplanted per
deceased donor (i.e. overall deceased donor organ yield). To be consistent with the SRTR
models, we consider an overall yield ranging from 0 to 7 organs per donor. We count
single lung and double lung transplants as a single organ transplant and count kidney
transplants separately as 0, 1, or 2 organs per donor.

The initial set of predictors for organ yield is selected from previously published
studies (Selck et al., 2008; Messersmith et al., 2011; Marrero et al., 2016; Scientific Registry
of Transplant Recipients, 2019). We exclude donors with missing data in any numerical
variable, with the exception of warm ischemia time and donor ejection fraction (n =

26, 303). To avoid the exclusion of 30,866 donors, we categorize the donor ejection fraction
into the following groups: less than 20%, from 20% to 30%, from 30% to 40%, from
40% to 50%, from 50% to 60%, from 60% to 70%, from 70% to 77%, greater than 77%,
and unknown. Since the warm ischemia time is only available for DCD donors prior to
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03/31/2015, we also categorized this variable to avoid the exclusion of donors (n = 64).
We group the warm ischemia time of DCD donors into the following categories: less than
20 minutes, from 20 to 30 minutes, from 30 to 40 minutes, more than 40 minutes, and
unknown.

On the remaining data, we also exclude any donor with missing information on cate-
gorical variables with a percentage of missingness below 10% (n = 19, 140). The purpose
of this exclusion is to avoid categorical levels in the random holdouts that are not included
during the model fitting process in our cross-validation analysis. We recode the binary
variables missing in at least 10% of the donors in our dataset into categorical variables with
three levels: yes, no, and unknown. The impact of this exclusion criteria is investigated
in a sensitivity analysis that included all donors with missing data.

2.7.1.2 Machine Learning Models

We test several machine learning models to predict overall deceased donor organ yield.
The following models are considered: mean-only, Poisson regression, negative bino-
mial (NB) regression, general additive models (GAM), multivariate adaptive regres-
sion splines (MARS), artificial neural networks (ANN), classification and regression
trees (CART), random forests, tree-based bootstrap aggregation, tree-based gradient boost-
ing, and Bayesian additive regression trees (BART). Since the response variable of interest
is the number of organs transplanted per deceased donor, all the models are trained to
predict a count response. These models are briefly described in Appendix A.1.

For comparison purposes, we also apply the methodology of previously published
organ yield models to our dataset (Selck et al., 2008; Messersmith et al., 2011; Scientific
Registry of Transplant Recipients, 2019). These models will be referred to as the adjusted
Selck model (Selck et al., 2008), the adjusted Messersmith model (Messersmith et al.,
2011), and the adjusted SRTR model (Scientific Registry of Transplant Recipients, 2019).
The application of these models is described in Appendix A.1.

2.7.1.3 Model Evaluation

The predictive accuracy of each model is assessed using Monte Carlo cross-validation
(Hastie et al., 2009; McLachlan, 1992). We use 80% of the data for derivation in the cross-
validation analysis and the remainder of the data as a validation set. The Monte Carlo
cross-validation analysis is replicated 30 times and the random holdouts consisted of 20%
of the derivation cohort. For the appropriate models, we use the remaining 80% of the
derivation cohort to determine the best tuning parameters using 5-fold cross-validation
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(Kuhn, 2008; Kapelner and Bleich, 2013; Friedman, 1991).
The predictive out-of-sample performance of the machine learning models is assessed

in terms of the mean absolute error (MAE) and the mean squared error (MSE). Both of
these metrics are commonly used measures of how different predictions are from the true
values (Hastie et al., 2009; Borovicka et al., 2012). These metrics are negatively oriented,
which means lower values are better. The MAE is the same units as the variable of interest,
whereas the MSE is in squared units of the variable of interest. One key difference among
them is that the MAE is less sensitive to outliers, while the MSE penalizes large errors more
heavily. When applicable, we present the average and standard deviation (SD) of these
performance measures over the cross-validation analysis. The comparison of the MAE of
the models also allowed us to quantify the practical impact of accuracy improvements on
the prediction of overall organ yield.

2.7.1.4 Statistical Analysis

We aim to find the model with the lowest predictive error. Any model with convergence
issues or violating any statistical assumption is discarded as a potential final model. To
verify which model has the lowest MAE and MSE, we first assess the normality of these
values using the Shapiro-Wilk test. We then use 2-sided two-sample t-tests or Mann-
Whitney U tests with the Bonferroni correction to compare these performance measures, as
appropriate (Faraway, 2014; Hollander and Wolfe, 1999). Once the best performing model
is selected, we use variable importance methods to identify the most influential predictors
in the model and partial dependence plots to understand the functional relationships
between these predictors and the overall organ yield (Friedman, 2002; Ridgeway, 2007).

The Bonferroni correction method is an approach to control the familywise error rate
when multiple statistical tests are performed simultaneously. This correction method
compensates for the increase in the chance in observing rare events (and incorrectly
rejecting a null hypothesis) by testing each individual hypothesis at a significance level
of α/k, where α is the desired overall significance level and k is the number of hypotheses
being tested simultaneously. For instance, if the desired overall significance level is
α = 0.05 and 14 different machine learning models are compared simultaneously, then
the Bonferroni correction method would test each individual hypothesis at a significance
level of α/k = 0.05/14 = 0.004. See Hastie et al. (2009) or Faraway (2014) for additional
details.

Descriptive statistics are presented as counts with percentages for categorical variables
and as means with SD for numerical variables. An overall significance level of α = 0.05
is used during all the analyses. The significance level and confidence interval (CI) of

38



individual statistical tests are adjusted with the Bonferroni correction method to account
for the simultaneous comparison of multiple models (Hastie et al., 2009). All analyses are
performed with R (v3.5.3 The R Foundation for Statistical Computing, Vienna AT).

2.7.1.5 Sensitivity Analyses

To incorporate the donors originally excluded in our analysis, we impute their missing
data using the multivariate imputation by chained equations (MICE) package in R (Van
Buuren and Groothuis-Oudshoorn, 2011). This technique estimates the conditional den-
sity of each incomplete variable and specifies an imputation model per variable. Starting
from an initial imputation, the chained equations draw imputations by iterating over the
conditional densities. Missing values are imputed 10 times for 10 iterations as per sug-
gestions in the literature (Bodner, 2008; White et al., 2011). We then replace the missing
values using the mean imputed value for numerical variables and random sampling for
categorical variables. This version of our dataset is then used in our cross-validation
analysis to evaluate the performance of each machine learning model.

Because OPOs are evaluated in two through four-year cohorts by MPSC and CMS
(Zaun et al., 2012; Centers for Medicare & Medicaid Services and United States Department
of Health and Human Services, 2019), we also compare the performance of the models
over multiple 2-year cohorts. We evaluate the predictive accuracy of the models in our
cross-validation framework using the following 2-year cohorts: 2013-2014, 2015-2016, and
2017-2018. No considerable differences were observed in the donors across these cohorts.
Since the SRTR model is built upon organ yield models using a 2-year cohort, we also
include the direct application of their overall yield model in this sensitivity analysis for
comparisons purposes. This model will be referred to as the SRTR model.

2.7.2 Results

2.7.2.1 Cohort Characteristics

In total, 135,277 deceased donors are between 18 and 84 years of age. After applying the
exclusion criteria, a total of 89,520 donors are included during the analysis. A summary
of all the predictors considered in our study is included in Table 1.

Table 2.4: Summary of all the predictors of overall deceased donor organ yield considered
in our study (n = 89, 520).
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Description No. %

Donor sex (male) 52,280 58.4%
Donor race

White 60,029 67.1%
Black 13,981 15.6%
Hispanic 12,523 14.0%
Asian 2,191 2.5%
AIAN 372 0.4%
NHPI 222 0.3%
Multiracial 202 0.2%

Blood type
O 42,882 47.9%
A 12,698 14.2%
A1 17,652 19.7%
A1B 1,202 1.3%
A2 2,676 3.0%
A2B 418 0.5%
AB 1,404 1.6%
B 10,588 11.8%

HBV core antibody status 4,881 5.5%
HBV surface antigen status 107 0.1%
Hepatitis C status 4,887 5.5%
CMV status 58,570 65.4%
Risk factors for blood-borne disease transmission 13,441 15.0%
RPR-VDRL serology result 666 0.7%
Tattoos 31,751 35.5%
Heavy alcohol use (2+ drinks/day) 16,773 18.7%
History of cigarette use 24,275 27.1%
Cigarette use in the last six months (20+ packs/year)

No 4,262 4.8%
Unknown 65,354 73.0%
Yes 19,904 22.2%

History of cocaine use 15,521 17.3%
Cocaine use in the last six months

No 6,506 7.3%

40



Unknown 75,804 84.7%
Yes 7,210 8.1%

History of drug use (not cocaine) 33,932 37.9%
Drug use (not cocaine) in the last six months

No 8,962 10.0%
Unknown 58,656 65.5%
Yes 21,902 24.5%

History of diabetes 11,247 12.6%
History of hypertension 33,946 37.9%
History of MI 3,834 4.3%
History of cancer 3,333 3.7%
Clinical infection 53,168 59.4%
Blood infection 8,400 9.4%
Pulmonary infection 43,951 49.1%
Urine infection 11,881 13.3%
Infection from another source

No 46,533 52.0%
Yes 6,635 7.4%
Unknown 36,352 40.6%

Cause of death
CVA 35,247 39.4%
Anoxia 24,089 26.9%
Head trauma 27,895 31.2%
CNS tumor 459 0.5%
Other 1,830 2.0%

Circumstance of death
Natural causes 38,119 42.6%
MVA 13,378 14.9%
Suicide 7,882 8.8%
Homicide 4,703 5.3%
Non-MVA 9,513 10.6%
Other 15,925 17.8%

Mechanism of death
Natural causes 1,839 2.1%
Drowning 340 0.4%
Seizure 668 0.8%
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Drug intoxication 6,726 7.5%
Asphyxiation 2,883 3.2%
Cardiovascular 12,481 13.9%
Electrical 44 0.1%
Gunshot wound 8,134 9.1%
Stab 167 0.2%
Blunt injury 18,546 20.7%
Intracranial hemorrhage/stroke 35,872 40.1%
Other 1,820 2.0%

Declaration of brain death due to cardiac arrest
since neurological event

6,063 6.8%

DCD donor 5,848 6.5%
Controlled DCD status

No 115 0.1%
Unknown 83,687 93.5%
Yes 5,718 6.4%

Insulin dependent
No 5,990 6.7%
Yes 4,661 5.2%
Unknown 78,869 88.1%

Protein in urine 40,803 45.6%
Donor recovered outside the U.S. 669 0.8%
Year of recovery

2000 13 0.0%
2001 14 0.0%
2002 10 0.0%
2003 60 0.1%
2004 2,983 3.3%
2005 5,399 6.0%
2006 5,705 6.4%
2007 5,236 5.9%
2008 5,264 5.9%
2009 5,756 6.4%
2010 6,222 7.0%
2011 6,444 7.2%
2012 6,353 7.1%
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2013 6,413 7.2%
2014 6,554 7.3%
2015 6,089 6.8%
2016 6,862 7.7%
2017 7,028 7.9%
2018 7,115 8.0%

Description Mean SD
Donor age (years) 44 1540.8%
Squared donor age 2,141 138652.8%
Donor height (cm) 172 1024.8%
Donor weight (kg) 83 2100.0%
Donor BMI (kg/m2) 28 667.8%
Squared BMI 838 44122.5%
Terminal blood urea nitrogen (mg/dL) 21 1717.6%
Terminal lab creatinine (mg/dL) 2 150.9%
Lung pO2 (mmHg) 228 14924.0%
pO2/FiO2 (ratio) 8 265.0%
Terminal lab AST (IU/L) 113 44381.8%
Terminal lab ALT (IU/L) 101 32268.1%
Terminal lab total bilirubin (mg/dL) 1 136.3%
KDRI 1 55.8%
Ejection fraction (%) 57 1312.6%
Warm ischemia time (minutes) 19 1502.3%

2.7.2.2 Model Performance

The adequacy and predictive performance of the machine learning models are evaluated
throughout each replication of the Monte Carlo cross-validation framework. The model
adequacy checks and reasons for discard are included in Appendix A.2. The MAE and
MSE of the models are illustrated in Figures 2.11 and 2.12.

The Bonferroni correction threshold results in 0.004, as 14 models are compared si-
multaneously. We find that most models are significantly different from each other in
terms of their MAE (all P < 0.001). The exceptions are the mean-only model with CART
(99.6% CI -0.005 to 0.005, P > 0.99), Poisson regression with NB regression (99.6% CI -0.002
to 0.003, P = 0.728), and GAM with random forest (99.6% CI -0.001 to 0.005, P = 0.061).
Similar results are found when comparing the MSE of the statistical models. However, the
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Figure 2.11: MAE of potential models to
predict overall deceased donor organ yield.
Points in the center of the boxes represent
the mean MAE of the statistical models and
asterisks represent outliers. The MAE of
the ANN models are excluded for illustra-
tion purposes. ANN presented a median
MAE of 2.766 with an interquartile range
of 0.852.

Figure 2.12: MSE of potential models to
predict overall deceased donor organ yield.
Points in the center of the boxes represent
the mean MSE of the statistical models and
asterisks represent outliers. The MSE of
the ANN models are excluded for illustra-
tion purposes. ANN presented a median
MSE of 11.449 with an interquartile range
of 5.531.

adjusted SRTR, Poisson regression, NB regression, and MARS models are not statistically
different from each other in terms of their MSE.

Combining the results from Figure 2.11 with two-sample t-tests, we determine that
a tree-based gradient boosting outperforms the remainder of the models. Linking the
results from Figure 2.12 with Mann-Whitney U tests we can draw similar conclusions.
However, there is not enough evidence to claim that the MSE of gradient boosting is
significantly different from the MSE of BART (99.6% CI -0.006 to 0.006, P = 0.901). This
result is consistent with our previous work, where we find that BART outperformed the
rest of the models (Marrero et al., 2018).

Gradient boosting results in the lowest predictive error among the compared models
under both performance measures and thus we select it to predict overall deceased donor
organ yield. This model presents an average (SD) MAE of 0.729 (0.004) and an MSE of
0.868 (0.004) throughout the Monte Carlo cross-validation analysis. The model is then fit
to the derivation set (n = 62, 664) and evaluated in the validation set (n = 26, 856), which
results in similar performance (MAE of 0.725 and an MSE of 0.863).
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2.7.2.3 Relationship Between Predictors and Deceased Donor Organ Yield

Since the final model contained over 110 predictors (all variables and levels of categorical
predictors listed in Table 2.4), we use variable importance methods to simplify our results
(Friedman, 2002). Although 109 predictors have non-zero influence on deceased donor
organ yield, we examine the relationship between deceased donor organ yield and any
predictor with a relative importance greater than 1% (out of a relative importance nor-
malized to 100%). The variable importance strategy indicated that donor race, hepatitis
C infection, and ejection fraction are the three most important categorical predictors. The
partial dependence plots of these predictors are included in Figure 2.13.

The variable importance strategy shows that following numerical predictors are the
most important: kidney donor risk index (KDRI), partial pressure of oxygen (pO2), ter-
minal lab creatinine, BMI, age, and terminal blood urea nitrogen, the ratio of pO2 to the
fraction of inspired oxygen (pO2/FiO2), weight, aspartate aminotransferase (AST), alanine
aminotransferase (ALT), and terminal lab total bilirubin (Figure 2.14).

2.7.2.4 Impact on Organ Yield Prediction

By comparing the MAE of our gradient boosting model to the MAE of the models in the
literature, we are able to measure the impact of improving prediction accuracy on overall
organ yield in terms of organs per 100 donors. We estimate that gradient boosting would
improve prediction by an average (SD) of 8 (0.005) organs per 100 donors (compared to
the adjusted Selck model), 11 (0.005) organs per 100 donors (compared to the adjusted
Messersmith), or 3 (0.005) organs per 100 donors (compared to the adjusted SRTR model).
This translates to an improvement of 10%, 13%, or 3%, in comparison to the models
developed by Selck et al. (2008), Messersmith et al. (2011), and the Scientific Registry of
Transplant Recipients (2019) after adjustment for the current dataset, respectively.

Comparing the aggregated yield across all the deceased donors in our cross-validation
analysis, we are able to further measure the effect of improving the accuracy of predictions.
The average (SD) observed yield over the cross-validation analysis is 292 (0.010) organs
per 100 donors. The average (SD) expected yield is 292 (0.008), 292 (0.009), 295 (0.008),
and 291 (0.007) organs per 100 donors calculated using the gradient boosting model,
the adjusted Selck model, the adjusted Messersmith model, and the SRTR model after
adjustment for the current dataset, respectively. Therefore, greater predictive accuracy for
individual donors could also result in better aggregate yield predictions over the deceased
donor population.
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Figure 2.13: Partial dependence plots of the main categorical predictors of overall deceased
donor organ yield.
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Figure 2.14: Partial dependence plots of the main numerical predictors of deceased donor
organ yield. Points in the horizontal axis of the plots represent the empirical quartiles of
each predictor.

47



2.7.2.5 Sensitivity Analyses

The imputation of the missing data of the donors originally excluded in our analysis
does not substantially alter our findings (Figures 2.15 and 2.16). All models, except for
Poisson regression and NB regression (99.6% CI -0.002 to 0.003, P = 0.549), are significantly
different from each other in terms of their MAE (all P < 0.001). Nonetheless, gradient
boosting is not significantly different from BART (99.6% CI -0.007 to 0.004, P = 0.412) in
terms of the MSE. Combining these results, gradient boosting methodology outperforms
the remaining models. Gradient boosting obtains an average (SD) MAE of 0.737 (0.003)
and an MSE of 0.892 (0.003) over the Monte Carlo cross-validation analysis, and a MAE
of 0.741 and an MSE of 0.902 when fit to the derivation set (n = 94, 694) and examined in
the validation set (n = 40, 583).

Figure 2.15: MAE of potential models to
predict overall deceased donor organ yield
using imputed dataset. Points in the center
of the boxes represent the mean MAE of the
statistical models and asterisks represent
outliers. The MAE of the ANN models are
excluded for illustration purposes. ANN
presented a median MAE of 2.670 with an
interquartile range of 1.028.

Figure 2.16: MSE of potential models to
predict overall deceased donor organ yield
using imputed dataset. Points in the center
of the boxes represent the mean MSE of the
statistical models and asterisks represent
outliers. The MSE of the ANN models are
excluded for illustration purposes. ANN
presented a median MSE of 9.471 with an
interquartile range of 8.206.

The results of the 2-year cohort sensitivity analysis can be found in Figures 2.17 and
2.18. We observe that training the models on smaller cohort sizes do not change our
conclusions considerably. Since in this sensitivity analysis we are comparing 15 models
simultaneously, the Bonferroni correction threshold results in 0.003. We find that gradient
boosting has a significantly lower MAE than the rest of the models in cohorts 2013-2014
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and 2017-2018 (all P < 0.001). In cohort 2015-2016, gradient boosting does not significantly
outperform BART (99.7% CI -0.002 to 0.003, P = 0.003). The MSE of gradient boosting is
not significantly different from BART in any cohort (99.7% CI -0.023 to 0.013, P = 0.328;
99.7% CI -0.022 to 0.014, P = 0.633; and 99.7% CI -0.013 to 0.012, P = 0.820 for cohorts 2013-
2014, 2015-2016, and 2017-2018, respectively). We also notice that the MSE of gradient
boosting is not significantly different from the MSE of GAM (99.7% CI -0.007 to 0.030,
P = 0.061) in the 2013-2014 cohort.

Figure 2.17: MAE of potential models to predict overall deceased donor organ yield
using imputed dataset. Points in the center of the boxes represent the mean MAE of
the statistical models and asterisks represent outliers. The MAE of the ANN models are
excluded for illustration purposes. The median (interquartile range) MAE of the ANN
models in cohorts 2013-2014, 2015-2016, and 2017-2018 are: 2.431 (0.615), 2.748 (0.719),
and 2.398 (0.431), respectively.

2.7.3 Discussion

A model to accurately predict overall deceased donor organ yield can serve as an aid to
assess organ procurement performance. Previous studies in organ yield have focused on
modeling the overall organ yield with generalized linear models and splines. While these
conventional approaches have good predictive performance, we found that alternative
approaches can achieve higher accuracy.

Our study evaluated 15 statistical models, and a tree-based gradient boosting was able
to obtain the best overall performance according to the MAE and MSE. Tree-based meth-
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Figure 2.18: MSE of potential models to predict overall deceased donor organ yield using
imputed dataset. Points in the center of the boxes represent the mean MSE of the statistical
models and asterisks represent outliers. The MSE of the ANN models are excluded for
illustration purposes. The median (interquartile range) MSE of the ANN models in
cohorts 2013-2014, 2015-2016, and 2017-2018 are: 8.126 (3.371), 9.971 (4.611), and 7.957
(2.483), respectively.
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ods model the association between the predictors and overall organ yield without making
any assumptions of their underlying relationship. Besides easily integrating non-linear
relationships, tree-based methods can implicitly capture interactions among predictors.
The tree-based gradient boosting algorithm reduces prediction error by averaging over
the predictions of many sequentially built trees. If calibrated properly, this modeling
methodology has been previously shown to have excellent performance (Caruana and
Niculescu-Mizil, 2006).

We noticed that BART, random forest, and GAM consistently outperformed the organ
yield models previously developed in the literature. These models were built using ordi-
nary least squares (Selck et al., 2008), ordinal logistic regression (Messersmith et al., 2011),
and a sum of logistic regression models (Scientific Registry of Transplant Recipients, 2019).
Beyond gradient boosting, our study suggests that other machine learning algorithms can
also achieve better predictive performance than the previous approaches in estimating
deceased donor organ yield.

Since the non-linear machine learning algorithms, such as gradient boosting, often
exhibit high variability in their predictions and require large amounts of data, our main
analysis included data from 2000 to 2018. We observed that the variability of most models
increased in our 2-year cohort sensitivity analysis. Nevertheless, gradient boosting still
outperformed the remainder of the models. In general, the more data the algorithms use
during the learning process the more reliable their predictions become.

The two most impactful factors on organ yield in the gradient boosting model were
KDRI, which is used commonly in kidney donor evaluation, and lung pO2, which could
be a proxy for cardiopulmonary status of the donor. The remainder of the factors impacted
performance to a lesser extent.

We showed that model performance has practical implications. Better model perfor-
mance achieves higher accuracy on the prediction of organ yield per 100 donors at the
individual and aggregated level. Accurate predictive ability is critical when evaluating
performance in donor conversion and organ yield. Identifying outliers in deceased donor
organ yield and improving achievement of donor management goals, are important steps
towards increasing the number of organs available for transplantation (Malinoski et al.,
2011). The increasing availability of novel technologies, such as organ machine perfusion,
will likely have significant impacts on organ yield models in the future (Moers et al., 2009).

A noteworthy strength of our work is the examination of the predictive ability of
conventional and novel machine learning models in a large dataset containing over 89,000
donors across a 19-year span. Another strong point of the present study is the use of an
innovative approach to predict overall deceased donor organ yield.
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While our study has several strengths, it also contains some limitations. The major
shortcoming of this study is the missingness of data inherent to the OPTN database.
However, we showed that our results were robust in our sensitivity analysis after im-
puting missing data. Additionally, we were only able to analyze data collected in the
OPTN database and there may be other uncollected donor and transplant-center specific
information that may impact overall organ yield.

Another notable limitation of our analysis is that our models were not built to pre-
dict organ-specific yield. This was not the objective of our analysis, as the organ-specific
yield models developed by the SRTR are updated frequently making contemporary com-
parisons difficult (Scientific Registry of Transplant Recipients, 2019). The addition of
individual organ yield predictions may introduce additional error in the prediction of the
overall yield. This is a potential reason why the direct application of the SRTR model was
outperformed by multiple parametric and non-parametric models in the 2-year cohort
analysis. Our study has highlighted the importance of predicting overall yield in the
aggregated scale to avoid unnecessary variability and obtain insights into the relationship
with its predictors. Future studies aimed an evaluating novel models in individual organ
yield prediction may be warranted based on the results of this analysis.

2.8 Conclusions

This chapter presented data-driven methods to understand how the expected population
changes in the US may impact future liver availability and demand. In addition, we
introduced a machine learning methodology to improve the prediction of deceased donor
organ yield. Improving the accuracy of organ yield prediction may serve as an initial step
towards understanding how to increase donor potential and narrow the breach between
organ supply and demand.

In Section 2.4, we projected a further exacerbation of the donor shortage for liver
transplantation over the next decade, with total population growth outstripping the grown
in potential donors. Changes in the proportion of obese US adults over the next decade will
significantly impact the number of available donors. Our study can serve as an objective
guide so that steps can be taken for future planning to help alleviate the mismatch between
liver donors and recipients to prevent waitlist dropout.

Our analysis in Section 2.5 showed that a lag of 9 years best explains the rise in obesity
in the US population and the rise in NASH related additions to the waitlist. Using this
lag and the anticipated increase of obesity in the US population, we projected a 71.9%
increase in NASH related transplant waitlist additions. This has several public health
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implications for the transplant community and for the overall burden of NASH-related
liver disease in the US (Dulai et al., 2017). It is especially worrisome in the setting of a
plateauing donor supply, making receipt of a LT more difficult for those on the waitlist
(Young et al., 2016; Orman et al., 2013; Parikh et al., 2015). Continued public health efforts
to curb obesity prevalence and improvement in the diagnosis of and treatment of NASH
will be important to mitigate the overall impact of our projections.

In Section 2.6, we found that redistricting regional allocation will result in decreased
geographic inequity in LT, when measured from a population perspective. However,
improving regional donation and utilization rates may have a more impactful effect. A
hybrid approach to balancing LT supply and demand would likely yield the best results.
That is, some form of redistricting coupled with systematic study and improvements in
donation/utilization rates in low performing DSAs.

Finally, we observed that a tree-based gradient boosting outperformed the existing
models for deceased donor organ yield in Section 2.7. Improving accuracy of donor yield
production could allow for better evaluation of OPO performance in donor conversion.
Improving OPO performance is key to mitigating the organ shortage and ultimately
reduce morbidity and mortality in patients awaiting organ transplantation.
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Chapter 3

Understanding the Role of Genetic Information
in Cardiovascular Treatment Planning

In this chapter, we present the development of cholesterol treatment plans using a risk-
based threshold policy and policies derived with a MDP. We also introduce a simulation-
based framework to estimate the risk of a CHD event due to clinical and genetic factors.
Treatment plans using the threshold policies will be obtained using the risk of ASCVD
events with and without genetic factors. The treatment plans obtained with the MDP
models are derived using, clinical information only as well as clinical and genetic infor-
mation. Lastly, we propose a framework to obtain simultaneous cholesterol treatment
plans and genetic testing strategies by combining dynamic programming with VoI analy-
sis. The implication of the policies at a population level are evaluated using a thoroughly
validated simulation framework.

3.1 Background

Over the last few decades, biomedical research has focused its attention in identifying
which genes are responsible for trait variation in humans (Kathiresan and Srivastava,
2012). Genetic variants have been associated with several conditions such as cardiovas-
cular disease, celiac disease, type 1 diabetes, Crohn’s disease, and cancer, among others
(The CARDIoGRAMplusC4D Consortium, 2013; Abraham et al., 2013, 2014; Sun et al.,
2007). The National Institutes of Health (NIH) have suggested clinicians to use additional
tools to improve their medical assessments and ability to identify patients at risk of certain
diseases (Vasan, 2006). Genetic tests are recently developed tools that could be used with
such purpose. A GRS could help characterize individuals who might receive the greatest
benefit from treatment (Mega et al., 2015). However, a test to obtain a GRS may represent
an additional cost to patients and not every patient may benefit from such a test. Under-
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standing which patients might benefit the most from a genetic test and when to perform
such test are key questions faced by clinicians.

Performing genetic testing too early in the life of individuals or universal testing may
not be practical, as its cost might outweigh its benefits. Conversely, not performing
genetic testing or conducting it too late in the life of patients may lead to wrong treatment
decisions, as clinicians often determine how to manage their patients based on their
estimated levels of risk (Bibbins-Domingo et al., 2016; Goff et al., 2014). Therefore, patients
should receive genetic testing depending on whether or not their treatment plans could
potentially be improved upon the new risk information.

Although it is known that ASCVD has familial and genetic components, understanding
the role of genetic testing in the prevention and treatment of cardiovascular diseases has
been limited (MacRae and Vasan, 2016; Jarmul et al., 2018). However, the development of
the new GRS that helps predict ASCVD and the benefit of treatment could make genetics
central to daily cardiovascular care (Mega et al., 2015; Khera et al., 2016; Natarajan et al.,
2017).

While genetic risk scores have recently become available, they are not commonly
performed yet (Lewis and Vassos, 2020). However, medical practitioners and geneticists
estimate that the GRS that helps predict ASCVD will soon be regularly used in clinical
practice (Knowles and Ashley, 2018; Connor et al., 2020). Currently, genetic risk scores
are mostly available as a mail-in saliva tests from direct-to-consumer genetics companies
(Lewis and Vassos, 2020). Patients send a saliva sample to a laboratory to start the
genetic test. Once the results are available, patients receive a report for them to share
with their primary care physician. Patients are usually provided with consultations to
better understand the results of the test and what questions they should discuss with their
primary care physician, though this can vary between companies.

The risk for ASCVD events is mainly composed of demographic, behavioral, and
clinical factors. One controllable risk factor for ASCVD events is the cholesterol level
of patients Goff et al. (2014). Incorporating a GRS to the risk for ASCVD events would
improve risk prediction. Improving risk prediction could in turn help identify which
individuals may benefit from cholesterol treatment and how patients should be treated
(Sussman et al., 2017). But since this information would only benefit a subset of the
population, whether and when to gather genetic information and its role in cholesterol
treatment planning is unclear.
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3.2 Organization of the Chapter

This remainder of this chapter is organized as follows. In Section 3.3, we provide a review
of the relevant literature. Section 3.4 introduces a decision analytic model to compare
cholesterol treatment strategies with and without genetic information as well as our
parameters. Particularly, this section compares the cholesterol treatment plans based on
clinical guidelines. In Section 3.5, we build upon the decision analytic model and develop
a rigorously validated simulation model to evaluate the impact of genetic information on
cholesterol treatment policies. These policies are derived using MDP models informed
with clinical information only and with clinical and genetic information. The genetic
testing strategies made in Sections 3.4 and 3.5 are based on patients’ risk for ASCVD
events. Finally, in Section 3.6, we use the simulation model introduced in Section 3.5 to
integrate the MDP models with VoI analysis to develop simultaneous cholesterol treatment
plans and genetic testing strategies. Figure 3.1 shows the organization of this chapter after
the background and literature review.

Section 3.5

Cost-Effectiveness of 

Optimal Cholesterol 

Treatment Plans Informed 

with Genetic Information

Section 3.6

Optimal Cholesterol 

Treatment and Genetic 

Testing Strategies

Section 3.4

Cost-Effectiveness of Risk 

Threshold-Based Treatment 

Plans Informed with Genetic 

Information

Figure 3.1: Organization and connections between sections in Chapter 3.

3.3 Literature review

The relevant literature to this research lies in the following fields: (1) risk prediction
models that incorporate genetic information; (2) models to quantify VoI in healthcare
applications; (3) treatment decision models; and (4) models that incorporate testing and
treatment decisions simultaneously. In this section, we highlight some prominent papers
in each category and briefly describe how our proposed methodology differs from them.

Risk prediction models that incorporate genetic information have been previously de-
veloped in the literature. Sun et al. (2007) presented a model to improve the prognosis
of breast cancer using both clinical and genetic markers. Abraham et al. (2014) created

56



a predictive model for Celiac disease based on genome-wide single nucleotide polymor-
phisms profiles. The authors also presented an extensive analysis of multiple statistical
models for the prediction of Celiac disease, type 1 diabetes, and Crohn’s disease using
genome-wide single nucleotide polymorphisms profiles (Abraham et al., 2013). Although
these models use genetic information to predict a risk for adverse events, none of these
models have been used to improve decision making.

Given the generality of VoI analysis, it has been applied in a variety of fields including
health policy, medical care, clinical trials, environmental health, and toxicology, among
others (Cipriano and Weber, 2018; Yokota and Thompson, 2004; Ozcan, 2005). Compre-
hensive surveys of VoI analysis in healthcare applications include (Steuten et al., 2013) and
(Heath et al., 2017). Several solution strategies have been proposed in the literature in-
cluding simulation, analytical, and discretization methods (Thompson and Yokota, 2004).
Among these, simulation has been one of the most commonly used approaches (Yokota
and Thompson, 2004; Claxton et al., 2001; Felli and Hazen, 1998, 1999). In this chapter,
we have also chosen to use simulation to quantify the VoI of genetic testing. Nonetheless,
our method differs from the methods presented in these papers in that we quantify VoI in
a sequential framework.

The value of sequential information has also been widely studied (Miller, 1975; Pozzi
and Der Kiureghian, 2011; Eckermann and Willan, 2008; Memarzadeh and Pozzi, 2016).
Similar to our work, previous research have formulated a system of interest as a Markov
model and calculated the expected value of perfect information of interventions using
Monte Carlo simulation (Dong et al., 2007; Martikainen et al., 2005; Ginnelly et al., 2005).
Dong et al. (2007) modeled the total knee replacement procedure as a Markov model
and calculated expected value of perfect information of a computer-assisted total knee re-
placement procedure using Monte Carlo simulation. Martikainen et al. (2005) formulated
the progression of recurrent glioblastoma multiforme as a Markov model. The authors
evaluated the value of new information on reducing uncertainty related to the choice
of treatment using the expected value of perfect information and a second-order Monte
Carlo simulation. Ginnelly et al. (2005) modeled the frequency of recurrent urinary tract
infections as a Markov process. In their study, Ginnelly et al. (2005) used VoI analysis
to quantify the cost of uncertainty associated with the choices of therapy for urinary
tract infections. While these studies used VoI analysis to quantify the benefit of new
interventions, we extended this concept by designing strategies of when to perform such
interventions based on VoI analysis.

Existing treatment decision models include Long et al. (2008); Lee et al. (2008); Chen
et al. (2018); Chan et al. (2013); Long et al. (2018); Liu et al. (2017) and Negoescu et al.
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(2017). Overviews of disease management decision models can be found at (Denton et al.,
2011), (Capan et al., 2017), and (Saville et al., 2018). Researchers have also developed
treatment decisions models for patients at risk of cardiovascular diseases (Cooper et al.,
2006; Stanford R.E., 2004; Zargoush et al., 2018). Hauskrecht and Fraser (2000) modeled is-
chemic heart disease treatment plans with a partially observable Markov decision process
partially observable Markov decision process (POMDP). Denton et al. (2009); Kurt et al.
(2011) constructed an MDP model to determine the optimal time for starting cholesterol
medications in patients with diabetes. Mason et al. (2014) extended this work by deter-
mining the optimal timing of blood pressure and cholesterol medications in patients with
diabetes. Schell et al. (2016) developed a method to approximate optimal hypertension
treatment policies derived with an MDP. Nevertheless, none of these models incorporate
genetic information to guide treatment plans.

Several studies have focused on finding the optimal time to gather additional informa-
tion, perform a test, or screening procedure including Hicklin et al. (2018); Chhatwal et al.
(2010); Suen et al. (2018); Agnihothri et al. (2018); Onen et al. (2018); Ayer et al. (2016); Lee
et al. (2018); Deo et al. (2015); Helm et al. (2015); Maillart et al. (2008); Zhang et al. (2012);
Erenay et al. (2014); Skandari et al. (2015); Sabouri et al. (2017) and Lin et al. (2018). Among
these, Hicklin and coauthors developed Bayesian decision models to determine when it is
suitable to gather additional information before deciding to end natural labor and perform
a C-section. The authors then used VoI analysis to quantify the benefit gained by having
access to observations to inform decision making. Even though the models presented in
these papers aim to find the best time to gather additional information, perform a test,
or screening procedure, none of them incorporate VoI in a sequential decision making
framework. Other studies have estimated the cost-effectiveness of testing and treatment
interventions (Hutton et al., 2007; Hassmiller Lich et al., 2017; Leshno et al., 2003; Chirikos,
2003; Lin et al., 2019).

Models that incorporate testing and treatment decisions are also available in the
literature (Robins et al., 2008; Kirkizlar et al., 2010; Kazemian et al., 2018; Yang et al.,
2013; Ghamat et al., 2017; Harper and Jones, 2005). Robins et al. (2008) presented a dy-
namic marginal structural model to jointly develop optimal testing and treatment regimes.
Kazemian et al. (2018) provide a linear quadratic Gaussian state space model formulation
to determine how to monitor and control chronic diseases. The authors applied their
modeling framework for the management of glaucoma. In addition, Yang et al. (2013)
developed a dynamic programming framework to find screening and treatment policies
for childhood obesity. Another study relevant to our research was presented by Negoescu
et al. (2017). The authors used a continuous-time, multi-armed bandit setting to determine
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optimal treatment policies and treatment discontinuation thresholds in chronic diseases.
These studies differ from ours in that none of them use VoI analysis in their decision mak-
ing formulation. By incorporating VoI analysis in our formulation, we determine which
patients should receive genetic testing and when they should receive such a test.

3.4 Cost-Effectiveness of Risk Threshold-Based Treatment

Plans Informed with Genetic Information

Risk prediction is playing a growing role in the prevention of ASCVD. Since 2013, multiple
clinical practice guidelines have recommended that the use of cholesterol-lowering statin
drugs should be guided by estimates of a patient’s risk of developing ASCVD (Goff et al.,
2014; Bibbins-Domingo et al., 2016; Downs and O’Malley, 2015). Research has found
that the benefit of statin drugs is nearly constant for all levels and causes of risk for
ASCVD events Collins et al. (2016). Any tool that improves those estimates could also
improve statin use (Sussman et al., 2017). In this way, genetic risk could be used as an
independent risk factor, much like smoking status (Abraham et al., 2016). But to date it
remains unknown if the effects are large enough and the costs low enough for using risk
scores that use GRS in clinical practice to be practical.

The objective of this study is to determine the potential public health impact and
cost-effectiveness of large-scale genetic testing to inform the use of statin drugs, based
on clinical guidelines. We also aim to discover in which patients genetic testing is most
cost-effective, and to examine how much improvements in genetic testing might make
testing more practical.

3.4.1 Methods

We develop a sample that is representative of Americans with no history of ASCVD who
would be eligible for the USPSTF statin guidelines. We then estimate ASCVD event rates
using the pooled cohort equations (PCE) risk scores (the current standard) and new PCE
that are informed by genetic risk. (The PCE and GenePCE strategies, respectively.) To
find a group for whom genetic testing is most likely to influence their care, we propose
testing anyone whose care recommendation would be changed if their GRS is outside one
standard deviation from the norm. Following the USPSTF guidelines, we assume people
who have a 10-year estimated risk above 10% are treated by a moderate-intensity statin
and those who have a history of heart attack or stroke are treated with a high-intensity
statin. A decision analytic model is developed to compare guiding care with the PCE risk
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vs. the GenePCE risk. Finally, we estimate the lifetime effects of following either of the
treatment strategies for 10 years on every patient in the population.

3.4.1.1 Population

To understand the clinical and policy implications of genetic testing, we aim to create
a simulated population that resembles all Americans who would meet our criteria for
genetic testing (summarized in Figure 3.2). We used NHANES from 2009 to 2014, which
is a nationally representative study sample of the US population (Centers for Disease
Control and Prevention, 2020). Our primary sample is composed of adult White or
African-American patients from 40 to 75 years old with no history of myocardial infarction,
stroke, or congestive heart failure and LDL of at most 190 mg/dL.

To do this, we impute missing data with the MissForest package in R (Stekhoven and
Buhlmann, 2012). We then create a synthetic dataset based on the NHANES sampling
weights that represent the guideline-eligible population. We use nonparametric classifi-
cation and regression trees and the synthpop package in R. This process samples from
the dataset’s probability distributions so that the main statistical features of the original
data are preserved (Nowok et al., 2016). Individuals with LDL greater than 190 mg/dL
are excluded.

Since many risk factors change over time, we estimate the progression in risk factors
over the 10-year time horizon. To do this, we used linear regression with systolic blood
pressure (SBP), high-density lipoprotein (HDL), LDL, and total cholesterol (TC) as out-
come variables (Table B.1 in Appendix B.1). We predict this change using the variables in
the PCE risk score and cholesterol treatment status. The intercept term of each regression
model is adjusted by applying the difference between the linear regression fitted value
and the observed value in the Continuous NHANES data. We select the models using
stepwise variable selection. If an individual is being treated with either atorvastatin or
rosuvastatin, we code this variable as a high intensity statin, all other statins are coded as
moderate intensity.

3.4.1.2 Treatment Strategies

Our treatment strategies are based on the 2016 USPSTF statin guidelines (Bibbins-
Domingo et al., 2016). In these guidelines, with a risk of at least 10% is recommended at
least a medium strength statin.

In the PCE strategy, patients are started on moderate-intensity statins when their 10-
year PCE risk reached 10% (Goff et al., 2014). The GenePCE strategy mirrored the PCE
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Figure 3.2: Flow diagram of the study dataset.
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strategy, except the treatment is guided by the patient’s GenePCE risk, which incorporates
the patient’s genetic risk with the PCE risk. We define genetic risk with a GRS, a combi-
nation of individual single-nucleotide polymorphisms that are independently predictive
of CHD, each weighted by the strength of their effect. ASCVD risk increases by an odds
ratio of 1.67 per standard deviation of genetic risk (Khera et al., 2018; Abraham et al., 2016;
The CARDIoGRAMplusC4D Consortium, 2013). Genetic risk is nearly independent of
the PCE risk, so we can accurately incorporate the GRS into the PCE (Khera et al., 2016,
2018; Natarajan et al., 2017). The GRS only alters the CHD component of the PCE risk
prediction. See Section 3.6.1.2 for details on the development of the GenePCE score.

Patients in the GenePCE evaluation would be recommended genetic testing if their
genetic risk has a reasonable chance of changing their treatment at the beginning of the
study period. We define this as anyone for whom a GRS outside 1 standard deviation
from the mean would alter their care. This proves to be anyone with a PCE risk score
between 7.68% and 13.63% at the first year of the simulation.

However, when applied directly, a different number of patients is recommended treat-
ment using the GenePCE score than the PCE score. Since we want to isolate the effects
of genetic testing, not the effects of statin use, we equalize the amount of statin treat-
ment between arms. We discover a treatment cut-point for the GenePCE score of 10-year
GenePCE risk above 8.47% did this. See Appendix B.2 for details on the identification of
the GenePCE treatment threshold. Anyone with history of CHD or stroke is continued to
be treated with a high-intensity statin.

3.4.1.3 States of the Model

At the beginning of each year, we assume that each patient could be in one of ten health
states throughout the 10-year planning horizon. The ten health states are: (1) healthy
(no history of CHD or stroke); (2) history of CHD but no adverse event this period; (3)
history of stroke but no adverse event this period; (4) history of CHD and stroke but no
adverse event this period; (5) survived a CHD event this period; (6) survived a stroke this
period; (7) death from a non-cardiovascular disease related cause; (8) death from CHD
event this period; (9) death from stroke this period; and (10) dead. All patients are in the
healthy state at the beginning of the first year. Each patient within each state has different
transition possibilities, quality of life weights, and costs based on their risk information.
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3.4.1.4 Transition Probabilities

Every patient has a 1-year event risk for every possible event at each year of the 10-year
planning horizon (Goff et al., 2014; Mega et al., 2015). We assume that 60% of the PCE risk is
from CHD events and 40% is from stroke events (Benjamin et al., 2017; Brønnnum-Hansen
et al., 2001; Burn et al., 1994).

As in previous research, we assume that second events are more common than would
be predicted by the PCE score alone. We multiply the patient’s CHD odds by 3 if the
patient has history of CHD, multiplied the stroke odds by 2 if the patient is at least 60
years old and has history of stroke, and multiplied the stroke odds by 3 if the patient has
history of stroke and is less than 60 years old (Brønnnum-Hansen et al., 2001; Burn et al.,
1994). The probability of having a new event is altered by statin use.

For people who have an event in a given year, we calculate the probability that the
event would be fatal by applying fatality likelihoods for CHD and stroke events to the
post-treatment risk of ASCVD events (Lloyd-Jones et al., 2009; Miniño et al., 2007; Sussman
et al., 2011, 2013). These are developed from the National Center for Health Statistics rates
of known fatal event compared to the overall event rates predicted by the PCE score,
adjusted for age and gender (NCHS, 2017). Mortality from second cardiovascular events
and known overdiagnosis of cardiovascular diseases is accounted for by decreasing the
fatal event rates reported by the National Center for Health Statistics by 50% (Govindan
et al., 2014). In addition, we calculate the probability of non-ASCVD mortality using
life-tables (Arias et al., 2017).

3.4.1.5 Treatment Benefit

The estimates of the effects of statins on ASCVD events are derived from Collins et al.
(2016). This study finds that the average LDL reduction from a moderate-intensity statin
would be 37% and from a high-intensity statin would be 53%. For every 40% reduction in
LDL the risk of ASCVD would decrease by 21%. We investigate the impact of statin benefit
misestimation by allowing discontinuation and restarting of treatment in a sensitivity
analysis.

3.4.1.6 Input variables

The quality of life for each health state is defined in Table 3.1. We assume the disutility of
statin use incorporates all side effects and any increased rate of diabetes (Fryback et al.,
1993; Pignone et al., 2006; Pignone, 2007). We calculate the lifetime impacts of these
choices. To do this, we use the patient’s estimated lifespan from life tables (Arias et al.,
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2017), and adjust the survival estimates for patients who have history of ASCVD events
(Pandya et al., 2015; Smolina et al., 2012; Dennis et al., 1993).

Table 3.1: Input variables.

Health State Value Source
Utility Weights

Healthy 1 Fryback et al. (1993); Pignone et al.
(2006); Pignone (2007)

History of CHD or stroke but
none this year

0.90 Fryback et al. (1993); Pignone et al.
(2006); Pignone (2007)

History of CHD and stroke
but none this year

0.81 Fryback et al. (1993); Pignone et al.
(2006); Pignone (2007)

Non-fatal CHD event 0.88 Fryback et al. (1993); Pignone et al.
(2006); Pignone (2007)

Non-fatal stroke 0.67 Fryback et al. (1993); Pignone et al.
(2006); Pignone (2007)

Dead 0 Fryback et al. (1993); Pignone et al.
(2006); Pignone (2007)

Moderate intensity statin 0.001 Pandya et al. (2015)
High intensity statin 0.002 Pandya et al. (2015)

Costs ($/year)
Non-fatal CHD event
Year of the event $67,155 O’Sullivan et al. (2011)
Subsequent years $4,499 Medical Expenditure Panel Survey

(2015)
Non-fatal stroke
Year of the event $22,143 O’Sullivan et al. (2011)
Subsequent years $7,100 Medical Expenditure Panel Survey

(2015)
Fatal CHD event $18,634 O’Sullivan et al. (2011)
Fatal stroke $11,495 O’Sullivan et al. (2011)
Genetic testing (one time
only)

$200 Personal communication

Moderate intensity statin $144/year GoodRx (2017)
High intensity statin $450/year GoodRx (2017)

All cost parameters are adjusted for inflation from the original citations and all ex-
penses and quality of life weights are discounted by 3% (O’Sullivan et al., 2011; Medical
Expenditure Panel Survey, 2015).
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3.4.1.7 Analysis

The number of times we run our simulation model is derived empirically. We initially run
the base case of our simulation 2,000 times. Then, we take random samples of 1 to 1,500
replications and calculate the mean of the incremental cost-effectiveness ratio (ICER) of
the GenePCE strategy compared to the PCE strategy. Summary statistics, survival rates,
and survival years of the population are then calculated. Afterwards, we examine how
genetic testing changes the treatment strategies of the patients during the first year of our
study. We also estimate the lifetime amount of treatment, ASCVD events averted, QALYs
saved, costs incurred, and cost per QALY saved following both, the PCE and GenePCE
treatment strategies using a 10-year planning horizon. These results are presented for
the whole population that received genetic testing and by treatment aggressiveness. All
results are estimated by averaging over all simulation replicates.

3.4.1.8 Sensitivity Analyses

We perform sensitivity analyses on many of the parameters under study. To assess the
robustness of the GenePCE strategy, we consider the potential impact on health and
spending if the GenePCE event rate is incorrect. One non-traditional analysis is the
development of the AdjustedGenePCE strategy. For this strategy, we incorporate a genetic
adjustment to the relative benefit of statins, in which patients with high genetic risk have
an additional improvement in relative statin benefit (Natarajan et al., 2017; Mega et al.,
2015).

We also perform a sensitivity analysis on the treatment threshold used for the GenePCE
treatment strategy. In our base-case, we establish cut-points that ensure that the PCE and
GenePCE provide the same amount of statin use over the 10 years of the study. In
sensitivity analyses, we match the amount of treatment during the first year of our study,
called equal initial treatment. We test a treatment threshold of 10% for both treatment
strategies. We also vary the odds ratio per standard deviation of the genetic score, one
based on Abraham et al. (2016) and one that hypothesizes continued improvement in GRS
effectiveness. In addition, we examine the case that decisions in the GenePCE strategy are
made according to the GRS effectiveness as estimated by Khera et al. (2018). While the
true GenePCE event rate followed the effectiveness of GRS as per Abraham et al. (2016),
namely the wrong GRS effectiveness scenario.

We vary statin cost, treatment related disutility of statins use, and incorporate the effect
of statin discontinuation and restarting in our sensitivity analyses based on Vinogradova
et al. (2016). Finally, we execute a one-way sensitivity analysis on the effect of ASCVD
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events on future mortality. A two-way sensitivity analysis is performed to study the effect
of the genetic testing range and cost of genetic testing on the ICER of GenePCE compared
to the PCE strategy. All analyses are performed with R (v3.3.0 The R Foundation for
Statistical Computing, Vienna AT) (R Core Team, 2016).

3.4.2 Results

3.4.2.1 Selection of Number of Replications for Analyses

The convergence of the mean ICER of the GenePCE strategy compared to the PCE strategy
is shown in Figure 3.3. We observe that the mean ICER starting at 500 replications is close
to the ICER of the GenePCE strategy compared to the PCE strategy at 2,000 replications
($63,722/QALY saved - represented with the red horizontal line in plot), with a moderately
small variation. For the main analysis, we choose to run the simulation 1,000 times.

The sensitivity and subgroup analyses are performed using 500 replications. This
number of replications is enough to achieve a standard error below $1,000/QALY saved
with as little as 10 random samples (with replacement) from the initial simulation of 2,000
replications. The standard error of 10 samples of 500 and 1,000 replications are $851/QALY
saved and $830/QALY saved, respectively. Note that 10 random samples with replacement
from the initial simulation of 2,000 replications is equivalent to running 10 independent
simulations with a smaller number of replications.

Figure 3.3: ICER of GenePCE (compared to the PCE strategy) under different number of
replications at a genetic testing costs of $200 per test. Points represent the mean ICER
using from 1 to 1,500 replications.
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3.4.2.2 Study Population

We propose testing all patients for whom a moderately extreme GRS (defined as outside
one standard deviation) would alter treatment. This is found to be a 10-year PCE risk
between 7.68% and 13.63% during the first year of observation would receive genetic
testing. A total of 16 million patients would be recommended a genetic test during the
first year of our study (Figure 3.2). Table 3.2 describes the baseline characteristics of our
simulated cohort of patients according to the PCE risk threshold (below or above the PCE
treatment cut-off and within the genetic testing range). After correcting for asymmetry,
the average GRS in the 1 SD genetic testing range is equal to 1. This implies that overall
event rate in the population remains unchanged, as the average GenePCE risk is equal to
the average PCE risk. In a baseline simulation in which the study population is untreated,
we estimate 1.06 million CHD events and 640,039 stroke events. Of these, 481,056 are fatal
CHD events and 74,850 are fatal stroke events. Our event rates are well calibrated with
national data.

Table 3.2: Description of patients at first year of study.

PCE risk
Within one SD

below 10%
10-year riska

Within one SD
above 10%

10-year riska

Patients, in millions (%) 8.00 (49.48%) 8.17 (50.52%)
Women, in millions (%) 3.00 (37.46%) 2.63 (32.14%)
African-Americans, in millions (%) 1.31 (16.42%) 1.35 (16.49%)
Patients with LDL >160 mg/dL (%) 1.05 (13.12%) 0.88 (10.77%)
Tobacco users (%) 2.41 (30.13%) 2.61 (31.95%)
Patients with diabetes, in millions (%) 1.12 (13.94%) 1.09 (13.32%)
Average Age, years (SD) 59.36 (7.40) 62.07 (7.37)
Average SBP, mmHg (SD) 128.70 (16.96) 131.4 (16.94)
Expected 10-year survival rate if untreated,
% (SD)

82.1% (0.93%) 77.73% (1.32%)

Expected years survival if untreated, years
(SD)

9.12 (0.06) 8.9 (0.07)

a Patients are recommended genetic testing if their risk is within 1 SD of having a treatment change. For the
group below 10%, this includes all patients with a PCE score from 7.68% to 10%. For the group above 10%,
this included all patients with a PCE score from 10% to 13.63%.

3.4.2.3 Effect of Genetic Testing

Although genetic information does not change the overall rate of events in the population,
it may change the individual risk scores of patients. Patients with a PCE risk score within
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the 1 SD genetic testing range during the first year of the study receive genetic testing in
our base case. The GRS of patients alters their risk for ASCVD events and may change
their treatment plans. Genetic testing changes the first year of treatment of 4.84 million
(29.91%) of patients (Figure 3.4). This effect could have been larger if both treatment
strategies have had the same treatment cut-point, but this would have been an unfair
comparison among the strategies. A summary of the difference between of the PCE and
GenePCE risks using the PCE treatment threshold (10% PCE risk) is included in Table 3.3.
We also study the impact of genetic testing on the distribution of the PCE risk over time.
The distribution of the risk scores before and after genetic testing is illustrated in Figure
B.1.

Figure 3.4: Comparison of PCE and GenePCE risks. The population size is represented
with the color gradient (dark blue indicates the smallest population sizes and dark orange
indicates the biggest population sizes). The green long dashed vertical lines indicate the
population within the 1 SD genetic testing range. The blue short dashed lines represent
the treatment thresholds. People with GenePCE risk scores above the horizontal blue
short dashed line are treated according to the GenePCE strategy. People with PCE risk
scores to the right of the vertical blue short dashed line are treated according to the PCE
strategy. A shows the risk scores for the whole population of 93.6 million people (after
LDL exclusions). B shows the risk scores of the people that received a genetic test during
the first year of our study (16.17 million people).
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Table 3.3: Treatment reclassification of patients at first year of study. Counts are presented
in millions with percentages in terms of the population that received genetic testing.

PCE risk GenePCE Risk
7.68%-10% 10%-13.63%

7.68%-10% 6.10 (37.73%) 1.90 (11.75%)
10%-13.63% 3.04 (18.8%) 5 .13 (31.72%)

3.4.2.4 Benefit of Genetic Testing

Once a genetic test is performed on a patient, the GenePCE risk score becomes available.
This risk score may then change the treatment plans over the planning horizon. By
performing genetic testing on 16.17 million people, the GenePCE strategy averts 4,928
ASCVD events and saves 42,052 more QALYs than the PCE strategy. This benefit is
mainly due to the GenePCE strategy treating more patients during the initial years of
our study. The amount of high intensity in both treatment strategies is a consequence
of primary ASCVD events. Thus, the GenePCE strategy is more effective in preventing
primary events, as it suggests approximately 30,000 less high intensity statins than the
PCE strategy.

Segregating the outcomes of our simulated cohort of patients by treatment aggres-
siveness (treatment less/more intense for at least 3 years of the study prior an ASCVD
event), we are able to identify the patients that received the most benefit from genetic
testing (Table 3.4). If patients are treated less aggressively in the GenePCE strategy, the
PCE strategy averts 3,865 more ASCVD events and saves 21,190 more QALYs than the
GenePCE strategy. On the other hand, the GenePCE strategy prevents 3,946 more ASCVD
events and saves 24,336 more QALYs than the PCE strategy by treating patients more
intensively for at least three years of our study.

3.4.2.5 Cost-Effectiveness of Genetic Testing

While under our selection of parameters the PCE strategy results cost-saving, the GenePCE
does not. By initiating treatment for more patients earlier in the study, the cost of treatment
increases from $16.75 billion in the PCE strategy to $16.79 billion in the GenePCE strategy
($144/year for moderate intensity statin and $450/year for high intensity statin). On the
other hand, initiating treatment earlier decreases the cost due to ASCVD events from
$83.26 billion in the PCE strategy to $82.85 billion in the GenePCE strategy. Additionally,
the GenePCE strategy has an overall cost of $3.14 billion due to genetic testing, which
leads to the 2.77 billion 2018 USD increase in cost and an increase of $1,358 per QALY
saved. The ICER of the GenePCE strategy compared to the PCE strategy is $66,298.
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Table 3.4: Population health outcomes over 10-year time horizon. Includes only people
who receive genetic testing during the first year of the study with 10-year PCE risk between
7.68% and 13.63% (16.17 million patients).

Policy PCE GenePCE
Recommended moderate statin, million patient-years 127.51 127.51
Recommended high intensity statin, million patient-years 3.58 3.55
CHD events averted by treatment 181,158 187,777
Stroke events averted by treatment 127,644 125,535
ASCVD events averted per 100 patients-years 1.91 1.94
Estimated number of patients treated more aggressively,
millionsb

1.33 1.11

CHD events averted by more aggressive treatmentb 1,771 3,329
Stroke events averted by more aggressive treatmentb 2,094 617
QALYs saved per 100 patient-years 12.39 12.65
QALYs saved, million 2 2.05
Total Cost, billion 2018 USD -0.22 2.56
Cost per QALY saved, 2018 USD -108 1,250
Cost per QALY saved, compared to PCE - 66,298

b Treatment aggressiveness is defined as less/more intense treatment for at least 3 years of the study prior
an ASCVD event.

3.4.2.6 Sensitivity Analyses

Table 3.5 illustrates the results of our one-way sensitivity analyses. By assuming that
the GRS is incorrect, we find the extent of possible costs and harms of inappropriate
adoption. Next, the AdjustedGenePCE strategy, in which people with high GRS have
a greater relative risk reduction in addition to added predictive value, has substantially
greater benefit than the base case. In the treatment threshold analyses we find that using
the GRS without equalizing statin treatments dramatically changes the cost-effectiveness
and the benefits (Table B.2). Changing the predictive quality of the GRS (by changing the
odds ratio increase per standard deviation and, consequently, the treatment threshold)
also has fairly large effects (Table B.2). If PCE risk increases by an odds ratio of 1.38 per
standard deviation of the genetic score, the benefit GenePCE strategy is smaller than in
our base case. The GenePCE strategy results in 21,985 less QALYs saved while costing
20 billion 2018 USD more than in the base case, when compared to the PCE strategy. An
odds ratio increase of 2 per standard deviation of the genetic score has the opposite effect.
In this case, the GenePCE strategy leads to more QALYs saved (55,176 vs 42,636 QALYs
saved) and lower costs (2.63 vs 2.74 billion 2018 USD) than the base case, when compared
to the PCE strategy. If treatment decisions in the GenePCE strategy are made according to
the wrong GRS effectiveness, the GenePCE strategy results less cost-effective than in the
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base case.

Table 3.5: Sensitivity analyses. Compares the results of the GenePCE strategy to the PCE
approach.

Sensitivity analysis scenario ASCVD events
averted

Cost/QALY
saved

Baseline 4,508 64,310
PCE event rate correctc -2,676 -125,184
AdjustedGenePCE policy 19,780 22,792
GenePCE treatment thresholdd

Equal initial treatment -11,196 -48,632
10% GenePCE threshold -22,564 -20,382

Odds ratio increase per
SD of genetic score

1.38 (Abraham et al., 2016) 1,904 142,478
2 6,130 47,618
Wrong GRS effectiveness 1,458 167,400

Statin cost
Both $50/year 4,508 63,701
Both decreased by half 4,508 63,796

Population ASCVD event rate
Declines 30% due to unrelated factors 4,004 27,815

Treatment related disutility
High intensity 0.004 QALY/statin-year 4,508 64,238
Double if age >70 4,508 63,615

Statin benefit misestimation
Treatment discontinuation and restarting
(Vinogradova et al., 2016)

3,798 85,048

Survival estimates
Decreases by 25% due to ASCVD mortality 4,508 76,259
Decreases by 50% due to ASCVD mortality 4,508 93,581

c In this scenario we consider the potential impact on health and spending if the GenePCE event rate is
incorrect and the PCE event rate is correct.
d The primary analysis set cut-points so that each treatment arm has the same amount of 10-year statin use.
The “equal initial treatment” set cut-points to the same amount of initial statin use. The “10% GenePCE
threshold” treats everyone once they reach a 10% event rate (Table B.2).

Reducing the cost of statins does not have a considerable effects on our base results.
If the population ASCVD event rate falls by 30%, the GenePCE strategy becomes more
cost-effective. We find that if statin treatment is discontinued and restarted fewer events
are prevented in the GenePCE strategy at a higher cost than in the base case (2.93 vs 2.74
billion 2018 USD), when compared to the PCE strategy. Lastly, decreasing the survival
estimates by 25% due to ASCVD mortality results in 13,227 less QALYs than in the base
case, when compared to the PCE strategy. Decreasing the lifetime survival by 50% reduces
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the benefit of the GenePCE strategy over the PCE strategy in 24,968 QALYs saved.

Genetic Testing Range and Cost: We perform a two-way sensitivity analysis on the
cost and the recipients of genetic testing (Figure 3.5). We examine only testing people
whose risk is under 10% (so genetic testing will only increase treatment) and different
cut-points. In the “2 SD” (“0.5 SD”) group, we test anyone whose PCE risk could cross
the 10% threshold if their GRS is greater than 2 (0.5) standard deviations from the median,
instead of the 1 SD group baseline. See Figure 3.5 for the results of the two-way sensitivity
analysis.

Figure 3.5: ICER of GenePCE (compared to the PCE strategy) using multiple genetic
testing scenarios and costs of genetic testing. Points indicate ICER of GenePCE at genetic
testing costs of $0, $50, $100, $200, $400, $800, and $2,000 per test.

The results are very sensitive to the cost of genetic testing, with all groups becoming
cost-effective if genetic testing costs less than $100. The results are also much more cost-
effective when only testing those with risk < 10%. This is because increasing statin use is
itself cost-effective (Pandya et al., 2015). Performing genetic testing on more patients also
improves cost-effectiveness, contrary to our hypothesis.

3.4.3 Discussion

We found that incorporating genetic risk scores into primary prevention of cardiovascular
disease may already be cost-effective for over 60 million Americans if appropriately in-
corporated into treatment decisions. However, the overall public health impact would be
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relatively small, likely preventing approximately 490 ASCVD events per year, improving
the benefit of statins by roughly 4,200 QALYs.

Our work aligns well with the limited previous work on the subject. We found that
the combination of the improving quality of GRS together with the decreasing price
of genetic testing and the tremendous expense of ASCVD in American makes genetic
testing relatively practical. Our study is quite different from the only other existing
cost-effectiveness study that we are aware of, since our study was designed to estimate
population-level effects of policies, instead of specific case examples. Our results are
consonant with other cost-effectiveness analyses of novel risk markers, like coronary
artery calcium screening (Roberts et al., 2015).

One unique analytic choice was to normalize treatment intensity between the arm that
received genetic testing to one that didn’t. We think this isolates the clinical question to
being about genetics, without adding in the impact of increasing statin use.

As with any cost-effectiveness analysis, our findings are limited by the available data.
Genetic risk is a rapidly advancing field; new findings that change our assumptions will
happen regularly. The GRS could prove less effective in other populations. Healthcare
costs also advance rapidly and vary widely. There is some question about the accuracy
of the underlying PCE risk calculator. That said, these are the best available assumptions
at the time and we performed multiple sensitivity analyses. Also, we decided a cut-point
a priori of what we hypothesized would be a population that was relatively likely to
benefit. Our analyses found that a larger population would potentially have been more
cost-effective and had a larger public health benefit.

While we have modeled cholesterol treatment decisions based on the USPSTF statin
guidelines, a crucial extension of this work is to model these decisions using MDP models.
We address this extension in the subsequent section.

3.5 Cost-Effectiveness of Optimal Cholesterol Treatment

Plans Informed with Genetic Information

In this section, we determine the potential public health impact of large-scale genetic
testing to inform the use of optimal cholesterol treatment plans. We also evaluate how
the cost-effectiveness of genetic testing changes with respect to the population tested.
Cholesterol treatment plans are modeled using finite-horizon MDP models. The treatment
plans are compared in a simulation framework. This allows us to asses different aspects
of our model with great flexibility (Glover et al., 2018).
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3.5.1 Simulation Framework

We use a large representative sample of the US population to understand the implications
of genetic testing. To find a group for whom genetic testing is most likely to influence
their care, we use the USPSTF statin guidelines (Bibbins-Domingo et al., 2016). Please
refer to Subsection 3.4.1.1 for details on our study population.

We model the health status of each patient as a Markov chain and simulate their
state trajectory over a 10-year planning horizon. The trajectory of a single patient in our
modeling framework is summarized in Figure 3.6.

Calculate risk scores 

for 𝑡 = 0,… , 𝑇 − 1
Calculate transition 

probabilities

Determine the 

patient’s state for 

each treatment 

strategy
No

Yes

𝑡 ← 𝑡 + 1

End 
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Determine treatment 

strategies
Set 𝑡 = 0

𝑘 ← 𝑘 + 1

Yes

No

Store costs, ASCVD 

events, and QALYs 

associated with each 

treatment strategy

Is 𝑡 = 𝑇 − 1?

Initialization
Set 𝑘 = 1

Is 𝑘 = 𝐾?

Figure 3.6: Summary of simulation framework for a single patient.

Before the start of the simulation, we calculate each patient’s 1-year risk for ASCVD
events at each year t = 0, 1, . . . ,T − 1 using risk scores that are and are not informed
by genetic information. We then estimate transition probabilities based on each risk
score. The transition probabilities are used to determine treatment strategies using clinical
information only and clinical and genetic information.

We compare the outcomes of every patient under each treatment strategy at every
replication k = 1, 2, . . . ,K and year t. Since genetic variants play a role in each patient’s
health (independent of whether or not they have received genetic testing), the health
trajectory of each patient progresses from year t to year t + 1 according to the risk score
informed by clinical and genetic information. Finally, we estimate the lifetime effects of
the treatment strategies on every patient, represented by the terminal time period T. The
simulation ends once the planning horizon of each patient is simulated K times.

We describe our risk scores, and treatment strategies in more detail in the following
subsections. A summary of the parameters used during our study can be found in Table
3.1 in Section 3.4.
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3.5.1.1 Risk Scores

The risk for ASCVD events due to clinical factors of each patient per year is measured
using an existing PCE risk score (Goff et al., 2014). This risk score is based on a proportional
hazards model with age, gender, race, smoking status, diabetes status, SBP, HDL, and TC
as explanatory variables. Based on clinical expertise, we assume independence among
the ASCVD events. Moreover, we assume that 60% of the ASCVD risk is due to CHD
events (Benjamin et al., 2018).

While no information of the risk for stroke events due to genetic factors is available,
based on communications with clinical collaborators we assume that the risk for CHD
events due to genetic factors can be measured using a GRS. We assume the GRS of each
patient does not change over time. Previous studies have shown that the risk for CHD
due to genetic factors is nearly independent from the risk for CHD due to clinical factors
(Khera et al., 2016, 2018; Natarajan et al., 2017). Past research has also found that the
distribution of genetic scores is near normal (Khera et al., 2018; Mega et al., 2015). This
allows us to model the genetic score of each patient in our population as a standard
Gaussian random variable. We then estimate the GRS as the odds ratio for CHD events
per standard deviation of the genetic score, as estimated by Khera et al. (2018). The PCE
risk increases by an odds ratio of 1.67 per standard deviation of the genetic score (Khera
et al., 2018; Abraham et al., 2016).

We assume the event rate predicted by the PCE risk score as true at a population level
(Goff et al., 2014). Hence, the average risk for ASCVD events in the population is expected
to remain unchanged after the addition of genetic information. Since the distribution of
odds ratios is asymmetric, the GRS would likely change the average risk for CHD events
at a population level. To account for this, we develop a correction factor for the genetic
risk scores. We define this correction factor as the ratio of the mean odds for CHD due
to clinical factors to the mean odds for CHD due to clinical and genetic factors at the first
year of our study. Combining the two components of the risk for CHD events, we can then
estimate the risk for ASCVD events due to clinical and genetic factors, or the GenePCE
risk score.

3.5.1.2 State Space

Our simulation model uses a state-space representation to fully describe the character-
istics of every patient at each year t. A state st ∈ S consists of a patient’s demographic
information, laboratory measurements, health status, and GRS at year t. Each patient’s
demographic information and laboratory measurements are incorporated into our state in
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the form of the PCE risk score. The demographic information encompasses the patient’s
age, race, and sex. The laboratory measurements include measurements of the patient’s
untreated SBP, HDL, TC, smoking status, and diabetes status. We assume each patient’s
health status can be classified at the beginning of each year into one of the following:
(1) healthy (no history of CHD or stroke); (2) history of CHD but no adverse event in
the current period; (3) history of stroke but no adverse event in the current period; (4)
history of CHD and stroke but no adverse event in the current period; (5) survived a CHD
event in the current period; (6) survived a stroke in the current period; (7) death from
a non-cardiovascular disease related cause; (8) death from a CHD event in the current
period; (9) death from a stroke in the current period; and (10) dead. We also assume that
all patients have a healthy status at the beginning of our simulation.

3.5.1.3 Action Space

We limit our action spaceA to three treatment options: no treatment, moderate intensity
statins, or high intensity statins. The treatment that patients receive each year depends on
their current and future states. Once a treatment choice at ∈ A is made at the beginning of
year t, we assume it has a near-immediate effect on each patient’s health. We incorporate
this effect by estimating the relative risk reduction due to treatment choice at. The estimates
of the effect of cholesterol-lowering statins drugs on ASCVD events are derived from
Collins et al. (2016).

3.5.1.4 Transition Probabilities

We use pt(s̃t|st, at) to denote the transition probability from state st to state s̃t, after taking
action at at the beginning of year t. To calculate the transition probabilities, we first
estimate the PCE risk score (risk for ASCVD events due to clinical factors) and GenePCE
risk score (risk for ASCVD events due to clinical and genetic factors). As in previous
studies, we assume that if patients have a history of CHD or stroke, they are more likely
to have additional ASCVD events (Schell et al., 2016). To account for this, we multiply the
patient’s CHD odds by 3 if the patient has a history of CHD, multiply the stroke odds by
2 if the patient is at least 60 years old and has a history of stroke, and multiply the stroke
odds by 3 if the patient has a history of stroke and is less than 60 years old (Brønnnum-
Hansen et al., 2001; Burn et al., 1994). The risks for CHD and stroke are adjusted if the
patient receives treatment. For people who have an event in a given year, we calculate the
probability for this event to be fatal by applying fatality likelihoods to the post-treatment
risk for CHD and stroke (Lloyd-Jones et al., 2009; Sussman et al., 2013). We calculate the
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fatality likelihoods as the ratio of known fatal event rates from the National Center for
Health Statistics to the overall event rates predicted by the PCE risk, adjusted for age
and gender (NCHS, 2017). In addition, we incorporate the probability of non-ASCVD
mortality using life-tables (Arias et al., 2017).

3.5.1.5 Rewards and Costs

We define the reward rt(st, at) as the quality of life (QoL) associated with the patient’s
health status at state st minus the burden from treatment choice at at year t. During our
study, we assume that the QoL weight depends only on the patient’s health status. We
obtain the QoL weights and burden from the treatment choices used during our analyses
from previous studies (Fryback et al., 1993; Pignone et al., 2006; Pignone, 2007; Pandya
et al., 2015). To evaluate the lifetime effect of the treatment choices, we assume the terminal
condition of a patient can be computed as the product of the patient’s expected lifetime,
a mortality factor that accounts for the effect of ASCVD events on future mortality, and a
terminal QoL weight (Fryback et al., 1993; Pignone et al., 2006; Pignone, 2007; Arias et al.,
2017; Pandya et al., 2015).

The cost of fatal and non-fatal ASCVD events, history of ASCVD events, medications,
and genetic testing are also obtained from existing literature (O’Sullivan et al., 2011;
Medical Expenditure Panel Survey, 2015; GoodRx, 2017; Color Genomics, 2018). All the
cost parameters in our analyses are adjusted for inflation from the original citations. All
QoL weights and costs are discounted by 3% (Neumann et al., 2016).

3.5.1.6 Treatment Strategies

To evaluate the impact of genetic testing, we model the process of sequentially determining
cholesterol treatment medications over the 10-year planning horizon as a finite-horizon
discrete-time MDP (Puterman, 2014). We develop two MDP policies for each patient in
our simulation, one based on clinical information only and another based on clinical and
genetic information.

The objective of each MDP is to determine the treatment strategy that maximizes the
expected discounted QALYs, based on the available information. We obtain optimal
cholesterol treatment plans by solving the set of dynamic programming equations:

vt(st) = max
at∈A

∑
s̃t∈S

pt(s̃t|st, at)
[
rt(s̃t, at) + λvt+1(s̃t)

] ,
for st ∈ S, and t = 0, 1, . . . ,T− 1, where λ = 0.97 is the discount factor of the model. Given
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a terminal condition vT(sT), we can find the optimal treatment strategy by recursively
computing the value functions vt(st) for t = 0, 1, . . . ,T − 1 and st ∈ S.

Both MDP models share the same states, transition probabilities, and rewards as our
simulation model. However, the MDP model developed with clinical information only
does not include genetic information when treatment decisions are made.

3.5.1.7 Model Evaluation

Our simulation framework allows for an estimation of the benefit of treatment plans with
and without genetic information in a flexible and realistic way. Given the patient’s initial
state s0, our simulation framework enables us to approximate the total expected QALYs
obtained from each treatment plan as:

v0(s0) ≈
1
K

K∑
k=1

T−1∑
t=0

λtrt,k(st,k, at,k) + λTvT(sT,k),

where rt,k(st,k, at,k) is the QoL associated with the patient’s health status minus the treatment
harm from at,k at state st,k, year t, and replication k, vT(sT,k) is the terminal condition as
defined in the MDP formulation at state sT,k, λ = 0.97 is the discount factor of the model,
and K is the total number of replications in our simulation model.

3.5.1.8 Calibration and Validation

To ensure the number of fatal and non-fatal CHD and stroke events in our simulation
match those of the national statistics, we calibrate the amount of events predicted by the
risk scores. Mortality from second cardiovascular events and known overdiagnosis of
cardiovascular diseases is accounted for by decreasing the fatal event rates reported by
the National Center for Health Statistics by 50% (Govindan et al., 2014). We estimate the
overall event rates predicted by the risk scores by simulating the first year of the 10-year
planning horizon of every patient following the USPSTF statin guidelines 50 times. We
also run a baseline simulation in which the study population is untreated and the event
rates are calibrated with national data (NCHS, 2017). The calibration of our model was
verified by a clinical researcher at the University of Michigan Medical School.

Our simulation was built with high face validity by discussing the parameters and logic
with experts in the field. Our co-author, a practicing clinician at the University of Michigan
Hospital and researcher at the Veterans Affairs Ann Arbor Healthcare System, helped to
validate our model. Additionally, our estimates of the effect of genetic information on
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the risk for CHD events were discussed with geneticists at the Massachusetts General
Hospital and the Department of Medicine at Harvard Medical School.

All analyses are performed with R (v3.5.0 The R Foundation for Statistical Computing,
Vienna AT) (R Core Team, 2016). The computations are made using 50 Intel Xeon CPUs
and 256GB of RAM. A single replicate of our simulation requires approximately 5 seconds
of computing time.

3.5.2 Results

The number of replications needed to capture the heterogeneity in our population and to
observe low-probability events is first evaluated. We study how the average QALYs saved
and cost incurred per patient change by incorporating genetic information into treatment
plans as we increase the number of replications. The effect of genetic information on each
patient’s PCE risk at the first year of our study is then investigated. Subsequently, we
estimate the number of CHD events averted, QALYs saved, costs incurred, and cost per
QALY saved following both treatment strategies, compared to no treatment. Lastly, we
evaluate the impact of performing genetic testing in patients below and above 50 years
old and in male and female patients while varying the cost of genetic testing from $0 to
$400.

3.5.2.1 Selection of Number of Replications

Before investigating the impact of genetic testing in a representative sample of the US
population, we derive the number of replications to run our simulation model empirically.
We observe that the average QALYs saved and cost incurred after 750 replications are close
to the average QALYs saved and cost incurred at 2,000 replications with small variation
(Figure 3.7). Based on this, we choose to run the simulation K = 750 times for all analyses.

3.5.2.2 Comparison of Risk Scores

Out of a population of 93.55 million patients, 16.17 million (17.29%) patients receive a
genetic test at the first year of our study. Even though genetic information does not
change the overall rate of events in the population, it may change the individual risk
scores of patients. The genetic information of patients alters their risk for ASCVD events
and may change their treatment plans. Figure 3.8 shows an overall comparison of the PCE
and GenePCE risk scores at the first year of our study. We observe that genetic information
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Figure 3.7: Convergence of QALYs saved and cost incurred due to genetic testing in
simulation. Figure 3.7(a) illustrates the average QALYs saved due to genetic testing using
from 1 to 1,500 replications. Points in Figure 3.7(b) represent the average cost incurred
due to genetic testing using from 1 to 1,500 replications. The red horizontal lines in plots
show the average QALYs saved and cost incurred at 2,000 replications.

helps identify individuals at increased risk for ASCVD events. However, it can be noticed
that most of the population have GenePCE risk scores slightly lower than PCE risk scores.

3.5.2.3 Impact of Genetic Testing

Table 3.6 summarizes the health outcomes and costs of both treatment strategies compared
to no treatment. We observe that the policies informed with clinical and genetic informa-
tion averted 86 more CHD events and saved 390 more QALYs than the policies informed
with clinical information only. Patients with GenePCE scores higher than PCE scores may
require a more intense treatment than they would have received without genetic informa-
tion. Conversely, patients for whom the GenePCE score is lower than the PCE score may
require less treatment under the GenePCE score than given without genetic information.

After genetic testing, the cost of treatment decreases by $9.42 million. Since genetic
testing provides information about which patients should receive higher treatment inten-
sity, the cost due to ASCVD events decreases by $2.59 million using clinical and genetic
information. Nonetheless, the policies derived using clinical and genetic information
have an additional cost of $3.14 billion due to genetic testing ($200 per test in our base
case). These cost estimates lead to an increase of nearly 3.13 billion USD in the total
cost of the policies informed with clinical and genetic information. Understanding which
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Figure 3.8: Comparison of PCE and GenePCE risk scores. The population size is rep-
resented with the color gradient (dark blue indicates the smallest population sizes and
dark orange indicates the biggest population sizes). Figure 3.8(a) shows the risk scores
of the whole population (93.55 million people). Figure 3.8(b) shows the risk scores of the
patients that receive a genetic test during the first year of our study (16.17 million people).

population benefits the most from genetic testing may result in better health outcomes
and lower costs.

3.5.2.4 Population and Genetic Testing Cost Analysis

By performing genetic testing on different populations, we are able to further identify
which individuals would benefit the most from a genetic test. Both treatment strategies
are well below the commonly used cost-effectiveness thresholds for all populations and
testing costs, when compared to no treatment (Neumann et al., 2014). We find that the
policies informed with clinical and genetic information are cost-saving compared to the
policies informed with clinical information only if there is no cost associated with genetic
testing. Genetic testing is most cost-effective if performed on people who are less than
50 years old. It is least cost-effective if performed on female individuals only. However,
the ICER of the policies informed with clinical and genetic information compared to the
policies derived with clinical information only is considerably higher than the regularly
used cost-effectiveness thresholds in all scenarios (Neumann et al., 2014). The results of
our population and genetic testing cost analysis are included in Figure 3.9.
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Table 3.6: Population health outcomes at the end of the 10-year time horizon. The policies
informed with clinical information only and with clinical and genetic information are
compared to no treatment. Results are averages over 750 replications. Values within
parenthesis indicate the standard deviation across replications.

Information Considered Clinical Clinical and Ge-
netic

Moderate intensity treatment, patient-
years

121,875 (25,979) 155,512 (30,085)

High intensity treatment, patient-years 149,188,644
(276,853)

149,153,543
(277,348)

CHD events averted by treatment 275,038 (30,272) 275,124 (30,298)
QALYs saved 4,286,972 (241,950) 4,287,362 (242,010)
Total cost, billion USD $27.81 ($2.49) $30.94 ($2.49)
Cost/QALY saved, USD $6,488 ($840) $7,216 ($874)

3.5.3 Discussion

In this section, we presented a simulation framework to evaluate the implications of
genetic testing on optimal cholesterol treatment plans using a 10-year planning horizon.
We applied this framework to a large sample representative of an adult population in the
US. Although our simulation required longer running times than simpler models (such
as Markov cohort models), it enabled us to asses different aspects of our model with great
flexibility.

This work could be extended by incorporating other cholesterol-lowering drugs (such
as fibrates). We chose statins because they are the most commonly used cholesterol-
lowering drugs and there is reliable data about their benefit. Another extension of this
work could be to incorporate the effect of genetic testing on hypertension treatment or
aspirin use. The same genetic test could be used to guide decisions of multiple conditions
at once. However, risk prediction plays a smaller role in hypertension treatment decisions
and the clinical benefit of aspirin is now unclear (McNeil et al., 2018).

Our simulation framework may also be used to evaluate other treatment strategies
such as the USPSTF guidelines or the ACC/AHA statin guidelines in practice (Bibbins-
Domingo et al., 2016; Goff et al., 2014). We sought to find treatment strategies that
maximized the expected discounted QALYs due to their popularity in quantifying the
health-related benefits gained from clinical interventions (Fonarow et al., 2017; Glover
et al., 2018; Jarmul et al., 2018; Mason et al., 2014). Other objective functions (such as cost
alone, or more general utility functions) may be used to find treatment plans.

Two additional key extensions of this work are to identify the population that would
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Figure 3.9: ICER of genetic information in different populations and costs of genetic
testing. Points indicate the ICER of genetic information at genetic testing costs of $50,
$100, $200, and $400 per test. The base population represents performing genetic testing
according to clinical expertise and the USPSTF statin guidelines. A base-10 logarithmic
scale is used in the vertical axis for illustration purposes. Minor tick marks in the vertical
axis represent 10% increases between the major tick marks.

benefit the most from genetic information and when to perform such a test. We address
these questions in the next section.

3.6 Optimal Cholesterol Treatment and Genetic Testing

Strategies

In this section, we model cholesterol treatment plans as a finite-horizon MDP (Puterman,
2014). We determine which patients should receive genetic testing and the time of testing
using VoI analysis (Raiffa and Schlaifer, 1961). That is, we perform a genetic test if
there is evidence that it might benefit a patient. The treatment and testing decisions are
incorporated in a simulation-based framework. We chose a simulation-based framework
to evaluate treatment plans and decide when to perform genetic tests because it allows
us to assess different aspects of our model with great flexibility (Glover et al., 2018). The
objective of our work is to determine when to perform genetic testing and to understand
how optimal treatment plans change with the addition of genetic information. Our
research bridges a gap between the adoption of genetic information in patient care and
cholesterol treatment plans by modeling the health trajectory of patients stochastically
and making treatment and testing decisions simultaneously.
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3.6.1 Modeling Framework

We consider a large representative sample of the US population composed of adult Cau-
casian or African-American patients from 40 to 60 years old. Given the information of
each patient, the following decisions must be made at each year t = 0, 1, . . . ,T − 1 of
the planning horizon: (1) if and how the patient’s cholesterol should be treated; and (2)
whether or not the patient should receive a genetic test. We incorporate both decisions by
simulating the health trajectory of every patient over the planning horizon.

The trajectory of a single patient in our modeling framework is summarized in Fig.
3.10. Before the start of the simulation, we calculate the risk for ASCVD events of the
patient at each year using a risk score that is only informed by clinical information.
Subsequently, we estimate transition probabilities based on clinical information only.
Because the effects of genetic information are not known prior to a genetic test, we simulate
potential realizations of genetic information from a known probability distribution. At
each realization g = 1, . . . ,G, we adjust the risk for ASCVD events with the potential
genetic information and estimate transition probabilities based on clinical and genetic
information. The transition probabilities are then used to determine the treatment policies
derived with clinical information only and with clinical and genetic information.

Since genetic variants play a role on patients’ health (independent of whether or not
they have received genetic testing), the health trajectory of patients evolves from year
t to year t + 1 according to clinical and genetic information. The health trajectory of
patients is adjusted based on each treatment plan. We compare the outcomes of patients
for each potential realization of genetic information g at every health trajectory replication
k = 1, 2, . . . ,K and year t. Lastly, we estimate the lifetime effects of the treatment decisions
on each patient, represented by the terminal time period T.

The simulation ends once the planning horizon of every patient is replicated K times
under G realizations of their potential genetic information. A genetic test is performed
if there is evidence that it would provide some benefit based on the VoI. Specifically,
a genetic test is performed if the VoI is above a predetermined threshold θ at year t.
We describe our main clinical assumptions as well as the formulation of the risk scores,
treatment decisions, and testing decisions in more detail in the following subsections.

3.6.1.1 Clinical Assumptions

To answer the clinically complex question of how to perform cholesterol treatment and
genetic testing decisions simultaneously, we make several assumptions associated with
the risk for ASCVD events or with the benefits and costs of treatment. All our assumptions
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Figure 3.10: Summary of modeling framework for a single patient. The index g represents
a realization of genetic information, t represents the year in the planning horizon, and k
represents a realization of the health trajectory of the patient.
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have clear citations and align with other high-profile cost-effectiveness studies. We begin
by describing our risk-related assumptions.

We measure the risk for ASCVD events due to clinical factors using the PCE score
from the American College of Cardiology (ACC) and the American Heart Association
(AHA), the primary predictive model in multiple clinical guidelines (Bibbins-Domingo
et al., 2016; Goff et al., 2014; Stone et al., 2014). The PCE score predicts ASCVD, which
consists of CHD and stroke. Since both diseases have the same basic risk factors (and
because there are currently no separate PCE scores for CHD and stroke) we make the
following assumption:

Assumption 3.1 The risk for ASCVD events can be decomposed into risk for CHD events and
risk for stroke events.

While not specifically linked to the PCE score, previous studies have found that if patients
have a history of CHD or stroke, they are more likely to have additional ASCVD events
(Brønnnum-Hansen et al., 2001; Burn et al., 1994). As a result, we assume the following:

Assumption 3.2 Secondary ASCVD events are more common than would be predicted by the
PCE score alone.

At the time of this work, there is no information of the risk for stroke events due to
genetic factors, but the risk for CHD events due to genetic factors has been quantified using
a GRS (Mega et al., 2015; Khera et al., 2016; Natarajan et al., 2017). Although this quantity is
unknown before a genetic test, previous studies have reported that genetic scores appear
to be normally distributed (Khera et al., 2018). Furthermore, past research has shown that
the risk for CHD due to genetic factors is nearly independent from the risk for CHD due
to clinical factors (Khera et al., 2016, 2018; Natarajan et al., 2017). These findings, along
with the understanding that genetic risk scores are not commonly performed in practice
yet (Lewis and Vassos, 2020), lead us to our next assumption:

Assumption 3.3 Genetic scores can be sampled from a normal distribution. The risk for ASCVD
events due to genetic factors is independent from the risk for ASCVD events due to clinical factors.
Moreover, no patient has received genetic testing prior to the beginning of the planning horizon.

Since the PCE risk score is widely used in practice, and it has been validated across
the populations considered in our study, we make the following assumption:

Assumption 3.4 The event rate predicted by the PCE risk score is true at a population level.
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A direct consequence of this assumption is that the average risk for ASCVD events in the
population is expected to remain unchanged after the addition of genetic information.

Besides risk-related assumptions, we make assumptions on the effect of treatment on
patients’ health. Based on communications with clinical collaborators, every cholesterol-
lowering drug is coded as a moderate intensity statin except for atorvastatin and rosu-
vastatin. We focus on statin drugs because they are the most commonly used cholesterol-
lowering drugs, and clinical guidelines already recommend that the risk for ASCVD
events should be used to guide their usage (Bibbins-Domingo et al., 2016; Stone et al.,
2014). As statin drugs have relatively fast effects on patients’ cholesterol, we make the
following assumption:

Assumption 3.5 Cholesterol treatment has a near-immediate effect on patients’ health.

This assumption allows us to incorporate the impact of treatment in patients’ rewards.
After patients receive cholesterol treatment, they may remain healthy, survive an

ASCVD event, die from an ASCVD event, or die from a non-cardiovascular disease
related cause. Each of these health conditions has a corresponding QoL weight, which
has been elicited through patient surveys (Gold et al., 2002). Adding over the amount of
time patients are expected to spend having each health condition enables us to calculate
QALYs. In a similar way, there is a cost associated with each health condition and each
statin drug. This leads to our last main assumption:

Assumption 3.6 Patients’ rewards and costs only depend on their health condition and current
treatment. Furthermore, patients’ terminal rewards and costs only depend on their health condition
at the end of the planning horizon and their life expectancy afterwards.

The terminal rewards and costs in Assumption 3.6 represent patients’ expected QALYs
and costs after the end of the planning horizon.

3.6.1.2 Risk Scores

The PCE risk score was developed using a proportional hazards model with age, sex,
race (Caucasian or African-American), smoking status, diabetes status, SBP, HDL, and
TC as explanatory variables (Kleinbaum and Klein, 2005). For a single patient, the risk for
ASCVD events due to clinical factors is given by the PCE risk score:

R(ζt) = 1 − S0 (t)e~β(~xt−~µ)
, (3.1)

where S0 (t) is the baseline survival function at time t, ~xt is a vector of the clinical char-
acteristics of the patient (i.e. age, sex, race, smoking status, diabetes status, SBP, HDL,
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and TC) at year t, ~µ is a vector of the race- and sex-specific population means of the
clinical characteristics, and ~β is a vector containing coefficients for each clinical character-
istic. For simplicity of notation, we let ζt = {~xt, ~µ, ~β} represent all clinical information of
the patient at time t. In line with Assumption 3.1, α of the ASCVD risk is due to CHD
events and 1 − α is due to stroke events. For a single patient, the risk for CHD and stroke
events due to clinical factors is obtained from the PCE risk score as RCHD(ζt) = αR(ζt) and
RStroke(ζt) = (1 − α)R(ζt), respectively.

Combining the clinical component of the risk for CHD events with a realization of the
GRS γg, we can estimate the risk for ASCVD events due to clinical and genetic factors.
This risk score will be referred to as the GenePCE risk score. We obtain the GenePCE risk
score of a single patient as:

R(ζt, γg) = RCHD(ζt, γg) + RStroke(ζt). (3.2)

3.6.1.3 Treatment Decisions

The process of sequentially determining cholesterol treatment medications over a
planning horizon is modeled as a finite-horizon discrete-time MDP (Puterman, 2014).
Each year, we model two treatment plans for each patient in our population: one using
the PCE risk score (clinical information only) and another using the GenePCE risk
score (clinical and genetic information). The objective of each MDP is to determine the
treatment strategy that maximizes the expected discounted QALYs. We use the following
notation for treatment decisions:

t index of years in our planning horizon; t = 0, 1, . . . ,T− 1. Decisions
are made at the beginning of each year t.

st patient’s state consisting of clinical and genetic information at time
t; st ∈ S, where S = {1, . . . ,S} is a finite set of states.

ht health condition of a patient at time t; ht = 1, . . . , 10.
at cholesterol treatment choice; at ∈ A, whereA = {1, . . . ,A} is a finite

set of treatment choices.
RRR(at) relative risk reduction in the risk for ASCVD events due to treatment

choice at.
pt(s̄t|st, at) transition probability from state st to state s̄t, after taking action at

at year t.
φ(ht) scaling factor to account for history of ASCVD events when a patient

has health condition ht.
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ρ(ht) probability that an ASCVD event is fatal, or fatality likelihood,
when a patient has health condition ht.

ψ(st) probability of a non-ASCVD death when a patient has state st.
rt(st, at) patient’s reward defined as the QoL weight associated with state st

and treatment choice at.
d(at) disutility, or treatment harm, associated with treatment choice at.
λ discount factor of the model; λ ∈ (0, 1].
vt(st) value function for state st.
L(sT) patient’s expected lifetime after year T − 1 at state sT.
M(sT) mortality factor that accounts for the effect of ASCVD events on

future mortality after year T − 1 at state sT.
q(hT) terminal QoL weight.

We now describe S,A, pt(s̄t|st, at), rt(st, at), and the optimality equations in more detail.

State space: A state st ∈ S consists of a patient’s demographic information, laboratory
measurements, health condition, and GRS. The demographic information encompasses
the patient’s age, race, and sex. The laboratory measurements include measurements of
the patient’s untreated SBP, HDL, TC, smoking status, and diabetes status. Each patient
also has one of ten mutually-exclusive health conditions ht = 1, 2, . . . , 10:

(1) Healthy (no history of CHD or stroke)

(2) History of CHD but no adverse event in the current year

(3) History of stroke but no adverse event in the current year

(4) History of CHD and stroke but no adverse event in the current year

(5) Survived a CHD event

(6) Survived a stroke

(7) Death from a non-cardiovascular disease related cause

(8) Death from CHD event

(9) Death from stroke

(10) Dead
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Action space: We limit our action space A to three treatment options: no treatment,
moderate intensity statin drugs, or high intensity statin drugs. As stated in Assumption
3.5, once a treatment decision is made at the beginning of each year, it has a near-immediate
effect on a patient’s health. We incorporate this effect by estimating the relative risk
reduction (RRR) due to treatment choice at, denoted by RRR(at).

Transition probabilities: To calculate pt(s̄t|st, at), we first estimate the dynamics of pa-
tients’ laboratory measurements over the planning horizon. These estimates are used to
calculate the risk for ASCVD events due to clinical factors or due to clinical and genetic
factors using equation (3.1) or equation (3.2), respectively. In accordance with Assump-
tion 3.2, if patients have history of CHD or stroke, they are more likely to have additional
ASCVD events. This is incorporated into our transition probabilities using a scaling factor
φ(ht) that depends only on the health condition of the patient ht. The risk for CHD and
stroke are altered if the patient receives treatment. For patients who have an event in a
given year, we calculate the probability that the event is fatal by applying fatality likeli-
hoods ρ(ht) to the post-treatment risk of CHD and stroke events. These fatality likelihoods
depend only on the health condition of the patient ht. Finally, we consider the probability
of non-ASCVD mortality ψ(st) in our transition probabilities to account for other risks
competing with the risk for ASCVD events in our model.

Rewards: As per Assumption 3.6, the rewards rt(st, at) of a patient only depend on
their health condition ht and current treatment at. The rewards are calculated as the
QoL weight q(ht) associated with each health condition ht minus the disutility d(at) from
a cholesterol treatment decision at. In line with Assumption 3.6, the terminal condition
vT(sT) is computed as the product of the patient’s expected lifetime L(sT), a mortality factor
that accounts for the effect of ASCVD events on future mortality M(sT), and their terminal
QoL weight q(hT).

Optimality equations: The optimal cholesterol treatment plans are obtained by solving
the set of dynamic programming equations:

v∗t(st) = max
at∈A

∑
s̄t∈S

pt(s̄t|st, at)
[
rt(s̄t, at) + λvt+1(s̄t)

]
, (3.3)

for st ∈ S and t = 0, 1, . . . ,T − 1. Given the terminal condition vT(sT) = L(sT)M(sT)q(hT),
we can find the optimal treatment strategy by recursively computing the value functions
vt(st).

90



3.6.1.4 Genetic Testing Decisions

For the genetic testing decisions, we consider two health trajectories per patient over the
planning horizon t = 0, 1 . . . ,T − 1: one under a treatment plan using clinical information
only, and another under a treatment plan derived with clinical and genetic information.
We compare these two health trajectories and express the opportunity losses using VoI
analysis (Raiffa and Schlaifer, 1961). While there is reliable data on the side effects of
cholesterol-lowering drugs, limited research has been done on the burden of undergoing
a genetic test, such as anxiety of receiving information about the probability of a future
disease (Hoel et al., 2006). Since there is no QoL weight or disutility associated with
genetic testing, we quantified the VoI in terms of costs. We use the following notation for
testing decisions:

π∗ treatment policy derived with an MDP using clinical information
only; π∗ = (π∗1, . . . , π

∗

T−1), where π∗t = (π∗t(1), . . . , π∗t(S)).
π∗∗ treatment policy derived with an MDP using clinical and genetic

information.
s′t state of a patient at year t under treatment decisions using clinical

information only; s′t ∈ S.
s′′t state of a patient at year t under treatment decisions using clinical

and genetic information; s′′t ∈ S.
a∗t (sub)optimal treatment decision at time t given by policyπ∗; π∗t(s

′

t) =

a∗t for s′t ∈ S and a∗t ∈ A.
a∗∗t optimal treatment decision at year t following policy π∗∗.
ct(st, at) cost of treatment ctreatment

t (at), plus cost of ASCVD events cevents
t (st),

plus cost of genetic testing ctest
t , as appropriate, associated with state

st ∈ S and treatment choice at ∈ A at year t.

Functions of states or actions with no superscript are applied to both policies, clinical
information only and clinical and genetic information. Notation not included above is
defined in Section 3.6.1.3.

Before a genetic test is performed, the true benefit of genetic information is unknown.
Furthermore, the true health progression of patients over time is also unknown. However,
given the states of a patient s′′t and s′t at year t, it is possible to compute a hypothetical VoI
by taking expectations over the effect of genetic information and the health trajectory of a
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patient as:

VoIt(s′t, s
′′

t ) = EG
[
EH [ct(s′t, a

∗

t) − ct(s′′t , a
∗∗

t )|G]
]
, (3.4)

where EG[·] denotes the expectation with respect to the GRS and EH [·|G] denotes the
expectation with respect to the health trajectory of the patient given a realization of the
GRS G.

In equation (3.4), both ct(s′t, a
∗

t) and ct(s′′t , a
∗∗

t ) include the cost of treatment and the
costs associated with ASCVD events. However, ct(s′′t , a

∗∗

t ) also includes the cost of genetic
testing, if it has not been performed in an earlier year. This concept can be extended to
multiple decision periods by letting equation (3.4) account for the patient’s trajectory until
year τ = 0, 1, . . . ,T − 1 as follows:

VoIτ(s′0:τ, s
′′

0:τ) = EG

[
EH

[ τ∑
t=0

λt
(
ct(s′t, a

∗

t) − ct(s′′t , a
∗∗

t )
)∣∣∣∣∣G]], (3.5)

where λ ∈ (0, 1] is the same discount factor as in the MDP models and s0:τ represents the
trajectory of a patient from year 0 to year τ (i.e. s0, s1, . . . , sτ).

Accounting for the whole trajectory of the patient, equation (3.5) becomes:

VoIT(s′0:T, s
′′

0:T) = EG

[
EH

[ T−1∑
t=0

λt
(
ct(s′t, a

∗

t) − ct(s′′t , a
∗∗

t )
)

+ λT
(
cT(s′T) − cT(s′′T )

)∣∣∣∣∣G]]. (3.6)

where cT(sT) is a terminal condition that accounts for the lifetime costs of ASCVD events
when a patient has state sT at the end of the planning horizon. In accordance with
Assumption 3.6, the terminal condition cT(sT) can be computed as the discounted cost of
history of ASCVD events over the expected lifetime of the patient L(sT), adjusted by a
mortality scaling factor M(sT), i.e.

cT(sT) = cevents
T (sT)

L(sT)M(sT)∑
t=0

λt.

Given the initial state of a patient s0, our proposed genetic testing strategy is to identify
the first year at which VoIτ(s′0:τ, s

′′

0:τ) > θ for τ = 0, 1, . . . ,T−1 and a genetic testing threshold
θ ∈ R+ = {y ∈ R|y ≥ 0}. This genetic testing threshold represents the magnitude of the
loss a clinician is willing to accept by not performing a genetic test on a patient. Examples
of this threshold are zero, for the case that the clinician is not willing to accept any
opportunity loss, or the expected cost of an ASCVD event, for the case that the clinician
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would only perform a genetic test if it would prevent an ASCVD event, in expectation.
Our genetic testing strategy aims to find the first period at which genetic testing would
provide an expected cost-saving greater than θ.

3.6.2 Simulation Framework

We develop a simulation model to evaluate cholesterol treatment plans derived with
clinical information only and with clinical and genetic information. Using this framework,
we determine when genetic testing should be performed. Our simulation model is based
on the Markov chain embedded in the MDP derived with clinical and genetic information.
Please refer to subsection 3.5.1 for a detailed description of our simulation framework.
The base case of our analysis is performed using a genetic testing threshold of θ = 0. As
specified in Assumption 3.3, no patient has received genetic testing prior to the beginning
of the simulation. We estimate the lifetime effects of following the treatment plans over the
planning horizon in a sample of patients representative of a US population. A summary
of the parameters used during our study can be found in Table 3.1 in Section 3.4.

3.6.2.1 Selection of Number of Replications

Prior to evaluating the impact of genetic testing in optimal treatment plans, we derive
the number of replications to run our simulation empirically. Since the treatment policies
aim to maximize QALYs and the testing strategies seek to minimize cost, we use the total
QALYs saved and cost saved across the population to evaluate the convergence of our
simulation. We first obtain the number of health trajectory replications K necessary to
observe low probability events under a single GRS per patient. Once we obtain K, we
fix it and examine how many GRS realizations G per patient are needed to represent
the potential effects of genetic information. Lastly, we assess if K and G are sufficient to
capture the variation in the population’s health outcomes under uncertainty in the effect
of genetic information.

3.6.2.2 Data

As in the previous sections, we use NHANES from 2009 to 2014 to parameterize our model
(Centers for Disease Control and Prevention, 2020). However, in this section we restrict
our population to adult Caucasian or African American patients from 40 to 60 years old
with no history of heart attack, stroke, or congestive heart failure and LDL less than 190
mg/dL (in contrast to 40 to 75 years old). We chose this population based on conversations
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with our clinical collaborators. Patients in this age range are more likely to experience
differences in treatment after the incorporation of genetic information than older patients.
Please refer to Subsection 3.4.1.1 for details on the pre-processing performed in our input
data.

3.6.2.3 Model Evaluation

Similar to Section 3.5, we use our simulation framework to estimate the benefit of treatment
plans with and without genetic information. Our simulation enables us to compute and
store the costs, number of ASCVD events, and QALYs associated with each treatment
strategy at every year t. Furthermore, we are able to identify when clinical and genetic
information provides lower costs and/or better health outcomes than clinical information
only.

Given the initial state of a patient s0, we approximate equation (3.3) for each treatment
plan as:

v∗t(st) ≈
1

GK

G∑
g=1

K∑
k=1

T−1∑
t̄=t

λt̄rt̄,k,g(st̄,k,g, at̄,k,g) + λTvT(sT,k,g),

where st,k,g is the state of the patient at year t, replication k and GRS realization g, K is
the total number of health trajectory replications in our simulation model, G is the total
number of GRS realizations, and vT(sT,k,g) is the terminal condition as defined in the MDP
formulation. Furthermore, we approximate equation (3.5) as:

VoIτ(s′0:τ, s
′′

0:τ) ≈
1

GK

G∑
g=1

K∑
k=1

τ∑
t=0

λt
(
ct,k,g(s′t,k,g, a

∗

t,k,g) − ct,k,g(s′′t,k,g, a
∗∗

t,k,g)
)
.

Equation (3.7) can be extended to approximate equation (3.6) by letting τ = T − 1 and
adding the terminal condition at each replication and GRS realization. This approximation
allows us to estimate the first period such that VoIτ(s′0:τ, s

′′

0:τ) > θ for θ ∈ R+.

3.6.2.4 Sensitivity analyses

We perform sensitivity analysis on the genetic testing strategies by varying the model
parameters and assumptions. The sensitivity analyses on model parameters are described
in Table 3.9. These parameters and their sensitivity analysis values are selected based on
existing literature and clinical expertise (Pletcher et al., 2014; Hayward et al., 2010; Pandya
et al., 2015; O’Sullivan et al., 2011).
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Table 3.9: Sensitivity analysis parameter values.

Parameter (units)
Base case
(sensitivity analysis values)

Genetic testing threshold (2019 USD) $0e
(
E[cCHD

t (s′t) − cCHD
t (s′′t )]f

)
Cost of genetic testing (2019 USD) $200 ($0-$400)
Cost of moderate intensity treatment (2019 USD/year) $144 ($12- $288)
Cost of high intensity treatment (2019 USD/year) $450 ($119- $2,454)
Moderate intensity treatment disutility (QoL weight) 0.001 (0.0005-0.01)
High intensity treatment disutility (QoL weight) 0.002 (0.004-0.02)

eA genetic threshold of $0 represents any cost savings.
fA genetic threshold of E[cCHD

t (s′t) − cCHD
t (s′′t )] represents saving at least the expected cost of a CHD event.

We approximate this threshold as E[cCHD
t (s′t) − cCHD

t (s′′t )] ≈ 1
GK

∑G
g=1

∑K
k=1 λ

t
(
cCHD

t (s′t) − cCHD
t (s′′t )

)
.

We also perform a sensitivity analysis on how the treatment policies and testing strate-
gies are achieved. To do this, we use a utility function that incorporates costs and QALYs
to derive the treatment plans and determine when genetic testing should be performed.
This utility function includes the health benefits and harms from treatment as well as the
cost of fatal and non-fatal ASCVD events, the cost of treatment, and the cost of genetic
testing. We use willingness to pay thresholds of $50,000/QALY and $100,000/QALY, to
convert from QALYs to costs and include all QoL weights and costs as the rewards of the
model.

3.6.3 Results

We first evaluate the number of replications needed in our simulation to capture the
heterogeneity in our population. To understand how treatment plans change after the
addition of genetic information, we examine the number of people that receive a genetic
test over the 10-year horizon. We then study the impact of age and risk in the VoI. We
investigate how likely patients are to receive a genetic test at each year of our study. Then,
we inspect the difference of treatment plans derived with clinical information only and
with clinical and genetic information. Lastly, we evaluate the lifetime effects of performing
genetic testing. We show the overall trend in our results using local regression and provide
95% confidence intervals assuming that the errors are normally distributed.

To study the impact of genetic testing, we divide our population by sex, race, and age
groups. We create groups on the basis of the quartiles of the empirical distribution of
the age of the patients at the first year of our study. Age groups are defined as the ages
between two quartiles of the empirical distribution. We obtain the following age groups:
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40-45, 46-50, 51-55, and 56-60 years old.

3.6.3.1 Selection of Number of Replications

The results of our convergence analysis are included in Appendix B.4. By simulating the
health trajectory of every patient in the population under a single GRS per patient, we
find that K = 500 health trajectory replications may be sufficient to represent the variation
in our population (Fig. B.2 in Appendix B.4). Fixing the K = 500, we observe that G = 100
GRS realizations may be enough to capture the heterogeneity in the potential effect of
genetic information (Fig. B.3 in Appendix B.4). Finally, fixing G = 100, we observe that
the average QALYs saved and cost saved start to converge around 500 health trajectory
replications with small variation (Fig. B.4 in Appendix B.4). Based on these observations,
we choose to run the simulation K = 500 with G = 100 times for all analyses.

3.6.3.2 Genetic Tests Performed

Out of a population of 64.81 million patients, 6.73 million patients receive a genetic test
throughout a 10-year horizon. Fig. 3.11 shows the distribution of the initial risk for
ASCVD events of patients that receive genetic testing by age group (40-45, 46-50, 51-55,
and 56-60). A total of 2.28 out of 17.86 (12.73%), 1.77 out of 15.73 (11.25%), 1.35 out of 16.02
(8.40%), and 1.34 out of 15.20 (8.79%) million patients receive genetic testing in age groups
40-45, 46-50, 51-55, and 56-60 years old, respectively. We observe that no patient with
initial risk for ASCVD events below 0.0164% or above 0.1690% undergoes genetic testing.
In general, younger patients are more likely to receive genetic testing at lower initial risk
than older patients. A reason for this may be that the benefit gained by avoiding ASCVD
events (due to the changes in treatment after genetic testing) in younger patients is greater
than in older patients.

In additional analyses, we find that racial and sex differences play a significant role
on the genetic testing strategies. For example, African American male patients are sub-
stantially less likely to receive genetic testing according to the VoI than any other sub-
population. This may be due to the fact that African American male patients tend to
have considerably higher risk scores than African American female or Caucasian pa-
tients. These elevated risk scores lead to high treatment intensity with or without genetic
information, and there is no benefit from performing a genetic test.

From this point forward we focus our analyses on the sub-population that undergoes
genetic testing. We begin by studying the effect of age and risk on the VoI of genetic
testing (Fig. 3.12). The total VoI of genetic testing is 1.18 billion 2019 USD across our
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Figure 3.11: Distribution of the initial risk for ASCVD events of patients that receive
genetic testing by age group.

population. This results in cost savings of 325.22, 321.82, 268.36, and 261.59 million 2019
USD among patients that are 40-45, 46-50, 51-55, and 56-60 years old, respectively. We
observe that patients with moderate risk for ASCVD events due to clinical factors have
the highest chance of changing treatment plans after the addition of genetic information.
These patients receive the largest benefit from genetic testing. In addition, we notice that
the distribution of the VoI peaks at higher initial risk for ASCVD events as age increases.
This may be a consequence of the positive correlation between age and the risk for ASCVD
events.

We develop our testing strategies based on the VoI of genetic information. Each panel
in Fig. 3.13 shows the year when patients receive genetic testing by age group. Patients
with the earliest time of testing in Fig. 3.13 generally achieve the largest VoI in Fig. 3.12.
We also observe that valleys in Fig. 3.13 correspond to peaks in Fig. 3.12.

Fig. 3.13 shows an overall decreasing trend in the year that patients receive genetic
testing as their risk for ASCVD events increases for patients with initial risks below 0.10%.
A reason for this is that patients with lower initial risk for ASCVD events are typically more
likely to receive genetic testing to avoid potential ASCVD events. Genetic information in
these patients often leads to higher treatment intensity at earlier years. The testing year
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Figure 3.12: Distribution of VoI of genetic testing with respect to the initial risk for ASCVD
events by age group in the population that received genetic testing. Each point represents
5,000 patients. Smoothed line are obtained using second degree local regression with a
span of 90%. Shaded areas around the smoothed lines represent 95% confidence intervals
around the mean.

98



56−60 Age Group

51−55 Age Group

46−50 Age Group

40−45 Age Group

0% 0.04% 0.08% 0.12% 0.16%

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

2
4
6
8

10

Risk for ASCVD Events

E
xp

ec
te

d 
Ye

ar
 o

f G
en

et
ic

 T
es

tin
g

Figure 3.13: Distribution of the expected year of genetic testing with respect to the initial
risk for ASCVD events by age group. Each point represents 5,000 patients. Smoothed
line are obtained using second degree local regression with a span of 90%. Shaded areas
around the smoothed lines represent 95% confidence intervals around the mean.

of patients with initial risks above 0.10% tends to increase as their initial risk for ASCVD
events increases. Patients with higher initial risk for ASCVD events tend to receive the
same amount of treatment by both policies until genetic testing results in lowering the
treatment intensity. This normally results in later testing years.

3.6.3.3 Effect of Genetic Testing

We now proceed to study the difference in treatment plans derived with clinical informa-
tion only and with clinical and genetic information. Fig. 3.14 shows an overall comparison
of the PCE and GenePCE risks at the first year of our study. Recall that the policies de-
rived with clinical information only are informed by the PCE risk score and the policies
derived with clinical and genetic information are informed by the GenePCE risk score.
While the overall event rate in the population remains unchanged after genetic testing, we
observe that nearly 60% of the PCE risk scores are higher than the GenePCE risk scores.
This causes the policies derived with clinical information only to be unnecessarily more
intense than the policies informed with clinical and genetic information. In other words,
the policies derived with clinical information only are over-treating patients. In the re-
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Figure 3.14: Comparison of PCE and GenePCE risk scores. The population size is repre-
sented with the color gradient (the darker the color the bigger the population). Equal risk
scores up to the fifth decimal point are compressed into single point.

maining 40% of patients, genetic information helps identify individuals at increased risk
for ASCVD events. This results in more aggressive treatment policies after genetic testing,
which translates in fewer ASCVD events. Genetic testing helps identify which patients
can receive lower treatment intensity without experiencing any additional ASCVD events.

The impact of acquiring genetic information on the treatment policies over the plan-
ning horizon is depicted in Fig. 3.15. We find that the policies informed with clinical
information only treat more intensively than the policies derived with clinical and genetic
information. This trend is also observed when patients are segregated by age, race, or
sex. In additional analyses, we notice that both treatment policies are increasingly more
intense as the risk for ASCVD events increases. Furthermore, most patients with a risk
for ASCVD events above 0.11% are treated with high intensity statin drugs, regardless of
whether or not they receive genetic testing. In contrast, patients with a risk for ASCVD
events below 0.0255% do not receive any treatment.

3.6.3.4 Benefit of Genetic Testing

Once a genetic test is performed on a patient, clinical and genetic information becomes
available. Genetic information may then change the treatment plans over the planning
horizon. By performing genetic testing on 6.73 million people, the policies derived with
clinical and genetic information save 5,487 more QALYs than the policies derived with
clinical information only. While genetic information provides benefits in terms of health
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Figure 3.15: Proportion of patients receiving each treatment intensity by treatment policy
over the planning horizon. Points represent the ratio of average number of patients treated
with each statin intensity and the total population that receives genetic testing.

outcomes, the biggest benefit of obtaining genetic information are in terms of cost-savings.
The cumulative cost savings over time due to genetic information is illustrated in Fig.

3.16. Even though genetic testing has an overall cost of $1.18 billion, the policies informed
with clinical and genetic information result in savings related to the cost of treatment and
the cost of ASCVD events. By reducing the amount of treatment that patients receive,
the cost of treatment decreases from $22.00 billion in the policies derived with clinical
information to $19.67 billion in the policies derived with clinical and genetic information.
On the other hand, since genetic testing provides information about which patients should
receive higher treatment intensity, the cost due to ASCVD events decreases from $3.80
billion to $3.77 billion using clinical and genetic information. This leads to cost savings
of 1.18 billion 2019 USD by the end of the 10-year planning horizon. Similar cost savings
are observed when we include the lifetime effects of each policy.

Segregating our results by age group, we find that patients with ages above 51 years
old avoid the biggest number of ASCVD events after genetic testing. Patients in the 40-45
age group get the highest number of additional QALYs saved and cost-savings. Dividing
the population by race and sex, we discover that Caucasian females receive the largest
amount of ASCVD events prevented, QALYs saved, and cost-savings.
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Figure 3.16: Total cumulative cost-savings due to genetic testing. Points represent the
total cumulative cost savings by each year.

3.6.3.5 Sensitivity Analyses

We proceed to study how the genetic testing strategies are affected by changing model
parameters and assumptions. Our results are summarized in Table 3.10. We segregate the
genetic testing year results by age group and include them in Appendix B.5.

If the testing threshold is changed from zero to the expected cost-savings of preventing
a CHD event, 3.36 million patients receive genetic testing instead of the 6.73 million
patients in the base case. This is equivalent to the number of people that could potentially
avoid an ASCVD event (2.53 million patients) plus the number of people receiving savings
in the cost of treatment greater than their expected cost of an CHD event (830 thousand
patients).

Changing the cost of genetic testing has considerable effects on the cost incurred by the
policies derived with clinical and genetic information and, in turn, in the VoI of genetic
testing. This causes moderate changes in the genetic testing strategies. We notice that
genetic testing is performed generally earlier than in the base case if the cost of testing is
lower than in the base case. The opposite effect is observed if the cost of testing is $400
instead of $200. The impact of the cost of genetic testing in the testing strategies by age
group is included as Fig. B.5 in Appendix B.5.

We find that changes in treatment costs also have a significant impact in the testing
strategies. For instance, if the cost of statin drugs is reduced in half, fewer patients
receive genetic testing and typically in later years than in the base case. If the cost of
statin drugs is doubled, genetic testing occurs for expected cost-savings greater than any
treatment difference or to potentially prevent an ASCVD event. As a consequence, more
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Table 3.10: Summary of sensitivity analyses.

Sensitivity analysis scenario
Number
of people
testedg

Genetic
testing
costh

Overall
cost
savingsh

Genetic testing yeari

Q1 Q2 Q3 Avg.

Base case 6.73 $1.18 $1.18 2.00 4.00 7.00 4.97
Genetic testing threshold

Expected cost of CHD savings 3.36 $0.58 $0.63 5.00 6.00 8.00 6.46
Genetic testing cost

$0 36.09 $0.00 $2.88 1.00 2.00 5.00 3.58
$50 11.45 $0.53 $2.25 1.00 2.00 6.00 3.56
$100 9.36 $0.85 $1.81 2.00 3.00 6.00 4.11
$400 3.56 $1.21 $0.45 4.00 6.00 8.00 5.99

Treatment cost: moderate intensity (high intensity)
$72 ($225) 3.62 $0.62 $0.23 4.00 6.00 8.00 6.00
$12 ($119) 1.89 $0.31 $0.06 5.00 7.00 9.00 6.92
$12 ($2454) 10.78 $2.00 $18.24 1.00 2.00 5.00 3.22
$288 ($900) 9.27 $1.68 $3.59 2.00 3.00 6.00 4.08

Treatment disutility: moderate intensity (high intensity)
0.0005 (0.002) 8.21 $1.44 $1.59 2.00 4.00 7.00 4.97
0.001 (0.004) 7.14 $1.24 $1.43 3.00 5.00 8.00 5.40
0.00384 (0.0075) 6.28 $1.09 $1.45 3.00 5.00 8.00 5.48
0.01 (0.02) 2.80 $0.47 $0.34 4.00 7.00 9.00 6.53

Cost-QALY utility function: willingness to pay threshold
$50,000/QALY 10.34 $1.94 $16.30 1.00 2.00 4.00 2.87
$100,000/QALY 13.17 $2.49 $15.15 1.00 1.00 3.00 2.64

g The number of people that received a genetic test are presented in millions.
h The cost associated with genetic testing and overall cost savings are cumulative estimates over the 10-year
planning horizon (not including the expected lifetime after the planning horizon) and are presented in
billion 2019 USD.
i Q1, Q2, and Q3 represent the first, second (median), and third quartiles of the empirical distribution of the
genetic testing years, respectively. Avg. stands for the empirical average.
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patients receive genetic testing and generally earlier in the planning horizon. The effect
of treatment cost in the testing strategies segregated by age group is shown in Fig. B.6 in
Appendix B.5.

In general, we observe that the testing strategies are sensitive to changes in treatment
disutility. For example, decreasing the treatment disutility for moderate intensity statin
drugs leads to more genetic tests performed at approximately the same time as in the
base case. Increasing the treatment disutility for high intensity statin drugs has a similar
effect. Nonetheless, genetic testing is performed typically later in the planning horizon.
Dividing our population into age groups, we note that there is no substantial difference
in the effect of treatment disutility in the testing strategies by patients’ age (Fig. B.7 in
Appendix B.5).

Using a utility function that incorporates cost and QALYs to derive the treatment
policies and testing strategies results in a noticeably different number of people that
receives genetic testing. This is mainly due to the difference in the risk scores that informed
the treatment policies. Since the policies derived with clinical and genetic information
are informed by risk scores that are generally lower than the risk scores that inform the
policies with clinical information only, these policies observe much lower ASCVD events
rates. Lower event rates translate into higher QALYs and lower costs in expectation.
Combining these two factors into a single objective function leads the policies derived
with clinical and genetic information to be less intense than in the base case. Therefore,
more people receive genetic testing due to lower treatment intensity. We observe that,
while a willingness to pay threshold of $50,000/QALY achieves greater cost savings over
the 10-year planning horizon, a willingness to pay threshold of $100,000/QALY results
in more genetic tests performed, and those tests are performed earlier in the planning
horizon.

3.6.4 Discussion

The development of the new GRS that serves as an aid in the prediction of CHD could
make genetic information vital for the management of ASCVD. Cholesterol treatment
plans should incorporate this information to ensure that patients receive the best care
available. A framework to determine when a genetic test should be performed and how
a patient should be treated before and after genetic information could provide clinicians
with essential information.

In this section, we presented a framework to incorporate cholesterol treatment plans
and genetic testing strategies. We applied this framework to a large sample representative
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of an adult population in the US to quantify the effect of adding genetic information into
optimal treatment plans. This simulation framework allowed us to evaluate treatment
plans and decide when to perform genetic tests.

Several conclusions can be made from this study. First, we can conclude that not
everyone benefits from genetic testing. Through VoI analysis, we were able to identify
patients that would benefit from genetic information. This benefit translates to better
health outcomes and cost savings. Second, the reasons to perform genetic testing vary by
age, race, sex, and risk. As a consequence, the gains obtained from genetic information
also vary by age, race, sex, and risk. Third, who receives genetic testing and when changes
according to the genetic testing threshold θ. Different values of θ can provide clinicians
with a wide range of testing strategies, depending on the magnitude of losses they are
willing to accept before recommending a test to gather genetic information. Lastly, the
population that receives genetic testing and the time they undergo testing changes with
the cost of genetic testing, the cost of treatment, and treatment disutility. As genetic testing
becomes more affordable and statin drugs decrease in price and side effects, a genetic test
to inform cholesterol treatment plans may benefit a greater population.

We acknowledge that simulation models are generally more complex and require
longer running times than other models, such as Markov cohort models. Nonetheless, our
simulation allowed us to represent the variability in our population and provided us with
great flexibility to assess different aspects of our model. Furthermore, we cannot guarantee
the optimality of our testing strategies. The results of simulation models can change as
the number replications in the simulation increases. By assessing the convergence of the
main outcomes of the simulation, we ensured that the heterogeneity in our population
was modeled appropriately.

From a methodological perspective, this work could be extended by acknowledging
the uncertainty inherent in the risk estimates of our modeling framework. As the PCE
risk score was derived with a proportional hazards model, this risk could be modeled
from a Bayesian perspective. The coefficients obtained by Goff and coauthors could serve
as prior information for a Bayesian proportional hazards model (Ibrahim et al., 2001; Goff

et al., 2014). A robust MDP formulation with an scenario uncertainty model could be used
to find robust cholesterol treatment plans (Ben-Tal et al., 2009).

From a clinical perspective, this work could be extended by incorporating other
cholesterol-lowering drugs, such as PCSK9 inhibitors or fibrates. We chose statin drugs
because they are the most used cholesterol-lowering drugs with the greatest public health
impact. Our work could also be extended by incorporating the effect of genetic testing
on aspirin use or hypertension treatment. However, the clinical benefit of aspirin is now
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unclear and risk prediction plays a smaller role in hypertension treatment decisions (Mc-
Neil et al., 2018; Williams et al., 2018; James et al., 2014). Based on clinical expertise, we
decided to develop genetic testing strategies to inform cholesterol treatment plans as a
starting point. Incorporating the effect of genetic information on aspirin use or hyper-
tension treatment would likely result in a greater number of people undergoing genetic
testing. In this sense, our results provide a lower bound on the benefits of performing
genetic testing according to the VoI.

Another clinical extension of this work could be a probabilistic sensitivity analysis of
the input parameters. Other studies have used different values to parameterize models for
cholesterol management (Pandya et al., 2015; Kazi et al., 2016). Particularly, the costs and
QoL weights parameters can be highly variable from study to study. Nevertheless, this
analysis would require assumptions on the distribution of the input parameters, which
can be highly subjective.

3.7 Conclusions

We conclude with clinical and public policy recommendations derived from this work.
In practice, clinicians may prefer to recommend genetic testing after the initial medical
appointment of patients (represented by the beginning of year 0 in our simulation). Since
our framework serves to identify which patients could benefit from genetic information,
physicians can use this information to determine who to test. Practically, patients that
would benefit from genetic information can receive the test at any time before the recom-
mended year.

Outside of the direct adoption of the treatment policies and testing strategies, doctors
and health insurance policy makers can use our results to gain a better understanding of
the potential benefits of performing genetic testing in different populations. According to
the US Department of Health and Human Services, health insurance plans will typically
cover the costs of genetic testing if “the test result will directly influence the disease
treatment management of the covered member”, among other criteria (United States
Department of Health and Human Services, 2006). Our models could serve as an aid for
health insurance policies by identifying patients whose cholesterol treatment will likely
change after acquiring genetic information.

As genetic testing to obtain a GRS for CHD is not commonly performed in practice yet
(Lewis and Vassos, 2020), our simulation results provide an estimate of the policy impli-
cations of different cholesterol treatment policies and genetic testing strategies in clinical
practice. The role of genetics in many applications remains promising, but somewhat
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unclear. As precision medicine becomes increasingly important, the understanding of the
potential impact of genetics on disease management becomes crucial.

107



Chapter 4

Data-Driven Ranges of Near-Optimal Actions for
Finite Markov Decision Processes

In this chapter, we propose a new framework for identifying sets of near-optimal actions
for finite MDP models. We first present a SBDP algorithm that can be executed using
parallel computing and show that it converges to the optimal solutions exponentially
fast and that it conserves the structural properties of standard dynamic programming
asymptotically. Then, we introduce a simulation-based MCC method to identify actions
that are not statistically different from an approximately optimal action. By analyzing
the structure of the sets, we characterize their behavior with respect to the modeling data
and identify when they can be ordered as a range. Finally, we show the scalability of our
approach by finding ranges of near-optimal antihypertensive treatment choices for 16.72
million adults in the US.

4.1 Background

MDP models have been used to inform decisions in a wide variety of applications includ-
ing medicine, scheduling, transportation, finance, and energy (Boucherie and van Dijk,
2017). In many areas of application, such as the management of chronic conditions or
perishable inventory, the dynamics of the system of interest change over time. This type
of problems generally have a finite set of periods when decisions must be made. If all
the parameters of a non-stationary MDP are known with certainty, and there are a finite
number of states and actions, the backwards induction algorithm can be used to find
an optimal decision rule (Puterman, 2014; Chang et al., 2013). However, there may be
other decision strategies that we cannot statistically differentiate from the optimal. For
situations where an MDP is used as a decision support tool, it is indispensable to allow
for human judgment to transform the decision rules into practice.
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When a human being is responsible for controlling a system, a single decision rule may
not be enough, as each person has their own decision process (Fard and Pineau, 2011). It
may be appropriate to assume that some aspect of the decision making process will be
influenced by the decision maker (DM). Moreover, the difference between the performance
of an optimal decision rule and other strategies may be negligible. The DM could choose
between an optimal action and another action with similar performance based on their
expertise, preference, or other factors. In addition, models are typically estimated from
observational data and multiple external sources. This may lead to optimal decision rules
that do not perform well in the true system (Mannor et al., 2007). The performance of
an optimal decision rule may not be statistically different from other strategies. To test
for statistical significance before observing the implications of each action in practice, our
proposed strategy is to simulate the effect of each action based on the estimated model
of the system of interest. We can then provide DMs with a set of actions, each of which
might be the optimal, but we do not have enough evidence to differentiate.

In this chapter, we are motivated by circumstances in which several actions may have
similar performance. We focus on improving the usability and acceptance of MDP models
in practice by providing flexibility in the implementation of decision strategies. Rather
than offering a single decision rule, we present DMs with a set of actions from which they
may be able to choose from. We introduce a new method to obtain sets of near-optimal
actions and provide conditions for which the actions in these sets can be ordered as a
range.

4.1.1 Applications of Markov Decision Processes to Medical Decision-

Making

The focus of this chapter will be medical decision-making, as incorporating all the factors
that influence the decision-making process is a challenging task and it may be hard to
implement decision rules in practice. Overviews of decision models for the management
of different diseases can be found at Denton et al. (2011), Capan et al. (2017), Saville
et al. (2018), and Chanchaichujit et al. (2019). Treatment decision models in the literature
include Long et al. (2008); Lee et al. (2008); Chan et al. (2013); Liu et al. (2017); Negoescu
et al. (2017, 2018); Ayer et al. (2019), and Chehrazi et al. (2019). Other studies have focused
on finding the optimal time to gather additional information or for a screening procedure
including Maillart et al. (2008); Chhatwal et al. (2010); Zhang et al. (2012); Erenay et al.
(2014); Skandari et al. (2015); Helm et al. (2015); Deo et al. (2015); Ayer et al. (2016); Sabouri
et al. (2017); Hicklin et al. (2018); Suen et al. (2018); Agnihothri et al. (2018); Onen et al.
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(2018); Lee et al. (2018); Lin et al. (2018), and Aprahamian et al. (2019, 2020). Despite the
ability of MDP models to model sequential decision-making in complex medical settings,
they typically cannot be implemented in their current form as they lack flexibility in their
decision rules.

In medical decision-making situations, the transition dynamics and rewards are often
estimated using longitudinal observational patient data and results from the medical
literature. As longitudinal data and medical results are derived with a finite number of
observations, these estimates are subject to statistical uncertainty (Steimle et al., 2019). But
even if we had complete knowledge of the transition dynamics and rewards, the selection
of clinical interventions will typically depend on physicians’ judgment and their patients’
preferences.

Translating medical decision-making models into practice is difficult. General medical
practitioners may interpret decision rules as cumbersome, confusing, and lacking in cred-
ibility (Cabana et al., 1999; Cohen and Townsend, 2018; Grundy et al., 2019). Therefore, it
is important to consider practical implications in the design of decision rules (Classen and
Mermel, 2015). One way such implications can be considered is by providing clinicians
with flexibility in the implementation of protocols, while continuing to improve patient
outcomes.

An example, that we will study in detail, where clinicians may benefit from flexibility
is in the management of ASCVD (constituting CHD and stroke). According to the Na-
tional Vital Statistics, ASCVD is considered among the leading cause of death in the US
(Kochanek et al., 2019). The Heart Disease and Stroke Statistics 2020 Update reports that
CHD and stroke account for 42.6% and 17.0% of deaths attributable to cardiovascular dis-
eases in the US, respectively (Virani et al., 2020). One of the main controllable risk factors
of ASCVD is hypertension or high BP. The most recent hypertension guidelines from the
American College of Cardiology and American Heart Association (Whelton et al., 2018)
have generated considerable controversy among practitioners (Ioannidis, 2018; Cohen
and Townsend, 2018; Solberg and Miller, 2018; Wilt et al., 2018). Further, these guide-
lines provide conflicting recommendations regarding when to initiate pharmacological
interventions with other guidelines such as Williams et al. (2018).

Controversy and conflicting recommendations aggravate the already difficult problem
of deciding how to manage patients’ BP. Moreover, clinicians’ opinion and patients’ incli-
nations may influence the selection of treatment plans, independently of the guidelines’
suggestions (Cabana et al., 1999). To benefit from physicians’ expertise and account for
any potentially conflicting recommendations, we design personalized data-driven ranges
of treatment options that are within a margin of certainty of the best treatment alternative,
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based on the estimated transition dynamics and rewards.

4.1.2 Modeling Approach

The problem of providing clinicians with options to treat their patients motivates the
general research topic of adapting stochastic dynamic programming methods to offer
multiple actions per state and time period. The need for flexibility in the implementation of
decision strategies is not specific to medical domains. For example, this requirement may
be needed for a decision support system that provides suggestions about how to manage
the inventory levels of a product. To provide easily interpretable decision support, this
problem also triggers the need to obtain insights into how the sets of near-optimal actions
behave with respect to the modeling data. In this chapter, we present a new approach to
address these topics based on SBDP, nonoverlapping batch means, and statistical MCC.

We choose SBDP to estimate action-value functions because it does not require knowl-
edge of the true underlying probability distribution of the evolution of the system of
interest. Instead, SBDP relies on sample realizations of the transition dynamics, which
may be obtained through simulation. The SBDP framework also allows us to estimate
optimal actions with high degree of accuracy, which serve as controls in the multiple
comparison procedures. Rather than using re-sampling techniques, we divide the output
of simulations into batches because the sample size of a simulation model can always be
managed by the DM. We use MCC because, once an optimal action is identified as the
control, we are interested in comparing the remaining alternatives with such control. The
MCC method requires the least number of comparisons and the strongest inference for
our purposes.

4.2 Organization of the Chapter

This remainder of this chapter is organized as follows. We begin by providing a review of
the relevant literature in Section 4.3. In Section 4.4, we provide additional background on
MDP models and MCC. We formally define the sets and ranges of near-optimal actions
in Section 4.5. In Section 4.6, we introduce our algorithms to obtain the sets of near-
optimal actions as well as our analysis of the algorithms. We present our case study of
flexible hypertension management in Section 4.7. Finally, conclusions and future research
directions are discussed in Sections 4.8 and 4.9.
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4.3 Literature Review

The relevant literature to this research lies in the following fields: (1) simulation-based
algorithms for MDP models; (2) batching and independent replication methods for the
output analysis of simulation models; (3) statistical multiple comparisons approaches; (4)
decision support models that provide sets of actions; and (5) treatment decision models for
the management of cardiovascular diseases. In this section, we highlight some prominent
papers in each category and briefly describe how our proposed methodology differs from
them.

The description of an MDP as a simulation model can be found in Hernández-Lerma
and Lasserre (1996) and Chang et al. (2013). A large portion of simulation-based algorithms
have focused on solving MDP models with large state spaces or in which there is no model
of the system dynamics. These methods principally fall under the umbrella of approximate
dynamic programming (ADP) or reinforcement learning (RL). Summaries of ADP/RL
methods include Powell (2011), Bertsekas (2012), and Sutton and Barto (2018). Other
simulation-based models have concentrated on solving MDP models with large action
spaces Chang et al. (2013). A key difference between the model-based methods in the
ADP/RL literature and our SBBI algorithm is that, while they simulate the system dynamics
as episodes, our algorithm simulates each time period independently. Closest to our work,
there have been methods that use simulation to estimate the expectation in dynamic
programming with small to moderately sized state and action spaces (Powell, 2011). In
discounted infinite-horizon settings, Haskell et al. (2016) introduced simulation-based
value iteration and policy iteration algorithms. Our method differs from the approaches
presented by Haskell et al. (2016) in that we focus on finite horizon and allow for random
immediate rewards. Another closely related area to our work is the sample-average
approximation in discrete stochastic programming (Kleywegt et al., 2002). Our SBBI
algorithm is different from standard multistage discrete stochastic programming models
in that actions affect the system dynamics in the future.

The idea of grouping the output of simulation models to derive confidence intervals
for the mean of a simulation outcome was introduced by Fishman (1978). There are
two notable grouping approaches in steady-state simulation analysis: nonoverlapping
batch means and independent replications. Alexopoulos and Goldsman (2004) com-
pared the benefits and drawbacks of batching a single long simulation run and executing
independent replications. In our context, both approaches are equivalent as there is
no initialization bias and the observations are independent due to the Markov prop-
erty. The nonoverlapping batch means and independent replication methods usually
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rely on asymptotic normality arguments to obtain confidence intervals (Goldsman, 1992;
Alexopoulos and Seila, 1996). Steiger and Wilson (2002) and Steiger et al. (2002, 2005)
introduced algorithms to attain confidence intervals of a specific precision hinging on
normality and independence tests. In our work, we present a nonparametric approach to
obtain confidence intervals in steady-state simulation analysis without any distributional
assumptions.

Our work is also related to the theory of statistical multiple comparisons. Overviews
of multiple comparisons procedures can be found in Hsu (1996) and Toothaker (2012).
Among the types of multiple comparisons, MCC is the most relevant to this research
(Dunnett, 1955). Similar to many classic statistics methods, MCC assumes normality and
equal variances across alternatives. Westfall and Young (1993) proposed a generaliza-
tion of multiple comparisons procedures that allowed for general distributions using the
bootstrap. This approach was later applied in the context of MCC by Westfall (2011).
Another line of work focused on developing MCC methods without the assumption of
equal variances (Li and Ning, 2012). Even though these alternative formulations allow
for general distributions or unequal variances, none of them allow for both of them. Our
SBMCC algorithm is a nonparametric approach that does not require equal variances.

There has been limited research in the area of decision support models that provide
more than one decision rule. Laber et al. (2014) developed sets of decision rules in the
context of dynamic treatment regimes based on clinically significant differences. A crucial
distinction between this work and ours is that we focus on statistical significance instead of
practical significance. Another difference is that we focus on Markov policies whereas they
center on history dependent policies. This allows us to consider more than two decision
epochs and actions. Ertefaie et al. (2016) also considered the problem of providing a set
of suggestions in the context of dynamic treatment regimes. Although our approach has
many similarities with this work, a vital distinction is that we identify a control before the
statistical inference. This results in fewer comparisons and improved statistical power.
Ertefaie et al. (2016) also concentrated in 2-stage history dependent policies while we
focus on Markov policies over a finite planning horizon. The closest work to this article
is by Fard and Pineau (2011), where the authors consider the problem of developing
sets of near-optimal actions for discounted infinite-horizon MDP models. Compared to
this work, we define a new sense of near-optimality in terms of statistical significance
whereas they specify their near-optimality in the same units of the value function. A key
contribution of our work to this field is that we characterize the behavior of the sets with
respect to the modeling data, including the case where the actions contained in the set can
be ordered as a range.
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Treatment decision models for patients at risk of cardiovascular diseases include
Hauskrecht and Fraser (2000); Stanford R.E. (2004); Cooper et al. (2006); Lee et al. (2018),
and Zargoush et al. (2018). Researchers have also developed MDP models for the manage-
ment of cardiovascular diseases (Denton et al., 2009; Kurt et al., 2011; Mason et al., 2014;
Schell et al., 2016; Steimle et al., 2019). In contrast to these models, which recommend a
single decision rule, our work provides physicians and their patients with flexibility in
the implementation of treatment plans.

4.4 Preliminaries

In this chapter, we focus on finding a sequence of sets of near-optimal actions in the
context of discrete-time finite-horizon MDP models with finite state and action spaces.
This section introduces the main notions behind finite MDP models and MCC as well as
our mathematical notation.

4.4.1 Markov Decision Processes

MDP models are used to model the interactions of a DM with a fully observable system
of interest. At a specific time t ∈ T , the DM observes the state of the system s ∈ S and
chooses an action πt(s) ∈ A, according to a decision rule πt : S 7→ A. It is assumed that the
system is always in a state and that the evolution of system only depends on the current
state and action. A sequence of decision rules over all decision epochs t ∈ T \ {T} is called
a policy π B (πt : t ∈ T \ {T}). After an action πt(s) = a is chosen, the DM receives a
reward rt(s, a, ω) ∈ R, where ω ∈ Ω is an outcome of an exogenous process representing
the uncertainty in the system. The system then evolves to state s′ ∈ S according to a
transition function ft+1(s, a, ω). This process continues over a set of decision epochs T
until the DM chooses the last action at time T − 1. The system finally evolves to state
s̄ ∈ S at time T, when the DM receives a terminal reward rT(s̄, ω) ∈ R. If the DM prefers
rewards now over rewards in the future, a discount factor γ ∈ (0, 1] may be included in
the formulation.

The goal of the DM is to find the policy π that maximizes the total expected discounted
reward over the planning horizon, i.e.:

v0(s) B max
π
E

T−1∑
t=0

γtrt(st, at, ωt) + γTrT(sT, ωT)

∣∣∣∣∣∣s0 = s

 ,
where st, at = πt(st), and ωt are the state, action, and random disturbance of the system
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at decision epoch t, respectively, and the expectation is taken with respect to the joint
distribution of ω0, . . . , ωT. Dividing the problem into each decision epoch, we get the set
of dynamic programming equations:

Qt(s, a) B E
[
rt(s, a, ω) + γvt+1

(
ft+1(s, a, ω)

)
|s, a

]
,

where vt(s) B maxa∈AQt(s, a) and QT(s, a) = vT(s) = E[rT(s, ω)|s]. Starting from the terminal
time period T and proceeding backwards until decision epoch 0 we can find the optimal
set of actionsA∗t(s) B argmaxa∈AQt(s, a) at each decision epoch t. An optimal decision rule
at state s is given by π∗t(s) ∈ A∗t(s) and an optimal policy is defined as π∗ = (π∗t : t ∈ T \ {T}).

In summary, a simulation MDP is formally defined by the tuple (T ,S,A, f , r, γ). We
use the following notation throughout the chapter:

t index of discrete time periods; t ∈ T , where T B {0, 1, . . . ,T} is a
finite set of time periods. Decisions are made until time T − 1; the
time periods T \ {T}will be referred to as decision epochs.

s state of the system; s ∈ S, where S B {1, . . . ,S} is a finite set of states.
a DM’s action; a ∈ A, whereA B {1, . . . ,A} is a finite set of actions.
rt(s, a, ω) reward associated with a state s, an action a, and an outcome of the

exogenous process ω ∈ Ω, where the reward function is defined as
r : S ×A ×Ω 7→ R+ B {x ∈ R|x ≥ 0}.

ft+1(s, a, ω) transition function which produces the next state s′ given a state
s, an action a, and an outcome of the exogenous process ω ∈ Ω;
s′ = ft+1(s, a, ω), where f : S ×A ×Ω 7→ S.

Qt(s, a) action-value function associated with state s and action a at decision
epoch t; Qt(s, a) B E

[
rt(s, a, ω) + γmaxa′∈AQt+1

(
ft+1(s, a, ω), a′

)
|s, a

]
.

vt(s) value function for state s at decision epoch t; vt(s) B maxa∈AQt(s, a).
A
∗

t(s) set of optimal actions in state s at decision epoch t, whereA∗t(s) ⊂ A;
A
∗

t(s) B argmaxa∈AQt(s, a).
A
9
t(s) set of sub-optimal actions in state s at decision epoch t, whereA9t(s) ⊂

A;A9t(s) B A \A∗t(s).
π∗t(s) optimal decision rules at state s; π∗t(s) ∈ A∗t(s). The sequence of

optimal decision rules π∗ = (π∗t : t ∈ T \ {T}) is referred to as a policy.
γ discount factor of the model; γ ∈ (0, 1].

Note that any simulation MDP (T ,S,A, f , r, γ) with transition function f and rewards r
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can be transformed into a standard MDP (T ,S,A,P, ρ, γ) with transition probabilities P ∈
[0, 1]|T×S×S×A| and rewards ρ : S×A 7→ R+. Simply let pt(s′|s, a) B E[1{ ft+1(s, a, ω) = s′|s, a}]
and ρt(s, a) B E[rt(s, a, ω)|s, a], where the expectation is taken over ω and 1{·} represents
an indicator function.

4.4.2 Multiple Comparisons With a Control

When a control or standard action is available, a DM may be interested in comparing the
performance of every other action with the performance of such control. In this section,
we adapt the ideas in MCC to the context of simulated MDP models. The parameters of
interest are Qt(s, a∗)−Qt(s, a) for a∗ ∈ A∗t(s) and a ∈ A9t(s), at each decision epoch t and state
s. In here,A∗t(s) ⊂ A denotes the set of optimal actions (potential controls) andA9t(s) ⊂ A
denotes the set of sub-optimal actions. If a∗ is an action such that Qt(s, a∗) ≥ Qt(s, a)
for any a ∈ A, our objective is to identify as many actions as possible to be inferior
than a∗. Assuming equal sample sizes across actions, the 1 − α simultaneous confidence
lower bounds for the difference between a control Qt(s, a∗) and the remaining action-value
functions {Qt(s, a) : a ∈ A} are given by:

Qt(s, a∗) −Qt(s, a) > Q̂t(s, a∗) − Q̂t(s, a) − dt(s, α)
√

N−1
[
σ̂2

t (s, a∗) + σ̂2
t (s, a)

]
, (4.1)

where α ∈ (0, 1), Q̂t(s, a) is an estimate of Qt(s, a) < ∞, N is the number of observations
used to estimate Q̂t(s, a), and σ̂2

t (s, a) is an estimate of σ2
t (s, a) < ∞, the variance of the

action-value function associated with state s and action a. If there are reasons to believe
that the action-value functions are normally distributed, dt(s, α) can be obtained by solving
a double integral whose numerical evaluations are readily available in standard statistical
software Dunnett (1955). However, in most practical situations this assumption may not
be true. Westfall and Young (1993) proposed an alternative formulation that allows for
general probability distributions. Extending their formulation to unequal variances, it
aims to find a constant dt(s, α) such that:

P
(

max
a∈A

ψt(s, a) ≤ dt(s, α)
)

= 1 − α, (4.2)

where

ψt(s, a) B
Q̂t(s, a∗) − Q̂t(s, a) − (Qt(s, a∗) −Qt(s, a))√

N−1
[
σ̂2

t (s, a∗) + σ̂2
t (s, a)

] ,

is a root statistic corresponding to state s and action a.
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4.5 Ranges of Near-Optimal Actions

From equation (4.1) we can conclude that an optimal action a∗ ∈ A∗t(s) is significantly
better than some other action a ∈ A9t(s) at a significance level α if:

Q̂t(s, a∗) − Q̂t(s, a) − dt(s, α)
√

N−1
[
σ̂2

t (s, a∗) + σ̂2
t (s, a)

]
> 0.

Thus, we cannot conclude that action a∗ ∈ A∗t(s) is significantly different from a′ ∈ A9t(s) if:

Q̂t(s, a∗) − Q̂t(s, a′) − dt(s, α)
√

N−1
[
σ̂2

t (s, a∗) + σ̂2
t (s, a′)

]
≤ 0.

This leads to our definition of a set of near-optimal actions.

Definition 4.1 Given N observations, an optimal action a∗ ∈ A∗t(s) such that Qt(s, a∗) ≥ Qt(s, a)
for s ∈ S and all a ∈ A, and a quantile dt(s, α), a set of actions Πt(s, α) is said to be α-nonsignificant
with α ∈ (0, 1) if it satisfies:

Πt(s, α) B
{
a ∈ A : Q̂t(s, a∗) − Q̂t(s, a) ≤ dt(s, α)

√
N−1

[
σ̂2

t (s, a∗) + σ̂2
t (s, a)

]}
.

A desirable property of Πt(s, α) in practice is to be ordered according to the effect of
the actions in the action space At(s) ⊆ A at state s and decision epoch t. For example,
clinicians may find a set of treatment choices more interpretable if the set follows a natural
order such as an increasing number of medications. An ordered set of actions in the sense
of Definition 4.2 will be referred as a range of actions.

Definition 4.2 Πt(s, α) is said to be a range of α-nonsignificant actions if it satisfies Definition
4.1 and if a, a′′ ∈ Πt(s, α) implies that a′ ∈ Πt(s, α) for any actions ordered as a ≤ a′ ≤ a′′ ∈ At(s).

4.6 Solution Approach

In this section, we describe our approach to identify sets of α-nonsignificant actions. We
first introduce our SBBI algorithm. Subsequently, we study the finite sample, convergence,
and the asymptotic structural properties of the algorithm. We then present our SBMCC
method. Lastly, we examine the asymptotic behavior of our method and characterize the
sets of near-optimal actions. Our analytical results are summarized in Figure 4.1.
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Assumption 1: Bounded, independent, and identically distributed rewards

Assumption 3: Conditional variances 
monotone in 𝑠, 𝑡, and 𝑎

Assumption 5: Rewards and tail 
distribution functions monotone in 𝑎

Theorem 1
Convergence of 

action-value 
functions

Corollary 1
Convergence of value 
functions and sets of 

optimal actions

Proposition 3
Monotonicity of 
action-value and 

value functions in 𝑠

Proposition 4
Monotonicity of 
action-value and 

value functions in 𝑡

Proposition 1
Rate of 

convergence

Proposition 2
Sample 

complexity

Proposition 5
Coverage of 
confidence 

intervals

Theorem 2
Attainment of sets 
of 𝛼-nonsignificant 

actions

Proposition 6
Rate of 

convergence

Proposition 7
Monotonicity of sets 
of 𝛼-nonsignificant 

actions in 𝛼

Proposition 8
Monotonicity of sets 
of 𝛼-nonsignificant 

actions in 𝑠

Theorem 3 
Attainment of ranges 

of 𝛼-nonsignificant 
actions

Proposition 10
Ranges of 𝛼-

nonsignificant 
actions for arbitrary 
future decision rules

Proposition 9
Monotonicity of sets 
of 𝛼-nonsignificant 

actions in 𝑡

SBBI Algorithm

SBMCC Algorithm

Assumption 2: Rewards and tail distribution functions 
monotone in 𝑠 and 𝑡

Assumption 4: Monotone differences in rewards and tail 
distribution functions on 𝒮 ×𝒜 and 𝒯 ×𝒜

Figure 4.1: Summary of solution approach analysis. Font in italics gives the assumption
number each result relies on followed by a short description of the assumption. Boldface
font gives the result number in the chapter followed by a brief description of the result.
A result uses an assumption if it is placed below the box of the assumption. We divide
our theoretical results into three categories: finite sample properties (underlined with a
wavy line), general asymptotic properties (underlined with a solid line), and asymptotic
structural properties (underlined with a dashed line).
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4.6.1 Simulation-Based Backwards Induction

We now introduce our algorithm to estimate the action-value functions and identify
optimal actions. The algorithm is presented for finding actions a∗ ∈ A∗t(s) such that
Qt(s, a∗) ≥ Qt(s, a) for all a ∈ A and each s ∈ S. If the goal is to find actions a∗ such that
Qt(s, a∗) ≤ Qt(s, a) for all a, replace the max and argmax operators by min and argmin,
respectively. We aim to estimate Qt(s, a) for all actions a ∈ A and states s ∈ S as well as
vt(s) andA∗t(s) for every state s.

Our SBBI algorithm is included as Algorithm 1 in Section C.1 of Appendix C. Given
a complete probability space (Ω,F ,P), we define a discrete-time stochastic process (ωn :
n ∈ {1, . . . ,N}) as the exogenous information process in the sequential decision problem.
Without loss of generality we let (ωn : n ∈ {1, . . . ,N}) be a sequence of independent and
identically distributed (iid) random variables uniformly distributed on [0, 1], denoted by
U(0, 1). This is consistent with past work on simulating MDP models (Chang et al., 2013;
Haskell et al., 2016).

At each decision epoch t, state s, and action a, we simulate a sequence (Qn
t (s, a) : n ∈

{1, . . . ,N}) of N ∈N+ BN \ {0} observations of the value associated with state s, action a.
Once N observations of each action-value function have been simulated, we approximate
the action-value function Qt(s, a) by its sample mean as:

Q̂t(s, a) B
1
N

N∑
n=1

Qn
t (s, a) =

1
N

N∑
n=1

rt(s, a, ωn) + γv̂t+1( ft+1(s, a, ωn)). (4.3)

From Q̂t(s, a), we estimate the value function vt(s) as v̂t(s) B maxa∈A Q̂t(s, a), the set of
optimal actions A∗t(s) as Â∗t(s) B argmaxa∈A Q̂t(s, a), the set of sub-optimal actions A9t(s)
as Â9t(s) B A \ Â∗t(s), and the optimal decision rules as π̂∗t(s) ∈ Â∗t(s). If the terminal
conditions QT(s, a) = vT(s) = E[rT(s, ω)|s] are not known in advanced but can be simulated,
we also estimate them through their sample mean.

Given ωn, ft+1(s, a, ωn) and rt(s, a, ωn) are deterministic functions of s and a. That is, the
distribution of Qn

t (s, a) is completely determined by ωn. Because of the Markov property,
Qn

t (s, a) is independent from Qn′
t (s, a) for any n , n′. Therefore, (Qn

t (s, a) : n ∈ {1, . . . ,N}) is
a sequence of iid random variables. This allows us to simulate (Qn

t (s, a) : n ∈ {1, . . . ,N})
in parallel, which leads to great computational speed gains. We use Ft(·, s, a) to denote
the cumulative distribution function (cdf) of Qn

t (s, a) and Ft(·, s) to denote the joint cdf of
{Qn

t (s, a) : a ∈ A}. The empirical estimates of the distribution functions are denoted by
F̂t(·, s, a) and F̂t(·, s), respectively.
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4.6.1.1 Finite Sample Properties of the SBBI Algorithm

In this subsection, we provide results on the behavior of the SBBI algorithm with finite
number of observations. The proofs of the claims in this subsection can be found in Section
C.2.1 of Appendix C. We begin with the following assumption:

Assumption 4.1 The immediate rewards rt(s, a, ω) are known constants or non-negative iid
random variables from a possibly unknown probability distribution bounded by Rt(s, a) < ∞.
Further, the terminal rewards rT(s, ω) are non-negative iid random variables from a possibly
unknown probability distribution bounded by RT(s) < ∞.

This assumption implies that the action-value functions Qt(s, a) are bounded and that
their estimates Q̂t(s, a) are bounded random variables. We now state a result on the
convergence rate of the SBBI algorithm.

Proposition 4.1 Under Assumption 4.1 it follows that:

1 − P(Â∗t(s) ⊆ A∗t(s)) ≤ A exp
{
−N
2κ2

t

}
,

with κt B
∑T
τ=t γ

τ−tRτ, where Rt B max(s,a)∈S×A Rt(s, a).

The result in Proposition 4.1 implies that the SBBI algorithm converges exponentially
fast on the number of observations N. This finding implies that the SBBI algorithm can
efficiently estimate Qt(s, a), provided thatκt is not too small compared to N. A consequence
of Proposition 4.1 is the required sample size to guarantee that any action in the set of
estimates of optimal actions Â∗t(s) is an optimal action with probability of at least 1 − β.

Proposition 4.2 Suppose Assumption 4.1 holds. Then, for any β ∈ (0, 1) and a fixed sample size
N satisfying N ≥ 2κ2

t log(A/β) it holds that P(Â∗t(s) ⊆ A∗t(s)) ≥ 1 − β.

In the context of medical decision-making problems, such as our case study, A∗t(s) is
usually a singleton. In this case, Proposition 4.2 gives the number of observations required
to ensure that P(Â∗t(s) = a∗) ≥ 1 − β for A∗t(s) = {a∗}. A key feature of this proposition
is that the number of observations N depends logarithmically on the size of the action
space A. This suggests that the sample complexity for finding an action a∗ ∈ Â∗t(s) such
that a∗ ∈ A∗t(s) with probability of at least 1 − β increases polynomially even if A increases
exponentially with N.
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4.6.1.2 Analysis of the SBBI Algorithm

We now present our results on the convergence of the SBBI algorithm. The proofs of
the claims in this subsection can be found in Section C.2.2 of Appendix C. We begin by
showing the uniform almost sure convergence of Q̂t(s, a) to Qt(s, a):

Theorem 4.1 Suppose Assumption 4.1 holds. Then, Q̂t(s, a) converges to Qt(s, a) with probability
1 uniformly onA.

Uniform convergence implies that the required number of observations for conver-
gence is independent of the action a. The following corollary is an immediate consequence
of Theorem 4.1:

Corollary 4.1 Suppose Assumption 4.1 holds. Then, v̂t(s) converges to vt(s) and Â∗t(s) ⊆ A∗t(s)
with probability 1 for N large enough.

We use similar arguments as in Proposition 2.1 of Kleywegt et al. (2002) to prove
Corollary 4.1 and use their definition for the statement “an event happens with probability
1 for N large enough”. An event happens with probability 1 for N large enough if for
P-almost every realization of a random sequenceω B {ω1, ω2, . . .} for ω1, ω2, . . . ∈ Ω there
exists an integer N(ω) such that the event happens for all samples {ω1, . . . , ωN

} ∈ ω with
N ≥ N(ω).

Remark 4.1 To prove the claims in this subsection it suffices that (Qn
t (s, a) : n ∈ {1, . . . ,N}) is

a sequence of independent random variables. The assumption of identically distributed random
variables is not needed.

4.6.1.3 Asymptotic Structural Properties of the SBBI Algorithm

We proceed to present the asymptotic structural properties of the SBBI algorithm. The
proofs of the claims in this subsection can be found in Section C.2.3 of Appendix C.
Structured policies tend to be more intuitive for DMs and are typically easier to implement
in practice. Throughout this subsection, we discuss the implications of the results using a
medical decision-making example. We begin with the following definition:

Definition 4.3 Let X be a partially ordered set and g : X 7→ R. We say that g is an ε-
nonincreasing (ε-nondecreasing) function if for x+

≥ x− in X it holds that g(x+) ≤ g(x−) + ε(
g(x+) ≥ g(x−) − ε

)
for ε > 0. In a similar way, we say that g is ε-constant if |g(x+) − g(x−)| ≤ ε

for ε > 0.
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Definition 4.3 will be useful to deal with ties in the rest of our analysis. For example,
if (Xn : n ∈ N) and (Yn : n ∈ N) are sequences of random variables that converge to the
same quantity, then for any ε > 0 we can find an N∗ ∈ N such that for every n ≥ N∗ we
have that |Xn − Yn| ≤ ε. That is, Xn and Yn are ε-constant. Let p̄t(s′|s, a) B

∑
s′′≥s′ pt(s′′|s, a)

denote the tail distribution of the transition probabilities, or the probability that the state
at decision epoch t + 1 exceeds s′ after choosing action a at state s and decision epoch t.
We make the following assumption:

Assumption 4.2 The state space S can be ordered such that the tail distribution functions
p̄t(s′|s, a) are nondecreasing in s and t, the expected immediate rewards E[rt(s, a, ω)|s, a] are
nonincreasing in s and t, and the terminal rewards are nonincreasing in s and E[rT(s, ω)|s] ≥
E[rT−1(s, a, ω)|s, a].

The conditions in Assumption 4.2 with respect to s are the same as in Proposition 4.7.3
in Puterman (2014). This assumption, along with Assumption 4.1, provide sufficient con-
ditions to ensure that the estimates of the action-value functions and the value functions
are monotone in s and t for N large enough. We present the monotonicity in s in the
following proposition:

Proposition 4.3 Under assumptions 4.1 and 4.2, Q̂t(s, a) and v̂t(s) are ε-nonincreasing in s with
probability 1 for N large enough.

In medical decision-making settings, states commonly represent the health condition of
patients and actions represent clinical interventions. The action-value and value functions
typically represent a measure of how long and how well patients are expected to live
given a clinical intervention, such as life-years or quality-adjusted life-years. If the health
conditions are ordered from the healthiest to the sickest, Proposition 4.3 implies that
sicker patients will have shorter total expected lifetime than healthier patients. The
next proposition present the monotonicity of the estimates of the action-value and value
functions in t for N large enough.

Proposition 4.4 Suppose assumptions 4.1 and 4.2 hold. Then, Q̂t(s, a) and v̂t(s) are ε-
nonincreasing in t with probability 1 for N large enough.

The implication of Proposition 4.4 in medical decision-making problems is that pa-
tients’ total expected lifetime will never increase with their age, a common assumption in
the medical literature.
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4.6.2 Simulation-Based Parallel Multiple Comparisons with a Control

In this section, we present our method to identify sub-optimal actions that are not sta-
tistically different from an optimal action at a significance level α. To derive a set of
near-optimal actions, we compare the performance of an optimal action with the rest of
the actions. Similar to Westfall and Young (1993), our formulation aims to find a constant
dt(s, α) for each state s such that it satisfies equation (4.2). Since Qt(s, a) is unknown, so
are maxa∈Aψt(s, a) and its cdf. We denote this cdf as Ht and use Ht(·,Ft(s)) when its de-
pendence on the unknown cdf Ft(·, s) must be emphasized. To address this challenge, we
adapt the concept of nonoverlapping batch means to simulated MDP models (Fishman,
1978).

Consider N observations of a simulated MDP. The method of nonoverlapping batch
means divides the sequence of N outputs of a simulation into M adjacent nonoverlapping
batches, each of size K. Because (Qn

t (s, a) : n ∈ {1, . . . ,N}) is a sequence of iid random
variables, dividing N outputs of a simulated MDP into M batches is equivalent to executing
M independent simulations of the MDP, each with K observations. The mth batch (or
simulation replicate) consists of the random variables: Qm,1

t (s, a),Qm,2
t (s, a), . . . ,Qm,K

t (s, a),
for m = 1, . . . ,M. For each batch m, we then estimate the action-value functions by
the sample mean and the variance associated with the action-value functions over K
observations. After batching, the grand sample mean can be obtained as:

Q̂t(s, a) =
1
M

M∑
m=1

Q̄m
t (s, a) =

1
MK

M∑
m=1

K∑
k=1

Qm,k
t (s, a),

and the variance of the batch sample means as:

ζ̂2
t (s, a) =

1
M − 1

M∑
m=1

(
Q̄m

t (s, a) − Q̂t(s, a)
)2
,

where Q̄m
t (s, a) is the sample mean for the mth batch. We obtain an estimate of σ2

t (s, a) by
multiplying the variance of the batch sample means by the number of observations per
batch. That is, Kζ̂2

t (s, a) is an estimator of σ2
t (s, a).

The nonoverlapping batch means method then allows us to generate an estimator for
the root statistic ψt(s, a) as:

ψ̂t(s, a) B
Q̂t(s, a∗) − Q̂t(s, a) − (Qt(s, a∗) −Qt(s, a))√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

] .
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Note that in the nonoverlapping batch means method formulation we use the number
of batches M instead of the total number of observations N to calculate standard errors
because we are estimating σ2

t (s, a) with Kζ̂2
t (s, a). Using the variability across the M batches,

we generate an empirical estimate ofHt, denoted by Ĥt(·, F̂t(s)) or simply Ĥt when is not
necessary to highlight its dependence to the empirical cdf F̂t(·, s).

We now introduce our algorithm to generate Ĥ and estimate the quantile dt(s, α) for
each state s at decision epoch t. Our SBMCC method is included as Algorithm 2 in Section
C.1 of Appendix C. For each batch (or simulation replicate), we generate an estimate of
the root statistic as:

ψ̄m
t (s, a) B

Q̄m
t (s, a∗) − Q̄m

t (s, a) −
(
Q̂t(s, a∗) − Q̂t(s, a)

)
√

K−1
[
σ̄2

t (s, a∗,m) + σ̄2
t (s, a,m)

] ,

for m = 1, . . . ,M, where a∗ ∈ Ct(s), Q̄m
t (s, a) is the sample mean for the mth batch and

σ̄2
t (s, a,m) is the sample variance of the the mth batch.

A key assumption in MCC is that the control is known before observing the data that
will be used to evaluate the actions. Thus, we must generate Ct(s) ∈ C without knowing
{Q̂t(s, a) : t ∈ T \ {T}, s ∈ S, a ∈ A}. Several approaches could be used to identify C, such as
solving the standard version of the MDP (T ,S,A,P, ρ, γ) through backwards induction
before simulating the MDP and letting Ct(s) = A∗t(s), simulating an initial independent
replication of the SBBI algorithm and letting Ct(s) = Â∗t(s), or using the estimates of a
single batch and letting Ct(s) = argmaxa∈A Q̄m

t (s, a). In the later case, the batch used to
obtain Ct(s) must be excluded from Algorithm 2. Proposition 4.2 provides a lower bound
on the sample size required such that Ct(s) ⊆ A∗t(s) with high probability when Ct(s) is
obtained from a simulation model.

Once we generate an estimate of the root statistic for each batch, we estimate dt(s, α)
as:

d̂t(s, α) B inf
{
x ∈ R : Ĥt(x, F̂t(s)) ≥ 1 − α

}
.

Since the estimates of the root statistics {ψ̄m
t (s, a) : m ∈ {1, . . . ,M}, t ∈ T \ {T}, s ∈ S, a ∈ A}

are mutually independent, the SBMCC algorithm can be executed in parallel across M, S,
A, and T \ {T}. However, we present the parallel execution of the algorithm across M,
S, and A as it allows for the integration of the SBMCC algorithm to the SBBI algorithm.
The combination of the algorithms is included as Algorithm 3 in Section C.1 of Appendix
C. This integration allows us to investigate the effect of future α-nonsignificant actions in
the sets of near-optimal actions in the current decision epoch.
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4.6.2.1 Analysis of the SBMCC Algorithm

We now proceed to present our asymptotic results of the SBMCC algorithm. The proofs
of the claims in this subsection can be found in Section C.2.4 of Appendix C. Let Θ ⊆ R

denote the set of all possible values of Qt(s, a∗) −Qt(s, a). In the following proposition, we
show that the SBMCC algorithm produces the correct overall asymptotic coverage 1 − α.

Proposition 4.5 Suppose Assumption 4.1 holds. Then, for any α ∈ (0, 1) we have that:

P
(
Qt(s, a∗) −Qt(s, a) ∈ Θ : Ĥt

(
max
a∈A
{ψ̂t(s, a)}, F̂t(s)

)
≤ 1 − α

)
= 1 − α

for N large enough, a∗ ∈ Ct(s), and all a ∈ A.

The result in Proposition 4.5 means that the true difference between the performance
of a control action and the remaining actions at state s will asymptotically be in a subset
of Θ such that the empirical cdf of maxa∈Aψt(s, a) evaluated at maxa∈A ψ̂t(s, a) is at most
the confidence level 1 − α with probability of exactly such confidence level. While all
the conditions in Θ involve random variables, all the relevant quantities converge with
probability 1 to their true values as M → ∞ and K → ∞ (see lemmas C.5 and C.6
in Appendix C). Note that our method has similar asymptotic coverage properties to
the nonparametric bootstrap method (Beran, 1988; Tu and Zhou, 2000; Westfall, 2011).
Proposition 4.5 allows us to show that a set of actions Πt(s, α) ⊆ At(s) with a quantile
d̂t(s, α) derived from the SBMCC algorithm will asymptotically be a set of α-nonsignificant
actions with probability 1. We present this result in the following theorem:

Theorem 4.2 Under Assumption 4.1 we have that:

Πt(s, α) =
{
a ∈ A : Q̂t(s, a∗) − Q̂t(s, a) ≤ d̂t(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]}
with d̂t(s, α) = Ĥ−1

t (1− α, F̂t(s)) is a set of α-nonsignificant actions with probability 1 for N large
enough and a∗ ∈ Ct(s).

Theorem 4.2 generalizes the theoretical basis of MCC as described in Section 3 of
Dunnett (1955) to the nonparametric case. This theorem also extends the simultaneous
confidence interval methods for MCC without the equal variances assumption described
in Section 2 of Li and Ning (2012). It is worth observing that Theorem 4.2 as well as the
results in Dunnett (1955) and Li and Ning (2012) are based on the implicit null hypothesis
that all actions are equally good. We now state a result on the rate of convergence of the
SBMCC algorithm.
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Proposition 4.6 Suppose that Assumption 4.1 is satisfied. Then,

lim
N→∞

N1/2 sup
x∈R

∣∣∣Ĥt(x, F̂t(s)) −Ht(x,Ft(s))
∣∣∣ ≤ CA5/4

√
2κ3

t ,

where C is the constant appearing in the multivariate Berry-Esseen bound.

Although the value of the constant C is an area of open research, its current best estimate
is C = 42A1/4 + 16 by Raic (2019). The result in Proposition 4.6 provides a bound on the
convergence rate of Algorithm 2 of order O(N−1/2). We note that this rate of convergence
is equivalent to the convergence rate of the central limit theorem (Serfling, 1980, Theorem
1.9.5). In the proof of this proposition, we once again observe similarities between our
method and the nonparametric bootstrap (Singh, 1981, Theorem 1.C).

4.6.2.2 Asymptotic Structural Properties of the SBMCC Algorithm

We provide asymptotic structural results of the SBMCC algorithm next. The proofs of the
claims in this subsection can be found in Section C.2.5 of Appendix C. Similar to subsection
4.6.1.3, we discuss the connotations of the assumptions and results in the context of medical
decision-making scenarios. We start by stating the relationship between the cardinality of
the sets of α-nonsignificant actions and the significance level α.

Proposition 4.7 Suppose that Assumption 4.1 holds. Then, |Πt(s, α)| is nonincreasing in α ∈
(0, 1). Moreover, there exist an α such that Πt(s, α) ⊆ A∗t(s) with probability 1 for N large enough.

Under the classical null hypothesis that all actions are equally good, the significance
level α indicates the strength of the evidence that a DM, such as a clinician and/or a patient,
requires before concluding that there is sufficient evidence to reject the null hypothesis.
The result in Proposition 4.7 means that if we increase the significance level (e.g., from
0.01 to 0.05), the sets of α-nonsignificant actions will not include more choices. This result
allows clinicians to control the cardinality of the sets of α-nonsignificant actions based on
their confidence in the rewards and transition functions. If clinicians are not exceptionally
certain in the parameterization of their model, smaller values of α, such as 0.01 and 0.05,
may be reasonable. On the other hand, if clinicians are highly confident in their model,
larger values of α, such as 0.1 and 0.2 may suffice.

We now present sufficient conditions to ensure that the cardinality of the sets of α-
nonsignificant actions are monotone for N large enough. Consistent with the work of
Mannor and Tsitsiklis (2013), we find that there are no recursive algorithms when dealing
with the variance of value functions. As a result, we make assumptions directly on the
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conditional variance of the value functions. The following assumption gives conditions
on the conditional variance of the expected rewards and value functions:

Assumption 4.3 The conditional variance of the immediate rewards E[r2
t (s, a, ω)|s, a] −

E[rt(s, a, ω)|s, a]2 and the value functions E[v2
t (s′)|s, a] − E[vt(s′)|s, a]2 are nonincreasing in s, t,

and a ∈ At(s).

Recall our medical decision-making setting from Subsection 4.6.1.3 where the time
periods and states represent patients’ age and health conditions, respectively, and the
actions are clinical interventions at different intensities. Health conditions are ordered
from the healthiest to the sickest and clinical interventions are order from the lowest to
the highest intensity. The action-value and value functions represent how long and how
well patients are expected to live given a clinical intervention. In this setting, Assumption
4.3 indicates that the effect of clinical interventions will not become more uncertain when
patients are sicker or older. It also suggests that more intense clinical interventions will
be more certain than less aggressive interventions. Although E[v2

t (s′)|s, a] − E[vt(s′)|s, a]2

is not part of the basic model, the conditions can be directly verified after obtaining vt(s)
either via standards backwards induction or after approximating it through v̂t(s) with the
SBBI algorithm.

Besides requirements on the conditional variances, we make an assumption on the
nature of the differences of the tail distribution functions and the expected immediate
rewards:

Assumption 4.4 The tail distribution functions p̄t(s′|s, a) are subadditive functions on S × A
and T ×A. Further, the expected immediate rewards E[rt(s, a, ω)|s, a] are superadditive functions
on S ×A and T ×A.

Assumption 4.4 means that the impact of more intense clinical interventions on the
probability that patients get sicker is larger if the patient is sicker or older. This assumption
also implies that more aggressive interventions have a larger effect on patients’ health
when the patients are sicker or older.

Incorporating Assumptions 4.1 through 4.4 provide sufficient conditions to make sure
that the sets of α-nonsignificant actions are monotone in s for N large enough. We present
this result in the following proposition:

Proposition 4.8 Suppose Assumptions 4.1 through 4.4 hold. Then, |Πt(s, α)| is ε-nonincreasing
in s with probability 1 for N large enough.
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The result in Proposition 4.8 means that sicker patients will receive less choices than
healthier patients. This may be useful from a clinical perspective because sicker patients
are more likely to experience adverse events. To ensure that the sets of α-nonsignificant
actions are monotone in t we also need conditions on the action spaceAt(s) ⊆ A associated
with state s and decision epoch t. We make the following assumption:

Assumption 4.5 The action space At(s) can be ordered such that the tail distribution functions
p̄t(s′|s, a) are nonincreasing in a ∈ At(s) and the expected immediate rewards E[rt(s, a, ω)|s, a] are
nondecreasing in a ∈ At(s).

If clinical interventions are ordered from the lowest to the highest intensity, Assump-
tion 4.5 implies that the more aggressive interventions will result in better immediate and
future expected health outcomes. Integrating Assumption 4.5 to assumptions 4.1 through
4.4 provides sufficient conditions to assure that the sets of α-nonsignificant actions will be
monotone in t for N large enough.

Proposition 4.9 Suppose Assumptions 4.1 through 4.5 hold. Furthermore, assume that vt(s) −
vt+1(s) is nondecreasing in s. Then, |Πt(s, α)| is ε-nonincreasing in t with probability 1 for N large
enough.

The additional condition in Proposition 4.9 indicates that healthier patients will ex-
perience smaller differences in terms of life expectancy and quality of life than sicker
patients over the planning horizon. Proposition 4.9 means that patients will receive less
choices in their sets of α-nonsignificant actions as they get older. This result may be useful
in clinical practice because older patients are typically more likely to experience adverse
events. We highlight that the conditions in Propositions 4.8 and 4.9 are also sufficient to
show monotonicity in the approximately optimal decision rules π̂∗t(s) for N large enough
in the following remark:

Remark 4.2 The conditions in Proposition 4.8 and Proposition 4.9 are sufficient to prove that there
exist approximately optimal decision rules π̂∗t(s) that are ε-monotone on s and t with probability 1
for N large enough, respectively. We provide the proof of this remark in Section C.2.5 of Appendix
C.

Combining Assumptions 4.1, 4.2, 4.3, and 4.5 we get sufficient conditions to guarantee
that the actions contained in the sets of α-nonsignificant actions are arranged as a range
(see Definition 4.2). We present this result in the following theorem:
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Theorem 4.3 Suppose that assumptions 4.1, 4.2, 4.3, and 4.5 are satisfied. Then, Πt(s, α) is an
α-nonsignificant range of actions at state s and decision epoch t with probability 1 for N large
enough.

If there are two clinical interventions of varying intensities contained in a set of α-
nonsignificant actions, the result in Theorem 4.3 implies that any clinical intervention
with an intensity between them will also be included in the set. Moreover, once a clinical
intervention is proven to not be part of Πt(s, α) it is certain that any intervention that
is more extreme will also not be part of the range. This results in computational gains,
especially for the case of large action spaces. A range of near-optimal actions may be
more intuitive and interpretable for clinicians than a set without any particular order. As
a result, the ranges of α-nonsignificant actions may be easier to implement in medical
practice. We make the following remark to account for the case that all the action-value
functions have the same variance:

Remark 4.3 If {Qt(s, a) : a ∈ A} for state s and decision epoch t have equal variances (i.e.
σ2

t (s, a) = σ2
t (s, a′) for all a , a′), Assumption 4.3 is not required to show that Πt(s, α) is a range

of actions at state s with probability 1 for N large enough.

A consequence of the conditions in this subsection, in particular Assumption 4.5, is
that clinicians do not need to assume that patients will receive approximately optimal
interventions in the next decision epoch. If these conditions are satisfied, clinicians could
use any decision rule in the next decision epoch and asymptotically reach at least a subset
of the recommendations in the current period. Let A ∗

t (s, ã) and Πt(s, α, ã) denote the set of
optimal actions and the set of α-nonsignificant actions, respectively, assuming that action
ã ∈ At+1( ft+1(s, a, ω)) is taken at the next decision period. We present our result in the
following proposition:

Proposition 4.10 Suppose assumptions 4.1, 4.2, 4.4 and 4.5 hold. Then, we have that A ∗

t (s, ã) ⊆
A
∗

t(s) and Πt(s, α, ã) ⊆ Πt(s, α) for N large enough.

The result in Proposition 4.10 indicates that if assumptions 4.1, 4.2, 4.4, and 4.5 are
satisfied then any decision rule can be followed in the subsequent decision epochs. This
result may be beneficial in clinical practice as future clinical interventions may be unclear
due to the uncertainty in patients’ health progression. This result provides clinicians and
their patients with confidence in the ranges of near-optimal actions in the current decision
epoch without the burden of potential ambiguity in patients’ future health.
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4.7 Case study: Personalized Hypertension Treatment

Plans

In this section, we apply of our methodology to obtain flexible hypertension treatment
plans for primary prevention of ASCVD. We begin by providing some background on
hypertension treatment as well as motivating the need for flexible treatment protocols.
Subsequently, we describe our MDP, data source, model parameters, and simulation
framework. Lastly, we present the treatment plans and health outcomes of patients
following treatment choices contained in our ranges of near-optimal actions.

4.7.1 Background on Hypertension Treatment

Using the definition from the 2017 Hypertension Clinical Practice Guidelines, 45.6% of
adults in the US have hypertension (Whelton et al., 2018). Stage 1 hypertension is defined
as SBP of 130-139 mm Hg or diastolic blood pressure (DBP) of 80-89 mm Hg, and stage
2 hypertension is defined as an SBP of at least 140 mm Hg or a DBP of at least 90 mm
Hg. The 2017 Hypertension Clinical Practice Guidelines provide non-pharmacological
and pharmacological recommendations for patients with hypertension as well as with
elevated BP, defined as an SBP of 120-129 mm Hg and a DBP smaller than 80 mm Hg. In
this case study, we focus on the pharmacological recommendations.

A key distinction between clinical practice guidelines, such as Chobanian et al. (2003);
James et al. (2014); Williams et al. (2018) and Whelton et al. (2018), and optimal decision
models in the literature is that they provide clinicians with flexibility in the implementation
of hypertension treatment plans. To benefit from clinicians’ judgment and account for
their patients’ preferences, we develop ranges of near-optimal treatment choices for the
personalized management of hypertension.

4.7.2 Markov Decision Process Formulation

The process of sequentially determining antihypertensive medications over a planning
horizon is modeled as a finite MDP. We adapt the standard MDP formulation in Schell
et al. (2016) to a primary prevention simulation MDP. The objective of the MDP model
is to determine the treatment strategy that maximizes the expected discounted life-years
before an adverse event. The elements of our simulation MDP (T ,S,A, f , r, γ) are as
follows:
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T planning horizon of T = 10 years where decisions are made at the
beginning of each year; T = {0, 1, . . . , 10}.

S state space consisting patients’ demographic information, clinical ob-
servations, and health condition. We separate the state space S into
healthy states H and absorbing states E, based on patients’ health
conditions (i.e. S = H ∪ E).

A action space composed of 0 to 5 antihypertensive medications at half
and standard dosage, for a total of A = 21 treatment choices.

s′ = ft+1(s, a, ω) transition function based on the estimated transition probability
pt(s′|s, a). The transition probabilities are derived from patients’ risk
for ASCVD events, the benefit from treatment, fatality likelihoods, and
non-ASCVD mortality.

rt(s′, a, ω) reward associated with a transition to state s′ after action a and outcome
ω. We define rt(s′, a, ω) = 1−∆(a) if s′ ∈ H and 0 otherwise, where ∆(a)
denotes the treatment-realted disutility from medication a.

γ discount factor of the model; γ = 0.97.

We describe each of the elements of the MDP in detail in the following subsections.

4.7.2.1 Planning Horizon

Based on communications with clinical collaborators, we evaluate the health outcomes and
treatment plans of each patient in our populations over 10 years. That is,T = {0, 1, . . . , 10}.
Treatment decisions are made at the beginning of each year t ∈ T \ {10}. We use T = 10 to
represent the lifetime effects of the treatment decisions on each patient.

4.7.2.2 State Space

A state s ∈ S consists of a patient’s demographic information, clinical observations, and
health condition. The patient’s demographic information includes age, race, sex, smoking
status, and diabetes status. The clinical observations are measurements of the patient’s
untreated SBP, DBP, HDL, and TC. We separate the state space S into healthy states H
and absorbing states E, based on the health condition of the patient (i.e. S = H ∪ E).
A healthy state s ∈ H is defined by the patient’s demographic and clinical observations
prior to an ASCVD event or death. The absorbing states E represent ASCVD events or
death. We consider the following absorbing states: survival of a CHD event, survival of
a stroke, death from CHD event, death from stroke, and death from a non-cardiovascular
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disease related cause.

4.7.2.3 Action Space

Our action spaceA is the set of possible number of medications that can be prescribed. We
considered between 0 and 5 antihypertensive medications at half and standard dosage,
for a total of A = 21 treatment choices. Once a treatment decision is made, we assume
that treatment has a near-immediate effect on patients’ health. The estimates of the effects
of antihypertensive drugs on patients’ BP and risk for ASCVD events are derived from
the work performed by the Blood Pressure Lowering Treatment Trialists’ Collaboration
(BPLTTC) as described in Sundström et al. (2014, 2015); Salam et al. (2019). To be consistent
with previous studies, we assume that a medication at half dosage has two-thirds of the
strength of a medication at standard dosage and half of its side effects (Sussman et al.,
2013). Based on communications with our clinical collaborators, we constraint the set of
possible actions by a minimum allowable BP. To prevent treatment harm from excessive
medication, we used a minimum allowable BP of 120/55 mm Hg.

4.7.2.4 Transition Functions

Before treatment decisions are made, we calculate a pre-treatment, one-year risk of ASCVD
events for each patient using the risk calculator described in Yadlowsky et al. (2018). This
risk calculator was developed using a logistic regression model with age, sex, race (Black
or White), smoking status, diabetes status, SBP, HDL, and TC as explanatory variables.
Since CHD and stroke have the same basic risk factors (and because there are currently no
separate risk scores for CHD and stroke) we assume that 70% of the ASCVD risk is due to
CHD events and 30% is due to stroke events (Virani et al., 2020).

The risk for CHD and stroke are modified when a patient receives treatment. For
patients who have an ASCVD event in a given year, we calculate how likely are the
patients to die by applying fatality likelihoods to the post-treatment risk of CHD and
stroke events (Virani et al., 2020; Kochanek et al., 2019; Sussman et al., 2013). We calculate
these fatality likelihoods as the ratio of known fatal event rates from National Center for
Health Statistics (NCHS) to the overall event rates in our population predicted by the
risk calculator, adjusted for age and sex (Yadlowsky et al., 2018; NCHS, 2017). Lastly, we
calculate the probability of non-ASCVD mortality using life-tables (Arias and Xu, 2019).

The post-treatment risk, fatality likelihoods, and non-ASCVD mortality provide all
the necessary information to estimate transition probabilities pt(s′|s, a) for every state s,
treatment choice a, and year t. Note that since E is a set of absorbing states, if s ∈ E then
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pt(s′|s, a) = 1 for s′ = s. From the transition probabilities we obtain the following transition
functions:

s′ = ft+1(s, a, ω) =



1 if ω ≤ pt(s′ = 1|s, a), s ∈ H

j if
j−1∑
k=1

pt(s′ = k|s, a) < ω ≤
j∑

k=1

pt(s′ = k|s, a), s ∈ H for j ∈ S \ {1},

s if s ∈ E.

for all s, a, and t.

4.7.2.5 Rewards

A patient in state s transition to state s′ after receiving an antihypertensive medication a.
Following the transition to s′, the patient receives a reward rt(s′, a, ω) defined as:

rt(s′, a, ω) =

1 − ∆(a) if s′ ∈ H ,

0 otherwise,

where ∆(a) represents the disutility, or treatment harm, from medication a. The disutility
associated with each treatment choice are obtained from Schell et al. (2016) and Sussman
et al. (2013). Once the last treatment decision is made at year 9, the patient transitions to
state s̄ and receives a terminal reward defined as:

rT(s̄, ω) =

L(s̄) if s̄ ∈ H ,

0 otherwise,

where L(s) denotes the expected lifetime for a patient in state s. The expected lifetime of
each patient is obtained from Arias and Xu (2019). As suggested in Neumann et al. (2016),
we use a discount factor of γ = 0.97 per year.

The clinical parameters used throughout our numerical study are listed in Table 4.3.

4.7.3 Data Source

To parameterize our models, we use the NHANES dataset from 2009 to 2016 (Centers for
Disease Control and Prevention, 2020). Our primary sample is composed of adult Black or
White patients from 50 to 54 years old with no history of heart attack, stroke, or congestive
heart failure, for a total population of 16.72 million people. We impute any missing data
in the NHANES dataset using the MissForest package in R (Stekhoven and Buhlmann,
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Table 4.3: Base case parameters

Parameter Value Source

BP reduction: standard dosage (half dosage) Sundström et al. (2014, 2015);
Salam et al. (2019); Sussman
et al. (2013)

SBP 5.5 (3.7) mm Hg
DBP 3.3 (2.2) mm Hg

ASCVD risk reduction: standard dosage (half
dosage) Sundström et al. (2014, 2015);

Salam et al. (2019); Sussman
et al. (2013)

CHD 13% (7%)
Stroke 21% (14%)

Treatment-related disutility Schell et al. (2016);
Sussman et al. (2013)Half dosage 0.001

Full dosage 0.002
Life expectancy Varies by pa-

tient
Arias and Xu (2019)

Proportion of ASCVD risk due to
CHD

70% Virani et al. (2020)
Mortality from ASCVD events NCHS (2017)

CHD Varies by pa-
tient

Stroke Varies by pa-
tient

Non-ASCVD Mortality Varies by pa-
tient

Arias and Xu (2019)
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2012). To model how the risk factors of each patient may evolve over time, we estimate
their progression using linear regression. See Section C.3.1 in Appendix C for details.

4.7.4 Ordering of States and Actions

To obtain a range of near-optimal treatment choices with probability 1 if S andAt(s) must
be ordered such that E[rt(s′, a, ω)|s, a] and p̄t(s′|s, a) are monotone on s ∈ S and a ∈ At(s),
and σt(s, a) is monotone onAt(s) (see Theorem 4.3).

Given the progression of a patient’s risk factors, the state transitions only depend on
their health condition. To ensure the monotonicity ofE[rt(s′, a, ω)|s, a] and p̄t(s′|s, a) on s, we
ordered patients’ states at each year in terms of their health condition. As pt(s|s, a) = 1 for
s ∈ E and pt(s′|s, a) ∈ (0, 1) if s ∈ H , we order our states so that ŝ < s̃ if ŝ ∈ H and s̃ ∈ E. This
ordering guarantees that p̄t(s′|s, a) is monotone in s. Since patients only receive a nonzero
reward if the patient transitions from s ∈ H to s′ ∈ H , E[rt(s′, a, ω)|s, a] is monotone in s by
construction.

To make sure E[rt(s, a, ω)|s, a], p̄t(s′|s, a), and σt(s, a) are monotone in a, we ordered
At(s) in terms of number of medications. We note that this ordering achieves the desired
result because the reduction in ASCVD risk from treatment is linear in the number of
medications.

4.7.5 Simulation Framework

We develop a simulation model to evaluate the hypertension treatment plans contained
in our ranges of treatment choices. For comparison purposes, we also evaluate optimal
treatment plans as described in Schell et al. (2016) and a treatment strategy based on the
2017 Hypertension Clinical Practice Guidelines (Whelton et al., 2018).

The trajectory of a single patient in our modeling framework is summarized in Figure
4.2. Before developing treatment plans, we calculate the risk for ASCVD events at each
year. We then estimate transition probabilities and develop transition functions. Subse-
quently, we determine treatment policies based on: (1) optimal treatment plans, (2) the
2017 Hypertension Clinical Practice Guidelines, and (3) treatment choices contained in our
ranges of near-optimal actions. To derive our ranges of near-optimal treatment choices
we use the combined version of the SBBI and SBMCC algorithms included as Algorithm
3 in Section C.1 of Appendix C. The control treatment choices are identified by using the
estimates of the first batch of outputs from the SBBI algorithm.

We consider three types of treatments contained in the ranges of near-optimal actions:
the best performing treatment in the range, the treatment choice with the median number
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Figure 4.2: Summary of simulation framework for a single patient. The index t represents
represents the year in the planning horizon (10 years).

of medications, and the treatment choice with the least amount of medications. These
strategies will be referred to as: best in range, median in range, and fewest in range,
respectively. We choose the first type of treatment choice to mimic the behavior of the kind
of patient that want the best possible treatment and completely adheres to prescriptions.
Note that the best in range strategy corresponds to the approximately optimal treatment
choice obtained with the SBBI algorithm. The other two types of treatment plans (i.e.
median in range and fewest in range) aim to represent potential physicians’ reactions
to patients nonadherence. Research has shown that prescribing less medications may
increase patients adherence to prescriptions (Claxton et al., 2001; Saini et al., 2009). Once
we obtain the different treatment strategies, we evaluate each treatment policy based on
the Markov chain embedded in the MDP (Puterman, 2014, Section 4.2). The optimal
policies and the current clinical guidelines treatment strategy are described in Section
C.3.2 of Appendix C.

4.7.6 Selection of Number of Batches and Observations per Batch

Before evaluating the impact of flexible treatment plans, we derive the number of batches
to divide the output of the simulated MDP for each patient in our population. We are
interested in obtaining simultaneous confidence interval widths that are narrow enough
to identify as many treatment choices as possible to be inferior to the control treatment
with finite number of batches, finite observations per batch, and specified significance
level α. Consequently, we use the maximum confidence interval width across all patients
at the first year of our study to evaluate the convergence of the confidence interval widths.
A significance level of α = 0.05 is used for all analyses. The selection of the number of
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batches in described in detail in Section C.3.3 of Appendix C.

4.7.7 Analysis

To understand the implications of flexible treatment plans at a patient level, we exam-
ine the effect of the characteristics of a patient on the width of the ranges of treatment
choices. We then study the policy implications of the ranges of near-optimal treatment al-
ternatives by comparing our methodology to optimal treatment plans and current clinical
guidelines. First, we inspect the distribution of the number of medications recommended
by each treatment strategy. Second, we explore the proportion of patients the ranges of
near-optimal actions included the optimal treatment and the current clinical guidelines
treatment strategy. Third, we examine the life-years saved, ASCVD events averted, and
expected time to adverse event (including ASCVD events and non-ASCVD related death)
by each treatment strategy, compared to no treatment.

To study the policy implications of each treatment strategy, we divide our population
by sex, race, and BP group. We create the BP groups on the basis of the 2017 Hypertension
Clinical Practice Guidelines: normal BP, elevated BP, stage 1 hypertension, and stage 2
hypertension. We also perform sensitivity analysis on the treatment strategies by varying
the model parameters and assumptions.

4.7.8 Sensitivity Analyses

The sensitivity analyses on model parameters are described in Table 4.4. These parameters
and their sensitivity analysis values are selected based on the existing literature and
communications with our clinical collaborators (Sussman et al., 2013).

Table 4.4: Sensitivity analysis parameter values.

Parameter Base case (sensitivity analysis values)

ASCVD risk Yadlowsky et al. (2018) (half, double)
ASCVD risk reductions BPLTTC (half, double)
Half dosage disutility 0.001 (0.0005, 0.0020, 0.0092)
Standard dosage disutility 0.002 (0.0010, 0.0040, 0.0184)
Action-value function distribution Empirical (Gaussian)
Future action Best in range (fewest in range, median in range)
Population Ages 50-54 (ages 70-74)
Parameter misestimation None (± 50% estimated risk, 50% nonadherence)

We first consider the case that the ASCVD risk estimated by the score in Yadlowsky et al.
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(2018), the ASCVD risk reductions from obtained from Sundström et al. (2014, 2015); Salam
et al. (2019), and the treatment-related disutility are halved or doubled. We also examine
an scenario where the treatment-related disutility results in equal number of medications
recommended by the optimal treatment strategy and the current clinical guidelines. In
this scenario, we used a disutility of 0.0092 for medications at half dosage and 0.0184
for medications at standard dosage. Second, we perform a sensitivity analysis on the
distribution of the action-value functions. Rather than using an empirical estimation
of their true distribution, we assume that the action-value functions, including terminal
rewards, are normally distributed. In another sensitivity analysis, we use the treatment
choices with the least amount of medications and median number of medications in the
next year’s range of near-optimal actions, instead of the best treatment treatment choice
in the range. We also compare the performance of treatment choices in the range of near-
optimal actions to the optimal treatment and the current clinical guidelines in a secondary
population. Each policy is applied in a sample representative of all Black or White adults
in the US with ages between 70 and 74 years old (7.55 million people). Finally, we study
the case the parameters are misestimated. We contemplate three misestimation scenarios:
patients’ true risk is half the estimated risk, patients’ true risk is double the estimated risk,
and patients’ true benefit from treatment is half the estimated benefit.

4.7.9 Numerical Results

In this subsection, we evaluate the effect of flexible hypertension treatment plans. We
provide insights into the patient and population-level implications of flexible treatment.
The results of our sensitivity analyses are included in subsection C.3.4.1 of Appendix C.

4.7.9.1 Patient-Level Insights from Flexible Treatment

We now evaluate the ranges of near-optimal actions in a series of patient profiles, based
on patients from the NHANES dataset. For comparison purposes, we also determine
the optimal treatment plans and the current clinical guidelines for each patient profile.
We first obtain ranges of antihypertensive medications for the following patient profile:
54-year-old, non-diabetic, non-smoker, White male with stage 1 hypertension, and low
TC, HDL, and LDL. This patient profile will be referred to as the base patient profile.
Note that this profile has two major risk factors for ASCVD events, the BP and the HDL
levels. We then modify the following characteristics of the patient: sex, race, diabetes
status, smoking status, and age.

Figure 4.3 shows the ranges of near-optimal treatment choices for our selection of
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patient profiles. In the base patient profile, we observe ranges from 4 to 7 treatment
choices that correspond to recommending from 0 to 2 medications at standard dosage
and 1 at half dosage over the planning horizon. We also notice that the best treatment in
the ranges match the optimal treatment at every year. The current clinical guidelines do
not recommend any pharmacological treatment until year 10, when the patient reaches a
10-year risk for ASCVD events slightly above 10%.
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Figure 4.3: Ranges of near-optimal treatment choices per patient profile. The ranges are
highlighted with the gray shaded area in each profile. The labels “SD” and “HD” denote
antihypertensive medications at standard dosage and half dosage, respectively.

Changing the sex of the patient to female increases the width of the ranges but decreases
the level of aggressiveness of the treatments prescribed. Using this patient profile, we find
that the best treatment in range is slightly lower than the optimal treatment at year 10 of
our study. However, the optimal treatment is contained in the range, and the optimality
gap is relatively small (0.0026 life-years). We find a similar behavior changing the race of
the patient to Black. A potential reason for this behavior is that, with otherwise-identical
risk factors, a White female and a Black male patient would have lower risks than a White
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male patient for the considered set of characteristics (Yadlowsky et al., 2018; Goff et al.,
2014).

Modifying the diabetes and smoking status of the profile seems to have comparable
effects. In both cases the ranges become narrower and more aggressive treatment is
prescribed. We also note that the current clinical guidelines recommend more aggressive
treatment as the risk for ASCVD events increases. Increasing the age of the base patient
profile to 70 years has the biggest impact in the behavior of the ranges. We discover
ranges from 4 to 5 treatment choices that correspond to recommending from 1 medication
at half dosage to 2 medications at standard dosage and 1 at half dosage over the planning
horizon.

4.7.9.2 Population-Level Insights from Flexible Treatment

Out of a population of 16.72 million people, 1.33 million (7.96%) are Black females, 7.58
million (45.34%) are White females, 1.08 million (6.44%) are Black males, and 6.73 million
(40.26%) are White males. The number of people by sex, race, and BP group (normal BP,
elevated BP, stage 1 hypertension, and stage 2 hypertension) at the first year of our study
are shown in Figure C.2 in Section C.3.4 of Appendix C. We observe that male patients
generally have higher BP than female patients. We also notice that 6.44 million (38.49%)
people have stage 1 hypertension. This is the largest proportion of adults in the US with
ages 50 to 54. Nevertheless, this finding varies by race. While there are more Black adults
with stage 1 hypertension than any other BP group (45.83%), the largest proportion of
White adults have normal BP (38.59%). These findings are consistent with the most recent
age-adjusted hypertension prevalence trends across adults in the US (Virani et al., 2020).

Comparison of Treatment Recommendations: By comparing the treatment strategies
contained in our ranges of near-optimal actions to the optimal treatment policies and the
current clinical guidelines, we are able to obtain insights into how treatment changes by
demographic. The distribution of treatment recommended by each policy per BP category
at year 1 and 10 of our study is shown in Figure 4.4. Other than more intense treatment
over time, we note that the distribution of treatment did not change considerably in years
2 through 9. The results segregated by BP category, sex, and race are shown in figures C.3
and C.4 in Section C.3.4 of Appendix C.

From the distribution of treatment recommendations, we observe that almost no pa-
tients receive treatment in the normal BP category at any given year (less than 0.3% of the
population). Comparing the treatment strategies contained in our ranges to the optimal
treatment plans and the current clinical guidelines, we observe that recommending the
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Figure 4.4: Distribution of treatment at year 1 and year 10 of the study. BP categories are
made based on patients’ characteristics at year 1.
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best treatment in the range is typically close to optimal. We find that recommending the
best treatment in the ranges is often equivalent to recommending the largest number of
medications contained in the ranges. The best treatment in range is between the optimal
treatment and the current guidelines treatment strategy, but considerably closer to optimal
treatment in all BP categories. We also note that current clinical guidelines are between
recommending the fewest and the median number of medications in the ranges in normal
BP, elevated BP, and stage 1 hypertension. The current clinical guidelines are generally
between recommending the largest number of medications and the median number of
medications in the ranges for patients with stage 2 hypertension.

Examination of Treatment Choices Contained in the Ranges: Since very few people
receive treatment under any of the policies in the normal BP category, we focus on patients
with elevated BP, stage 1 hypertension, and stage 2 hypertension. We now study the
proportion of patients whose ranges of near-optimal actions contain the optimal treatment
choice and the current clinical guidelines by sex, race, and BP group.

The ranges of near-optimal actions always contain the optimal treatment plans in
all years, demographics, and BP groups. However, we observe an overall decreasing
trend in the proportion of patients treated according to the current clinical guidelines that
are included in the ranges. This may be because the ranges of near-optimal treatment
choices are informed by risk and the current clinical guidelines are mainly driven by BP
levels. Another reason could be that the current guidelines do not consider the impact
of present decisions on the future health of patients, while the ranges of α-nonsignificant
do. The proportion of patients for whom the ranges cover the actions recommended by
current clinical guidelines over the 10-year planning horizon stratified by sex, race, and
BP category is shown in Figure C.5 in Section C.3.4 of Appendix C.

Effect of Treatment Recommendations: We now proceed to evaluate the outcomes of
patients under each treatment strategy in terms of the life-years saved, the ASCVD events
prevented, and the expected time to an averse event, compared to no treatment. In
total, the best treatment, the median number of medications, and the fewest number
of medications contained in the ranges save 2.92, 2.55, and 1.75 million life-years. The
optimal treatment plans and the clinical guidelines treatment strategy save 3.02 and 1.83
million life-years, respectively.

Evaluating our results by BP category, we find that patients with stage 1 hypertension
receive the greatest benefit from treatment (Figure 4.5). We note that patients’ health
outcomes under the best treatment choice in the ranges are not substantially different
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from the health outcomes based on optimal treatment. In patients with elevated BP, our
treatment strategies outperform the clinical guidelines. The health outcomes of patients
with stage 1 hypertension under the clinical guidelines are similar to the life-years saved
under the strategy that recommends the fewest number of medications contained in the
ranges. All the treatment policies result in similar life-years saved in patients with stage
2 hypertension. We include our results separated by sex, race, and BP category in figures
C.6 and C.7 in Section C.3.4 of Appendix C.
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Figure 4.5: Life-years saved by each treatment policy compared to no treatment per BP
group over the planning horizon.

We notice a similar pattern when comparing the policies in terms of ASCVD events
averted. Over the 10-year planning horizon, the best, the median number of medications,
and the fewest number of medications contained in the ranges prevent 176, 154, and 103
thousand ASCVD events, compared to no treatment.

With regards to the expected time to an averse event, we also observe that the best
treatment in range is close to the optimal policies, and the treatment choice with the
fewest number of medications is similar to clinical guidelines. We notice that events are
expected to be delayed in 5.48, 4.61, and 2.93 life-years by the best, the median number of
medications, and the fewest number of medications contained in the ranges, respectively.
The optimal treatment and current guidelines delay adverse events in 5.60 and 2.96 life-
years, respectively.
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4.7.9.3 Population-Level Insights from Sensitivity Analyses

We proceed to study how the treatment strategies are affected by changing the model
parameters and assumptions. The results of our sensitivity analysis are summarized in
Table 4.5. All values correspond to the results at the first year of our study.

Table 4.5: Summary of sensitivity analyses at the first year of our study.

Sensitivity
analysis
scenario

Life-years Saveda

Number of
Medicationsb

Range
WidthbOptimal

Treatment

Best
in
Range

Median
in
Range

Fewest
in
Range

Clinical
Guidelines

Base case 3.02 2.92 2.55 1.75 1.83 1.93 (0, 4.33) 3.07 (1, 9)
ASCVD event rates

Halved 3.02 2.95 2.67 2.07 1.65 2 (0, 4.33) 2.86 (1, 9)
Doubled 3.02 2.96 2.62 1.94 2.10 2.02 (0, 4.33) 3.06 (1, 10)

Treatment benefit
Halved 2.11 2.02 1.67 1.05 0.99 2.44 (0, 4.67) 5.09 (1, 15)
Doubled 3.44 3.38 3.17 2.47 2.94 1.31 (0, 4.33) 1.81 (1, 4)

Treatment-related disutility
Halved 3.18 3.07 2.68 1.83 1.89 1.93 (0, 4.33) 3.03 (1, 9)
Doubled 2.73 2.62 2.30 1.58 1.70 1.93 (0, 4.33) 3.21 (1, 10)
Equal
treat-
ment

1.29 1.21 0.78 0.71 0.79 1.6 (0, 4) 3.37 (1, 10)

a The life-years saved by each policy are presented in millions.
b The value outside the parenthesis is the average, the values within the parenthesis are the 5th and 95th

quantile across the population of adults in the US with ages between 50 and 54.

If the event rate for ASCVD events is half of the estimated rate by Yadlowsky et al.
(2018), the life-years saved by the treatment strategies are generally closer to the optimal
treatment policy. We also note that all the treatment strategies contained in the ranges
outperform current clinical guidelines in this scenario. If the event rate is doubled, the
current clinical guidelines save more life-years than recommending the fewest number
of medications in the ranges. This may be because the current clinical guidelines start
treatment for patients with stage 1 hypertension if they have a 10-year ASCVD risk of at
least 10%. As a result, if the ASCVD risk is changed, a different number of people with
stage 1 hypertension benefit from treatment. We observe that the number of medications
covered by the ranges and the number of treatment choices contained in the ranges
(or range width) do not change considerably if the risk for ASCVD events is halved or
doubled.

We find that changes in the benefit from treatment have a large effect in the treatment
policies than changes in the event rates. If the benefit from treatment is halved, all
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policies save less life-years than in the base case. We also note that the ranges contain
more treatment choices and that treatment is more aggressive than in the base case. The
opposite effect is observed if the benefit from treatment is doubled. In this scenario, less
medications are necessary to ensure the well being of patients and less treatment choices
are within 0.02 life-years of the best action, which results in narrower ranges.

In general, we notice that the treatment-related disutility considerably affects the life-
years saved by each policy but the treatment strategies themselves to a lesser extent. If the
treatment-related disutility is increased until the optimal treatment policy recommends the
same number of medications as the clinical guidelines, we observe a dramatic reduction
in the life-years saved by each strategy, the number of medications covered in ranges, and
the width of the ranges. In this scenario, the optimal, best in range, median in range, and
fewest in range strategies tend to recommend less aggressive treatment, which results in
a lower number of life-years saved. Although the current clinical guidelines do not use
disutility as a driver for recommending treatment, this strategy also result in less life-years
saved when evaluated in the Markov chain embedded in the MDP.

Normally Distributed Action-Value Functions Scenario: We observe that assuming
that the immediate rewards and terminal rewards are normally distributed does not have
a substantial effect of the width of the ranges. Overall, we find that the quantile values
dt(α) obtained using the parametric method developed by Dunnett (1955) is reasonably
robust to the type of nonnormality exhibited in the action-value functions associated with
each patient’s state and treatment recommendation. This finding is consistent with pre-
vious studies on the robustness of Dunnett’s method (Bretz and Hothorn, 2003; Westfall,
2011). In line with Proposition 4.10, we also notice that the width of the ranges and the
approximately optimal actions do not change with the treatment choice at the next deci-
sion epoch if Πt(s, α) can be ordered as a range. The average range width and number
of medications for our base case, assuming normality in the action-value functions, using
the action that corresponds to the median number of medications in next year’s range,
and using the action to corresponds to the fewest number of medications in next year’s
range is included in Figure C.8.

Ages 70 to 74 Scenario: Applying each treatment strategy to the adult population in the
US with ages between 70 and 74 year old, we can draw similar conclusions than with out
base case population (adults with ages from 50 to 54). In this population, the treatment
strategies contained in the ranges of near-optimal actions save more life-years than the
current clinical guidelines in every BP category and demographic. This may be because
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older patients tend to have higher risk for ASCVD events than younger patients, which
translates to more intense treatment by the policies contained in the ranges. We also
note that the best treatment in the ranges result in similar health outcomes to the optimal
treatment plans. The life-years saved by each policy segregated by sex and BP category
as well as by race and BP category are included as Figures C.9 and C.10.

Benefit Misestimation Scenarios: Figure C.11 shows the proportion of patients whose
treatment is covered by the ranges of near-optimal actions despite parameter misestima-
tion. We notice that the ranges of treatment choices are generally robust against event rate
misestimation. The largest difference between the proportion of patients whose treatment
is covered in the ranges in the base case and the event rate misestimation scenarios is
4.58%. Furthermore, we find that the optimal policies are always contained in the ranges
of near-optimal actions. While the proportion of patients whose treatment is covered in
the ranges remained unchanged in the clinical guidelines treatment strategy in the treat-
ment benefit misestimation scenario, this proportion drops by up to 53.73% in the optimal
treatment plans. A potential explanation for this decrease in coverage is that the optimal
treatment strategy treats almost twice as aggressively if the true benefit from treatment is
half of the misestimated benefit.

4.8 Discussion

In this chapter, we introduced a new method to obtain sets of near-optimal actions in
finite MDP models. Additionally, we presented an alternative notion of optimality,
which we called α-nonsignificance. We propose two algorithms to achieve the sets of
α-nonsignificant actions: the SBBI and the SBMCC algorithm. The SBBI algorithm works
in a similar way to the standard backwards induction algorithm, except that we replace the
expectation by a sample-average approximation. We showed that the estimates attained
with the SBBI algorithm converge to their true values with probability 1 exponentially fast.
The SBMCC algorithm leverages ideas from the nonoverlapping batch means method to
produce simultaneous confidence intervals without any distributional or equal variance
assumptions. We proved that the method reaches the correct coverage with probability 1
at an asymptotic rate of

√
N. In addition, we provided sufficient conditions to ensure the

monotonicity of the sets of α-nonsignificant actions in time and states. Lastly, we gave
conditions to guarantee that the sets of near-optimal actions will be ordered as a range. By
providing DMs with a set of actions from which they are able to choose from, we improve
the usability and acceptance of MDP models in practice.
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In our case study, we examined the implications of flexible hypertension treatment
plans at a patient and a population-level. Several conclusions can be made from this study.
First, how much flexibility a clinician may receive to treat a patient depends on the patient’s
sex, race, and BP. As a consequence, the benefit from treatment choices contained in the
ranges vary by sex, race, and BP group. Second, current clinical guidelines may be under-
treating patients with elevated BP and over-treating patients with stage 2 hypertension.
This results in life-year losses compared to the strategies contained in the ranges of α-
nonsignificant treatment choices. Finally, the estimates of the benefit of treatment have
a major effect on the type of treatment patients receive and the amount of flexibility
clinicians may have to treat patients. The estimates of the risk for ASCVD events and
treatment-related disutility have a smaller impact. As new evidence of the effectiveness of
BP treatment becomes available, the ranges of near-optimal antihypertensive medications
may become more accurate in medical practice.

There are opportunities for future work that build upon our ranges of α-nonsignificant
actions. Our SBBI algorithm takes a maximum over a set of random variables, which
can lead to positive statistical bias. Nevertheless, this bias is expected to decrease as the
number of observations increase, in a similar way to the statistical bias of the sample-
average approximation in stochastic programming (Mak et al., 1999). Ideas such as the
double Q-learning method introduced by Van Hasselt (2010) may be used to correct for
this source of bias in finite sample settings. Another extension of this work could be to
adapt our methodology to partially observable and infinite-horizon MDP models. For the
later type of models, the ideas from Haskell et al. (2016) could be used to obtain empirical
estimates of the value and action-value functions. It may also be worthwhile to allow for
continuous state and action spaces. Structural results may be necessary to guarantee the
convergence in these cases. We acknowledge that the SBBI and SBMCC algorithms inherit
some of the curses of dimensionality associated with standard backwards induction.
Overcoming these difficulties may be an additional area for future work. Additionally,
our algorithms are limited by their storage requirements. This issue could be addressed
with the development of an online method to obtain ranges of α-nonsignificant actions.

From a clinical perspective, our work could be extended by incorporating other con-
ditions, such as high cholesterol or diabetes. Based on communications with clinical
collaborators, we decided to develop ranges of antihypertensive medications as a start-
ing point. Integrating the treatment of multiple conditions will likely result in greater
flexibility. Our results provide a lower bound on the amount of flexibility clinicians and
their patients could receive in the implementation of decision strategies. An alternative
to the modeling approach presented in this chapter could be to model the uncertainty in
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the choices made by primary care providers and their patients directly from observational
data (such as interviews). In this case, the inference would be made around patients’
characteristics. However, the conclusions achieved with this alternative technique would
require assumptions on the level of rationality of the patients.

4.9 Conclusions

The ranges of α-nonsignificant actions presents a new line of work by handling stochastic
optimization problems as hypothesis testing problems. Providing several suggestions at
each state and decision epoch in a sequential decision problem presents domain experts
with an effective way to integrate their knowledge into mathematical models. A range of
near-optimal choices could have many benefits in practice, such as better user experience
and flexibility.
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Chapter 5

Conclusions and Future Work

This dissertation presented new methods that use population and patient-level data to
make better healthcare decisions. The analyses included in this dissertation not only make
contributions to the medical and health policy fields, but also make technical advances to
the body of literature in decision-making under uncertainty.

We divided the research presented in this dissertation into two parts. The first part
of the dissertation (Chapter 2) presented methods to predict the supply and demand
of organs for transplantation. The second part of this dissertation (Chapters 3 and 4)
introduced approaches to improve the management of ASCVD.

Chapter 2 incorporated the use of heuristics, predictive modeling, and stochastic simu-
lation methods to predict the supply, demand, and allocation of organ for transplantation.
First, we built a population-based method to forecast liver supply. Second, we modeled
the temporal relationship between changes in population characteristics and additions to
the LT waiting list. Third, we created a model to understand how liver allocation policies
and demographic changes may impact future liver availability. Finally, we developed a
machine learning to predict deceased donor organ yield. The implementation of this work
can potentially change the current liver allocation policies. It may serve as a guide so that
steps taken for future planning alleviate some of the mismatch between liver donors and
recipients.

In Chapter 3, we integrated dynamic programming, VoI analysis, and stochastic sim-
ulation to assess the impact of genetic information in cholesterol treatment policies. We
presented a simulation-based framework to model genetic risk. Also, we aimed to under-
stand how treatment protocols can be driven by genetic information. Lastly, we introduced
a mathematical model to simultaneously determine optimal cholesterol treatment plans
and genetic testing strategies. This work provides medical doctors and health insurance
policy makers with a better understanding of the potential benefits of performing genetic
testing in different populations. In addition, our models could serve as an aid for health
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insurance policies by identifying patients whose cholesterol treatment will likely improve
after acquiring genetic information.

Chapter 4 proposed a new approach to obtain sets of near-optimal actions for finite
MDP models. This new approach combined elements from SBDP, non-overlapping batch-
ing, and statistical multiple comparisons. We provided finite sample, convergence, and
asymptotic structural properties of our method. By analyzing the structure of the sets, we
characterized their behavior with respect to the modeling data and identified when they
can be ordered as a range. To show the scalability of our approach, we obtained ranges
of near-optimal actions by applying our method to the management of hypertension.
A range of treatment choices could have many advantages in medical practice, such as
flexibility and better user experience.

In the remainder of this chapter, we briefly discuss possible extensions of our work.
First, we present a potential method to bridge the gap between organ supply and demand,
motivated from our research in Chapter 2. Then, we discuss the prospect of allowing for
improvements in the quality of genetic testing as an extension to our work in Chapter
3. Afterwards, we propose the consideration of input data uncertainty as future work
originating from our research on Chapter 4. We end the dissertation with some final
remarks.

5.1 Future Work: Evaluating the Impact of Interventions to

Narrow the Gap Between Organ Supply and Demand

Several approaches have been suggested in the medical literature to increase deceased
organ donation. These approaches include: donor management and better consent prac-
tices, improving the number of donors per eligible death, increasing the use of organs from
donation after cardiac death, improving public opinion and willingness of next-of-kin to
provide consent, and increasing the number of organs transplanted per donor or organ
yield (Jenkins et al., 1999; Manninen and Evans, 1985; Marks et al., 2006; Rodrigue et al.,
2006; Selck et al., 2008). Population-level data could be used to estimate the potential
implications of each of these approaches in the US. For example, DeRoos et al. (2019)
simulated the impact of a presumed consent policy in organ availability. In this analysis,
the authors found that presumed consent alone is not likely to solve the organ shortage
in the US.

One way to continue to address the organ shortage in the US is to combine multiple
interventions. The potential implications of each of these interventions must be evaluated
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individually and combined. There are three key challenges in this analysis: (1) the
future population growth and demographic shifts are uncertain, (2) the true benefits and
harms of each intervention are unknown, and (3) it is unclear if combining any of these
interventions may have negative effects. The future population growth and shifts could
be estimated from historical data. The benefits and harms of each intervention could be
estimated using data from other countries (e.g., Rithalia et al. (2009)). Sensitivity analyses
are warranted to ensure that any possible negative consequences are studied in detail.
Future research in this area can focus on addressing the following questions:

1. What is the best way to forecast the population growth in the US?

2. What would be the effect of demographic shifts in organ availability?

3. What has been the effect of similar interventions to reduce the organ shortage in
developed countries? How does the donation system in these countries compare to
the US?

4. When an intervention to reduce the gap between organ supply and demand would
produce adverse results? When the combination of interventions result in negative
effects?

5. How to model the effect of a change in the donation system in donors and waiting
list candidates’ behavior?

Future research in this area could also consider decision-making tasks. For instance, the
prediction of the effect of interventions to alleviate the future disparity among the expected
organ demand and availability could also inform allocation policies. Specifically, policies
to allocate the organs for transplantation within and across DSAs could be developed
based on these prediction models.

5.2 Future Work: Understanding the Role of Improvements

in the Quality of Information in Genetic Testing

Genetic testing is a rapidly evolving field. Since the mapping of the human genome in
2003, over 75,000 genetic tests have become available in the market (Phillips et al., 2018).
In Chapter 3, we assumed that the quality of genetic testing will remain constant over
time (Khera et al., 2018). However, tests with greater accuracy may be available in the
future. An extension of the work presented in this chapter could be to allow for potential
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improvements in the quality of genetic testing over time. The difficulty of this setting
lies in the additional source of variability. Even if a genetic test is beneficial for a patient,
it might be better to wait as a future test could provide greater gains. This uncertainty
may also impact treatment decisions. The development of new stochastic optimization
methods may be required to address such a setting. Alternatively, the patient-level genetic
test adoption decisions could be modeled as an optimal stopping problem (Liu et al.,
2017). Simulation or Markov models could then be used to evaluate the impact of the
test adoption decisions over the lifetime of patients. The following questions may be
addressed by future research in this area:

1. When is best to perform a genetic test? Is there a threshold-type policy for the testing
decisions?

2. How the testing decisions impact the downstream treatment decisions and vice
versa?

3. How do the treatment policies and testing strategies compare with and without
improvements in the quality of genetic information?

4. How patients’ characteristics affect the treatment and testing decisions?

5. How the simultaneous treatment and testing policies compare to individual treat-
ment and testing strategies? Could the integrated problem be decomposed into two
smaller ones?

6. How do the optimal treatment and testing policies compare to the clinical guidelines?

Future work in this area could go beyond cardiovascular diseases. For example,
hereditary cancer tests have second highest spending percentage in the US (Phillips et al.,
2018). Genetic tests in this domain are evolving at a fast pace, and new tests frequently
become available. Treatment decisions could be influenced by the results of these tests.
This body of research could be used to determine simultaneous testing and treatment
decisions.

5.3 Future Work: Flexible Decision Support Under Input

Data Uncertainty

Using the flexible protocols introduced in Chapter 4, physicians can obtain decision sup-
port given an accurate model of their system of interest. However, there may be cir-
cumstances when there is disagreement among medical experts regarding how to model
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patients’ disease progression and the consequences of clinical interventions. Debate on
how to characterize the evolution of patients’ health a system introduces extrinsic uncer-
tainty, which may influence stochastic models in ways that are difficult to predict. One
way to address this setting is to develop adaptive guidelines that allow for multiple es-
timates of the health progression and the impact of clinical interventions. These sources
of variability could then be used to obtain sets of near-optimal treatment choices. This
new framework could require advances in stochastic optimization, statistical multiple
comparisons, and ADP/RL. Alternatively, the uncertainty could be expressed as intervals
and linear programming with interval coefficients could be used to obtain the best and
the worst optimal solutions (Chinneck and Ramadan, 2000). New methods in interval
linear programming may be needed to obtain the solutions between the best and the
worst optimal solutions. Future work in this area could focus on the following research
questions:

1. How the confidence in the stochastic model affect the adaptive guidelines?

2. How the sets of near-optimal actions compare with and without input data uncer-
tainty?

3. What values of the input data would lead a particular action to be optimal or a set
of actions to be near-optimal?

4. How patients’ characteristics affect the sets of near-optimal actions?

This work has the potential to be applied in many situations where humans play a role
in the decision-making process. Moreover, the work in this area could also be applied in
non-healthcare domains, such as inventory management and transportation science.

5.4 Future Work: Synergies Across Chapters

Another extension of the work presented in this dissertation is to exploit the potential for
synergies in the methods presented throughout Chapters 2, 3, and 4. Population-level data
could be used to identify trends across different grouping variables, such as demographic
characteristics. These trends could serve to inform patient-level decisions. Conversely,
combining the outcomes of individuals across a population could may be used to aid
policy-level decisions. Furthermore, it may be worthwhile to explore the combination of
multiple population-level methods or patient-level approaches. Future research in this
area can address the following questions:
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1. How do patient-level outcomes affect population-level policies?

2. How do population-level trends influence individual-level interventions?

3. How to perform testing decisions given flexible treatment plans (i.e., multiple sug-
gestions instead of a single decision rule)?

The first and second research questions provide examples of synergies between the
methods contained in the first part (Chapter 2) and the second part (Chapters 3 and 4)
of this dissertation. On the other hand, the third research question gives a potential
integration among the techniques proposed in Chapters 3 and 4.

5.5 Final Remarks

In this dissertation, we developed new techniques that use population and patient-level
data to inform health policy and medical decisions. Generally, we addressed the following
questions:

1. How can we use population-level data to model the future supply and demand of
valuable resources?

2. How can we use patient-level data to personalize disease progression over time?

3. How can we use the personalized estimates of disease progression to obtain tailored
treatment and testing strategies?

Our findings highlight the importance of population shifts and patients’ characteristics in
public health and clinical decisions. This research also advances the theory of data-driven
decision making by providing new frameworks to make multiple decisions simultane-
ously and to obtain sets of near-optimal actions in the context of MDP models. As more
healthcare data becomes available, new methods that leverage these data to make better
health policy and medical decisions will be needed. Our work could serve as a foundation
for future research at the intersection of operations research, statistics, and healthcare.
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Appendix A

Appendix for Modeling Supply, Demand and
Allocation in Liver Transplantation

A.1 Machine Learning Models

The machine learning models included in our analysis are briefly described in this section.

A.1.1 Mean-Only Model

This model represents using the average overall yield across all the deceased donors
included in 80% of the derivation cohort to make predictions in the random holdouts
(remaining 20%).

A.1.2 Poisson Regression

A generalized linear models (GLM) is an extension of the linear model that allows for
response variables with error distribution models other than normal, such as binomial or
Poisson (Faraway, 2006). Since the overall deceased donor organ yield is a count response
variable, it can be modeled using the Poisson distribution. The Poisson GLM assumes that
the mean of the response variable is equal to its variance. We test this assumption using a
regression based test for overdispersion and the AER package in R (Cameron and Trivedi,
1990; Kleiber and Zeileis, 2012). A stepwise variable selection method is used to obtain a
useful set of covariates to predict the overall deceased donor organ yield. Likelihood ratio
tests are also used to verify that simpler models could not be obtained after removing any
of the selected variables (Hastie et al., 2009).
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A.1.3 Negative Binomial Regression

The NB GLM is a generalization of the Poisson GLM where the rate parameter follows a
gamma distribution (Faraway, 2006). It is of particular importance when overdispersion,
or the variance of the response variable is greater than its mean, is present in the Poisson
GLM. For this model a stepwise variable selection method and likelihood ratio test are
also used to attain useful set of covariates to predict the overall deceased donor organ
yield (Hastie et al., 2009).

A.1.4 Generalized Additive Model

A GAM is an extension of the linear model that allows for non-linear relationships between
the response variable and the predictors. This model express the relationship between
the response variable and the predictors using a sum of smooth functions. By adding a
smooth function to each predictor, GAMs can capture non-linear relationships between
the predictors and the response variable that traditional linear models are not able to
capture (Hastie and Tibshirani, 1986). The degree of the smooth functions is chosen to be
large enough to represent the true relationship between the predictors and the response
variable reasonably well, but small enough to maintain computational efficiency. Model
selection is executed with penalized regression splines and the mgcv package in R (Wood,
2006; Wood and Augustin, 2010; Wood, 2013).

A.1.5 Tree-Based Methods

Four tree-based models are considered during this analysis. First, a CART model is
considered. The CART models are first grown and then pruned using cost-complexity
pruning to avoid over-fitting (Breiman et al., 1984). The second tree-based method is
boostrap aggregation. Bagging trees has the potential benefit of reducing the model
variance and improving model accuracy if each individual tree is unbiased (or has low
bias) with uncorrelated (or weakly correlated) predictions (Breiman, 1996). A total of 500
trees are bagged for this model.

The third tree-based model is a random forest. This model is created by averaging the
predictions from individual CART models trained on separate bootstrapped resamples
of the data, just as for the tree-based boostrap aggregation. Nevertheless, this model is
modified such that each tree is fit using only a subset of the predictors with the purpose
of reducing the correlation among predictions. During this analysis, we use 5-fold cross-
validation to determine the proportion of predictors used to fit each of the 500 bagged
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trees (Hastie et al., 2009; Kuhn, 2008).
Finally, tree-based gradient boosting is considered. The boosting algorithm sequen-

tially grows trees using information from previous trees. This algorithm creates an en-
semble of weak learners to produce final predictions (Hastie et al., 2009). We use 5-fold
cross-validation to select the depth of variable interactions and learning rate of the tree
ensemble based on the literature (Hastie et al., 2009; Kuhn, 2008; Ridgeway, 2007).

A.1.6 Bayesian Additive Regression Trees

BART are a Bayesian sum-of-trees model that could be used either for regression or
classification problems. Each tree in this model is constrained by a prior probability to
be a weak learner, biasing the tree towards a simpler structure. This constraint ensures
that each tree will only contribute slightly to the overall fit. The fitting and inference are
then achieved using an iterative back-fitting Markov chain Monte Carlo algorithm that
generates samples from a posterior distribution (Chipman et al., 2012). We use 5-fold
cross-validation and the existing literature to determine the number of trees used in the
sum-of trees, prior probabilities, and variance prior parameters (Kapelner and Bleich,
2013).

A.1.7 Multivariate Adaptive Regression Splines

MARS are another extension of the linear model. The MARS model relates the predictors
to the response variable using a weighted sum of basis functions. This non-parametric
regression method allows for interactions and non-linear relationship between the pre-
dictors and response variable. Model selection is performed by pruning and 5-fold cross-
validation (Friedman, 1991).

A.1.8 Artificial Neural Networks

ANN are usually composed of three layers of nodes: input, hidden and output layers.
Each node in the input layer of the network represents a predictor in the model and the
output layer of the network is usually comprised of a single node that represents the
response variable (Hastie et al., 2009). The hidden layers of the network permit the ANN
to model the relationship between the predictors and the response variable. Throughout
this analysis, we use a single hidden layer and we choose the number of hidden nodes
and rate of decay based on existing literature and 5-fold cross-validation (Klimberg and
McCullough, 2013; Kuhn, 2008).
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A.1.9 Selck, Deb, and Grossman’s Ordinary Least Squares Regression

Among the models developed by Selck et al. (2008), we include the ordinary least square
model adjusted with management variables since it presented the best predictive perfor-
mance in their study. While this model includes management variables (three or more
inotropes at recovery, T4 given at admission, steroids given at admission, diuretics given
at admission, number of transfusions, terminal serum sodium, terminal pO2 >350 mmHg
on 100%, non-missing indicator of pO2, any inotropes used, and desmopressin acetate
given at admission) as predictors, management variables are not considered in the rest of
models. To have a consistent definition of overall organ yield, we apply the methodology
described in Selck et al. (2008) to our dataset with the objective of predicting 0 to 7 organs
per donor.

A.1.10 Messersmith et al.’s Ordinal Logistic Regression

While Messersmith and coauthors developed overall and organ-specific yield models,
we only consider their overall yield ordinal logistic regression model since it is directly
comparable to our machine learning models. To implement this model, we incorporate
donor age and BMI using natural cubic splines with knots at the values specified by
Messersmith et al. (2011). Splines are piecewise polynomial functions used to approximate
arbitrary functions. Natural cubic splines are commonly used splines built of piecewise
third-order polynomials that pass through a set of knots. Each knot represents a place
where the piecewise polynomial functions meet (Hastie et al., 2009). To have a consistent
definition of overall organ yield, we apply the methodology described in Messersmith
et al. (2011) to our dataset with the objective of predicting 0 to 7 organs per donor.

A.1.11 SRTR’s Aggregate of Binomial and Multinomial Logistic Re-

gressions

We re-build the SRTR models using splines with knots at the values specified by the SRTR
(Scientific Registry of Transplant Recipients, 2019; Hastie et al., 2009). To avoid complete or
quasi-complete separation while considering all the variables included the SRTR models,
we implement penalized binomial and multinomial logistic regression models using the
ridge regularization with the glmnet package in R (Friedman et al., 2010). We select the
shrinkage parameters in the models using 5-fold cross-validation. Separation may occur
when all observations of a predictor (or set of predictors) have the same outcome in the
response variable. One way to address this issue is through regularization methods.
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A popular method is the ridge regularization (also known as L2 regularization), which
decreases model complexity while keeping all variables in the model. The shrinkage
parameter of the ridge regularization method controls the amount of penalty applied to
the regression coefficients in the model (Hastie et al., 2009).

A.2 Model Adequacy Checks

The assumptions and convergence of each model are verified through every replication
the Monte Carlo cross-validation analysis. We discard any potential model for overall
deceased donor organ yield if any of its assumptions are violated or if convergence is not
achieved. However, any machine learning model discarded as a potential final model is
conserved in the Monte Carlo cross-validation analysis for comparison purposes.

A.2.1 Poisson Regression

The hypothesis of mean-variance equality in the Poisson GLM with all the available covari-
ates and after variable selection is tested using the regression based test for overdispersion
(Cameron and Trivedi, 1990; Kleiber and Zeileis, 2012). We find that there is not enough
evidence to conclude that the expected values of the models are equal to the variances
(all P < 0.001 over the 30 replications). Therefore, this model may not be appropriate to
model the response variable and it is discarded as a potential final model.

A.2.2 NB Regression

The fitting algorithm of the NB regression with all the available covariates and the co-
variates selected after stepwise variable selection generally does not converge throughout
the Monte Carlo cross-validation analysis. Moreover, we observe that in the cases that
the algorithm converged, the dispersion parameter approached zero (essentially giving
the results of a Poisson regression model). This finding suggests that our dataset may be
underdispersed, violating the assumption that the conditional variance of the response
variable is greater than or equal than its conditional mean. Thus, this model is also
discarded as a potential final model to predict overall deceased donor organ yield.
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Appendix B

Appendix for Understanding the Role of Risk in
Optimal Cardiovascular Treatment Planning

B.1 Progression of Risk Factors Over Time
Table B.1: Linear regression models coefficients.

Variable SBP LDL HDL TC

Intercept 93.85 36.87 33.96 96.95
Age 0.55 3.17 0.45 3.69
Age squared 0.00 -0.03 0.00 -0.03
Sex (Female) -2.71 1.92 11.12 8.87
Race (Black) 6.84 -3.03 1.69 -5.64
Smoking 1.36 1.48 -1.72 1.83
Diabetes 2.59 -13.96 -8.48 -17.35
Moderate intensity treat-
ment

-1.04 -15.37 -2.66 -17.28

High intensity treatment -0.27 -22.93 -2.37 -26.70

B.2 GenePCE Treatment Threshold Identification

To ensure fairness in the amount of treatment given by both policies, we empirically derive
treatment cut-points for the GenePCE score. A new treatment thresholds is needed mainly
because the distribution of the odds ratio for CHD is right-skewed. The asymmetry in the
GRS causes most GenePCE scores to be less than the PCE scores (Figure B.1).

We model the states of the simulation and their transitions over time using as time-
variant Markov chains. This allows us to calculate the expected amount of treatment given
by each treatment strategy using backwards induction and policy evaluation methods
(Puterman, 2014). We change the treatment threshold in the GenePCE strategy iteratively
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(a) Distribution of PCE risk scores. (b) Distribution of GenePCE risk scores.

Figure B.1: Distribution of risk scores over the 10-year planning horizon (only includes
population that received genetic testing).

until both policies recommend the same amount of treatment for each patient over the
10-year planning horizon in expectation. The GenePCE treatment threshold that gives the
same amount of treatment as the PCE strategy for the expected health trajectory of the
patients in our primary population is 8.47%. We call this treatment threshold the equal 10-
year treatment threshold. Note that this method is equivalent to running the state-based
simulation “infinite” number of times for each patient and calculate the average amount
of treatment given by both policies.

The same method is used to empirically derive treatment thresholds for different
scenarios in our sensitivity analyses. For the case there is a 30% decline in the population
ASCVD event rate due to unrelated factors, the GenePCE treatment threshold results
in 9.50%. If the PCE risk increased by an odds ratio of 1.38 per standard deviation of
the genetic score, the GenePCE treatment threshold is 9.30%. On the other hand, if the
PCE risk increases by an odds ratio of 2 per standard deviation of the genetic score, the
GenePCE treatment cut-point is 7.67%. For the cases that genetic testing is performed for
anyone for whom a GRS outside 0.5 and 2 SDs away from the mean would alter their care,
the GenePCE treatment thresholds result in 8.01% and 9.16%, respectively.

As part of our sensitivity analyses, we identify the treatment threshold in the GenePCE
strategy that results in the same amount of treatment as the PCE strategy during the first
year of our study. This is an iterative process where we change the treatment cut-point
for the GenePCE strategy until the amount of treatment in both treatment strategies is the
same. The GenePCE treatment threshold that gives the same amount of treatment as the
PCE strategy during the first year of the study is 9.42%. We call this treatment threshold the
equal initial treatment threshold. See Table B.2 for a summary of the GenePCE treatment
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thresholds used in our analyses.

Table B.2: Summary of GenePCE treatment thresholds.

GenePCE
treatment
threshold

Description Recommended
moderate
statin by
PCE strat-
egy, million
patient-years

Recommended
moderate
statin by
GenePCE
strategy,
million
patient-years

Number
of people
receiving ge-
netic testing,
million

10% Same treatment thresh-
old as PCE strategy

127.51 110.41 16.17

8.47% Equal 10-year treatment 127.51 127.51 16.17
9.30% Equal 10-year treatment

if the PCE risk increases
by an odds ratio of 1.38
per standard deviation
of the polygenic score

127.52 127.54 16.17

7.67% Equal 10-year treatment
if the PCE risk increases
by an odds ratio of 2
per standard deviation
of the polygenic score

127.55 127.51 16.17

9.08% Equal 10-year treat-
ment if the population
ASCVD event rate
decreases by 30%

67.46 67.44 16.17

8.01% Equal 10-year treatment
if genetic testing is per-
formed for anyone for
whom a GRS outside 0.5
SDs from the mean ge-
netic score would alter
their care

66.19 66.21 7.94

9.16% Equal 10-year treatment
if genetic testing is per-
formed for anyone for
whom a GRS outside 2
SDs from the mean ge-
netic score would alter
their care

221.62 221.77 30.70

9.42% Equal initial treatment 127.51 117.22 16.17
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B.3 Developing the AdjustedGenePCE Strategy

We hypothesize that the impact of genetic risk alters the relative benefit of treatment,
not just the absolute risk of developing ASCVD. This alteration in relative benefit could
substantially change when genetic risk is most useful and have been seen by Mega et al.
(2015). The effect iz less clear in Natarajan et al. (2017). Because it can only be found in
randomized trials that develop a genetic risk score, other studies have not been able to
test for it.

To incorporate this information into clinical decisions, we first estimated the benefit
of statins for patients with different degrees of genetic risk. If patients are in the lowest
quintile of the genetic score, not only their likelihood of having a CHD event is decreased,
but the RRR of statinsis also altered by 0.994. If their genetic score is in the second, third,
or fourth quintile, we alter it by 0.889. If the simulated genetic risk is classified in the
highest genetic score quintile, we adjust the RRR by a factor of 1.389 (Mega et al., 2015).
These adjustments are normalized so that the effect of genetics does not change the statin
benefit on average (Collins et al., 2016). The normalization of the adjustments is shown in
Table B.3.

Table B.3: Impact of genetic risk on relative benefit of treatment.

Quintile
Genetic
RRR

Moderate Intensity Statins High Intensity Statins Normalizing
factor

Statin RRR
Normalized
Genetic RRR Statin RRR

Normalized
Genetic RRR

1 0.34 0.194 0.183 0.278 0.263 0.944
2 0.32 0.194 0.173 0.278 0.247 0.889
3 0.32 0.194 0.173 0.278 0.247 0.889
4 0.32 0.194 0.173 0.278 0.247 0.889
5 0.5 0.194 0.27 0.278 0.386 1.389

If this adjustment is correct, choosing statins based on PCE risk alone would fail to
recognize the variation in statin benefit. To develop an effective treatment guideline
that would account for this, we create thresholds based on the expected absolute risk
reduction (ARR) of treatment. This would treat the same number of people with statins
(allowing a fair comparison with the other treatment strategies) but incorporate the added
information of the genetic effects on treatment. To do this, we calculate the average effect
of moderate intensity statins on the 10% 10-year PCE risk threshold (which is 1.94% 10-
year ARR). We then calculate an ARR on patients for whom the effect of genetics on both
the risk and the RRR of treatment is applied. If this ARR is greater than 1.94, this policy
would recommend treatment with a moderate intensity statin. This policy would also
recommend high intensity statins for anyone with history of ASCVD events. This will

163



treat the population similarly on average but take genetic risk into greater account in the
decision-making process.

B.4 Convergence Analysis
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Figure B.2: Convergence of QALYs and cost saved in our simulation over the number
of health trajectory replications under a single GRS realization per patient. Red line
represents the QALYs and cost saved at 2,000 health trajectory replications.
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Figure B.3: Convergence of QALYs and cost saved in our simulation over the number of
GRS realizations with a fixed number of heath trajectory replications. Red line represents
the QALYs and cost saved at 500 GRS realizations and 500 health trajectory replications.
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Figure B.4: Convergence of QALYs and cost saved in our simulation over the number of
health trajectory replications under 100 GRS realizations per patient. Red line represents
the QALYs and cost saved at 750 health trajectory replications and 100 GRS realizations.
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B.5 Results of Sensitivity Analysis by Age Groups
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Figure B.5: Testing cost sensitivity analysis results by age group. Shaded boxplots rep-
resent the base case, asterisks represent outliers, and points in the center of the boxes
represent the average testing year.
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Figure B.6: Treatment cost sensitivity analysis results by age group. Shaded boxplots
represent the base case, asterisks represent outliers, and points in the center of the boxes
represent the average testing year.
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Figure B.7: Treatment disutility sensitivity analysis results by age group. Shaded boxplots
represent the base case, asterisks represent outliers, and points in the center of the boxes
represent the average testing year.
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Appendix C

Appendix for Data-Driven Ranges of
Near-Optimal Actions for Finite Markov

Decision Processes

C.1 Algorithms

In this section, we provide additional details of our algorithms. We begin with the SBBI
algorithm included as Algorithm 1. The algorithm requires the following inputs:

• (T ,S,A, f , r, γ): a simulation MDP with transition functions f and rewards function
r.

• N: desired number of observations; N ∈N+ BN \ {0}.

• vT: set of terminal conditions; vT B {vT(s) : s ∈ S}.

The outputs of the algorithm are as follows:

• Q: set of sequences of observations of action-value functions across all decision
epochs, states, and actions; Q B {Qt(s, a) : t ∈ T \ {T}, s ∈ S, a ∈ A}, where Qt(s, a) B
(Qn

t (s, a) : n ∈ {1, . . . ,N}) is a sequence of observations of the action-value function
associated with state s and action a at decision epoch t.

• Q̂: set of action-value function estimates across all decision epochs, states, and
actions; Q̂ B {Q̂t(s, a) : t ∈ T \ {T}, s ∈ S, a ∈ A}.

• Â∗: set of estimates of optimal actions; Â∗ B {Â∗t(s) : t ∈ T \ {T}, s ∈ S}.

• Â9: set of estimates of sub-optimal actions; Â9 B {A \ Â∗t(s) : t ∈ T \ {T}, s ∈ S}.
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Algorithm 1: Simulation-based backwards induction (SBBI) algorithm.
Input : T , S,A, N, f , r, vT.

1 for t = T − 1,T − 2, . . . , 0 do
2 for all s ∈ S do
3 for all a ∈ A do
4 Set Qt(s, a)← ∅.
5 for n← 1 to N do in parallel
6 Simulate ωn

∼ U(0, 1) and determine s′ = ft+1(s, a, ωn).
7 Compute Qn

t (s, a) = rt(s, a, ωn) + γv̂t+1(s′).
8 Update Qt(s, a)← Qt(s, a) ∪ {Qn

t (s, a)}.
9 end forpar

10 Calculate Q̂t(s, a) and σ̂2
t (s, a).

11 Set Â∗t(s)← argmaxa∈A Q̂t(s, a) and Â9t(s)←A \ Â∗t(s) for all s ∈ S.
12 end for
13 end for
14 end for

Output: Q, Q̂, Â∗, Â9.

We now give additional details on the SBMCC algorithm included as Algorithm 2. The
inputs for the algorithm are the following:

• (T ,S,A): finite sets of decision epochs, states, and actions.

• C: set of controls across all decision epochs and states; C B {Ct(s) : t ∈ T \ {T}, s ∈ S}.

• M: number of batches or independent MDP simulations; M ∈N+.

• Q̄: set of action-value function estimates per batch by decision epoch, state, and
action; Q̄ B {Q̄m

t (s, a) : m ∈ {1, . . . ,M}, t ∈ T \ {T}, s ∈ S, a ∈ A}.

• Q̂: set of action-value-function estimates across all decision epochs, states, and
actions.

The output of the SBMCC algorithm is the estimate of dt(s, α) for each state s at decision
epoch t, denoted by d̂t(s, α). Combining algorithms 1 and 2 we produce Algorithm 3. This
algorithm is used in our case study.
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Algorithm 2: Simulation-based multiple comparisons with a control (SBMCC)
algorithm.

Input : T , S,A, C, M, Q̄, Q̂.

1 for all t ∈ T \ T do
2 Set Ψ̂t(s)← ∅ for all s ∈ S.
3 for m← 1 to M do in parallel
4 for all s ∈ S do
5 for all a ∈ A and a∗ ∈ Ct(s) do
6 Calculate ψ̄m

t (s, a).
7 end for
8 Update Ψ̂t(s)← Ψ̂t(s) ∪ {maxa∈A ψ̄m

t (s, a)}.
9 end for

10 end forpar
11 Let d̂t(s, α) be the empirical 1 − α quantile of Ψ̂t(s) for all s ∈ S.
12 end for

Output: d̂t(s, α) for all s ∈ S and t ∈ T \ {T}.
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Algorithm 3: Combined SBBI and SBMCC algorithm.
Input : T , S,A, C, N, M, f , r, vT.

1 for t = T − 1,T − 2, . . . , 0 do
2 for all s ∈ S do
3 for all a ∈ A do
4 Set Qt(s, a)← ∅.
5 for n← 1 to N do in parallel
6 Simulate ωn

∼ U(0, 1) and determine s′ = ft+1(s, a, ωn).
7 Compute Qn

t (s, a) = rt(s, a, ωn) + γQ̂t+1(s′, ã), for ã ∈ Πt(s′).
8 Update Qt(s, a)← Qt(s, a) ∪ {Qn

t (s, a)}.
9 end forpar

10 Calculate Q̂t(s, a) and σ̂2
t (s, a).

11 end for
12 end for
13 Divide Qt(s, a) into M batches of K observations each.
14 Set Ψ̂t(s)← ∅ for all s ∈ S.
15 for m← 1 to M do in parallel
16 for all s ∈ S do
17 for all a ∈ A and a∗ ∈ Ct(s) do
18 Calculate Q̄m

t (s, a), σ̄2
t (s, a,m), and ψ̄m

t (s, a).
19 end for
20 Update Ψ̂t(s)← Ψ̂t(s) ∪ {maxa∈A ψ̄m

t (s, a)}.
21 end for
22 end forpar
23 Compute d̂t(s, α) and estimate Πt(s) for all s ∈ S.
24 end for

Output: d̂t(s, α) and Πt(s) for all s ∈ S and t ∈ T \ {T}.
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C.2 Proofs of Analytical Results

This section of Appendix C contains the proof of all our claims. For ease of reading, we
have repeated the claims. In addition, we have separated claims with multiple parts with
lower case Roman numerals. Since the output of our algorithms can be obtained through
independent simulations or by dividing a single simulation into batches, we split the
simulation output into M batches (or independent simulations) of K observations, for a
total of N = MK samples (see Section 4.6.2). We present our results in terms of M and K,
unless otherwise noted.

C.2.1 Proofs of Section 4.6.1.1

Proposition 1 (Proposition 4.1.) Under Assumption 4.1 it follows that:

1 − P(Â∗t(s) ⊆ A∗t(s)) ≤ A exp
{
−N
2κ2

t

}
,

with κt B
∑T
τ=t γ

τ−tRτ, where Rt B max(s,a)∈S×A Rt(s, a).

The proof of this proposition depends on the following lemma.

Lemma C.1 Let θ̂t(s, a, a′) B Q̂t(s, a) − Q̂t(s, a′) for a, a′ ∈ A. Under Assumption 4.1, (i)
Q̂t(s, a) ≤ κt and (ii) |θ̂t(s, a, a′)| ≤ κt.

Proof.

(i) We first show that 0 ≤ Q̂t(s, a) ≤ κt. Because the rewards are non-negative by
Assumption 4.1 it follows that Q̂t(s, a) ≥ 0. The proof proceeds by backwards
induction on t with t = T as the base case. For Q̂T(s, a) B r̂T(s) we have:

Q̂T(s, a) =
1

MK

M∑
m=1

K∑
k=1

rT(s, ωm,k).

Since there is always a positive probability of observing an outcome ω̃m,k
∈ Ω such

that rT(s, ωm,k) ≤ rT(s, ω̃m,k) ≤ RT(s) for every m and k, it holds that:

Q̂T(s, a) ≤
1

MK

M∑
m=1

K∑
k=1

rT(s, ω̃m,k).
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But then again, there is always a positive probability of observing an outcome
ω̄m,k

∈ Ω such that rT(s, ω̃m,k) ≤ rT(s, ω̄m,k) ≤ RT(s) for every m and k. Extending this
logic until rT(s, ω̄m,k) = RT(s) for all m and k we get:

Q̂T(s, a) ≤
1

MK

M∑
m=1

K∑
k=1

RT(s) = RT(s) = γ0RT(s) ≤ γ0RT,

showing that the claim is true for t = T. Suppose Q̂t+1(s, a) ≤
∑T
τ=t+1 γ

τ−(t+1)Rτ as the
induction hypothesis. For Q̂t(s, a) it follows that:

Q̂t(s, a) =
1

MK

M∑
m=1

K∑
k=1

rt(s, a, ωm,k) + γv̂t+1(sm,k),

where sm,k = ft+1(s, a, ωm,k). By the same argument used to show the claim in the
induction base we get that:

Q̂t(s, a) ≤ Rt(s, a) +
γ

MK

M∑
m=1

K∑
k=1

v̂t+1(sm,k).

Moreover, from the induction hypothesis it holds that:

v̂t+1(sm,k) ≤
T∑

τ=t+1

γτ−(t+1)Rτ

Therefore,

Q̂t(s, a) ≤ Rt(s, a) + γ
T∑

τ=t+1

γτ−(t+1)Rτ

≤ γ0Rt +

T∑
τ=t+1

γτ−tRτ

=

T∑
τ=t

γτ−tRτ,

completing the inductive step.

(ii) The claim that |Q̂t(s, a)− Q̂t(s, a′)| ≤
∑T
τ=t γ

τ−tRτ follows immediately since 0 ≤ Q̂t(s, a)
by Assumption 4.1 and because Q̂t(s, a) ≤

∑T
τ=t γ

τ−tRτ by the above analysis. �
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Proof of Proposition 4.1. For a fixed s it holds that:

{Â
∗

t(s) * A∗t(s)} =
⋃

a∈A\A∗t (s)

⋂
a′∈A

{
Q̂t(s, a) ≥ Q̂t(s, a′)

}
.

which implies:

P(Â∗t(s) * A∗t(s)) ≤
∑

a∈A\A∗t (s)

P
( ⋂

a′∈A

Q̂t(s, a) ≥ Q̂t(s, a′)
)

≤

∑
a∈A\A∗t (s)

P
(
Q̂t(s, a) ≥ Q̂t(s, a′)

)
,

for any a′ ∈ A. Further, consider a mapping g : A \A∗t(s) 7→ A such that E[Q̂t(s, g(a))] ≥
E[Q̂t(s, a)]. Note that this mapping always exists because if a ∈ argmaxā∈AE[Q̂t(s, ā)] then
we have that g(a) = a so that E[Q̂t(s, g(a))] = E[Q̂t(s, a)]. If a < argmaxā∈AE[Q̂t(s, ā)] then
we can find a g(a) such that E[Q̂t(s, g(a))] > E[Q̂t(s, a)]. For each a ∈ A \A∗t(s), define:

ϑm,k
t (s, a) B Qm,k

t (s, a) −Qm,k
t (s, g(a)),

and its corresponding average:

ϑ̂t(s, a) B
1

MK

M∑
m=1

K∑
k=1

ϑm,k
t (s, a) = Q̂t(s, a) − Q̂t(s, g(a)).

Let
l′(s) B min

a∈A\A∗t (s)
ϑ̂t(s, a),

and
u′(s) B max

a∈A\A∗t (s)
ϑ̂t(s, a).

Note that E[ϑm,k
t (s, a)] ≤ 0 for all a. Also, notice that l′(s) and u′(s) can be attained because

S andA are finite and the rewards are bounded for all s, a, and t. Hence, it follows that:

P(Â∗t(s) * A∗t(s)) ≤
∑

a∈A\A∗t (s)

P
(
ϑ̂t(s, a) ≥ 0

)
≤

∑
a∈A\A∗t (s)

P
(
eτ

∑
m

∑
k ϑ

m,k
t (s,a)

≥ 1
)
,
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for τ ≥ 0. By Markov’s inequality it holds that:

1 − P(Â∗t(s) ⊆ A∗t(s)) ≤
∑

a∈A\A∗t (s)

E
[
eτ

∑
m

∑
k ϑ

m,k
t (s,a)

]
=

∑
a∈A\A∗t (s)

E
[∏

m

∏
k

eτϑ
m,k
t (s,a)

]
=

∑
a∈A\A∗t (s)

∏
m

∏
k

E
[
eτϑ

m,k
t (s,a)

]
,

where the last equality holds by the independence between each ϑm,k
t (s, a) induced by

the Markov property. Since |u′(s) − l′(s)| ≤ κt, by Hoeffding’s Lemma (Hoeffding, 1963,
Lemma 1) we get:

1 − P(Â∗t(s) ⊆ A∗t(s)) ≤
∑

a∈A\A∗t (s)

∏
m

∏
k

eτE[ϑm,k
t (s,a)]+ 1

2τ
2κ2

t

=
∑

a∈A\A∗t (s)

exp

τ∑
m

∑
k

E[ϑm,k
t (s, a)] +

1
2

MKτ2κ2
t

 .
Minimizing over τ ≥ 0 it follows that:

1 − P(Â∗t(s) ⊆ A∗t(s)) ≤ min
τ≥0

∑
a∈A\A∗t (s)

exp

τ∑
m

∑
k

E[ϑm,k
t (s, a)] +

1
2

MKτ2κ2
t


=

∑
a∈A\A∗t (s)

exp

−MK
(

1
MK

∑
m
∑

kE[ϑm,k
t (s, a)]

)2

2κ2
t

 .
As

(
1

MK

∑
m
∑

kE[ϑm,k
t (s, a)]

)2
> 0, we get:

1 − P(Â∗t(s) ⊆ A∗t(s)) ≤
∑

a∈A\A∗t (s)

exp
{
−MK
2κ2

t

}

≤ |A \A
∗

t(s)| exp
{
−MK
2κ2

t

}
≤ A exp

{
−MK
2κ2

t

}
.

Lastly, since N = MK:

1 − P(Â∗t(s) ⊆ A∗t(s)) ≤ A exp
{
−N
2κ2

t

}
.
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�

Proposition 2 (Proposition 4.2) Suppose Assumption 4.1 holds. Then, for any β ∈ (0, 1) and a
fixed sample size N satisfying:

N ≥ 2κ2
t log(A/β),

it holds that:
P(Â∗t(s) ⊆ A∗t(s)) ≥ 1 − β.

Proof. From Proposition 4.1 we have that:

1 − P(Â∗t(s) ⊆ A∗t(s)) ≤ A exp
{
−N
2κ2

t

}
.

Setting the right-hand side of this inequality to less or equal than β we get:

A exp
{
−N
2κ2

t

}
≤ β.

Therefore,
N ≥ 2κ2

t log(A/β).

�

C.2.2 Proofs of Section 4.6.1.2

Theorem 1 (Theorem 4.1.) Suppose Assumption 4.1 holds. Then, Q̂t(s, a) converges to Qt(s, a)
with probability 1 uniformly onA.
The proof for this theorem depends on the following lemmas.
Lemma C.2 Let (Vn)n∈N and (Wn)n∈N be sequences of random variables, and let V and W be two
other random variables. Suppose that Vn converges almost surely (a.s.) to V and that Wn converges
a.s. to W. Then, (i) Vn + Wn

a.s.
→ V + W and (ii) VnWn

a.s.
→ VW.

Proof.

(i) We first show that Vn + Wn
a.s.
→ V + W. By the triangle inequality, for any δ > 0 we

have that:

P
(
lim
n→∞
|Vn + Wn − (V + W)| ≥ δ

)
≤ P

({
lim
n→∞
|Vn − V| ≥

δ
2

}⋃{
lim
n→∞
|Wn −W| ≥

δ
2

})
≤ P

(
lim
n→∞
|Vn − V| ≥

δ
2

)
+ P

(
lim
n→∞
|Wn −W| ≥

δ
2

)
= 0,
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where the second inequality follows from the addition rule of probability and the
equality follows because Vn

a.s.
→ V and Wn

a.s.
→W. This shows that Vn + Wn

a.s.
→ V + W.

(ii) We now show that VnWn
a.s.
→ VW. Since VnWn − VW = (Vn − V)(Wn −W) + W(Vn −

V) + V(Wn −W), for any δ > 0 we get:

P
(
lim
n→∞
|VnWn − VW| ≥ δ

)
= P

(
lim
n→∞
|(Vn − V)(Wn −W) + W(Vn − V) + V(Wn −W)| ≥ δ

)
≤ P

(
lim
n→∞
|(Vn − V)(Wn −W)| ≥

δ
2

)
+ P

(
lim
n→∞
|W(Vn − V) + V(Wn −W)| ≥

δ
2

)
, (C.1)

where the inequality follows from the triangle inequality and the the addition rule of
probability. We first focus on the first term in the right-hand side of equation (C.1).
As |vw| ≤ 1

2v2 + 1
2w2 for all v,w ∈ R it holds that:

P
(
lim
n→∞
|(Vn − V)(Wn −W)| ≥

δ
2

)
≤ P

(
lim
n→∞

1
2

(Vn − V)2 +
1
2

(Wn −W)2
≥
δ
2

)
≤ P

(
lim
n→∞

1
2

(Vn − V)2
≥
δ
4

)
+ P

(
lim
n→∞

1
2

(Wn −W)2
≥
δ
4

)
= P

 lim
n→∞
|Vn − V| ≥

√
δ
2

 + P

 lim
n→∞
|Wn −W| ≥

√
δ
2


= 0,

where the last equality follows because Vn
a.s.
→ V and Wn

a.s.
→ W. We now show that

the second term in the right-hand side of equation (C.1) is also 0. By the triangle
inequality, we have that:

P
(
lim
n→∞
|W(Vn − V) + V(Wn −W)| ≥

δ
2

)
≤ P

(
lim
n→∞
|W(Vn − V)| ≥

δ
4

)
+ P

(
lim
n→∞
|V(Wn −W)| ≥

δ
4

)
.
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For P
(
lim
n→∞
|W(Vn − V)| ≥ δ

4

)
it holds that:

P
(
lim
n→∞
|W(Vn − V)| ≥

δ
4

)
= P

({
lim
n→∞
|W(Vn − V)| ≥

δ
4

}⋂{
|W| ≤ η

})
+ P

({
lim
n→∞
|W(Vn − V)| ≥

δ
4

}⋂{
|W| > η

})
≤ P

(
lim
n→∞

η |Vn − V| ≥
δ
4

)
+ P

(
|W| > η

)
= P

(
lim
n→∞
|Vn − V| ≥

δ
4η

)
+ P

(
|W| > η

)
,

for any η ≥ 1. Allowing η → ∞ as n → ∞, we get that P
(
lim
n→∞
|W(Vn − V)| ≥ δ

4

)
= 0

because Vn
a.s.
→ V and P

(
|W| > η

)
= 0. Repeating the above arguments for

P
(
lim
n→∞
|V(Wn −W)| ≥ δ

4

)
, it holds that:

P
(
lim
n→∞
|W(Vn − V) + V(Wn −W)| ≥

δ
2

)
= 0.

Combining our results, we can conclude that:

P
(
lim
n→∞
|VnWn − VW| ≥ δ

)
≤ P

(
lim
n→∞
|(Vn − V)(Wn −W)| ≥

δ
2

)
+ P

(
lim
n→∞
|W(Vn − V) + V(Wn −W)| ≥

δ
2

)
= 0,

and it follows that VnWn
a.s.
→ VW. �

Lemma C.3 Let Q̄t(s, a) denote the estimate of Qt(s, a) generated with a single simulation of
Algorithm 1 for state s and action a. Then, Q̄t(s, a) converges to Qt(s, a) with probability 1
uniformly onA.

Proof. Suppose the immediate rewards rt(s, a, ω) are bounded iid random variables
from an unknown probability distribution at every iteration k at every replication m of
the simulation. If the immediate rewards are constant (i.e. rt(s, a, ω) = E[rt(s, a, ω)|s, a])
their convergence holds trivially. For simplicity of notation, we use sk instead of sm,k and
rt(s, a, ωk) instead of rt(s, a, ωm,k), as we are interested in a single replication of simulation
during this proof (M = 1).

We prove this result by backwards induction on t, starting with t = T as the base
case. Since Qk

T(s, a) are iid for all k = 1, . . . ,K with finite mean and variance we have that
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Q̄T(s, a) a.s.
→ QT(s, a) by the strong law of large numbers (Casella and Beroer, 2001, Theorem

5.5.9). Furthermore, sinceA is a finite set we have that:

sup
a∈A
|Q̄T(s, a) −QT(s, a)| = max

a∈A
|Q̄T(s, a) −QT(s, a)|

≤

∑
a∈A

|Q̄T(s, a) −QT(s, a)|.

Hence, Q̄T(s, a) a.s.
→ QT(s, a) implies almost sure convergence uniformly onA.

Suppose that Q̄t+1(s′, a′) a.s.
→ Qt+1(s′, a′) uniformly on A for all s′ as the induction hy-

pothesis. Then, for Q̄t(s, a) it follows that:

Q̄t(s, a) =
1
K

∑
k

Qk
t (s, a)

=
1
K

∑
k

rt(s, a, ωk) + γmax
a′∈A

Q̄t+1(sk, a′)

= r̄t(s, a) +
γ

K

∑
k

max
a′∈A

Q̄t+1(sk, a′),

where r̄t(s, a) B 1
K

∑
k rt(s, a, ωk).

To show that Q̄t(s, a) a.s.
→ Qt(s, a) uniformly onA for all s ∈ S, notice that:

sup
a∈A
|Q̄t(s, a) −Qt(s, a)| = max

a∈A
|Q̄t(s, a) −Qt(s, a)|

≤

∑
a∈A

|Q̄t(s, a) −Qt(s, a)|

=
∑
a∈A

∣∣∣∣∣r̄t(s, a) +
γ

K

K∑
k=1

max
a′∈A

Q̄t+1(sk, a′)

− E
[
rt(s, a, ω) + γmax

a′∈A
Qt+1(s′, a′)

∣∣∣s, a]∣∣∣∣∣.
Therefore, the almost sure convergence of Q̄t(s, a) to Qt(s, a) for all a implies almost sure
convergence uniformly onA.

Since rt(s, a, ωk) are bounded iid random variables, we have that E[rt(s, a, ω)|s, a] is
well-defined. Consequently, we can deduce that r̄t(s, a) a.s.

→ E[rt(s, a, ω)|s, a] by the strong
law of large numbers. Because S is a finite set and |rt(s, a, ωk)| < ∞, we have that
E[maxa′∈AQt+1(s′, a′)|s, a] is also well-defined.
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Now, note that:

1
K

∑
k

max
a′∈A

Q̄t+1(sk, a′) =
1
K

∑
k

∑
s′
1{sk = s′|s, a}max

a′∈A
Q̄t+1(sk, a′).

For a fixed state s′ we have that:

1
K

∑
k

1{sk = s′|s, a}max
a′∈A

Q̄t+1(s′, a′) = max
a′∈A

Q̄t+1(s′, a′)K−1
∑

k

1{sk = s′|s, a}.

From the induction hypothesis, we can deduce that:

max
a′∈A

Q̄t+1(s′, a′) a.s.
→ max

a′∈A
Qt+1(s′, a′),

for each s′. Furthermore, by the strong law of large numbers we get that:

K−1
∑

k

1{sk = s′|s, a} a.s.
→ pt(s′|s, a),

for every s′. Hence, by Lemma C.2 it follows that:

1
K

∑
k

1{sk = s′|s, a}max
a′∈A

Q̄t+1(s′, a′) a.s.
→ pt(s′|s, a) max

a′∈A
Qt+1(s′, a′). (C.2)

Adding over all states, we conclude that:

1
K

∑
k

∑
s′
1{sk = s′|s, a}max

a′∈A
Q̄t+1(s′, a′) a.s.

→

∑
s′

pt(s′|s, a) max
a′∈A

Qt+1(s′, a′)

= E
[

max
a′∈A

Qt+1(s′, a′)
∣∣∣∣s, a].

Since r̄t(s, a) a.s.
→ E[rt(s, a, ω)|s, a] and

γK−1
∑

k

max
a′∈A

Q̄t+1(sk, a′) a.s.
→ γE[max

a′∈A
Qt+1(s′, a′)|s, a],

by Lemma C.2 it holds that:

r̄t(s, a) + γK−1
∑

k

max
a′∈A

Q̄t+1(sk, a′) a.s.
→ E[rt(s, a, ω) + γmax

a′∈A
Qt+1(s′, a′)|s, a].

Therefore, we get that Q̄t(s, a) a.s.
→ Qt(s, a) for all a and s. Because maxa∈A |Q̄t(s, a)−Qt(s, a)| ≤∑

a∈A |Q̄t(s, a)−Qt(s, a)|, the a.s. convergence of Q̄t(s, a) for all a and s implies that Q̄t(s, a) a.s.
→
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Qt(s, a) uniformly onA for all s. This completes the inductive step and the proof. �

Proof of Theorem 4.1. From Lemma C.3, we have that Q̄m
t (s, a) a.s.

→ Qt(s, a) uniformly on
A for all s and each m. Since

Q̂t(s, a) =
1
M

M∑
m=1

Q̄m
t (s, a),

for each state-action pair (s, a), it holds that Q̂t(s, a) a.s.
→ Qt(s, a) by Lemma C.2. Furthermore,

sinceA is a finite set we have that:

sup
a∈A
|Q̂t(s, a) −Qt(s, a)| = max

a∈A
|Q̂t(s, a) −Qt(s, a)|

≤

∑
a∈A

|Q̂t(s, a) −Qt(s, a)|.

Thus, the almost sure convergence of Q̂t(s, a) to Qt(s, a) for all s and a implies almost sure
convergence uniformly onA for all s. �

Corollary 1 (Corollary. 4.1) Suppose Assumption 4.1 holds. Then, (i) v̂t(s) converges to vt(s)
and (ii) Â∗t(s) ⊆ A∗t(s) with probability 1 for N large enough.

Proof.

(i) From Theorem 4.1, we have that maxa∈A |Q̂t(s, a) − Qt(s, a)| a.s.
→ 0 as N → ∞. Thus, it

holds that v̂t(s) a.s.
→ vt(s) for all s and t.

(ii) The proof is a contrapositive argument. Let

max
a∈A
|Q̂t(s, a) −Qt(s, a)| ≤ δN, (C.3)

for δN > 0 and
%(s) B vt(s) − max

a∈A9t(s)
Qt(s, a). (C.4)

Since for any a ∈ A9t(s) we have that vt(s) > Qt(s, a) and A9t(s) is finite it holds that
%(s) > 0. Let N be large enough such that %(s)/2 > δN. From (C.3) we have that
v̂t(s) ≥ vt(s) − δN, which implies that v̂t(s) > vt(s) − %(s)/2. From (C.4) we get:

vt(s) −Qt(s, a) ≥ %(s)

vt(s) ≥ Qt(s, a) + %(s)

vt(s) + δN ≥ Qt(s, a) + δN + %(s),

for any a ∈ A9t(s). Moreover, since Qt(s, a) + δN ≥ Q̂t(s, a) by equation (C.3) it holds
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that:

vt(s) + δN ≥ Q̂t(s, a) + %(s)

vt(s) + %(s)/2 > Q̂t(s, a) + %(s)

vt(s) − %(s)/2 > Q̂t(s, a),

where the strict inequality follows because %(s)/2 > δN. Hence, v̂t(s) > vt(s)−%(s)/2 >
Q̂t(s, a) and a < A∗t(s) implies a < Â∗t(s). The inclusion Â∗t(s) ⊆ A∗t(s) follows. �

C.2.3 Proofs of Section 4.6.1.3

Proposition 3 (Proposition 4.3) Under assumptions 4.1 and 4.2, (i) Q̂t(s, a) and (ii) v̂t(s) are
ε-nonincreasing in s with probability 1 for N large enough.

The proof of this proposition relies on the following lemma.
Lemma C.4 Let X and Y be partially ordered finite sets, g : X 7→ R be a monotonic function of
X, and h : X × Y 7→ [0, 1] be a monotonic function of Y satisfying:∑

x′≥x

h(x′, y) ≤
∑
x′≥x

h(x′, ȳ), (C.5)

for y ≤ ȳ with
∑

x∈X h(x, y) =
∑

x∈X h(x, ȳ). Then, we have:∑
x∈X

h(x, y)g(x) ≤
∑
x∈X

h(x, ȳ)g(x),

when g is nondecreasing in x and∑
x∈X

h(x, y)g(x) ≥
∑
x∈X

h(x, ȳ)g(x),

when g is nonincreasing in x.
Proof of Lemma C.4. We first prove that the claim holds in the nondecreasing case. By

definition, we have that: ∑
x∈X

h(x, y) =
∑
x∈X

h(x, ȳ).
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Thus,

0 =
∑
x∈X

h(x, y) −
∑
x∈X

h(x, ȳ) (C.6)

=

∑
x∈X

h(x, y) −
∑
x∈X

h(x, ȳ)

 g(x1)

≥ h(x1, y)g(x1) − h(x1, ȳ)g(x1) +

 ∑
x∈X\{x1}

h(x, y) − h(x, ȳ)

 g(x2)

≥

∑
x′∈{x1,x2}

h(x′, y)g(x′) − h(x′, ȳ)g(x′) +

 ∑
x∈X\{x1,x2}

h(x, y) − h(x, ȳ)

 g(x3),

where x1
≤ x2

≤ x3
∈ X. The inequalities above follow by equation (C.5) and because g is

nondecreasing in x. Continuing with this pattern we get:

0 ≥
∑
x′∈X

h(x′, y)g(x′) − h(x′, ȳ)g(x′),

which implies that: ∑
x′∈X

h(x′, ȳ)g(x′) ≥
∑
x′∈X

h(x′, y)g(x′),

completing the proof for the nondecreasing case. The proof for the nonincreasing case
follows by multiplying (C.6) by -1. See the proof of Lemma 1 in Chhatwal et al. (2010) for
the special case that h(x, y) = pt(s′|s, a) and pt(s′|s, a) is nonincreasing in t. �

Proof of Proposition 4.3.

(i) We first show that v̂t(s) is ε-nonincreasing in s for N large enough. By Proposition 4.7.4
in Puterman (2014), we have that Assumption 4.2 implies that vt(s) is nonincreasing
in s. Moreover, from Corollary 4.1 we have that v̂t(s) a.s.

→ vt(s) for all s. Thus, for any
ε > 0 there is an N∗ ∈N such that for any N ≥ N∗ it holds that v̂t(s̃) ≤ v̂t(s)+ε for s ≤ s̃.
It follows that v̂t(s) is ε-nonincreasing in s with probability 1 for N large enough.

(ii) We now show that if Qt(s, a) is nonincreasing in s, then Q̂t(s, a) is ε-nonincreasing
with probability 1 for N large enough. If vt(s) is nonincreasing in s we can deduce
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that for any t ∈ T \ {T}:

Qt(s, a) = E[rt(s, a, ω)|s, a] + γ
∑
s′∈S

pt(s′|s, a)vt+1(s′)

≥ E[rt(s̃, a, ω)|s̃, a] + γ
∑
s′∈S

pt(s′|s, a)vt+1(s′)

≥ E[rt(s̃, a, ω)|s̃, a] + γ
∑
s′∈S

pt(s′|s̃, a)vt+1(s′)

= Qt+1(s̃, a),

for s ≤ s̃. The first inequality follows because E[rt(s, a, ω)|s, a] is nonincreasing in s,
and the second inequality follows by Lemma C.4 because p̄t(s′|s, a) is nondecreasing
in s and the nonincreasing behavior of vt(s) in s. Note that E[rT(s, ω)|s] ≥ E[rT(s̃, ω)|s̃]
for s ≤ s̃ by Assumption 4.2. Since from Theorem 4.1 we have that Q̂t(s, a) a.s.

→ Qt(s, a)
for all s and a, it holds that Q̂t(s, a) is ε-nonincreasing in s with probability 1 for N
large enough. �

Proposition 4 (Proposition 4.4.) Suppose assumptions 4.1 and 4.2 hold. Then, (i) Q̂t(s, a) and
(ii) v̂t(s) are ε-nonincreasing in t with probability 1 for N large enough.

Proof.

(i) We first show this result when E[rt(s, a, ω)|s, a] and pt(s′|s, a) are known for all s′, s, a
and t. The proof for vt(s) proceeds by backwards induction on t, starting with t = T−1
as the base case. For vT−1(s) we have:

vT−1(s) = max
a∈A

E[rT−1(s, a, ω)|s, a] + γ
∑
s′∈S

pT−1(s′|s, a)vT(s′)


≥ E[rT−1(s, a, ω)|s, a]

≥ E[rT(s, ω)|s]

= vT(s). (C.7)

Suppose that vt+1(s) ≥ vt+2(s) as the induction hypothesis. Then, for vt(s) it follows
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that:

vt(s) = max
a∈A

E[rt(s, a, ω)|s, a] + γ
∑
s′∈S

pt(s′|s, a)vt+1(s′)


≥ max

a∈A

E[rt+1(s, a, ω)|s, a] + γ
∑
s′∈S

pt(s′|s, a)vt+1(s′)


≥ max

a∈A

E[rt+1(s, a, ω)|s, a] + γ
∑
s′∈S

pt+1(s′|s, a)vt+1(s′)


≥ max

a∈A

E[rt+1(s, a, ω)|s, a] + γ
∑
s′∈S

pt+1(s′|s, a)vt+2(s′)


= vt+1(s),

where the first inequality because E[rt(s, a, ω)|s, a] is nonincreasing t due to As-
sumption 4.2. The second inequality holds from the nonincreasing behavior of
vt(s) in s by Assumption 4.2 and Proposition 4.3, and applying Lemma C.4 with
h(x, y) = pt(s′|s, a), h(x, ȳ) = pt+1(s′|s, a), and g(x) = vt+1(s′). The last inequality follows
from the induction hypothesis.

(ii) The proof for Qt(s, a) follows as a consequence of the nonincreasing behavior of vt(s)
in t. For any t ∈ T \ {T − 1,T}we then have:

Qt(s, a) = E[rt(s, a, ω)|s, a] + γ
∑
s′∈S

pt(s′|s, a)vt+1(s′)

≥ E[rt+1(s, a, ω)|s, a] + γ
∑
s′∈S

pt(s′|s, a)vt+1(s′)

≥ E[rt+1(s, a, ω)|s, a] + γ
∑
s′∈S

pt+1(s′|s, a)vt+1(s′)

≥ E[rt+1(s, a, ω)|s, a] + γ
∑
s′∈S

pt+1(s′|s, a)vt+2(s′)

= Qt+1(s, a),

where the first inequality follows because E[rt(s, a, ω)|s, a] is nonincreasing t, the
second inequality holds because p̄t(s′|s, a) is nondecreasing in t and the nonincreasing
behavior of vt(s) in s, and the last inequality follows from the nonincreasing behavior
of vt(s) in t. Note that QT−1(s, a) ≥ QT(s, a) by Assumption 4.2.

From Theorem 4.1 we have that Q̂t(s, a) a.s.
→ Qt(s, a) uniformly onA and from Corollary

4.1 we get that v̂t(s) a.s.
→ vt(s) for all s. Consequently, for any ε > 0 we can find
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an N∗ ∈ N such that for any N ≥ N∗ it holds that Q̂t(s, a) ≥ Q̂t+1(s, a) − ε and
v̂t(s) ≥ v̂t+1(s) − ε. Hence, if Qt(s, a) and vt(s) are nonincreasing in t, then Q̂t(s, a) and
v̂t(s) are ε-nonincreasing with probability 1 for N large enough. �

C.2.4 Proofs of Section 4.6.2.1

Proposition 5 (Proposition 4.5.) Suppose Assumption 4.1 holds. Then, for any α ∈ (0, 1) we
have that:

P
(
Qt(s, a∗) −Qt(s, a) ∈ Θ : Ĥt

(
max
a∈A
{ψ̂t(s, a)}, F̂t(s)

)
≤ 1 − α

)
= 1 − α

for N large enough, a∗ ∈ Ct(s), and all a ∈ A.
The proof of this proposition depends on the following two lemmas.

Lemma C.5 Under Assumption 4.1, (i) σ̄2
t (s, a) a.s.

→ σ2
t (s, a), (ii) σ̂2

t (s, a) a.s.
→ σ2

t (s, a), and (iii)
Kζ̂2

t (s, a) a.s.
→ σ2

t (s, a).
Proof.

(i) For simplicity of notation we drop the superscript m in Qm,k
t (s, a) as the batch number

m is arbitrary, but fixed. Let ν̄2
t (s, a) B K−1

K σ̄2
t (s, a). For ν̄2

t (s, a) we have:

ν̄2
t (s, a) =

1
K

K∑
k=1

[
Qk

t (s, a) − Q̄t(s, a)
]2

=
1
K

K∑
k=1

[
Qk

t (s, a)
]2
−

[
Q̄t(s, a)

]2
.

From Theorem 4.1 we have that Q̄t(s, a) a.s.
→ Qt(s, a) and by Lemma C.2 it follows that[

Q̄t(s, a)
]2 a.s.
→ Q2

t (s, a). It remains to show that:

1
K

K∑
k=1

[
Qk

t (s, a)
]2 a.s.
→ E[

(
rt(s, a, ω) + γvt+1( ft+1(s, a, ω))

)2
|s, a].

For 1
K

∑K
k=1

[
Qk

t (s, a)
]2

it holds that:

1
K

K∑
k=1

[
Qk

t (s, a)
]2

=
1
K

K∑
k=1

[
rt(s, a, ωk) + γv̂t+1(sk)

]2

=
1
K

K∑
k=1

r2
t (s, a, ωk) + γrt(s, a, ωk)v̂t+1(sk) + γ2v̂2

t+1(sk),
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where sk = ft+1(s, a, ωk). Since rt(s, a, ωk) are iid, so are r2
t (s, a, ωk) and we get that:

1
K

K∑
k=1

rt(s, a, ωk) a.s.
→ E[rt(s, a, ω)|s, a] and

1
K

K∑
k=1

r2
t (s, a, ωk) a.s.

→ E[r2
t (s, a, ω)|s, a],

by the strong law of large numbers. Further, from equation (C.2) it follows that:

1
K

K∑
k=1

v̂t+1(sk) a.s.
→ E[vt+1(s′)|s, a],

and we can deduce that:

1
K

K∑
k=1

rt(s, a, ωk)v̂t+1(sk) a.s.
→ E[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a],

by the strong law of large numbers and Lemma C.2. Lastly, notice that:

1
K

K∑
k=1

v̂2
t+1(sk) =

1
K

K∑
k=1

∑
s′
1{sk = s′|s, a}v̂2

t+1(s′).

For a fixed state s′ we have:

1
K

K∑
k=1

1{sk = s′|s, a}v̂2
t+1(s′) a.s.

→ pt(s′|s, a)v2
t+1(s′),

also by the strong law of large numbers and Lemma C.2. Adding over all the states:

1
K

K∑
k=1

∑
s′
1{sk = s′|s, a}v̂t+1(s′) a.s.

→

∑
s′

pt(s′|s, a)v2
t+1(s′)

= E[v2
t+1(s′)|s, a].

Therefore,

1
K

K∑
k=1

[
Qk

t (s, a)
]2 a.s.
→ E[r2

t (s, a, ω)|s, a]+2γE[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a]+γE
[
v2

t+1(s′)|s, a
]
.

(C.8)
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Moreover, since

E[r2
t (s, a, ω)|s, a] + 2γE[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a] + E

[
v2

t+1(s′)|s, a
]

= E
[
r2

t (s, a, ω) + 2γrt(s, a, ω)vt+1( ft+1(s, a, ω)) + γv2
t+1( ft+1(s, a, ω))|s, a

]
= E[(rt(s, a, ω) + γvt+1( ft+1(s, a, ω)))2

|s, a] (C.9)

we have that:

ν̄2
t (s, a) a.s.

→ E[(rt(s, a, ω) +γvt+1( ft+1(s, a, ω)))2
|s, a]−E[rt(s, a, ω) +γvt+1( ft+1(s, a, ω))|s, a]2.

As σ̄2
t (s, a) = K

K−1 ν̄
2
t (s, a) and K

K−1 → 1 as K→∞, we can conclude that σ̄2
t (s, a) a.s.

→ σ2
t (s, a).

(ii) This result is a direct consequence of (i) as σ̄2
t (s, a) is equivalent to σ̂2

t (s, a) if we replace
K by N.

(iii) Let ν̂2
t (s, a) B M−1

M ζ̂2
t (s, a). For ν̂2

t (s, a) we have:

ν̂2
t (s, a) =

1
M

M∑
m=1

[
Q̄m

t (s, a) − Q̂t(s, a)
]2

=
1
M

M∑
m=1

[
Q̄m

t (s, a)
]2
−

[
Q̂t(s, a)

]2
.

From Theorem 4.1 it holds that Q̂t(s, a) a.s.
→ Qt(s, a) and by Lemma C.2 it follows that
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Q̂2
t (s, a) a.s.

→ Q2
t (s, a). For 1

M

∑M
m=1

[
Q̄m

t (s, a)
]2

we have:

1
M

M∑
m=1

[
Q̄m

t (s, a)
]2

=
1
M

M∑
m=1

 1
K

K∑
k=1

rt(s, a, ωm,k) + γv̂t+1(sm,k)


2

=
1
M

M∑
m=1

 1
K

K∑
k=1

rt(s, a, ωm,k) +
γ

K

K∑
k=1

v̂t+1(sm,k)


2

=
1

MK2

M∑
m=1

 K∑
k=1

rt(s, a, ωm,k)


2

+ 2γ

 K∑
k=1

rt(s, a, ωm,k)


 K∑

k=1

v̂t+1(sm,k)


+ γ2

 K∑
k=1

v̂t+1(sm,k)


2

=
1

MK2

M∑
m=1

K∑
k=1

∑
l,k

rt(s, a, ωm,k)rt(s, a, ωm,l) + 2γrt(s, a, ωm,k)v̂t+1(sm,l)

+ γ2v̂t+1(sm,k)v̂t+1(sm,l)

+
1

MK2

M∑
m=1

K∑
k=1

r2
t (s, a, ωm,k) + 2γrt(s, a, ωm,k)v̂t+1(sm,k) + γ2v̂2

t+1(sm,k),

where sm,k = ft+1(s, a, ωm,k). Moreover, since k is independent of l for every k , l it
holds that:

1
M

M∑
m=1

[
Q̄m

t (s, a)
]2

=
1

MK2

M∑
m=1

K(K − 1)r̄m
t (s, a)r̄m

t (s, a)

+ 2γK(K − 1)r̄m
t (s, a)

1
K − 1

K∑
l=1

v̂t+1(sm,l)

+ γ2K(K − 1)
1
K

K∑
k=1

v̂t+1(sm,k)
1

K − 1

K∑
l=1

v̂t+1(sm,l)

+
1

MK2

M∑
m=1

K∑
k=1

r2
t (s, a, ωm,k) + 2γrt(s, a, ωm,k)v̂t+1(sm,k) + γ2v̂2

t+1(sm,k)

where r̄m
t (s, a) B 1

K

∑K
k=1 rt(s, a, ωm,k). By the strong law of large numbers and Lemma

C.2 we can conclude that:

1
M

M∑
m=1

r̄m
t (s, a) a.s.

→ E[rt(s, a, ω)|s, a],
1
M

M∑
m=1

[
r̄m

t (s, a)
]2 a.s.
→ E[rt(s, a, ω)|s, a]2,
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and
1

MK

M∑
m=1

K∑
k=1

r2
t (s, a, ωm,k) a.s.

→ E[r2
t (s, a, ω)|s, a].

Furthermore, we have that:

1
MK

M∑
m=1

K∑
k=1

v̂t+1(sm,k) =
1

MK

M∑
m=1

K∑
k=1

∑
s′
1{sm,k = s′|s, a}v̂t+1(s′),

and it holds that:

1
MK

M∑
m=1

K∑
k=1

∑
s′
1{sm,k = s′|s, a}v̂t+1(s′) a.s.

→

∑
s′

pt(s′|s, a)vt+1(s′)

= E[vt+1(s′)|s, a],

where s′ = ft+1(s, a, ω). Thus,

1
M

M∑
m=1

[
Q̄m

t (s, a)
]2 a.s.
→ E[rt(s, a, ω)|s, a]2

−
1
K
E[rt(s, a, ω)|s, a]2

+ 2γE[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a] −
2γ
K
E[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a]

+ γ2E[vt+1(s′)|s, a]2
−
γ2

K
E[vt+1(s′)|s, a]2

+
1
K
E[r2

t (s, a, ω)|s, a] +
2γ
K
E[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a]

+
γ2

K
E[v2

t+1(s′)|s, a].

Combining this results with

Q̂t(s, a) a.s.
→ Qt(s, a) = E[rt(s, a, ω) + γvt+1(s′)|s, a] = E[rt(s, a, ω)|s, a] + γE[vt+1(s′)|s, a]
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we get:

ν̂2
t (s, a) a.s.

→ E[rt(s, a, ω)|s, a]2
−

1
K
E[rt(s, a, ω)|s, a]2

+ 2γE[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a] −
2γ
K
E[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a]

+ γ2E[vt+1(s′)|s, a]2
−
γ2

K
E[vt+1(s′)|s, a]2

+
1
K
E[r2

t (s, a, ω)|s, a] +
2γ
K
E[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a] +

γ2

K
E[v2

t+1(s′)|s, a]

−
(
E[rt(s, a, ω)|s, a] + γE[vt+1(s′)|s, a]

)2

= E[rt(s, a, ω)|s, a]2
−

1
K
E[rt(s, a, ω)|s, a]2

+ 2γE[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a] −
2γ
K
E[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a]

+ γ2E[vt+1(s′)|s, a]2
−
γ2

K
E[vt+1(s′)|s, a]2

+
1
K
E[r2

t (s, a, ω)|s, a] +
2γ
K
E[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a] +

γ2

K
E[v2

t+1(s′)|s, a]

− E[rt(s, a, ω)|s, a]2
− 2γE[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a] − γ2E[vt+1(s′)|s, a]2

=
1
K
E[r2

t (s, a, ω)|s, a] +
2γ
K
E[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a] +

γ2

K
E[v2

t+1(s′)|s, a]

−
1
K
E[rt(s, a, ω)|s, a]2

−
2γ
K
E[rt(s, a, ω)|s, a]E[vt+1(s′)|s, a] −

γ2

K
E[vt+1(s′)|s, a]2.

Therefore,

Kν̂2
t (s, a) a.s.

→ E[(rt(s, a, ω) + γvt+1(s′))2
|s, a] − E[rt(s, a, ω) + γvt+1(s′)|s, a]2.

Because ζ̂2
t (s, a) = M

M−1 ν̂
2
t (s, a) and M

M−1 → 1 as M → ∞, it holds that Kζ̂2
t (s, a) a.s.

→

σ2
t (s, a). �

Lemma C.6 Under Assumption 4.1 it holds that supx∈R |Ĥt(x, F̂t(s)) −Ht(x,Ft(s))| a.s.
→ 0.

Proof. We first show that supx∈R |F̂t(x, s) − Ft(x, s)| a.s.
→ 0. Let

Ym,k(x) B 1{Qm,k
t (s, a) ≤ x} − Ft(x, s, a),

for fixed s, a, and t. Note that E[Ym,k(x)] = 0 for any s, a, and t. Moreover, define:

EM,K(ε) B

ω ∈ R :

∣∣∣∣∣∣∣ 1
MK

∑
m

∑
k

Yω
m,k(x)

∣∣∣∣∣∣∣ > ε
 .
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We want to show that:
lim

M→∞
lim
K→∞

1
MK

∑
m

∑
k

Yω
m,k(x) = 0,

for almost every ω ∈ R. By Markov’s inequality (Casella and Beroer, 2001, Lemma 3.8.3),
it follows that:

P


∣∣∣∣∣∣∣∑m

∑
k

Ym,k(x)

∣∣∣∣∣∣∣ > εMK

 = P


∣∣∣∣∣∣∣∑m

∑
k

Ym,k(x)

∣∣∣∣∣∣∣
4

> ε4M4N4


≤
E

[∑
m
∑

k Ym,k(x)
]4

ε4M4N4 .

Expanding E
[∑

m
∑

k Ym,k(x)
]4, it can be noticed that only the terms with E[Y4

m,k(x)] and
E[Y2

m,k(x)Y2
m′,k′(x)] for k , k′ and m , m′ are non-zero. Furthermore, we have that

E[Y2
m,k(x)Y2

m′,k′(x)] = E[Y2
m,k(x)]E[Y2

m′,k′(x)] by the Markov property. Thus, we get the fol-
lowing bound:

P


∣∣∣∣∣∣∣∑m

∑
k

Ym,k(x)

∣∣∣∣∣∣∣
 ≤

∑
m
∑

kE[Y4
m,k(x)] +

∑
m
∑

m′,m
∑

k
∑

k′,kE[Y2
m,k(x)]E[Y2

m′,k′(x)]

ε4M4N4 .

But since Ft(·, s, a) is a true cdf and 1{Qm,k
t (s, a) ≤ x} ∈ {0, 1}, it holds that Y2

m,k(x) ∈ [0, 1] and
Y4

m,k(x) ∈ [0, 1], and we have:

P


∣∣∣∣∣∣∣∑m

∑
k

Ym,k(x)

∣∣∣∣∣∣∣
 ≤ 2

ε4K2M2 ,

and it follows that
∑

m
∑

kP(EM,K(ε)) < ∞. By the first Borel-Cantelli Lemma (Billingsley,
1995, Theorem 4.3), we get that the probability that EM,K(ε) happens infinitely often (i.o.)
for any ε > 0 is zero, which implies that F̂t(x, s, a) a.s.

→ Ft(x, s, a). Since F̂t(x, s, a) a.s.
→ Ft(x, s, a)

independently of x ∈ R, we have that:

sup
x∈R
|F̂t(x, s, a) − Ft(x, s, a)| a.s.

→ 0.

Because Qt(s, a) is independent from Qt(s, a′) for a , a′, it follows that:

Ft(x, s) =
∏
a∈A

Ft(xa, s, a) and F̂t(x, s, a) =
∏
a∈A

F̂t(xa, s, a),

for x = (x1, x2, . . . , xA) ∈ RA. Since F̂t(x, s, a) a.s.
→ Ft(x, s, a) uniformly on x ∈ R we also have
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that F̂t(x, s) a.s.
→ Ft(x, s) uniformly on x ∈ RA. We now show that lim

M→∞
lim
K→∞
Ĥt(·, F̂t(s)) =

lim
M→∞

lim
K→∞
Ht(·,Ft(s)). First, notice that:

Ht(x,Ft(s)) = P
(
max
a∈A
{ψt(s, a)} ≤ x

)
=

∏
a∈A

P
(
ψt(s, a) ≤ x

)
=

∏
a∈A

P

Q̂t(s, a∗) − Q̂t(s, a) − (Qt(s, a∗) −Qt(s, a))√
N−1

[
σ̂2

t (s, a∗) + σ̂2
t (s, a)

] ≤ x

 ,
where the second equality holds because ψt(s, a) is independent from ψt(s, a′) for a , a′.
Since Q̂t(s, a) a.s.

→ Qt(s, a) from Theorem 4.1 and σ̂2
t (s, a) a.s.

→ σ2
t (s, a) from Lemma C.5, by the

Central Limit Theorem (Casella and Beroer, 2001, Theorem 5.5.15) we have that:

lim
N→∞
P

Q̂t(s, a∗) − Q̂t(s, a) − (Qt(s, a∗) −Qt(s, a))√
N−1

[
σ̂2

t (s, a∗) + σ̂2
t (s, a)

] ≤ x

 = Φ(x),

where Φ(·) is the cdf of a standard normal random variable. Thus, lim
N→∞
Ht(x,Ft(s)) = Φ(x)A.

Second, note that:

Ĥt(x, F̂t(s)) = P
(
max
a∈A
{ψ̂t(s, a)} ≤ x

)
=

∏
a∈A

P
(
ψ̂t(s, a) ≤ x

)

=
∏
a∈A

P

Q̂t(s, a∗) − Q̂t(s, a) − (Qt(s, a∗) −Qt(s, a))√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

] ≤ x

 ,
where the second equality holds because ψ̂t(s, a) is independent from ψ̂t(s, a′) for a ,
a′. Since Q̂t(s, a) a.s.

→ Qt(s, a) from Theorem 4.1 and Kζ̂2
t (s, a) a.s.

→ σ2
t (s, a) from Lemma C.5,

applying the Central Limit Theorem once again we get:

lim
M→∞

lim
K→∞
P

Q̂t(s, a∗) − Q̂t(s, a) − (Qt(s, a∗) −Qt(s, a))√
K

MK

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

] ≤ x

 = Φ(x),

where Φ(·) is the cdf of a standard normal random variable. Hence, lim
M→∞

lim
K→∞
Ĥt(x, F̂t(s)) =
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lim
N→∞
Ĥt(x, F̂t(s)) = Φ(x)A.

Therefore, we can deduce that lim
N→∞
Ĥt(·, F̂t(s)) = lim

N→∞
Ht(·,Ft(s)). Moreover, by Pólya’s

Theorem (Serfling, 1980, Theorem 1.5.3) it follows that:

lim
N→∞

sup
x∈R

∣∣∣Ĥt(x, F̂t(s)) −Ht(x,Ft(s))
∣∣∣ = 0,

because of the continuity of lim
N→∞
Ht(x,Ft(s)) = Φ(x)A for any x ∈ R. Combining this result

with the previous conclusion that F̂t(x, s) a.s.
→ Ft(x, s) uniformly on x ∈ RA, we get that:

sup
x∈R

∣∣∣Ĥt(x, F̂t(s)) −Ht(x,Ft(s))
∣∣∣ a.s.
→ 0.

�

Proof of Proposition 4.5. From Lemma C.6 we get that:

sup
τ∈R

|Ĥt(τ, F̂t(s)) −Ht(τ,Ft(s))| a.s.
→ 0.

Since a.s. convergence implies convergence in distribution, it follows that:

sup
τ∈R

|Ĥt(τ, F̂t(s)) −Ht(τ,Ft(s))| D→ 0.

BecauseHt(·,Ft(s)) is a true cdf, it is uniformly distributed on [0, 1]. Therefore, Ĥt(·, F̂t(s))
must also follow aU(0, 1) distribution asymptotically and we get that:

P(Ĥt(·, F̂t(s)) ≤ 1 − α) = P(U(0, 1) ≤ 1 − α) = 1 − α,

for N large enough. �
Theorem 2 (Theorem 4.2.) Under Assumption 4.1 we have that:

Πt(s, α) =
{
a ∈ A : Q̂t(s, a∗) − Q̂t(s, a) ≤ d̂t(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]}
with d̂t(s, α) = Ĥ−1

t (1− α, F̂t(s)) is a set of α-nonsignificant actions with probability 1 for N large
enough and a∗ ∈ Ct(s).

Proof. From Proposition 4.5 we have that:

P
(
Qt(s, a∗) −Qt(s, a) ∈ Θ : Ĥt

(
max
a∈A
{ψ̂t(s, a)}, F̂t(s)

)
≤ 1 − α

)
= 1 − α,
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for N large enough. Thus, it follows that:

P
(
Qt(s, a∗) −Qt(s, a) ∈ Θ : Ĥt

(
max
a∈A
{ψ̂t(s, a)}, F̂t(s)

)
≤ 1 − α

)
= P

(
Ĥt

(
max
a∈A
{ψ̂t(s, a)}, F̂t(s)

)
≤ 1 − α

)
= P

(
max
a∈A
{ψ̂t(s, a)} ≤ Ĥ−1

t (1 − α, F̂t(s))
)

= P
(

max
a∈A
{ψ̂t(s, a)} ≤ d̂t(s, α)

)
= P

(
ψ̂t(s, a1) ≤ d̂t(s, α), . . . , ψ̂t(s, aA) ≤ d̂t(s, α)

)
= P

(
Q̂t(s, a∗) − Q̂t(s, a1) − d̂t(s, α)

√
M−1

[
ζ̂t(s, a∗) + ζ̂2

t (s, a)
]
≤ Qt(s, a∗) −Qt(s, a1),

. . . , Q̂t(s, a∗) − Q̂t(s, aA) − d̂t(s, α)
√

M−1
[
ζ̂t(s, a∗) + ζ̂2

t (s, a)
]
≤ Qt(s, a∗) −Qt(s, aA)

)
= 1 − α,

where a1, . . . , aA
∈ A for N large enough. Moreover, from Lemma C.6 it follows that

Ĥt(1−α, F̂t(s)) a.s.
→Ht(1−α,Ft(s)) and hence, d̂t(s, α) = Ĥ−1

t (1−α, F̂t(s)) a.s.
→H−1

t (1−α,Ft(s)) =

dt(s, α) by Theorem 2.3.1 in Serfling (1980). Consequently, the asymptotic confidence
intervals simultaneously contain Qt(s, a∗)−Qt(s, a1), . . . ,Qt(s, a∗)−Qt(s, aA) with probability
exactly 1 − α. Furthermore, under the null hypothesis (i.e. all actions have the same

performance), any action a such that Q̂t(s, a∗) − Q̂t(s, a) ≤ dt(s, α)
√

M−1
[
ζ̂t(s, a∗) + ζ̂2

t (s, a)
]

is
not statistically significant from a∗ at state s. �

Proposition 6 (Proposition 4.6.) Suppose that Assumption 4.1 is satisfied. Then,

lim
M→∞

lim
K→∞

√

MK sup
x∈R

∣∣∣Ĥt(x, F̂t(s)) −Ht(x,Ft(s))
∣∣∣ ≤ CA5/4

√
2κ3

t ,

where C is the constant appearing in the multivariate Berry-Esseen bound.
The proof of this proposition depends on the following lemma.

Lemma C.7 Under Assumption 4.1 we have that lim
M→∞

lim
K→∞
E[Qm,k

t (s, a)] = Qt(s, a) and

lim
M→∞

lim
K→∞

Var
(
Qm,k

t (s, a)
)

= σt(s, a) for all s, a, and t.

Proof. We first show that lim
M→∞

lim
K→∞
E[Qm,k

t (s, a)] = Qt(s, a). Due to the assumption of

bounded rewards, we have that Q̂t(s, a) are also bounded for all s and a. Since by Theorem
4.1 we have that Q̂t(s, a) a.s.

→ Qt(s, a), from the Bounded Convergence Theorem (Billingsley,
1995, Theorem 16.5) it holds that lim

M→∞
lim
K→∞
E[Q̂t(s, a)] = Qt(s, a). Moreover, as Qm,k

t (s, a) are
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iid random variables we get that:

lim
M→∞

lim
K→∞
E[Q̂t(s, a)] = lim

M→∞
lim
K→∞
E

 1
MK

∑
m

∑
k

Qm,k
t (s, a)


= lim

M→∞
lim
K→∞

1
MK

∑
m

∑
k

E
[
Qm,k

t (s, a)
]

= lim
M→∞

lim
K→∞

MK
MK
E

[
Qm,k

t (s, a)
]

= Qt(s, a).

Thus, lim
M→∞

lim
K→∞
E[Qm,k

t (s, a)] = Qt(s, a). We now show that lim
M→∞

lim
K→∞

Var
(
Qm,k

t (s, a)
)

= σt(s, a).
By definition, we have that:

lim
M→∞

lim
K→∞

Var
(
Qm,k

t (s, a)
)

= lim
M→∞

lim
K→∞
E

[
(Qm,k

t (s, a))2
]
−

(
E[Qm,k

t (s, a)]
)2

= lim
M→∞

lim
K→∞
E

[
(Qm,k

t (s, a))2
]
−Q2

t (s, a).

From equations (C.8) and (C.9) it can be deduced that:

1
MK

∑
m

∑
k

(
Qm,k

t (s, a)
)2 a.s.
→ E[(rt(s, a, ω) + γvt+1( ft+1(s, a, ω)))2

|s, a].

Since Qm,k
t (s, a) are bounded random variables, so are (Qm,k

t (s, a))2. Applying the Bounded

Convergence Theorem to 1
MK

∑
m
∑

k

(
Qm,k

t (s, a)
)2

we get that:

lim
M→∞

lim
K→∞
E

 1
MK

∑
m

∑
k

(
Qm,k

t (s, a)
)2
 = E[(rt(s, a, ω) + γvt+1( ft+1(s, a, ω)))2

|s, a].

Furthermore, as (Qm,k
t (s, a))2 are iid random variables it follows that:

lim
M→∞

lim
K→∞
E

[(
Qm,k

t (s, a)
)2
]

= E[(rt(s, a, ω) + γvt+1( ft+1(s, a, ω)))2
|s, a]

and we can conclude that:

lim
M→∞

lim
K→∞

Var
(
Qm,k

t (s, a)
)

= E[(rt(s, a, ω) + γvt+1( ft+1(s, a, ω)))2
|s, a]

− E[rt(s, a, ω) + γvt+1( ft+1(s, a, ω))|s, a]2

= σt(s, a).
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Proof of Proposition 4.6. Let ΦA(x) denote the standard normal cdf in RA. By the
triangle inequality we have that:

lim
N→∞

sup
x∈R

∣∣∣Ĥt(x, F̂t(s)) −Ht(x,Ft(s))
∣∣∣ = lim

N→∞
sup
x∈R

∣∣∣Ĥt(x, F̂t(s)) −ΦA(x) + ΦA(x) −Ht(x,Ft(s))
∣∣∣

≤ lim
N→∞

sup
x∈R

∣∣∣Ĥt(x, F̂t(s)) −ΦA(x)
∣∣∣

+ lim
N→∞

sup
x∈R
|ΦA(x) −Ht(x,Ft(s))| . (C.10)

We show that each component of the right-hand side of equation (C.10) is bounded by

CA5/4

√
κ3

t
2N . By definition, we have that:

Ht(x,Ft(s)) = P
(
max
a∈A
{ψt(s, a)} ≤ x

)
= P

(
ψt(s, a1) ≤ x, . . . , ψt(s, aA) ≤ x

)
= P

(Q̂t(s, a∗) − Q̂t(s, a1) −
(
Qt(s, a∗) −Qt(s, a1)

)
√

N−1
[
σ̂2

t (s, a∗) + σ̂2
t (s, a1)

] ≤ x, . . . ,

Q̂t(s, a∗) − Q̂t(s, aA) −
(
Qt(s, a∗) −Qt(s, aA)

)
√

N−1
[
σ̂2

t (s, a∗) + σ̂2
t (s, aA)

] ≤ x
)

= P

( 1
N

∑
n Qn

t (s, a∗) −Qn
t (s, a1) −

(
Qt(s, a∗) −Qt(s, a1)

)
√

N−1
[
σ̂2

t (s, a∗) + σ̂2
t (s, a1)

] ≤ x, . . . ,

1
N

∑
n Qn

t (s, a∗) −Qn
t (s, aA) −

(
Qt(s, a∗) −Qt(s, aA)

)
√

N−1
[
σ̂2

t (s, a∗) + σ̂2
t (s, aA)

] ≤ x
)

= P

( 1
√

N

∑
n Qn

t (s, a∗) −Qn
t (s, a1) −

(
Qt(s, a∗) −Qt(s, a1)

)
√
σ̂2

t (s, a∗) + σ̂2
t (s, a1)

≤ x, . . . ,

1
√

N

∑
n Qn

t (s, a∗) −Qn
t (s, aA) −

(
Qt(s, a∗) −Qt(s, aA)

)
√
σ̂2

t (s, a∗) + σ̂2
t (s, aA)

≤ x
)

= P

(
1
√

N

∑
n

Ẑn(a1) ≤ x, . . . ,
1
√

N

∑
n

Ẑn(aA) ≤ x
)
,
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where a1, . . . , aA
∈ A and

Ẑn(a) B
Qn

t (s, a∗) −Qn
t (s, a) − (Qt(s, a∗) −Qt(s, a))√
σ̂2

t (s, a∗) + σ̂2
t (s, a)

,

for all a and a fixed s. Since σ̂2
t (s, a) a.s.

→ σ2
t (s, a) from Lemma C.5, by Lemma C.2 we get that:

Ẑn(a) a.s.
→ Zn(a) B

Qn
t (s, a∗) −Qn

t (s, a) − (Qt(s, a∗) −Qt(s, a))√
σ2

t (s, a∗) + σ2
t (s, a)

.

From Lemma C.7 it holds that lim
N→∞
E[Qn

t (st, at)] = Qt(st, at) and lim
N→∞

Var
(
Qn

t (s, a)
)

= σt(s, a).
Thus, we have that Zn(a) are iid random variables with E [Zn(a)] = 0 and Var (Zn(a)) = 1
for all n and a. Since the variance of Zn(a)/

√
N can be linearly transformed to 1, by the

Multivariate Berry-Esseen Theorem (Bentkus, 2005) we get that:

lim
N→∞

sup
x∈R
|ΦA(x) −Ht(x,Ft(s))| ≤

CA1/4

√
N
E

[(
Z2

n(a1) + Z2
n(a2) . . . + Z2

n(aA)
)3/2

]
.

We now show that E
[(

Z2
n(a1) + Z2

n(a2) . . . + Z2
n(aA)

)3/2
]
≤ A

√
1
2κ

3
t . As

√
x + y ≤

√
x +
√

y
for any x, y ∈ R+, it follows that:

E
[(

Z2
n(a1) + Z2

n(a2) + . . . + Z2
n(aA)

)3/2
]

= E

(√Z2
n(a1) + Z2

n(a2) + . . . + Z2
n(aA)

)3
≤ E

(√Z2
n(a1) +

√
Z2

n(a2) + . . . +
√

Z2
n(aA)

)3
= E

[(
Zn(a1) + Zn(a2) + . . . + Zn(aA)

)3
]
.

Expanding
(
Zn(a1) + Zn(a2) + . . . + Zn(aA)

)3
, we get a summation of terms of the following

form: E[Z3
n(a)], E[Z2

n(a)Zn(a′)], and E[Zn(a)Zn(a′)Zn(a′′)] for a , a′ , a′′ ∈ At(s). Thus,

E
[(

Zn(a1) + Zn(a2) + . . . + Zn(aA)
)3
]

= E
[
Z3

n(a1) + Z2
n(a1)Zn(a2) + . . . + Z3

n(aA)
]

= E
[
Z3

n(a1)
]

+ E
[
Z2

n(a1)Zn(a2)
]

+ . . . + E
[
Z3

n(aA)
]
.

Because of the Markov property, we have that E[Z2
n(a)Zn(a′)] = E[Z2

n(a)]E[Zn(a′)] and
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E[Zn(a)Zn(a′)Zn(a′′)] = E[Zn(a)]E[Zn(a′)]E[Zn(a′′)]. Hence,

E
[(

Z2
n(a1) + Z2

n(a2) + . . . + Z2
n(aA)

)3/2
]
≤

∑
a∈A

E
[
Z3

n(a)
]
.

The proof proceeds by showing that Zn(a) ≤
√

1
2κ

3
t for all a ∈ A. Since Qt(s, a∗)−Qt(s, a) > 0,

we have that:

Zn(a) =
Qn

t (s, a∗) −Qn
t (s, a) − (Qt(s, a∗) −Qt(s, a))√
σ2

t (s, a∗) + σ2
t (s, a)

≤
Qn

t (s, a∗) −Qn
t (s, a)√

σ2
t (s, a∗) + σ2

t (s, a)
.

Further, by Lemma C.1 it holds that Q̂t(s, a∗) − Q̂t(s, a) ≤ κt, which implies that:

Zn(a) ≤
κt√

σ2
t (s, a∗) + σ2

t (s, a)
.

From Theorem 2.2 in Sharma et al. (2010) we have that σ2
t (s, a) ≥ κ−1

t , for σ2
t (s, a) > 0 and it

follows that:

Zn(a) ≤
κt√
2κ−1

t

=

√
1
2
κ3

t .

Since this bound is valid for any a, E [Zn(a)] = 0, and Var (Zn(a)) = 1, we have that:

E
[
Z3

n(a)
]
≤ E

Z2
n(a)

√
κ3

t

2

 = E
[
Z2

n(a)
] √

1
2
κ3

t =

√
1
2
κ3

t .

Consequently,

E
[(

Z2
n(a1) + Z2

n(a2) . . . + Z2
n(aA)

)3/2
]
≤ A

√
1
2
κ3

t , (C.11)

and it follows that:

lim
N→∞

sup
x∈R
|ΦA(x) −Ht(x,Ft(s))| ≤ CA5/4

√
κ3

t

2N
.
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In a similar way,

Ĥt(x, F̂t(s)) = P
(
max
a∈A
{ψ̂t(s, a)} ≤ x

)
= P

(
ψ̂t(s, a1) ≤ x, . . . , ψ̂t(s, aA) ≤ x

)
= P

(Q̂t(s, a∗) − Q̂t(s, a1) −
(
Qt(s, a∗) −Qt(s, a1)

)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a1)

] ≤ x, . . . ,

Q̂t(s, a∗) − Q̂t(s, aA) −
(
Qt(s, a∗) −Qt(s, aA)

)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, aA)

] ≤ x
)

= P

( 1
MK

∑
m
∑

k Qm,k
t (s, a∗) −Qm,k

t (s, a1) −
(
Qt(s, a∗) −Qt(s, a1)

)
√

K
MK

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a1)

] ≤ x, . . . ,

1
MK

∑
m
∑

k Qm,k
t (s, a∗) −Qm,k

t (s, aA) −
(
Qt(s, a∗) −Qt(s, aA)

)
√

K
MK

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, aA)

] ≤ x
)

= P

( 1
√

MK

∑
m
∑

k Qm,k
t (s, a∗) −Qm,k

t (s, a1) −
(
Qt(s, a∗) −Qt(s, a1)

)
√

K
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a1)

] ≤ x, . . . ,

1
√

MK

∑
m
∑

k Qm,k
t (s, a∗) −Qm,k

t (s, aA) −
(
Qt(s, a∗) −Qt(s, aA)

)
√

K
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, aA)

] ≤ x
)

= P

(
1
√

MK

∑
m

∑
k

Z̄m,k(a1) ≤ x, . . . ,
1
√

MK

∑
m

∑
k

Z̄m,k(aA) ≤ x
)
,

where a1, . . . , aA
∈ A

9
t(s) and

Z̄m,k(a) B
Qm,k

t (s, a∗) −Qm,k
t (s, a) − (Qt(s, a∗) −Qt(s, a))√

K
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

] ,

for all a and a fixed s. Since Kζ̂2
t (s, a) a.s.

→ σ2
t (s, a) from Lemma C.5, by Lemma C.2 we get

that:

Z̄m,k(a) a.s.
→ Zm,k(a) B

Qm,k
t (s, a∗) −Qm,k

t (s, a) − (Qt(s, a∗) −Qt(s, a))√
σ2

t (s, a∗) + σ2
t (s, a)

.

As the variance of Zm,k(a)/
√

MK can be linearly transformed to 1, by the Multivariate
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Berry-Esseen Theorem (Bentkus, 2005) we get that:

lim
M→∞

lim
K→∞

sup
x∈R

∣∣∣Ĥt(x, F̂t(s)) −ΦA(x)
∣∣∣ ≤ CA1/4

√
MK
E

[(
Z2

m,k(a
1) + Z2

m,k(a
2) . . . + Z2

m,k(a
A)

)3/2
]
,

and by (C.11) it holds that:

lim
M→∞

lim
K→∞

sup
x∈R

∣∣∣Ĥt(x, F̂t(s)) −ΦA(x)
∣∣∣ ≤ CA5/4

√
κ3

t

2MK
= CA5/4

√
κ3

t

2N
.

Summing both components of the right-hand side of equation (C.10) it follows that:

lim
M→∞

lim
K→∞

sup
x∈R

∣∣∣Ĥt(x, F̂t(s)) −Ht(x,Ft(s))
∣∣∣ ≤ 2CA5/4

√
κ3

t

2N

= CA5/4

√
2κ3

t

N
.

�

C.2.5 Proofs of Section 4.6.2.2

Proposition 7 (Proposition 4.7.) Suppose that Assumption 4.1 holds. Then, (i) |Πt(s, α)| is
nonincreasing in α ∈ (0, 1). Moreover, (ii) there exist an α such that Πt(s, α) ⊆ A∗t(s) with
probability 1 for N large enough.

Proof.

(i) We first show that |Πt(s, α)| is nonincreasing in α ∈ (0, 1). By definition, the quantile
function of ψ̂t(s, a) for α is given by:

d̂t(s, α) = inf
{
x ∈ R : Ĥt(x, F̂t(s)) ≥ 1 − α

}
= inf

x ∈ R :
1
M

M∑
m=1

1{ψ̄m
t (s, a) ≤ x} ≥ 1 − α


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Suppose α1 < α2, then we have:

d̂t(α1, s) = inf

x ∈ R :
1
M

M∑
m=1

1{ψ̄m
t (s, a) ≤ x} ≥ 1 − α1


≥ inf

x ∈ R :
1
M

M∑
m=1

1{ψ̄m
t (s, a) ≤ x} ≥ 1 − α2


= d̂t(α2, s).

Thus, d̂t(s, α) is nonincreasing in α, which implies that |Πt(s, α)| is nonincreasing in
α.

(ii) We now show that there exist an α such that Πt(s, α) ⊆ A∗t(s) with probability 1 for
N large enough. Suppose that Ct(s) = Â∗t(s), otherwise the claim follows trivially.
SinceHt follows aU(0, 1) distribution we have that dt(s, α) is continuous and strictly
increasing by the Continuous Inverse Theorem (Bartle and Sherbert, 2010). The
proof proceeds by contradiction. Suppose that there is no α ∈ (0, 1) such that
Πt(s, α) = Â∗t(s). Because of the continuity of d̂t(s, α) there exists a point α such that
d̂t(s, 1) < d̂t(s, α) < d̂t(s, 0) by the Intermediate Value Theorem (Bartle and Sherbert,
2010). Thus, for every K, ζ̂2

t (s, a∗) > 0, and ζ̂2
t (s, a) > 0 we can find an α such that:

Q̂t(s, a∗) − Q̂t(s, a) > d̂t(s, α)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]
,

for any a∗ ∈ Â∗t(s) and all a ∈ Â9t(s), contradicting the supposition that there is no
α ∈ (0, 1) such that Πt(s, α) = Â∗t(s). As from Corollary 4.1 it holds that Â∗t(s) ⊆ A∗t(s),
we get that Πt(s, α) ⊆ A∗t(s) with probability 1 for N large enough. �

The proofs of the remaining results of this subsection rely in the following lemma.
Lemma C.8 Under Assumption 4.1 the following holds:

σ2
t (s, a) = E[r2

t (s, a, ω)|s, a] − E[rt(s, a, ω)|s, a]2

+ γ2
(
E[v2

t+1( ft+1(s, a, ω))|s, a] − E[vt+1( ft+1(s, a, ω))|s, a]2
)
.

Proof. By definition, we have that:

σ2
t (s, a) = E

[
(rt(s, a, ω) + γvt+1( ft+1(s, a, ω)))2

|s, a
]
− E

[
rt(s, a, ω) + γvt+1( ft+1(s, a, ω))|s, a

]2

= E[r2
t (s, a, ω)|s, a] + γ2E[v2

t+1( ft+1(s, a, ω))|s, a] − E[rt(s, a, ω)|s, a]2

− γ2E[vt+1( ft+1(s, a, ω))|s, a]2,
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where the second equality follows because:

E[rt(s, a, ω)vt+1( ft+1(s, a, ω))|s, a] =
∑

s′
pt(s′|s, a)E[rt(s, a, ω)|s, a]vt+1(s′)

= E[rt(s, a, ω)|s, a]
∑

s′
pt(s′|s, a)vt+1(s′)

= E[rt(s, a, ω)|s, a]E[vt+1( ft+1(s, a, ω))|s, a].

�

Proposition 8 (Proposition 4.8.) Suppose Assumptions 4.1 through 4.4 hold. Then, |Πt(s, α)|
is ε-nonincreasing in s with probability 1 for N large enough.

The proof of this proposition depends on the following lemma.
Lemma C.9 Let X, Y, and Z be partially ordered finite sets, g : X 7→ R be a nonincreasing
function of X, and h : X × Y × Z 7→ [0, 1] be a function satisfying:∑

x∈X

h(x, y+, z+) + h(x, y−, z−) =
∑
x∈X

h(x, y+, z−) + h(x, y−, z+).

Then, we have (i):∑
x∈X

[
h(x, y+, z+) + h(x, y−, z−)

]
g(x) ≤

∑
x∈X

[
h(x, y+, z−) + h(x, y−, z+)

]
g(x),

if h is a superadditive function and (ii):∑
x∈X

[
h(x, y+, z+) + h(x, y−, z−)

]
g(x) ≥

∑
x∈X

[
h(x, y+, z−) + h(x, y−, z+)

]
g(x),

if h is a subadditive function for y+
≥ y− ∈ Y, and z+

≥ z− ∈ Z.
Proof of Lemma C.9.

(i) By definition we have:∑
x′≥x

[
h(x′, y+, z+) + h(x′, y−, z−)

]
≥

∑
x′≥x

[
h(x′, y+, z−) + h(x′, y−, z+)

]
(C.12)

Moreover, we have:∑
x∈X

h(x, y+, z+) +
∑
x∈X

h(x, y−, z−) −
∑
x∈X

h(x, y+, z−) −
∑
x∈X

h(x, y−, z+) = 0.
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Since g(x) is nonincreasing on x ∈ X it holds that:

0 =
∑
x∈X

h(x, y+, z+) +
∑
x∈X

h(x, y−, z−) −
∑
x∈X

h(x, y+, z−) −
∑
x∈X

h(x, y−, z+)

=

∑
x

h(x, y+, z+) +
∑

x

h(x, y−, z−) −
∑

x

h(x, y+, z−) −
∑

x

h(x, y−, z+)

 g(x1)

≥ h(x1, y+, z+)g(x1) + h(x1, y−, z−)g(x1) − h(x1, y+, z−)g(x1) − h(x1, y−, z+)g(x1)

+

[ ∑
x∈X\{x1}

h(x, y+, z+) +
∑

x∈X\{x1}

h(x, y−, z−) −
∑

x∈X\{x1}

h(x, y+, z−)

−

∑
x∈X\{x1}

h(x, y−, z+)
]
g(x2)

≥

∑
x′∈{x1,x2}

h(x′, y+, z+)g(x′) +
∑

x′∈{x1,x2}

h(x′, y−, z−)g(x′) −
∑

x′∈{x1,x2}

h(x′, y+, z−)g(x′)

−

∑
x′∈{x1,x2}

h(x′, y−, z+)g(x′) +

[ ∑
x∈X\{x1,x2}

h(x, y+, z+) +
∑

x∈X\{x1,x2}

h(x, y−, z−)

−

∑
x∈X\{x1,x2}

h(x, y+, z−) −
∑

x∈X\{x1,x2}

h(x, y−, z+)
]
g(x3),

where x1
≤ x2

≤ x3
∈ X, y+

≥ y− ∈ Y, and z+
≥ z− ∈ Z. This pattern implies that:

0 ≥
∑
x′∈X

h(x′, y+, z+)g(x′)+
∑
x′∈X

h(x′, y−, z−)g(x′)−
∑
x′∈X

h(x′, y+, z−)g(x′)−
∑
x′∈X

h(x′, y−, z+)g(x′).

Thus,∑
x′∈X

h(x′, y+, z+)g(x′) + h(x′, y−, z−)g(x′) ≤
∑
x′∈X

h(x′, y+, z−)g(x′) + h(x′, y−, z+)g(x′),

which implies that:∑
x′∈X

[
h(x′, y+, z+) + h(x′, y−, z−)

]
g(x′) ≤

∑
x′∈X

[
h(x′, y+, z−) + h(x′, y−, z+)

]
g(x′),

for y+
≥ y− ∈ Y and z+

≥ z− ∈ Z.

(ii) For the subadditive case, note that we have:∑
x′≥x

[
h(x′, y+, z+) + h(x′, y−, z−)

]
≤

∑
x′≥x

[
h(x′, y+, z−) + h(x′, y−, z+)

]
,
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by definition and that:∑
x∈X

h(x, y+, z−) +
∑
x∈X

h(x, y−, z+) −
∑
x∈X

h(x, y+, z+) −
∑
x∈X

h(x, y−, z−) = 0.

The rest of the proof proceeds in the same way as the superadditive case and we get:∑
x′∈X

[
h(x′, y+, z+) + h(x′, y−, z−)

]
g(x′) ≥

∑
x′∈X

[
h(x′, y+, z−) + h(x′, y−, z+)

]
g(x′),

for y+
≥ y− ∈ Y and z+

≥ z− ∈ Z. �

Proof of Proposition 4.8. By definition, we have that:

Πt(s, α) =
{
a ∈ A : Q̂t(s, a∗) − Q̂t(s, a) ≤ dt(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]}
.

To show that |Πt(s, α)| is ε-nonincreasing in s, it suffices to demonstrate that Q̂t(s, a∗)−Q̂t(s, a)

is 1
4ε-nondecreasing when d̂t(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]
is 3

4ε-nonincreasing. We first

prove that Q̂t(s, a∗)− Q̂t(s, a) is 1
4ε-nondecreasing in s with probability 1 for N large enough.

Suppose that pt(s′|s, a) and E[rt(s, a, ω)|s, a] are known for all s, a, and t. Then, for any
s ∈ Swe have:

Qt(s, a∗) −Qt(s, a) = E[rt(s, a∗, ω) + γvt+1(s′)|s, a∗] − E[rt(s, a, ω) + γvt+1(s′)|s, a]

= E[rt(s, a∗, ω)|s, a∗] + γE[vt+1(s′)|s, a∗] − E[rt(s, a, ω)|s, a] − γE[vt+1(s′))|s, a]

= E[rt(s, a∗, ω)|s, a∗] − E[rt(s, a, ω)|s, a]

+ γ

∑
s′

pt(s′|s, a∗)vt+1(s′) −
∑

s′
pt(s′|s, a)vt+1(s′)


= E[rt(s, a∗, ω)|s, a∗] − E[rt(s, a, ω)|s, a]

+ γ

∑
s′

[
pt(s′|s, a∗) − pt(s′|s, a)

]
vt+1(s′)

 .
By Assumption 4.4, we have that E[rt(s, a∗, ω)|s, a∗] − E[rt(s, a, ω)|s, a] is nondecreasing in s
and it follows that:

Qt(s, a∗)−Qt(s, a) ≤ E[rt(s̄, a∗, ω)|s̄, a∗]−E[rt(s̄, a, ω)|s̄, a]+γ

∑
s′

[
pt(s′|s, a∗) − pt(s′|s, a)

]
vt+1(s′)

 ,
for s ≤ s̄. From Assumption 4.2 we get that vt+1(s′) is nonincreasing in s by Proposition 4.7.3
in Puterman (2014). Since p̄t(s′|s, a) is subadditive on S ×A by Assumption 4.4, applying
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Lemma C.9 with h(x, y+, z+) = pt(s′|s̄, a∗), h(x, y−, z−) = pt(s′|s, a), h(x, y+, z−) = pt(s′|s̄, a),
h(x, y−, z+) = pt(s′|s, a∗), and g(x) = vt+1(s′) we get:∑

s′
pt(s′|s̄, a)vt+1(s′) + pt(s′|s, a∗)vt+1(s′) ≤

∑
s′

pt(s′|s̄, a∗)vt+1(s′) + pt(s′|s, a)vt+1(s′)

which implies:∑
s′

[
pt(s′|s, a∗) − pt(s′|s, a)

]
vt+1(s′) ≤

∑
s′

[
pt(s′|s̄, a∗) − pt(s′|s̄, a)

]
vt+1(s′)

for s ≤ s̄ and a ≤ a∗. Therefore, it follows that:

Qt(s, a∗) −Qt(s, a) ≤ E[rt(s̄, a∗, ω)|s, a∗] − E[rt(s̄, a, ω)|s, a]

+ γ

∑
s′

[
pt(s′|s̄, a∗) − pt(s′|s̄, a)

]
vt+1(s′)


= E[rt(s̄, a∗, ω)|s̄, a∗] − E[rt(s̄, a, ω)|s̄, a]

+ γ

∑
s′

pt(s′|s̄, a∗)vt+1(s′) −
∑

s′
pt(s′|s̄, a)vt+1(s′)


= E[rt(s̄, a∗, ω)|s̄, a∗] − E[rt(s̄, a, ω)|s̄, a] + γE[vt+1(s′)|s̄, a∗] − γE[vt+1(s′)|s̄, a]

= E[rt(s̄, a∗, ω) + γvt+1(s′)|s̄, a∗] − E[rt(s̄, a, ω) + γvt+1(s′)|s̄, a]

= Qt(s̄, a∗) −Qt(s̄, a). (C.13)

Hence, Qt(s, a∗) − Qt(s, a) is nondecreasing in s. From Theorem 4.1 and Lemma C.2 we
get that Q̂t(s, a∗) − Q̂t(s, a) a.s.

→ Qt(s, a∗) − Qt(s, a), and it holds that Q̂t(s, a∗) − Q̂t(s, a) is 1
4ε-

nondecreasing in s for N large enough.

We now show that d̂t(s, α)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]
is 3

4ε-nondecreasing in s with prob-
ability 1 for N large enough. Combining Lemma C.6 and Theorem 2.3.1 in Serfling (1980)
we get that d̂t(s, α) a.s.

→ dt(s, α). Since ψ̂t(s, a) is a pivotal statistic, its distribution does not
depend on s (Casella and Beroer, 2001, Section 9.2.2). Thus, dt(s, α) is constant in s and is
d̂t(s, α) 1

4ε-constant with probability 1 for large enough N. By Lemma C.8, it holds that:

σ2
t (s, a) = E[r2

t (s, a, ω)|s, a] − E[rt(s, a, ω)|s, a]2 + γ2
(
E[v2

t+1(s′)|s, a] − E[vt+1(s′)|s, a]2
)
.

Further, from Assumption 4.3 we have that E[r2
t (s, a, ω)|s, a] − E[rt(s, a, ω)|s, a]2 and

E[v2
t+1(s′)|s, a] − E[vt+1(s′)|s, a]2 are nonincreasing in s. Since Kζ̂2

t (s, a) a.s.
→ σ2

t (s, a) by Lemma
C.5, it follows that Kζ̂2

t (s, a) is 1
4ε-nonincreasing in s for all a and large enough N. Conse-
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quently, d̂t(s, α)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]
is 3

4ε-nonincreasing in s with probability 1 for N
large enough.

Therefore, we get that:

Q̂t(s, a∗) − Q̂t(s, a) −
1
4
ε ≤ Q̂t(s̄, a∗) − Q̂t(s̄, a)

and
d̂t(s̄, α)

√
M−1

[
ζ̂2

t (s̄, a∗) + ζ̂2
t (s̄, a)

]
≤ d̂t(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]
+

3
4
ε,

for ε > 0 and s ≤ s̄ with probability 1 for N large enough, which completes the proof. �

Proposition 9 (Proposition 4.9.) Suppose Assumptions 4.1 through 4.5 hold. Furthermore,
assume that vt(s) − vt+1(s) is nondecreasing in s′. Then, |Πt(s, α)| is ε-nonincreasing in t with
probability 1 for N large enough.

Proof. By definition, we have that:

Πt(s, α) =
{
a ∈ A9t(s) : Q̂t(s, a∗) − Q̂t(s, a) ≤ dt(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]}
.

To show that |Πt(s, α)| is ε-nonincreasing in t, it suffices to demonstrate that Q̂t(s, a∗)−Q̂t(s, a)

is 1
4ε-nondecreasing when d̂t(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]
is 3

4ε-nonincreasing. We first

prove that Q̂t(s, a∗)− Q̂t(s, a) is ε-nondecreasing in t with probability 1 for N large enough.
Suppose that pt(s′|s, a) and E[rt(s, a, ω)|s, a] are known for all s, a, and t. Then, for any

t ∈ T \ {T}we have:

Qt(s, a∗) −Qt(s, a) = E[rt(s, a∗, ω) + γvt+1(s′)|s, a∗] − E[rt(s, a, ω) + γvt+1(s′)|s, a]

= E[rt(s, a∗, ω)|s, a∗] + γE[vt+1(s′)|s, a∗] − E[rt(s, a, ω)|s, a] − γE[vt+1(s′))|s, a]

= E[rt(s, a∗, ω)|s, a∗] − E[rt(s, a, ω)|s, a]

+ γ

∑
s′

pt(s′|s, a∗)vt+1(s′) −
∑

s′
pt(s′|s, a)vt+1(s′)


= E[rt(s, a∗, ω)|s, a∗] − E[rt(s, a, ω)|s, a]

+ γ

∑
s′

[
pt(s′|s, a∗) − pt(s′|s, a)

]
vt+1(s′)

 .
By Assumption 4.3, we have that E[rt(s, a∗, ω)|s, a∗] − E[rt(s, a, ω)|s, a] is nondecreasing in t
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and it follows that:

Qt(s, a∗) −Qt(s, a) ≤ E[rt+1(s, a∗, ω)|s, a∗] − E[rt+1(s, a, ω)|s, a]

+ γ

∑
s′

[
pt(s′|s, a∗) − pt(s′|s, a)

]
vt+1(s′)

 .
Since vt+1(s′) is nonincreasing in s by Assumption 4.2 from Proposition 4.7.3 in Puterman
(2014) and p̄t(s′|s, a) is a subadditive function on T ×A by Assumption 4.4, we get:∑

s′

[
pt(s′|s, a∗) − pt(s′|s, a)

]
vt+1(s′) ≤

∑
s′

[
pt+1(s′|s, a∗) − pt+1(s′|s, a)

]
vt+1(s′)

for a ≤ a∗ by Lemma C.9 with h(x, y+, z+) = pt+1(s′|s, a∗), h(x, y−, z−) = pt(s′|s, a), h(x, y+, z−) =

pt+1(s′|s, a), h(x, y−, z+) = pt(s′|s, a∗), and g(x) = vt+1(s′). Since vt+1(s′)− vt+2(s′) is nondecreas-
ing in s′ by assumption and p̄t(s′|s, a∗) ≤ p̄t(s′|s, a) from Assumption 4.5, by Lemma C.4 it
holds that: ∑

s′
pt+1(s′|s, a∗) [vt+1(s′) − vt+2(s′)] ≤

∑
s′

pt+1(s′|s, a) [vt+1(s′) − vt+2(s′)] ,

which implies:∑
s′

[
pt+1(s′|s, a∗) − pt+1(s′|s, a)

]
vt+1(s′) ≤

∑
s′

[
pt+1(s′|s, a∗) − pt+1(s′|s, a)

]
vt+2(s′).

Therefore, we get that:∑
s′

[
pt(s′|s, a∗) − pt(s′|s, a)

]
vt+1(s′) ≤

∑
s′

[
pt+1(s′|s, a∗) − pt+1(s′|s, a)

]
vt+2(s′)
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and it follows that:

Qt(s, a∗) −Qt(s, a) ≤ E[rt+1(s, a∗, ω)|s, a∗] − E[rt+1(s, a, ω)|s, a]

+ γ

∑
s′

[
pt+1(s′|s, a∗) − pt+1(s′|s, a)

]
vt+2(s′)


= E[rt+1(s, a∗, ω)|s, a∗] − E[rt+1(s, a, ω)|s, a]

+ γ

∑
s′

pt+1(s′|s, a∗)vt+2(s′) −
∑

s′
pt+1(s′|s, a)vt+2(s′)


= E[rt+1(s, a∗, ω) + γvt+2(s′)|s, a∗] − E[rt+1(s, a, ω) + γvt+2(s′)|s, a]

= Qt+1(s, a∗) −Qt+1(s, a). (C.14)

Hence, Qt(s, a∗) − Qt(s, a) is nondecreasing in t. From Theorem 4.1 and Lemma C.2 we
get that Q̂t(s, a∗) − Q̂t(s, a) a.s.

→ Qt(s, a∗) − Qt(s, a), and it holds that Q̂t(s, a∗) − Q̂t(s, a) is 1
4ε-

nondecreasing in t for N large enough.

We now show that d̂t(s, α)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]
is 3

4ε-nonincreasing in t. Combining

Lemma C.6 and Theorem 2.3.1 in Serfling (1980) we get that d̂t(s, α) a.s.
→ dt(s, α). Because

ψ̂t(s, a) is a pivotal statistic, its distribution does not depend on t. Thus, dt(s, α) is constant
in t and d̂t(s, α) is 1

4ε-constant in t with probability 1 for large enough N. By Lemma C.8,
it holds that:

σ2
t (s, a) = E[r2

t (s, a, ω)|s, a] − E[rt(s, a, ω)|s, a]2 + γ2
(
E[v2

t+1(s′)|s, a] − E[vt+1(s′)|s, a]2
)
.

Further, from Assumption 4.3 we have that E[r2
t (s, a, ω)|s, a] − E[rt(s, a, ω)|s, a]2 and

E[v2
t+1(s′)|s, a] − E[vt+1(s′)|s, a]2 are nonincreasing in t. Since Kζ̂2

t (s, a) a.s.
→ σ2

t (s, a) by Lemma
C.5, it follows that Kζ̂2

t (s, a) is 1
4ε-nonincreasing in t for all a and large enough N. Conse-

quently, d̂t(s, α)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]
is 3

4ε-nonincreasing in t with probability 1 for N
large enough. Combining this result with equation (C.14) we get:

Q̂t(s, a∗) − Q̂t(s, a) −
1
4
ε ≤ Q̂t+1(s, a∗) − Q̂t+1(s, a)

≤ d̂t+1(s, α)
√

M−1
[
ζ̂2

t+1(s, a∗) + ζ̂2
t+1(s, a)

]
≤ d̂t(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a)

]
+

3
4
ε,

with probability 1 for N large enough which completes the proof. �
Remark 1 (Remark 4.2) The conditions in Proposition 4.8 and Proposition 4.9 are sufficient to
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prove that there exist approximately optimal decision rules π̂∗t(s) that are ε-monotone on (i) s and
(ii) t with probability 1 for N large enough, respectively.

Proof.

(i) From Assumption 4.2 and Proposition 4.7.3 in Puterman (2014) we have that vt+1(s)
is nonincreasing in s. Since p̄t(s′|s, a) is subadditive on S × A by Assumption
4.4, applying Lemma C.9 with h(x, y+, z+) = pt(s′|s+, a+), h(x, y−, z−) = pt(s′|s−, a−),
h(x, y+, z−) = pt(s′|s+, a−), h(x, y−, z+) = pt(s′|s−, a+), and g(x) = vt+1(s′) we conclude
that

∑
s′ pt(s′|s, a)vt+1(s′) is superadditive on S × A. Because E[rt(s, a, ω)|s, a] is su-

peradditive on S × A by Assumption 4.4 and the sum of subadditive functions is
superadditive, it follows that Qt(s, a) is superadditive on S×A. We get that π∗t(s) are
nondecreasing in s from Lemma 4.7.1 in Puterman (2014). The convergence result
follows from Theorem 4.1 and Definition 4.3.

(ii) By Assumption 4.4 we have that p̄t(s′|s, a) is subadditive on T × A. Further, by
Assumption 4.2 and Proposition 4.7.3 in Puterman (2014) we have that vt+1(s) is
nonincreasing in s. By Lemma C.9 with h(x, y+, z+) = pt+1(s′|s, a+), h(x, y−, z−) =

pt(s′|s, a−), h(x, y+, z−) = pt+1(s′|s, a−), h(x, y−, z+) = pt(s′|s, a+), and g(x) = vt+1(s′), we
get that:∑

s′∈S

[
pt+1(s′|s, a+) + pt(s′|s, a−)

]
vt+1(s′) ≥

∑
s′∈S

[
pt+1(s′|s, a−) + pt(s′|s, a+)

]
vt+1(s′),

for a+
≥ a−. Since vt+1(s′) − vt+2(s′) is nondecreasing in s′ by assumption and

p̄t(s′|s, a−) ≥ p̄t(s′|s, a+) from Assumption 4.5, by Lemma C.4 it holds that∑
s′ pt(s′|s, a)vt+1(s′) is a superadditive function on T ×A. Because the sum of super-

additive functions is superadditive, it follows that Qt(s, a) is superadditive onT ×A.
We get that π∗t(s) are nondecreasing in t from Lemma 4.7.1 in Puterman (2014). The
convergence result follows from Theorem 4.1 and Definition 4.3. �

Theorem 3 (Theorem 4.3.) Suppose that assumptions 4.1, 4.2, 4.3, and 4.5 are satisfied. Then,
Πt(s, α) is an α-nonsignificant range of actions at state s and decision epoch t with probability 1
for N large enough.

Proof. To show that Πt(s, α) is a range of α-nonsignificant actions for a fixed state s, it
suffices to prove that if:

Q̂t(s, a∗) − Q̂t(s, a−) ≤ d̂t(s, α)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a−)

]
,
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and
Q̂t(s, a∗) − Q̂t(s, a+) ≤ d̂t(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a+)

]
,

then
Q̂t(s, a∗) − Q̂t(s, a′) ≤ d̂t(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a′)

]
,

for a− ≤ a′ ≤ a+. We demonstrate that the above will happen with probability 1 for N large
enough. The proof proceeds by contradiction.

Suppose that a−, a+
∈ Πt(s, α) but a′ < Πt(s, α) with a− ≤ a′ ≤ a+ for a fixed state s. We

first show that Qt(s, a) is nondecreasing in a. By Assumption 4.2, we have that vt(s) is
nonincreasing in s from Proposition 4.7.3 in Puterman (2014). Combining this result with
the assumption that p̄t(s′|s, a) is nonincreasing in a we can deduce that:

E
[
vt+1(s′)|s, a−

]
=

∑
s′

pt(s′|s, a−)vt+1(s′)

≤

∑
s′

pt(s′|s, a′)vt+1(s′)

≤

∑
s′

pt(s′|s, a+)vt+1(s′)

= E
[
vt+1(s′)|s, a+

]
,

indicating that E
[
vt+1(s′)|s, a

]
is nondecreasing in a. Since E[rt(s, a, ω)|s, a] is nondecreasing

a by Assumption 4.5, we then get that:

Qt(s, a−) = E[rt(s, a−, ω)|s, a−] + γE
[
vt+1(s′)|s, a−

]
≤ E[rt(s, a′, ω)|s, a′] + γE

[
vt+1(s′)|s, a′

]
≤ E[rt(s, a+, ω)|s, a+] + γE

[
vt+1(s′)|s, a+

]
= Qt(s, a+).

Thus, Qt(s, a) is nondecreasing in a. Moreover, by Theorem 4.1 we have that Q̂t(s, a) a.s.
→

Qt(s, a) uniformly onA. Hence, we can find an N large enough such that Q̂t(s, a−) − 1
4ε ≤

Q̂t(s, a′) ≤ Q̂t(s, a+) + 1
4ε for ε > 0.

We now show that σt(s, a−)2
≥ σt(s, a′)2

≥ σt(s, a+)2. By Lemma C.8, it holds that:

σ2
t (s, a) = E[r2

t (s, a, ω)|s, a] − E[rt(s, a, ω)|s, a]2 + γ2
(
E[v2

t+1(s′)|s, a] − E[vt+1(s′)|s, a]2
)
.

From Assumption 4.3, it follows thatE[r2
t (s, a, ω)|s, a]−E[rt(s, a, ω)|s, a]2 andE[v2

t+1(s′)|s, a]−
E[vt+1(s′)|s, a]2 are nonincreasing in a. Thus, σ2

t (s, a) is nonincreasing in a and it holds that
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σ2
t (s, a−) ≥ σ2

t (s, a′) ≥ σ2
t (s, a+). Since Kζ̂2

t (s, a) a.s.
→ σ2

t (s, a) by Lemma C.5, it follows that
Kζ̂2

t (s, a) is 1
4ε-nondecreasing in a for large enough N. Hence, we have that Kζ̂2

t (s, a−) + 1
4ε ≥

Kζ̂2
t (s, a′) ≥ Kζ̂2

t (s, a+) − 1
4ε for ε > 0 and it follows that:

Q̂t(s, a∗) − Q̂t(s, a−) −
1
4
ε ≤ Q̂t(s, a∗) − Q̂t(s, a′)

≤ d̂t(s, α)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a′)

]
≤ d̂t(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a−)

]
+

1
4
ε,

and

Q̂t(s, a∗) − Q̂t(s, a+) +
1
4
ε ≥ Q̂t(s, a∗) − Q̂t(s, a′)

≥ d̂t(s, α)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a′)

]
≥ d̂t(s, α)

√
M−1

[
ζ̂2

t (s, a∗) + ζ̂2
t (s, a+)

]
−

1
4
ε,

for any ε > 0. Combining these results we find that a′ ∈ Πt(s, α), a contradiction. Conse-
quently, it must hold that a−, a′, a+

∈ Πt(s, α) and Πt(s, α) is a range of actions. �
Proposition 10 (Proposition 4.10.) Suppose assumptions 4.1, 4.2, 4.4 and 4.5 hold. Then, we
have that (i) A ∗

t (s, ã) ⊆ A∗t(s) and (ii) Πt(s, α, ã) ⊆ Πt(s, α) for N large enough.
The proof of this result depends on the following notation. Let

Qt(s, a, ã) B E
[
rt(s, a, ω) + γQt+1( ft+1(s, a, ω), ã)|s, a, ã

]
denote the action-value function associated with state s and action a at decision epoch t,
assuming that action ã ∈ At+1( ft+1(s, a, ω)) is taken at decision epoch t + 1, and

Q̂t(s, a, ã) B
1

MK

M∑
m=1

rt(s, a, ωm,k) + γQ̂t+1( ft+1(s, a, ωm,k), ã)

denote its empirical estimate. Moreover, let A ∗

t (s, ã) B argmaxa∈AQt(s, a, ã) and ˆA ∗

t (s, ã) B
argmaxa∈A Q̂t(s, a, ã).

In a similar way, we define the range of α-nonsignificant actions given that action
ã ∈ At+1( ft+1(s, a, ω)) will be taken at t + 1 as:

Πt(s, α, ã) B
{
a ∈ A : Q̂t(s, a∗, ã) − Q̂t(s, a, ã) ≤ d̂t(s, α, ã)

√
M−1

[
ς̂2

t (s, a∗, ã) + ς̂2
t (s, a, ã)

]}
,
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where d̂t(s, α, ã) is the 1 − α empirical quantile of the distribution of the maximum of the
root statistics and

ς̂2
t (s, a, ã) B

1
M − 1

M∑
m=1

(
Q̄

m
t (s, a, ã) − Q̂t(s, a, ã)

)2
,

with Q̄m
t (s, a) B 1

K

∑K
k=1 rt(s, a, ωm,k) + γQt+1( ft+1(s, a, ωm,k), ã).

Proof of Proposition 4.10.

(i) We first show that A ∗

t (s, ã) ⊆ A∗t(s). Let ā ∈ A9t(s) and a∗ ∈ A∗t(s). We then have that:

E
[
rt(s, ā, ω) + γvt+1(s′)|s, ā

]
< E

[
rt(s, a∗, ω) + γvt+1(s′)|s, a∗

]
,

for s′ = ft+1(s, a, ω). Since E
[
rt(s, a, ω) + γvt+1(s′)|s, a

]
is equal to E [rt(s, a, ω)|s, a] +

γE [vt+1(s′)|s, a] for all a, then we must have one of these cases: (1) E [rt(s, ā, ω)|s, ā] <
E [rt(s, a∗, ω)|s, a∗], (2) E [vt+1(s′)|s, ā] < E [vt+1(s′)|s, a∗], or (3) E [rt(s, ā, ω)|s, ā] <
E [rt(s, a∗, ω)|s, a∗] and E [vt+1(s′)|s, ā] < E [vt+1(s′)|s, a∗]. We want to show that if:

E
[
rt(s, ā, ω) + γvt+1(s′)|s, ā

]
< E

[
rt(s, a∗, ω) + γvt+1(s′)|s, a∗

]
,

then:
E

[
rt(s, ā, ω) + γQt+1(s′, ã)|s, ā

]
< E

[
rt(s, a∗, ω) + γQt+1(s′, ã)|s, a∗

]
,

for ã ∈ At+1(s′). The proof proceeds by showing that A ∗

t (s, ã) ⊆ A∗t(s) in each case via
contrapositive arguments.

Case (1): E [rt(s, ā, ω)|s, ā] < E [rt(s, a∗, ω)|s, a∗]. For any ã ∈ At+1(s′) we have:

E
[
rt(s, ā, ω) + γQt+1(s′, ã)|s, ā

]
= E [rt(s, ā, ω)|s, ā] + γE [Qt+1(s′, ã)|s, ā]

< E [rt(s, a∗, ω)|s, a∗] + γE [Qt+1(s′, ã)|s, ā]

≤ E [rt(s, a∗, ω)|s, a∗] + γE [Qt+1(s′, ã)|s, a∗]

= E
[
rt(s, a∗, ω) + γQt+1(s′, ã)|s, a∗

]
, (C.15)

where the strict inequality holds since E [rt(s, ā, ω)|s, ā] < E [rt(s, a∗, ω)|s, a∗] in this
case and the not strict inequality follows because p̄t(s′|s, a) is nonincreasing in a
by Assumption 4.5 and Qt+1(s′, ã) is nonincreasing in s′ by Assumption 4.2 and
Proposition 4.3. Thus, ā ∈ A9t(s) implies that ā ∈ A 9t (s, ã). The inclusion A ∗

t (s, ã) ⊆
A
∗

t(s) follows.

213



Case (2): E [vt+1(s′)|s, ā] < E [vt+1(s′)|s, a∗]. Note that:

E [vt+1(s′)|s, ā] < E [vt+1(s′)|s, a∗]

implies that:
E [vt+1(s′)|s, ā] − ξ < E [vt+1(s′)|s, a∗] − ξ,

for any ξ ∈ R. Let ξt+1(s′) B vt+1(s′) −Qt+1(s′, ã) for all s′. We then have:

E [vt+1(s′)|s, ā] < E [vt+1(s′)|s, a∗]

⇒ E [vt+1(s′)|s, ā] − E [ξt+1(s′)|s, ā] < E [vt+1(s′)|s, a∗] − E [ξt+1(s′)|s, ā]

⇒

∑
s′∈S

pt(s′|s, ā)[vt+1(s′) − ξt+1(s′)] <
∑
s′∈S

pt(s′|s, a∗)vt+1(s′) −
∑
s′∈S

pt(s′|s, ā)ξt+1(s′)

⇒

∑
s′∈S

pt(s′|s, ā)Qt+1(s′, ã) <
∑
s′∈S

pt(s′|s, a∗)vt+1(s′) −
∑
s′∈S

pt(s′|s, ā)ξt+1(s′). (C.16)

Since E[rt(s, a∗, ω)|s, a∗] −E[rt(s, a, ω)|s, a] is nondecreasing in s and p̄t(s′|s, a) is subad-
ditive on S×A by Assumption 4.4, from Lemma C.9 we then get that ξt+1(s′) is non-
decreasing in s′ (see equation (C.13) in the proof of Proposition 4.8). Since p̄t(s′|s, a) is
nonincreasing in a by Assumption 4.5, applying Lemma C.4 with h(x, y) = pt(s′|s, a∗),
h(x, ȳ) = pt(s′|s, ā), and g(x) = ξt+1(s′) it follows that:∑

s′∈S

pt(s′|s, a∗)ξt+1(s′) ≤
∑
s′∈S

pt(s′|s, ā)ξt+1(s′).

Hence, from equation (C.16) we have:∑
s′∈S

pt(s′|s, ā)Qt+1(s′, ã) <
∑
s′∈S

pt(s′|s, a∗)vt+1(s′) −
∑
s′∈S

pt(s′|s, ā)ξt+1(s′)

≤

∑
s′∈S

pt(s′|s, a∗)vt+1(s′) −
∑
s′∈S

pt(s′|s, a∗)ξt+1(s′)

=
∑
s′∈S

pt(s′|s, a∗)[vt+1(s′) − ξt+1(s′)]

=
∑
s′∈S

pt(s′|s, a∗)Qt+1(s′, ã)

which implies that:

E [Qt+1(s′, ã)|s, ā] < E [Qt+1(s′, ã)|s, a∗] . (C.17)
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We then get that:

E
[
rt(s, ā, ω) + γQt+1(s′, ã)|s, ā

]
= E [rt(s, ā, ω)|s, ā] + γE [Qt+1(s′, ã)|s, ā]

≤ E [rt(s, a∗, ω)|s, a∗] + γE [Qt+1(s′, ã)|s, ā]

< E [rt(s, a∗, ω)|s, a∗] + γE [Qt+1(s′, ã)|s, a∗]

= E
[
rt(s, a∗, ω) + γQt+1(s′, ã)|s, a∗

]
, (C.18)

where the not strict inequality follows because E [rt(s, a, ω)|s, a] is nondecreasing in
a by Assumption 4.5 and the strict inequality follows from equation (C.17). Hence,
ā ∈ A9t(s) implies that ā ∈ A 9t (s, ã) and the inclusion A ∗

t (s, ã) ⊆ A∗t(s) holds.

Case (3): E [rt(s, ā, ω)|s, ā] < E [rt(s, a∗, ω)|s, a∗] and E [vt+1(s′)|s, ā] < E [vt+1(s′)|s, a∗].
This case follows directly from cases 1 and 2.

Since A ∗

t (s, ã) ⊆ A∗t(s) in all 3 cases, we have thatA∗t(s) ⊆ A ∗

t (s).

(ii) We now show that Πt(s, α, ã) ⊆ Πt(s, α) via another contrapositive argument. Fix a
realization of the sequence of the stochastic process ω = (ωn : n ∈ {1, . . . ,N}) and let
ā < Πt(s, α). Suppose that ã ∈ A9t+1( ft+1(s, a, ω)). If ã ∈ A∗t+1( ft+1(s, a, ω)) the result is
trivially true. We want to prove that:

Q̂t(s, a∗) − Q̂t(s, ā) > d̂t(s, α)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, ā)

]
, (C.19)

suggests that:

Q̂t(s, a∗, ã) − Q̂t(s, ā, ã) > d̂t(s, α, ã)
√

M−1
[
ς̂2

t (s, a∗, ã) + ς̂2
t (s, ā, ã)

]
,

for any ã ∈ A9t+1( ft+1(s, ā, ω)). Suppose that E [rt(s, a, ω)|s, a] and pt(s′|s, a) are known
for all s′, s, a, and t. From the left-hand side of equation (C.19) we want to show that:

Qt(s, a∗, ã) − Qt(s, ā, ã) ≥ Qt(s, a∗) −Qt(s, ā).

Since

Qt(s, a, ã) = E
[
rt(s, a, ω) + γQt+1(s′, ã)|s, a

]
= E [rt(s, a, ω)|s, a] + γE [Qt+1(s′, ã)|s, a] ,

and

Qt(s, a) = E
[
rt(s, a, ω) + γvt+1(s′)|s, a

]
= E [rt(s, a, ω)|s, a] + γE [vt+1(s′)|s, a] ,
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for s′ = ft+1(s, a, ω), ã ∈ At+1(s′), and all a ∈ At(s), it suffices to show that:

E [Qt+1(s′, ã)|s, a∗] − E [Qt+1(s′, ã)|s, ā] ≥ E [vt+1(s′)|s, a∗] − E [vt+1(s′)|s, ā] ,

which implies:

E [vt+1(s′)|s, ā] − E [Qt+1(s′, ã)|s, ā] ≥ E [vt+1(s′)|s, a∗] − E [Qt+1(s′, ã)|s, a∗] ,

and ∑
s′

pt(s′|s, ā) [vt+1(s′) −Qt+1(s′, ã)] ≥
∑

s′
pt(s′|s, a∗) [vt+1(s′) −Qt+1(s′, ã)] .

AsE[rt(s, a∗, ω)|s, a∗]−E[rt(s, a, ω)|s, a] is nondecreasing in s and p̄t(s′|s, a) is subadditive
on S × A by Assumption 4.4, from Lemma C.9 we get that vt+1(s′) − Qt+1(s′, ã) is
nondecreasing in s′ (see equation (C.13) in the proof of Proposition 4.8). Because
p̄t+1(s′|s, a) is nonincreasing in a by Assumption 4.5, from Lemma C.4 it holds that:∑

s′
pt(s′|s, ā) [vt+1(s′) −Qt+1(s′, ã)] ≥

∑
s′

pt(s′|s, a∗) [vt+1(s′) −Qt+1(s′, ã)] ,

indicating that:
Qt(s, a∗, ã) − Qt(s, ā, ã) ≥ Qt(s, a∗) −Qt(s, ā). (C.20)

The convergence result follows from Theorem 4.1.

For the right-hand side of (C.19), note that ζ̂2
t (s, a) ≥ ς̂2

t (s, a) and d̂t(s, α) ≥ d̂t(s, α, a)
for all a. Both inequalities follow because ω is fixed, which implies that

rt(s, a, ωm,k) + γv̂t+1( ft+1(s, a, ωm,k)) ≥ rt(s, a, ωm,k) + γQ̂t+1( ft+1(s, a, ωm,k), ã),

for every ωm,k
∈ ω. Thus, we get that:

d̂t(s, α)
√

M−1
[
ζ̂2

t (s, a∗) + ζ̂2
t (s, ā)

]
≥ d̂t(s, α, ã)

√
M−1

[
ς̂2

t (s, a∗) + ς̂2
t (s, ā)

]
. (C.21)

Note that this inequality holds for any N ∈ N. Combining the results from (C.20)
and (C.21) it follows that:

Q̂t(s, a∗, ã) − Q̂t(s, ā, ã) > d̂t(s, α, ã)
√

M−1
[
ς̂2

t (s, a∗, ã) + ς̂2
t (s, ā, ã)

]
.

�
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C.3 Case Study Details

In this section, we provide additional methods or results from our hypertension treatment
for primary prevention case study.

C.3.1 Progression of Risk Factors Over Time

We regress patients’ untreated SBP, HDL, LDL, and TC on their age, sex, race, smoking
status, and diabetes status (Table C.1). The intercept term of each regression model is
adjusted by applying the difference between the linear regression fitted value and the
observed value in the NHANES data. We select the models using stepwise variable
selection.

Table C.1: Linear regression models coefficients.

Risk Factor SBP DBP HDL TC
Intercept 86.33 31.96 39.14 74.41
Age 0.85 1.72 0.153 4.50
Age Squared 0.00 -0.02 11.34 -0.04
Sex (Female) -3.87 -2.94 1.21 6.93
Race (Black) 7.64 1.97 -3.11 -5.15
Smoking 1.82 -0.38 -8.82 6.44
Diabetes 4.07 -1.60 0.00 -20.90

C.3.2 Additional Policies

In this subsection, we describe the policies we considered as standards in our case study.
Both policies are included for the purposes of comparing treatment strategies contained
in our ranges of near-optimal treatment choices.

C.3.2.1 Optimal Treatment Plans

We use the standard backwards induction algorithm as described in Section 4.5 of Put-
erman (2014) to determine optimal hypertension treatment plans based on the standard
formulation of our MDP (T ,S,A,P, ρ, γ) with transition probabilities P and reward func-
tion ρ. The standard backwards induction algorithm uses the following set of equations:

vt(s) = max
a∈A

∑
s′∈S

pt(s′|s, a)
[
ρt(s′, a) + γvt+1(s′)

] ,
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for s ∈ S and t ∈ {0, 1, . . . , 9}. Given the terminal condition:

V10(s) =

L(s) if s ∈ H ,

0 otherwise,

we can find the optimal treatment strategy by recursively computing the value functions
vt(s).

C.3.2.2 Current Clinical Guidelines Treatment Strategy

Our current clinical guidelines treatment strategy is based on the 2017 Hypertension
Clinical Practice Guidelines (Whelton et al., 2018). In this strategy, any patient with a
10-year ASCVD risk of at least 10% and stage 1 hypertension receives an antihypertensive
medication. Any patient with stage 2 hypertension receive at least two antihypertensive
medications. If the patient does not reach a SBP below 130 and a DBP below 80 with the
current treatment, we intensify the treatment up to 11 times in a year. This represent a
clinician reassessing the BP levels of a patient after a month of prescribing a medication.

C.3.3 Convergence Analysis

To select the number of batches for each patient in our population, we first fixed the number
of observations per batch to satisfy the conditions in Proposition 4.2 with β = 0.001. That
is, each batch has K =

⌈
2κ2

t log(21/0.001)
⌉

number of observations, where dxe B min{y ∈
Z|y ≥ x}. Recall that at each year t and healthy state s ∈ H there is a total of A = 21
treatment choices. Using this approach, the sets of approximately optimal treatment
choices identified in each batch are contained in the true sets of optimal actions with a
probability of at least 99.9% for each patient. For the case that there is only one optimal
treatment, the approximately optimal treatment is equal to the optimal with a probability
of at least 99.9%. Note that this approach results in different number of observations K
for each patient in the population. We then increase the number of batches (or simulation
replicates) iteratively until the maximum width of the simultaneous confidence intervals
reaches convergence.

By iteratively increasing the number of batches using K =
⌈
2κ2

t log(21/0.001)
⌉

observa-
tions, we find that M = 300 batches (or independent simulations) may be enough to obtain
a maximum confidence interval width close to the maximum width attained with 1,000
batches (Figure C.1). We also note that using M = 300 batches we achieve a maximum
confidence interval width of 0.02 life-years. This width implies that any treatment choice
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that results in less than 0.02 life-years than the control will be excluded from the range of
actions.
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Figure C.1: Convergence of confidence interval width over the number of batches. Red
line represents the confidence interval width using 1,000 batches (0.01).

C.3.4 Additional Results

This subsection presents additional results of our case study. All of the results included
in this subsection have been described in Section 4.7 in the main body of the chapter.
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Figure C.2: Number of people by race, race, and BP category. BP groups are consistent
with the BP categories of the 2017 Hypertension Clinical Practice Guidelines. The label
“Elevated” denotes elevated BP, “Stage 1” denotes stage 1 hypertension, and the label
“Stage 2” denotes stage 2 hypertension.
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Figure C.3: Distribution of treatment at year 1 and year 10 of the study by sex. BP groups
are consistent with the BP categories of the 2017 Hypertension Clinical Practice Guidelines.
The label “Elevated” denotes elevated BP, “Stage 1” denotes stage 1 hypertension, and
the label “Stage 2” denotes stage 2 hypertension.
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Figure C.4: Distribution of treatment at year 1 and year 10 of the study by race. BP groups
are consistent with the BP categories of the 2017 Hypertension Clinical Practice Guidelines.
The label “Elevated” denotes elevated BP, “Stage 1” denotes stage 1 hypertension, and
the label “Stage 2” denotes stage 2 hypertension.
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Figure C.5: Proportion of patients of treatment recommendations made by clinical guide-
lines contained in the ranges of near-optimal actions. BP groups are consistent with the
BP categories of the 2017 Hypertension Clinical Practice Guidelines. The label “Elevated”
denotes elevated BP, “Stage 1” denotes stage 1 hypertension, and the label “Stage 2” de-
notes stage 2 hypertension.
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Figure C.6: Life-years saved by each treatment policy compared to no treatment per sex
and BP group over the planning horizon. BP groups are consistent with the BP categories
of the 2017 Hypertension Clinical Practice Guidelines. The label “Elevated” denotes
elevated BP, “Stage 1” denotes stage 1 hypertension, and the label “Stage 2” denotes stage
2 hypertension.
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Figure C.7: Life-years saved by each treatment policy compared to no treatment per race
and BP group over the planning horizon. BP groups are consistent with the BP categories
of the 2017 Hypertension Clinical Practice Guidelines. The label “Elevated” denotes
elevated BP, “Stage 1” denotes stage 1 hypertension, and the label “Stage 2” denotes stage
2 hypertension.
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C.3.4.1 Results of Sensitivity Analyses
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Figure C.8: Average range width and number of medications in base case, assuming
normality in the action-value functions, using the action that corresponds to the median
number of medications in next year’s range, and using the action to corresponds to the
fewest number of medications in next year’s range. The label “‘Median in Next Year’s
Range” denotes the median number of medications in next year’s range and the label
“Fewest in Next Year’s Range” denotes the fewest number of medications in next year’s
range. Dashed lines represent the 5th and 95th quantile across the population of adults in
the US with ages between 50 and 54.
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Figure C.9: Life-years saved by each treatment policy compared to no treatment per sex
and BP group over the planning horizon in secondary population of adults with ages
between 70 and 74. BP groups are consistent with the BP categories of the 2017 Hyper-
tension Clinical Practice Guidelines. The label “Elevated” denotes elevated BP, “Stage 1”
denotes stage 1 hypertension, and the label “Stage 2” denotes stage 2 hypertension.
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Figure C.10: Life-years saved by each treatment policy compared to no treatment per race
and BP group over the planning horizon in secondary population of adults with ages
between 70 and 74. BP groups are consistent with the BP categories of the 2017 Hyper-
tension Clinical Practice Guidelines. The label “Elevated” denotes elevated BP, “Stage 1”
denotes stage 1 hypertension, and the label “Stage 2” denotes stage 2 hypertension.
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Figure C.11: Proportion of patients whose treatment recommendations are contained in
the ranges of near-optimal actions despite parameter misestimation. Each panel represents
a different misestimation scenario: no misestimation (top left), patients’ true risk for
ASCVD events is half the estimated risk (top right), patients’ true risk for ASCVD events
is double the estimated risk (bottom left), and patients’ true benefit from treatment is half
the estimated benefit (bottom right).
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