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ABSTRACT

RNA-mediated transcriptional gene silencing is a conserved process where non-coding

RNAs target transposons and other sequences for repression by establishing repressive

chromatin modifications. A central element of this process is long non-coding RNAs

(lncRNAs), which in Arabidopsis thaliana are produced by a specialized RNA polymerase

known as Pol V. These lncRNAs recruit small interfering RNAs (siRNAs) and a series

of proteins that lead to the establishment of RNA-directed DNA methylation (RdDM) on

transposable elements. Transposable elements extant in eukaryotic genomes pose a con-

stant risk of disrupting the integrity of the genome via random integration events and are

targeted for silencing by the RdDM machinery. The RdDM pathway results in de novo

DNA methylation and it has been quite extensively researched, however, questions about

the mechanism of recruitment of Pol V to RdDM loci and subsequent interplay between

chromatin modifications and the downstream mechanism of gene silencing are still less

understood.

In this work, I have utilized high-throughput molecular sequencing data to expand our

understanding of the transcriptional gene silencing pathway. First, I addressed and ex-

panded our understanding of Pol V transcription at RdDM loci. I have successfully iden-

tified and annotated Pol V transcribed RdDM loci throughout the genome. I have further

shown how Pol V transcription is controlled by preexisting chromatin modifications located

within the transcribed regions. I observed that Pol V transcribes into transposons in a non-

strand specific manner and the DNA methylation targeted to these transposons also occur

on both strands and is tightly restricted to the Pol V transcribed regions. I further show

that the preferential enrichment of Pol V transcription and downstream DNA methylation

xiv



at the edges of transposons depicts a possible role of Pol V in determining heterochromatin

boundaries.

Second, my research helped us better understand the mechanism of Pol V transcription.

I have shown that Pol V transcription is not restricted to RdDM loci but is much more

pervasive. Through my research, I show how at already established RdDM targets, Pol V

and siRNA work together to maintain silencing. In contrast, some euchromatic sequences

do not give rise to siRNA but are covered by low levels of Pol V transcription, which is

needed to establish RdDM de novo, if a transposon is reactivated. Through this study,

I show that Pol V surveils the genome to make it competent to silence newly activated

transposons, making it essential for maintaining the integrity of the genome.

Third, I address the effect of Pol V transcription on downstream repressive chromatin

modifications and gene silencing. I show that RdDM affects nucleosomes through recruit-

ment of the SWI/SNF chromatin remodeling complex. Next, I address the relationship

between the two chromatin modifications showing that despite DNA methylation being

predominantly enriched at linkers, RdDM target loci show an enrichment of both nucle-

osomes and DNA methylation. My data further depicts that nucleosome placement by

RdDM has no detectable effects on the pattern of DNA methylation. Instead, I show that

DNA methylation by RdDM affects nucleosome positioning, suggesting that DNA methy-

lation directs nucleosomes and they both coordinately bring about gene and transposon

silencing at the RdDM loci.
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CHAPTER I

Introduction

1.1 Gene regulation and chromatin modifications

Genome is the term used to refer to the genetic material of an organism comprised

of genes and non-coding regions like transposons, pseudogenes, introns, repeat sequences

and telomeres. In eukaryotes, genes are the basic physical and functional unit of heredity

that code for all the proteins of the organism. They make up a very small portion of the

organism’s genome; approximately 1-2% in humans[1]. Non-coding regions of the genome

do not code for proteins and yet make up a large part of the genome of most organisms.

Despite initially being referred to as "junk DNA", it was quickly understood that even

though these non-coding regions do not directly code for proteins, they play an important

role in regulating gene expression[2].

Gene expression regulation includes the various cellular mechanisms and processes that

control the rate and level of expression of certain genes. Regulation of gene expression can

occur at many different stages of expression including: transcriptional regulation (control-

ling the rate of transcription of the gene into mRNAs), translational regulation (controlling

the rate of translation of mRNA into proteins), and post-translational regulation (control-

ling the activity and stability of the proteins) [3]. The most commonly studied mechanism

and most relevant to this study is the transcriptional gene regulatory mechanism. Tran-

scriptional regulation occurs as a result of interactions between DNA and proteins that can
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affect the rate of transcription. The regions of the DNA that can affect transcription are

called regulatory regions and they are generally present around genes and are known to

interact with various proteins to control the expression of the gene[4]. Proteins that bind

to these regulatory regions and assist in altering gene expression are called regulatory pro-

teins. The concerted role of both these factors can lead to an increase or decrease in the rate

of transcription of genes by altering recruitment of the DNA-dependent RNA polymerase

to the transcription start site (TSS). Some examples of regulatory regions include promot-

ers, enhancers and silencers. Promoters are regions proximal to genes and present upstream

of the genes, which recruit regulatory proteins called transcription factors (TFs) which, in

turn, recruit the RNA polymerase, Pol II, essential for the transcription of the gene[5, 4].

Enhancers and silencers are more distal regulatory regions of a gene that increase or de-

crease the binding of TFs to the promoter, thereby turning on or off the gene transcription,

respectively[6, 7]. Thus, regulatory regions and proteins have the ability to directly affect

the recruitment of Pol II to genes, thereby controlling gene transcription. The structural

organization of the DNA is another essential factor that can have an impact on the gene

expression levels.

Chromatin is a complex of DNA and proteins that is formed in eukaryotic cells and

is utilized to package DNA into the nucleus of the cell. In chromatin, the DNA is highly

condensed and wrapped around proteins called histones[8]. There are 5 known classes

of histones, referred to as H1,H2a,H2b,H3 and H4. 2 each of histones H2a, H2b, H3

and H4 come together to form a histone octamer that makes up a nucleosome[8]. The

nucleosome-free regions of the DNA are bound to histone H1 and are called linkers[9, 10].

Nucleosomes are positioned equidistantly throughout the genome and can act as repressors

of gene expression by preventing the recruitment of other proteins to DNA[11, 12, 13].

Histones are characterized by the presence of N-terminal tails that can also be post-

translationally modified by methylation, acetylation, phosphorylation or ubiquitinylation,

which can impact the chromatin structure[14]. Histone modifiers are protein complexes
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that direct post-translational modifications (PTMs) to histone tails[14, 15, 16]. Most, if not

all, histone PTMs are reversible. Many of these histone modifiers have been identified and

their functions characterized[16]. Histone modifiers can be broadly classified into the fol-

lowing categories: histone acetyltransferases (HATs) and histone deacetylases (HDACs);

histone methyltransferases (HMTs) and histone demethylases (HDMs). These modifiers

can "write" (as in case of HATs and HMTs) and "erase" (as in case of HDACs and HDMs)

modifications onto histone tails[14, 15]. The more interesting property of these modifiers is

in their ability to "read" or sense the presence of specific modifications, which then directs

their action at a particular locus[15, 17]. This shows that histone modifiers can not only

alter the state of the chromatin by controlling the modifications at histone tails but also in-

teract and sense the presence of other proteins and modifiers to direct modifications based

on these interactions[15, 17].

PTMs of the histone tails have been shown to have a direct effect on increasing and

decreasing the chromatin compaction by altering the extent of interaction with an adjacent

nucleosome[14]. Another common effect of histone PTMs are in the altered recruitment

of transcription factors or effector proteins that activate downstream signalling. Histone

modifications can also occur downstream of TF binding, wherein a TF recruits histone

modifiers to direct a specific PTM to histones. These histones have then been shown

to act as a co-activator or co-repressor of transcription by altering the recruitment of the

RNA polymerase to the TSS[17]. Some known histone PTMs that have been shown to

positively regulate gene expression include methylation of the 4th lysine residue in his-

tone H3 (H3K4me1,H3K4me2,H3K4me3) and modifications to the 36th lysine residue of

histone H3 (H3K36me3,H3K36ac). On the other hand, methylation of H3K9 residues

(H3K9me2,H3K9me3) and H3K27 residues (H3K27me2,H3K27me3) is related with tran-

scriptional repression[18, 19]. Acetylation of histone lysines tend to activate transcription

[18, 19].

Thus, histones and nucleosomes have a repressive effect on gene expression but some
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modifications to the histone tails of the nucleosomes could help in increasing the rate of

transcription of genes, either by opening up the chromatin for access by TFs[14] or by

actually attracting TFs[14] or by altering the recruitment of the RNA polymerase to the

TSS along with the TFs[17]. Histone modifications are one of the well-studied chromatin

modifications on a global scale that can alter gene expression.

DNA methylation is another chromatin modification that is capable of regulating gene

expression[20, 21]. The DNA backbone is made up of a sequence of 4 possible nucleotides:

Adenine(A), Guanine(G), Thymine(T) and Cytosine(C). DNA methylation is the addition

of a methyl group (-CH3) to the cytosine nucleotide of a DNA. DNA methylation acts as a

negative regulator of gene transcription by either recruiting repressors to prevent transcrip-

tion or preventing the binding of TFs necessary for transcription[22].

DNA methylation can occur in one of three possible sequence contexts, CG, CHG or

CHH, where H can be A, T or C. CG and CHG contexts of methylation are called sym-

metric because both the complementary DNA strands, in these contexts, contain Cs which

are generally methylated together[20]. Thus, once methylation occurs in the CG or CHG

contexts, the epigenetic mark can be maintained through replication. Methylation in the

CHH context, however, is asymmetric in nature as the cytosine in this context exists only

on one strand of the DNA. At these asymmetric loci, as DNA replication occurs, only one

strand maintains the methylation mark and after every replication event, the newly syn-

thesized C needs to undergo de novo methylation, in order to maintain the methylation

through replications[20]. In mammals, DNA methylation mainly occurs at the CG dinu-

cleotide sequences[20].DNA methylation in other contexts of C, like CHG and CHH, have

also been observed in mammalian embryos, which is believed to be a mechanism to further

control transcription in actively differentiating cells[21, 23]. In plants, DNA methylation

can commonly occur in all three sequencing contexts throughout their life.

DNA methylation occurs by the activity of an enzyme called DNA methyltransferase

(DNMT). There exist many different DNMTs in different organisms and each of these
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proteins have a unique target and function. In mammals, DNMT1 is the maintenance

methyltransferase which controls reestablishing methylation after replication at the CG

and CHG sites[22]. The de novo methylation in mammals is catalyzed by DNMT3A and

DNMT3B[22]. In plants, maintenance in the CG context is handled by MET1 and in the

CHG context is handled by CHROMOMETHYLASE3 (CMT3)[21, 23]. The main de novo

methyltransferases in plants is known as DOMAINS REARRANGED METHYLTRANS-

FERASE (DRM2), however, some locus-specific de novo methylation has also been seen

to occur through CHROMOMETHYLASE2 (CMT2)[24].

Thus, chromatin modifications like DNA methylation, nucleosome positioning and his-

tone modifications are all important for gene regulation. Almost all these chromatin modifi-

cations, except for certain histone PTMs, act as negative gene regulators and tend to repress

the transcription of genes in their presence. This suggests that these modifications need to

be both dynamic as well as immensely controlled and there needs to exist a strong interplay

between these chromatin modifications. These modifications also tend to co-occur at many

loci throughout the genome and they generally act together to control gene regulation. The

interplay between these features has been a question for many researchers and understand-

ing the mechanisms of interaction of these modifications has led to many interesting studies

about the cross-talk between these features.

1.2 Cross-talk between chromatin modifications and remodelers

Chromatin remodeling is a dynamic process of altering the chromatin architecture mak-

ing it accessible to transcriptional and translational machinery and thereby controlling gene

expression[15, 16]. Chromatin remodeling can occur mainly through histone modifiers,

which direct post-translational modifications to histone tails, or through ATP-dependent

chromatin remodelers, which can move or restructure nucleosomes[15, 25]. DNA methyl-

transferases are a third class of proteins that direct DNA methylation to specific locations

on the DNA, which in turn can directly affect the chromatin structure or indirectly affect the
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structure by recruiting remodelers to methylated loci[26]. These remodelers and modifiers

act in unison, constantly remodeling the chromatin as per the needs of the cell.

DNA methylation is controlled and directed by various DNA methyltransferases (DN-

MTs) and histone modifications are directed by histone modifiers. Although these chro-

matin modifications are controlled by different enzymes, there is a constant cross-talk be-

tween the two systems that modulates the gene repression programming in every organism.

There have been studies showing that histone modifications can be read and identified by

DNMTs, which in turn controls the DNA methylation pattern at a locus[27, 26]. Similarly,

control of histone modifications by existing DNA methylation has also been shown[27, 26].

In developing mammals, de novo DNA methylation has been controlled at CpG is-

lands by preexisting histone tail modifications[28]. It has been shown that DNMT3L, a

homolog of DNMT that lacks methyltransferase activity, directs other de novo DNMTs

to CpG sites by binding to histone H3[28]. However, this modifier is unable to bind to

any methylated H3K4 sites and thereby directing DNA methylation to non-PTM histones

and nucleosomes. Thus, DNA methylation in young mammals is only visible at CpG is-

lands that lack H3K4me because of the sensing ability of the DNMT3L modifier, depicting

an anti-correlation between these two features[28]. Another example of a link between

histone PTM and DNA methylation is at the pericentromeric satellite repeats. At the satel-

lites, it has been shown in mammals that the SET-domain containing HMTs, SUVH39A

and SUVH39B, play an important role in directing H3K9 methylation as well as recruiting

essential DNA methyltransferases to target DNA methylation to the same regions lead-

ing to a self-reinforcing silencing mechanism[29]. A Dicer-mediated mechanism identifies

the RNA duplexes formed at the satellite sequences, which leads to the formation of the

RISC (RNA-induced silencing complex). This RISC then recruits the HMTs SUVH39A

and SUVH39B leading to the establishment of H3K9 methylation at the pericentromeric

regions[29]. These HMTs also play a role in recruiting DNMT3A and DNMT3B to the

same loci, leading to further establishment of DNA methylation, thereby instituting a self-
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reinforcing repression. Studies have also shown that the DNA methylation at these cen-

tromeric regions can occur in the absence of SUVH39 HMTs as well, suggesting that de-

spite the cross-talk between the two epigenetic features, there are mechanisms to ensure

maintenance of repression at these loci[29].

This cross-talk has also been studied in other organisms. In Neurospora Crassa, a mu-

tation in dim-5 gene has been shown to affect H3K9 methylation at the heterochromatin

by disrupting a SET-domain containing protein, which in turn leads to a reduction in DNA

methylation at these loci. This suggests the interdependence of DNA methylation and

histone modifications furthermore suggesting a unidirectional dependence where histone

PTMs direct DNA methylation[30]. Similar studies exist in Arabidopsis thaliana as well,

where we see KRYPTONITE (KYP), a SET-domain containing HMT that controls H3K9

methylation, can direct DNA methylation through a plant-specific DNMT, CMT3 (chro-

momethylase 3)[31]. A mutation of KYP has shown to not only reduce H3K9me but also

lead to a loss of CpNpG (where N is C, A, T or G) DNA methylation at the same genomic

locus suggesting histone PTMs acting upstream of DNA methylation[31]. However, the

inverse dependence has also been shown at many loci where the loss of CMT3 has led

to the loss of DNA methylation as well as a reduction in the H3K9me levels at these re-

gions, depicting the existence of a more complicated mechanism and crosstalk in different

organisms[26].

There exist other studies depicting the control of histone modifications by DNA methy-

lation. Loss of CpG methylation in met1 mutants (DNMT1 mutants) in Arabidopsis has

been liked to a gain in H3K27 tri-methylation at those loci which in turn leads to the ac-

tivation of chromatin and increased access by transcriptional machinery[32]. Similarly,

the presence of DNA methylation has shown to lead to the gain of H3K9 methylation

which leads to silenced chromatin[26, 32]. This crosstalk between histone and DNA

methylation modifiers is essential in maintaining the chromatin and epigenetic state of the

genome[26, 27].
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Other than histone modifiers and DNA methyltransferases, we have a set of ATP-

dependent chromatin remodelers that utilize energy from ATP hydrolysis to modify, move

or evict nucleosomes in the chromatin. There are 4 extensively studied groups of remodel-

ers: SWI/SNF (SWITCH/SUCROSE NONFERMENTABLE), ISWI, CHD (CHROMOD-

OMAIN HELICASE DNA-BINDING) and INO80 remodelers[33, 34]. Each of these re-

modelers are specialized to carry out one of the following functions: Nucleosome assembly

and organization, chromatin access and/or nucleosome editing[33].

Nucleosome assembly and organization is the process that generally follows a repli-

cation or transcription event where nucleosomes need to be assembled to reestablish the

chromatin state. This is done by bringing the histones to the DNA and leading to the

formation of the nucleosome as well as controlling the optimal desired spacing between

adjacent nucleosomes[33, 34]. This is generally handled by the ISWI and CHD ATP-

dependent chromatin remodelers, which play a role in maintaining the chromatin state after

a dynamic re-positioning of nucleosomes has occurred due to transcription or replication

machinery[33, 34]. Chromatin access is altered by remodelers when certain regions of the

chromatin needs to be made accessible to cellular machinery by moving, altering or evict-

ing nucleosomes. This is primarily, but not exclusively, done by the SWI/SNF remodelling

complex which generally function to make various inaccessible regions of the chromatin

accessible by proteins or transcriptional machinery[33, 34]. Nucleosome editing is the pro-

cess of altering or changing the composition of the nucleosome. This is generally handled

by the INO80 subfamily of ATP-remodelers.

There exists extensive crosstalk between these ATP-dependent nucleosome remodel-

ers and histone PTMs and DNA methylation. The interactions between ATP-dependent

remodelers and histone modifiers have been studied in many organisms[33, 34, 35]. The

yeast Spt-Ada-Gcn5-acetyltransferase (SAGA) complex interacts with the SWI/SNF com-

plex leading to displacement of nucleosomes resulting in gene expression[36]. Another

great example is the involvement of the yeast and mammalian SWI/SNF complex in the
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Rb/E2F pathway, which recruits SWI/SNF, HDACs and HMTs to the E2F promoter locus

to repress transcription[37].

The extensive knowledge about crosstalk between ATP-dependent remodelers and DNA

methylation also exists. It has been shown that the SWI2/SNF2 family of remodelers in

different organisms appear to have effects on genome-wide DNA methylation. In mice,

complete loss of LSH, an SNF2-family remodeler has led to the loss of DNA methylation

on a genome-wide scale[38]. Similarly, DDM1, another SNF2-remodeler in Arabidopsis

has been shown to control the DNA methylation levels throughout the genome and has

thereby been named DECREASED IN DNA METHYLATION 1[39]. Similarly, mutations

in ATRX, a SWI/SNF remodeler, has led to changes in the pattern of DNA methylation

on a genome-wide scale in humans[40]. It has also been shown that in humans, loss of

the SWI/SNF complex leads to a direct increase in the DNA methylation levels leading

to aberrant gene activation[41]. Another study in Arabidopsis has shown the involvement

of the SWI/SNF complex in the RNA-directed DNA methylation pathway which utilizes

non-coding RNA to direct de novo DNA methylation to transposons, suggesting the pos-

sible interaction and involvement of these remodelers in DNA methylation establishment

and control of gene expression[42].

These different remodeling mechanisms are acting in unison throughout every genome,

trying to establish a dynamic chromatin architecture to enable the accessibility as well as

maintenance of the genomic integrity of the organism. One such question of understand-

ing the interdependence of DNA methylation and nucleosome positioning by the SWI/SNF

pathway in maintaining gene silencing is the main questions addressed in Chapter IV. This

chapter tries to understand the correlation between the two types of chromatin modifi-

cations throughout the genome and investigates the mechanism of action and crosstalk

between the SWI/SNF chromatin remodeler and DNA methyltransferase, DRM2, in main-

taining the genome integrity by repressing transposons.
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1.3 Non-coding RNA

A very small portion of the genome codes for proteins. As mentioned earlier, it has

been shown that only 1-2% of the human genome actually codes for proteins [1], however,

about 90% of the whole human genome is transcribed [43]. Thus, a majority of the RNA

produced do not code for proteins and are referred to as the non-coding RNAs (ncRNAs).

ncRNAs play an important role in regulation of gene expression and have been shown to be

involved in RNA splicing, chromatin modification, transcriptional and post-transcriptional

regulation [3, 44]. ncRNAs have been classified into many types, however, the most rele-

vant to this study include small RNA (smRNA) and long non-coding RNA (lncRNA).

Small RNAs are 18-30 bp long RNAs that generally play a role in gene silencing. Some

of the known smRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs),

piwi-interacting RNAs (piRNAs) and small nucleolar RNAs (snoRNAs). The biogenesis

of each of these smRNAs is different and they each have functions in regulating gene

expression in the cell at many levels like chromatin architecture, RNA silencing, RNA

editing, transcription, translation and splicing[45, 46].

miRNAs are generally 21-24 nt long RNAs, which are formed from endogenous, short,

hairpin precursors targeting loci with similar but not identical sequences[47, 48]. miRNAs

bind complementary mRNAs causing translational repression by either cleaving, destabi-

lizing or reducing the efficiency of translation of the mRNA[47, 49]. snoRNA are typically

60-300 nt long RNAs that are believed to be derived from introns of transcripts that do

not have a protein-coding capacity. snoRNAs are capable of site-specific modifications of

nucleotides in target RNAs by recruiting specific proteins to these RNAs by forming RNA

duplexes[50].

siRNAs, the most important smRNAs in this study, are 21-24 nucleotides long and are

produced from longer double-stranded RNAs or long hairpins[51, 52, 53]. These are mostly

exogenous in origin and target homologous sequences either at the same loci or elsewhere

in the genome for silencing or destruction [48, 54]. siRNAs are known to silence genes
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by directing DNA methylation to specific regions by sequence complementary[55]. This

process of utilizing RNA to direct methylation to silence loci is called Transcriptional Gene

Silencing (TGS) or RNA-directed DNA methylation (RdDM) [56, 57, 58, 59]. siRNAs are

also involved in post-transcriptional gene silencing (PTGS) mechanisms, wherein siRNA

target mRNA for cleavage and destruction[60]. These siRNAs are also believed to affect

the chromatin structure by altering the H3K9 methylation levels[61]. Thus, siRNAs are

involved in transcriptional and post-transcriptional gene silencing pathways and are capable

of controlling the gene expression levels.

The other type of ncRNA, long non-coding RNA (lncRNA), are RNAs longer than

200bps that do not code for proteins but, again, have a very important role to play in con-

trolling gene expression, genome stability and nuclear organization [62]. lncRNA is be-

lieved to affect gene regulation at various levels of expression[63]. At the pre-transcription

stage, lncRNAs have been shown to affect the chromatin architecture by modifying his-

tones, thereby altering the accessibility of the chromatin to transcription factors. lncRNAs

are also capable of acting as scaffolds or guides to recruit DNA methyltransferases or hi-

stone modifiers to direct repressive chromatin modifications to regions of the chromatin

to alter gene expression[64, 65]. lncRNA can control gene expression at the transcription

level by either binding with the TFs [66] or RNA Pol II [67] or preventing the binding of

the RNA polymerase to the promoter [68]. lncRNAs also play a role in post-transcriptional

gene regulation by affecting splicing, mRNA stability or protein stability [63]. HOTAIR

(Hox transcript antisense intergenic RNA) is a great example of pre-transcriptional repres-

sion by a lncRNA of the HOXD gene locus. Knockdown of HOTAIR leads to a reduction

in the recruitment of PRC2 complex to the HOXD gene locus, which reduces the H3K27

methylation levels thereby leading to the transcriptional activation of the locus[69]. An-

other example of transcriptional gene silencing by a lncRNA is X-chromosome inactiva-

tion (XCI). XCI is brought about in mammalian females with 2 X-chromosomes by Xist

lncRNA, where Xist coats the entire X chromosome and recruits the PRC2 complex to
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direct repressive histone modifications to prevent Pol II from accessing the inactivated X

chromosome [70, 71].

Thus, ncRNAs do not code for proteins but they have been shown to be immensely

important for the functioning of the cell as they control gene expression. One of the most

important role of these ncRNAs is in Transcriptional gene silencing, wherein they direct

repressive chromatin modifications to specific target regions on the chromatin.

1.4 RNA-directed DNA methylation (RdDM)

Transcriptional gene silencing (TGS) is an RNA-mediated process of silencing genes

by repression of transcription caused by directing DNA methylation and other chromatin

modifications to genes and it’s regulatory regions[26]. RNA-mediated gene silencing oc-

curs in most eukaryotes and it can be of different types in different organisms, however,

the underlying mechanism remains the same. Quelling in fungi, RNA interference (RNAi),

TGS or PTGS in animals and TGS or RdDM in plants, all utilize ncRNA to bring about

gene silencing[72].

Transposable elements and other repetitive sequences are the regions of DNA that need

to be targeted for immediate silencing to maintain the genomic integrity. Any aberrant

expression of these regions could be very unfavorable for the organism. RNA-mediated

transcriptional silencing, which in plants is also known as RNA-dependent DNA methy-

lation (RdDM) (Law and Jacobsen, 2010) targets these transposons for silencing thereby

preventing the deleterious impacts of transposon expression (Girard and Hannon, 2008,

Faulkner et al., 2009; Zheng et al., 2012).

ncRNAs play a central role in the RdDM pathway directing chromatin modifications

like DNA methylation and histone modifications to control gene expression and silence

transpsons[55, 73, 74]. These ncRNAs in plants are produced by specialized RNA poly-

merases that are specific to plants. Animals have three RNA polymerases that transcribe

all the RNAs in the organism: Pol I transcribes most of the ribosomal RNAs (rRNAs), Pol
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II transcribes mRNAs, snRNAs, snoRNAs, lncRNAs and miRNAs, and Pol III transcribes

tRNAs, 5S rRNAs and other smRNAs. However, plants contain two additional special-

ized polymerases, Pol IV and Pol V, which recently diverged from Pol II with specific

roles in RNA silencing [75, 76, 74]. Pol IV and Pol V are very similar in composition

to Pol II, with only few of the subunits modified[77]. The largest subunits of Pol IV and

Pol V are NRPD1 and NRPE1, respectively, which are essential for their special role in

producing siRNAs and lncRNAs required for the RdDM pathway[75, 76, 78]. Knockout

mutants of NRPD1 and NRPE1 of Pol IV and Pol V have led to the complete loss of func-

tion of the complex leading to the loss or great reduction in the production of siRNAs

and lncRNAs, respectively[78, 79]. The knockout mutants, thereby, do disrupt the RdDM

mechanism in the organism, however, this is still not a deleterious mutation and the plant

remains viable. This property of plants makes them an excellent source to study the TGS

mechanism, as the viable knockouts of NRPD1 and NRPE1 proteins allows for a better un-

derstanding of the role of the siRNAs and lncRNAs in targeting chromatin modifications to

transposons[75, 76, 74]. In other organisms lacking specialized polymerases, the ncRNAs

are generally produced by Pol II, which also transcribes mRNA making it almost difficult

to eradicate only the ncRNA to study their mechanism of action and downstream targets.

The RdDM pathway in plants consists of two distinct steps: i) Pol IV dependent 24nt

siRNA biogenesis; ii) Pol V mediated lncRNA biogenesis and de novo DNA methyla-

tion [55]. In the first step of RdDM, Pol IV is believed to be recruited to silenced target

loci, which are mostly transposons and repetitive elements. It is known that this recruit-

ment requires the SAWADEE HOMEODOMAIN HOMOLOGUE 1 (SHH1) which binds

to H3K9me2 and unmethylated H3K4 and in the process brings Pol IV to its target site[80].

Pol IV transcribes to produce a single-stranded RNA (ssRNA), which is then converted into

double-stranded RNA (dsRNA) by RNA-dependent RNA polymerase, RDR2[81, 82, 83].

This dsRNA is then cleaved by DICER-LIKE 3 (DCL3) protein to form 24 nt siRNAs,

which are then loaded onto an ARGONAUTE protein, namely AGO4 (sometimes AGO6
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Figure 1.1: RdDM mechanism: In Pol IV-siRNA biogenesis (left panel), Pol IV transcribes
a single-stranded RNA (ssRNA) that is copied into a double-stranded RNA (dsRNA) by RNA-
DEPENDENT RNA POLYMERASE 2 (RDR2). The dsRNA is processed by DICER-LIKE 3
(DCL3) into 24-nucleotide siRNAs and incorporated into ARGONAUTE 4 (AGO4). In Pol V-
lncRNA biogenesis (right panel), Pol V transcribes a scaffold lncRNA that base-pairs with AGO4-
bound siRNAs. AGO4 recruitment leads to the recruitment of INVOLVED IN DE NOVO 2 (IDN2)
and DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which catalyses de novo
methylation of DNA. Pol V recruitment is potentially aided by SUVH2 or SUVH9, both of which
bind to methylated DNA. Nucleosome positioning is adjusted by the SWI/SNF complex, which
interacts with the IDN2 (INVOLVED IN DE NOVO 2).

or AGO9, which are partially redundant) to produce the AGO4-siRNA complex[84, 55].

In the second step of RdDM, Pol V is recruited to the target loci by SU(VAR)3-9 HO-

MOLOGUES 2 (SUVH2) and SU(VAR)3-9 HOMOLOGUES 9 (SUVH9), which bind

methylated DNA[85]. Pol V transcription is aided by the putative chromatin remodelling

DDR complex, consisting of proteins DEFECTIVE IN RNA-DIRECTED DNA METHY-

LATION 1 (DRD1), DEFECTIVE IN MERISTEM SILENCING 3 (DMS3), and RNA-

DIRECTED DNA METHYLATION 1 (RDM1)[86, 58]. Pol V transcribes lncRNA, which

acts as a scaffold to recruit the AGO4-siRNA complex from the previous step through an

interaction between AGO4 and NRPE1 proteins. The recruitment of the AGO4-siRNA

complex is followed by recruitment of the INVOLVED IN DE NOVO 2 (IDN2) protein,

which is believed to stabilize the siRNA-lncRNA pairing and leads to the recruitment of
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DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is a de novo

methyltransferase that deposits de novo methylation marks in all contexts of C (CG, CHG,

CHH; where H is A, T or C) to specific loci [87, 88, 89, 90, 91]. This is the process by

which RdDM pathway uses ncRNAs to direct DNA methylation to regions like transposons

and other heterochromatin to bring about TGS.

The RdDM pathway does not only direct DNA methylation, but it has also been shown

to be functionally intertwined with repositioning nucleosomes. The IDN2 protein required

for recruiting the DNA methyltransferase in the second step of RdDM has also been shown

to interact with SWITCH 3B (SWI3B), a subunit of the SWI/SNF chromatin remodeling

complex through a protein-protein interaction suggesting the possible role of RdDM in

active chromatin remodeling [42]. Subunits of the SWI/SNF complex are also known to

interact with other silencing factors, including HISTONE DEACETYLASE 6 (HDA6) and

MICRORCHIDIA 6 (MORC6), which are histone modifiers depicting a further possible

role of RdDM in gene silencing through the SWI/SNF complex[92, 93].

Despite being a central element of the RdDM pathway, Pol V transcripts have been quite

poorly understood. Unlike Pol IV transcripts, which are relatively abundant and have been

characterized genome-wide[81, 94, 83], Pol V transcripts accumulate at low levels. This

has made them very difficult to detect using high-through sequencing approaches like RNA-

seq. Therefore, beyond the very limited loci tested in various studies, the knowledge of Pol

V target loci has remained unknown. As a result of lack of our knowledge of the genome-

wide Pol V target loci, identifying the different proteins that interact with these transcripts

throughout the genome and how these proteins affect the transcripts is also unknown. These

questions have been addressed in detail by Chapter II.

The current knowledge of the RdDM pathway also suggests the direct effect of this

pathway on two of the most important chromatin modifications: DNA methylation and nu-

cleosome remodeling. This observation has raised questions about how these two features

interact with each other and how this interplay can eventually lead to gene silencing. These
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questions have been further investigated in Chapters IV.

1.5 Pol V regulatory elements

Pol V transcribes lncRNA and it is considered to be one of the critical factors in deter-

mining RdDM specificity. However, questions about recruitment of Pol V to its target loci

is still not understood. The well-studied, canonical RNA polymerases, Pols I, II and III, are

all known to recognize specific conserved promoter sequences. These promoters are rec-

ognized by transcription factors (TFs) that recruit the RNA polymerase and position it at

the initiation site to begin transcription [95, 96, 97, 98]. It is believed that all polymerases

should have a transcription initiation complex that directs them to the TSS. Many attempts

have been made in the past to identify promoters that might be important to recruit Pol IV

and Pol V [56, 86]. These promoter sequences might also serve as a good method to locate

RdDM loci genome-wide. No such conserved sequences have been reported for Pol IV or

Pol V at the known RdDM loci [99, 56, 86]. This could also be because of the inability to

identify all the Pol V transcribed regions in the genome. Despite the existence of a knock-

out mutant of Pol V, a successful identification of the Pol V transcribed regions has been

difficult. The RdDM loci that have been studied thus far have mostly been TEs that have

been tested in a locus-specific manner. Attempts of discovery of promoters at these few

loci and around known RdDM targets, including transposons, has been in vain. Other stud-

ies have suggested that Pol IV and V activity occurs at regions with pre-existing repressive

chromatin modifications suggesting the involvement of repressive chromatin modifications

being the "promoter" for these polymerases [85, 100, 101].

In Arabidopsis, Pol IV recruitment to its target loci has been shown to be affected by

Pol IV accessory proteins including CLASSY SNF2-related putative chromatin remod-

eler family (CLSY) [102] and the SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1),

which binds repressive H3K9 methylation [82, 103]. The H3K9 methylation in Arabidop-

sis requires a family of SET domain histone methyltransferases (SUVH4, SUVH5, and
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SUVH6) which can also bind to methylated DNA[104]. These factors, together, generate

a self-reinforcing loop of DNA and histone methylation, wherein DNA methylation leads

to the recruitment of SUVH4/5/6 to the loci, leading to the deposition H3K9 methylation

that is bound by SHH1. SHH1, in turn, leads to the recruitment of Pol IV which ultimately

establishes DNA methylation to complete the loop[104].

On the Pol V recruitment front, the DDR protein complex and the SU(VAR)3-9 ho-

mologs (SUVH and related SUVR proteins), specifically SUVH2 and SUVH9, also known

as the DNA-methylation reader proteins, have been shown to affect Pol V chromatin oc-

cupancy [58, 86, 100, 101]. The DDR complex is composed of 3 important proteins,

DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1), a putative chro-

matin remodeling protein [105], DEFECTIVE IN MERISTEM SILENCING 3 (DMS3)

or INVOLVED IN DE NOVO1 (IDN1) [106], and RNA-DIRECTED DNA METHYLA-

TION 1 (RDM1) [58, 107]. This complex is believed to be essential for remodeling

the chromatin to recruit Pol V. The SUVH2 and SUVH9 proteins bind methylated DNA

and their absence shows a reduction in Pol V accumulation, suggesting that preexisting

DNA methylation and chromatin remodeling might be important for Pol V recruitment and

transcription[100, 101]. This has led to a Pol V - DNA methylation based self-reinforcing

loop where DNA methylation deposited by DRM2 methyltransferase at RdDM loci is re-

quired for Pol V localization and establishment of further DNA methylation at the same

loci.

The existence of this self-reinforcing mechanism of Pol IV and V transcription and

chromatin modifications could explain the mechanism of maintenance of RdDM at loca-

tions where RdDM has already been established and needs to be maintained and contin-

ued through various replication events. However, Pol V has been previously shown to be

required not only for RdDM maintenance, but also for de novo RdDM establishment at

regions that do not have preexisting chromatin modifications[108, 109, 110]. The existing

understanding of the field has not been able to yield a reasonable explanation as to how
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Pol V is recruited to these de novo loci to bring about RdDM. Chapter III identifies a new

mechanism of transcription of Pol V suggesting that Pol V is not recruited to specific loci

but is more broadly present throughout most of the genome.
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CHAPTER II

Long Non-coding RNA Produced by RNA Polymerase V

Determines Boundaries of Heterochromatin

Gudrun Böhmdorfer, Shriya Sethuraman, M Jordan Rowley, Michal Krzyszton, M Hafiz

Rothi, Lilia Bouzit, Andrzej T Wierzbicki

2.1 Abstract

RNA-mediated transcriptional gene silencing is a conserved process where small RNAs

target transposons and other sequences for repression by establishing chromatin modifica-

tions. A central element of this process are long non-coding RNAs (lncRNA), which in

Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here

we show that non-coding transcription by Pol V is controlled by preexisting chromatin

modifications located within the transcribed regions. Most Pol V transcripts are associated

with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established

on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This in-

dicates that chromatin modifications are established in close proximity to Pol V. Finally,

Pol V transcription is preferentially enriched on edges of silenced transposable elements,

where Pol V transcribes into TEs. We propose that Pol V may play an important role in the

determination of heterochromatin boundaries.
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2.2 Introduction

RNA-mediated transcriptional gene silencing, in plants known as RNA-directed DNA

methylation (RdDM), takes place in most eukaryotic organisms and results in heterochro-

matin formation by the deposition of DNA methylation and repressive histone modifica-

tions [111]. This process relies on small RNAs, which usually are generated by the activi-

ties of an RNA-dependent RNA polymerase and Dicer. Small RNAs are subsequently in-

corporated into Argonaute and direct repressive chromatin modifications to complementary

genomic regions [111]. Recognition of target sequences by small RNAs requires ongoing

non-coding transcription of the targets. This non-coding transcription gives rise to long

non-coding RNA (lncRNA) which has been proposed to serve as a scaffold for Argonaute

binding to chromatin, where incorporated small RNAs base pair with lncRNA [111].

In Arabidopsis thaliana this lncRNA is produced by a specialized DNA-dependent

RNA polymerase, known as Pol V [76, 112]. Activity of Pol V is required for DNA methy-

lation but not for the biosynthesis of the vast majority of small interfering RNAs (siR-

NAs) [78, 113, 79, 112]. This implicates lncRNAs produced by Pol V (referred to as Pol V

transcripts) as a factor required for recognition of target loci by siRNAs. Pol V transcripts

are believed to be capped or triphosphorylated on their 5’ ends and not polyadenylated on

their 3’ ends [112]. They associate with several RNA binding proteins, including ARG-

ONAUTE 4 (AGO4) [88]. It has been proposed that siRNAs incorporated into AGO4 base

pair with Pol V transcripts and recruit AGO4 to specific loci in the genome. Binding of

AGO4 is followed by the binding of INVOLVED IN DE NOVO 2 (IDN2) which interacts

with a subunit of the SWI/SNF ATP-dependent chromatin remodeling complex [90, 42].

Finally, Pol V transcripts, AGO4, and/or other associated factors recruit DOMAINS RE-

ARRANGED METHYLTRANSFERASE 2 (DRM2), which is a de novo DNA methyl-

transferase [90, 107, 91]. DNA methylation is then responsible for repression of Pol II

transcription on silenced loci [114]. While Pol V is involved in the late stages of the RdDM

pathway, siRNA biogenesis starts with the activity of another specialized RNA polymerase,
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Pol IV [115, 116]. Pol IV transcripts are substrates for RNA-DEPENDENT RNA POLY-

MERASE 2 (RDR2) and DICER-LIKE 3 (DCL3), which produce 24nt siRNAs [117, 94].

Despite being a central element of the RdDM pathway, Pol V transcripts are poorly under-

stood. Unlike Pol IV transcripts, which are relatively abundant and have been characterized

genome-wide [81, 94, 83], Pol V transcripts accumulate at low levels. This makes them

difficult to detect using high-through sequencing approaches like RNA-seq. Therefore, it

remains unknown if Pol V produces any RNAs beyond the very limited number of loci

tested so far. It is also unclear what defines a Pol V promoter beyond published work

suggesting that both Pol IV and Pol V are recruited by preexisting repressive chromatin

modifications [100, 56, 86]. It is further unknown which proteins interact with Pol V tran-

scripts throughout the genome and how these proteins affect the transcripts. Additionally,

the role of Pol V transcripts in forming the RdDM effector complex remains mysterious

with several key mechanistic aspects being mostly based on speculation. These include

the distance between the progressing polymerase and proteins binding to lncRNAs and the

identity of nucleic acids base pairing with siRNAs [118, 119]. Finally, it is unknown if and

how the specificity of Pol V recruitment to chromatin targets RdDM to individual genomic

regions.

2.3 Results

2.3.1 Genome-wide identification of transcripts associated with Pol V

Current knowledge of the in vivo functions of Pol V and RNAs produced by this poly-

merase is based on a very limited number of loci [88, 57, 42, 90, 112]. To overcome this

limitation, we designed an experimental approach to identify Pol V transcripts throughout

the Arabidopsis genome. We first enriched Pol V-associated RNAs using RNA immuno-

precipitation with an antibody against NRPE1, the largest subunit of Pol V [79, 88], and

then subjected the samples to high-throughput sequencing (Pol V RIP-seq). We performed
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Figure 2.1: Genome-wide identification of RNA produced by Pol V: (A) Genomic region giving
rise to Pol V transcripts. The screenshot shows sequencing reads from both repeats of Pol V RIP-
seq as well as Pol V ChIP-seq [56], DNA methylation [120], and annotations of genes and Pol V
transcripts. (B) Pol V RIP signal is largely limited to identified Pol V transcripts. All annotated
Pol V transcripts were scaled to uniform lengths and average Pol V RIP signal from both biological
repeats combined (Col-0/nrpe1, [RPM]) was plotted. The heatmap below shows Pol V RIP signal
on individual transcripts sorted by length. The p value was calculated using the permutation test
by comparing 100 nt long regions starting 200 nt upstream and 50 nt downstream of 5’ ends of the
annotated transcripts. (C) Pol V binding to chromatin is enriched on Pol V transcripts. Profile of
average Pol V ChIP-seq signal (Col-0/nrpe1 [RPM]) on scaled Pol V transcripts ± 300 bp. The p
value was calculated using the permutation test by comparing 100 nt long regions starting 200 nt
upstream and 50 nt downstream of 5’ ends of the annotated transcripts. (D) Pol V RIP-seq signal
is enriched on regions where Pol V binds chromatin. Profiles of average Pol V ChIP-seq signal
(Col-0/nrpe1) and Pol V RIP signal (Col-0/nrpe1) on Pol V ChIP-seq peaks [56] aligned with their
summits +/- 600 bp (10 bp resolution). (E–G) Loci generating Pol V transcripts are bound by Pol
V and are targets of RdDM. Boxplots show regions producing Pol V transcripts but not overlapping
ChIP-seq peaks and vice versa (RIP only and ChIP only, respectively) and on Pol V transcript
regions overlapping ChIP peaks (overlap). Significance has been tested using the Wilcoxon test.
(E) Pol V ChIP-seq (Col-0/nrpe1 [RPM]), (F) Pol V RIP-seq (Col-0/nrpe1 [RPM]) and (G) CHH
DNA methylation (Col-0 - nrpe1).

22



these experiments in Col-0 wild-type and in the nrpe1 mutant. This assay allowed the iden-

tification of genomic regions, where sequencing reads accumulated in Col-0 wild-type but

not in nrpe1 (Figure 2.1A, Figure 2.2). Hence, these reads originate from RNAs which are

specifically associated with Pol V. Given that Pol V is a DNA-dependent RNA polymerase

in vitro [117], these reads most likely stem from transcripts generated by Pol V. We also

detected a considerable amount of signal over annotated genes, however, these remained

unchanged in nrpe1 (Figure 2.1A) and are therefore unlikely to be associated with Pol V.

This signal was mostly present on active genes and indicates transcription by Pol I, II, III,

and/or IV.

We used the RIP-seq data to annotate Pol V-associated RNAs genome-wide and iden-

tified 4502 individual high confidence Pol V-associated transcripts. Transcript calling used

data from two independent biological replicates of RIP-seq. Data from both repeats were

first combined to determine the ends of Pol V-associated RNAs. Then, read counts from

both repeats were considered separately to filter the transcript list applying a combination

of arbitrary criteria and statistical testing using the negative binomial test. The filtering

criteria included a minimum of 8 reads in Col-0, a minimum four-fold enrichment between

Col-0 and nrpe1, a p value of 0.05 and an FDR of 0.05. Details of the transcript calling

strategy are described in the Materials and methods.

To visualize Pol V-associated RNAs, we plotted the average Pol V-RIP (Col-0/nrpe1)

signal combined from both biological repeats on identified RNAs and their flanking regions

(Figure 2.1B).

Individual transcripts were scaled to allow visualization over the entire lengths of the

transcripts. We observed high levels of Pol V-associated transcription throughout the pre-

dicted transcripts in both replicates and only trace amounts of Pol V-associated transcrip-

tion outside the annotations (Figure 2.1B). This was true for the vast majority of Pol V-

associated transcripts as shown on the corresponding heatmap where every row represents

an individual transcript (Figure 2.1B). This was also true when we analyzed both biologi-
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Figure 1-figure supplement 1
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Figure 2.2: Genome-wide identification of RNA produced by Pol V (Supplementary): (A) Ge-
nomic regions giving rise to Pol V transcripts. The screenshots show sequencing reads from both
repeats of Pol V RIP-seq as well as Pol V ChIP-seq [56], DNA methylation [120], annotations of
genes (TAIR10), and annotation of Pol V transcripts obtained in this study. (B) Correlation between
both biological repeats of RIP-seq. Scatterplot shows total Pol V RIP signal obtained from the first
and the second repeat on annotated Pol V transcripts. Colors correspond to p values obtained using
the negative binomial test included in the transcript calling protocol. (C) Pol V RIP signal is largely
limited to identified Pol V transcripts – first biological repeat only. All annotated Pol V transcripts
were scaled to uniform lengths and average Pol V RIP signal from the first biological repeat (Col-
0/nrpe1, [RPM]) was plotted. The heatmap below shows Pol V RIP signal on individual transcripts
sorted by length. Gray box on the x-axis indicates the position of the Pol V transcripts. In the
heatmap every row represents an individual Pol V transcript sorted by size. The p value was calcu-
lated using the permutation test by comparing 100 nt long regions starting 200 nt upstream and 50 nt
downstream of 5’ ends of the annotated transcripts. (D) Pol V RIP signal is largely limited to iden-
tified Pol V transcripts – second biological repeat only. All annotated Pol V transcripts were scaled
to uniform lengths and average Pol V RIP signal from the second biological repeat (Col-0/nrpe1,
[RPM]) was plotted. The heatmap below shows Pol V RIP signal on individual transcripts sorted by
length. Gray box on the x-axis indicates the position of the Pol V transcripts. In the heatmap every
row represents an individual Pol V transcript sorted by size. (E,F) Transcripts associated with Pol
V are Pol V-dependent. RT-qPCR for specific Pol V transcripts in Col-0 and nrpe1. Average signal
levels relative to wild type and standard deviations from three biological replicates are shown.
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cal repeats separately (Figure 2.2). Reproducibility between biological repeats was further

tested by comparing Pol V RIP-seq signal intensities on annotated Pol V-associated RNAs

in both repeats (Figure 2.2). Signal strengths measured as differences between RPM nor-

malized read counts in Col-0 and nrpe1 were significantly correlated (Pearson correlation r

= 0.719, p<2.2*10–16), which further increases confidence in the quality of our transcript

calling. Taken together, we developed a strategy which allows the sensitive and repro-

ducible identification of Pol V-associated RNAs throughout the genome.

2.3.2 Pol V-associated RNAs are produced by Pol V

Transcripts identified using RIP-seq are bound by Pol V and are expected to be the

products of Pol V based on its DNA-dependent RNA polymerase activity [117]. However,

they could also be produced by another RNA polymerase and bind to Pol V posttranscrip-

tionally. To distinguish between these possibilities, we first checked if accumulation of

those transcripts required Pol V. We tested several newly identified Pol V-associated tran-

scripts using locus-specific RT-qPCR and identified 20 loci which were suitable for primer

design and had a strong reduction of RNA accumulation in nrpe1 in RT-qPCR (Figure 2.2).

Therefore, transcripts obtained by RIP-seq are not only associated with Pol V but their

accumulation also depends on Pol V, which indicates that these transcripts are products of

Pol V.

Next, we tested if Pol V-associated transcripts are produced from regions where Pol V

is bound to DNA. We compared our RIP-seq with previously published Pol V ChIP-seq

obtained using the same antibody [56] and found that Pol V binds chromatin at regions

where we detected Pol V-associated transcripts (Figure 2.1C). Pol V transcription was also

enriched on many genomic regions bound by Pol V [56] (Figure 2.1D). Most regions pro-

ducing Pol V-associated transcripts also displayed Pol V binding to chromatin and Pol

V-dependent CHH methylation [120] which is a hallmark of RdDM (Figure 2.1E–G). Re-

gions identified only by ChIP-seq but not in RIP-seq had very low levels of Pol V-associated
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transcripts and low levels of Pol V-dependent CHH methylation [120] (Figure 2.1E–G).

In contrast, regions giving rise to Pol V-associated transcripts, which do not overlap Pol

V ChIP-seq peaks, still displayed reduction of DNA methylation in nrpe1 (Figure 2.1G),

suggesting that RIP-seq is a much more sensitive approach for detecting genomic regions

transcribed by Pol V. Overall, this analysis indicates that Pol V-associated transcripts are

produced from regions bound by Pol V. Together with published in vitro data [117], these

results suggest that Pol V-associated RNAs identified using RIP-seq are produced by Pol

V transcribing a genomic DNA template. Therefore, these RNAs are likely to be bona fide

Pol V transcripts.

2.3.3 Pol V regulatory elements

RIP-seq identifies Pol V transcripts with a higher resolution than ChIP-seq and should

facilitate discovery of the promoter of Pol V. RNA polymerases I, II, and III all use con-

served sequence elements as their core promoters and, thus, Pol V may as well. Our at-

tempts to identify conserved sequence motifs upstream of Pol V transcripts yielded no

conclusive results. Although de novo discovery of promoter elements in plant genomes is

not trivial [121], it is possible that Pol V may be directed to specific genomic loci by factors

other than conserved sequence motifs.

To identify features that may guide Pol V, we first determined which categories of loci

are transcribed by Pol V. Consistent with previously published data [57, 86], Pol V tran-

scripts originated from pericentromeric regions and from euchromatic chromosome arms

(Figure 2.3A). Pol V transcripts were preferentially produced from intergenic regions, gene

promoters, and all transposon families except long terminal repeat (LTR) transposons (Fig-

ure 2.3B). This distribution is consistent with previous reports suggesting that preexisting

repressive chromatin modifications are necessary for Pol V activity [85, 100, 101].

CG methylation is required for efficient Pol V binding to chromatin [100]. To test if Pol

V transcription overlaps CG methylation, we analyzed published whole genome bisulfite
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Figure 2.3: Pol V regulatory elements: (A) Pol V transcripts are produced from both pericen-
tromeric regions and chromosome arms. The number of mRNAs, transposons (TAIR10) or Pol
V transcripts was plotted on chromosome 1 in 500 kb windows. (B) Pol V transcripts are signif-
icantly enriched on promoters, intergenic sequences, and transposons of all families except LTR
transposons. Plots show ratios of features overlapping Pol V transcripts to those overlapping ran-
domized genomic regions. Stars denote significant differences based on permutations (p<0.001).
(C) CG methylation is not sufficient to mediate Pol V transcription. Genes annotated in TAIR10
were split into four categories based on the presence of CHH methylation (greater than 2%) and CG
methylation (greater than 10%). Enrichment of annotated Pol V transcripts on those categories of
genes was calculated by comparing the actual overlap with overlaps of random genomic loci. Stars
denote p<0.004. (D) MET1-dependent CG methylation is enriched within Pol V-transcribed re-
gions. Average CG methylation levels [120] within differentially methylated regions (DMRs) were
plotted on scaled Pol V transcripts. (E) A repressive histone modification is enriched on Pol V tran-
scribed regions. Profiles of average enrichment of the modified histone (H3K9me2 and H3K4me2)
over histone H3 were plotted on scaled Pol V transcripts. Enrichment of H3K9me2 and depletion
of H3K4me2 were statistically significant (p<0.0066and p<0.0001, respectively; permutation test).
(F) Pol V transcribes bidirectionally. Profiles of averaged Pol V RIP-seq signal (Col-0/nrpe1) in
forward (grey) or reverse orientation (red) on scaled Pol V transcripts. Forward strand refers to
annotated transcripts, reverse strand refers to the strand opposite to the annotated transcripts. (G)
Annotated Pol V transcripts are composed of multiple shorter RNAs. Lengths of paired-end RNA
fragments sequenced in RIP-seq mapping to nuclear and organellar genes (TAIR10) or to Pol V
transcripts were compared to sizes of full length RNAs derived from annotations (TAIR10).
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sequencing datasets [120]. DNA methylation in the CG context was increased throughout

the genomic regions transcribed by Pol V but not outside of those regions (Figure 2.3D).

Even though most Pol V transcripts were enriched in MET1-dependent CG methylation,

the levels of CG methylation were not sufficient to predict the levels of Pol V transcription

(Figure 2.4). This observation shows that CG methylation and Pol V transcription overlap

and provides support for preexisting CG methylation being an important factor in guiding

Pol V to specific loci. However, it also indicates that CG methylation does not regulate the

level of Pol V transcription and that CG methylation is not needed upstream of transcription

initiation sites. Instead it may be required within the transcribed regions.

We also tested if Pol V transcription overlaps with various posttranslational histone

modifications [122, 124, 123] and found that H3K9me2 overlapped Pol V- transcribed

regions in a way similar to CG methylation, while H3K4me2 was depleted on Pol V-

transcribed regions (Figure 2.3E). H3K4me3, H3K36me3, and H3K9ac also appeared

depleted but due to a higher noise level this depletion was not significant (Figure 2.4).

Although it is unknown which histone modifications are controlling Pol V transcription

and which are established in a Pol V-dependent manner, this is consistent with Pol V be-

ing guided to its genomic targets by repressive chromatin modifications present within the

transcribed regions.

The overlap between CG methylation and Pol V transcription suggests that CG methy-

lation may be required for Pol V transcription. To test this possibility, we assayed the

accumulation of six individual Pol V transcripts in the met1 mutant and suvh4/5/6 triple

mutant (Figure 2.4). Five loci showed a significant reduction in the accumulation of Pol

V transcripts in the met1 mutant, which is consistent with a requirement of MET1 for Pol

V transcription and with previous reports [100]. The suvh4/5/6 mutant had a reduced ac-

cumulation of Pol V transcripts at two loci (Figure 2.4), which indicates that SUVH4, 5,

and 6 (and H3K9me2 they presumably establish) may have a more subtle or locus-specific

effect on Pol V transcription. One of the tested loci showed a significant increase in RNA
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Figure 2-figure supplement 1
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Figure 2.4: Pol V regulatory elements (Supplementary): (A) CG DNA methylation levels do
not correlate with the levels of Pol V transcripts. Scatterplot shows CG methylation levels (wild-
type/met1) [120] and Pol V RIP signal (total Col-0/nrpe1, [RPM]) around the 5’ ends (+/- 300 bp)
of Pol V transcripts. (B) Histone modifications on Pol V transcribed regions. Profiles of average
enrichment of modified histones (H3K4me3, H3K9ac, H3K36me3, and H3K27me3 [122, 123] over
histone H3 [122] were plotted on scaled Pol V transcripts +/- 300 bp. (C) Accumulation of Pol V
transcripts is partially affected in met1 and suvh4/5/6 mutants. RT-qPCR for selected Pol V tran-
scripts was performed in Col-0, nrpe1, met1, and suvh4/5/6. Averages signal levels relative to wild
type and standard deviations from three biological replicates are shown. (D) Most regions are tran-
scribed by Pol V on both strands. Scatterplot shows Pol V RIP-seq signal (Col-0-nrpe1, [RPM])
from the forward (annotated) and reverse (opposite to annotated) strand on Pol V-transcribed re-
gions. Regions containing annotated transcripts on one or two strands are shown with different
colors. Trend line (blue), correlation coefficient and p value have been calculated using linear re-
gression. (E) The start and end sites of forward (annotated) and reverse (opposite to annotated) Pol
V transcripts are shifted. Boxplot (left) showing the distance between the 5’-end of the reverse to
the 3’-end of the forward Pol V transcript from the same genomic region (median distance -51 bp).
Boxplot (right) showing the distance between the 3’-end of the reverse to the 5’-end of the forward
Pol V transcript from the same genomic region (median distance -33 bp). (F) Size distribution of
Pol V transcripts in 50 bp bins. The median size of Pol V transcripts is 689 bp

29



accumulation in both mutants (Figure 2.4), which may be attributed to the loss of Pol II

silencing. These results are consistent with CG methylation being required for Pol V tran-

scription.

The requirement of CG methylation for Pol V binding to chromatin and transcription

may be interpreted as evidence of CG methylation recruiting Pol V to specific loci in the

genome. This would predict that CG methylation should be sufficient for Pol V transcrip-

tion. Alternatively, CG methylation may be one of many factors working together to de-

termine the specificity of Pol V. To distinguish between these possibilities, we analyzed

protein-coding genes, which show gene body CG methylation [125]. Pol V transcripts were

significantly depleted on body-methylated genes, identified by high levels of CG methyla-

tion and low levels of CHH methylation (Figure 2.3C). In contrast, Pol V transcripts were

enriched on genes having high levels of CHH methylation (Figure 2.3C), which are likely

caused by intronic transposons [126]. This suggests that CG methylation is not sufficient

for Pol V transcription and consequently, CG methylation is one of many factors involved

in guiding Pol V to specific genomic loci.

The possibility that preexisting repressive chromatin modifications guide Pol V predicts

that this polymerase should transcribe both strands of DNA. To test this prediction, we plot-

ted forward and reverse Pol V-RIP signal on aligned and scaled Pol V transcripts. We found

that, indeed, Pol V transcribed bidirectionally on annotated Pol V transcripts (Figure 2.3F)

and that transcription levels on both strands were somewhat correlated (Figure 2.4). Fur-

thermore, transcription on both strands was shifted with annotated Pol V transcripts on

the reverse strand starting 51 bp before annotated transcripts on the forward strand end

(Figure 2.4). These results support the idea that internal chromatin modifications may be

important for Pol V transcription. Furthermore, they also suggest that transcription on one

strand and, possibly, subsequently deposited chromatin modifications may be important for

the initiation of transcription on the other strand.

If internal repressive chromatin modifications control Pol V transcription, one might
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predict that Pol V could have multiple transcription initiation sites within one transcribed

region. This would manifest itself in the presence of several shorter RNAs within most

annotated Pol V transcripts. Alternatively, if Pol V had an external promoter, we would

expect the presence of one predominant RNA with a transcription start site close to the

beginning of the annotated transcript. Our RIP-seq protocol included sonication and ran-

dom priming steps, which preclude us from directly capturing the ends of intact RNAs.

However, we performed paired-end RNA sequencing, which provides an alternative way

to distinguish between these two possibilities. To do so, we mapped the paired-end reads

to all Arabidopsis transcripts annotated in TAIR10 as well as to Pol V transcripts. We then

plotted the relationship between the transcript length and the mean size of paired-end se-

quenced RNA fragments mapping to this transcript (Figure 2.3G). As the RIP-seq datasets

include significant amounts of background reads originating from polymerases other than

Pol V, we were able to determine the relationship between the size of each transcript known

from TAIR10 annotations and the mean length of mapped read-pairs (Figure 2.3G). Small

Pol V transcripts also followed this relationship, however, longer Pol V transcripts did not

produce longer sequenced fragments (Figure 2.3G). This indicates that actual RNAs pro-

duced from annotated Pol V transcripts are shorter than the size of these annotations. If the

relationship between transcript length and sequenced RNA fragments is the same or at least

similar for Pol V as it is for other DNA-dependent RNA polymerases, we would predict

an RNA length of 196 nt based on the median paired end fragment obtained from the first

repeat of Pol V RIP-seq (Figure 2.3G). A similar analysis of the second biological repeat

of Pol V RIP-seq predicts a median RNA length of 205 nt. Considering that the median

length of annotated Pol V transcripts is 689 nt (Figure 2.4), this indicates that annotated Pol

V transcripts contain more than one transcription initiation and/or termination site. This is

not only consistent with Pol V being controlled by internal promoters but also demonstrates

that Pol V transcripts annotated in our study are not individual continuous transcriptional

units but rather regions of Pol V transcriptional activity.

31



Overall, our analysis suggests that Pol V is controlled by internal promoters, similar

to what has been reported for a subset of Pol III transcripts [127]. Although any involve-

ment of DNA sequence elements cannot be excluded at this time, our data are consistent

with repressive chromatin modifications being at least important for Pol V recruitment and

possibly working as a functional equivalent of a promoter.

2.3.4 AGO4 binds most Pol V transcripts

Pol V is required for AGO4 binding to chromatin genome-wide [57], however, it is

unknown if AGO4 associates with Pol V transcripts beyond the handful of loci tested so

far [88, 90]. To test if the association with Pol V transcripts is a general feature of AGO4,

we performed RIP-seq using an antibody against AGO4 [88] in Col-0 wild type, ago4,

and nrpe1. Because the library prep method we used does not efficiently amplify siRNAs,

this approach should specifically detect long RNAs associated with AGO4. AGO4 RIP-

seq signal was significantly enriched on Pol V transcripts (Figure 2.5A,B) and this binding

was dependent on Pol V (Figures 2.5B, Figure 3—figure supplement 1). The presence of

AGO4 RIP-seq signal on most transcripts shown on the heatmap (Figure 2.5A) indicates

that AGO4 associates with most if not all Pol V transcripts. This is further supported by

a significant correlation between Pol V and AGO4 RIP-seq signals (Figure 3—figure sup-

plement 1). Additionally, annotations based on AGO4 RIP-seq yielded transcripts with

start and end sites similar to Pol V transcripts and overlapped regions with hallmarks of

RdDM [128, 120, 57] (Figure 2.5C, Figure 3—figure supplement 1). It should be noted

that the RIP assay includes formaldehyde crosslinking, which may preserve indirect inter-

actions. Therefore, the association we observed may reflect direct physical interactions or

indirect interactions with other proteins or nucleic acids in between AGO4 and lncRNAs.

AGO4 was shown to interact with Pol II on a limited number of loci where Pol II

transcripts have been suggested to fulfill a role similar to Pol V transcripts [129]. To test

if AGO4 binds to RNAs produced by polymerases other than Pol V, we identified RNAs
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Figure 2.5: AGO4 binds most Pol V transcripts: (A) AGO4 RIP-seq signal (Col-0/ago4) is en-
riched on the majority of Pol V transcripts. Total AGO4 RIP signal was plotted on scaled Pol V
transcripts. The p value was calculated using the permutation test by comparing 100 nt long regions
starting 200 nt upstream and 50 nt downstream of 5’ ends of the annotated transcripts. (B) Binding
of AGO4 to Pol V transcripts depends on Pol V. The box plot shows AGO4 RIP-seq signal on Pol
V transcripts. Stars denote p<2.2 * 10–16 (Wilcoxon test). (C) Pol V-dependent association of
AGO4 with RNA is correlated with RdDM. Boxplots show signal levels for Pol V RIP-seq, AGO4
RIP- seq, 24nt siRNA, AGO4 ChIP-seq, and CHH methylation. Transcript were called using AGO4
RIP-seq Col-0/ago4 and considered Pol V-dependent if AGO4 RIP-seq Col-0/nrpe1 >= 4. (D)
Pol V-independent association of AGO4 with RNA is not correlated with RdDM. Box plots show
signal levels for Pol V RIP-seq, AGO4 RIP-seq, 24nt siRNA, AGO4 ChIP-seq, and CHH methyla-
tion. Transcripts were called using AGO4 RIP-seq Col-0/ago4 and considered Pol V-independent if
AGO4 RIP-seq nrpe1/ago4 >= 4. (E) Pol V-independent transcripts bound by AGO4 are enriched
on intergenic sequences but are depleted on all transposons except SINEs. Plots show ratios of
features overlapping transcripts to those overlapping randomized transcripts. Stars denote p<0.001
(permutation test).
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Figure 3-figure supplement 1
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Figure 2.6: AGO4 binds most Pol V transcripts (Supplementary): (A) AGO4 binds Pol V tran-
scripts in a Pol V-dependent manner. Profile and heatmap for scaled Pol V transcripts +/- 300 bp.
The profile represents averaged total AGO4-RIP Col-0/nrpe1 signal [RPM]. In the heatmap every
row represents an individual Pol V transcript (sorted by size). The p-value was calculated using the
permutation test by comparing 100 nt long regions starting 200 nt upstream and 50 nt downstream
of 5’ ends of the annotated transcripts. (B) Close overlap between start and end sites of transcripts
annotated in AGO4 and Pol V RIP-seq. Left boxplot shows the distance between the initiation
sites of overlapping transcripts with the same orientation annotated based on Pol V RIP-seq and
AGO4 RIP-seq, respectively (median distance: -8 bp). Right boxplot shows the distance between
the 3’-ends of overlapping transcripts with the same orientation called in Pol V RIP-seq and AGO4
RIP-seq, respectively (median distance: -2 bp). (C) Intensity of AGO4 RIP-seq signal is correlated
with the intensity of Pol V RIP-seq signal. Scatterplot shows AGO4 RIP-seq signal and Pol V RIP-
seq signal (repeat 1) on annotated Pol V transcripts. The plot shows a trend line calculated using
linear regression (blue) as well as Spearman correlation coefficient and its p-value.

whose association with AGO4 did not depend on Pol V. They were characterized by RIP

signal present in Col-0 wild type and nrpe1 but not in ago4 (Figure 2.5D) and were de-

pleted on transposons and enriched on intergenic sequences and promoters (Figure 2.5E).

These RNAs were also enriched on Pol III-transcribed SINE elements (Figure 2.5E), which

suggests that AGO4 may be binding Pol III transcripts. Regions generating those RNAs

were not only not transcribed by Pol V but also failed to show any of the hallmarks of
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RdDM i.e. CHH methylation [120], presence of siRNAs [128] or AGO4 binding to chro-

matin [57] (Figure 2.5D). This suggests that association of AGO4 with RNAs produced

by a polymerase other than Pol V does not lead to RdDM. Therefore, this interaction is

either non-specific or reflects functions of AGO4 independent of RdDM. We conclude that

AGO4 associates with most Pol V transcripts and may have an additional role not related

to RdDM.

2.3.5 AGO4 and IDN2 enhance the accumulation of Pol V transcripts

Widespread association of AGO4 with Pol V transcripts suggests that Pol V transcripts

may be a substrate for AGO4 slicer activity [130]. Alternatively, AGO4 could function

without slicing Pol V transcripts. To distinguish between these possibilities, we performed

RIP-seq with the anti-NRPE1 antibody in the ago4 mutant. Presence of slicing by AGO4

would predict longer and more abundant transcripts in the ago4 mutant. We observed none

of those effects (Figure 2.7A,B, Figure 2.8). In contrast, accumulation of Pol V transcripts

was decreased in the ago4 mutant compared to Col-0 (Figure 2.7A,B, Figure 2.8). More-

over, analysis of the lengths of paired-end sequencing reads in the ago4 mutant predicted

an average transcript length of 200 nt, which is very similar to the size predicted for Col-0

wt (Figure 2.3G). These results indicate that AGO4 does not slice Pol V transcripts. In-

stead, AGO4 seems to enhance Pol V transcription or to stabilize Pol V transcripts. This

is consistent with slicing activity being dispensable for Ago recruitment to chromatin in

S. pombe [131]. Alternatively, AGO4 slicing products originating from Pol V transcripts

could be undetectable in our assay due to their size or loss of association with the Pol V

complex.

Another protein shown to associate with Pol V transcripts is IDN2 [90, 42]. Although

the biochemical function of IDN2 remains unknown, it could potentially affect the stability

of Pol V transcripts. We tested this possibility by performing RIP-seq with the anti-NRPE1

antibody in the idn2 mutant. Accumulation of Pol V transcripts was also reduced in idn2
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Figure 2.7: AGO4 and IDN2 enhance the accumulation of Pol V transcripts: (A) Accumulation
of Pol V transcripts is reduced in ago4 and idn2. Box plots show ratios of Pol V RIP-seq signals on
Pol V transcripts in various genotypes. Stars denote p<2.2 * 10–16 (Wilcoxon test). (B) Accumu-
lation of Pol V transcripts is reduced in ago4 and idn2 over the entire lengths of Pol V transcripts.
Average Pol V RIP-seq enrichment was plotted on scaled Pol V transcripts. Differences between
Col-0 and ago4 as well as Col-0 and idn2 are significant when measured between positions 50 nt
and 150 nt downstream of 5’ ends of Pol V transcripts (p<0.0001, permutation test). (C) On most
Pol V transcripts, Pol V-transcription is affected in a similar way in ago4 and idn2. Scatterplot of
total Pol V RIP signal in ago4 - Col-0 vs. idn2 - Col-0. The plot shows a trend line calculated using
linear regression (blue) as well as Pearson correlation coefficient and its p value.

(Figure 2.7A, Figure 2.8) over the entire lengths of the annotated transcripts (Figure 2.7B).

This indicates that, like AGO4, IDN2 also enhances Pol V transcription or increases the

stability of Pol V transcripts on both strands (Figure 2.8). Effects observed in ago4 and

idn2 were somewhat correlated (Figure 2.7C) and could not be explained by an overall

reduction of RNA levels in ago4 and idn2 as we did not observe a similar decrease on

mRNAs (Figure 2.8). This suggests that mutations in AGO4 and IDN2 could affect the

stability of Pol V transcripts. Alternatively, these mutations could indirectly affect Pol V

transcription by causing a general reduction in repressive chromatin modifications on Pol

V transcribed regions, which, in turn, would reduce the rate of Pol V transcription. Overall,

our results show that AGO4 and IDN2 are unlikely to contribute to slicing or other forms

of degradation of Pol V transcripts.
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Figure 4-figure supplement 1
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Figure 2.8: AGO4 and IDN2 enhance the accumulation of Pol V transcripts (Supplementary):
(A) Accumulation of Pol V transcripts is reduced in the ago4 mutant. Scatterplot shows read counts
from Pol V RIP-seq in Col-0 wild type and ago4. The plot shows a line where read counts are
equal in both genotypes (blue). Pearson correlation coefficient and its p value are calculated using
linear regression. (B) Accumulation of Pol V transcripts is reduced in the idn2 mutant. Scatterplot
shows read counts from Pol V RIP-seq in Col-0 wild type and idn2. The plot shows a line where
read counts are equal in both genotypes (blue). Pearson correlation coefficient and its p-value are
calculated using linear regression. (C) Forward and reverse transcripts are reduced in ago4 and idn2
on Pol V-transcribed regions, suggesting that AGO4 and IDN2 are important to stabilize transcripts
coming from both strands. Box plots show Pol V RIP signal calculated using reads with the same
or opposite orientation than Pol V transcripts. Stars denote p<2.2 * 10–16 (Wilcoxon test). (D)
Pol V transcript levels are reduced in ago4 and idn2. mRNA levels are on average not reduced in
Pol V RIP samples obtained in ago4 and idn2 compared to Col-0, suggesting that the reduction of
Pol V transcripts in the mutant backgrounds is not an artefact. Box plots show Pol V RIP signal
(mutant/Col-0) on Pol V transcripts and genes. Stars denote p<2.2 * 10–16 (Wilcoxon test).

2.3.6 RdDM is restricted to Pol V-transcribed regions

The current models of RdDM show that AGO4, IDN2, and other RNA-binding proteins

interact with Pol V transcripts at some distance from the transcribing core Pol V complex.
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Figure 5
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Figure 2.9: RdDM is restricted to Pol V-transcribed regions: (A) CHH methylation dependent
on Pol V closely overlaps Pol V transcription. Average CHH methylation levels within differentially
methylated regions (DMRs) were plotted on scaled Pol V transcripts ± 300 bp. Average Pol V RIP-
seq signal (Figure 2.1B) was plotted as a reference. (B) siRNAs closely overlap Pol V transcription.
Average enrichment of 24nt siRNA (Col-0/nrpd1 and Col-0/nrpe1) was plotted on scaled Pol V
transcripts. Average Pol V RIP-seq signal (Figure 2.1B) was plotted as a reference. (C) AGO4
binds to Pol V transcripts and corresponding DNA over the entire regions transcribed by Pol V.
Average signals of AGO4 RIP-seq and AGO4 ChIP-seq Col-0/nrpe1 were plotted on scaled Pol V
transcripts. Average Pol V RIP-seq signal (Figure 2.1B) is shown as a reference.

This distance is allowed by the lengths of lncRNA and the C-terminal domain of Pol V

which interacts with AGO4 [132, 133]. Although this spatial separation between Pol V

and downstream factors has not been addressed experimentally, it predicts that the DNA

methylation machinery may have some level of spatial flexibility especially over densely

packed chromatin relative to the progressing position of the core Pol V polymerase com-

plex. This flexibility could result in DNA methylation being established outside of the re-

gions transcribed by Pol V. To test this possibility, we plotted Pol V-dependent CHH methy-

lation [120] on DNA sequences corresponding to Pol V transcripts. CHH methylation was

significantly enriched within these sequences (Figure 2.9A, Figure 2.10). However, only

trace levels of CHH methylation were observed outside (Figure 2.9A, Figure 2.10). This

result shows that at least in genomic regions in close proximity to the annotated Pol V

transcripts, the RdDM pathway is only able to deposit DNA methylation within regions

transcribed by Pol V.

We further tested if other components of RdDM are present outside of DNA sequences

corresponding to Pol V transcripts. Analysis of previously published smRNA datasets [128]

indicated that Pol IV- and Pol V-dependent 24nt siRNAs mostly accumulated within regions

transcribed by Pol V (Figure 2.9B, Figure 2.10), indicating that Pol IV and Pol V likely
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Figure 2.10: RdDM is restricted to Pol V-transcribed regions (Supplementary): (A-C) Pol IV-
and Pol V-dependent 24 nt siRNAs as well as CHH methylation span the entire lengths of Pol V
transcripts. Average signals of Pol V-dependent CHH methylation (nrpe1 DMRs) (A) as well as Pol
IV-dependent (B) and Pol V-dependent (C) 24 nt siRNA were plotted on scaled Pol V transcripts.
Heatmaps show individual transcripts sorted by length. The p-values were calculated using the
permutation test by comparing 100 nt long regions starting 200 nt upstream and 50 nt downstream
of 5’ ends of the annotated transcripts.

transcribe the same genomic regions. Similarly, AGO4 associated with chromatin [57]

mostly within Pol V transcribed regions (Figure 2.9C). These results show that, at least in

genomic regions in close proximity to the annotated Pol V transcripts, several features of

RdDM are predominantly restricted between the start and the end of Pol V transcription.

Another and not mutually exclusive explanation of these results is that Pol V transcrip-

tion is tightly limited to regions with preexisting DNA methylation. Both interpretations

would be inconsistent with models assuming that the flexibility of Pol V transcripts could

allow chromatin modifying enzymes to reach outside of the transcribed regions. Overall,

these results are consistent with Pol V transcripts working in cis and mediating repressive

chromatin modifications exclusively within transcribed regions.
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Figure 2.11: Strand bias of RdDM and importance of AGO4 binding to Pol V transcripts: (A)
Pol IV-dependent 24nt siRNAs do not show a strand bias on Pol V transcripts. Average signal (Col-
0/nrpd1, [RPM]) for reads with the same or the opposite orientation as Pol V transcripts was plotted
on scaled Pol V transcripts ± 300 bp. (B) Pol V-dependent 24nt siRNAs do not show a strand bias
on Pol V transcripts. Average signal (Col-0/nrpe1, [RPM]) for reads with the same or the opposite
orientation as Pol V transcripts was plotted on scaled Pol V transcripts. (C) CHH methylation does
not show a strand preference on Pol V transcripts. Average signal of called differentially methy-
lated regions (DMRs) for CHH methylation (Col-0 - nrpe1) from the same or opposite strand as the
Pol V transcript was plotted on scaled Pol V transcripts. (D–G) CHH methylation follows AGO4
interactions with Pol V transcripts on the edges of heterochromatic domains. (D) Pol V binds and
transcribes DNA at the edges of heterochromatic domains. (E) CHH methylation is deposited on
regions transcribed by Pol V. (F) 24nt siRNAs overlap Pol V transcripts. (G) AGO4 associates with
RNA on regions transcribed by Pol V but association of AGO4 with DNA detectable by ChIP-seq
is present outside of the heterochromatic domains. Profiles represent normalized average signals on
heterochromatic domains (with H3K9me2) +/- 300 bp, aligned at the ends. In each panel, gray bars
on the x-axis (H3K9me2 region) and gray profiles (H3K9me2/H3) are shown. (H) High nucleosome
density prevents AGO4 from binding to DNA within heterochromatic domains. Scatterplot com-
pares H3 ChIP-seq signal to AGO4 ChIP-seq signal outside or inside of heterochromatic domains.
Heterochromatic domains were combined in 100 groups based on their H3 levels and plotted against
the log2 value of AGO4 ChIP-seq inside/outside the H3K9me2 region. ’Outside’ was defined as the
50 to 250 bp upstream of the left end of the heterochromatic domain, while ’inside’ corresponds to
50 to 250 bp inside the heterochromatic domain. The plot shows a trend line calculated using linear
regression (blue) as well as Pearson correlation coefficient and its p-value.
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2.3.7 Strand bias of RdDM

The observed high spatial resolution of RdDM could be accompanied by a correlation

between strand preference of Pol V transcripts and CHH methylation. Alternatively, Pol V

transcripts may mediate the establishment of CHH methylation on both strands of DNA.

Although Pol V tends to transcribe both strands of DNA (Figure 2.3F), these two scenarios

can be distinguished because the levels of Pol V transcription are often not equal between

both strands (Figure 2.4). To test if RdDM displays a strand preference on Pol V-transcribed

regions, we separately plotted both strands of siRNAs [128] (Figure 2.11A,B) and DNA

methylation [120] (Figure 2.11C) on Pol V-transcribed sequences. We observed no dif-

ferences in mean signal strengths on either strand throughout the transcribed regions. We

also found no correlations in strand preference between Pol V transcription, CHH methyla-

tion [120], and siRNAs [128] on Pol V transcribed regions (Figure 2.12). This indicates that

there is no strand preference of DNA methylation relative to siRNAs or Pol V transcripts,

which indicates that Pol V transcripts mediate the establishment of CHH methylation on

both strands of DNA.

2.3.8 Importance of AGO4 binding to Pol V transcripts

Several key RdDM factors have been shown to interact with both DNA and RNA

on silenced loci [90, 88]. It remains unknown, which interaction is more important for

RdDM. To answer this question, we focused our analysis on heterochromatic domains

where protein binding to DNA may be constrained by a high density of nucleosomes but

Pol V can still transcribe. We identified heterochromatic domains with high density of

H3K9me2 [122] and plotted various features of RdDM over their edges. Both Pol V bind-

ing to chromatin reported by ChIP-seq [56] and Pol V transcription observed by RIP-seq

overlapped the heterochromatic domains, which is consistent with Pol V transcribing si-

lenced genomic regions (Figure 2.11D). CHH methylation [120] was also enriched on the

heterochromatic domains (Figure 2.11E). Similarly, AGO4 binding to Pol V transcripts ob-
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Figure 2.12: Strand bias of RdDM and importance of AGO4 binding to Pol V transcripts (Sup-
plementary): (A-D) Strand preference of Pol V RIP on Pol V-transcribed regions is not correlated
with strand-preference of 24nt siRNA or CHH methylation. Scatterplots show ratios (forward/re-
verse) of sequencing reads (Pol V RIP-seq and 24nt siRNA [128]) or CHH methylation [120] ob-
served on Pol V transcripts. (A) Comparison of Pol V-transcription and Pol IV-dependent siRNAs.
(B) Comparison of Pol V-transcription and Pol V-dependent siRNAs. (C) Comparison of Pol V-
transcription and Pol V-dependent CHH methylation. (D) Comparison of Pol V-dependent CHH
methylation and Pol IV-dependent siRNAs. (E) High nucleosome density prevents AGO4 from
binding to DNA within heterochromatic domains. Heterochromatic domains were split into quar-
tiles according to the strength of their internal H3 signal [122] (first 200 bp from the end). Profiles
show the average H3 or AGO4 ChIP-seq (Col-0/ago4) [57] signal for ends of heterochromatic do-
mains.

served by RIP-seq overlapped H3K9me2 [122], Pol V transcription, 24nt siRNAs [128],

and CHH methylation [120] (Figure 2.11D–G). Interestingly AGO4 binding to DNA ob-

served by ChIP-seq [57] was strongly enriched on chromatin flanking these heterochro-

matic domains (Figure 2.11G). This indicates that CHH methylation more closely follows

AGO4 binding to Pol V transcripts than to DNA, suggesting that AGO4 interaction with

Pol V transcripts may be the primary event directing downstream factors of RdDM. Bind-

ing of AGO4 to chromatin outside of heterochromatic domains could be explained by ex-

clusion of protein binding to DNA by nucleosomes. To test this possibility, we grouped
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heterochromatic domains by strength of H3 ChIP-seq signal [122], which should indicate

nucleosome density. Indeed, AGO4 binding [57] outside of the heterochromatic regions

was correlated with nucleosome density (Figure 2.11H, Figure 2.12). Overall, these results

show the central role of AGO4 interactions with Pol V transcripts in RdDM. Although the

exact positions of various RdDM components within the silencing machinery and potential

effects of formaldehyde crosslinking remain unknown, our data are consistent with a spec-

ulative model where downstream components of RdDM interact with Pol V transcripts in

direct proximity to the Pol V complex and siRNAs base pair with RNA exiting the Pol V

complex.

2.3.9 Pol V determines the edges of transposons

RdDM targets edges of transposons while interior regions of large transposons are si-

lenced by other epigenetic mechanisms [134]. However, current mechanistic understanding

of RdDM does not explain this preference towards the edges of transposons. One possi-

bility is that Pol V preferentially transcribes the edges of transposons. Alternatively, Pol

V could transcribe the entire lengths of transposons but siRNAs could only be produced

on the edges. To distinguish between these possibilities, we plotted Pol V RIP-seq data on

all transposons which overlap annotated Pol V transcripts. While short transposons were

entirely transcribed by Pol V, longer TEs had a strong enrichment of Pol V transcription

on their edges (Figure 2.13A). We further analyzed euchromatic transposons longer than

4 kb, similar to those studied by [134]. They also displayed a strong enrichment of Pol V

transcription and Pol V-dependent CHH methylation [120] on their edges (Figure 2.13B,

Figure 2.14). In contrast, regions inside the transposons appeared to be depleted in Pol

V transcription compared to regions outside (Figure 2.13B). Pol IV transcripts [81] were

also enriched on edges of both categories of transposons, however, they were not depleted

inside the transposons (Figure 2.14). These results indicate that transcription by both Pol

IV and Pol V are involved in targeting RdDM to the edges of transposons. Preferential
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Figure 2.13: Pol V determines the edges of transposons: (A) Pol V transcripts are produced
over the entire lengths of small transposons but are enriched at the edges of larger transposons.
Annotated transposons (TAIR10) overlapping Pol V transcripts were split into quartiles according
to their size (smallest to largest), scaled and the Pol V RIP-seq signal Col-0/nrpe1 was plotted.
Heatmap shows individual transposons sorted by size (sizes shown on the adjacent plot). (B) Pol
V transcription is enriched on the edges of large transposons. Annotated euchromatic transposons
greater than 4 kb were aligned by their 5’- and 3’-ends and average Pol V RIP-seq signal was plotted
in 50 bp windows. The p value was calculated using the permutation test by comparing 500 nt long
regions starting 1000 nt outside and 250 nt within the TEs. (C) Pol V transcribes into transposons.
Transposons used in Figure 2.13A were aligned by their 5’- and 3’-ends and the average ratio of
sense to antisense Pol V RIP-seq signal was plotted. Heatmaps show individual transposons sorted
by the strength of transcription into the TEs. (D) Pol V transcribes into transposons. Transposons
used in Figure 2.13B were aligned with their ends and the average ratio of sense to antisense Pol V
RIP-seq signal was plotted.

transcription of transposon edges by Pol IV and Pol V suggests that these polymerases may

be involved in determining the borders of silenced regions. Little is known about the mech-

anisms determining chromatin boundaries in plants, however, transcription is inherently

directional and therefore could be involved in this process [135]. Although Pol V tends to

transcribe both strands of DNA (Figure 2.3F), a subset of Pol V transcripts is enriched on
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Figure 2.14: Pol V determines the edges of transposons (Supplementary): (A) Pol IV transcrip-
tion on transposons. Annotated transposons (TAIR10) overlapping Pol V transcripts were split into
quartiles according to their size (smallest to largest), scaled and the Pol IV RNA-seq signal Col-
0/nrpd1 [81] was plotted. (B) Pol IV transcription is enriched on the edges of large transposons.
Annotated euchromatic transposons greater than 4 kb were aligned by their 5’- and 3’-ends and
average Pol IV RNA-seq signal [81] was plotted in 50 bp windows. The p values were calculated
using the permutation test by comparing 500 nt long regions starting 1000 nt outside and 250 nt
within the TEs. (C) Pol V- and DRM1/DRM2-dependent CHH methylation are restricted to the
edges of large TEs (>4 kb), while CMT2 is more important for CHH methylation inside of TEs.
Average CHH methylation levels [120] were plotted in 50 bp windows on the 5’- and 3’-ends (+/- 4
kb) of large transposons. (D) Pol V-dependent 24 nt siRNAs and Pol IV-dependent 24 nt siRNAs are
limited to the edges of large transposons (>4 kb). Plots represent average signal on the 5’- and 3’-
ends (+/- 4 kb) of large transposons. Ratios of Pol IV- or Pol V-dependent 24 nt siRNAs [128] were
plotted. (E) Pol IV transcription shows no strand preference on transposon edges. Transposons used
in Figure 2.13A were aligned by their 5’- and 3’-ends and the average ratio of sense to antisense
Pol IV RNA-seq signal [81] was plotted. (F) Pol IV transcription shows no strand preference on
transposon edges. Transposons used in Figure 2.13B were aligned with their ends and the average
ratio of sense to antisense Pol IV RNA-seq signal [81] was plotted.

one strand (Figure 2.12) indicating that limited strand preference of Pol V may be involved

in determining boundaries of heterochromatin. To test this hypothesis, we determined the

ratio of strand preference of Pol V transcription relative to the orientation of transposons.

We first analyzed transposons selected for the presence of overlaps with Pol V transcripts.
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Pol V transcription on the 5’-ends of transposons was enriched on the sense strand while

Pol V transcription on the 3’-ends of transposons was enriched on the antisense strand.

This indicates that Pol V transcripts showed an enrichment of Pol V transcription into the

transposons at both ends (Figure 2.13C). Similarly, euchromatic transposons longer than 4

kb also showed enrichment of Pol V transcription into the transposons at both ends (Fig-

ure 2.13D). In contrast, datasets of Pol IV transcripts [81] did not show any evidence of

strand preference (Figure 2.14). This is consistent with the tight physical and functional

association of Pol IV with RDR2 [117, 80], which promptly converts Pol IV transcripts into

double stranded RNA. Because accumulation of Pol IV transcripts requires RDR2 [81], the

existence of strand preference of Pol IV transcription remains unknown. These results indi-

cate that Pol V preferentially transcribes into transposons. Therefore, we propose that Pol

V may play a key role in determining the boundaries of heterochromatin by transcribing

into silenced regions.

2.4 Discussion

2.4.1 Regulation of Pol V transcription

Pol V is one of the critical factors determining the specificity of RdDM. Therefore, the

promoter of Pol V and mechanisms regulating Pol V transcription may determine which

regions of the genome are targeted by RdDM. Previous studies using ChIP-seq failed to

identify conserved sequence elements which could be the Pol V promoter [56, 86]. Despite

much higher resolution of RIP-seq we also did not identify any conserved external or inter-

nal sequence elements. Although de novo discovery of promoter elements is difficult even

on Pol II genes [121] and requirement of short or variable sequence elements for Pol V

transcription cannot be excluded, this is consistent with recent work showing the require-

ment of methyl-binding proteins SUVH2 and SUVH9 for Pol V binding to chromatin and

transcription [100, 101]. Since SUVH2 and SUVH9 bind methylated DNA through their
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SRA domains [136, 100], this indicates that pre-existing DNA methylation may serve as

an equivalent of the Pol V promoter. We provide additional support for that possibility by

showing a strong overlap between CG methylation and Pol V transcription. At the same

time the accumulation of Pol V transcripts is not correlated with the levels of CG methyla-

tion and CG methylation is not sufficient to recruit Pol V. Moreover, Pol V transcription is

limited to the edges of transposons, while DNA methylation usually spans the entire lengths

of the transposable elements. This indicates that other unknown factors are involved in the

determination and regulation of Pol V transcription. RNA polymerases I and II primarily

use promoters located upstream of the transcription start sites, while Pol III mostly but not

exclusively uses internal promoters [127]. Pol V seems to behave more like Pol III in being

controlled by features present within the transcribed regions. This means that, although Pol

V is derived from Pol II [137], it possibly uses a different transcription initiation machinery.

2.4.2 The RdDM effector complex

Our data also provide insights into the interplay between Pol V, Pol V transcripts, and

associated proteins, which we refer to as the RdDM effector complex. First, our data

demonstrate on a genome-wide scale that RdDM of endogenous loci is mostly restricted to

regions transcribed by Pol V. This is consistent with data obtained in transgene or virus-

induced silencing [138, 139, 140] and could be interpreted as evidence that siRNAs base

pair with DNA and that Pol V only facilitates this interaction. Although this possibility

cannot be excluded based on currently available data [119], we provide additional indirect

support of base pairing between siRNAs and nascent Pol V transcripts. One reason why

siRNAs-lncRNA base pairing seems to be a more likely scenario is lack of detectable strand

preference between siRNAs, Pol V transcripts, and DNA methylation on Pol V-transcribed

loci. Although such a preference has been reported on other categories of loci [114, 91], this

discrepancy may be explained by the potential involvement of other RNA polymerases or

other factors. Since we show that both strands of DNA are equally likely to be methylated
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even if siRNAs or Pol V transcripts show a strong strand preference, this could indicate

that double stranded DNA is a substrate for DRM2. The simplest explanation for this ob-

servation would be base pairing between siRNAs and lncRNAs. Another result favoring

siRNAs-RNA base pairing is our analysis of regions with high density of nucleosomes

with H3K9me2. Although this analysis does not specifically take into account the activi-

ties of at least two putative ATP-dependent chromatin remodeling complexes involved in

RdDM [105, 42], it indicates that CHH methylation more closely follows AGO4 interac-

tions with RNA than with DNA. The exact architecture of the RdDM effector complex

remains mysterious mostly because formaldehyde crosslinking does not allow distinguish-

ing direct from indirect interactions. Our data show that this effector complex includes

AGO4 throughout the genome, however AGO4 does not slice Pol V transcripts. Previ-

ous work indicates the involvement of IDN2 [90, 42], which also seems to be involved in

enhancing the accumulation of Pol V transcripts. If, as argued above, siRNAs incorpo-

rated into AGO4 base pair with Pol V transcripts, restriction of DNA methylation to Pol

V-transcribed regions suggests that this base pairing is likely to occur in close physical

proximity to the Pol V complex. This is consistent with observations that AGO4 physically

interacts with the C-terminal domain of Pol V [133]. Another important question about the

RdDM effector complex is the involvement of RNA polymerases other than Pol V, which

has been suggested by genetic evidence [129]. Our data do not provide evidence of Pol I, II

or III functionally substituting for Pol IV in the nrpe1 mutant. However, it remains possible

that these other polymerases may be involved in the initiation of transcriptional silencing

or work with Argonaute proteins other than AGO4 [141].

2.4.3 Determination of heterochromatin boundaries

Although RdDM has been implicated in various biological processes [55], its functions

remain to some extent mysterious. It is especially true for its presumably main role of

silencing transposons. Transposons are stably silenced by the combined action of three
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silencing pathways. Two of them are maintenance pathways which rely on CG methy-

lation maintained by MET1 [114] and non-CG methylation maintained by CMT2 and

CMT3 [24, 134]. RdDM on the other hand is capable of establishing DNA methylation

de novo. Recently, yet another pathway has been implicated in directing silencing to active

transposons [142]. Our data show that Pol IV and Pol V direct RdDM to edges of trans-

posons. Moreover, Pol V preferentially transcribes into transposons, which indicates that

Pol V may be involved in determining the boundaries of heterochromatin on transposable

elements. This is reminiscent of the BORDERLINE lncRNA in S. pombe [143], however,

unlike BORDERLINE, Pol V transcripts are more likely to maintain heterochromatin over

the edges of transposons rather than to prevent the spreading of heterochromatin. The role

of RdDM in the determination of heterochromatin boundaries has been recently studied in

maize, where mutations in RdDM components MOP1, MOP2, and MOP3 enhance spread-

ing of euchromatin from genes into nearby transposons [144]. Although this supports a

role for RdDM in heterochromatin boundaries, the causal role of Pol V transcription in this

process remains to be directly demonstrated. The mechanism responsible for preferential

Pol V transcription into transposable elements remains unknown. One possibility is that

the transition from euchromatin to heterochromatin facilitates Pol V transcription. This

is however inconsistent with our data showing that Pol V transcription is controlled by

multiple internal promoter-like features. Another explanation is the presence of more than

one Pol V transcription initiation mechanism, with one mechanism responsible for unidi-

rectional transcription on TE boundaries and the other mechanism mediating bidirectional

transcription on all Pol V-transcribed loci.
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2.5 Materials and Methods

2.5.1 Plant Material

Col-0 wild type, nrpe1 (nrpd1b-11, [145], ago4-1 (introgressed into the Col-0 back-

ground, [88, 87], idn2-1 [89], met1-3 [146], and suvh4R203/suvh5-2/suvh6-1 [147, 148]

plants were grown in soil in long-day conditions. For all experiments, approximately 2.5

weeks old seedlings were used.

2.5.2 Antibodies

The antibodies against the largest subunit of Pol V (NRPE1) or against AGO4 were

described previously [79, 88].

2.5.3 RT-qPCR and RIP-seq

RT-qPCR experiments were performed in biological triplicates as reported in [149].

Oligonucleotides used for PCR are provided in 2.1. Fixation (0.5% formaldehyde) and

RIP were performed according to the previously published protocol [149] up to step 37,

using optimized amounts of protein A agarose beads coated with salmon sperm DNA in

case of RIPs performed with the alpha-NRPE1 antibody [79] or Dynabeads protein A in

case of alpha-AGO4 [88], respectively. Next, 1/10th vol. 3M NaOAc (pH 5.3), 2.5 vol.

96% ethanol and 1 ml NF-Pellet Paint were added to the samples and the inputs, pre-

cipitated overnight at -80C, and washed as described in steps 40 to 43 of the published

protocol [149]. After resuspension in 10 ml milliQ water, the samples were digested with

5.8 u Turbo DNase I in the presence of 24 u of Ribolock RNase inhibitor at 25C for 30

min. The reaction was stopped by adding 3 ml 25 mM EDTA (pH 8.0) and incubating at

65C for 10 min. To ensure that the DNase I digest and the immunoprecipitation had been

successful, 1/10th of the reaction was tested by RT-qPCR for the presence Pol V-transcripts

and absence of genomic DNA as described in [149]. Minus-RT controls were included in

50



all RT-qPCR assays and mock controls were included during protocol optimization exper-

iments. The remaining 9/10th were precipitated and resuspended in 5 ml milliQ water for

library generation.

Finally, library preparation was performed for mutant and wild-type samples by the

University of Michigan Sequencing Core using the Illumina TruSeq Stranded mRNA Sam-

ple Prep Kit, replacing the heat fragmentation with an incubation step on ice for 5 min.

No mRNA or rRNA depletion steps were performed. Libraries were sequenced by 50 bp

paired-end sequencing.

2.5.4 Mapping

Reads were mapped to the Arabidopsis genome (TAIR10) using SOAPsplice 1.10 [150],

allowing a maximum gap size within a two segment alignment of 10300 bp (correspond-

ing to the longest intron in Arabidopsis), choosing as output format SAM, and otherwise

using default conditions. These conditions correspond to a maximum of 3 mismatches and

2 indels allowed and non-unique reads being mapped only once. Separately mapped reads

belonging to the same pair were joined after mapping and only kept if reads from the same

pair had mapped to the same chromosome and were at most 3 kb apart.

2.5.5 RIP-seq transcript calling

We combined unique, non-genic (outside of TAIR10-annotated genes) sequencing reads

from both biological repeats of RIP-seq. Regions with more than 8 reads positioned no fur-

ther than 200 bp apart were identified as potential transcripts. We filtered the transcripts to

keep only those with at least 1 read per 100 bp and with more than four fold enrichment

(Col-0/nrpe1). The four fold enrichment test was then repeated with all sequencing reads,

including not unique reads. Transcripts containing genes annotated in TAIR10 have been

removed. We then performed the negative binomial test using NBPSeq R package[151].

Only transcripts with p<0.05 and FDR <0.05 were kept. We further filtered transcripts to
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Transcript Primer orientation Sequence (5’-3’)
ACTIN Forward GAGAGATTCAGATGCCCAGAAGTC

Reverse TGGATTCCAGCAGCTTCCA
PolV_0290 Forward AGCGGCCTAAATGAACATAATCCAGC

Reverse TCGTTGCTGGTTGTTCAAAACTGAC
PolV_0332 Forward ATGTTTCATCTTGTTGTGGCCAAGG

Reverse GTTTCGACAAGGTCTTCCAAACTAAAG
PolV_0736, PolV_0737 Forward ACCATATCCATTAATTTCGGGTTGG

Reverse AGTTCTGGGCACAAATATGGAACC
PolV_1057 Forward AATTTGGTGTTGGTACATCTCAACTG

Reverse TTTTCACCTTCCCTTTCGAGGTGG
PolV_1468 Forward AAAGCGATTTAGGCGGTCGACTAGG

Reverse ACAGTTGTCTATACGTCGCGTGAGC
PolV_1629 Forward ATCATATCTTGCACCTCGGAAT

Reverse CGGGAATTTTTGCCACTAAA
PolV_1702, PolV_1703 Forward TACCCTTGCCCTTTGTATCTTCTCC

Reverse GTGAGTGCCAATTTCTGCATCAAG
PolV_1818, PolV_1819 Forward CGAAGGACGAAACTTTTTGG

Reverse GGTTTAAACGCAGCCAATGT
PolV_1873, PolV_1874 Forward ATGGCCGAAATGTTGATAATGTGTAATC

Reverse CATGTTATGCTCAACCGGCGAC
PolV_1927, PolV_1926 Forward GACCCATCTGCGATTCTGCGTTATG

Reverse GCGGATGACAGAGGGAGAACCAATC
PolV_2058 Forward GGGCTTCCCTCTGAGTGTTT

Reverse CCGAAGCCCAACTAATATCG
PolV_2729 Forward TGGCCCTTTCTCCTTCGACAACAAC

Reverse TTTTACATTGCAACGCACCCGTCC
PolV_2868 Forward GACGGCACGGTTTCCTTGAATTCTC

Reverse GTCAAGTGGGAATGTGACACTGCGG
PolV_3151 Forward CCTCACTCAAAGAAACGAGTTCCGAG

Reverse AGTGAAAGGGAGAGGAGTTGTTTGTG
PolV_3420 Forward TTATTTTCAGGCCATAAAGAACCCAC

Reverse TTGTTGTAACTTGTAACTCGGACAAAG
PolV_3481 Forward TTGTGGTCCAATTTGCTACG

Reverse GGCAGCAGGATATTCGGTTA
PolV_3863, PolV_3862 Forward TCTTAATCGAACGCATGTGG

Reverse TGCAGCATCTGATCAACAAA
PolV_3926, PolV_3925 Forward CGTGTCTGGTTGAGACCAAATTAGC

Reverse ATTAAACTCTGGAATCCGCGAGAAG
PolV_3958 Forward TACCAACGCATCTCAAAATTGAACC

Reverse AAAATATTAAAGGGCGCGCTATTCG
PolV_4213 Forward TTTGGAACAGACAATAAACCGACGC

Reverse AGTCTTCGACGGACTAACTACGGAC

Table 2.1: Oligonucleotides used in this study
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keep only those with more than four fold enrichment (Col-0/nrpe1) in each repeat counted

separately and with more than 2 reads in Col-0 in each of the biological repeats.

We called AGO4-bound transcripts as described for Pol V-transcripts, using the data

obtained in the AGO4 RIP-seq for Col-0 and ago4, except that we filtered to 4 reads in

Col-0, six-fold enrichment in Col-0/ago4 and did not perform the negative binomial test

(since we performed one biological repeat of AGO4 RIP-seq). Transcripts were considered

Pol V-dependent if the enrichment in the AGO4-RIP (Col-0/nrpe1, [RPM]) was at least

four-fold. AGO4-bound transcripts were considered to be Pol V-independent if the AGO4-

RIP nrpe1/ago4 signal was at least four-fold.

2.5.6 Heterochromatic regions

The genome was divided into 100 bp windows with 50 bp overlaps and H3K9me2

ChIP-seq[122] reads were counted. Those windows containing a greater number of reads

than the median were kept and combined if sequentially located. Regions greater than 1 kb

were then used in the analysis. Pol V and AGO4 ChIP-seq[56, 57], RIP-seq, siRNA[128],

and CHH methylation[120] data were plotted as averages on aligned ends of heterochro-

matic regions +/- 300 bp.

For comparing AGO4-ChIP[57] and H3-ChIP[122] intensity(Figure 2.11F,Figure 2.12),

heterochromatic regions were grouped into 100 or 4 groups according to the strength of the

H3 signal (left end + 50 to 250 bp). The log2 value of the ratio of AGO4-ChIP signal inside

(first 50 to 250 bp from the left end of the heterochromatic region) and outside (region 250

to 50 bp upstream of the left end of the heterochromatic region) was calculated and plotted

against the median H3-ChIP signal. To visualize the ranking and the binding of AGO4 next

to the H3K9me2 regions, the ranked heterochromatic regions were split into quartiles and

the average H3 ChIP-seq signal[122] or AGO4 ChIP-seq Col-0/ago4 enrichment[57] was

plotted as profiles at the 5’-end +/- 300 bp of the called heterochromatic regions.
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2.5.7 Data visualization on heatmaps and profiles

Reads were counted using BEDTools 2.15.0 on Pol V-transcripts +/- 300 bp and RPM

normalized. Transcripts were scaled to a uniform length and ratios of wild type and mu-

tant signal was plotted on scaled individual transcripts (heatmap) or as an average (pro-

file). To allow the visualization of individual transcripts, heatmaps show every other tran-

script sorted by size. For DNA methylation [120], subtraction of mutant methylation levels

from wild-type were used instead of ratios and average methylation levels on differentially

methylated regions (DMRs) were plotted.

Transposons annotated in TAIR10 were filtered for the presence of any overlaps with

annotated Pol V transcripts. Alternatively, transposons larger than 4 kb from genomic

regions with more genes than transposons were used. For strand preference analysis, ratios

of the Pol V RIP-seq signal with the same or the opposite orientation than transposons were

plotted on scaled transposon overlapping Pol V transcripts (+/- 300 bp) or, for transposons

larger than 4 kb, at the 5’- and 3’-ends +/- 4 kb.

Significance of differences observed on profiles of average signal strengths was tested

using the permutation test with 10,000 permutations. Averages from all nucleotides for

specified regions were calculated for each transcript/TE without scaling to uniform tran-

script lengths.

2.5.8 Comparison of ends of Pol V transcripts

Differences between the positions of 5’- and 3’-ends of Pol V transcripts produced at

the same locus but from opposite strands were plotted as boxplots. For comparing Pol V

transcripts and AGO4-bound transcripts, the distances between ends were calculated for

transcripts with the same orientation and a minimum overlap of 50%.
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2.5.9 Comparison of Pol V RIP-seq and Pol V ChIP-seq

Overlapping Pol V-transcripts were combined to Pol V-transcribed regions and com-

pared to a previously published list of Pol V ChIP-seq peaks[56] obtained using the same

anti-NRPE1 antibody. Boxplots show enrichment on ChIP peaks or Pol V-transcripts or

regions where both overlap. For randomization, 1000 permutations of the overlap of Pol V

transcribed regions and Pol V ChIP peaks were performed.

2.5.10 Prediction of transcript size

Pol V RIP-seq paired end sequencing reads were mapped to all Arabidopsis transcripts

(TAIR10) and Pol V transcripts. Mean lengths of sequenced fragments were calculated for

transcripts with distinct origins and annotated lengths. Regression analysis using transcripts

annotated in TAIR10 was applied to predict the length of Pol V transcripts based on the

median length of sequenced fragments.

2.6 Previously Published Sequencing Datasets

Arabidopsis genome annotations (TAIR10) were obtained from TAIR. Pol V ChIP-

seq data (SRA054962) and peak list, as well as, the AGO4 ChIP-seq data (GSE35381)

were published previously [56, 57]. DNA methylation data (GSE39901) were used from

Stroud et al.[120]. ChIP-seq data for histone modifications (GSE37644, GSE49090, and

GSE28398) were published previously[124, 122, 123]. Pol V ChIP-seq dataset in the met1

mutant (GSE52041) was reported by [100]. siRNA (GSE36424) were reported previously

[128]. Pol IV transcription data (SRP059814) were used from [81].

2.6.1 Data access

The sequencing data from this study have been submitted to the NCBI Gene Expression

Omnibus under accession number GSE70290.
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CHAPTER III

Broad Non-coding Transcription Suggests Genome

Surveillance by RNA Polymerase V

Masayuki Tsuzuki1, Shriya Sethuraman1, Adriana N. Coke, M. Hafiz Rothi, Alan P.

Boyle, and Andrzej T. Wierzbicki

3.1 Abstract

Eukaryotic genomes are pervasively transcribed, yet most transcribed sequences lack

conservation or known biological functions. In Arabidopsis thaliana RNA polymerase

V (Pol V) produces non-coding transcripts, which base-pair with small interfering RNA

(siRNA) and allow specific establishment of RNA-directed DNA methylation (RdDM) on

transposable elements. Here, we show that Pol V transcribes much more broadly than pre-

viously expected, including subsets of both heterochromatic and euchromatic regions. At

already established RdDM targets Pol V and siRNA work together to maintain silencing.

In contrast, some euchromatic sequences do not give rise to siRNA but are covered by low

levels of Pol V transcription, which is needed to establish RdDM de novo if a transposon is

reactivated. We propose a model where Pol V surveils the genome to make it competent to

silence newly activated or integrated transposons. This indicates that pervasive transcrip-

tion of non-conserved sequences may serve an essential role in maintenance of genome

integrity.

1 co-first authors
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3.2 Significance Statement

Eukaryotic genomes are pervasively transcribed, yet most transcribed sequences lack

conservation or known biological functions. We show that a specialized plant-specific RNA

Polymerase V broadly transcribes the Arabidopsis genome. We propose a model where

Pol V transcription surveils the genome and is required to recognize and repress newly

inserted or reactivated transposons. Our results indicate that pervasive transcription of non-

conserved sequences may serve an essential role in maintenance of genome integrity.

3.3 Introduction

Eukaryotic genomes confront a variety of threats to their integrity. Transposable ele-

ments (TEs) are prevalent in most eukaryotic genomes and their activity is repressed by a

variety of gene silencing mechanisms. One of those processes is RNA-mediated transcrip-

tional gene silencing. In plants it is known as RNA-directed DNA methylation (RdDM)

and represses TEs, repeats and other potentially harmful genetic elements by establishing

repressive chromatin marks [153]. This process relies on small interfering RNAs (siRNAs),

which in plants are most commonly produced from precursors generated by a specialized

RNA polymerase, Pol IV. RdDM also requires the presence of lncRNA scaffolds, which are

needed for the recognition of complementary target sequences by siRNA [55]. While fungi

and possibly also animals use RNA Polymerase II (Pol II) to produce scaffold transcripts

[153], plants use another specialized RNA Polymerase, Pol V [112, 88]. Several lines

of evidence suggest that siRNA-AGO4 complexes recognize target loci by base-pairing

with nascent scaffold transcripts [152, 154, 88], although siRNA-DNA base pairing is also

possible [155]. Interaction of Pol V and its transcripts with siRNA-AGO4 leads to the re-

cruitment of de novo DNA methyltransferase DRM2, which establishes DNA methylation

[90, 91].

A key feature of RdDM is sequence-specificity, which assures efficient targeting of TEs
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and prevents inadvertent silencing of endogenous genes. This specificity is determined by

the recruitment of both Pol IV and Pol V to TEs. However, unlike most DNA-dependent

RNA polymerases, Pol IV and Pol V do not rely on sequence-encoded promoters [99].

Instead, they are recruited by pre-existing repressive chromatin modifications [100, 82,

101, 103]. This explains how silencing of already repressed TEs is specifically maintained

by a positive feedback of RdDM.

An important unresolved question about RdDM is the mechanism responsible for the

initial silencing of newly inserted or reactivated TEs. This process requires the activity of

Pol V [108, 142, 109, 110, 156](Gallego-Bartolomé et al., 2019); however, it is unknown

how Pol V is specifically recruited to TEs in the absence of pre-existing DNA methylation.

Another open question about RdDM is the functional relationship between Pol II, Pol IV

and Pol V, which are all involved in this process. This especially applies to Pol IV and Pol V,

which are recruited by H3K9me2 and DNA methylation, respectively [157, 82, 101, 103].

Because these repressive chromatin modifications are closely functionally related, Pol IV

and Pol V are expected to be recruited to the same loci. This negates the need for two

specialized polymerases and raises the question why one polymerase cannot produce both

siRNA precursors and scaffold transcripts, as is the case in fission yeast [153].

Here, we show that Pol V transcription is not limited to transposable elements and other

known RdDM targets. Instead, Pol V transcribes broadly and pervasively. Specificity of

silencing is not restricted by the recruitment of Pol V; instead, siRNA production is likely

its primary determinant. Pol V is needed to facilitate silencing of reactivated transposable

elements, presumably by making them competent to receive the silencing signal. This

explains how RdDM may be established de novo and explains the functional relationship

between Pol II, Pol IV and Pol V. This also demonstrates that pervasive transcription of

non-conserved genomic regions serves an important role in maintaining genome integrity.
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3.4 Results

3.4.1 Pol V transcribes broadly

Figure 1
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Figure 3.1: Pol V transcribes more broadly than expected: (A) IPARE method of detecting Pol
V transcription. (B) Genome browser screenshot of a region transcribed by Pol V. TAIR10 genome
annotation, DNA methylation in CHH contexts and IPARE data are shown. (C) IPARE reads from
Col-0 wild type cover a greater proportion of the genome than known features of RdDM including
siRNA [102], annotated transposable elements [110] and CHH DMRs. (D) HMM identifies Pol
V-transcribed regions of the genome. Boxplot shows IPARE signal using combined data from three
biological replicates comparing bins identified as Pol V transcribed (States 0 and 1) or non-Pol
V transcribed (States 2 and 3). (E) Pol V IPARE signal depends on the enzymatic activity of
Pol V. Boxplots show RPM-normalized IPARE signal levels at Pol V transcribed and non-Pol V
transcribed regions in Col-0, nrpe1 (null allele), dms5-1 (early termination allele of NRPE1) and
drd3-3 (catalytic active site point mutant of NRPE1). Stars indicate Wilcoxon test p < 2.2e-16. (F)
Pol V IPARE signal depends on the activity of the DDR complex. Boxplots show RPM-normalized
IPARE signal levels at Pol V transcribed and non-Pol V transcribed regions in Col-0 and nrpe1 as
well as mutants in DDR subunits drd1 and dms3. Stars indicate Wilcoxon test p < 2.2e-16.

The current model of RdDM predicts that Pol V transcribes only bona fide RdDM

targets. To test this prediction, we developed a high sensitivity method to detect Pol V tran-

scription: Immunoprecipitation followed by Analysis of RNA Ends (IPARE) (Figure 3.1A).
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It combines immunoprecipitation of the Pol V complex using an antibody specific to-

wards NRPE1, the largest subunit of Pol V[152], with a modified nanoPARE RNA-seq

protocol[158]. This method achieved a greatly improved sensitivity in detecting Pol V

transcripts (Figure 3.2A) but not mRNA (Figure 3.2B) compared to previously used RNA

Immunoprecipitation [152] or GRO-seq [154].

Analysis of the IPARE results confirmed the presence of the anticipated Pol V transcrip-

tion signal on known RdDM targets (Figure 3.2A)[152, 154, 112], which were previously

shown to have high levels of CHH methylation and 24nt siRNA[152]. One locus is shown

on a genome browser screenshot in Figure 3.1B and Figure 3.2C. Surprisingly, IPARE se-

quencing reads from Col-0 wild type covered a relatively large proportion of the genome,

which could be observed in three biological replicates of IPARE (Figure 3.2D) and in a

merged dataset, where as much as 31.2% of the genome is covered by sequencing reads

in Col-0 wild type (Figure 3.2D with thinning and Figure 3.1C without thinning). This is

substantially more than expected based on the extent of siRNA accumulation, CHH methy-

lation or transposable element (TE) annotations (Figure 3.1C). This indicates that Pol V

transcribes more broadly than the estimates of RdDM prevalence.

Detection of Pol V transcription by IPARE relies on the availability of a negative con-

trol, the null nrpe1-11 mutant, which does not contain the epitope for IP and has no strong

developmental or physiological phenotypes [152, 78, 79, 88]. The nrpe1 mutant had 8.1%

of the genome covered by IPARE sequencing reads, compared to 22.8% in the Col-0 wild

type dataset thinned to the same coverage as nrpe1 (Figure 3.2D). To eliminate background

signal originating from Pol I, II and III we filtered all sequencing reads based on known

properties of different RNA polymerases[152, 154] (Figure 3.2E). This eliminated the vast

majority of reads present in nrpe1 (1.9% genome coverage remaining) but only a small

subset of reads from Col-0 wild type (23.3% genome coverage remaining without thin-

ning) (Figure 3.2F). This confirms that the IPARE signal originates from bona fide Pol V

transcripts and Pol V transcribes more broadly than the estimates of RdDM prevalence.

62



D
rep1 rep2 rep3 All reps merged

0

5

10

15

20

25

G
en

om
e 

co
ve

ra
ge

 o
f 

th
in

ne
d 

re
ad

s 
%

C
ol

-0

C
ol

-0

C
ol

-0

C
ol

-0

nr
pe
1

nr
pe
1

nr
pe
1

nr
pe
1

F

0

5

10

15

20

25

G
en

om
e 

co
ve

ra
ge

 o
f 

sc
or

ed
 r

ea
ds

 %

rep1 rep2 rep3 All reps merged

C
ol

-0

C
ol

-0

C
ol

-0

C
ol

-0

nr
pe
1

nr
pe
1

nr
pe
1

nr
pe
1

E
Scoring reads

Gene PolV transcript

Col-0

nrpe1

Penalties given if:

1. Strand ratios biased
2. Reads present in Col-0 

and nrpe1

Positive scores given if:

1. Col-0 > nrpe1 on both 

2. Very few nrpe1 reads
strands

CA

R
P

M
 a

t P
ol

 V

C
ol

-0

C
ol

-0

C
ol

-0

C
ol

-0

nr
pe
1

nr
pe
1

nr
pe
1

nr
pe
1

RNASeq RIPSeq GROSeq IPARE

tr
an

sc
ri

be
d 

re
gi

on
s

0.0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

0

1

2

3

4

5

0

20

40

60

80

100

0
0.1
0.2
0.3
0.4
0.5

0

1
2

3

4

0
1
2

4
5

0
20

60
80

100

3
60

annotated genes

Col-0

nrpe1

Col-0 rep1

Col-0 rep2

Col-0 rep3

nrpe1 rep1

nrpe1 rep2

nrpe1 rep3

non-RdDM

RdDM

CHHme

Pol V
IPARE

Pol V
transcribed

regions

R
P

M
 a

t g
en

es

B

0

5

10

15

20

25

0

2

4

6

8

10

0

20

40

60

0

2

4

6

8

C
ol

-0

C
ol

-0

C
ol

-0

C
ol

-0

nr
pe
1

nr
pe
1

nr
pe
1

nr
pe
1

0
5

10
15
20
25

0
2
4
6
8

0

20

60

0
2

6
8

10

40
4

10

RNASeq RIPSeq GROSeq IPARE

Figure 3.2: Pol V transcribes more broadly than expected: (A) High sensitivity of Pol V IPARE
compared to previously published datasets. Boxplot shows RPM-normalized signal levels of RNA-
Seq [42], Pol V RIP-Seq [152], GRO-Seq [154] and Pol V IPARE (this study) counted on Pol V
transcripts identified previously [152].Differences in signal levels are indicated by different y-axis
scales. Wilcoxon test p < 2.2* 10-16 for Pol V RIP, GRO-seq and IPARE. (B) IPARE signal is
not enriched at genes. Boxplot shows RPM-normalized signal levels of RNA-Seq [42], Pol V RIP-
Seq [152], GRO-Seq [154] and Pol V IPARE (this study) counted on genes annotated in TAIR10.
(C) Genome browser screenshot of the same region transcribed by Pol V that is shown in Fig 3.1B.
TAIR10 genome annotation, DNA methylation in CHH contexts, three independent biological repli-
cates of Pol V IPARE and annotated Pol V transcribed regions data are shown. (D) Pol V IPARE
reads cover a substantial proportion of the Arabidopsis genome. Bar plot shows percentages of the
genome covered by reads from three individual biological replicates and combined reads from all
replicates of Col-0 and nrpe1. The numbers of reads in both genotypes were randomly thinned
to obtain equal sequencing depths. (E) Diagram of scoring of Pol V IPARE reads to eliminate
background originating from Pol I, II and III. (F) Filtered Pol V IPARE reads cover a substantial
proportion of the Arabidopsis genome. Bar plot shows percentages of the genome covered by reads
from three individual biological replicates and combined reads from all replicates of Col-0 and
nrpe1.

To obtain a reliable and unbiased way to identify Pol V transcribed genomic regions we

split the genome into 200 bp long bins and used a Hidden Markov Model (HMM) to iden-
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tify bins with evidence of Pol V transcription (Figure 3.3A). Using raw RPM normalized

Pol V IPARE sequencing data combined from three biological replicates, this approach

split the genome into Pol V-transcribed (42.4%) and non-Pol V-transcribed (57.6%) bins

(Figure 3.1D). IPARE signal levels were not caused by stochastic mapping of sequencing

reads (Figure 3.3BC) and were significantly correlated between three independent biolog-

ical replicates (Figure 3.3D). Non-Pol V transcribed bins include loci with no detectable

transcription, transcription by other RNA polymerases and a smaller subset of bona fide

RdDM targets where the loss of RdDM in nrpe1 leads to increased transcription by other

RNA polymerases. Together, these results further confirm that Pol V transcribes more

broadly than previously expected.

To determine if IPARE specifically detects Pol V transcription, we performed this assay

using the drd3-3 mutant[78], which is an allele of NRPE1 with a point mutation in the

catalytic active site[113]. This mutant is expected to contain the epitope for IP but no Pol

V transcripts[112]. The IPARE signal in drd3-3 was significantly lower than in Col-0 wild

type (Figure 3.1E), which confirms that IPARE specifically detects Pol V transcripts. We

obtained a similar result with dms5-1, another allele of NRPE1, which contains a premature

stop codon[106] (Figure 3.1E). To further test the specificity of IPARE we used drd1 and

dms3 mutants, which lack subunits of the DDR complex and are expected to disrupt Pol V

transcription without affecting the accumulation of Pol V[58, 112, 88, 86]. IPARE signal

was slightly higher in drd1 and dms3 than in nrpe1 (Figure 3.1F), which is consistent with

the epitope (NRPE1) being present in those mutants but could also be explained by the

presence of another mechanism recruiting Pol V. It was, however, significantly lower than

in Col-0 wild type (Figure 3.1F), which further confirms that IPARE specifically captures

Pol V transcripts. Although pervasive transcription is inherently difficult to demonstrate,

these results indicate that alternative explanations of the broad IPARE signal are unlikely

and confirm that Pol V transcribes more broadly than previously expected.
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3.4.2 Pol V is not the primary determinant of silencing specificity

Broad presence of Pol V throughout the genome suggests that it may not be the primary

determinant of the specificity of RdDM. To test this prediction, we designed HMM-based

identification of Pol V-transcribed regions in a way that allows distinguishing RdDM targets

from sequences not targeted by RdDM. This determination was possible based on whole

genome bisulfite sequencing data of CHH methylation. Among four identified HMM states,

two (State 0 and State 1) included Pol V-transcribed regions (Figure 3.1D, Figure 3.4A,
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siRNA signal [102] at each of the 4 emission states of HMM output.

Figure 3.5A). Regions identified as State 0 were enriched in Pol V-dependent CHH methy-

lation (Figure 3.4B), which indicates that they are bona fide RdDM targets. State 1 on the

other hand, although Pol V-transcribed (Figure 3.4A) and abundant throughout the genome

(Figure 3.5B), had no enrichment in Pol V-dependent CHH methylation (Figure 3.4B). This

indicates that there is evidence of extensive Pol V transcription outside of RdDM targets.

Although non-RdDM Pol V transcription (State 1) is clearly detectable, it accumulates

at substantially lower levels than RdDM Pol V transcription (State 0; Figure 3.4A). To con-

firm that non-RdDM Pol V transcription is not an artifact of IPARE, we performed real time

RT-PCR using total RNA on arbitrarily selected non-RdDM Pol V transcribed regions. We

found 10 primer pairs that showed a substantial signal reduction in nrpe1 (Figure 3.5C),

which is consistent with the presence of Pol V-dependent transcription. We further used

IPARE to analyze the drd3-3 and dms5-1 alleles of NRPE1, which had significant reduc-

tions of signal on both RdDM (State 0) and non-RdDM (State 1) Pol V-transcribed regions

(Figure 3.5D). This confirms that Pol V transcribes both RdDM and non-RdDM genomic

regions and therefore, presence or absence of Pol V may not be essential for the determi-
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Figure 3.5: Comparison of RdDM and non-RdDM Pol V transcription.: (A) Pol V IPARE signal
in Col-0 wild type compared to nrpe1 at individual emission states identified by HMM. Scatterplot
shows RPM-normalized signal levels in Col-0 and nrpe1. States 0 and 1 have more reads in Col-0
than nrpe1 and represent Pol V transcribed loci. State 2 and 3 have comparable numbers of reads in
Col-0 and nrpe1 and are not Pol V transcribed.(B) Percentages of the Arabidopsis genome covered
by Pol V transcription. The chart shows values for HMM state 0 (non-RdDM Pol V transcripts),
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overlaps.(C) Locus-specific validation of non-RdDM Pol V transcription by real time RT-PCR using
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relative to Col-0 and corrected using ACTIN2. Plots show averages and standard deviations from
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nation of the specificity of RdDM.

We further analyzed regions of non-RdDM Pol V transcription to determine where in

the genome Pol V transcribes independently of RdDM. We first performed HMM-based

identification of Pol V transcription independently in each individual biological replicate

of IPARE and determined the percentage of genomic bins identified in at least two inde-

pendent replicates. While 77% of RdDM Pol V transcripts were identified more than once,

50% of non-RdDM Pol V transcripts were identified more than once. This is consistent

with detection of non-RdDM Pol V transcription being limited by sequencing depth and

this category of transcripts being possibly more widespread than detected at the sequenc-

ing coverage we used. Further analysis of non-RdDM Pol V transcription indicated that it

is not associated with proximity to RdDM loci (Figure 3.6A), it is mostly euchromatic (Fig-

ure 3.6BC) and enriched on intergenic regions (Figure 3.6D). While RdDM regions had the

expected high levels of CG methylation, a minor subset of non-RdDM Pol V transcribed

regions also had elevated levels of CG methylation (Figure 3.6E), which may be explained

by RdDM-independent silencing or gene body methylation. Together, these results support

the possibility that non-RdDM Pol V transcription is produced stochastically and mostly

non-specifically over a substantial fraction of the genome.

If Pol V has a limited role in determining the specificity of RdDM, Pol IV-dependent

production of siRNA remains the expected alternative determinant of specificity[55]. To

test this possibility, we quantified previously published Pol IV-dependent 24nt siRNA[102]

on regions corresponding to four states identified by HMM. State 0, which corresponds to

RdDM Pol V transcription, was enriched in Pol IV-dependent 24nt siRNA (Figure 3.4C).

However, state 1, which corresponds to non-RdDM Pol V transcription was not enriched

in siRNA (Figure 3.4C). We further tested the enrichment of small RNA clusters detected

in Col-0 wild type on four states and found that small RNAs were enriched on RdDM

Pol V transcripts but not non-RdDM Pol V transcripts or non-Pol V transcribed regions

(Figure 3.6F). These results indicate that the presence of siRNA is associated with RdDM,
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Figure 3.6: Properties of non RdDM Pol V transcription: (A) Non-RdDM Pol V transcription
is not limited to the proximity of RdDM. Boxplot shows distances between regions assigned to
each state and the closest State 0 region.(B) Non-RdDM Pol V transcription is enriched on chro-
mosome arms. Plots show frequency of State 0 (RdDM Pol V transcription), State 1 (Non-RdDM
Pol V transcription) and other regions in 500 kb genomic bins. Frequency of annotated TEs and
genes (TAIR10) are shown as a reference. (C) Non-RdDM Pol V transcription is not associated
with a strong enrichment in repressive chromatin marks. Boxplots show the levels of H3K4me2,
H3K4me3, H3K9ac, H3K9me2, H3K27me1 and H3K36me3 corrected for nucleosome density. (D)
Non-RdDM Pol V transcription is enriched on intergenic and non-coding regions. The plot shows
enrichment of RdDM Pol V transcription (State 0) and non-RdDM Pol V transcription (State 1)
on various genomic features. Ratio between observed overlaps and expected overlaps calculated
as a mean of 1000 permutations of random genomic regions. Stars indicate p < 0.001. (E) DNA
methylation in the CG and CHG contexts is enriched on RdDM Pol V-transcribed regions (State 0).
Boxplot shows DNA methylation levels in Col-0 wild type at each of the 4 emission states of HMM
output. (F) Small RNA clusters are enriched in RdDM Pol V transcription but not in non-RdDM
Pol V transcription. Plots show ratio between observed overlaps and expected overlaps calculated
as a mean of 1000 permutations of random genomic regions. Stars indicate p < 0.001.
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which is consistent with siRNA being the primary determinant of RdDM specificity. We

conclude that Pol V is unlikely to be the primary determinant of sequence specificity of

RdDM.

3.4.3 Pol V is needed for TE resilencing
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Figure 3.7: Pol V transcription is required for TE resilencing: (A) Loss of DNA methylation
in the CG context in ddm1. Heatmap shows average CG methylation levels on non-RdDM Pol V-
transcribed loci which gain CHH methylation in ddm1. Boxplot shows the distribution of datapoints
shown in the heatmap. Stars indicate Wilcoxon test p < 2.2e-16. (B) De novo CHH methylation
of TEs reactivated in ddm1 requires Pol V. CHHme established in ddm1 is dependent on Pol V.
Heatmap shows average CHH methylation levels on non-RdDM Pol V-transcribed loci which gain
CHH methylation in ddm1. Boxplot shows the distribution of datapoints shown in the heatmap.
Stars indicate Wilcoxon test p < 2.2e-16.

Our observations that Pol V transcribes broadly and is not a determinant of RdDM ex-

plains a key inconsistency in the mechanistic understanding of this process. Although de

novo silencing of newly integrated or activated TEs seems to always require Pol V [110],

no mechanisms recruiting Pol V to previously unsilenced TEs are known. Our data indicate

that non-RdDM Pol V transcription occurs broadly enough to facilitate de novo silencing

of newly integrated or activated TEs. To test this possibility, we took advantage of the

ddm1 mutant, which disrupts the maintenance of CG methylation [159]. Because in Ara-
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bidopsis a subset of TEs is silenced by CG methylation in an RNA-independent manner,

disruption of CG methylation leads to reactivation of those TEs and establishment of de

novo RdDM, manifested as CHH methylation [110]. We analyzed previously published

methylome datasets from Col-0 wild type, nrpe1, ddm1 and ddm1 nrpe1 double mutant

[110]. We identified differentially methylated regions (DMRs) between Col-0 wild type

and ddm1, where CHH methylation is increased in ddm1. We then selected DMRs that

overlap non-RdDM Pol V transcription identified by IPARE and HMM (State 1). As ex-

pected, these DMRs have reduced levels of CG methylation in ddm1 (Figure 3.7A). We

then tested if the increased CHH methylation requires Pol V transcription by analyzing the

ddm1 nrpe1 double mutant. Levels of CHH methylation were significantly lower in ddm1

nrpe1 compared to ddm1 (Figure 3.7B). This suggests that non-RdDM Pol V transcription

is required for de novo establishment of RdDM in the ddm1 mutant. This is consistent with

Pol V transcribing the genome to make it competent for silencing if a transposon becomes

reactivated. A similar mechanism may occur when new transposons are integrated into the

genome.

3.4.4 Non-RdDM Pol V transcription requires the DDR complex

Non-RdDM Pol V transcription results in lower IPARE signals than RdDM transcrip-

tion and therefore may be controlled in a unique manner. RdDM Pol V transcription re-

quires the DDR complex, which is involved in transcription initiation and/or elongation

[58, 112, 88, 86]. To test if non-RdDM Pol V transcription also depends on the DDR com-

plex, we analyzed the RdDM and non-RdDM Pol V transcription IPARE signal in DDR

mutants, drd1 and dms3. Both mutants showed strong reductions of Pol V transcription

on both RdDM and non-RdDM sites (Figure 3.8A). This indicates that Pol V requires the

DDR complex even on non-RdDM sites.

One known mechanism of Pol V recruitment involves SUVH2 and SUVH9 proteins,

which recognize preexisting DNA methylation[100, 101]. To test if this mechanism is
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Figure 3.8: Non-RdDM Pol V transcription requires the DDR complex: (A) RdDM and non-
RdDM Pol V transcription requires the DDR complex. Boxplots show Pol V IPARE signal levels
in Col-0, nrpe1, drd1 and dms3 at RdDM and non-RdDM Pol V transcribed loci. Stars indicate
Wilcoxon test p < 2.2e-16. (B) Proteins that work downstream of Pol V do not affect Pol V tran-
scription. Boxplots show Pol V IPARE signal levels in Col-0, nrpe1, spt5l, ago4 and drm2 at RdDM
and non-RdDM Pol V transcribed loci. (C) DRM2-dependent DNA methylation in CHH context
does not affect the level of Pol V transcription. Scatterplots show effects of drm2 on Pol V IPARE
signal levels compared to the effects of drm2 on CHH methylation at non-RdDM Pol V transcribed,
RdDM Pol V transcribed and non-Pol V transcribed loci.

involved in both RdDM and non-RdDM Pol V transcription, we performed IPARE in

suvh2, suvh9 and suvh2/suvh9 mutants. RdDM Pol V transcription was reduced in suvh2

and suvh2/suvh9 mutants (Figure 3.8B), which is consistent with previously published

data[100, 101]. Non-RdDM Pol V transcription was slightly reduced in both suvh2 and

suvh9 mutants and more substantially reduced in the suvh2/suvh9 double mutant (Fig-

ure 3.8B). This suggests that SUVH2 and SUVH9 might play a role in non-RdDM Pol

V transcription. Signal observed in the suvh2/suvh9 double mutant was still substantially

stronger than in nrpe1 (Figure 3.8B), which indicates that other factors may also contribute

to the initiation of both RdDM and non-RdDM Pol V transcription. Proteins that work

downstream of Pol V have been shown to affect processing of Pol V transcripts through

slicing by AGO4, which requires SPT5L[154]. To determine if non-RdDM Pol V tran-

scription is affected by these downstream factors, we performed IPARE in spt5l and ago4

mutants. Both mutants had no major effects on the median levels of accumulation of both

RdDM and non-RdDM Pol V transcripts detected by IPARE (Figure 3.8C). This indicates

that downstream factors do not affect the accumulation of nascent Pol V transcripts detected
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in our assay.

3.5 Discussion

We propose a speculative model where Pol V stochastically transcribes a significant

fraction of the genome to make it competent for silencing (Figure 3.9). This includes

surveillance of euchromatic sequences, which may harbor inactive transposons or may be-

come landing sites for random integration of new transposons (Figure 3.9A). If there is

no complementary siRNA, chromatin modifiers are not recruited, and Pol V transcripts

are expected to quickly degrade with no consequences. However, any newly integrated or

reactivated transposon triggers one of several pathways to produce siRNA [160]. Newly

synthesized siRNA base-pairs with already available Pol V transcripts to establish initial

DNA methyl marks (Figure 3.9B). This leads to the recruitment of Pol IV and further

siRNA production. At the same time, Pol V transitions from a low-level surveillance status

to a higher rate of transcription associated with maintenance of RdDM (Figure 3.9C).

Surveillance Pol V transcription occurs much more broadly than siRNA production

and RdDM, including euchromatic loci and possibly also heterochromatic loci repressed

by pathways other than RdDM. This indicates that previous studies of Pol V localiza-

tion by ChIP-seq [56] were not sensitive enough to detect the actual breadth of Pol V

transcription. Although we detected Pol V transcription on 42.4% of the genome, the

absence of Pol V on any of the remaining 57.6% cannot be conclusively proven, espe-

cially on loci transcribed by Pol I, II or III. It is therefore possible that Pol V transcribes

even more broadly and in the extreme case the entire genome could possibly be subject

to at least occasional Pol V transcription. This would be consistent with the fact that Pol

V appears to be universally required for de novo RdDM[108, 142, 109, 110, 156, 161].

Initiation of surveillance Pol V transcription is likely to be stochastic, which is consis-

tent with lack of sequence-specificity detected for Pol V[154, 152, 86, 56]. The DDR

complex and SUVH2/9 are likely responsible for sequence-independent initiation and/or
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Figure 3.9: Speculative model explaining the role of Pol V in de novo and maintenance RdDM:
(A) A large fraction of the genome is subject to infrequent surveillance transcription by Pol V. This
includes euchromatic loci with no active TEs. The role of this transcription is to make the genome
competent to initiate silencing if siRNAs become available. (B) Insertion and/or activation of a
TE leads to siRNA production. This siRNA may initiate silencing by base-pairing with already
available surveillance Pol V transcripts. This leads to the establishment of first repressive chromatin
marks. (C) Presence of repressive chromatin marks leads to recruitment of Pol IV and enhanced
production of siRNAs. At the same time, Pol V transitions to a higher rate of transcription, which
facilitates efficient maintenance of RdDM.

elongation of Pol V transcription[112, 88, 86]. In contrast to loci where RdDM is already

established[100], surveillance Pol V transcription is expected to be independent of pre-

existing chromatin modifications, which indicates that SUVH2 and SUVH9 proteins may

have a broader role than binding methylated DNA[100].

In our model, surveillance Pol V transcription is expected to have no independent im-

pact on RdDM. However, Pol V has been proposed to have roles independent of 24nt

siRNA[145] or gene silencing[162], both of which are consistent with our model. The
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role of genome surveillance by Pol V is tied to the inability of siRNA-AGO4 complexes

to recognize complementary target loci in the absence of Pol V[88, 155]. Widespread Pol

V transcription lets siRNA-AGO4 recognize target loci even if they were not previously

silenced. This indicates that the specificity of base-pairing between siRNA and a highly

complex pool of Pol V transcripts is essential for precise establishment of RdDM, which is

consistent with high accuracy of ribonucleotide incorporation by Pol V [163]. Frequency

of surveillance Pol V transcription remains unknown but low levels of those transcripts sug-

gests that it is not a frequent event, which is consistent with a relatively low rate of ribonu-

cleotide incorporation by Pol V[163]. Binding of siRNA-AGO4 to euchromatic surveil-

lance Pol V transcripts leads to the recruitment of chromatin modifying machinery[90, 91]

and the establishment of initial repressive chromatin marks. This leads to a series of events

that result in robust and stable RdDM. First of those events is the repression of Pol II

transcription and activation of Pol IV. This stops the production of initiating siRNAs[160],

which are replaced by a strong accumulation of 24nt siRNA produced by Pol IV, RDR2

and DCL3. This is consistent with Pol IV being recruited by H3K9me2 recognized by

SHH1[82, 103]. The second event is a strong increase in the level of Pol V transcription,

which allows robust reestablishment of repressive chromatin marks and efficient mainte-

nance of RdDM. Because assays used in previous studies were not sensitive enough to

detect surveillance Pol V transcription and only reported more abundant Pol V transcrip-

tion on already silenced loci, this is consistent with the reported importance of pre-existing

DNA methylation for Pol V recruitment[100, 101]. The mechanism responsible for transi-

tion of Pol V from low level surveillance transcription to a higher rate of transcription may

involve DNA methylation; however, the presence of CG methylation[152] and partial in-

volvement of SUVH2 and SUVH9 proteins (Figure 3.8) do not fully explain this transition.

This indicates that other properties of chromatin are likely to be important for transition of

Pol V into high transcription rate. The surveillance model of Pol V transcription predicts

that siRNA incorporated into a proper AGO protein should be sufficient to initiate RdDM.
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This suggests the presence of a threshold mechanism, which prevents silencing by stochas-

tically produced siRNAs. Existence of a threshold could explain why artificial tethering of

Pol V to a reactivated FWA locus results in reestablishment of silencing[100, 164]. Active

FWA in fwa-4 epiallele accumulates a low level of siRNAs of atypical lengths, which are

insufficient to initiate RdDM [164]. We propose that the enhancement of Pol V transcrip-

tion by tethering a DDR subunit to FWA lowers the threshold and allows re-initiation of

RdDM. Transition of polymerase activities during the initial establishment of RdDM ex-

plains the functional relationship between three RNA polymerases involved in this process.

Aberrant Pol II transcription is the initial signal that targets newly inserted or activated TEs

for silencing and is replaced by Pol IV, as previously demonstrated[160]. A role of Pol

II at this step of silencing is further supported by[129]. Pol V is functionally distinct in

that it provides less or possibly even no sequence specificity for de novo RdDM. However,

after silencing has been established a higher level of Pol V transcription facilitates efficient

maintenance of repressive chromatin states. Broad transcription by Pol V changes our

understanding of pervasive transcription, which in the absence of sequence conservation

has been interpreted as non-functional[165]. It provides evidence that non-coding tran-

scription of non-conserved sequences may serve an important role in maintaining genome

integrity. Given the conservation of transcriptional silencing mechanisms[166], a similar

process may exist outside of the plant kingdom.

3.6 Materials and Methods

3.6.1 Plant materials and growth condition

Arabidopsis thaliana Columbia-0 (Col-0) was used as a wild-type in all analyses. All

mutant plants used in this study were also in the Col-0 background. We used the following

alleles previously described: nrpe1 ( nrpe1-11: SALK_029919 [145]; dms5-1 [167], drd3-

3 [78]), drd1 ( drd1-6 from Marjori Matzke), dms3 (SALK_125019C), ago4 [88], spt5l
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(SALK_001254), drm2 (SAIL_70E12) [88, 112, 157]. The plants were grown at 22C under

white fluorescent light in 16h/8h day/dark cycle.

3.6.2 Immunoprecipitation followed by analysis of RNA ends (IPARE)

The IPARE protocol was based on RNA-IP (RIP)-seq [168] and a modified NanoPARE

protocol [169]. Chromatin extraction and RNA-IP were performed as described in [149].

At the final step of RNA-IP, extracted RNA was diluted in 5 µl of RNase-free H2O. RNA

was then denatured by incubation at 65C for 5 min and put on ice immediately. Denatured

RNA was polyadenylated with Poly(A) polymerase (NEB M0276S) using the following

condition: 5 µl RNA, 1 µl 10x Poly(A) polymerase reaction buffer, 1 µl 10 mM ATP, 0.25

µl RiboLock RNase inhibitor (Thermo Fisher EO0381), 0.5 µl Poly(A) polymerase and

2.25 µl H2O in total 10 µl reaction volume. The reaction was performed at 37C for 30

min and denatured at 65C for 20 min in a thermal cycler. The polyadenylated RNA was

ethanol-precipitated with 90 µl H2O, 0.5 µl Pellet Paint NF co-precipitant (Merck Millipore

70748), 10 µl 3M NaOAc and 250 µl 100% EtOH. After washing with 500 µl 80% EtOH,

the pellet was air dried for 5 min and dissolved in 10 µl H2O. The RNA was then DNase

treated with TURBO DNase (Thermo Fisher AM2238) using the conditions: 10 µl RNA,

1.5 µl 10x TURBO DNase buffer, 0.6 µl RiboLock RNase inhibitor, 1.5 µl TURBO DNase

and 1.4 µL H2O in total 15 µl reaction volume. The reaction was performed at 25C for 60

min and the reaction was stopped by addition of 3 µl 25 mM EDTA and incubation at 65ºC

for 10 min in a thermal cycler. The RNA was ethanol precipitated as described above and

the pellet was dissolved in 1 µl H2O.

Reverse transcription reaction and addition of the 5’ adapter by template switching were

performed basically as described in the NanoPARE protocol [158]. Polyadenylated RNA

and the anchored dT oligo were denatured at the following condition: 1 µl RNA, 1 µl 10

µM Anchored_dT_2_701_TS_UMI primer and 1 µl 10 mM dNTPs mixture were incubated

at 72C for 3 min and put on ice immediately. The RT reaction mix (3 µl denatured RNA
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mixture, 2 µl 5x first-strand buffer, 0.25 µl 0.1 M DTT, 2 µl 5 M Betaine (Sigma), 1.8 µl 50

mM MgCl2, 1 µl 10 µM TSO-biotin primer, 0.25 µl RiboLock RNase inhibitor and 0.5 µl

SuperScript II RT (Thermo Fisher 18064022)) was incubated in a thermal cycler using the

following conditions: 42C for 90 min, 10 cycles of 50C for 2 min and 42C for 2 min and

70C for 15 min.

This was followed by the pre-amplification step. PCR was performed with the follow-

ing reaction mix: 10 µl cDNA sample from the previous step, 0.5 µl 10µM ISPCR primer,

0.5 µl 10 µM ISPCR_3adapter_2 primer, 25 µl 2x KAPA HiFi Hot Start ReadyMix and

14 µl H2O in total 50 µl reaction volume. The PCR was performed using the following

cycling conditions: 98C 3min, 20 cycles of 98C for 15s/67C for 20s/72C for 4min and

72C for 5 min. The PCR products were purified using the QIAquick PCR purification kit

(Qiagen 28104) and eluted in 20 µL EB buffer. The purified DNA was then size selected

by electrophoresis in 2% agarose and excision of gel slices corresponding to size range of

100 bp to 500 bp. Adapter dimers forming a band about 100 bp were carefully excluded.

DNA was purified from the gel using the QIAquick gel extraction kit (Qiagen 28704) and

eluted in 21 µl EB buffer. DNA concentration was assayed using Qubit dsDNA HS assay

kit (Thermo Fisher Q32851) with 1 µl of the sample.

5 ng of the pre-amplified library was then barcoded in the second PCR. PCR reac-

tion mix (5 ng pre-amplified library, 5 µl 10 µM P5_TSO_N5XX primer, 5 µl 10 mM

P7_Tn5.2_N701 primer, 25 µl 2x KAPA Hot Start ReadyMix and H2O up to 50 µl in total)

was amplified using the following cycling conditions: 98C for 3min, 5 cycles of 98C for

15s/63C for 20 s/72C for 4 min and 72C for 5min. The number of additional PCR cycles

needed to properly amplify the barcoded library was optimized using real time PCR. 5 µl of

PCR reaction after 5 cycles of amplification was mixed with 1 µl 10 µM P5_TSO_N50X,

1 µl 10 mM P7_Tn5.2_N701, 0.15 µl SYBR Green (1:400), 5 µl 2x KAPA HiFi Hot Start

ReadyMix and 2.85 µl H2O in 10µl total reaction volume. Real time PCR was performed

using the following cycling conditions: 98C for 30s, 40 cycles of 98C for 15s/63C for 20
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Name Sequence
TSO_seq_read CTAGCAAGCAGTGGTATCAACGCAGAGTACGGG

TSO_seq_index_1 (i5) CCCGTACTCTGCGTTGATACCACTGCTTGCTAG
TSO_seq_index_2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

TSO_seq_index_2 (i7) CTGTCTCTTATACACATCTCCGAGCCCACGAGAC

Table 3.1: Oligonucleotides used in this study.

s/72C for 4 min. The number of additional PCR cycles was calculated to reach the ampli-

fication plateau. The reaction was performed with barcoding primers as described above.

The barcoded library was purified using 1.5x volume of Ampure XP beads (Beckman Coul-

ter A63880. DNA was eluted in 31 µL EB buffer and concentration was quantified using

Qubit dsDNA HS assay kit with 1 µL sample.

The libraries were sequenced on the Illumina NextSeq 550 instrument at the University

of Michigan Advanced Genomics Core using the following custom primers: TSO_seq_read

(Read 1), TSO_seq_index_1 (Index i5), TSO_seq_read2 (Read 2) and TSO_seq_index_2

(Index i7).

3.6.3 Whole genome bisulfite-seq experimental procedure

Genomic DNA was isolated from approximately 3.5-week old Arabidopsis thaliana

mature leaf tissue using DNeasy Plant Mini Kit (QIAGEN). DNA was processed for bisul-

fite treatment and library generation by the University of Michigan Epigenomics Core and

Illumina sequencing was carried out at the University of Michigan Advanced Genomics

Core.

3.6.4 Trimming, mapping and removing PCR duplicates

The fastq files obtained after sequencing were paired-end reads, with the first read rep-

resenting the 60bp cDNA fragment and the second read containing the 8 bp long unique

molecular identifier (UMI). UMIs for each read were first removed and appended to the

read name of the second read pair using UMI-tools extract tool v0.5.4 [169]. Following
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this, each paired read was combined into a single read where the read name contains the

UMI information from paired end read 2, and the sequence corresponds to the RNA se-

quence from paired end read 1. The reads were then trimmed to remove the 3’ adapter

and poly(A) sequences using cutadapt v1.9.1 [170] with a maximum allowed error-rate

of 0.05 and a minimum length cut-off of 20bps. These trimmed, single-end reads were

then mapped to the Arabidopsis TAIR10 genome using bowtie2 v2.2.9 [171] allowing one

mismatch.

The mapped bam files were then sorted using samtools v0.1.19 [172]. This was fol-

lowed by removal of the PCR duplicates using the UMI-tools dedup command [169]. These

reads were then converted into the bed format using the bamToBed samtools command and

further analysis was done on the bed files using BEDtools v2.25.0 [173]. Reads mapping

to the nuclear chromosomes were used for further analysis.

3.6.5 Thinning reads

For every analysis that directly compares the number of reads in two datasets, the Col-0

wild-type reads were thinned by randomly selecting the same number of reads as in the

nrpe1 mutant to keep the comparison fair. The thinning of reads in Col-0 was done using

the BEDTools command shuf.

3.6.6 Scoring reads

A scoring algorithm was determined which assigned scores to each IPARE read based

on known properties of Pol II and Pol V transcripts. The Pol V properties considered were:

1. Pol V transcribed loci should have considerably higher number of reads in Col-0

compared to Pol V mutant.

2. Pol V transcription is not strand specific.

3. Pol V transcribed regions should not have reads in the Pol V mutant.
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The Pol II properties considered were:

1. Pol II reads are enriched at genes.

2. Pol II shows strand-specific transcription.

These reads were assigned arbitrary scores: positive score of +2 for every Pol V prop-

erty and negative score of -5 or -3 for the Pol II properties. Each read was thereby assigned

a score and the total score for every read depicts the likely source of the read; read with the

maximum score of +6, are most likely produced by Pol V whereas reads with the minimum

score of -8 are most likely produced by Pol II. Possible scores range from -8 to +6 and

reads with scores equal or greater than -2 were arbitrarily considered as originating from

Pol V.

The genome coverages of the scored reads were calculated without further thinning of

the reads as the scoring algorithm removes the noisy reads from the data. This resulted in

higher coverage of the scored reads (Fig. 3.2E) compared to the plots of the thinned reads

without any filtering (Fig. 3.2C).

3.6.7 Identification of Pol V transcription by HMM

To identify Pol V transcription we used the Hidden Markov Models (HMM) to split the

genome into bins based on the IPARE read enrichment between Col-0 and nrpe1. We per-

formed HMM using the hmmlearn (https://github.com/hmmlearn/) Python package, which

implements the Gaussian-HMM method to cluster the genome in an unsupervised manner.

The entire genome was divided into 200 bp windows with overlaps of 50 bp. The inputs to

the HMM included the following information for every bin:

1. IPARE ratio of (Col-0 RPM/ nrpe1 RPM) normalized to sequencing coverage on

annotated genes.

2. CHH-methylation difference between Col-0 and nrpe1.
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3. Col-0 strand bias ratio.

Four emission states were identified, and clusters were then classified as:

State 0 – RdDM Pol V transcripts

State 1 – non-RdDM Pol V transcripts

State 2 – Non-transcribed regions

State 3 – Pol II transcripts

3.6.8 Grouping of the emission states

The emission states were first combined based on whether they are transcribed by Pol

V or not. This led to the classification of the emission states into two groups: Pol V

transcribed loci (State 0 + State 1) and other, non-Pol V transcribed loci (State 2 + State

3). For other analyses, the HMM emission states were classified into 3 groups: RdDM Pol

V transcripts (State 0), non-RdDM Pol V transcripts (State 1) and other loci with no Pol

V transcription (State 2 + State 3). These clusters were then filtered further to remove the

false positive bins. The following criteria were used:

1. In RdDM and non-RdDM Pol V transcribed subsets (States 0 and 1) bins with no

reads in Col-0 were filtered and moved to other loci.

2. Non-RdDM Pol V transcribed bins (State 1) that overlapped genes were tested for

the existence of at least one read on the antisense strand in Col-0 and for at least a

2-fold enrichment in Col-0 over nrpe1 in the antisense strand. Gene-overlapping bins

that did not meet these criteria were moved to other loci.

For all genome coverage plots, the overlaps between bins were assigned using the fol-

lowing rules:

1. Regions overlapping between RdDM and non-RdDM Pol V transcription (States 0

and 1) were classified as RdDM bins.
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2. Regions overlapping between Pol V transcription and other loci were classified as

other loci.

3.6.9 DNA Methylation data analysis

DNA methylation data used in this work were processed using bismark v0.16.1 [174].

The reads were first trimmed for adapters using trim_galore v0.4.1 [175] and reads shorter

than 100bps were discarded. Mapping was performed using bismark’s non-directional

mapping setting. The methylation extraction from the mapped reads were done using bis-

mark_methylation_extractor command and the read coverage information on each read was

obtained.

3.6.10 DMR calling and analysis

Differentially methylated regions (DMRs) were identified using methylkit v1.8.0 [176]

R package. The DMR calls in Figure 3.7 were done using methylation data from [110]

for Col-0, nrpe1, ddm1 and ddm1 nrpe1 genotypes. CHH-DMRs were identified be-

tween ddm1 and Col-0, where ddm1 mutant showed a higher level of CHH methylation

than Col-0 wild-type. The calls included 5 steps after extraction of methylation informa-

tion from raw sequencing reads:

1. Read the methylation call data obtained from bisulfite sequencing with methRead

function. Define the control and test datasets as Col-0 and ddm1 respectively.

2. Tile the genome into 200bp windows with a step-size of 150bps using the tileMethyl-

Counts() function. We also added an additional filter of a minimum cytosine coverage

of 10 per window.

3. Keep only methylation information for regions with sufficient coverage in all samples

using the unite() function.
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4. Calculate the differential methylation values at each tile between Col-0 and ddm1,

looking for hypermethylated regions using calculateDiffMeth() function.

5. Select DMRs with a methylation difference of at least 10% between the datasets and

a q-value<0.01 using the getMethylDiff() function.

The ddm1-CHH-DMRs overlapping non-RdDM Pol V transcribed regions were iden-

tified using BEDTools and the CG and CHH methylation% were plotted as heatmaps at

each locus or as a boxplot representing the distribution of the methylation levels at all the

DMRs.

3.6.11 Data visualization on boxplots, scatterplots and heatmaps

Reads were counted using BEDTools v2.25.0 at each of the emission states of HMM

and RPM normalized. Boxplots were made by plotting the number of RPM normalized

reads at identified Pol V transcribed regions. To allow for the visualization of methylation

at the individual non-RdDM Pol V transcribed regions overlapping ddm1-CHH-DMRs,

CHHme and CGme were plotted as heatmaps at the DMRs using methylkit package. Scat-

terplots were made for (Col-0 - drm2) methylation% vs log2(Col-0/ drm2) RIP-RPM values

calculated at each of the Pol V transcribed and non-transcribed loci using BEDTools.

3.6.12 Datasets produced

Table 3.2 shows all the datasets, sequencing depth and coverage information at every

step of data processing for all obtained IPARE datasets. Numbers are in millions of reads.

3.6.13 Previously published sequencing datasets used

Arabidopsis genome annotations and Transposable Element annotations (TAIR10) were

obtained from TAIR (www.arabidopsis.org). Pol V RIP-Seq data in Col-0 and nrpe1

(GSE70290) were published previously [152]. Col-0 and nrpe1 RNA-Seq data (GSE38464)

84



Datasets Exp. group GEO acc. Total reads reads post-trimming mapped reads deduplicated reads nuclear
Col-0 IPARE 1 GSM4409524 24682849 8905307 4083058 3697649 3480799
nrpe1 IPARE 1 GSM4409525 20605406 6028768 1870969 1546483 1245185
spt5l IPARE 1 GSM4409526 22696094 8618717 4013124 3485780 3129984
cmt3 IPARE 1 GSM4409527 15689618 5782750 3094936 2743412 2540780
cmt2 IPARE 1 GSM4409528 19289299 7945143 3983147 3469076 3187090
Col-0 IPARE 2 GSM4409529 17734015 8117778 3673802 2876275 2457277
ago4 IPARE 2 GSM4409530 17681833 9480762 6459238 4499948 4230515
drm2 IPARE 2 GSM4409531 16778574 8329297 4508108 3475234 3114333
Col-0 IPARE 3 GSM4409533 17822479 10298133 4494395 3234001 2851516
nrpe1 IPARE 3 GSM4409534 15078232 8424752 3373309 2136438 1693972
spt5l IPARE 3 GSM4409535 16524586 9968584 5111131 3458921 2978168
ago4 IPARE 3 GSM4409536 14383772 8250043 3883098 2893695 2540634
drm2 IPARE 3 GSM4409537 15851954 9500166 4382153 2945698 2513272
cmt3 IPARE 3 GSM4409538 16817100 9007012 3884148 2922925 2599541
cmt2 IPARE 3 GSM4409539 15733428 8949374 4218221 2950154 2492313
Col-0 IPARE 4 GSM4409540 13305322 3831383 2259788 1805310 1597535
nrpe1 IPARE 4 GSM4409541 13827953 3098158 1956546 1278982 986153
drd1 IPARE 4 GSM4409542 18808526 4914439 3132627 2054232 1662883
dms3 IPARE 4 GSM4409543 16894343 4350932 2806516 1796201 1427323
Col-0 IPARE 5 GSM4409544 5979447 1800536 1002892 808171 741057
nrpe1 IPARE 5 GSM4409545 4336093 1456945 866638 625541 530716

dms5-1 IPARE 5 GSM4409546 5382364 1018487 464376 356695 309202
drd3-3 IPARE 5 GSM4409547 4592926 790364 403213 343871 265525
Col-0 IPARE 6 GSM4409548 4712815 1165390 608064 533196 484864
nrpe1 IPARE 6 GSM4409549 5590278 1077673 508193 406581 353784

dms5-1 IPARE 6 GSM4409550 5086476 994214 515224 406341 345995
drd3-3 IPARE 6 GSM4409551 4616853 822949 449397 369621 288240

Table 3.2: High throughput sequencing datasets obtained in this study. Experimental groups corre-
spond to datasets generated in parallel from plants grown at the same time.

was obtained from [42]. siRNA (GSE99694) were reported previously in [102]. GRO-Seq

data from Col-0 and nrpe1 (GSE100010) were published in [154]. DNA methylation data

for Col-0, nrpe1, ddm1 and ddm1 nrpe1 (GSE79746) were reported by [110].

3.6.14 Data and materials availability

The sequencing data from this study have been submitted to the NCBI Gene Expression

Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE146913.
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CHAPTER IV

Non-coding RNA-mediated DNA Methylation Directs

Nucleosome Positioning

M. Hafiz Rothi1, Shriya Sethuraman1, Jakub Dolata, Alan P. Boyle, Andrzej T. Wierzbicki

4.1 Abstract

Repressive chromatin modifications are instrumental in regulation of gene expression

and transposon silencing. In Arabidopsis thaliana, transcriptional silencing is performed

by the RNA-directed DNA methylation (RdDM) pathway. In this process, two specialized

RNA polymerases, Pol IV and Pol V, produce non-coding RNAs, which recruit several

RNA-binding proteins and lead to the establishment of repressive chromatin marks. An

important feature of chromatin is nucleosome positioning, which has also been implicated

in RdDM. We show that RdDM affects nucleosomes via the SWI/SNF chromatin remodel-

ing complex. This leads to the establishment of nucleosomes on methylated regions, which

counteracts the general depletion of DNA methylation on nucleosomal regions. Nucleo-

some placement by RdDM has no detectable effects on the pattern of DNA methylation.

Instead, DNA methylation by RdDM and other pathways affects nucleosome positioning.

We propose a model where DNA methylation serves as one of the determinants of nucleo-

some positioning.

1 co-first authors
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4.2 Introduction

Transcriptional gene silencing (TGS) pathways play an important role in maintaining

genomic integrity in eukaryotes. This is achieved through repressive chromatin modifica-

tions, which are specifically targeted to silence transposable elements (TE) present in the

genome. TGS pathways are conserved in fungi, animal and plant kingdoms, denoting their

importance in the proper control of genome stability[26]. In plants, TGS is established

and partially maintained through RNA-directed DNA methylation (RdDM), which con-

sists of two major steps, biogenesis of short interfering RNA (siRNA) and de novo DNA

methylation[55].

In the first step, RNA polymerase IV (Pol IV) binds to loci targeted for silencing and

produces noncoding RNA, which is then converted into a double-stranded form (dsRNA)

by RNA-dependent RNA polymerase 2 (RDR2) and cleaved into 24-nucleotide siRNA by

DICER-LIKE 3 (DCL3)[81, 178, 179, 82, 83]. siRNAs are then incorporated into ARG-

ONAUTE 4 (AGO4) and other related AGOs, forming AGO-siRNA complexes[84]. In

the second step, RNA polymerase V (Pol V) produces long noncoding RNA (lncRNA)

that acts as a scaffold or otherwise helps recruit downstream effectors[155, 112, 88]. The

AGO4-siRNA complex is recruited to Pol V-transcribed loci leading to step-wise binding of

INVOLVED IN DE NOVO 2 (IDN2) and DOMAINS REARRANGED METHYLTRANS-

FERASE 2 (DRM2) which deposits DNA methylation[89, 90, 88, 87, 180]. However, the

mechanisms by which DNA methylation and other repressive features of chromatin con-

tribute to transcriptional gene silencing are not fully understood.

RNA-directed DNA methylation is functionally intertwined with nucleosome modifi-

cations and positioning. This includes the involvement of pre-existing histone modification

and putative chromatin remodelers in recruitment of both Pol IV and Pol V[157, 82], as

well as the the establishment of repressive histone modifications and nucleosome position-

ing in the second step of RdDM[24, 112, 42, 92, 93]. The involvement of active chro-

matin remodeling in transcriptional silencing by RdDM was suggested by an interaction
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of IDN2 with SWITCH 3B (SWI3B), a subunit of the Switch/Sucrose Non Fermenting

(SWI/SNF) chromatin remodeling complex[42]. Subunits of this complex also interact

with other silencing factors, including HISTONE DEACETYLASE 6 (HDA6) and MI-

CRORCHIDIA 6 (MORC6), which indicates that SWI/SNF may be involved in various as-

pects of gene silencing[92, 93]. This is consistent with this complex being multi-functional

and affecting not only gene silencing but also various other aspects of plant gene regulation

[181, 182, 183, 184, 185, 186, 187].

There are several indications that nucleosome positioning and DNA methylation are

somehow connected throughout plant genomes[188, 189, 190]. However, the exact nature

of this connection varies depending on species and genomic regions tested[189, 190]. In

Arabidopsis, nucleosomes determined by MNase digestion protections have been reported

to generally correlate with DNA methylation[188]. However,the opposite correlation exists

on a subset of Arabidopsis nucleosomes and throughout genomes of certain other species

[189, 190]. This difference may be explained by the DNA binding of linker histones,

which prevent methylation of linker DNA, and by the activity of DDM1, which facilitates

methylation of nucleosomal DNA[190, 134]. In Arabidopsis these two proteins counteract

the general preference to methylate linker DNA [190].

The involvement of linker histones, DDM1 and SWI/SNF in determining the pattern of

DNA methylation indicates that the observed connection between nucleosomes and DNA

methylation is primarily determined by nucleosomes being inaccessible to DNA methyl-

transferases. This is supported by in vitro data indicating preferential methylation of linker

DNA[191]. However, the opposite relationship has been observed on a few individual

loci, where nucleosomes were affected by the drm2 mutation[42]. This indicates that

DNA methylation may affect nucleosome positioning. This alternative causality is also

supported by some in vitro data[192]. Therefore, the relationship between nucleosomes

and DNA methylation remains only partially resolved. Here, we explore the mechanism by

which RdDM affects nucleosome positioning in Arabidopsis thaliana. We demonstrate that
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Pol V and more broadly RdDM affects nucleosomes through the SWI/SNF complex. The

SWI/SNF complex is not required for DNA methylation on positioned nucleosomes. In-

stead, DNA methylation is needed for nucleosome positioning on differentially methylated

regions. We propose a model where the RdDM pathway directs nucleosome positioning

through DNA methylation to establish transcriptional gene silencing.

4.3 Results

4.3.1 Pol V affects nucleosomes by a combination of direct and indirect mechanisms

Pol V has been previously shown to affect protection to MNase digestion of certain ge-

nomic regions [42]. To conclusively attribute these protections to nucleosome positioning,

we expanded this experiment by including immunoprecipitation with an anti-H3 antibody

(MNase H3 ChIP-seq) in two biological replicates of Col-0 wild-type and nrpe1, a mutant

of the largest subunit of Pol V (Figure 4.1A). We identified 690 nucleosomes stabilized

by Pol V, where signal was at least 2-fold higher in Col-0 compared to nrpe1 with a false

discovery rate (FDR) of less than 0.05 (Figure 4.1B). We also identified 3082 Pol V desta-

bilized nucleosomes, where signal was at least 2-fold higher in nrpe1 compared to Col-0

with an FDR of less than 0.05 (Figure 4.2A). We validated a subset of Pol V stabilized

nucleosomes by locus-specific MNase H3 ChIP-qPCR where we detected a significant de-

crease in nucleosome signal in nrpe1 compared to Col-0 wild-type at several tested loci

(Figure 4.1C). HSP70 was used as a negative control[193].

To test if Pol V stabilized and destabilized nucleosomes are located within Pol V-

transcribed regions, we overlapped identified nucleosomes with previously published Pol

V-transcribed regions[152]. Pol V stabilized nucleosomes showed a small overlap with

annotated Pol V-transcribed regions (Figure 4.1D), which was still significantly more than

expected by chance (Figure 4.1E). Consistently, the average level of Pol V transcription

on Pol V stabilized nucleosomes was strongly enriched compared to adjacent regions or

90



A B

E

D

F G

annotated genes

DNA methylation Col-0

DNA methylation nrpe1

PolV ChIP-seq Col-0

PolV ChIP-seq nrpe1

annotated PolV region

MNase Histone 3 ChIP-seq Col-0 replicate 1

MNase Histone 3 ChIP-seq nrpe1 replicate 1

MNase Histone 3 ChIP-seq Col-0 replicate 2

MNase Histone 3 ChIP-seq nrpe1 replicate 2

Identified PolV stabilized nucleosomes

C

PolV RIP

PolV ChIP

log2 (actual/random)

−2 −1 0 1 2

PolV stabilized nucleosomes

annotated PolV region
Chr 2 : 9653590

Random nucleosomes

PolV stabilized nucleosomes p < 0.017

n.s.
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Figure 4.1: Pol V affects nucleosomes by a combination of direct and indirect mechanisms: (A)
Genome browser screenshot showing a Pol V stabilized nucleosome. (B) Comparison of MNase H3
ChIP-seq signal in Col-0 and nrpe1 on Pol V stabilized nucleosomes. (C) Locus-specific validation
of Pol V stabilized nucleosomes. Significance tested using t-test (n.s. = not significant, ** = p-value
< 0.01,*** = p-value < 0.001). ChIP signal values were normalized to ACTIN2 and Col-0 wild-
type. Error bars show standard deviations from three biological replicates. (D) Overlap between
Pol V stabilized nucleosomes and annotated Pol V transcribed regions. (E) Enrichment of Pol V
stabilized nucleosomes on annotated Pol V transcribed or bound regions (random permutation test;
1000 iterations; p-value < 0.001). (F) Pol V RNA immunoprecipitation signal on Pol V stabilized
nucleosomes and random nucleosomes. The nucleosomal regions are indicated with vertical dashed
lines. (G) Distance of Pol V stabilized nucleosomes or random nucleosomes to annotated Pol V
transcribed regions.

random sequences (Figure 4.1F). Furthermore, like Pol V transcription, Pol V stabilized

nucleosomes are enriched in intergenic and promoter regions (Figure 4.2DE). On the other

hand, overlaps between Pol V destabilized nucleosomes and annotated Pol V-transcribed

regions were less likely than expected by chance (Figure 4.2BC). This indicates that Pol V

stabilized nucleosomes are at least partially directly affected by Pol V and its downstream
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factors while Pol V destabilized nucleosome are most likely affected indirectly.
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Figure S1

Figure 4.2: Pol V affects nucleosomes by a combination of direct and indirect mechanisms
(Supplementary): (A) MNase H3-ChIP seq signal on Pol V destabilized nucleosomes. (B) Over-
lap between Pol V destabilized nucleosomes and annotated Pol V transcribed regions. (C) Enrich-
ment of Pol V destabilized nucleosomes on annotated Pol V transcribed or bound regions (random
permutation test; 1000 iterations; p-value < 0.001). (D) Enrichment of Pol V stabilized nucleo-
somes on various genomic regions (random permutation test; 1000 iterations; p-value < 0.001). (E)
Enrichment of Pol V stabilized nucleosomes on annotated transposable element regions (random
permutation test; 1000 iterations; p-value < 0.001).

To determine if Pol V stabilized nucleosomes that do not overlap Pol V-transcribed

regions may still be directly affected by Pol V, we measured their distance from Pol V tran-

scribed regions. The average distance between Pol V stabilized nucleosomes and annotated

Pol V-transcribed regions was significantly smaller than the average distance between ran-

dom nucleosomes and annotated Pol V-transcribed regions (Mann-Whitney test, p-value <

0.017) (Figure 4.1G). This indicates that Pol V may directly affect nucleosomes that do not

overlap annotated Pol V transcripts. Altogether, we conclude that Pol V stabilizes a pool

of nucleosomes and at least a subset of those nucleosomes is likely to be directly affected

by RdDM.

4.3.2 Downstream RdDM components affect nucleosome positioning

Involvement of Pol V in nucleosome positioning suggests that other components of the

RdDM pathway may also be involved in this process. To test this prediction, we performed
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MNase-H3 ChIP followed by qPCR in Col-0 wild-type, nrpe1, ago4-1 and idn2-1 mutants.

We detected a substantial decrease of the nucleosome signals in all three tested mutants

compared to wild-type at Pol V stabilized nucleosomes (Figure 4.3A-G). While nrpe1, as

expected, affected all tested nucleosomes, ago4 and idn2 had more locus-specific effects

(Figure 4.3A-G). This indicates that AGO4 and IDN2 both contribute to Pol V-mediated

nucleosome positioning. This could be interpreted as evidence that events occurring down-

stream of Pol V transcription are involved in the observed changes in nucleosome position-

ing.
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Figure 4.3: IDN2 connects siRNA and lncRNA to nucleosome positioning: (A)-(G) Locus-
specific analysis of MNase H3-ChIP qPCR levels on Pol V stabilized nucleosomes in Col-0, nrpe1,
ago4-1 and idn2-1. Significance tested using t-test (n.s. = not significant, ** = p-value < 0.01,*** =
p-value < 0.001). ChIP signal values were normalized to ACTIN2 and Col-0 wild-type. Error bars
show standard deviations from three biological replicates. (H) Average profile of DNA methylation
levels (CHH context) on Pol V stabilized nucleosome dyads. (A)-(G) Locus-specific analysis of
H3K9me2 levels in ACTIN2, IGN22 and Pol V stabilized nucleosomes in Col-0, nrpe1, ago4-1
and idn2-1. Significance tested using t-test (n.s. = not significant, * = p-value < 0.05, ** = p-value
< 0.01,*** = p-value < 0.001). H3K9me2 ChIP signal values were normalized to H3 and Col-0
wild-type. Error bars show standard deviations from three biological replicates.
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4.3.3 Pol V-stabilized nucleosomes are enriched in repressive chromatin marks

RdDM may affect nucleosome positioning in parallel with establishing repressive chro-

matin marks like DNA methylation and H3K9 dimethylation (H3K9me2). Alternatively,

RdDM may establish nucleosomes and repressive chromatin marks on independent subsets

of loci. To distinguish between those possibilities, we performed whole-genome bisulfite

sequencing in Col-0 wild-type and nrpe1 in two biological replicates. We plotted DNA

methylation levels in the CHH context at Pol V stabilized nucleosomes and 500 bp ad-

jacent regions (Figure 4.3H). CHH DNA methylation was significantly enriched on Pol

V stabilized nucleosomes compared to both the adjacent regions and the nrpe1 mutant

(Figure 4.3H). To test if this enrichment is also dependent on AGO4 and IDN2, we used

previously published whole-genome bisulfite sequencing datasets[120]. Likewise, we de-

tected a reduction in the average DNA methylation levels in both ago4-1 and idn2-1 (Fig-

ure 4.4A). These findings indicate that Pol V affects nucleosome positioning in parallel

with establishing DNA methylation. This is consistent with genome-wide enrichment of

DNA methylation on nucleosomes reported by Chodavarapu et al.[188].

A

Col-0
nrpe1
ago4-1
idn2-1

Figure S2

Figure 4.4: IDN2 connects siRNA and lncRNA to nucleosome positioning (Supplementary):
(A) Average levels of CHH methylation on and around Pol V stabilized nucleosomes dyads using
datasets from [120].
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To determine if H3K9me2 is also established in parallel, we performed MNase ChIP-

qPCR using anti-H3K9me2 antibody in wild-type, nrpe1, ago4-1 and idn2-1 in three bio-

logical replicates. We used the anti-H3 antibody as a reference. The levels of H3K9me2 rel-

ative to the levels of H3 were significantly reduced on tested Pol V stabilized nucleosomes

in nrpe1 and ago4 (Figure 4.3K-L), unchanged on a negative control locus (Figure 4.3I)

and reduced on a positive control locus (Figure 4.3J). The idn2 mutant showed a locus-

specific effect, which is consistent with demonstrated partial redundancy of IDN2 and its

paralogs[194, 195]. This indicates that at least at the tested loci Pol V affects nucleosome

positioning in parallel with establishing H3K9me2. Together, these results indicate that

RdDM affects nucleosome positioning in parallel with establishing repressive chromatin

marks. This is consistent with a model where Pol V-stabilized nucleosomes are placed and

modified by the RdDM pathway.

4.3.4 Pol V positions nucleosomes via the SWI/SNF chromatin remodeling complex

The presence of a physical interaction between an RdDM factor IDN2 and SWI3B,

a subunit of the SWI/SNF chromatin remodeling complex[42], indicates that Pol V may

affect nucleosomes via the SWI/SNF complex. To test this possibility, we performed

MNase H3 ChIP-seq in Col-0 wild-type and swi3b mutant. Although swi3b null mu-

tants are embryo lethal[186], we took advantage of the well documented observation that

SWI3B is haploinsufficient[196, 186, 42] and used the swi3b/+ heterozygous plants. We

plotted the average nucleosome signal at Pol V stabilized nucleosomes and adjacent re-

gions (Figure 4.5A), compared to random nucleosomes identified in Col-0 wild type (Fig-

ure 4.5B). Nucleosome signal at Pol V stabilized nucleosomes was reduced in swi3b/+

(Figure 4.5AC) but unchanged in adjacent regions (Figure 4.5AC) and at random nucle-

osomes (Figure 4.5BD). Although the effect observed in swi3b/+ was statistically signif-

icant, it was much smaller than in nrpe1 (Figure 4.5A). A significant but overall minor

reduction in the nucleosomal signal in swi3b/+ was confirmed by locus-specific MNase
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Figure 4.5: Pol V positions nucleosomes through the SWI/SNF complex: (A) Average levels of
MNase H3 ChIP-seq signal on Pol V stabilized nucleosomes in Col-0, nrpe1 and swi3b/+. Ribbons
indicate confidence intervals with p < 0.05. (B) Average levels of MNase H3 ChIP-seq signal on
random nucleosomes in Col-0, nrpe1 and swi3b/+. Ribbons indicate confidence intervals with p <
0.05. (C) Heatmap of levels of MNase H3 ChIP-seq signal on Pol V stabilized nucleosomes in Col-
0, nrpe1 and swi3b/+. (D) Heatmap of levels of MNase H3 ChIP-seq signal on random nucleosomes
in Col-0, nrpe1 and swi3b/+.

H3 ChIP-qPCR, where we detected small but significant decreases in nucleosome signal

in swi3b/+ compared to wildtype at tested loci (Figure 4.6A). Partial reductions of nucle-

osome signals in swi3b/+ may be explained by the presence of one allele of SWI3B, other

SWI3 paralogs and other chromatin remodeling complexes. Overall, these results indicate

that the SWI/SNF complex only partially contributes to nucleosome positioning by RdDM.

4.3.5 Preferential methylation of linker DNA

Our observation that RdDM establishes both nucleosome positioning and repressive

chromatin marks provides a possible explanation to prior observations that nucleosome
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Figure 4.6: Pol V positions nucleosomes through the SWI/SNF complex (Supplementary): (A)
Locus-specific validation of Pol V stabilized nucleosomes by MNase H3 ChIP followed by qPCR.
Significance tested using t-test (n.s. = not significant, * = p-value < 0.05, ** = p-value < 0.01,*** =
p-value < 0.001). ChIP signal values were normalized to ACTIN2 and Col-0 wild-type. Error bars
indicate standard deviations from three biological replicates.

positioning and DNA methylation are correlated[188, 190]. However, prior studies in Ara-

bidopsis used MNase digestion as the sole basis for the identification of nucleosomes[188,

190] and protections by DNA-binding proteins other than histones remain possible. To

eliminate this possibility, we determined nucleosome positioning by MNase H3 ChIP-seq,

which relies on MNase protection and binding of histone H3 to DNA to identify nucle-

osomes. We performed MNase H3 ChIP-seq and whole-genome bisulfite sequencing in

two biological replicates of Col-0 wild-type. We first identified all nucleosome positions

genome-wide (n=650,610) and measured the average DNA methylation levels in all con-

texts (CG, CHG and CHH) at nucleosomes and 500 bp adjacent regions. We observed that

DNA methylation was enriched on linker regions and depleted on nucleosomes in CHG

and CHH sequence contexts (Figure 4.7B-D). The CG methylation pattern was more com-

plex, but linkers of neighboring nucleosomes showed strong enrichments in CG context

(Figure 4.7A), which indicates that linkers are preferentially methylated in all sequence

contexts. No enrichment was observed on matching random nucleosome-sized regions

(Figure 4.8A-C). This indicates that when nucleosomes are identified based on MNase pro-

tection and the presence of histone H3, linker regions are enriched in DNA methylation
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Figure 4.7: Preferential methylation of linker DNA: (A)-(C) Average CG (A), CHG (B) and CHH
(C) methylation levels on and around all annotated nucleosomes. Dark grey shading indicates the
annotated nucleosome and four neighboring nucleosomes. Ribbon indicates confidence intervals
with p < 0.05. (D) Average MNase H3 ChIP signal levels at and around annotated nucleosomes
(X axis) by sequenced fragment length (y axis). (E) Average levels of CHH methylation around
hypomethylated nucleosomes. Dark grey shading indicates the annotated nucleosome and four
neighboring nucleosomes. Ribbon indicates confidence intervals with p < 0.05. Scatterplot below
shows average MNase H3 ChIP signal levels at and around hypomethylated nucleosomes (X axis)
by sequenced fragment length (y axis). (F) Average levels of CHH methylation around hyperme-
thylated nucleosomes. Dark grey shading indicates the annotated nucleosome and four neighboring
nucleosomes. Ribbon indicates confidence intervals with p < 0.05. Scatterplot below shows average
MNase H3 ChIP signal levels at and around hypermethylated nucleosomes (X axis) by sequenced
fragment length (y axis).

compared to regions occupied by nucleosomes. This correlation is apparent when analyz-

ing all identified nucleosomes (Figure 4.7A-D) and in most subsets of nucleosomes present
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on specific genomic regions (Figure 4.8D-E).Figure S4
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Figure 4.8: Preferential methylation of linker DNA (Supplementary): (A) Average levels of
CG methylation at random nucleosome-sized regions. Ribbon indicates confidence intervals with
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indicates confidence intervals with p < 0.05. (C) Average levels of CHH methylation at random
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Although the average levels of DNA methylation were higher on linker regions than
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Figure 4.9: SWI/SNF complex is not required for DNA methylation on positioned nucleosomes:
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on nucleosomes, a substantial subset of nucleosomes did not follow this general trend, in-

cluding Pol V stabilized nucleosomes (Figure 4.3H). To determine if enrichment of DNA

methylation on linkers is generally applicable, we focused on subsets of nucleosomes that

show enrichment (Figure 4.7E) or depletion (Figure 4.7F) of CHH methylation on their

linkers. We then used these subsets to test the enrichment of CHH methylation on linkers of

neighboring nucleosomes, which are not expected to be biased by the selection of the cen-

tral nucleosome. Nucleosomes that follow the general trend, showed the expected enrich-

ment of CHH methylation on linkers of neighboring nucleosomes (Figure 4.7E). Interest-

ingly, nucleosomes filtered for depletion of CHH methylation on their linkers, still showed

enrichment of CHH methylation on linkers of neighboring nucleosomes (Figure 4.7F). This

further confirms our observation that on average, DNA methylation is enriched on linker

regions. We conclude that while Pol V stabilized nucleosomes are enriched in DNA methy-

lation, the general genome-wide trend is preferential methylation of linker DNA.
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4.3.6 SWI/SNF complex is not required for DNA methylation on positioned nucleo-

somes

The general trend of methylation depletion on nucleosomal DNA (Figure 4.7C) is not

followed by Pol V stabilized nucleosomes, which are enriched in CHH methylation (Fig-

ure 4.3H). This indicates that RdDM overrides general preferences of DNA methylation

in respect to nucleosome positioning. This may be explained by a hypothesis that nucleo-

somes positioned by SWI/SNF are preferential substrates for DNA methyltransferases. To

test this hypothesis, we assayed DNA methylation by whole-genome bisulfite sequencing

in Col-0 wild-type and swi3b/+ in two biological replicates. We first analyzed CHH methy-

lation levels on and around Pol V stabilized nucleosomes and observed no change in DNA

methylation levels in swi3b/+ compared to Col-0 wild type (Figure 4.9A). This indicates

that the activity of SWI/SNF on Pol V-stabilized nucleosomes has no strong effect on DNA

methylation.

To further test if nucleosomes positioned by SWI/SNF affect DNA methylation, we

identified SWI3B stabilized nucleosomes, which are defined as nucleosomes that have a

higher MNase H3 ChIP-seq signal level in wild-type compared to swi3b/+ with FDR of

less than 0.05. In total, we identified 4089 SWI3B stabilized nucleosomes, where the

average nucleosome signal was significantly and reproducibly decreased in swi3b/+ (Fig-

ure 4.10A-B). CHH methylation levels on SWI3B stabilized nucleosomes were not signif-

icantly changed in swi3b/+ compared to Col-0 wild type [(Figure 4.9B), (Figure 4.10C)].

This indicates that changed patterns of nucleosome positioning in swi3b/+ do not affect the

levels of CHH methylation. This suggests that nucleosomes positioned by the activity of

SWI/SNF do not determine the pattern of DNA methylation.
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Figure S5
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Figure 4.10: SWI/SNF complex is not required for DNA methylation on positioned nucleo-
somes (Supplementary): (A) Average levels of MNase H3 ChIP in two biological replicates of
Col-0, nrpe1 and swi3b/+ at and around SWI3B stabilized nucleosomes. (B) Comparison of bi-
ological replicates of MNase H3 ChIP in Col-0 and swi3b/+. Colors scale represents FDR cutoff
values. (C) DNA methylation levels at individual SWI3B stabilized nucleosomes.

4.3.7 DNA methylation is needed for positioning nucleosomes at differentially methy-

lated regions

Our observation that correlations between nucleosomes and CHH methylation are not

determined by nucleosome positioning suggests an alternative possibility that DNA methy-

lation may participate in determining positions of nucleosomes. To test this prediction,

we used previously published datasets[120] to identify differentially methylated regions

(DMRs), where CHH methylation is affected by DRM2. We then assayed nucleosome po-

sitioning by MNase H3 ChIP-seq in two biological replicates of Col-0 wild-type and drm2

mutant. At DRM2 DMRs, where lack of DRM2 resulted in strong reductions of CHH
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Figure 6
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Figure 4.11: DNA methylation is needed for positioning nucleosomes at differentially methy-
lated regions: (A) Average levels of CHH methylation at and around regions that lose CHH methy-
lation in the drm2 mutant (DRM2 DMRs). Ribbons indicate confidence intervals with p < 0.05. (B)
Average levels of MNase H3 ChIP signal at and around DRM2 DMRs. Ribbons indicate confidence
intervals with p < 0.05. (C) Average levels of CG methylation at and around regions that lose CG
methylation in the met1 mutant (MET1 DMRs). Ribbons indicate confidence intervals with p <
0.05. (D) Average levels of MNase H3 ChIP signal at and around MET1 DMRs. Ribbons indicate
confidence intervals with p < 0.05. (E) Average levels of CHG methylation at and around regions
that lose CHG methylation in the cmt3 mutant (CMT3 DMRs). Ribbons indicate confidence in-
tervals with p < 0.05. (F) Average levels of MNase H3 ChIP signal at and around CMT3 DMRs.
Ribbons indicate confidence intervals with p < 0.05.

methylation (Figure 4.11A), the nucleosome signal was generally enriched in Col-0 wild

type (Figure 4.11B). This is consistent with Pol V stabilized nucleosomes being enriched

in CHH methylation (Figure 4.3H). It is also in agreement with the observation that nu-

cleosomes overlapping DRM2 DMRs behave like Pol V stabilized nucleosomes and are

enriched in both CHH methylation and nucleosome signal (Figure 4.12A-B). Importantly,
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in the drm2 mutant, DRM2 DMRs had a strong reduction in the nucleosome signal (Fig-

ure 4.11B). This indicates that DNA methylation in the CHH context established by the

RdDM pathway affects nucleosome positioning.
Figure S6
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To test if this also applies to Pol V stabilized nucleosomes, we plotted the MNase H3

ChIP signal on Pol V stabilized nucleosomes in the drm2 mutant compared to Col-0 wild

type. Consistently with observations on DRM2 DMRs (Figure 4.11B) and nucleosomes

overlapping DRM2 DMRs (Figure 4.12B), Pol V stabilized nucleosomes also had a reduc-

tion in nucleosome signal in the drm2 mutant (Figure 4.12C). This further supports our

observation that DNA methylation in the CHH context established by the RdDM pathway

affects nucleosome positioning.
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To test if DNA methylation in CG and CHG contexts also affects nucleosome posi-

tioning we performed similar experiments and analysis in met1 and cmt3 mutants. CG

and CHG DMRs identified in met1 and cmt3, respectively, were enriched in the nucleo-

somal signal (Figure 4.11DF). At MET1 DMRs, where lack of MET1 resulted in strong

reductions of CG methylation (Figure 4.11C), the nucleosome signal was significantly re-

duced in met1 (Figure 4.11D). Similarly, at CMT3 DMRs, where lack of CMT3 resulted

in strong reductions of CHG methylation (Figure 4.11E), the nucleosome signal was also

significantly reduced in cmt3 (Figure 4.11F). This indicates that DNA methylation affects

nucleosome positioning irrespective of the sequence context.

4.4 Discussion

We propose a model, where DNA methylation is a determinant of nucleosome position-

ing in RdDM. In this model, non-coding transcription by both Pol IV and Pol V leads to the

recruitment of AGO4 and IDN2. IDN2 interacts with a subunit of SWI/SNF, which is how-

ever not sufficient to affect nucleosome positioning. Instead, the subsequent recruitment of

DRM2 and establishment of DNA methylation activates chromatin remodelers and leads

to changes in nucleosome positioning. Coordinated establishment of various chromatin

marks leads to repression of Pol II promoters within the silenced region of the genome.

The effect of DNA methylation on nucleosome positioning may be explained by distinct

intrinsic properties of DNA containing 5-methylcytosines, as suggested by [192]. Alterna-

tively, DNA methylation may facilitate the recruitment or activation of SWI/SNF, either

directly or by the involvement of other proteins that are sensitive to the presence of 5-

methylcytosines. Another possibility is that DNA methylation may affect nucleosome po-

sitioning by changing the pattern of posttranslational histone modifications. This includes

H3K9me2, which may recruit proteins that modulate the activity of chromatin remodel-

ers. This also includes histone deacetylation, which may affect physical properties of the

nucleosomes [93, 197].
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The importance of DNA methylation for nucleosome positioning has a significant im-

pact on our understanding of the RdDM pathway. It argues against the pathway being

branched after IDN2 recruitment[42]. Instead, it supports the notion that events occurring

co-transcriptionally at the sites of Pol V transcription are organized in a step-wise genetic

pathway[90]. Although when studied genetically, this pathway appears linear, various steps

of the pathway are likely to rely on the cooperative recruitment or activation of subsequent

factors. One example of such a connection is the requirement of both IDN2-SWI3B in-

teraction and DNA methylation for nucleosome positioning. Other examples include the

recruitment of AGO4, which has been proposed to rely on the interaction of AGO4 with

NRPE1 C-terminal domain and with Pol V transcripts[133, 88]. Similarly, there is evidence

of DRM2 being recruited by interactions with AGO4 and other RdDM factors[107, 91].

Our model is consistent with the notion that events in the late stages of RdDM lead

to a concerted establishment of DNA methylation, posttranslational histone modifications

and nucleosome positioning, which together form a repressive chromatin structure. This

explains the robustness of transcriptional silencing, where coordinated establishment of

various repressive chromatin marks leads to efficient repression of Pol II transcription. It is

also consistent with the general difficulty to experimentally tease apart various repressive

chromatin modifications established by this pathway.

The involvement of SWI/SNF and nucleosome positioning in RdDM may also be con-

sidered in context of this pathway performing mostly maintenance of silencing. Tran-

scription of heterochromatic regions by Pol IV and Pol V may involve the removal or

repositioning of previously positioned nucleosomes. This is supported by the involvement

of putative chromatin remodelers in initiation and/or elongation of transcription by both of

those polymerases[105, 112, 102, 198]. Nucleosome positioning established as an outcome

of RdDM may serve to re-create the pattern of nucleosomes disrupted by Pol IV and Pol V.

De novo RdDM in newly inserted TEs is a distinct scenario, since no pre-existing repres-

sive chromatin modifications are expected to exist. The role of nucleosome positioning in
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this de novo process remains unexplored.

The involvement of DNA methylation in determining the pattern of nucleosomes ex-

tends beyond RdDM targets. The impact of MET1-dependent CG methylation and CMT3-

dependent CHG methylation on stabilizing nucleosomes indicates that DNA methylation

may affect nucleosome patterns throughout the genome. This is consistent with findings

in other eukaryotes[199, 192]. Such a general effect of DNA methylation on nucleosome

positioning would counteract the general preference to methylate linkers and contribute to

local correlations between nucleosomes and DNA methylation. This property of nucleo-

somes is consistent with previous reports[188] and may involve the activity of DDM1[190].

It illustrates the general interdependence between nucleosomes and DNA methylation.

Existing evidence does not support the view that DNA methylation is the primary deter-

minant of the nucleosome pattern. This role remains reserved for a combination of intrinsic

factors and active chromatin remodeling. The role of DNA methylation is more limited and

probabilistic, clearly visible in meta-analysis of large pools of sequences. Therefore, oppo-

site behaviors of individual loci are expected. Moreover, global losses of DNA methylation

in RdDM and DNA methyltransferase mutants may affect the patterns of nucleosomes by a

combination of cis- and trans-acting factors, which could only be distinguished using tools

targeting DNA methylation to specific loci.

4.5 Materials and Methods

4.5.1 Plant material

Col-0 ecotype (wild-type), nrpe1 (nrpd1b-11 [145]), ago4-1(introgressed into the Col-

0 background [88]), idn2-1 [89], drm2-2 (SAIL_70_E12) was described previously [112],

swi3b-2 (GABI_302G08 [186] and cmt3-11 (SALK_148381). met1-3 which was described

previously [146] were grown at 22C under white LED light in 16h/8h day/night cycle.
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4.5.2 Antibodies

Rabbit polyclonal anti- histone H3 antibody (ab1791) and mouse monoclonal anti-

H3K9me2 antibody (ab1220) were obtained from Abcam.

4.5.3 MNase H3 ChIP-seq

2g of approximately 3.5-week old Arabidopsis thaliana mature leaf tissue, which was

cross-linked with 0.5% formaldehyde, was ground in liquid nitrogen. MNase H3 ChIP

of Col-0, met1, cmt3 and drm2 was carried out as described previously[42]. MNase H3

ChIP of Col-0, nrpe1 and swi3b was carried out using the following protocol. Cold nu-

clei isolation buffer I (10 mM Tris HCl pH8, 10mM MgCl2, 0.4 M sucrose, 0.035% β-

mercaptoethanol, 1mM phenylmethylsulfonyl fluoride (PMSF)) was added. Tissue was

resuspended by vigorous vortexing and shaking. Sample was filtered using Miracloth into

new 50 ml tube on ice. Miracloth was washed with 10 ml of nuclei isolation buffer I.

Sample was centrifuged 15 min, 4000 g, 4C.

Supernatant was discarded and nuclei pellet was resuspended using 1 ml of cold nuclei

isolation buffer II (10 mM Tris HCl pH8, 10 mM MgCl2, 0.4 M sucrose, 1% Triton X-

100, 0.035% β-mercaptoethanol, 1mM phenylmethylsulfonyl fluoride (PMSF), 0.02 tab/ml

complete EDTA-free, 0.004 mg/ml Pepstatin A). Sample was transferred to 1.5 ml tube

and centrifuged for 5 min, 2000 g, 4C. This step was repeated two more times. Pellet was

resuspended using 300 µl of cold Nuclei isolation buffer II and layered on top of cold 900

ml Nuclei isolation buffer III ( 10 mM Tris HCl pH8, 2 mM MgCl2, 1.7 M sucrose, 0.15%

Triton X-100, 0.035% β-mercaptoethanol, 1 mM phenylmethylsulfonyl fluoride (PMSF),

0.02 tab/ml complete EDTA-free, 0.004 mg/ml Pepstatin A) in 1.5 ml tube. Sample was

centrifuged for 30 min, 16000 g, 4C and supernatant was discarded.

Isolated nuclei were washed twice with Micrococcal Nuclease (MNase) reaction buffer

(10 mM Tris HCl pH8, 15 mM NaCl, 60 µM KCl, 1mM CaCl2) and resuspended in the

same buffer. MNase enzyme (NEB; 200 Kunitz unit/µl) was added and samples were
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mixed by vortexing. Samples were digested for 10 minutes at 30°C. 1 volume of MNase

stop buffer (30 mM Tris HCl pH8, 225 mM NaCl, 10 mM ethylenediaminetetraacetic acid

(EDTA), 10 mM egtazic acid (EGTA), 0.2% sodium dodecyl sulphate (SDS), 2% Tween

20) was then added to stop the reaction. To release the chromatin from the nuclei, the

sample was vortexed vigorously 5 times and centrifuged for 10 min, 14000 g. The super-

natant was then transferred to a new tube. Samples for H3 ChIP were then diluted in 1

volume ChIP dilution buffer (16.7 mM Tris HCl pH8, 1.2 mM ethylenediaminetetraacetic

acid (EDTA), 167 mM NaCl, 1.1% Triton X-100, 1 mM phenylmethylsulfonyl fluoride

(PMSF), 0.02 tab/ml cOmplete EDTA-free, 0.004 mg/ml Pepstatin A). H3 antibody was

added and sample was incubated 12-16 hours, 4C with rotation.

Protein A magnetic beads (PierceTM) were washed three times with IP buffer (50 mM

HEPES pH7.5, 150 mM NaCl, 10 µM ZnSO4, 1% Triton X-100, 0.05% sodium dode-

cyl sulphate (SDS), 1 mM phenylmethylsulfonyl fluoride (PMSF), 0.02 tab/ml cOmplete

EDTA-free, 0.004 mg/ml Pepstatin A) and resuspended in 50 µl IP buffer. Beads were

added to IP sample and incubated for 1 hour, 4C with rotation. Immunoprecipitated chro-

matin bounded to magnetic beads was collected using magnetic separator. Beads were

washed 5 min with cold buffers: two times with low salt buffer (20 mM Tris HCl pH8,

2 mM ethylenediaminetetraacetic acid (EDTA), 150 mM NaCl, 1% Triton X-100, 0.1%

sodium dodecyl sulphate (SDS)), once with high salt buffer (20 mM Tris HCl pH8, 2 mM

ethylenediaminetetraacetic acid (EDTA), 0.5 M NaCl, 1% Triton X-100, 0.1% sodium do-

decyl sulphate (SDS)), once with LiCl buffer (20 mM Tris HCl pH8, 2 mM ethylene-

diaminetetraacetic acid (EDTA), 250 mM LiCl, 1% NP-100, 1% sodium deoxycholate))

and twice with TE buffer (10 mM Tris HCl pH8, 1 mM ethylenediaminetetraacetic acid

(EDTA)). After the last wash, samples were transferred into new a tube and beads were

collected using a magnetic separator.

For library preparation, magnetic beads were incubated with 100 µl Elution buffer (10

mM Tris HCl pH8, 1 mM ethylenediaminetetraacetic acid (EDTA), 1% sodium dodecyl
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sulphate (SDS)) in a thermomixer (65C, 1400 rpm, 30 min). Beads were collected using

magnetic separator and supernatant was transferred into new tube. Step was repeated and

both supernatants combined. IP samples were de-crosslinked by Proteinase K treatment

(5 µl, 65C, 12 h). Samples were purified using QIAquick PCR Purification Kit (35 µl

of EB buffer were used). Library for Illumina sequencing was prepared using either Mi-

croPlex Library PreparationTM Kit (Diagenode) according manufacturer instruction, using

in-house library preparation based on Bowman et al[200], or prepared by the University of

Michigan Advanced Genomics Core. MNase ChIP-seq experiments were performed in two

biological replicates and sequenced by either 50 bp or 150 bp paired-end sequencing at the

University of Michigan Advanced Genomics Core.

4.5.4 MNase H3 and H3K9me2 ChIP-qPCR

Nuclei were extracted from 2g of approximately 3.5-week old Arabidopsis thaliana

mature leaf tissue which was cross-linked with formaldehyde [0.5%] as described pre-

viously [42] and were digested with Micrococcal Nuclease (MNase ; NEB) for 10 min-

utes at 30C. MNase-digested chromatin was immunoprecipitated with anti-histone H3 an-

tibody or anti-H3K9me2 antibody. DNA was purified and used for qPCR analysis. MNase

ChIP-qPCR experiments were performed in three biological replicates with region-specific

primers listed in Table 4.1.

4.5.5 Whole genome bisulfite-seq (WGBS)

Genomic DNA was isolated from approximately 3.5-week old Arabidopsis thaliana

mature leaf tissue using DNeasy Plant Mini Kit (QIAGEN). DNA was processed for bisul-

fite treatment and library generation at the University of Michigan Advanced Genomics

Core.
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Locus Name Sequence (5’-3’) Application
Nucleosome validation

PSN1 MH487 caggttgtgagttcgaatcgt ChIP-qPCR
MH488 catctccgttagccaccttt ChIP-qPCR

PSN2 MH489 tgagattttaccgggtccac ChIP-qPCR
MH490 cccttatacgtaatttccatcaca ChIP-qPCR

PSN3 MH491 ggagtgggatgtagactcgaa ChIP-qPCR
MH492 ctagtggtaccgcagggttt ChIP-qPCR

PSN4 MH493 cgatcggttcgatctcctta ChIP-qPCR
MH494 taacggttcaacccgagaaa ChIP-qPCR

PSN5 MH495 tctcccccacaatttctgtc ChIP-qPCR
MH496 aaatggacccctcattgtca ChIP-qPCR

PSN6 MH501 acagatagcgctgtacagatttta ChIP-qPCR
MH502 tcatttgatatgcgttttgttt ChIP-qPCR

ACTIN2 Actin2-A118 gagagattcagatgcccagaagtc ChIP-qPCR[112]
Actin2-A119 tggattccagcagcttcca ChIP-qPCR[112]

HSP70 A512 ctcttcctcacacaatcataaaca ChIP-qPCR[193]
A513 cagaattgttcgccggaaag ChIP-qPCR[193]

IGN22 MH537 cgggtccttggactcctgat ChIP-qPCR[168]
MH538 tcgtgaccggaataattaaatgg ChIP-qPCR[168]

H3K9me2 validation
ACTIN2 Actin2-A118 gagagattcagatgcccagaagtc ChIP-qPCR[112]

Actin2-A119 tggattccagcagcttcca ChIP-qPCR[112]
PSN1 MH487 caggttgtgagttcgaatcgt ChIP-qPCR

MH488 catctccgttagccaccttt ChIP-qPCR
PSN3 MH491 ggagtgggatgtagactcgaa ChIP-qPCR

MH492 ctagtggtaccgcagggttt ChIP-qPCR

Table 4.1: Oligonucleotides used in this study

4.5.6 Bioinformatic analysis

MNase H3 ChIP-seq paired-end reads from two independent biological replicates were

aligned and processed to the Arabidopsis TAIR10 genome with Bowtie2 [171]. Mapped

reads were deduplicated using PICARD tools (http://broadinstitute.github.io/picard) and

filtered by fragment length between 120-170 bp and MAPQ value of >=2. Differential nu-

cleosomes were identified using DANPOS2[201] by filtering nucleosomes with more than

2 fold enrichment in either in Col-0 for Pol V stabilized nucleosomes or in nrpe1 for Pol V

destabilized nucleosomes and FDR< 0.05. Nucleosomes are then filtered using the negative
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binomial test with reads from biological replicates using the NBPseq R package[151]. For

subsequent analysis we selected nucleosomes which showed more than 2 fold-change and

FDR < 0.05. We further refined the nucleosome positions for well-positioned nucleosomes

by filtering for main peak nucleosomes using iNPS[202]. Nucleosome data was (RPM)

normalized and visualized on heatmaps and profiles by calculating the number of reads us-

ing BEDTools 2.15.0 at nucleosome dyads[173]. Overlap analyses with nucleosomes were

performed with 1000 permuted genomic regions to obtain expected numbers and p-values.

SWI3B-stabilized nucleosomes were filtered for higher read counts in Col-0 than the swi3b

mutant and an FDR<0.05. These nucleosomes were then further filtered using the negative

binomial test with reads from biological duplicates using NBPseq and the nucleosomes

with FDR<0.01 were selected for further analysis.

Hypermethylated nucleosomes were identified by filtering for nucleosomes with higher

DNA methylation level in CHH-context inside the nucleosomes (140bps), compared to

their adjacent DNA linker regions (30bps upstream and downstream of nucleosomes). The

nucleosomes were filtered for the presence of more than 8 CHH-context cytosines within

the nucleosomes and more than 2 CHH-context Cs in each of the adjacent linkers to correct

for the sizes of the regions and frequencies of Cs. Hypomethylated nucleosomes were sim-

ilarly identified, except these regions had higher levels of CHH-context DNA methylation

in the adjacent DNA linker regions than the nucleosomes.

The sequencing reads from whole genome bisulfite-seq datasets were mapped to the

TAIR10 genome using the Bismark software allowing no mismatches[203]. DNA methy-

lation levels were calculated by the ratio of #C/(#C+#T) after selecting for Cs with at

least 5 sequenced reads. Differentially Methylated Regions (DMRs) were identified us-

ing methylKit package in R[204]. The bin sizes used were 100bp bins with a step-size of

50bps. 10 minimum bases were required in each tile. A 10% minimum methylation differ-

ence was selected for in each of the tiles and an FDR value of 0.01 was used. The number

of MNase-H3 ChIP-seq reads overlapping these DMRs were then plotted as a profile.
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4.5.7 Other datasets used in this study

Arabidopsis genome annotations (TAIR10) were obtained from TAIR. Pol V ChIP-

seq data (SRA054962) and peak list and Pol V RIP-seq data (GSE70290) and annotated

regions were published previously [152, 56]. DNA methylation data from idn2, ago4, drm2

and cmt3 mutants as well as corresponding Col-0 and nrpe1 controls were obtained from

GSE39901 [120].

4.5.8 Data access

The sequencing data from this study have been submitted to the NCBI Gene Expression

Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE148173.
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CHAPTER V

Concluding Remarks and Future Directions

The main focus of this dissertation has been to better understand the RdDM pathway

with extensive new insights into the mechanism of Pol V transcription and its impact on

gene regulation. Through this dissertation, I have identified Pol V transcribed regions

genome-wide to better understand the RdDM mechanism and the factors involved in the

pathway (Chapter II). I have also shown that Pol V transcription is not limited to RdDM

loci but it is more widespread and pervasive, depicting a possible surveillance mechanism

of transcription (Chapter III). I have also focused on the downstream effects of the RdDM

pathway showing that Pol V transcription regulates gene expression by controlling DNA

methylation and nucleosome positioning. I have demonstrated how DNA methylation di-

rects nucleosomes to the RdDM loci which, in turn, leads to regulation of gene expression

(Chapter IV). The analysis of various epigenomic and transcriptomic datasets has not only

led to these important new findings but also paved the way to explore many new areas of

research in the field of transcriptional gene silencing.

5.1 Genome-wide identification of lncRNA transcribed by Pol V

Chapters II and III have led to the substantial expansion of the known RdDM loci. This

was made possible by identification of lncRNAs produced by Pol V through RIP-Seq and

IPARE-Seq, respectively. Before the start of this study, our knowledge of in vivo functions
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of Pol V and the lncRNAs produced by it were limited to certain locus-specific assays

[88, 57, 42, 90, 112].

Chapter II led to the identification of ~4500 highly significant Pol V transcribed lncR-

NAs covering approximately 2.6% of the genome. These identified Pol V transcribed re-

gions further solidified our preexisting knowledge about RdDM. These lncRNAs depicted

interaction with other proteins linked to the RdDM pathway like AGO4 and IDN2 along

with enrichment of essential features of RdDM like CHH methylation and CG methylation.

They were also enriched at TEs. This depicted that the loci identified in the study using

genome-wide assays were, indeed, Pol V transcribed RdDM loci.

Chapter III showed a further improvement and expansion of the identification of the

Pol V transcribed lncRNAs by the development of a new, modified RIP technique called

IPARE. The improved quality of sequencing data and a new and better analysis technique

utilizing an unsupervised HMM model, led to the identification of RdDM Pol V transcripts

that covered 23% of the entire genome. The study also identified non-RdDM Pol V tran-

scribed regions showing that Pol V transcription is more pervasive, covering 42%, if not

more, of the entire genome. This also led to the new understanding that Pol V might func-

tion at regions outside of RdDM loci and might play an important role in the maintenance

of genomic integrity.

Our initial understanding of the RdDM pathway was that Pol V produces lncRNA to

silence TEs and maintain the TEs in a repressed state[55]. Our knowledge of Pol V tran-

scription suggested that recruitment of Pol V to the TEs mostly involved preexisting chro-

matin modifications [100, 82, 101, 103] and not sequence-encoded promoters [160]. This

explained the maintenance mechanism of the RdDM pathway well, where Pol V recruit-

ment to its loci depended on the previously established repressive modifications by Pol V

itself. This self-reinforcing loop mechanism, however, has never been able to explain the

mechanism of recruitment of Pol V to de novo RdDM loci, which include novel TE inser-

tions with no preexisting chromatin modifications. The currently improved techniques for
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identification of these Pol V transcripts have greatly increased our understanding about the

mechanism of Pol V transcription.

Our model in Figure 3.9 suggests that Pol V exists in three transcription states span-

ning 42% of the genome. The maintenance RdDM state occurs at silenced TEs and depicts

a high level of Pol V transcription supported by the self-reinforcing Pol V recruitment

mechanism [100, 82, 101, 103]. The surveillance transcription state occurs at non-RdDM

loci that are scanning for possible random insertions of TEs and are extremely lowly tran-

scribed. The fate of these surveillance transcripts could be: the possibility that they locate

a de novo RdDM locus at a newly activated or inserted TE, which could in turn recruit

the RdDM machinery for silencing or, more often than not, the possibility that they do not

encounter any aberrant transcript and are most likely directed for degradation by exonu-

cleases. Despite the great improvements in sequencing techniques, we are still unable to

sequence lowly transcribed or quickly degraded regions of the genome, which explains our

previous inability to identify these surveillance Pol V transcripts. With our new findings,

there exists a great number of unanswered questions that would not only help us better un-

derstand Pol V transcription but also explain the RdDM mechanism in light of surveillance

transcription.

One interesting direction to better understand the expanse of Pol V transcription would

be to disrupt RNA degradation and test the accumulation of Pol V transcripts throughout

the genome. If Pol V transcribes a large portion of the genome, the surveillance transcripts

that are lowly transcribed and not required for RdDM would be marked for degradation

by exonucleases present in the cells. Testing the accumulation of Pol V transcripts in

exonuclease mutants, which lack the ability to degrade RNA, would give us a better idea

of the spread of Pol V transcripts across the genome. This can also shed some light on the

loci targeted or preferentially transcribed by Pol V and thereby help us better understand

how Pol V functions.
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5.2 Pol V surveillance transcription is important for maintaining ge-

nomic integrity

Chapter III shows that Pol V transcribes a very broad portion of the genome (42%) and

about half of these Pol V transcribed regions do not lead to RdDM. These regions are shown

to be transcribed to a much lower extent and possibly less frequently. These non-RdDM

Pol V transcripts, or surveillance transcripts, are predicted to scan the genome to identify

newly activated/inserted transposons and other aberrant transcripts that are in turn targeted

for silencing by RdDM. In the chance that an aberrant transcript is identified, the surveil-

lance transcripts can act as a template to recruit siRNAs produced by the inserted/activated

transposons [160] and initiate the RdDM pathway to establish de novo DNA methylation

and other repressive chromatin modifications to silence these loci. In the alternate scenario

that there are no new insertions or disruptions to the genome, the surveillance transcripts

are targeted for degradation. This model (Figure 3.9) explains the importance of pervasive

Pol V transcription for targeting chromatin modifications to non-conserved regions in the

genome and thus, for maintenance of genomic integrity of the organism.

Pervasive transcription of the eukaryotic genome has been considered non-functional

due to the absence of sequence conservation in these transcripts [165]. Additionally, the

rapid degradation of most of these pervasive non-coding transcripts has been believed to be

the lack of observable function of these transcripts[206, 207]. Thus, pervasively transcribed

RNA have been believed to be noisy transcripts that the cell tries to dampen[206, 207].

However, it has been argued that many of the non-coding transcription primarily provides

a cache of RNA molecules that can eventually evolve useful functions[208]. Our model

depicts one such function for pervasive transcription where these transcripts are produced

throughout the genome as a way to scan the genome for the presence of spurious transcrip-

tion from newly integrated TEs. These transcripts act as a scaffold for recruiting chromatin

modifying machinery to the regions if a newly incorporated TE is encountered. Previ-
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ous studies have shown that siRNA-AGO4 complexes that target RdDM to genomic loci

are not capable of recognizing or binding to their target loci in the absence of lncRNAs

produced by Pol V[88, 155]. This greatly hints at the importance of these surveillance

Pol V transcripts in identifying novel TE insertions that might occur randomly throughout

the genome and make it competent for immediate silencing by recruitment of the RdDM

machinery. Our model also suggests that if the surveillance transcripts do not identify a

novel TE, it would not recruit the complementary siRNA-AGO complex and thereby end

up being quickly degraded by the cell, thus depicting the short-lived and lowly transcribed

nature of all pervasive transcripts. Thus, our model suggests a possible function for perva-

sive transcription in maintaining the genomic integrity by scanning the genome for possible

aberrant transcripts and targeting them for silencing almost immediately.

Despite providing a possible explanation of the need for pervasive transcription in or-

ganisms, our model does not explain the mechanism of transition of Pol V from a low

transcription, surveillance state to a high transcription, RdDM state, once a novel TE in-

sertion has been identified. In the event that a novel TE insertion has been found, a series

of proteins would need to be recruited leading to the establishment of repressive chromatin

modifications as in RdDM. However, this would need to be followed by switching of Pol

V transcription from a low-level surveillance state to the higher-level, maintenance state

of transcription. Identifying the proteins and components that bring about this transition

would be a very interesting next step for this study. Another possible method to validate

the Pol V transition would be by introducing a new transposon by CRISPR targeted to a

surveillance locus and tracking the increase in Pol V transcript accumulation with the new

insertion. This would provide a subsequent locus-specific validation of the model described

in Chapter III.

119



5.3 lncRNA determines heterochromatin boundaries

RdDM has been shown to be involved in many biological processes [55], however its

primary function has always been considered to be transposon silencing. Despite knowing

that RdDM can silence transposons by directing de novo DNA methylation to transposons,

the mechanism bringing about the silencing has been unclear. Transposon silencing oc-

curs through a combination of pathways, three of which have been studied in great depth.

RdDM is the only de novo silencing pathway that has been elucidated. The other two

pathways are maintenance pathways that work through MET1 based CG methylation[114]

and CMT2 and CMT3 based CHG and CHH methylation[24, 209]. Chapter II shows the

enrichment of Pol V transcription and Pol V-dependent CHH methylation at the edges of

transposon. Another important conclusion from this study is that Pol V preferentially tran-

scribes into transposons from both ends of the transposons. This led to the hypothesis that

Pol V plays an important role in determining heterochromatin boundaries which could be

important to prevent the spread of heterochromatin. The role of RdDM in the determi-

nation of heterochromatin boundaries has been previously studied in maize, where muta-

tions in RdDM components depicted the spreading of euchromatin from genes into nearby

transposons[144]. From this, it appears that our data also hints at the possibility of Pol

V and RdDM playing a role in determining and restricting heterochromatin–euchromatin

boundaries.

These findings raise questions about how Pol V identifies and targets RdDM to edges

of heterochromatin. One possibility is that Pol V enrichment at the heterochromatin edges

could be the result of preexisting chromatin marks that already outline heterochromatin and

recruit Pol V to these loci. Another possibility is that Pol V is required to establish these

heterochromatin boundaries by directing repressive chromatin modifications to the edges.

This would greatly explain the role of Pol V in maintaining euchromatin–heterochromatin

boundaries. Another interesting expansion to this work would be to test the impact of Pol

V on Pol II transcription and gene expression regulation. This can be done by testing the
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effect of Pol V and its downstream repressive chromatin marks on the recruitment of Pol II

to the heterochromatin boundaries.

5.4 RNA-directed DNA methylation positions nucleosomes to regulate

gene expression

RNA-directed DNA methylation is functionally intertwined with chromatin modifica-

tions in the form of DNA methylation and nucleosome positioning. It is known that chro-

matin modifications play a role both upstream [82, 157] and downstream [24, 112, 42, 55]

of recruitment of Pol IV and Pol V to RdDM loci. Chapter IV shows that at RdDM loci,

DNA methylation determines nucleosome positioning. The results show that non-coding

transcription by Pol V recruits AGO4 and IDN2 proteins. IDN2, in turn, recruits the

SWI/SNF nucleosome remodeling complex, which is capable of but not sufficient to al-

ter nucleosome positions. IDN2 also recruits the de novo DNA methyltransferase, DRM2,

which in turn establishes DNA methylation that are essential to activate chromatin remod-

elers and alter nucleosome positions. Thus, at RdDM loci, we have identified that nucle-

osome positions are dependent on DNA methylation and their coordinated effect leads to

repression of genes. Our model of DNA methylation directing nucleosomes to regulate

genes is depicted in Figure 5.1.

The importance of DNA methylation for nucleosome positioning has a significant im-

pact on our understanding of the RdDM pathway. Our conclusion suggests that the RdDM

pathway might not be branched after IDN2 recruitment[42] but on the contrary, these events

occurring at Pol V transcribed loci are organized in a stepwise genetic pathway[90]. Al-

though when studied genetically, this pathway appears linear, various steps of the pathway

are likely to rely on the cooperative recruitment or activation of subsequent factors. One

example of such a connection is the requirement of both SWI3B and DRM2 based DNA

methylation to direct nucleosomes. Our model is also consistent with the idea that the
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Figure 5.1: DNA methylation directs nucleosome positioning at RdDM loci

events in the late stages of RdDM lead to a concerted establishment of repressive chro-

matin modifications like DNA methylation and nucleosome positioning leading to an effi-

cient repression of Pol II transcription. It is also consistent with the general difficulty to

experimentally tease apart various repressive chromatin modifications established by this

pathway.

The involvement of SWI/SNF and nucleosome positioning in RdDM may also be con-

sidered in context of this pathway mostly involved in maintenance of silencing of TEs.

Transcription of heterochromatic regions by Pol IV and Pol V may be preceded by the

removal or repositioning of previously positioned nucleosomes. This is supported by the

involvement of putative chromatin remodelers in initiation and/or elongation of transcrip-
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tion by both of those polymerases[105, 198, 112, 102]. Nucleosome positioning established

as an outcome of RdDM might also be a mechanism to re-create the pattern of nucleosomes

disrupted by Pol IV and Pol V transcription. However, at de novo RdDM loci around newly

inserted TEs, we do not expect to see preexisting repressive chromatin modifications. The

role of nucleosome positioning in this de novo process remains unexplored.

The involvement of DNA methylation in determining the pattern of nucleosomes is not

restricted to RdDM targets. The impact of MET1-dependent CG methylation and CMT3-

dependent CHG methylation on stabilizing nucleosomes suggests that DNA methylation

may affect nucleosome patterns throughout the genome. This has also been observed in

other eukaryotes[192, 199]. This general effect of DNA methylation on nucleosome po-

sitioning would counteract the general preference to methylate linkers and contribute to

local correlations between nucleosomes and DNA methylation. This property of nucleo-

somes is consistent with previous reports[188] and may involve the activity of DDM1[190].

It illustrates the general interdependence between nucleosomes and DNA methylation.

Existing evidence, however, does not support the view that DNA methylation is the pri-

mary determinant of the nucleosome pattern. Nucleosome positions can be controlled by a

combination of intrinsic factors and active chromatin remodeling. The role of DNA methy-

lation is more limited and probabilistic. We believe that global losses of DNA methylation

in RdDM and DNA methyltransferase mutants may affect the patterns of nucleosomes by

a combination of cis- and trans-acting factors. This question could be tested by targeting or

depleting DNA methylation to/from specific loci in the genome and studying the effect it

has on the nucleosome positions around the region, rendering a more targeted locus-specific

approach to address this question.

5.5 Implications of new findings

RNA-directed DNA methylation is the transcriptional gene silencing pathway in plants

that utilizes ncRNA to direct repressive chromatin modifications like de novo DNA methy-
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lation and nucleosomes, to specific target loci for silencing. Target loci of RdDM have been

known to include transposons and repeats distributed throughout the genome with its pres-

ence particularly notable at smaller and younger transposons and repeats in euchromatic

chromosome arms[86, 209, 119] Over time, we have understood that RdDM mechanism

greatly depends on Pol IV and Pol V transcription of siRNA and lncRNA, where lncRNA

acts as a scaffold to recruit a series of proteins and chromatin remodelers to eventually

direct repressive chromatin modifications to the loci[55]. However, there remain a lot of

specific unanswered questions that are essential for a better understanding of the RdDM

pathway, which would not just help understand this process of gene regulation in plants

but can be expanded to explain the mechanism of transcriptional gene silencing in other

organisms.

This thesis addresses some of these unanswered mechanistic questions of the TGS path-

way by trying to understand the role that lncRNA and Pol V play in directing and targeting

repressive chromatin marks and thereby regulating genes. This study tries to understand

Pol V transcription in relation to the RdDM pathway at three different stages:

A) Upstream of RdDM pathway or the pre-transcription stage.

B) The RdDM pathway or transcription stage.

C) Downstream of RdDM pathway or the post-transcription stage.

Upstream of RdDM, there still exist unanswered questions about how Pol V identifies

and transcribes its target loci in the genome. Prior to this study, the only knowledge we

had about Pol V recruitment was the existence of a self-reinforcing loop, wherein DNA

methylation established by RdDM is read by SUVH2 and SUVH9 proteins, which in turn

have been shown to be important for Pol V recruitment to the same loci [58, 86, 100, 101].

This mechanism, however, was only able to explain the recruitment of Pol V to loci that

have already been targeted for silencing by RdDM but still didn’t explain how de novo loci

lacking chromatin modifications were identified by Pol V. This thesis has shown that Pol V

is not necessarily recruited to its targets but instead is pervasively transcribing the genome,
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scanning large portions of it. Thus, at locations where de novo TE expression occurs, Pol

V could already be present. This surveillance mechanism of transcription explains how Pol

V is able to find and quickly silence newly activated transposons through RdDM.

In the RdDM pathway, studies have already shown a list of proteins recruited to spe-

cific target loci silenced by RdDM. At these specific RdDM targets, it is known that Pol V

transcribes lncRNA that acts as a scaffold to recruit 24-nt siRNA bound AGO4 protein fol-

lowed by recruitment of IDN2 and eventually the de novo DNA methyltransferase, DRM2,

which directs DNA methylation to the target loci to silence them [87, 88, 89, 90, 91]. Most

of this information was obtained from assays at specific loci previously identified as RdDM

but not on a genome-wide scale[88, 57, 42]. This thesis has been successful in identifying

genome-wide RdDM loci. Identification of these new sites has made it possible to expand

our knowledge of RdDM and mechanism of Pol V transcription at these loci. The mecha-

nism of Pol V transcription has also been better explained by this study depicting that Pol

V transcription is not strand-specific and it transcribes into TEs from both sides, thereby

marking the boundaries of heterochromatin. Thus, with the expansion of our knowledge of

Pol V transcribed loci, this thesis has paved way to a better understanding of RdDM.

As for the downstream effects of RdDM, it has been known that RdDM targets DNA

methylation to the Pol V transcribed regions that need to be silenced[55, 120]. It has also

been observed that Pol V transcription leads to the recruitment of the SWI/SNF remodeling

complex that could also alter nucleosome positions as a result of Pol V transcription[42].

However, what was not completely known was how these different repressive chromatin

marks targeted by RdDM interact with each other. This thesis has addressed and found

some answers to the interaction between DNA methylation and nucleosome positioning

caused by RdDM. It has shown that RdDM directs DNA methylation which in turn posi-

tions nucleosomes at the methylated loci.

This thesis has addressed many important questions about Pol V transcription and lncR-

NAs and their involvement in RdDM. The studies have expanded our knowledge about
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lncRNAs and their mechanism of directing repressive modifications to their target loci.

This information about the role of ncRNAs in TGS can be expanded to other organisms to

better understand the TGS pathways in these organisms too.

In addition to the TGS pathway, this thesis has also significantly improved our un-

derstanding on the role and need of pervasive transcription in plants, and possibly all or-

ganisms. Pervasive transcripts have been believed to be noisy transcripts that are non-

functional, non-conserved and targeted for rapid degradation by the cell[206, 207]. This

thesis has provided a possible function for these pervasive transcripts. This study has shed

light onto the possibility that pervasive transcripts are essential for maintaining the integrity

of the genome. Pervasive transcripts are produced to survey the entire genome for possi-

ble random integrations, on account of which these transcripts act as a scaffold to recruit

chromatin modifying machinery to silence the random insertion. On the other hand, in the

absence of a random insertion, these pervasive transcripts are targeted for degradation.

Thus, this study shows that pervasive transcription might be essential to identify novel

TE insertions that might occur randomly throughout the genome and it makes the genome

competent for immediate silencing, thereby playing a very important role in maintain-

ing the integrity of the genome[177] (Chapter III). Once this random insertion is iden-

tified, the RdDM machinery is quickly recruited to target DNA methylation to the tar-

get loci[152] (Chapter II), which in turn recruits and positions nucleosomes through the

SWI/SNF complex[205] (Chapter IV).
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