
Purpose-first Programming: A Programming Learning
Approach for Learners Who Care Most About What

Code Achieves

by

Kathryn Irene Cunningham

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Information)

in The University of Michigan
2021

Doctoral Committee:

Assistant Professor Barbara Ericson, Co-Chair
Professor Mark Guzdial, Co-Chair
Associate Professor Chris Quintana
Research Professor Stephanie Teasley

Smilodon californicus and Canis dirus fight over a Mammuthus columbi carcass in the La

Brea Tar Pits.

Artist: Robert Bruce Horsfall

Source: William Berryman Scott, A history of land mammals in the western hemi-

sphere, New York, MacMillan Publishing Company, 1913. Frontispiece.

Kathryn Irene Cunningham

kicunn@umich.edu

ORCID iD: 0000-0002-9702-2796

c© Kathryn Irene Cunningham 2021

ACKNOWLEDGEMENTS

I have been very fortunate to work on my doctorate with support from my

research community, my friends, and my family. Thanks to everyone who encour-

aged me to write this thesis, and who helped me see it through to the end.

Mark Guzdial and Barbara Ericson provided invaluable guidance and knowl-

edge as they advised me through my doctorate and into the next step in my career.

I am so grateful for not only their support for my research, but also their emotional

support as I weathered the challenges of moving from Georgia Tech to Michigan.

Many times, my peers were my greatest motivators. My classmates at Geor-

gia Tech encouraged me to live up to their example as rock star researchers, and

the community of computing education graduate students constantly renewed my

passion for our field.

The undergraduate researchers I’ve worked with likely didn’t know how help-

ful their excitement and enthusiasm was to my progress. My former students at

Hartnell Community College and California State Monterey Bay are often in my

thoughts, and I thank them for reminding me about the life-changing impact of

quality computer science education.

My friends have been there for me when I needed it most, with encouraging

words, letters, and video calls. Special thanks to Rebecca Krosnick for understand-

ing both my love of baseball and the struggle of maintaining self-confidence in

graduate school, and to Eshwar Chandrasekharan for his listening ear, kind words,

and strength.

ii

Thanks to my parents and my brother for their endless support and love.

Thanks to the National Science foundation for funding my research and having

confidence in my future as a researcher. This material is based upon work sup-

ported by the National Science Foundation Graduate Research Fellowship under

Grant No. DGE 1256260.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . ix

LIST OF TABLES . xi

ABSTRACT . xii

CHAPTER

I. Overview of the Thesis . 1

1.1 Background: Code’s structure, behavior, and function 2
1.2 Understanding the challenge: Why novices avoid code tracing 4

1.2.1 Novice rationales for sketching and tracing, and
how they try to avoid it 4

1.2.2 “I’m not a computer”: How identity informs value
and expectancy during a programming activity . . 6

1.3 Meeting the challenge: Purpose-first programming 7
1.3.1 How it’s designed 8
1.3.2 Why it might work 8
1.3.3 How I evaluated it and what I found 8

1.4 Implications for programming learning 9

II. Using the Structure Behavior Function Framework to Understand
Programming Learning . 11

2.1 The Structure Behavior Function framework 12
2.1.1 What is the Structure Behavior Function framework? 12
2.1.2 How do structure, behavior, and function interact? 13
2.1.3 Where did SBF originate? 14
2.1.4 What do we know about SBF in learning environ-

ments? . 18

iv

2.2 What are Structure, Function, and Behavior in the context of
programming? . 20

2.2.1 Structure of a program 20
2.2.2 Behavior of a program 24
2.2.3 Function of a program 27
2.2.4 Connections between structure, function, and be-

havior. 29
2.3 Three theories of programming instruction through an SBF

lens . 31
2.3.1 The “Neo-Piagetian” hierarchy of programming skills

. 31
2.3.2 Xie et al.’s theory of programming instruction . . . 33
2.3.3 Schulte’s Block Model 37
2.3.4 Discussion . 40

2.4 Conclusion . 41

III. Novice Rationales for Sketching and Tracing, and How They Try
to Avoid It . 43

3.1 Introduction . 43
3.2 Background . 45

3.2.1 Tracing and other ways novices read code 45
3.2.2 When and why do students sketch? 46
3.2.3 What external representations are common in novice

programming? . 47
3.3 Method . 48

3.3.1 Class observations 49
3.3.2 Interviews . 49

3.4 Why sketch (or not)? . 50
3.4.1 Goal and pattern recognition 50
3.4.2 Anticipated cognitive load 51
3.4.3 Problem-solving progression: From goal search to

tracing (and re-tracing) 52
3.5 Why not sketch like the instructor? 53

3.5.1 Seen as unnecessary and time-consuming 54
3.5.2 Visual details seem distant from code 54
3.5.3 Boxes are reserved for another purpose 55

3.6 What do novice sketches include? 55
3.6.1 Organizing and structuring of traces 55
3.6.2 Persistence of past values and calculations 56
3.6.3 Anchoring with visible values and structures 57

3.7 Discussion . 58
3.7.1 Search for goals and patterns is primary 58
3.7.2 Variables are treated differently based on context . 59
3.7.3 Past values are retained 60

v

3.7.4 Variables are un-boxed 60
3.8 Limitations and threats to validity 60
3.9 Conclusion . 61

IV. “I’m not a computer”: How Identity Informs Value and Expectancy
During a Programming Activity . 63

4.1 Introduction . 64
4.2 Background . 65

4.2.1 Identity, programming, and applications 65
4.2.2 The Eccles expectancy-value model of achievement

choice . 66
4.2.3 Tracing code to solve problems 67

4.3 Method . 68
4.3.1 Task . 68
4.3.2 Problems . 68
4.3.3 Participants . 69
4.3.4 Interview Protocol 69
4.3.5 Analysis . 70

4.4 Case Studies . 71
4.4.1 Charles: I’m not a computer 71
4.4.2 Luke: I’m not a programmer 73

4.5 Discussion . 76
4.5.1 Previous achievement-related experiences, Inter-

pretations, and Affective reactions and memories . 77
4.5.2 Goals and general self schemata 78
4.5.3 Activity-specific ability, self-concept, and expecta-

tions for success . 78
4.5.4 Subjective task value: Interest-enjoyment value . . 78
4.5.5 Subjective task value: Attainment value 79
4.5.6 Subjective task value: Utility value 79
4.5.7 Subjective task value: Relative cost 79

4.6 Conclusion . 80

V. Defining, Building, and Evaluating Purpose-First Programming . . 82

5.1 Introduction . 82
5.1.1 Summary of contributions 84

5.2 Motivation for the approach 86
5.2.1 Conversational programmers and end-user program-

mers want to understand the purpose of complex
code, but also want to avoid detailed semantics . . 86

5.2.2 Programming tools for non-developers often avoid
industry- standard code, so they don’t provide dis-
ciplinary authenticity 87

vi

5.2.3 Plans may be a more motivating way for conver-
sational programmers to think about code 88

5.2.4 Other systems have provided plan- or example-
based support . 89

5.3 Formative study: Investigating the responses of novice pro-
grammers to purpose-oriented assistance 90

5.3.1 Focus group results 90
5.3.2 Survey results . 92
5.3.3 Conclusions from the formative study 95

5.4 Defining Purpose-first programming 96
5.4.1 Identifying authentic, domain-specific programming

plans . 96
5.4.2 Expanding the definition of a programming plan

to serve instructional needs 97
5.4.3 Providing ”glass-box” scaffolding to support learn-

ers as they work with plans 99
5.5 Designing the purpose-first programming proof-of-concept

curriculum . 100
5.5.1 Building a set of plans 100
5.5.2 Creating activities 102
5.5.3 Selecting a platform 103
5.5.4 Designing purpose-first support 103
5.5.5 How this prototype meets the design goals 105

5.6 Method . 108
5.6.1 Study Design . 108
5.6.2 Recruitment and participants 109

5.7 Evaluation of learners’ problem-solving 111
5.7.1 Learners were able to complete scaffolded writing,

debugging, and code explanation tasks 111
5.7.2 Participants used purpose-first scaffolds to apply

plan knowledge and complete tasks 112
5.7.3 Discussion . 121

5.8 Evaluation of learners’ motivation 123
5.8.1 Analysis approach 123
5.8.2 Participants were motivated to learn with purpose-

first programming in the future 124
5.8.3 Learners perceived the purpose-first programming

curriculum as having low cognitive load 124
5.8.4 Participants felt success and enjoyment, which came

from understanding and completing problems . . . 128
5.8.5 Participants felt that purpose-first programming

was for beginners and those who need extra help . 130
5.8.6 Participants believed purpose-first programming

gave them conceptual, high-level knowledge 133

vii

5.8.7 Participants found curricular content realistic and
applicable . 135

5.8.8 Code tracing visualizations are unhelpful if con-
fusing, but useful for deep knowledge if under-
standable . 136

5.8.9 Discussion . 138
5.9 Implications for future curriculum design 141

5.9.1 There are opportunities to streamline activities and
reduce user error . 141

5.9.2 Clear indication of success can contribute to moti-
vation . 141

5.9.3 Fading of scaffolding could allow purpose-first pro-
gramming to be more broadly used 142

5.10 Conclusion . 143

VI. Summing Up and Looking Forward 144

6.1 Contributions of this thesis . 144
6.1.1 Novices don’t trace code because it’s cognitively

challenging and has low value 144
6.1.2 Learning domain-specific programming plans can

motivate both conversational and end-user program-
mers . 145

6.1.3 Considering both cognition and value can lead to
effective approaches 146

6.2 Future work . 148
6.2.1 What learner characteristics are correlated with a

benefit from purpose-first programming? 148
6.2.2 How can purpose-first programming activities fit

into an instructional sequence? 148
6.2.3 What technology can support development of purpose-

first programming curricula at scale? 149

BIBLIOGRAPHY . 152

viii

LIST OF FIGURES

Figure

1.1 A complete sketched trace. 5
2.1 An illustration of the SBF framework 14
2.2 The rainfall problem with syntactical substructures highlighted (left)

and plan substructures highlighted (right). 23
2.3 The abilities of learners in Lister’s Neo-piagetian stages, mapped

to the SBF model . 33
2.4 Xie et al.’s four skills from their theory of instruction [163]. c©Benjamin

Xie . 35
2.5 Xie et al.’s instructional stages, mapped to the SBF framework . . . 37
3.1 Variable visualizations in program animation tools 48
3.2 An in-class sketch by the instructor. 53
3.3 Tracing organized by loop indices . 56
3.4 Tracing organized around a list . 57
3.5 Persistence of past values . 58
3.6 Organizing tracing around code structure 59
4.1 A participant’s work on Problem 1, during the tracing stage. 68
4.2 Charles’ self-narrative mapped onto relevant aspects of the Eccles

Expectancy-Value Model of Achievement Choice [43]. 74
4.3 Luke’s self-narrative mapped onto relevant aspects of the Eccles

Expectancy-Value Model of Achievement Choice [43]. 76
4.4 Relevant components of the Eccles expectancy-value model of achieve-

ment choice (modified from Eccles [43]). Cultural Milieu, Social-
izer’s Beliefs and Behaviors, Stable Child Characteristics, and Per-
ception of Stereotypes and Socializer’s Beliefs are not represented. . 77

5.1 The development of a purpose-first programming module 84
5.2 Survey respondents were asked to rank and reflect on the useful-

ness of these code writing activities with different levels of purpose-
oriented scaffolding. The directions for all activities were: ”Com-
plete the code that achieves the goal”. 92

ix

5.3 An example plan from the domain of web scraping. This plan
achieves an authentic goal in its domain, and consists of multiple
subgoals and slots. The slots define the space of relevant domain
knowledge needed to work with this plan. 97

5.4 Plan usage across the curriculum. Activities use novel plan com-
binations not seen in instructional examples. 103

5.5 Slot highlighting, plan goals, and subgoals assist learners as they
debug this code. 104

5.6 Practice activities contain subgoal label scaffolding, and focus only
on knowledge about plan slots. 105

5.7 All plan instruction is situated in examples. Learners first view
and run a complete program example, then learn about how each
plan contributes to the full program. 106

5.8 Writing code takes place in stages. Learners first assemble plans,
and then fill in plan slots. 107

5.9 Overview of the study design . 109
5.10 Traces of participants’ activities when solving code Writing part 3

(fill plan slots) . 118
5.11 Selected quotes from P9’s thinkaloud mapped onto the actions she

took while solving Writing Activity 3 (fill plan slots). 121
5.12 Selected quotes from P5’s thinkaloud mapped onto the actions she

took while solving Writing Activity 3 (fill plan slots). 122
5.13 The themes mapped onto the Eccles Expectancy-Value Model of

Achievement Choice [42]. 139

x

LIST OF TABLES

Table

2.1 The Block Model, adapted from [20]. 38
3.1 Code plans appearing in code reading questions. 49
5.1 Difference in attitudes about the highly scaffolded code writing

problem (Figure 5.2a) between conversational programmers and
non-conversational programmers. Attitudes were drawn from fo-
cus group quotes. Survey respondents were asked to rate their
agreement on a 7-point Likert scale, Strongly Disagree - Strongly
Agree. 93

5.2 Participants’ success and time to completion on scaffolded activi-
ties (n=9). 112

5.3 Participants’ mentions of goals and subgoals during their thinkaloud
on each activity. 115

5.4 Examples of different participants focusing on subgoals or on code
at the same step in an activity. Mentions of subgoals are bolded,
and mentions of code are underlined. All quotes are from conver-
sational programmers. 117

5.5 Participants’ visits to plan reference pages in Writing Activity 3.
”Most relevant” plans are plans where the participant’s code con-
tained an error or was incomplete at the time of the page visit. . . . 118

5.6 Self-reported cognitive load on scaffolded activities (n=9). Cog-
nitive load is measured on a 9-point scale (Very very low mental
effort (1) - Very very high mental effort (9) [111]). 127

xi

ABSTRACT

Introductory programming courses typically focus on building generalizable pro-

gramming knowledge by focusing on a language’s syntax and semantics. Assign-

ments often involve “code tracing” problems, where students perform close track-

ing of code’s execution, typically in the context of ‘toy’ problems. “Reading-first”

approaches propose that code tracing should be taught early to novice program-

mers, even before they have the opportunity to write code.

However, many learners do not perform code tracing, even in situations when

it is helpful for other students. To learn more, I talked to novice programmers

about their decisions to trace and not trace code. Through these studies, I iden-

tified both cognitive and affective factors related to learners’ motivation to trace.

My research found that tracing activities can create a “perfect storm” for discour-

aging learners from completing them: they require high cognitive load, leading to

a low expectation of success, while also being disconnected from meaningful code,

resulting in low value for the task.

These findings suggest that a new learning approach, where novices quickly

and easily create or understand useful code without the need for deep knowledge

of semantics, may lead to higher engagement. Many learners may not care about

exactly how a programming language works, but they do care about what code

can achieve for them.

I drew on cognitive science and theories of motivation to describe a “purpose-

xii

first” programming pedagogy that supports novices in learning common code pat-

terns in a particular domain. I developed a proof-of-concept ”purpose-first” pro-

gramming curriculum using this method and evaluated it with non-major novice

programmers who had a variety of future goals.

Participants were able to complete scaffolded code writing, debugging, and

explanation activities in a new domain (web scraping with BeautifulSoup) after

a half hour of instruction. An analysis of the participants’ thinkalouds provided

evidence the learners were thinking in terms of the patterns and goals that they

learned with in the purpose-first curriculum.

Overall, I found that these novices were motivated to continue learning with

purpose-first programming. I found that these novices felt successful during pur-

pose-first programming because they could understand and complete tasks. Nov-

ices perceived a lower cognitive load on purpose-first programming activities than

many other typical learning activities, because, in their view, plans helped them

apply knowledge and focus only on the most relevant information. Participants

felt that what they were learning was applicable, and that the curriculum provided

conceptual, high-level knowledge. For some participants, particularly conversa-

tional programmers who didn’t plan to program in their careers, this information

was sufficient for their needs. Other participants felt that purpose-first program-

ming was a starting point, from which they could move forward to gain a deeper

understanding of how code works.

xiii

CHAPTER I

Overview of the Thesis

Alan Perlis said, “Beware of the Turing tar-pit in which everything is possi-

ble but nothing of interest is easy” [115]. Unfortunately, much of an introductory

programming (CS1) course can feel like the “Turing tar-pit.” CS1 courses focus on

building generalizable programming knowledge by focusing on a language’s syn-

tax and semantics [2]. Assignments often involve “code tracing” problems, where

students perform close tracking of code’s execution, typically in the context of ‘toy’

problems [140]. Theoretically, code tracing should help students develop a key

competency: an understanding of the way the computer executes code, known as

the “notional machine” [38, 140]. Code tracing has empirical evidence for helping

novice programmers solve problems like debugging [103] and explaining code in

a natural language [86]. As a result, “reading-first” approaches propose that code

tracing should be taught early to novice programmers, even before they have the

opportunity to write code [163, 110, 86].

However, many learners do not perform code tracing, even in situations when

it is helpful for other students [90]. When studying code tracing behavior us-

ing “sketched traces”, I found that learners sketched more frequently on certain

problems than others, and were least likely to succeed when they started tracing,

but didn’t complete a trace [33]. Code tracing activity doesn’t seem like a simple

1

panacea for problem-solving.

In order to learn more, I talked to novice programmers about their decisions

to trace and not trace code. Through these studies, I identified both cognitive and

affective factors related to learners’ motivation to trace. My research found that

tracing activities can create a “perfect storm” for discouraging learners from com-

pleting them: they require high cognitive load [34], leading to a low expectation

of success [32], while also being disconnected from meaningful code, resulting in

low value for the task [32].

These findings suggest that a new learning approach, where novices quickly

and easily create or understand useful code without the need for deep knowledge

of semantics, may lead to higher engagement. Many learners may not care about

exactly how a programming language works, but they do care about what code can

achieve for them.

I draw on cognitive science and theories of motivation to describe a “purpose-

first” programming pedagogy that supports novices in learning common code pat-

terns in a particular domain. I developed a proof-of-concept ”purpose-first” pro-

gramming curriculum using this method and evaluated it with non-major novice

programmers who had a variety of future goals. I found that these novice pro-

grammers were able to use the pattern-based approach to solve problems. I also

found that novices were motivated to learn with this method in the future, be-

cause they felt that they were successful on purpose-first programming problems

and that the content was valuable in helping them achieve their goals.

1.1 Background: Code’s structure, behavior, and function

In Chapter II, I introduce the Structure Behavior Function (SBF) framework

[35, 51, 55], a general model that describes the cognition necessary to understand

and create artifacts that serve a purpose. In programming education research, and

2

in tracing research in particular (e.g.[88]), many code examples are collections of

syntax structures that don’t achieve any ”real-world” goal. As one of my partici-

pants said, the only purpose of such problems is “teaching people Python“ (Chap-

ter IV). By contrast, during purpose-first programming, novices only learn code

patterns that achieve goals in a domain of professional practice (e.g. web scrap-

ing). Theory directs researchers’ attention by bringing certain aspects of what they

study into sharper focus than others [65]. By thinking about code understanding

and creation using the SBF framework, I assured code’s purpose was always in

focus.

I used the SBF framework to organize relevant background literature about

novice program comprehension and creation. The SBF framework proposes that

to understand or create a designed artifact, one must utilize an understanding of

the artifact’s behavior. I highlight a variety of ways that we can define code behav-

ior, from programming language semantics to more abstracted approaches like

programming plans [134].

I map existing programming learning hierarchies [163, 86, 129] onto the Struc-

ture Behavior Function framework, in order to make comparisons between them.

I find that these hierarchies typically define code behavior as the operation of pro-

gramming language semantics (e.g. the branching of a selection statement, or the

creation of a variable). These hierarchies only focus on “higher-level” understand-

ings of code behavior, like recognizing a pattern of code, at later stages of the hi-

erarchy. In these progressions, it will take students a long time to interact with

meaningful code.

3

1.2 Understanding the challenge: Why novices avoid code tracing

1.2.1 Novice rationales for sketching and tracing, and how they try to avoid it

In Chapter III, I identify cognitive reasons that novice programmers don’t trace

code, or stop tracing partway through. When novices don’t trace, they often re-

port that they have identified the goal that the code achieves, without needing to

carefully track every mechanism of how the code operates. When novices start

but don’t complete a code trace in its entirety, they claim they found a pattern and

don’t need to finish tracing. When these learners could not determine a goal or

pattern, they resorted to detailed and complete code tracing. Overall, novices use

a problem-solving strategy that prioritizes a search for the functionality of code,

rather than merely tracing its behavior.

1.2.1.1 Summary of methods and findings:

In this study, I interviewed 13 introductory programming (CS1) students ret-

rospectively about their decisions to draw out code traces on paper while solving

code prediction problems on a recent Python programming exam. The “sketches”

on students’ scratch sheets are an artifact that captures their code tracing activ-

ity [88, 33] (see Figure 1.1). Using each student’s scratch sheet to ground the in-

terview, I performed a retrospective artifact walkthrough where I asked students

about how they made choices to trace or not trace, and why they chose to draw

their traces in a particular way.

I found that rather than immediate use of a tracing technique, interviewees

typically described an initial search for code’s meaning, then a fall-back to tracing

when no discernible goal or pattern was found. When they stopped tracing part-

way, these learners reported that they had discovered a pattern or goal, and didn’t

need to finish tracing.

4

Figure 1.1: A complete sketched trace.

Even while sketching and tracing, novices’ code traces were organized in ways

driven by the search for a program’s patterns and goals. Students de-prioritized

certain variables based on their function (e.g. illustrating a loop variable differently

than a variable that holds a sum). Students preferred to keep prior values around

for reference, in order to better track patterns.

These findings highlight a key difference between humans and compilers:

while a computer must parse and execute code token by token and line-by-line,

human learners can infer patterns across time and identify global goals. Even on

a type of problem designed to be solvable by code tracing alone, novices tried to

infer patterns and identify goals. This approach can save time and cognitive load,

however, the novices were not always successful with this strategy. Scaffolding

that helps learners better identify goals and patterns in code may not only align

with novices’ preferred problem-solving strategies, but also help them be more

successful.

5

1.2.2 “I’m not a computer”: How identity informs value and expectancy during

a programming activity

In Chapter IV, I explore ways some learners connect their self-identity to their

decision to not trace code. I found that some struggling novice programmers de-

scribed code tracing as not only cognitively complex, but also in opposition to their

self-beliefs. One participant described himself as not a computer, and therefore un-

fit to execute code like the computer does. Another described himself as not a

programmer, and did not value an activity that was only for learning about how

code works. While both participants valued what they could create with code, nei-

ther valued code tracing. Alternative activities that focus on code’s purpose might

allow students with these identities to build skills in a way that aligns with their

self-beliefs.

1.2.2.1 Summary of methods and findings:

I performed retrospective and think-aloud sessions about code tracing activ-

ity in Python with 12 undergraduate and graduate novice programmers from an

Information major. During the interviews, learners not only described their cog-

nition, but also their judgments about code tracing tasks. Two novices refused

to continue with code tracing activities, and provided explanations for avoiding

code tracing that were connected to self-beliefs and goals. I used Values Coding to

identify these learners’ values, attitudes, and beliefs about code tracing, and then

mapped them onto elements of the Eccles Expectancy-Value Model of Achieve-

ment Choice [41] to understand how the decision to not trace code is related to

identity.

I found two self-beliefs that relate to choices about code tracing: I’m not a com-

puter and I’m not a programmer. In my case studies, learners related these self-

schemata to a low expectation of success on code tracing, because they did not

6

have the ability to notice code details or chose not to remember them. They also

expressed a low value for code tracing, because it took a lot of effort, was not

enjoyable, and did not appear relevant to their self-image and goals. Code trac-

ing was seen as an academic exercise for learning a programming language rather

than something useful for creating code in the ”real world”. In both case studies,

participants define themselves at a distance from people who are thinking deeply

about how code works. However, from this distance, both participants see them-

selves as someone who uses programming, while relying on the machine to work

through the details.

These learners are using code to achieve their goals, but they reject code tracing,

a common activity in programming classrooms. To meet this type of programming

learner where they are, I propose an exploration of programming learning activi-

ties that are purpose-oriented, contextualized, and authentic. If code tracing can be

performed in a way that is less cognitively demanding and more directly related to

code’s purpose, it may result in a higher expectancy of success, higher task value,

and ultimately higher motivation.

1.3 Meeting the challenge: Purpose-first programming

In Chapter V, I propose purpose-first programming, a new approach to program-

ming learning that emphasizes code’s purpose, rather than programming language

semantics. The goal of this approach is to motivate learners to engage in the cre-

ation and understanding of authentic programs from a domain related to their

interest, without the need for code tracing.

7

1.3.1 How it’s designed

In order to scaffold writing, debugging, and explanation of meaningful and

complex programs, purpose-first programming groups code into larger chunks

called programming plans [138]. A programming plan connects a code pattern with

a goal it achieves [134], drawing a direct connection between code and its purpose.

In purpose-first programming, instruction will focus on plans in an authentic do-

main such as web scraping, rather than structures from a programming language.

1.3.2 Why it might work

The Structure Behavior Function framework tells us that programmers must

have some conception of code’s behavior (how code works) in order to create and

understand novel programs. Typically, code tracing is the activity where novices

learn about code behavior [140, 86]. However, my prior research showed that code

tracing has a high cognitive load, and can even be seen as in conflict with certain

learner self-beliefs. Some learners may be more motivated by a different way to

understand code behavior, especially if it connects to the purpose for writing code,

rather than the way a programming language works.

1.3.3 How I evaluated it and what I found

I developed a proof-of-concept curriculum that implemented the purpose-first

programming approach in the domain of web scraping, and evaluated it with un-

dergraduate non-major novice programmers who expressed a lower than average

expectation of success or value for code tracing. Overall, I found that these novices

were motivated to continue learning with purpose-first programming.

Participants were able to complete scaffolded code writing, debugging, and ex-

planation activities in a new domain (web scraping with BeautifulSoup) after a half

hour of instruction. An analysis of the participants’ thinkalouds showed that they

8

used scaffolding about plan groupings and plan goals and subgoals to problem-

solve. These learners showed evidence of thinking in terms of the patterns and

goals that they learned with in the purpose-first curriculum.

I found that these novices felt successful during purpose-first programming

because they could understand and complete tasks. Novices perceived a lower

cognitive load on purpose-first programming activities than many other typical

learning activities, because, in their view, plans helped them apply knowledge

and focus only on the most relevant information.

Participants also expressed value for the purpose-first programming activities.

They felt that what they were learning was applicable, and that the curriculum

provided conceptual, high-level knowledge. For some participants, particularly

conversational programmers who didn’t plan to program in their careers, this in-

formation was sufficient for their needs. Other participants felt that purpose-first

programming was a starting point, from which they could move forward to gain a

deeper understanding of how code works.

1.4 Implications for programming learning

This work connects cognitive theories to theories of motivation in order to

present a new approach to programming learning called purpose-first program-

ming. My findings generate initial evidence for the positive impact of purpose-

first programming on student motivation, for a population of students who lack

motivation for an existing learning task: code tracing. The pedagogical approach

of purpose-first programming creates a new pathway to programming learning for

students not well-served by existing instructional norms.

The purpose-first programming approach is promising as a way to motivate

learners who care more about what code can do for them than exactly how code

works, such as conversational programmers [28, 157] and end-user programmers

9

[79, 37]. Future work should investigate how purpose-first programming can be

effectively integrated into an instructional sequence in a classroom setting, which

learner characteristics are correlated with a benefit from purpose-first program-

ming, and what technology can support the development of purpose-first pro-

gramming curricula.

10

CHAPTER II

Using the Structure Behavior Function Framework to

Understand Programming Learning

For novices, understanding a computer program is a complex task. Code is

made up of unusual symbols and words, which relate in intricate ways. Some-

how, those characters instruct the computer to take action, but those actions are

hidden deep inside the processor. Ultimately, the actions work together to achieve

a goal – something the novice could explain in a natural language rather than a

programming language.

In order to investigate how novices comprehend or design computer programs,

we must know what aspects of computer programs there are to understand, and

how those aspects relate. Knowledge of syntax and semantics is crucial for under-

standing code, but syntax and semantics alone cannot fully describe a program.

Computer programs are designed with a purpose, to do work in the world. Ev-

ery (real) program is a designed artifact, and knowledge about a program should

include an understanding of the goals it achieves.

The Structure Behavior Function framework describes understanding of de-

signed artifacts in three categories: knowledge of structure – what the artifact is

made of, knowledge of function – why the artifact was built, and knowledge of

behavior – how the artifact works to achieve its purpose. This framework has been

11

proposed and re-proposed by cognitive scientists [35], knowledge-based AI re-

searchers [55], and design scientists [51]. It seems to express a foundational truth:

that deep understanding of something that was designed involves knowing the

what, the how, and the why.

In this thesis, I use the Structure Behavior Function framework as a common

language to organize and relate several research areas in computing education. I

also map popular theories of programming instruction onto the SBF framework,

revealing their similarities, differences, and gaps in skill coverage.

2.1 The Structure Behavior Function framework

2.1.1 What is the Structure Behavior Function framework?

The Structure Behavior Function (SBF) framework is a general model for the

understanding of a designed artifact. In the SBF framework, “knowing” and “un-

derstanding” an artifact involves more than simply understanding what the arti-

fact is made of. For example, knowing that a circuit consists of wires that connect a

light switch and a battery pack to a light bulb doesn’t fully capture understanding

of that artifact. Someone who understands this circuit also knows that its purpose

is to turn on a light easily, and that it achieves this goal by enabling electron flow

through the filament of the bulb.

The SBF framework proposes that knowledge about a designed object exists in

three distinct but interacting types: knowledge about the structure of the system,

knowledge about the behavior of the system, and knowledge about the function

of the system.

12

2.1.1.1 Structure is the parts of the artifact and their arrangement

The structure is what the artifact contains, or is made of. Examples of structures

include the gravel in an aquarium [70], the clutch of a car [159], or the gas in a

coolant system [55]. Structural elements are perceptually visible, and typically

have important interconnections.

2.1.1.2 Function is the purpose of the artifact

It is the reason the artifact was created; why it does what it does. Functions

describe high-level goals, for example, to keep bacteria count low [70], shift gears

[159], or cool nitric acid [55].

2.1.1.3 Behavior is the mechanism by which the artifact works

It is how structures achieve their purpose. Many behaviors may need to occur

in order to reach a single functional goal.

The mechanisms of behavior are often hidden from perceptual view. For ex-

ample, the molecular interactions that cool an acid and the filtration of water by

gravel occur on a microscopic level. The transfer of rotational energy from a clutch

to an output shaft occurs deep inside the transmission of a car, and the forces at

play may not be evident even if the components were visible.

2.1.2 How do structure, behavior, and function interact?

Designing an artifact involves assembling components and their interconnec-

tions in a way that fulfills a given purpose. In other words, design is a translation

from function to structure. If the designer knows a design that meets their specifica-

tions, the design process is a simple lookup of a stored schema. When the design

requires some inference, it becomes more complex.

13

The designer may use two types of knowledge to incorporate behavioral infor-

mation into their design process. The designer may propose a set of expected be-

haviors that will achieve the function. This process of translating between behav-

ioral and functional knowledge involves teleological inference [35]. The designer

may also explore how certain components and their connections create mecha-

nisms. This process of translating between behavioral and structural knowledge

involves modeling knowledge.

Comprehension of a designed artifact could take on many forms, but in all

cases, the structure is already provided, and the function and/or behavior is to be

determined. This process also draws on teleological and modeling knowledge.

Figure 2.1: An illustration of the SBF framework

2.1.3 Where did SBF originate?

In Sciences of the Artificial, Herb Simon articulated seminal ideas about designed

objects that would inspire the next generation of designers, cognitive scientists,

and learning scientists [132]. Simon defined artifacts as objects that humans create

in the service of their goals, and highlighted the duality of an artifact’s function

and the inner workings that achieve that function. As a result, Simon asserted that

14

the study of designed objects (any “science of the artificial”) must involve not only

the study of how artifacts work and how they are structured (lines of inquiry that

define the natural sciences), but also the study of artifacts’ intended goals.

2.1.3.1 Using SBF to model understanding of engineered devices

As cognitive scientists grappled with defining the knowledge necessary to un-

derstand artifacts like circuits and combustion engines, structure, behavior, and

function were repeatedly identified as key concepts.

Weld proposed a general algorithm to produce descriptive summaries of com-

plex engineered devices, as well as answers to questions about the devices [159].

The algorithm stored knowledge in four categories: knowledge about the device’s

role, function, structure, and mechanism.

Weld’s categorizations organized knowledge in a way that allowed the algo-

rithm to communicate many aspects of device knowledge. However, his cate-

gories were not always clearly defined. It is challenging to distinguish between

“function” – what the device achieves independent of context (e.g. creating heat)

and “role” – the goal of the device within a specific context (e.g. heating a room).

Later work clarified the distinctions between function, structure, and behavior.

In a paper describing an algorithm for producing explanations of circuits, De Kleer

defined function, structure, and behavior simply: “Structure is what the device is,

and function is what the device is for, but behavior is what the device does” [35].

De Kleer describes a method for deriving function of a circuit from its structure,

using behavior as an intermediate point. First, a qualitative description of behavior

is inferred from circuit structure. Then, a process of teleological reasoning is used

to infer the circuit’s function from the variety of behaviors (in a computationally

expensive way).

15

2.1.3.2 Using SBF to model the design process

Other researchers moved beyond modeling understanding and began to artic-

ulate models for the design of a new artifact.

In his description of the “Function-Behavior-Structure ontology”, Gero claims

direct inspiration from Simon [51]. He describes design as the process of producing

a structure (a design specification) from a given function. Sometimes, the designer

already knows a structure that will achieve the desired function. The interesting

case for design occurs when the designer is not aware of such a mapping.

Gero asserts that the designer uses the function of the intended artifact to cre-

ate a set of expected behaviors, and then a structure that creates actual behaviors.

The actual behaviors are compared to expected behaviors, and discrepancies cause

changes to the design. Gero considers much of a designer’s knowledge to be rela-

tional: in the form of connections between behavior and function, and connections

between behavior and structure.

Goel and his colleagues used an SBF framework in a variety of knowledge-

based AI tools that created new device designs from existing designs. KRITIK [54]

and the related learning tool Interactive KRITIK [55] store information about en-

gineered devices in structure, function, and behavior categories, and index the

devices by their function. New device designs are created using case-based rea-

soning [81]. In the analogical reasoning system IDEAL, information about devices

is also stored using the SBF framework [11].

The SBF modeling language Goel and colleagues created formalizes the SBF

framework for use in a computational system [56]. In the SBF modeling language,

each function points to a series of behaviors that achieves that function. A func-

tion is defined as the transition from one state to another state, while the behavior

describes intermediate states between the initial and final states. This definition of

function and behavior is hierarchical: a ‘function’ in one context may be part of a

16

behavior in another context. For example, the function of a water filter is to take

unclean water and make it clean. From the perspective of the entire aquarium, a

water filter creates behavior that contributes to the aquarium’s function of keeping

fish alive.

2.1.3.3 Similarities among SBF definitions

Understanding designed devices in terms of structure, function, and behavior

has proven to be a powerful tool for many researchers. The act of design is viewed

as a translation from function to structure, and the act of understanding is viewed

as a translation from structure to function. Typically, behavior is viewed as medi-

ating understanding and design. This isn’t to say that structure and function can’t

be directly associated, but understanding or designing in this way is considered

a trivial “lookup” [51, 35]. In the process of inferring function from structure or

structure from function, behavior is a midpoint. When designing an artifact, the

function is known, and the structure must be inferred. In order to infer the struc-

ture, the designer determines behavior that could create the desired function, and

structure that creates that behavior. Similarly, by working out the behavior that a

structure creates, and then the function that the behavior leads to, someone under-

stands an artifact.

2.1.3.4 Differences between SBF definitions

Researchers vary in their definitions of structure, function and behavior. While

some describe structure as sub-components and their arrangement [51, 35], others

also consider the interactions between sub-components to be a part of an artifact’s

structure [159, 55].

Researchers define the behavior of artifacts in different ways. Most common

is a focus on causal mechanisms [35, 55]. Weld sometimes describes behavior

17

in terms of constraints or metaphors [159]. In line with his roots in design sci-

ence, Gero defines behavior in terms of an aggregate measure of characteristics

like quality, time and cost [52], rather than the details of mechanics. A behavior of

a software system, for example, is its response time.

2.1.4 What do we know about SBF in learning environments?

2.1.4.1 SBF can be a framework to assess learning

Cindy Hmelo-Silver and her colleagues have used the SBF framework to assess

understanding of complex systems in a variety of contexts [69, 70, 72]. In these

studies, interview data was analyzed by identifying mentions of relevant struc-

tures, functions, and behaviors. During the interviews, subjects were sometimes

asked to draw a representation of the complex system, and then answer a variety

of questions designed to elicit responses about structure, function, and behavior.

2.1.4.2 There are novice-expert differences in SBF understanding

Hmelo-Silver and colleagues were able to identify several trends in the facility

of knowledge that novices and experts have about structure, behavior, and func-

tion.

Structural elements are most easily observed. In a comparison study between

novices and expert aquarium hobbyists and biologists, structural elements of an

aquarium (e.g. fish, gravel, plants) were identified at equal rates by experts and

novices [70]. Novices were able to identify fewer functions or behaviors than struc-

tures, while experts identified more functions and behaviors than structures.

Hmelo-Silver and colleagues conclude that the order of understanding among

the parts of the SBF framework is structure first, then function, then behavior last.

This aligns with the perceptual availability of each component: while structure

is straightforward for both novices and experts to observe, behavior is typically

18

hidden. Hmelo-Silver and colleagues also claim that knowledge of behaviors and

functions is one of the “deep principles” which organize expert knowledge [70].

2.1.4.3 Using SBF to design learning activities

Building on the idea that experts often organize knowledge in terms of func-

tion, Liu and Hmelo-Silver used the SBF framework to design a hypermedia learn-

ing activity [92]. They compared learning outcomes after middle school students

and pre-service teachers used a function-first curriculum or a structure-first cur-

riculum about the human respiratory system. The two hypermedia learning activ-

ities had the same material, but the material was ordered and linked differently.

In the structure-first curriculum, learners first saw the different parts of the respi-

ratory system in a diagram, and could click on the structures to learn more about

their behaviors and functions. In the function-first curriculum, information was

organized by functional questions, like ”How does oxygen get into the body?”.

Within the units about the functional questions, related behaviors were linked,

and the structures were linked from the behaviors.

While learning outcomes did not differ dramatically, there was evidence that

the function-focused learners had a better understanding of ”non-salient”, micro-

level behavior, such as gas exchange and red blood cell activity. Middle school

learners in the function-first condition also mentioned a greater number of behav-

iors in their post-tests.

SBF has also been used in the design of knowledge construction tools. Vattam

et al. created a software tool where students model an aquarium system using

structure, function, and behavior categories that create agent-based modeling sim-

ulations [154]. Later systems have expanded on this approach [76, 71].

19

2.2 What are Structure, Function, and Behavior in the context of

programming?

People use computer programming to calculate, simulate, monitor, and create.

Real programs are designed artifacts, coded with a goal in mind. The Structure

Behavior Function framework applies, as it would to any other artifact.

2.2.1 Structure of a program

To identify the structure of a program, we need to ask questions like: What

“makes up” a program? What does a program “contain” ? and how are those sub-elements

of a program arranged? A program’s structure should be perceptually available,

even to novices.

2.2.1.1 From a technical perspective

From the perspective of a parser, code consists of characters, arranged sequen-

tially [4]. These characters are grouped into tokens, control structures, literals, and

other elements prescribed by the language’s syntax rules. These elements can only

exist in certain orders: syntax structures are defined by the production rules of the

parser.

Textbooks, assessments, and research papers often take the view that syntax

structures are the primary elements of programs, specifically, and programming

knowledge, generally. For example, in a widely-cited survey study [83], Lahti-

nen and colleagues ask students and instructors to rate the level of difficulty of a

variety of programming concepts. The list of concepts is mostly a listing of syn-

tax structures, such as “arrays” , “parameters” , “pointers” , “loop structures” ,

and “selection structures” . The SCS1, a validated test of procedural programming

knowledge, also uses syntax structures to organize its concepts [113], which were

20

gleaned from popular introductory programming textbooks [151].

2.2.1.2 From a human perspective

Kelly Rivers and her colleagues attempted to model student understanding of

programming using syntax structures as core concepts, but were unable to do so

[123]. Drawing on the Knowledge Learning Instruction (KLI) framework devel-

oped for use with intelligent tutoring systems [80]. Rivers et al. attempted to iden-

tify distinct skills (termed knowledge components in the KLI framework), using trace

data from student code writing exercises. They considered the use of each syntax

structure (e.g. for loop, function definition) to represent the application of a po-

tential knowledge component. According to their framework, the rate of incorrect

answers should decrease over time for a particular knowledge component, if the

skill being measured is truly distinct from other skills. However, very few viable

fits to expected learning curve models were found for the syntax structures. While

the learning curve for a function definition decreased as expected, the learning

curve for function calls and for loops did not. Using syntax characteristics alone to

predict student learning came up short.

This result provides evidence that humans do not read code the way machines

do. Humans do not read code sequentially, as a parser does [19]. Elements of code

that are ignored by a parser or lexer are meaningful to humans, such as white space

[119], variable names [50], and comments [119]. We know that humans perceive

chunks of code that include many syntax elements as meaningful subcomponents

of their programs [136].

Soloway and his colleagues provided evidence that both novice and expert pro-

grammers have schemas that match commonly used code patterns, which they

termed programming plans. Programming plans are small program fragments that

achieve a goal, like selecting values from a list that match a certain criteria [138].

21

Soloway and Ehrlich [136] showed evidence for plan schemas in a series of experi-

ments, influencing the fields of program comprehension and programming educa-

tion. They compared novice and expert programmers’ performance on fill-in-the-

blank problems and recall problems for “plan-like” code and “un-plan-like” pro-

grams, which had some differences from a similar plan-like program. Both experts

and novices performed better on plan-like problems than un-plan-like problems.

Experts performed better than novices on plan-like problems, but on un-plan-like

programs, the difference between experts and novices was not significant. Also,

the code that participants used to fill in the blanks for un-plan-like problems often

matched what would have been expected for a corresponding plan-like program.

Rist also explored plan schemas, finding further evidence of plan knowledge

in both novices and experts [122]. Experts used only plans to organize their under-

standing of programs, while novices resorted to description of syntactic structures

when code became more complex [122]. Rist [120] also tracked the development of

plan schemas in novice programmers over time, observing the frequency of “top-

down” design, where the goal is primary and the associated plan is already known,

versus “bottom-up” design, where the plan is constructed on the fly. He found that

novices started with a bottom-up approach, identifying some key parts of a plan,

but refining it over time. After they successfully completed a plan, its schemas

was available for later retrieval. Rist noted that schemas can exist at different lev-

els of abstraction, and proposed four levels of detail: a line of code, a simple plan,

a complex plan, and a whole program.

The concept of programming plans has had a re-emergence in computing edu-

cation research. The foundational work in programming plans most often included

a procedural programming perspective. However, the characteristics of the func-

tional paradigm provide a different perspective on programming plans. In a func-

tional language, sub-goals of a programming task can often be relegated to various

22

Figure 2.2: The rainfall problem with syntactical substructures highlighted (left) and plan
substructures highlighted (right).

functions, which can then be easily composed [47]. This lessens the challenge of

composing a variety of programming plans into a final, more complex program.

Programming plans have also received recent attention in the context of code

complexity. Duran et al. expanded upon Soloway’s concept of the plan tree, incor-

porating syntactic elements as the leaf nodes of a plan tree [39]. Called the Cogni-

tive Complexity of Computer Programs framework, this approach formalizes two

metrics for code complexity: plan depth (levels of the plan tree) and maximal plan

interactivity (the number of sub-plans that overlap during execution of a parent

plan).

While the concept of programming plans has psychological validity, there are

challenges to fully understanding how plans represent code structures. While

there are a limited number of syntactic structures defined for each programming

language, it would take significant effort to define enough programming plans to

cover code typically written by novice programmers. While it’s easy to detect syn-

tactic structures (the compiler is doing it anyway), it is unclear how to automat-

ically detect programming plans. Also, the process of combining plans to create

larger programs is not well-understood in novice programmers, beyond the fact

23

that it is the source of many errors [145].

2.2.1.3 Conclusion

Structure certainly includes code syntax, but syntax can’t explain all aspects of

code structure. As a programmer’s knowledge increases, larger and more complex

chunks, such as code plans, should be considered as structural units.

2.2.2 Behavior of a program

Code structures instruct a computer to achieve some function. According to the

definition of the SBF framework, behavior consists of the mechanisms that translate

structure into function. Behavior is how an artifact works.

2.2.2.1 From a technical perspective

In order to execute a program, a computer undertakes many, many steps. Con-

sider the standard process to execute a C program [4].

1. A lexer breaks the code into a stream of tokens

2. A parser determines whether those tokens adhere to the rules of the pro-

gramming language

3. A compiler translates the code into a series of low-level machine instructions

4. The central processing unit executes the machine instructions, using registers

and the arithmetic logic unit.

This behavior is highly complex and involves many distinct systems. In addi-

tion, the process can vary due to the programming language (e.g. when a language

is translated into bytecode rather than machine instructions, as in Python) or, to a

24

lesser extent, due to the details of the machine on which the code is executed. Lit-

tle to none of the code execution behavior described above is self-evident from the

syntax of code. Like behavior in other systems, program behavior is hidden and

perceptually unavailable.

2.2.2.2 From a human perspective

It is possible to have a useful understanding of how code executes without un-

derstanding the details described above. Computing educators depend on abstrac-

tions of the more complex and lower-level processes as they teach introductory

programming. They leave out details about tokenization, parsing, memory, and

execution in order to narrow the material that students must learn. The way that

an instructor describes the process of code execution is called a notional machine.

As early as the mid-1970s, researchers noted that by providing a concrete model

of the way code was executed, some learner outcomes improved [101]. Learners

who “simulated code execution” before learning language structures performed

better on far-transfer tasks, but worse on near-transfer tasks.

Later, theory about modeling code execution was further developed. Along

with Tom O’Shea and John Monk, Du Boulay coined the term “the notional ma-

chine”, defining it as ”an idealized, conceptual computer whose properties are

implied by the constructs of the language” [15]. They also articulated the idea that

programming language designers can choose the level of abstraction that under-

standing their language requires. They suggested that programming languages

with a “small number of parts” were ideal for novices.

Juha Sorva reviewed prior work related to notional machines in his dissertation

[139]. He noted that there are certainly different notional machines for different

programming paradigms, which differ in whether variable states change or are

immutable. However, notional machines can also differ for different programming

25

languages within the same paradigm. There are even different notional machines

for a single language, depending on the level of abstraction. When understanding

code using objects, it makes sense to think about code behavior differently than

when understanding code that does sequential calculations.

While there are many possible notional machines, in practice, the way that pro-

gram execution is illustrated for novices is remarkably consistent [141]. For the

dominant procedural and object-oriented paradigms, variables and their changes

are shown, typically in boxes. As each line of code is executed, the variable boxes

are updated appropriately.

Most research about notional machines has taken place in the procedural pro-

gramming paradigm. Notional machines for functional languages take a different

shape, and have been articulated as a substitution model [48]. A functional orien-

tation allows for programming plans to be represented in a single function, and

easily combined.

Computing education researchers who study the notional machine frequently

underscore its importance. DuBoulay expressed a view that learning program-

ming is primarily understanding the notional machine [38]. Sorva argued that

knowledge of the notional machine meets criteria to qualify as a “threshold con-

cept” [140]. A threshold concept changes a learner’s understanding of concepts

learned afterwards [104]. The great many number of misconceptions that com-

puting education researchers have found about the notional machine supports its

importance. Sorva lists 162 misconceptions about procedural notional machines in

his dissertation [139].

While the most common description of code behavior is having a mental model

of the notional machine, other researchers sometimes call this knowledge of a pro-

gramming language’s semantics1. For example, when describing the tool PLTutor

1Confusingly, the term semantic knowledge is also sometimes used to describe code patterns
that are associated with a particular purpose (e.g. [101]).

26

and the way that it simulates the notional machine, Nelson, Xie, and Ko use the

phrase “execute semantics” rather than “execute the notional machine” [110]. Sorva

claims that multiple notional machines may be involved in understanding a lan-

guage, but the term semantics is typically used as if there is only one way to un-

derstand semantics. In PLTutor, a high level of fidelity to the actual process of

the Python interpreter was valued, and as a result, the method of illustrating code

execution was relatively low-level.

2.2.2.3 Conclusion

In programming, behavior of code is the action of the notional machine on that

code. The level of abstraction of the notional machine may vary in different set-

tings and with different programmers.

2.2.3 Function of a program

The function of a program is the program’s purpose, the goal of the program,

and the reason the program was designed.

2.2.3.1 From a technical perspective

The computational machinery that executes programs has no knowledge of

why a program was created. A program’s function is always bound to the human

side of program development. Software engineers have created many mechanisms

to map from the human to the technical. Design specifications, documentation,

and test suites that serve as “executable specifications” all describe the goals of

programs. These approaches often focus on the inputs and outputs of programs in

order to create a more formal description of code functionality.

27

2.2.3.2 From a human perspective

Begel and Simon found that new software developers often bemoaned the lack

of documentation on their projects, seeking more assistance in understanding code

[9]. Somewhat more experienced developers realized that documentation has lim-

itations, and instead searched for people to talk to.

Code function defined in terms of initial state and final state is consistent with

the way Goel’s SBF modeling language expresses function [56]. However, from the

perspective of a programmer, the format of the parameters and return values are

also design choices. Before specific parameters are chosen, a higher-level, more ab-

stract, more plain-spoken goal was likely articulated by a programmer or designer.

Computing education researchers have studied novice programmers’ ability to

“explain” code “in plain English”, finding that programming learners explain code

in a variety of ways. Members of the BRACElet project [30] adapted the SOLO tax-

onomy [12] to categorize these responses [91]. In this framework, a “unistructural”

response to code explanation question describes only a subset of the code; a “mul-

tistructural” response describes most of the code, but with a focus on how code

executes; and a “relational” response provides a summary of the code’s purpose.

Lister and his colleagues found that novices rarely responded with a relational re-

sponse when asked to describe new pieces of code [91]. Experts, on the other hand,

typically used relational responses.

2.2.3.3 Conclusion

The function of a program is best described as a human language description of

the program’s purpose. Some programs do not have a function, such as programs

designed only to illustrate code behavior.

28

2.2.4 Connections between structure, function, and behavior.

According to the SBF framework, the ways that a human translates between

structure, behavior, and function are key to understanding expertise in the cre-

ation and comprehension of a designed artifact. What actions in programming

include the translation of structure to behavior, behavior to function, and structure

to function?

2.2.4.1 Tracing code: structure to behavior

According to Sorva, “Tracing a program requires the programmer to keep track

of the state of program execution, that is, to simulate the job of the notional ma-

chine.” [140]. Nelson, Xie, and Ko agree: “the knowledge needed to learn program

tracing is not the abstract formal semantics for a language, but the semantics as ac-

tually implemented in a language’s interpreter, mapped to a notional machine to

facilitate comprehension.” [110]. Tracing connects code structure to code behavior.

Teaching tracing skills explicitly seems to have a positive effect on novices’ abil-

ity to simulate code execution. Sorva found positive effects due to use of program

visualization tools in his review of such systems, although the number of con-

trolled evaluations was limited [141]. Use of PLTutor, a tool that provided direct

instruction about a low-level notional machine [110], improved student outcomes

on the SCS1 [113]. Demonstration of a code tracing method was associated with

improved scores on a programming exam as well as on selected SCS1 problems in

a small study [164].

2.2.4.2 Explaining code: structure to function

Code explanation, typically evaluated through “explain in plain English” ques-

tions, requires students to look at code structure and then find code function. It

involves a translation between code structure and code function. There appears to

29

be a trend towards higher levels of abstraction for more proficient programmers.

Sudol-DeLyser [147] found that higher proficiency students were more likely to use

abstract statements during think-alouds while writing code. She also found that

higher proficiency students made more transitions between levels of abstractions.

Analyses of program comprehension have identified both tracing and chunk-

ing as methods that experts use to understand programs [23]. Novices also use

a variety of tracing or pattern recognition approaches [49]. It is unclear whether

one approach is superior to the other for novices; studies have found significant

error rates for both approaches [49, 34]. While the ability to accurately recognize

patterns may be a sign of expertise, incorrect pattern recognition is characteristic

of many novices.

The BRACElet project is known for their investigations of a wider variety of

programming skills than code writing alone [30]. They studied code tracing, code

explanation, and code writing skills, and have consistently found correlations be-

tween these three skills. A stepwise regression analysis suggested a hierarchy of

skills, where code tracing and code explanation could predict code writing [93].

However, no clear causal link between any of these skills has been identified.

2.2.4.3 Writing code: function to structure

Writing code requires translating a human language description of an objective

and creating code that achieves that objective. Writing code translates code function

to code structure. Programming plans suggest one method that programmers make

this transition from function to structure. Each programming plan is associated

with both a function (the plan goal) and a structure (the plan code) [134].

30

2.3 Three theories of programming instruction through an SBF

lens

While writing programs is the prototypical activity of a programming learner,

many other coding skills can be taught and assessed. Theories of programming in-

struction answer the questions What are the important skills programming learners

should understand? and How do these skills relate to each other? Theories of program-

ming instruction delineate a number of programming skills, and sometimes also a

suggested ordering or hierarchy of those skills. They provide a guideline for what

should be taught and when.

The SBF framework allows us to compare and contrast theories of program-

ming instruction, by mapping the skills the theories describe onto relationships

between structure, behavior, and function.

2.3.1 The “Neo-Piagetian” hierarchy of programming skills

2.3.1.1 Description

Inspired by neo-Piagetian stages of cognitive development, Raymond Lister

proposed several sequential stages to describe novice programmers’ level of un-

derstanding of programming topics [86]. For each “concept” in an introductory

programming course, the learner is categorized into a stage of the model. The

categorization is not strict, however: while one stage is typically dominant at a

particular time, the stages may overlap.

The stages are listed here in order of increasing development. These definitions

synthesize the definitions from the initial description of the theory [86], a later

refined description of the theory [87] and Donna Teague’s dissertation [149].

• In the Sensiomotor stage, aka Pre-tracing stage, a learner understands 50%

or less of program execution rules for the topic. They are unable to reason

31

“in plain English” about what code does.

• In the Preoperational stage, aka Tracing stage, a learner understands more

than 50% of program execution rules for the topic. In order to understand

“what code does” , the programmer traces the execution of code on a concrete

example and then makes an inference based on the change between the input

and output.

• In the Concrete operational stage, aka Abstract tracing stage, the learner

can reason about some parts of code without tracing. They can write code

that involves a small change to an existing example, such as reversing an

operator.

• In the Formal operational stage, the learner has reached the level of an expert

on that topic. They reason about code by reading code, not by tracing it. They

can hypothesize about code well enough to debug.

Lister uses ability in code explanation and code tracing as key indicators of pro-

gramming understanding. The major finding of the BRACElet project – that code

tracing skill correlates with code explaining skill and code writing skill – is consis-

tent with this hierarchy. A later microgenetic study that tracked the development

of a single student provided some additional support [150].

2.3.1.2 Through an SBF lens

In Lister’s model, a programmer must understand the details of how code

works before being able to state the purpose of that code. In SBF terms, this

means knowledge that translates structure to behavior (tracing) is a prerequisite

to knowledge that translates structure to function (explaining code). Knowledge

that translates behavior to function is not explicitly discussed in this model.

32

Lister describes his stages as occurring for “each concept”. A key question is

“what are those concepts?” Lister and his co-authors explicitly state that a new

concept is a new syntactic structure: “...a student progresses from sensorimotor, to

preoperational to concrete operational when the programming constructs to which the

novice is exposed do not change [150]. For example, when the student under micro-

genetic study learned about arrays, Teague and Lister found that he lacked tracing

ability with arrays and regressed to an earlier stage. From an SBF perspective, the

concepts come from a particular type of code structure, the syntax.

(a) Sensiomotor stage (b) Preoperational stage

(c) Concrete operational stage (d) Formal operational stage

Figure 2.3: The abilities of learners in Lister’s Neo-piagetian stages, mapped to the SBF
model

2.3.2 Xie et al.’s theory of programming instruction

2.3.2.1 Description

Xie et al. [163] identify four distinct skill areas within programming, and sug-

gest that they should be taught in a particular order. Inspired by the findings of the

33

BRACElet project and of the various cognitive scientists and computing education

researchers who studied programming plans, they claim that code reading should

always precede code writing, and that understanding the notional machine should

always precede knowing programming plans.

The four skill areas and their order are:

1. Reading semantics: Given code, trace the action of the notional machine

2. Writing semantics: Given a detailed description of notional machine action,

write correct syntax

3. Reading templates: Given code, identify its programming plan and associ-

ated objective

4. Writing templates: Given an objective, use appropriate programming plans

to write code

Xie et al.’s hierarchy is unusual in its incorporation of human language de-

scription of notional machine action. Learners are expected to be able to describe

notional machine action at the reading semantics stage, and be able to read and un-

derstand a description of notional machine semantics in the write semantics stage

(Figure 2.4, S1 and S2). When writing code in the write templates stage, learn-

ers are expected to translate an objective into this human language description of

notional machine action, and then into code (Figure 2.4, S4).

As a result, Xie et al. believe that weak understanding of how code executes

may result in learners “not recognizing a template in the code, recognizing a tem-

plate but not recognizing it was incorrect, or recognizing the wrong template.”

[163]. From this perspective, plan recognition is not solely pattern recognition, but

also involves mental execution of the notional machine.

34

Figure 2.4: Xie et al.’s four skills from their theory of instruction [163]. c©Benjamin Xie

For what unit of a curriculum do the four stages need to be followed? Should

the notional machine action for all syntax structures in a language be learned be-

fore moving on to any programming plans? Although this issue is not addressed

explicitly, in the sample curriculum that Xie et al. implement and evaluate, they

cycle through the four skills when they teach a new group of syntactic structures,

such as relational operators or conditional statements (pg. 14). The plans taught in

each cycle only use syntactic structures explicitly covered in a prior tracing lesson.

Since inspiration for both Xie’s theory and Lister’s theory comes from the find-

ings of the BRACElet project, it’s not surprising that both skill hierarchies put

code tracing before code explanation. Lister doesn’t discuss how his stages re-

late to writing skill, except that he believes novices who haven’t reached the for-

mal operational stage cannot write code effectively [86]. Xie’s hierarchy addresses

code writing skills, which is possible because of the incorporation of programming

plans into the theory.

35

2.3.2.2 With an SBF lens

We can restate this hierarchy of skills in terms of the SBF framework:

1. Reading semantics: translate from structure to behavior

2. Writing semantics: translate from behavior to structure

3. Reading templates: translate from structure to behavior to function

4. Writing templates: translate from function to behavior to structure

This theory of instruction prioritizes knowledge about behavior over knowl-

edge about function. It also claims that knowledge about function cannot be fully

understood without knowledge about behavior.

From what we know about structure, function, and behavior knowledge in

novices, does it make sense to put so much early emphasis on behavior? We know

that knowledge about behavior has been the most challenging for novices to learn

in other contexts [70]. On the other hand, experts distinguish themselves from

novices by having a greater amount of knowledge about behavior [70]. Xie et al.

believe behavior should be taught explicitly and early. If novices are able to in-

corporate behavior knowledge early on, this could be an efficient path towards

expertise.

The writing semantics skill covers the translation from behavior to structure,

which is rare in programming education. Identifying execution dynamics for pro-

vided code is much more common. Xie et al. focus on building this skill so that it

can be used in the later writing templates skill.

36

(a) S1: Reading semantics (b) S2: Writing semantics

(c) S3: Reading templates (d) S4: Writing templates

Figure 2.5: Xie et al.’s instructional stages, mapped to the SBF framework

2.3.3 Schulte’s Block Model

2.3.3.1 Description

The Block Model [129] describes a matrix of skills related to code comprehen-

sion. Two dimensions create twelve “blocks” of knowledge about code. One di-

mension is the level of abstraction: “macro structure” , at the level of the entire

program; “relations” , between sub-parts of the program; “blocks” , meaningful

sub-parts of the program; and “atoms” , elements like tokens and syntax struc-

tures, defined by the programming language. The other dimension is the aspect of

the program: “text surface” , “program execution” , and “functions, goals of the

program” .

Schulte notes that the ultimate goal of code reading is to get from the lower left

corner of Table 2.1 (language elements) to the upper right corner (understanding

the goal/purpose of the program). Schulte believes that learners can connect skills

37

Text surface Program execution Functions

Macro structure Overall structure of
the program text

The “algorithm” of
the program

The goal/purpose of
the program

Relations References between
blocks, e.g.: method
calls, object creation,
accessing data

The sequence of
method calls

How subgoals are re-
lated to goals, how
function is achieved
by subfunctions

Blocks Regions of Interest
(ROIs) that syntacti-
cally or semantically
build a unit

Operation of a block,
a method, or an ROI

Function of a block

Atoms Language elements Operation of a state-
ment

N/A - goal only un-
derstandable in con-
text

Table 2.1: The Block Model, adapted from [20].

in adjacent blocks in order to transition between the different types of knowledge.

The path to move between language elements and code purpose involves horizon-

tal movement between aspects of the program, as well as vertical between levels

of abstraction. There are several paths to get from reading code to understanding

its purpose, but all paths involve an increasing level of abstraction and a transition

through code behavior.

There is no prescription for the order in which different blocks should be ad-

dressed in the classroom. This is by design. Schulte states that since learners natu-

rally build abstract schemas on their own, and are working from an individualized

set of prior knowledge, “teaching should focus on supporting [the abstraction]

process, instead of focusing on providing all necessary steps in a predefined order,

with predefined bits of information.” (pg 150)

Schulte also sees the Block Model as supporting different “types” of under-

standing at different levels of abstraction and about different aspects of code. He

notes that understanding code from different perspectives shouldn’t be considered

a misconception, but instead a jumping-off point for connecting to other blocks in

38

the model.

An initial study with pre-service computing teachers found that participants

who learned about the Block model used language from the model while plan-

ning a lesson [129]. However, there were not major differences in lesson quality

between preservice teachers that learned about the model and those that did not.

Both groups did discuss the duality between code structure and function while

planning.

This model distinguishes itself from other models by identifying multiple lev-

els within code text, code execution, and code purpose. Consistent with the under-

standing that a notional machine can be described at multiple levels of abstraction

[140], Schulte describes how the purpose of code and the text of code can be un-

derstood at multiple levels of analysis as well.

Schulte consciously limits the scope of the block model in order to maintain

a reasonable level of detail without over-prescribing activities that may stifle in-

structors’ ability to individualize instruction. This is a well-considered choice, but

it does mean that the block model is limited in a couple ways. Schulte only consid-

ers code reading in the model, and it’s unclear if the model is applicable in any way

to code writing. Also, there isn’t a hierarchy of skills, or a suggested order. This is

by design, but does mean that instructors cannot use the model “off-the-shelf” .

2.3.3.2 With an SBF lens

Although the SBF framework is not cited as inspiration, the Block Model is

remarkably consistent with the SBF framework. Text surface is the structure, pro-

gram execution is the behavior, and the purpose or goal is the function. Schulte

also considers code behavior to be the crucial but hidden and complex moderator

between code structure and code function.

Schulte’s key insight is that structure, function, and behavior can exist on many

39

levels. This hierarchical interpretation is consistent with the approach to function

taken by the SBF modeling language, where the function of one component can

be considered part of the behavior of another component. Programming inher-

ently involves many levels of abstraction, so this use of multiple levels is appro-

priate. This use of multiple levels provides more rhetorical power than Lister’s

neo-Piagetian stages, or Xie et al.’s theory of programming instruction.

2.3.4 Discussion

Mapping these theories onto the SBF framework exposes many similarities.

All three theories of instruction describe how knowledge of code behavior is im-

portant for connecting code structure to code function. In Lister’s Neopiagetian

stages, learners develop tracing knowledge before the ability to explain or write

code. In Xie et al.’s theory of instruction, the process of code execution should be

taught first, as it is believed to be a crucial prerequisite for explaining or writing

code. In the Block Model, code comprehension requires understanding of program

execution.

The Neopiagetian stage model and Xie et al.’s theory of instruction both pro-

pose a progression where code function is only incorporated in later stages. Con-

necting structure knowledge to behavior knowledge is first; connecting structure

knowledge to function knowledge comes later.

All three theories have another commonality: there is no discussion of how

motivation may interact with learning. All three theories have been developed

and tested in contexts with computer science majors or students who opted in to a

computer science course about introductory programming. These learners already

decided that programming knowledge is important for its own sake.

Approaches like contextualized programming education, which was primarily

developed for non-majors, emphasize code function much more strongly. In con-

40

textualized computing, programming learning is motivated by code’s application

to real-world problems. Media Computation [62], a course where learning pro-

gramming is motivated by applications like photo editing and sound manipula-

tion, is one of the few consistently successful curricular innovations in computing

education [116]. Media computation was designed for liberal arts students who

were required to take introductory computing, but did not see much use for pro-

gramming for their chosen careers. Compared to a traditional introductory com-

puting course, students who took Media Computation expressed a greater sense

of the relevance of computing for their future, and stayed enrolled in the course at

higher rates [63].

It’s unclear whether students in Media Computation learned as many program-

ming skills as students in traditional introductory computing courses [63]. How-

ever, even if an approach like Xie et al.’s is more efficient in teaching programming

skills, it doesn’t matter if unmotivated students don’t stick around when they can’t

see the applicability of the course content to their future careers.

2.4 Conclusion

This thesis applied the Structure Behavior Function framework to the under-

standing and design of computer programs. The meaning of structure, behavior,

and function was determined in the context of programming, and the ways that

a program’s structure, behavior, and function relate were mapped onto program-

ming skills. By applying what we know about novices’ program comprehension

and program design onto this framework, I have related several threads of com-

puting education research, such as the study of notional machines, programming

plan theory, and the natural language explanation of code. By describing theories

of instruction in terms of the framework, I have determined similarities and dif-

ferences between the ways that we teach and the ways that we expect learners to

41

understand material.

More broadly, the Structure Behavior Function framework provides a common

vocabulary for discussion about programming skills, assessment, and philoso-

phies about how to teach best. It allows us to compare and contrast theories

and perspectives, and propose new research directions. Computing education re-

searchers work with humans who want to achieve goals in the world using their

programs. The Structure Behavior Function framework gives our community a

language to not only talk about how programs work and what they are made of,

but also why they were written, and what they achieve.

42

CHAPTER III

Novice Rationales for Sketching and Tracing, and How

They Try to Avoid It

Prior research has shown that sketching out a code trace on paper is correlated

with higher scores on code reading problems. Why do students sometimes choose

not to draw out a code trace, or if they do, choose a different sketching technique

than their instructor has demonstrated? In this study, we interviewed 13 CS1 stu-

dents retrospectively about their decisions to sketch and draw on a recent pro-

gramming exam. When students do sketch, we find that their sketching choices

do not always align with a strict execution of the typical notional machine for

CS1. Sketching choices are driven by a search for a program’s patterns, an attempt

to create organizational structure among intermediate values, and the tracking of

prior steps and results. When novices don’t sketch, they often report that they’ve

identified the goal that the code achieves. In either case, novices are searching for

the functionality of code, rather than merely tracing its behavior.

3.1 Introduction

When novice programmers solve programming problems, they sometimes use

pen and paper. They might draw out variable states, re-write code snippets, or

43

work through calculations. Called sketching [33], annotations [102], or doodles

[88], these drawings are an external representation that many students find use-

ful. Research supports the utility of sketching. Sketching is correlated with greater

success on code reading problems, with sketched traces being the most success-

ful [88, 33].

Prior research on student sketching has involved qualitative and quantitative

analysis of scratch sheets. However, the motivations of the sketchers remained a

mystery. If sketching is associated with success, why do students only occasionally

use it? Why do students sometimes stop part-way through a code trace, behavior

that has been associated with particularly low success [33]? Student sketches dif-

fer in several ways from the more formal memory diagrams proposed by instruc-

tors [74], or the graphics in program visualization tools [141]. We have shown that

students’ sketches often have a different style than the ones used by their teach-

ers [33]. Students’ motivation for why and how they sketch is unclear.

If we knew more about the reasons students sketch and the approaches they

favor, perhaps we could design sketching or other visualization techniques that

students are more likely to understand, use, interact with, and learn from. In this

study, we perform interviews with CS1 students to explore the following:

• Why do novice programmers choose to sketch or not sketch on different

problems?

• What rationales do novice programmers provide for their sketching styles?

• Why do novice programmers choose a different sketching technique than

their instructor?

44

3.2 Background

3.2.1 Tracing and other ways novices read code

Tracing a piece of code involves tracking memory states over time as the exe-

cution of code is simulated. Tracers are running a mental model of the notional

machine [140], acting as “human compilers”.

We want students to trace code because it can lead to students’ greater accuracy

during problem-solving [164], and it may play a role in improving learning about

the notional machine, a concept where students have many misconceptions [139].

But students do not necessarily trace because it is good for them, and they may

take other approaches to solve problems. In this paper, we ask students why they

trace code and why they trace the way that they do.

We do know that students voluntarily trace when faced with complex prob-

lems. The Leeds Working Group [88] asked students to read and predict the execu-

tion of programs that used loops and arrays. Students’ scratch paper was collected

and analyzed, finding that many students had sketched a code trace.

Fitzgerald et al. [49] performed cognitive walkthroughs with introductory CS

students as they solved problems with the same problems used in the Leeds Work-

ing Group exam. Using grounded theory, the researchers identified 19 strategies

students used while solving code reading problems, including close tracing (the

most frequent) as well as various types of pattern recognition (e.g., recognizing

that this program was like one seen before). However, the use of a certain strategy

did not predict success.

Fitzgerald et al.’s interviews have also been analyzed with the SOLO taxonomy

as a theoretical lens. Lister et al. found that students were more likely to describe

using a multistructural approach, where they discussed the function of multiple

pieces of code, rather than a relational approach, where they discussed the code as

45

a whole [91]. Other literature has reported that novices focus on the pieces rather

than the program purpose. For example, expert programmers are more likely to

use abstract mental representations that focus on the goal the code achieves, while

novices are more likely to focus on details of how the code executes [3].

Vainio and Sajaniemi identified factors that they felt inhibited novice code trac-

ing [153]. Tracing requires attention to detail, which can lead to cognitive overload

and mistakes (e.g., tracking and using variables) and poor use of external repre-

sentations. Like Fitzgerald et al.’s pattern recognition, Vainio and Sajaniemi found

that students assume functionality from a syntactic structure that matches a previ-

ously seen pattern.

3.2.2 When and why do students sketch?

We know that while solving code reading problems, sketching a code trace cor-

relates with success [88, 33]. However, students are more likely to create these

types of sketches on some types of code reading problems than others [102]. For

questions that are not about code reading, like Parsons problems [114], students

rarely sketch anything [33]. Also, students’ sketches often does not use the types

of diagrams that instructors teach [160, 33].

Analysis of the Leeds Working Group data showed that students’ sketching

varied widely from institution to institution, from as as low as 28% of problems

sketched to as high as 92% [102]. Students consistently sketched more often on

code prediction problems than on code completion problems.

Sketches have the potential to not only offload cognition, but also to better coor-

dinate thought [78]. Certainly, sketching out variable states provides a persistent

way to track information too complex to remember accurately. But also, in the

unconstrained space of a sheet of paper a sketcher can re-arrange information to

bring key referents closer together, or make certain information more explicit than

46

it was in a prior form [78].

3.2.3 What external representations are common in novice programming?

The process of code execution, known as the action of the notional machine [38],

is not self-evident from code syntax or program output. Systems that teach code

tracing attempt to make this challenging, hidden process visible[110, 164, 67].

Software that displays program visualizations is a common approach in the ef-

fort to help students form accurate mental models of program execution. Systems

like the Online Python Tutor [60] and UUhistle [142] demonstrate the action of the

notional machine that a student can step through line by line (see Figure 3.1a,b).

The visualization style of the great majority of these systems is remarkably con-

sistent in nearly all such systems [141]: variable values are encased in boxes, and

prior values are erased and overwritten.

A notable exception is PlanAni [124], a visualization tool that illustrates vari-

ables based on their “roles” [125], or functionality. The “most-recent-holder” role

and the “stepper” roles are both illustrated with previous values (see Figure 3.1c).

Empirical studies of visualization systems for use in introductory program-

ming and in algorithms have had inconsistent results [141, 75]. Visualizations do

not always help students, possibly because watching a visualization is a passive

learning experience. An interactive process for visual program simulation is more

likely to be effective [139]. This may involve an interactive GUI interface, like that

of UUhistle [142], or potentially a sketching interface. To that end, viewing visu-

alizations that students create for themselves may suggest new directions for the

design of these tools.

47

(a) Variables and lists illustrated in Online Python Tutor [60]

(b) Variables and instances illustrated in UUhistle [142]

(c) A “most-recent-holder” and a “stepper” variable illustrated in PlanAni [124].

Figure 3.1: Variable visualizations in program animation tools

3.3 Method

CS1 students from a large research university in North America participated in

a computer-mediated experiment, using their own laptops in a supervised setting.

The experiment took place during the 10th week of a 16 week semester.

The analysis presented here is from five multiple-choice code reading questions

in the pre-test portion of this experiment. These questions were written in Python,

and tested CS1 knowledge on lists, loops, and conditionals. In these questions,

48

Table 3.1: Code plans appearing in code reading questions.

Apparent code goal Achieves goal?

1 Find minimum in a list subset Yes
2 Find number of common list elements No
3 Count appearances of target in a list subset No
4 None (arbitrary arithmetic) N/A
5 Find average of list subset Yes

participants were asked to determine the result after the code had executed. Some

questions were examples of common programming plans (see Table 3.1), although

the goal of the code was never specified. Students had 15 minutes to answer the

five questions.

During the test, participants were instructed to use provided pens and blank

scratch paper (labeled with their unique identification number) if they wished to

draw. Participants were instructed to return their scratch paper to the experiment

administrators after completion of the test.

3.3.1 Class observations

All participants had the same CS1 course instructor. The first author attended

two class sessions during weeks 5 and 6, when lists were introduced. Field notes

about instructional strategy were taken, and the sketches created by the instructor

during these sessions were collected.

3.3.2 Interviews

Twenty-six of 167 test-takers consented to be contacted about a follow-up in-

terview. A subset of those who consented were contacted, in order to maximize

the variability the interviewees scores on the pre-test. Twenty-one students were

contacted, and 13 agreed to participate in an interview. Of those 13, three got four

questions right, six got three questions right, two got two questions right, one got

49

one question right, and one got no questions right.

Interviews were semi-structured, lasted 30 minutes, and occurred in weeks 14,

15, and 16 of the semester.

During the interviews, interviewees’ scratch paper from their pre-test was pre-

sented, along with the problems from the original exam. Interviewees were given

time to re-familiarize themselves with their work, and then asked to describe their

choices to sketch or not sketch on each problem. Then, the instructor’s sketches

were presented, and the students were asked to describe why they chose to sketch

similarly or differently than their instructor.

Interviews were recorded and transcribed. They were coded thematically by

two coders (the first and third authors), working individually.

3.4 Why sketch (or not)?

3.4.1 Goal and pattern recognition

3.4.1.1 Identifying a goal

Most questions matched or appeared to match familiar coding plans (see Table

3.1). For those problems, several students claimed to have identified the goal of

the code, and didn’t feel a need to sketch anything at all.

Said one interviewee about problem five: “Once you look at the code and figure

out what it’s doing, then it’s like, okay, I can compute an average without writing it down,

especially if it’s only two values.” Another non-sketcher agreed, with the following

thoughts on problem one: “To me, it’s very clear that you’re looking for a minimum

value within a certain range, and so for that, I didn’t feel a need to necessarily write down

anything.”

The opposite was also true. Describing their process for solving problem two,

an interviewee recalled how not identifying a goal for the code led to a tracing

50

sketch: “When I saw it I wasn’t like ‘Oh, I think I have a hunch that this code does this.’

I’m going to need to work through it.”

3.4.1.2 Recognizing a pattern

In problems where an overall goal wasn’t initially identified, sometimes trac-

ing through a portion of the code execution was enough to identify a pattern and

confidently predict the final result. This approach could lead to halting sketching

halfway though, as this interviewee described on problem two: “After I sort of got

the hang of it, I just started to skip through writing it.” An interviewee who abandoned

their trace on problem one said: ‘You can also see the point where I realized like... and

it clicked.”

3.4.1.3 Goal and pattern recognition was not reliable

Despite the confidence expressed by many interviewees in their ability to rec-

ognize goals and patterns, they were often wrong. Consistent with the conclusions

of Fitzgerald et al. [49], there was significant variety in how well students used the

pattern-matching strategy.

3.4.2 Anticipated cognitive load

The complexity of the problem corresponded with the amount of effort put into

sketching a trace, with more complex problems sparking more organized tracing

approaches. An interviewee recounted their choice to only sketch a few values in

an unorganized way as they were solving problem one: “I know it’s a bit simpler, I

immediately made like an assumption that it was easier, so I didn’t put as much work into

making a table or a chart.”

51

3.4.2.1 Complex variable interactions

How is complexity interpreted? Reflecting on their sketching choices for prob-

lem four, one interviewee felt that the amount of variable dependencies required a

sketched trace: “There were three [variables], I was like, ”That’s too many,” and they’re

all related. I was like, ’I can’t remember that,’ and so I drew it out.”

3.4.2.2 Arithmetic or other math-like cues

Math-like cues within code syntax also prompted a move to close tracing: “This

[code in problem 4] looks like an equation. All the other ones don’t look like equations. I

guess when you don’t have really long variable names also that might help.” Arithmetic

was another factor that led to tracing: “Instead of just reassigning values, I’m having

to do some basic arithmetic, so keeping track of that through this method [a table] for me

was the way to go about it.”

3.4.3 Problem-solving progression: From goal search to tracing (and re-tracing)

Rather than immediate use of a tracing technique, interviewees typically de-

scribed an initial search for code’s meaning, then a fall-back to tracing when no

discernible goal or pattern was found.

Tracing was repeated two or more times, if an acceptable result was not found.

Later tracing attempts were more organized, and more likely to take up a table-like

format. In the words of one interviewee: “When I do a problem, I usually just write

stuff fast and try to get through to it. And then if I feel like that’s becoming difficult to keep

track of everything, I’ll slow down and do something like this [a table], to make it easier

to see.” More organization was often assumed to bring a greater chance of success:

“I was kind of annoyed that I didn’t get the answer the first time so I was just like okay,

putting down lines [creating a table to fill in]. I’m not going to get it wrong this time.”

52

Figure 3.2: An in-class sketch by the instructor.

3.5 Why not sketch like the instructor?

The interviewees’ instructor used sketched traces in class while teaching about

lists and common list procedures, like finding a list’s minimum value. One of

her illustrations is shown in Figure 3.2. The instructor’s choice to sketch boxes as

representations of memory locations aligns with the design of the great majority of

program animation software [141] (see Figure 3.1) as well as proposed designs for

sketched memory diagrams (e.g. [152, 67]).

However, no participants re-created this sketching style while problem-solving.

Instead, they opted for sketching techniques described in [88] and [33], where

memory values are not bounded by boxes, but may be in rows, chunks, or tables.

Why didn’t students replicate the style repeatedly demonstrated by their instruc-

tor?

53

3.5.1 Seen as unnecessary and time-consuming

Interviewees described this sketching style as not worth the time and effort

during exam conditions. “Boxes take too long to draw, basically”, said one participant.

“I’m always kind of hesitant to diagram things out to the max if I can save time by doing

that.” “It would take me longer to (draw) the boxes than to write the number, and probably,

it will be a mess,” said another interviewee.

An interviewee described the instructor’s technique as overly detailed, and not

prioritizing important values over unimportant ones: “She’s trying to illustrate ev-

erything as opposed to me just trying to illustrate specifically what I need to get through a

problem....she literally writes out every single thing. Even really simple things like if it’s a

value and it’s fixed, she’ll write it. Like, it won’t change.”

Others noted that they didn’t see a functional difference in the tracing sketch

they performed and what the instructor sketched: ”I just didn’t circle the numbers, I

guess.”

3.5.2 Visual details seem distant from code

Some students didn’t feel that a box was the most appropriate representation

for a variable. Said one interviewee who sketched traces using variable names and

equals signs (e.g. t = 1): “I think I just see it a little more clearly as saying that it’s a

variable that’s equivalent to something, as opposed to maybe being a placeholder. I prefer

to just write out what it actually is, in terms of a visualization.” This student appears

hesitant to move away from representations that aren’t similar to code syntax.

This prioritization of code was echoed by another participant: “Because the high

demand to put code in programming, I feel like, you don’t have time to sit there and draw

a picture most of the time for a simple list.”

54

3.5.3 Boxes are reserved for another purpose

For two interviewees, boxes had a clear meaning from their use in other sub-

jects: identifying final results. Said one interviewee, “If I cross them out, or box them

then I end up getting very confused, because I use boxes and circles for other kinds of

notation. I usually box my answers.” Pointing at variables in Figure 3.2, another in-

terviewee said: “I’m guessing those are the initial values but it kind of makes it look like

they’re the finals. Because from physics, like for homework, I always circle my finals....I

saw the box first here and I’m like oh I don’t like that.”

Boxing a key result, but not intermediate steps, is a technique students likely

practiced across years of mathematics and physics courses. These participants

didn’t want to to change the meaning of this representation.

3.6 What do novice sketches include?

While participants’ sketches didn’t closely match their instructor’s sketches, or

the style used in program animation tools, they did show a variety of consistent

trends.

3.6.1 Organizing and structuring of traces

3.6.1.1 Organizing around loop iterations

Sketching out a trace was described as difficult without some sort of organizing

structure. The index of the looping variable provided guidance during this cogni-

tively challenging process. As one participant recalled: “I think this one I had to

actually do it a couple of times. The first time I went through I actually didn’t put the zero,

one, two, and three, because that really helped me count the range. Before when I didn’t do

that I really lost track of what my i value was so it got confusing, so I erased it a couple of

times. Then I put the i values next to it, and it became much more clear.”

55

(a) Each row of variable values begins with a loop
index

(b) Columns of variable values headed by loop
indices

Figure 3.3: Tracing organized by loop indices

Describing their sketch (pictured in Figure 3.3a), another interviewee said: “It’s

just for me to establish here’s an iteration, here’s an iteration, here’s an iteration, just

so I know what I’m dealing with and then not getting confused between iterations and

numbers.” This participant’s sketch indicates that loop indices are considered a

distinct variable type. The loop variables aren’t labeled by their variable name,

and instead serve to separate parts of the sketched trace.

3.6.1.2 Organizing around annotated lists

Rather than jumping to a full sketched trace on the questions involving lists,

participants used the list itself to organize an abbreviated trace. An interviewee

described the creation of such as sketch (pictured in Figure 3.4): “And then I guess I

circled five to start with that. And then I also labeled each value that I knew was probably

going to change.” Recognizing that the list is key to the question, the interviewee

centered their problem-solving there, using the list to get an overview of what

occured in the code.

3.6.2 Persistence of past values and calculations

Interviewees were cognizant of the possibility that their sketched trace may

need to be re-used or modified. Keeping previous values of variables around for

56

(a) Indice annotations, circling a key value, and demar-
cating a sub-list

(b) Circling a key value and
rewriting sub-list

Figure 3.4: Tracing organized around a list

easy reference was a priority, as this interviewee described: “if I mess up, I can go

back and know that I either wrote a variable wrong or something like that.”

For one participant, this need was enough to dictate their writing utensil: “I like

to do coding in pen because if I make a mistake I can clearly see it because I have to cross

it. I can’t erase it, I have to cross it out.” For another, this goal led to careful tallying

of the evaluation of conditionals as well as variable values, “so if I ever had to go

back through a problem and check my work, I’d be like that’s why I did this.” Figure 3.5b

shows this sketch.

Keeping past values also allowed interviewees to better observe patterns over

time. “For me, I think it was just visual and then being able to see it laid out helped me

also keep track of it. Because this is going back and forth and iterating it a bunch of times,

so seeing the physical changes of the new variables was really helpful.”

3.6.3 Anchoring with visible values and structures

3.6.3.1 Re-writing initial values

Where should students start when faced with a complex code tracing problem?

Students often started with initial values. As one interviewee explained: “I always

rewrite the first list. It’s like for math. I always rewrite the original problem. I know some

people don’t do that. It takes up a lot of time.”

Despite the time commitment, several participants re-wrote starting values, like

57

(a) Intermediate values in arithmetic expressions are preserved

(b) Boolean expression values and variable values are preserved

Figure 3.5: Persistence of past values

the arguments passed into the function, or initial variable values.

3.6.3.2 Using code structure to anchor tracing

Some students re-wrote code in a way that oriented their trace, most often for

looping structures. In Figure 3.6, this participant combined the for loop syntax

with a trace across three iterations.

3.7 Discussion

Our results identify several problem-solving approaches of CS1 students that

differ from the work of a strict ”human compiler”.

3.7.1 Search for goals and patterns is primary

These findings suggest that the first task of novice code readers is an attempt

to find patterns and goals within code. Novices scan code in an effort to recognize

its functionality, or perform an incomplete trace in the hopes of seeing a trend. In

both cases, the cognitively demanding work of full, close tracing is avoided.

58

Figure 3.6: Organizing tracing around code structure

Such a strategy is understandable, considering the tedium of close tracing. If a

student doesn’t have a strong understanding of the notional machine, close tracing

may be just as error-prone as looking for familiar code structures and divining the

functionality from there.

Current visual program simulation approaches connect code structure (the syn-

tax) to code behavior (the action of the notional machine). However, these ap-

proaches do not shed light on the function the code is trying to achieve. Can new

approaches help learners not only better understand the notional machine, but also

more accurately recognize patterns in code?

3.7.2 Variables are treated differently based on context

While a compiler doesn’t treat loop variables differently than other variables,

novice sketchers do. Loop variables are often used by novices to organize the

tracing of other variables. Novices appear to have different classes of variables,

based on semantic meaning.

Can visual program simulations treat loop variables differently than other vari-

ables? Or, can they use variable names to infer meaning, and emphasize or de-

59

emphasize variable changes accordingly?

3.7.3 Past values are retained

Novice tracers show a preference for retaining previous values as they trace, in

order to identify patterns or be able to re-trace their steps.

In program visualizations, the previous value is typically replaced as soon as

a new value is assigned to the variable. However, maintaining past values may

allow novices to better detect patterns. What effects might retaining some past

values in program visualization have on learners?

3.7.4 Variables are un-boxed

Novices are unlikely to maintain a box representation in their own sketched

visualizations. The use of boxing may interfere with sketching strategies learned

in other courses (like boxing the final value in physics). Or, it may simply be irrel-

evant when creating a sketch, but still useful when teaching. Visualizing variables

in a table-like form creates a more direct opportunity for transfer to a sketching

environment.

3.8 Limitations and threats to validity

Our small number of participants allowed for a detailed, qualitative investiga-

tion of novice programmer rationales for sketching. However, due to the small

sample, we cannot claim any generalizability of our findings. Qualitative research

explores experiences or artifacts in rich detail, establishing the existence of phe-

nomena. In order to determine whether these behaviors are replicated by many

students, we would need to increase our sample size.

While our findings suggest new possibilities for sketching and visualization

60

techniques, they do not translate into recommendations for classroom practice. We

cannot claim that if instructors used the sketching approaches favored by students,

better learning will result. Further research with more participants is needed to

determine whether certain visualization techniques are typically associated with

successful outcomes.

While our participants’ sketches served to ground our interviews in past expe-

rience, our data ultimately depends on recall based on self-report. Additionally,

in the weeks since the exam, participants likely improved their understanding of

programming, creating additional challenges to accurate recall.

3.9 Conclusion

Sketching is a tangible trail of students’ problem-solving process. However,

pieces of paper alone can only tell us so much. By talking to novice program-

mers about their sketches, we identified their motivations for sketching differently

than their instructor, for avoiding sketching and tracing, and for organizing their

sketching in a variety of styles.

Visualization techniques in the computing education literature are designed by

computing experts. Whether in program animation software or sketched by hand,

these visualizations emphasize a high fidelity with the way the computer executes

code “under the hood”. The separation of memory values from code reflects the

separation of instruction bytes from data bytes. The box analogy is consistent with

parceling of only a certain number of bits per variable. The computer doesn’t un-

derstand the semantic difference between a loop variable and a counter variable,

so they are often illustrated identically.

Novice programmers aren’t aware of the “reality” of the machines they are

working with, and so while sketching and tracing they mix code and memory

values, de-prioritize certain variables, and keep prior values around for reference.

61

Each of these actions supports their ultimate end: the search for goals and patterns

in the code they are trying to understand at a human level.

Humans are different than compilers. While a computer must parse and exe-

cute code token by token, human learners can infer patterns and identify goals.

Our current visualization techniques don’t offer affordances for this type of

action. With inspiration from the visualizations novices choose to create for them-

selves, we may be able to create visualization techniques that students are not only

more likely to use, but that could also support their ability to generate meaning

from the code they are reading and tracing.

62

CHAPTER IV

“I’m not a computer”: How Identity Informs Value and

Expectancy During a Programming Activity

Code tracing—simulating the way the computer executes a program—is a com-

mon teaching and assessment practice in introductory programming courses. In

a laboratory experiment where code tracing was encouraged, I found that some

struggling novice programmers described code tracing as not only cognitively

complex, but also in opposition to their self-beliefs. One participant described

himself as not a computer, and therefore unfit to execute code like the computer

does. Another described himself as not a programmer, and did not value an activ-

ity that was only for learning about how code works. We mapped these learners’

self-narratives onto the Eccles Expectancy-Value Model of Achievement Choice to

understand how identity relates to the choice to not trace code. While both par-

ticipants valued what they could create with code, neither valued code tracing.

Alternative activities might allow students with these identities to build skills in a

way that aligns with their self-beliefs.

63

4.1 Introduction

In a series of programming epigrams, “founding father” of computer science

Alan Perlis wrote “To understand a program you must become both the machine and the

program” [115]. Instructional approaches in many programming classrooms echo

this sentiment, focusing on code tracing [140] as a method to improve program-

ming skills. Code tracing involves simulating the execution of a program: describ-

ing the order in which lines of code run, which values are created and modified,

and when the program starts and stops.

Code tracing is an authentic practice for future programmers. Software devel-

opers spend large amounts of time reading existing code, rather than writing code

from scratch [9]. Tracing through an example can aid in debugging code [103]. It

can also help a programmer describe what a program does in “plain English” [86].

In classroom settings, the ability to trace code unaided is correlated with the ability

to write code and the ability to describe the purpose of code in natural language

[93]. Hierarchies of programming skills describe code tracing as a primary skill

that students naturally learn [86] or should be taught [163] before they learn to

write code or explain the purpose of code.

However, code tracing by hand is difficult, tedious, and novice programmers

don’t always do it, even when it is a helpful strategy [88, 33]. Learners describe the

cognitive demands of tracing as one reason they try to avoid it by using alternative

methods, like looking for familiar code patterns [34]. Code tracing is also typically

removed from any larger context of what the code will be used for. Computing

education researchers have advocated for code tracing examples that use unusual

code structures, so that learners are not “distracted” or “influenced” by context

clues like meaningful variable names [88, 110].

Code tracing studies are typically performed with novice programmers in tra-

ditional programming courses, housed in computer science departments. Hierar-

64

chies of programming skills developed from these studies do not consider how

different students may have different values for different programming tasks. Fu-

ture computer scientists likely value a deep understanding of the operation of pro-

gramming languages. End user programmers and data scientists use code when

needed to achieve their own goals, and may not value knowing how the code ac-

tually works. In this study, I explore: How do non-computer science majors relate

their value for code tracing to their identity?

In a laboratory setting, I asked undergraduate and graduate students with

some prior programming experience to complete problems designed to encour-

age and isolate tracing behavior. To our surprise, some participants pushed back

against instructions to trace code. Beyond avoiding tracing due to its difficulty,

these participants described themselves as not the “type of people” who wanted

to understand code tracing. I analyzed the attitudes, values, and beliefs that these

participants expressed, and mapped them onto the Eccles expectancy-value model

of activity choice in order to understand how identity influences the choice to trace

code.

4.2 Background

4.2.1 Identity, programming, and applications

In the United States, students who choose to study programming in college are

predominately White and Asian males [22]. Explanations for this phenomenon of-

ten suggest that women and underrepresented minority groups are less likely to

see the culture of computing as aligning with their values. The efforts by Jane Mar-

golis and her colleagues to understand the low representation of female students

Carnegie Mellon University’s computer science department found a difference in

the values men and women had for computing. Women were nearly five times as

65

likely to link their interest in computing to application areas, like medicine [97].

Male students, on the other hand, more often expressed views like “it is the code

itself that is interesting, even more so than the actual effect it has” (pg. 53).

A similar difference in motivation for understanding programming seems to

be present between professional software developers and professional web and

graphic designers. Dorn and Guzdial [36] found that web and graphic designers

had often taken traditional introductory programming courses, but found them

frustratingly focused on programming language syntax rather than applications.

Increasingly, jobs beyond professional software developers require programming,

in areas as diverse as business, science, and art [18]. Interdisciplinary college de-

partments, such as “iSchools” [94], cater to this demand for data science and other

applied computing skills.

4.2.2 The Eccles expectancy-value model of achievement choice

Drawing on prior work about decision-making and goal achievement, Jacque-

lynne Eccles and her colleagues proposed that two factors most directly influence

the choice to select and complete a task: (1) a student’s expectation of success and

(2) the value a student has for the task [43]. Many other factors influence these two

primary factors, such as the student’s personal and social identities, goals, and

their memories of previous achievement. The interaction between these factors

is described in Eccles’ expectancy-value model of achievement choice, which pro-

vides a framework for a sociocultural analysis of motivation and activity choices

in educational settings [43].

Four factors contribute to the value that a student has for a task, which Eccles

terms Subjective Task Value: (a) attainment value, when the task aligns with the

student’s self-image; (b) interest-enjoyment value, when the student expects to

enjoy the task; (c) utility value, when completing the task helps the student achieve

66

a goal; (d) relative cost, when task requires time and loss of other opportunities,

decreasing its value [43].

4.2.3 Tracing code to solve problems

Code tracing involves simulating the running of a program: describing the or-

der in which lines execute, which values are created and modified, and when the

program starts and stops. It’s a careful walk through the mechanisms of how a

program works inside the computer [140]. Dozens of program visualization tools

have been built to illustrate code tracing to new programmers, [141]. These sys-

tems are typically similar to the visual debuggers found in professional integrated

development environments. Instructors and students often trace code by hand, on

whiteboards or paper. Teaching that emphasizes tracing seems to result in learning

benefits on later exams that include tracing problems [164].

Tracing can help with other tasks. During microgenetic studies of novice pro-

grammers, Lister and colleagues noticed that novices sometimes traced through

the execution of a concrete example in order to inform their explanation of the

purpose of a program [86]. Viewing program visualization tools is associated with

improved debugging ability [103].

While tracing studies often describe novices’ cognitive processes, they do not

address learners’ motivations or affective state while solving these problems. To

our knowledge, ours is the first study that investigates how students’ self-beliefs,

values, and identity is related to the task of code tracing.

67

Figure 4.1: A participant’s work on Problem 1, during the tracing stage.

4.3 Method

4.3.1 Task

I asked participants to complete an “explain in plain English” task [108], using

tracing as a support for problem-solving. In the initial reading stage of the task,

participants were shown a short program, displayed for 30 seconds on a tablet, and

asked to give their best guess of the code’s purpose. If the response was correct,

a more challenging problem was chosen. If the response was incorrect or incom-

plete, participants moved on to the tracing stage. A function call was added to the

tablet display, and participants were asked to trace the execution of the function

call, using the tablet’s pen. Participants were told to stop tracing and let interview-

ers know once they had determined the program’s purpose.

4.3.2 Problems

Code segments were selected from those used in “Explain in plain English”

studies [89, 93, 108] and in sketched tracing studies [34]. The code was translated

into Python functions. All participants saw the same initial problem. A second

68

problem was dynamically chosen based on the participant’s difficulty with the

first problem. If time allowed, third and fourth problems were also chosen.

4.3.3 Participants

I recruited novice programmers from undergraduate and graduate students at

a large public research university in the Midwestern United States. Students were

eligible to participate if they had completed 1-2 formal programming courses at the

college level. Participants were recruited during the 1st, 2nd, and 3rd weeks of a

15 week semester, primarily from the university’s iSchool. Recruiting included fly-

ers placed across campus, announcements sent to iSchool programming courses,

and classroom visits to iSchool programming courses. Participants received $10

for participating in the study. I conducted the study with 12 participants, 8 under-

graduates and 4 PhD students.

4.3.4 Interview Protocol

I conducted 30 minute interviews with participants during the 2nd, 3rd, and

4th weeks of the semester. Each interview consisted of 2-4 purpose-finding tasks,

as described above. Two interviewers (the first and second authors) were present

at each interview. A “cheatsheet” describing the operation of Python syntax struc-

tures was available to participants. After each task, I asked our participants semi-

structured reflective questions about their problem-solving process. These ques-

tions asked participants to describe the moment they understood the code’s pur-

pose and what happened leading up to that realization, to explain what they found

helpful in completing the task, and to share what they had determined in the ini-

tial reading stage, before tracing. In the final task of each interview, I asked partic-

ipants to talk aloud, describing their thoughts while they traced.

Sometimes, lack of knowledge about how Python works precluded participants

69

from being able to accurately trace. Interviewers answered any questions partici-

pants had about the operation of Python syntax structures (e.g. loops, arrays) and

built-in functions (e.g. range(), len()). When a participant was clearly strug-

gling due to a lack of knowledge about the mechanisms of Python, interviewers

intervened and provided a relevant example and explanation.

4.3.5 Analysis

The interviews were audio recorded and transcribed, and activity on the tablet

was screen recorded. Inspired by participants’ unexpected talk about the value

of the tracing task, I analyzed the transcripts to highlight the ways participants

described their identity and motivations. I used Values Coding [117, 126], supple-

mented by In Vivo Coding [25, 126]. Values Coding highlights the belief system

of the participants by identifying their values (the importance of people, things

or ideas), attitudes (the way participants think and feel about people, things, or

ideas), and beliefs (rules and interpretations) in their talk. In some cases, attitudes,

values, and beliefs could be expressed in the participant’s own words, so I used In

Vivo Coding to preserve participants’ tone and voice.

The first author coded all interviews while the second author coded 40% of the

interviews, including the case studies described below. During weekly meetings

across the course of a month, I discussed our codes, developed themes, and iden-

tified trends across participants. Using reflective summaries as an analysis tool, I

mapped our themes onto the Eccles Expectancy Value Model of Activity Choice

[43].

70

4.4 Case Studies

While the interviewers did not ask questions about learners’ identities, motiva-

tions, or values in the interview protocol, some participants used the interview as

an opportunity to share their judgements of the task. Two participants described

most fully their perspectives on their own ability, as well as the reasons for their

low value of the experiment’s tasks.

4.4.1 Charles: I’m not a computer

4.4.1.1 Code reading is confusing, and I won’t improve

Reflective questions about Charles’s problem-solving during the first problem

of the interview prompted a negative response. “I really hate—I guess I shouldn’t

say hate. But I really dislike like, how convoluted like parameters can get inside

a code. And I recognize that they’re very important, but that’s like so counter ev-

erything else you do in life,” he said. He continued to describe the task of under-

standing each small piece of code “the hardest thing for me with code in general.”

Overlooking some parts of the code was also a roadblock. While explaining a

mistake he made on the second problem, Charles said, “I have a tendency to do

that (laughs) with code. I like to jump to a conclusion and not have any alterna-

tive.” When he didn’t notice an important code structure while reading the final

problem, Charles said that he would never read code accurately: “If we were to do

10 of these, I’m sure each one of them I would look over a small component of the

code.”

Charles connected his struggles with code tracing in the experiment to diffi-

culty in his prior programming course: “I guess like, in general, I found that like,

the least helpful thing in my programming class was reading code, as weird as

that sounds. I always felt like I walked out of the class feeling like I knew less than

71

I did going into the class.” Charles finds code reading impenetrable, dislikes the

task, and has no confidence that he can do better than his current efforts.

4.4.1.2 Why not just execute the code?

Charles believed he could solve problems like the ones in the experiment, if he

could only execute the code on a computer: “I feel like no matter how much I do

it, it doesn’t really help me, uh, learn what the code’s actually doing until I execute

it.” He described tracing activities on past exams as “demoralizing”, “because I

can’t execute it, so I can’t see what it’s doing. And since I don’t know, I just feel

like I don’t know and I can’t work through the problem and like, try and solve

it.” Without the capability to execute code, Charles has very low confidence in his

ability to understand code.

Charles elaborated on how inauthentic he felt it was to be tested on code trac-

ing. “Nowhere outside, I feel like, a college setting is ever gonna ask you that

question,” he said. “Who writes code on a whiteboard and then tries to solve it

in their head?” In his view, there is no need for tracing knowledge when he could

simply run the code on a computer: “It always seems like a really strange way

to try and teach someone code when like you could just execute it and see where

it goes with that like hands-on component.” Charles views code reading tasks as

unrealistic and a “weird” thing to be tested on, at least partly because there is no

use of the computer.

As Charles reflected, he mentioned that code tracing might be relevant for code

writing, saying, “ultimately, I’m never gonna call upon this knowledge again,

other than when I’m writing code.” However, he qualified that statement by de-

scribing how he could probably complete a similar code writing task, even though

he wasn’t able to complete the code tracing task. He described a writing code task

as “more beneficial” and claims “I would probably much more likely get to this

72

result.” By contrast with tracing, Charles views writing code as an easier task to

complete, and more helpful to his development.

4.4.1.3 It’s great that we don’t do this type of work in the iSchool

At the end of the interview, Charles connected his beliefs about his ability and

the authenticity of the task with his choice of major: “Which is why I really like

[the iSchool]. ‘Cause I feel like there’s much more hands-on components, rather

than, like, me just being tested over and over and over about things that I don’t

quite understand.” He feels that his iSchool course allows him more opportunities

to make use of the computer, rather than the code tracing tasks he despised from

his prior course.

Charles summarized his perspective on code tracing with an analogy, saying,

“Yeah, I mean, it’s just like...it makes me think like a computer. But I’m not a com-

puter. And it’s not that I can’t work with the computer in tandem. I mean, that’s

why we have the computers.” Tracing is simulating the computer, and Charles is

fixed in his belief that he cannot think like a computer thinks. Computers read

every detail of code and execute it without error. Charles does not believe he can

do that, but he doesn’t count himself out of being someone who writes code. He

can use the computer as a tool and complement the computer’s strengths with his

own strengths.

4.4.2 Luke: I’m not a programmer

Luke is a PhD student in the iSchool who uses programming in his research.

His prior programming experience included a formal programming course ap-

proximately three years in the past, as well as applied experience using code to

create products used in research activities.

73

Figure 4.2: Charles’ self-narrative mapped onto relevant aspects of the Eccles Expectancy-
Value Model of Achievement Choice [43].

4.4.2.1 I don’t remember this type of stuff

When I showed Luke the first problem, his negative reaction was immediate.

“I hated this sort of work honestly,” he stated, looking at the code on the tablet.

During the tracing stage of the first problem, he didn’t draw anything, and noted

that he didn’t remember many details of how the code worked. He said he would

have to review basic Python in order to complete the problem, because “the way

that I, I learnt everything in the past, was like ‘Okay. If I don’t need it anymore,

it’s done.’” Interviewers provided help with the relevant Python semantics at this

point, but Luke was reluctant to engage and keep trying to trace.

When asked later about why he had expressed such a negative reaction at the

beginning of the interview, Luke responded that “I have to force myself to think

extra about something I know I’m not going to use.” The tracing problems required

a high amount of cognitive effort, but no clear payoff. Luke further described the

problems as being “like a crossword puzzle that’s not fun.” He disliked problem-

74

solving that didn’t solve a problem he was interested in.

4.4.2.2 The only point of these problems is to learn the language

In the reading stage of the third problem, Luke described how the code would

work line-by-line for a sample input he devised. When pressed to describe the

purpose of the code in a single sentence, Luke deadpanned, “Um, teaching peo-

ple Python.” This meta-commentary continued later in the interview, when he de-

scribed his past experience with similar tasks: “this sort of stuff was blatantly

to write Python.” There was no larger goal for these tracing tasks; they didn’t

contribute to anything except knowledge that Luke didn’t value. He continued,

“There’s times I’m just like ‘Why would I ever use this?’”

The interviewers asked Luke to reflect on whether the code in the tracing task

was similar to other code he worked with. He didn’t see many similarities. De-

scribing his past coding experience, he said, “I just liked to design something, de-

sign an app, design some sort of robot personal interaction, to design like, you

know, um, just like JavaScript as well, just like something that someone would go

through online for a certain experiment. So like I never really did this type of like

work, you know?”

4.4.2.3 I use code to achieve goals I care about

By contrast with the tracing tasks in the interview, Luke characterized the code

used in his design work as “more fun”. The reason seemed to be that coding in

that context helped him build something he valued: “Whatever it is that I agree

with, the design itself, like, so the code is just a means to an end, of creating an

interaction, or creating a product or creating whatever else, right? So it’s like one

component that gets you there.” Writing code is only useful for something else; the

code itself and how it works is not valuable. Luke said, “I mean the purpose itself

75

Figure 4.3: Luke’s self-narrative mapped onto relevant aspects of the Eccles Expectancy-
Value Model of Achievement Choice [43].

is not to code something.” Instead, “the purpose would be like, research through

design or to create some sort of interaction or to iterate on something.” Coding

might be necessary for certain projects, but coding isn’t the point.

Finally, Luke reflected on his own prior programming course and the fact that

he didn’t enjoy it. He chalked part of the reason up to his identity. “I mean for

one, if I was wanting to become a programmer, then perhaps it would be more

interesting to me.” He applauded recent changes at his undergraduate university

that created distinct introductory programming courses for different majors “to be

more applicable to students’ interests.”

4.5 Discussion

Both Charles and Luke expressed a strong negative opinion about our tracing

tasks as soon as they attempted their first problem. As the interview continued,

they provided well-developed descriptions about the reasons they found tracing

76

Figure 4.4: Relevant components of the Eccles expectancy-value model of achievement
choice (modified from Eccles [43]). Cultural Milieu, Socializer’s Beliefs and Behaviors,
Stable Child Characteristics, and Perception of Stereotypes and Socializer’s Beliefs are not
represented.

tasks both difficult and not valuable. Mapping their values, attitudes, and beliefs

onto elements of the Eccles expectancy-value model of achievement choice (see

Figure 2) creates a clearer picture of how the different parts of these learners’ self-

narratives interact and drive their opposition to code tracing tasks.

4.5.1 Previous achievement-related experiences, Interpretations, and Affective

reactions and memories

Luke and Charles disliked their introductory programming course. Charles de-

scribes his affective memories in detail, sharing feelings of helplessness and being

demoralized by code reading activities in exams and in class. His interpretation

and memories of repeated failure likely influenced his self-beliefs about tracing

ability.

77

4.5.2 Goals and general self schemata

Both participants summarized their personal identities in opposition to another

identity. While Luke is clear that he is not a programmer, Charles emphasizes

that he is not a computer. Both Luke and Charles define themselves at a distance

from people who are thinking deeply about how code works. However, from this

distance, both participants see themselves as someone who uses programming.

Charles is someone who can work with the computer, and Luke is someone who

builds things with code.

4.5.3 Activity-specific ability, self-concept, and expectations for success

While both Charles and Luke expressed low expectations of success during the

experiment’s tracing tasks, they prescribed different reasons for their lack of code

tracing skills. Charles felt that he inherently did not have the ability to remember

the details of code tracing, or observe all the details of a program. Computers

can accomplish these tasks easily, however Charles is not a computer, and cannot

trace code. On the other hand, Luke described an almost conscious forgetting

process of programming knowledge that was “no longer needed” to achieve his

immediate goals. However, he expressed confidence in being able to recover those

skills through study. Luke no longer needs this knowledge because he is not a

programmer.

4.5.4 Subjective task value: Interest-enjoyment value

Luke described his lack of enjoyment in more detail than Charles. While it’s fun

for Luke to build things, it’s not fun to work through the details of how the code

works. Code tracing is as detail-oriented and demanding as a crossword puzzle,

but less fun than that pastime, and just as disconnected from any larger goal. For

Charles, the work of code tracing seemed to recall negative memories of frustrating

78

and unenjoyable prior experiences in class.

4.5.5 Subjective task value: Attainment value

People have attainment value for a task when the task aligns with their self-

identity. In both Luke and Charles’ descriptions for why they don’t value code

tracing, they described the task as in opposition to their identity. Tracing is some-

thing that a programmer values, because it helps them understand how a pro-

gramming language works, but Luke is not a programmer. Tracing is something

the computer does when it executes code, but Charles is not a computer.

4.5.6 Subjective task value: Utility value

People have utility value for a task when completing that task helps them

achieve their goals. Charles does value understanding code, at least as much as

it can help him write code. However, Charles does not believe that tracing helps

him understand, and in fact makes him feel like he knows less. While Charles

mentioned that tracing knowledge may be helpful for writing code, he also says

writing code directly would be a more beneficial task than pure tracing practice.

Luke expressed goals of creating products that do things he cares about, but didn’t

see tracing as relevant for that activity. Neither Luke nor Charles described any

utility of code tracing for explaining, modifying, or debugging code.

4.5.7 Subjective task value: Relative cost

For Luke, it is quite time-consuming to look up relevant knowledge for code

tracing, since he doesn’t remember much tracing knowledge. As someone who

forgets things when they are “no longer needed”, recalling code tracing details

is always costly. Luke does believe it’s possible to refresh this knowledge, but it

would take focused study. For Charles, the cost of code tracing is even higher than

79

for Luke. As someone who just doesn’t notice details of code, it’s unclear he will

ever be able to accurately trace code. With fixed beliefs about his ability, the cost

seems infinite.

4.6 Conclusion

While previous research has focused on the ways that high cognitive load may

influence the choice to trace code, our analysis identifies relationships between

identity, expectations of success, and value for code tracing. I describe two iden-

tities that relate to choices about code tracing: I’m not a computer and I’m not a

programmer. In our case studies, learners related these self-beliefs to a low expec-

tation of success on code tracing, because they did not have the ability to notice

code details or chose not to remember them. They also expressed a low value for

code tracing, because it took a lot of effort, was not enjoyable, and did not appear

relevant to their self-image and goals. Both Luke and Charles define themselves

at a distance from people who are thinking deeply about how code works. How-

ever, from this distance, both participants see themselves as someone who uses

programming. Charles is someone who can work with the computer, and Luke is

someone who builds things with code.

Tracing code can certainly be difficult, intricate, and removed from the context

of code writing. However, it is commonly positioned by computing education

researchers as a “gateway” skill to programming expertise, frequently occupying

the earliest rung in theorized pathways of programming learning [86, 163]. For

learners with the identities I describe, this code tracing “gate” is closed. Tracing is

already so difficult that many computer science majors struggle with it [88]. For

learners who do not value understanding the mechanisms of code and intricacies

of a language, there is little motivation to put the required effort into code tracing.

If you see code as only a means to an end, why learn about code that doesn’t

80

have an application? If you want to work with the computer rather than be the

computer, why simulate the machine?

Our learners are using code to achieve their goals, but they reject one of the

most common activities in programming classrooms. To meet this type of pro-

gramming learner where they are, I propose an exploration of programming learn-

ing activities that are function-oriented, contextualized, and authentic. While some

programmers may not ever fully “become” the program or the machine, they can

start by investigating what the program and the machine does for them.

81

CHAPTER V

Defining, Building, and Evaluating Purpose-First

Programming

5.1 Introduction

Enrollment in undergraduate computing courses is undergoing exponential

growth, the majority of which is driven by students from majors besides computer

science [21]. Non-computer science majors often want to learn programming for

reasons other than as preparation for a career in software development. One in-

tention is to become a “conversational programmer”, someone who knows enough

about technical topics to communicate with co-workers, but doesn’t often program

in their work [28, 29]. Another is to become an ”end-user programmer”, who pro-

grams to achieve goals in their domain, but doesn’t build software as a product

[79].

For students targeting the wide variety of careers that involve programming

but aren’t software development, such as user experience design, product man-

agement, business analysis, data science, and entrepreneurship, programming is a

tool to be used for a specific need. However, typical introductory programming in-

struction focuses on the features of a programming language, not the applications

of code in a domain [2]. Many theories of programming instruction recommend

82

an early focus on a language’s semantics, often in the context of ”toy” problems,

reasoning that such content will prepare learners to have a deep understanding of

programs in any domain [86, 163, 140].

This approach doesn’t work for all learners. After trying formal and infor-

mal methods to learn programming, conversational programmers report a lack of

benefit and feelings of failure [157]. They found programming learning resources

didn’t align with their needs: instruction focused too much on syntax and logic,

and not enough on how to apply code to solve problems [157]. End-user program-

mers have similar concerns. Web designers disliked typical programming courses,

viewing them as focused on syntax rather than concepts [36].

In my work, I’ve found that code tracing [140] in particular can be a source of

cognitive and motivational challenge for novice programmers. Closely tracking

memory values requires high cognitive load, which can lead to a low expectation

of success on tracing tasks [32]. The high cognitive load prompts some learners to

avoid tracing and search for code’s goals and patterns instead [34]. To counter this

tendency, the programs novices are expected to trace often lack a meaningful pur-

pose or pattern, or are even designed against common practice to subvert learners’

expectations [88]. As a result, tracing problems are inauthentic and inapplicable,

and have low value for those who care about what code can achieve, not how it

works [32].

After learning programming in the typical manner that prioritizes program-

ming language semantics, novices are stuck in a ”Turing tarpit”, where ”everything

is possible, but nothing of interest is easy” [115]. These learners may understand how

loops, selection statements, and functions operate, but putting those elements to-

gether to understand or write programs similar to those of a professional is a long

way off. Conversational programmers and end-user programmers value the ap-

plication of programming in their domain, and currently undergo a difficult and

83

Figure 5.1: The development of a purpose-first programming module

demotivating slog through the tar-pit before they can see any such application.

Learning about programming with a clearer, easier, and more immediate connec-

tion to code’s purpose may be more motivating for this population, resulting in a

longer engagement with programming learning.

New technologies are needed to create programming learning activities where

novice programmers quickly and easily create or understand authentic and mean-

ingful code. In this chapter, I describe the development and evaluation of a tech-

nology-supported approach to programming learning that allows learners to en-

gage with information about code’s purpose.

5.1.1 Summary of contributions

5.1.1.1 I investigated the response of a variety of novice programmers to pur-

pose-oriented support

In a series of four focus groups and a survey, I found initial support for scaf-

folding that emphasized code’s purpose among novices who didn’t plan to become

software engineers. I found that conversational programmers in particular appre-

ciate extra support when learning to program, and value general understanding

over a focus on detail.

84

5.1.1.2 I outlined a novel learning approach that emphasizes code’s purpose

In order to cater to these needs, I introduce purpose-first programming, a brief,

authentic, and purpose-driven learning approach designed to motivate novice pro-

grammers who care more about code’s applications than its semantics. By focus-

ing learning on a small number of common patterns in a domain-specific context,

learners are supported in quickly creating code that reflects expert practice. Scaf-

folds (assistive mechanisms [156, 162, 68]) provide guidance as learners write, de-

bug, and explain code by emphasizing the purpose of code patterns and ways they

can be modified.

5.1.1.3 I designed a proof-of-concept curriculum, implementing the approach

To investigate the effectiveness of purpose-first programming for motivating

conversational and end-user programmers, I develop a proof-of-concept purpose-

first programming curriculum that teaches five patterns in the domain of web

scraping. This curriculum provides information, structures, and feedback that

highlights how code achieves goals in this domain.

5.1.1.4 I ran a lab study to evaluate novices’ motivation for and use of the ap-

proach

I evaluated the curriculum with nine novice programmers, including five con-

versational programmers and four learners who want to program in their jobs.

Purpose-first programming learning enabled novice conversational programmers

to complete scaffolded code writing, debugging, and explaining activities after

only a half hour of instruction. I found that learning with purpose-first program-

ming is motivating because it engenders a feeling of success and aligns with these

learners’ goals and identities.

85

5.2 Motivation for the approach

5.2.1 Conversational programmers and end-user programmers want to under-

stand the purpose of complex code, but also want to avoid detailed se-

mantics

Novice programmers who want to learn code to understand its applications,

such as conversational programmers and end-user programmers, have learning

motivations that are seemingly in conflict. They want to understand or write code

that can achieve real-world tasks, like data analysis or web design. Such code

is often quite complex. At the same time, these learners want to avoid a close

study of syntax and execution flow in favor of conceptual and application-focused

understanding [157, 37].

In addition, since conversational programmers plan to work with developers,

they value learning code that is authentic to the work of real programmers [28,

157]. For instance, conversational programmer undergraduates preferred to learn

a more challenging industry-level language (Java) than a language designed for

non-programmers (Processing[58]), perceiving Java as more useful, practical, and

marketable.

How can these learners understand or create complex and authentic code with-

out a deep dive into code tracing? Theories of programming instruction propose

that knowledge of code semantics can help novices understand the purpose of pro-

grams [163, 86], but these programming learners reject learning experiences that

focus on syntax and logic [32, 36, 157].

The Structure Behavior Function framework [35, 55] tells us that some knowl-

edge of code behavior (and understanding of ”how code works”) is necessary in

order to design and understand novel programs. To avoid syntax and semantics

while understanding meaningful and useful programs, these learners will need an

86

alternative method of conceptualizing code behavior.

5.2.2 Programming tools for non-developers often avoid industry- standard

code, so they don’t provide disciplinary authenticity

A wide variety of technologies have been developed to make programming

more accessible to non-programmers. Such systems often involve block-based or

other visual interfaces that make the process of programming easier by reducing

the potential for errors. Block-based languages like Scratch [96, 95] eliminate the

need to remember syntax since the jigsaw-like shapes for commands and functions

fit together in an intuitive way. Snap! [66] is another example of a block-based pro-

gramming language, with more features than Scratch, including first class func-

tions and support for multimedia. Helena [26], a block-based language for web

scraping tasks, has helped sociologists, engineers, and public policy researchers

obtain data from websites.

A community of practice perspective [85] can explain why these tools don’t

meet the needs of aspiring conversational programmers. Lave and Wenger de-

scribed how desire for learning is motivated by the alignment of learning activi-

ties with the tasks performed by people in the communities learners want to join

[85]. Sociologists value data collection, and so learning Helena is relevant to the

practices of sociologists. Conversational programmers, on the other hand, want

to understand tasks that software developers complete [28, 29, 157]. Weintrop

showed that even though Snap! allowed learners to use advanced programming

concepts like first class procedures, high school students doubted its authentic-

ity since text-based languages are standard in the software industry [158]. Use

of industry-standard languages and text-based programming may demonstrate to

conversational programmers and other novices that what they are learning is au-

thentic to their future careers.

87

5.2.3 Plans may be a more motivating way for conversational programmers to

think about code

Soloway and his students used schema theory to identify programming plans in

the 1980’s [138, 137, 133]. Plans are chunks of code that achieve particular goals,

like guarding against erroneous data or summing across a collection. There is

evidence that both novice and expert programmers think about code in terms of

plans [136]. Student errors can be explained in terms of misunderstanding plans

[135, 146] and errors in composing plans [144, 145]. Over time, error rates on

plans decrease with practice [143], while error rates on syntactic structures does

not [123], which suggests that plans better describe how students learn program-

ming than syntax structures.

According to Expectancy-Value theory, motivation for an activity is explained

by expectancy of success in the activity and subjective value for the activity [41].

Conversational programmers and end-user programmers found that existing in-

structional materials typically focus on lower-level details like syntax and execu-

tion flow [157, 36]. Closely tracking code’s execution can result in a high cognitive

load [34], resulting in a low expectancy of success for some learners [32]. When

thinking about code in ”chunks” [53] of programming plans, the difficulty of un-

derstanding code may be reduced, increasing the expectation of success.

Activities designed to help learners understand syntax and execution flow typ-

ically involve problems intentionally stripped of context, so learners can focus on

code semantics ”without distraction” [88]. For conversational programmers and

end-user programmers, such problems have low utility value [43] because the con-

nection to activities in the workplace is unclear [157]. By contrast, programming

plans associate a code pattern with a goal relevant to the user, making the purpose

of code evident. Domain-specific code plans have an even clearer connection be-

tween code and application, potentially resulting in a high value for plan-based

88

learning.

Students programming in terms of high-level, domain-specific code plans have

successfully solved programming problems that students programming in more

traditional languages have not. The Rainfall Problem has been challenging stu-

dents for over 30 years, with most studies finding that less than 20% of students

are able to solve it successfully [130]. Fisler found that she could reliably get most

of her students to successfully solve the Rainfall Problem by using a high-level

functional programming language [46]. Fisler explains that students were able to

succeed because they mapped the high-level functions to domain-specific plans

that were easily composed by the students into a successful solution [47].

5.2.4 Other systems have provided plan- or example-based support

The GPCeditor was a programming tool for students to support them in learn-

ing Pascal programming through the specification of goals and plans [64]. Stu-

dents learned plans which they then transferred into a more traditional Pascal

IDE. SODA extended the GPCeditor with support for program design and soft-

ware engineering practices [73]. The GPCeditor and SODA focused on traditional

introductory programming learning, rather than supporting programming learn-

ing in the context of a domain.

Emile provided adaptable scaffolding for building physics simulations through

HyperTalk programs [61]. Students in Emile constructed programs out of plans

with slots which allowed for specifying a plan for a particular purpose (e.g., to

generate accelerated motion for a given velocity and acceleration source for a given

object) through a supported process. Students still did not have to learn the lan-

guage syntax and semantics to be able to achieve their purpose (the construction

of physics simulations). Students in Emile did learn physics, which suggests that

a plan-based approach to learning programming can lead to learning within the

89

purpose domain.

There is a long history of providing purpose-oriented support in the form of

examples or cases. The minimal manual approach of Carroll and others [24] is built

around providing examples of the processes for common tasks. The examples are

indexed by task, like “how I delete text in my document?” or “how do I add a but-

ton to my screen?” Evaluations of minimal manuals show that they are successful

(in terms of user productivity and satisfaction), and are most successful when steps

have to be inferred by the user [13]. Minimal manuals have been used successfully

to help non-professional programmers succeed at programming tasks [6].

5.3 Formative study: Investigating the responses of novice pro-

grammers to purpose-oriented assistance

Providing additional purpose-oriented support during programming learning

appears reasonable in theory. However, will novice programmers, particularly

those who don’t plan to become professional programmers, see this approach as

appropriate for their needs? To understand the responses of learners to early pro-

totypes of the purpose-first programming approach, I performed a series of fo-

cus groups and a follow-up survey with a diverse set of students taking a data-

oriented programming course taught by the School of Information at the Univer-

sity of Michigan.

5.3.1 Focus group results

Across four focus groups, I talked to eleven students (eight female, three male)

about their goals with programming and what learning approaches they felt best

prepared them for their future. I provided prototypes of purpose-first program-

ming activities as probes [14] to gather feedback. The focus groups lasted 30 min-

90

utes, and participants received a $25 Amazon gift card. Transcripts of the focus

groups were analyzed to create ”personas” [31] representative of students’ goals

and preferences. I developed two personas: the conversational programmer and the

analyst.

5.3.1.1 Connie the conversational programmer

Connie is interested in a career in ”user experience design” (P8), ”project man-

agement” (P11), or ”digital strategy” (P9). She wants to be ”informed about cod-

ing” (P8) in order to ”understand what the coders are doing and what they can

and can’t do” (P9) and ”direct what the final product should look like” (P8). But,

she ”[does]n’t want to be the one actually coding” (P9). She wants to pass infor-

mation ”off to my coder” (P10) who will do most of the programming. She also

believes that that coding knowledge ”sets you apart” (P8) from other majors and

helps ”establish yourself as a very credible person” (P11) in the workplace.

As far as learning preferences, Connie is ”more interested in knowing that I can

understand what code is doing than writing it myself” (P9). She wishes there were

”more questions where you just look at code and choose the right answer, instead

of having to do it yourself all the time” (P10). She wants to learn in a way that helps

her understand ”overall what the process is like to accomplish certain things” (P9).

She appreciates problems that ”give you a basic structure to start with” (P11), like

mixed-up code problems (aka Parsons problems [114]). When additional help is

provided, like guiding comments in the code, Connie is ”not as overwhelmed”

(P8).

5.3.1.2 Alyssa the analyst

Alyssa wants a career like ”data analyst” (P1) or ”business analyst” (P7), where

she can ”use programming to solve problems that people are facing” (P6). She

91

(a) High scaffolding (fill-in)
(b) Some scaffolding (subgoals
provided)

(c) No scaffolding (code from
scratch)

Figure 5.2: Survey respondents were asked to rank and reflect on the usefulness of these
code writing activities with different levels of purpose-oriented scaffolding. The directions
for all activities were: ”Complete the code that achieves the goal”.

”[does]n’t want a job where I have to heavily do programming” (P1), preferring ”a

mixture of programming and not really programming” (P6).

When learning, Alyssa thinks that ”writing code, at least once you know all the

basics, is really helpful, because then you can recall from memory” (P7). She feels

that ”being able to break it down and see what each individual line of code does is

really helpful” (P2). She appreciates extra support ”prior to starting writing a code

just because I think it breaks it down much better and it helps me understand what

the code is actually doing” (P2). However, after getting some practice, ”writing

your own code might be more helpful” (P6).

Alyssa took an introductory programming course from the computer science

department, but in that course she felt she was ”coding the project just to code

the project” (P6) and ”didn’t understand how any of the coding [she] was learning

applied to real life situations” (P2).

5.3.2 Survey results

I performed a survey of students in the same programming course to under-

stand if findings from the focus groups generalized. Forty students responded

92

Table 5.1: Difference in attitudes about the highly scaffolded code writing problem (Figure
5.2a) between conversational programmers and non-conversational programmers. Atti-
tudes were drawn from focus group quotes. Survey respondents were asked to rate their
agreement on a 7-point Likert scale, Strongly Disagree - Strongly Agree.

Attitude p-value Conversational
programmers
who agree or
strongly agree

Non-
conversational
programmers
who agree or
strongly agree

This type of problem is less over-
whelming because if I had to do it
on my own I would have freaked out
a little bit trying to remember what
syntax to use, and what structure.

0.560 62.5% (10/16) 55.6% (10/18)

I feel like if code is always provided
in problems like this, I will just
end up forgetting to include things
when I’m actually writing my own
code.

0.036* 33.3% (5/15) 72.2% (13/18)

This type of question helps me un-
derstand how certain types of code
should be structured.

1.0 62.5% (10/16) 83.3% (15/18)

I think if it’s your first time looking
at a problem like this, something
with this structure would be more
useful. But if you’ve been looking at
it and working on it for a little bit,
then writing your own code would
be more helpful.

0.046* 50.0% (8/16) 94.4% (17/18)

I want to solve problems from
scratch without being given any
hint to what the final solution
should be.

0.103 18.8% (3/16) 38.9% (7/18)

I prefer doing practice like this prior
to writing a code because I think it
breaks it down and it helps me un-
derstand what the code is actually
doing.

0.837 68.8% (11/16) 83.3% (15/18)

93

(29% of total course enrollment). Participants were offered a 1 in 5 chance to win a

$10 Amazon gift card.

Using responses about participants’ future career goals and planned job re-

sponsibilities, I split respondents into conversational programmers and non- con-

versational programmers. Participants who planned a future career as a soft-

ware developer, analyst, or who mentioned programming as a key job responsi-

bility were not considered conversational programmers (n=19). Participants who

planned a future career as a manager, designer, or who described another position

(e.g. CEO) and did not list programming as a key responsibility were considered

conversational programmers (n=18). Thus, I am comparing the comments between

participants whom I classify as conversational programmers (like the Connie per-

sona) and those whom I classify as non-conversational programmers (including

analysts like the Alyssa persona and also computer science majors). Three respon-

dents did not complete the questions about future goals and were not included.

Participants were asked to rank five programming learning activities (read-

ing code, writing code, testing code, modifying code, and solving mixed-up code

problems) by their helpfulness in preparing them for their future. Conversational

programmers most often ranked code reading as the most helpful activity (8/16,

50%), while code writing was the activity non-conversational programmers most

preferred (9/17, 53%). Non-conversational programmers overwhelmingly found

mixed-up code problems (also known as Parsons problems [114]) to be the least

helpful (15/17 ranked them last), while conversational programmers were more

mixed, with less than half ranking them last (7/16).

Participants were asked to rank the usefulness of different types of code writ-

ing activities that provided different levels of support: writing code from scratch

(no scaffolding), writing code with guiding comments (some scaffolding), and fill-

ing in parts of nearly completed code (high scaffolding) (see Figure 5.2). Both

94

groups ranked writing code with guiding comments (some scaffolding, Figure

5.2(b)) as the most helpful (11/16 of conversational programmers, 14/18 of non-

conversational programmers). However, non-conversational programmers over-

whelmingly ranked filling in mostly completed code (high scaffolding, Figure 5.2

(c)) as the least helpful (16/18), while conversational programmers were more

mixed about their preferences (4/16 ranked high scaffolding as the most helpful,

6/16 ranked it as the least helpful).

This difference in preference about scaffolding was also evident in participants’

responses to Likert scale questions about their attitudes towards problems with

this high level of scaffolding (see Table 5.1). I found that agreement with certain at-

titudes expressed by focus group members was significantly different between the

two groups, according to a Mann-Whitney U test. While both groups agreed that

a code writing problem with high scaffolding was less overwhelming and helpful

preparation for writing code, non-conversational programmers were more likely

to be concerned about their ability to write code on their own without additional

supports.

5.3.3 Conclusions from the formative study

Conversational programmers and non-conversational programmers’ differing

goals inform the ways that they want to learn about code. Conversational pro-

grammers desire a basic and conceptual understanding of code, while non- con-

versational programmers want the ability to write code on their own. As a result,

these two groups differ in the learning activities they value, and the amount of

help they want while completing programming tasks. Conversational program-

mers prioritize code reading activities, and are welcoming of additional scaffold-

ing that connects to code’s purpose. Non-conversational programmers are more

skeptical about heavy support while learning, as they value being able to write

95

code on their own.

These findings suggest that a highly scaffolded learning approach that priori-

tizes code’s purpose may be strong match for the needs of conversational program-

mers. This approach could also potentially serve as a starting point for analysts

and programmers, if an opportunity for fading of scaffolding is provided.

5.4 Defining Purpose-first programming

To meet the needs of a wider variety of novice programmers, I propose purpose-

first programming, a new learning approach that emphasizes what code achieves

while avoiding details of syntax and semantics. The core units of knowledge in

purpose-first programming are programming plans [136, 134] drawn from the work

of programmers in a particular domain. Purpose-first scaffolds help learners learn

about and work with these plans so they can understand the purpose of authen-

tic code and write new programs quickly. A purpose-first programming learning

experience is driven by three design goals: it should be brief, it should prioritize

code’s purpose, and it should be realistic with respect to expert practice.

5.4.1 Identifying authentic, domain-specific programming plans

In prior plan identification work, plans were most often developed in the con-

text of problems typical to an introductory programming course (e.g. [145, 134]).

In purpose-first programming, plans are chosen to achieve domain-specific goals

authentic to the work of programmers. In order to identify these plans, the corpus

from which plans are drawn should reflect the workplace, not the classroom.

96

5.4.2 Expanding the definition of a programming plan to serve instructional

needs

A programming plan is a commonly used code pattern, associated with the

goal the code achieves [136, 134]. Programming plans are a powerful concept that

integrates schema theory into the fields of computing education and program com-

prehension. However, in the literature, the definition of a ”programming plan” is

varied and sometimes vague.

I propose the following more precise definition of a programming plan to sup-

port instruction, assessment, and code writing during purpose-first programming.

Figure 5.3: An example plan from the domain of web scraping. This plan achieves an
authentic goal in its domain, and consists of multiple subgoals and slots. The slots define
the space of relevant domain knowledge needed to work with this plan.

5.4.2.1 A plan is a frame with slots

The power of plans is that they can be re-used by programmers over and over

again. The choice of what to modify and what to keep the same is crucial to apply-

ing a plan successfully. I define a plan as a frame [105, 128] that contains parts that

can’t be modified, and parts that can. The areas of a plan that can be changed are

called “slots”. While prior plan editors allowed only numbers or strings to fill a

97

slot [64, 61], I will allow slots to contain not only literal values, but also other code.

This allows plans to be nested.

5.4.2.2 A plan has subgoals as well as a goal

Since plans often contain many lines of code, additional subgoals can likely fa-

cilitate plan tracing, understanding, and integration. Subgoals describe what a

small section of code achieves [99]. Research has shown that adding subgoals to

code leads to better learning (improved retention and transfer) in less time than

without the subgoal labels [99, 100]. Evidence suggests that subgoal labels sup-

port self-explanation behavior, in that the labels give students the language to use

when explaining the programs to themselves [99, 107, 98]. Subgoal labels are also

effective in helping students solve and learn from mixed-up code (aka Parsons)

problems [106].

In purpose-first programming, each subgoal uses variables that were defined

previously, and/or produces variables to be used in later subgoals. By tracing

the input and output to each subgoal, learners can trace purpose-first code at a

higher level of abstraction than evaluating each variable assignment and control

structure [140]. Subgoals also suggest the way that plans can be combined: code

from another plan can be added in a way that satisfies the subgoal label.

5.4.2.3 Slot contents are described with domain-specific concepts

Where a compiler sees only a string variable, humans understand that the vari-

able represents a URL, a DNA sequence, or an address. Domain-specific concepts

connect code to action in the real world. Similarly, domain knowledge is essential

for understanding a plan’s goal and how slots can be changed. In purpose-first

programming, the content of slots is described in domain-specific terms. As a re-

sult, the types of objects that can go into slots provide a list of prerequisite knowl-

98

edge for using a plan.

5.4.3 Providing ”glass-box” scaffolding to support learners as they work with

plans

Shifting the focus of instruction from syntax and semantics to programming

plans requires new interfaces for learning about code and completing program-

ming tasks. In purpose-first programming, the ways that learners interact with

code will be different than in standard IDEs. Instead of writing code by typing

in text, purpose-first programming learners will tailor and compose plans. Instead

of tracing changes in variables in memory, learners will trace with goals and sub-

goals.

Experts have the ability to “chunk” [53] code into meaningful plan groupings,

facilitating their reasoning about code [136, 120]. However, novice programmers

don’t recognize or use programming plans as readily as experts [136]. In “purpose-

first” programming tasks, learners will always work with authentic code patterns

used by practitioners, which are likely to be complex. Learners will require scaffolds

that support their ability to recognize plans, combine plans, and identify which

parts of plans should be changed. A scaffold is an assistive mechanism that helps

a learner complete a task they wouldn’t be able to do without added support [156,

162].

”Glass-box scaffolds”[68] are a model of support that can help purpose-first

programming learners understand and write code easily while still having aware-

ness of the full complexity of authentic code. A glass-box scaffold provides as-

sistance to help learners achieve tasks, while not obscuring more complex, lower-

level processes [68]. Learners can then focus on higher-level learning goals, while

viewing information that can help with more complex tasks, if desired. By con-

trast, a ”black-box” scaffold obscures details. Black-box scaffolds still facilitate

99

task completion, but block recognition of the full process needed for unassisted

problem-solving.

In purpose-first programming, code should be ”glass-boxed”. The text of a full

program should be viewable by learners, as it demonstrates the authenticity of the

learning activity and provides a potential on-ramp to future learning. At the same

time, purpose-first scaffolds will direct attention towards key plan components,

like slots, goals, and subgoals. This support will allow novices to complete realistic

programming tasks while keeping cognitive load low [148].

5.5 Designing the purpose-first programming proof-of-concept

curriculum

In order to evaluate the effectiveness of purpose-first programming, I devel-

oped a proof-of-concept curriculum for an audience of undergraduate novice pro-

grammers. This section describes the implementation of the proof-of-concept cur-

riculum.

5.5.1 Building a set of plans

5.5.1.1 Choosing a domain

Web scraping, where a programmer extracts data from websites, is a common

task for data scientists. During the formative study, I found that web scraping

tasks also have disciplinary authenticity for students interested in conversational

programming careers like user experience design and project management. These

learners felt that the coverage of HTML and other web topics was relevant to their

professional goals.

Web scraping requires the use of multiple feature-laden libraries (in my ex-

amples, I use the BeautifulSoup and requests Python libraries). Even basic

100

commands in these libraries involve complex mechanisms, including instantiation

of objects, iteration on lists, and method calls that return custom object types. At

the same time, web scraping programs tend to consist of a few similar strategies

that are slightly modified to match each page’s particular layout. In practice, a

small number of patterns are used over and over again, so a wide variety of web

scraping tasks can be completed with only a few plans. The fact that web scrap-

ing is semantically complex but “planfully” simple makes it ideal for use in the

proof-of-concept curriculum.

5.5.1.2 Identifying plans

I collected a corpus of BeautifulSoup web scraping files from a dataset of Git-

hub repositories collected in October 2019 [40]. The corpus included Python files

containing the BeautifulSoup constructor and at least one instance of the Beauti-

fulSoup method find() or find all(). After removing duplicate files and files

consisting of only unit tests, 100 files remained. I generated our initial set of plans

after an analysis of the first 50 of these files.

I sought feedback on the authenticity of the plans in interviews with two ex-

perts who have used the BeautifulSoup web scraping library in their work. Both

experts confirmed that all the plans were useful in web scraping, and that they

have used the plans in their work. They also felt that useful web scraping tasks

could be achieved using only the plans, although they described several tasks that

would require use of additional plans, such as web crawling and scraping image

files. The experts also provided suggestions for updates to deprecated libraries.

101

5.5.2 Creating activities

5.5.2.1 Choosing examples and tasks

Using only the plans I identified, I generated full programs that achieved an

interesting web scraping goal on a real website. These programs achieved goals

like getting all the cities from the location page of a pizza restaurant and getting the

name of the ”Pet of the Week” from a local humane society webpage. Two of these

full programs were used as examples in the instructional part of the curriculum,

and three were used in the activities in the latter part of the curriculum.

There were three types of activities: a writing task, where participants write a

program that achieves a provided goal; a debugging task, where participants iden-

tify an error in a program and fix it; and an explanation task, where participants

describe the purpose of an entire program in a sentence or two. The explana-

tion program used the same protocol as ”explain in plain English” problems [109],

where learners can only read code, but not run it.

5.5.2.2 Sequencing activities

In the first part of the curriculum, learners complete instructional content about

five new plans. This instruction is situated in examples. Participants learn and

practice each plan after seeing it used within a full example program. Next, learn-

ers complete a series of activities that involve combining plans in ways not seen

in the instructional content. The activities include a code writing, debugging, and

explanation problem. The sequence of activities and plan usage across the curricu-

lum is described in Figure 5.4.

102

Figure 5.4: Plan usage across the curriculum. Activities use novel plan combinations not
seen in instructional examples.

5.5.3 Selecting a platform

I developed the purpose-first programming proof-of-concept curriculum us-

ing Runestone, an open-source ebook platform with interactive feedback [45, 44].

Runestone is a popular platform for introductory programming learning that cur-

rently serves over 25,000 students a day. Instructors can create custom courses

on Runestone that incorporate a wide variety of interactive components, such as

runnable code and mixed-up code (Parsons [114]) problems.

5.5.4 Designing purpose-first support

5.5.4.1 Highlighting demarcates plans and slots

While existing highlighting features emphasize code’s syntactic structures, I use

highlighting to show code’s plan structures (see Figure 5.5). Perceptual grouping of

related symbols can improve performance in tasks like algebraic calculations [84].

This suggests that highlighting code that is part of the same plan and highlighting

slots in a way that associates them with their natural language description in a

subgoal may improve problem-solving.

103

Figure 5.5: Slot highlighting, plan goals, and subgoals assist learners as they debug this
code.

5.5.4.2 Practice activities support learners in tailoring plans

Typical programming learning activities include writing code and predicting

the result of code execution [155]. Purpose-first programming suggests new ac-

tivities: identifying changeable parts of plans (see Figure 5.6a) and filling in plan

slots to achieve a goal (See Figure 5.6b). These activities are quick to complete

and minimize the opportunity for errors while focusing learners’ understanding

on key areas of code.

5.5.4.3 Examples and plan instruction are linked

To further emphasize code’s purpose, all instruction in the proof-of-concept

curriculum is situated in examples. Across two examples of complete programs,

learners study all five plans. To make the connection between plans and their

context of use more clear, students click on each plan in the example program to

visit its instructional page and learn about the plan in detail (see Figure 5.7).

104

(a) Learners remember parts of the plan that
should be changed

(b) Learners apply their knowledge to complete
a plan

Figure 5.6: Practice activities contain subgoal label scaffolding, and focus only on knowl-
edge about plan slots.

5.5.4.4 Staged code writing supports learners in assembling and tailoring plans

In a traditional editor, learners type code character by character. In purpose-

first programming, learners make use of plan structures to assemble and tailor

plans.

Drawing inspiration from mixed-up code (aka Parsons) problems, where learn-

ers arrange lines of code into the correct order, I developed a code writing activity

in three parts (see Figure 5.8). First, learners pick from a bank of plan goals and

drag selected goals into the correct order. Next, learners repeat this task, but with

plan code instead of goals. Finally, learners fill in the slots in the code they have

assembled.

5.5.5 How this prototype meets the design goals

5.5.5.1 Purpose-first programming is brief

Our prototype curriculum offers a brief learning experience where students can

learn and apply the basics of web scraping in about an hour. This short timeline

is possible because no content is taught unless it helps learners understand and

modify one of a small number of plans. For example, the official BeautifulSoup

105

Figure 5.7: All plan instruction is situated in examples. Learners first view and run a com-
plete program example, then learn about how each plan contributes to the full program.

documentation begins by explaining that a soup object is a nested data structure

[1], but in our purpose-first programming curriculum it isn’t necessary to explain

what a soup object is. That level of detail isn’t necessary to assemble and tailor

plans.

Our proof-of-concept curriculum is also brief because relevant information is

available just-in-time, minimizing the search for information. For example, relevant

domain knowledge is covered just before it is needed to complete a plan. Links to

plan information are available when solving problems, so key examples are readily

accessible.

5.5.5.2 Purpose-first programming prioritizes purpose

Conversational programmers value ”high-level”, conceptual, and application-

oriented information about code [28, 29, 157]. This purpose-first programming

curriculum makes code’s purpose clear at three different levels.

At the level of entire programs, learners only see examples that achieve a mean-

ingful web scraping goal. Examples are not toy problems, but programs that col-

106

Figure 5.8: Writing code takes place in stages. Learners first assemble plans, and then fill
in plan slots.

lect data that could potentially be used by data scientists. Learners can see the

purpose of the programs they are learning from. The examples are also runnable,

so learners can be assured that programs truly work as intended.

At the level of individual plans, each plan in introduced in the context of a full

example program, showing its relevance to meaningful code. By grounding plan

instruction in these examples (see Figure 5.7, learners can see how that plan’s goal

contributes to the program’s goal, and understand the purpose the plan serves in

the example.

At the level of the code within plans, annotation with subgoals creates a natural

language layer on top of code that explicitly describes code’s purpose. With these

supports, connections between the code and what it achieves may become more

clear. Code is available to view, but it can be ignored in favor of these descriptions

of code’s purpose.

5.5.5.3 Purpose-first programming is realistic to the work of programmers

Three features communicated the disciplinary authenticity [131] of the content

in the proof-of-concept curriculum.

First, learners were informed at the beginning of the curriculum that the cur-

107

ricular content was designed based on an analysis of Github files and expert inter-

views.

Second, activities demonstrated how to get information from real and recogniz-

able websites. Examples and activities incorporated code that scraped the website

of a well-known local pizza restaurant, RateMyProfessors.com, the website of the

local humane society, and faculty homepages. This authenticity was reinforced

with images and GIFs that showed exactly how to obtain necessary information

from these websites’ HTML (although participants never had to do this process

themselves).

Third, the code of complete programs was often available and often runnable.

As a part of the situating examples and activities, participants could view the full

program code. The code was not hidden, even though participants could focus on

goal and subgoal labels and ignore code if they wished. Participants could compile

and run the code to see that the results were truly returned from the websites.

5.6 Method

To evaluate the purpose-first programming proof-of-concept curriculum, I per-

formed an lab study with novice programmers (see Figure 5.9 for an overview of

the study design).

5.6.1 Study Design

First, participants completed instructional content, where they learned five new

plans. A researcher guided the participant through the instructional content, read-

ing instructional text aloud and answering questions about the exercises as re-

quested. Next, participants completed code writing, debugging, and explanation

activities that combined the plans in ways that were not seen in the instructional

108

content. Participants were asked to perform a concurrent thinkaloud while com-

pleting these tasks. Finally, participants completed a semi-structured interview to

understand their motivation for learning with purpose-first methods.

The study was conducted over video call, which was recorded and transcribed.

Each session lasted 90 minutes in total. Each participant received a $50 Amazon

gift card. The study took place in the week before the fall semester began.

5.6.2 Recruitment and participants

Figure 5.9: Overview of the study design

5.6.2.1 Recruitment criteria

I recruited undergraduates enrolled in a data-oriented programming course

(the same course studied in the formative study) at the University of Michigan.

Since the study took place before the start of the semester, participants had not yet

seen any of the content from the course.

After sending an interest survey to students registered in the course, I recruited

participants with characteristics that suggested they would be motivated by pur-

109

pose-first programming and didn’t already know the content of the curriculum.

I recruited participants who (a) had no prior experience with the BeautifulSoup

web scraping library, (b) were interested in web scraping, (c) had not taken ad-

vanced programming courses in the computer science major, (d) were interested

in non-software engineering careers, and (e) responded below average in either

self-efficacy for code tracing activities or value for code tracing activities. Thirty-

one students completed the interest survey, sixteen were recruited, and ten partic-

ipated in the study (one pilot and nine full participants).

5.6.2.2 Participants and their goals

Nine students participated in the study. All participants were female. Six par-

ticipants were majoring in Information in the User Experience track, two were ma-

joring in Business, and one was majoring in Information in the Information Anal-

ysis path. Eight participants had taken one prior programming course in college

(either an introductory data-oriented Python course in the information major (6),

an introductory C++ course in the Computer Science major (1), or an introductory

MATLAB and C++ course for engineers (1)). One participant had taken both the

data-oriented Python course and the C++ course in the Computer Science major.

Although participants had similar levels of prior coursework, they had a va-

riety of goals. Five participants indicated that they didn’t want to spend much

time programming in their careers, which included user experience designer, prod-

uct manager, and/or product designer. These five participants can be categorized

as ”conversational programmers” [28, 29]. Participants were recruited based on

survey responses that indicated they were targeting non-software developer po-

sitions, however, during the interview portion of the study four participants ex-

pressed a desire to spend significant time programming in their career. Two par-

ticipants were interested in careers often associated with conversational program-

110

mers — product management and UX design — but indicated that they wanted

to spend significant time doing front-end programming. Another participant ex-

pressed a desire to become a data analyst, and another a software developer.

5.7 Evaluation of learners’ problem-solving

After completing the instructional content (average time 31 minutes), learners

attempted scaffolded code writing, debugging, and explanation activities while

performing a concurrent thinkaloud. These activities involved different plan com-

binations than learners had seen in content up to that point (see Figure 5.4). Par-

ticipants were allowed to reference plan instructional content while solving these

problems, and received some feedback after each attempt. If a participant gave up

on a problem or was floundering, the researcher provided a hint.

To understand if novice programmers are able to write, debug, and explain web

scraping programs using the scaffolds provided by the curriculum, I quantified

markers of their success, including rate of completion and assistance used. To

understand how novice programmers were able to write, debug, and explain these

programs, I analyzed participants’ application of plan knowledge and use of the

scaffolding provided.

5.7.1 Learners were able to complete scaffolded writing, debugging, and code

explanation tasks

Participants were largely able to apply the plan knowledge they learned in the

instructional content to complete the various scaffolded programming activities

(see Table 5.2). The majority were able to complete the tasks without intervention

by the researcher, although problem-solving often took multiple attempts.

Success varied by activity. Participants completed plan ordering tasks quickly

111

Table 5.2: Participants’ success and time to completion on scaffolded activities (n=9).

Activity Succeeded
without
researcher
hint

Mean time to
completion
(min)

Frequency
distribution
of number of
attempts

Writing 1 (order plan goals) 100% 1:31 (sd=0:40)

Writing 2 (order plan code) 100% 2:00 (sd=1:09)

Writing 3 (fill plan slots) 67% 7:58 (sd=2:13)

Debugging 89% 2:19 (sd=1:36)

Explanation 56 % 6:07 (sd=2:49)

and without researcher assistance, even though several participants needed a sec-

ond attempt to solve these problems. Filling in plan slots and explaining a full

program were the most challenging for participants, and also required the most

time. The code explanation problem was the most challenging of all, possibly be-

cause it involved the most distant transfer. In the explanation task, participants

summarized the functionality of a program consisting of five plans, while the other

activities and instructional examples had contained three plans (see Figure 5.4).

This problem involves farther transfer than the other activities due to its structural

differences.

5.7.2 Participants used purpose-first scaffolds to apply plan knowledge and

complete tasks

Were the purpose-first scaffolds a reason for participants’ success in the activ-

ities? I observed that participants did make use of key features of purpose-first

112

programming as they problem-solved, demonstrating their ability to apply plan

knowledge. In this section, I describe how participants used goal and subgoal

information and plan reference material to complete the activities.

5.7.2.1 Participants used goal and subgoal labels to complete tasks, some tasks

more than others

One type of purpose-first scaffolding in the curriculum was the inclusion of

purpose-oriented goal and subgoal labels to facilitate problem-solving with code

(see Figures 5.5,5.6,5.7,5.8). To understand whether participants referenced these

scaffolds during completion of the writing, debugging, and explanation activities,

I counted mentions of goals and subgoals during participants’ thinkalouds.

Coding process Two coders coded two participants’ transcripts (22% of total

data1) for goal and subgoal mentions, and reached 92% agreement2. One coder

then completed identification of goal and subgoal mentions for the remaining par-

ticipants.

Results Participants often mentioned goals and subgoals while solving all prob-

lem types (see Table 5.3). Mentions were more frequent during some activities than

others. Mentions of goals and subgoals were most common when participants or-

dered plan goals, ordered plan code, and explained code.

On the Writing 1 (order plan goals) activity, the average number of mentions

of goals and subgoals was highest. One potential reason is that plan goals were

the main feature of this activity (see Figure 5.8), and plan code and subgoals were

1Within best practice of 10%-25% [161]
2I use simple agreement as the metric to measure reliability. Mentions of subgoals are relatively

less common among the unstructured thinkaloud narrative, and so reliability measures like Co-
hen’s kappa and Krippendorf’s alpha would be inflated by the large amount of agreement on units
not labeled as subgoal labels. Simple agreement is a more conservative measure of agreement for
inter-rater reliability in this case [82]

113

not present. The relatively greater mentions can be explained by the fact that par-

ticipants had little else to talk about during their thinkalouds on this problem. In

all other activities, however, plan code and associated subgoals were visible dur-

ing problem-solving. Despite the similar amount of goal and subgoal information,

mentions of subgoals varied across the final four problems. When filling plan slots

in Writing 3, participants had a relatively low number of goal and subgoal men-

tions, even though this activity had the longest completion time on average. Par-

ticipants were also less likely to mention goals and subgoals in the debugging ac-

tivity. By contrast, when participants ordered plan code in Writing 2 and explained

the purpose of a program, goal and subgoal mentions were more frequent.

These differences can be explained by the different types of plan knowledge

required to complete each activity. When the focus of the activity was on modify-

ing plan slots, as in Writing 3 (fill plan slots) and Debugging, participants did not

mention goals and subgoals as often. By contrast, when the focus of the activity

was choosing relevant plans, as in Writing 2 (order plan code), or understanding how

a plan contributes to an entire program, as in the Explanation activity, participants

were more likely to use subgoals in their reasoning. It appears that participants

saw subgoal knowledge as more useful when understanding how different plans

work together to achieve a larger goal, but less useful when they were focusing on

how to fill plan slots to complete code or find errors.

5.7.2.2 Some participants used subgoals to reason about code, while others fo-

cused on code’s identifiers and control flow

On the same activities, participants varied widely in their mentions of goals

and subgoals (see the distributions in Table 5.3). Individual verbosity is certainly

a factor [27]. However, I identified another difference at play: on problems where

both code and subgoals were available, some participants focused more on sub-

114

Table 5.3: Participants’ mentions of goals and subgoals during their thinkaloud on each
activity.

Activity Mean number
of mentions

Frequency distribution
of number of mentions

Writing 1 (order plan goals) 6.0 (sd=1.2)

Writing 2 (order plan code) 4.8 (sd=3.5)

Writing 3 (fill plan slots) 1.6 (sd=1.4)

Debugging 1.3 (sd=1.7)

Explanation 4.0 (sd=2.9)

goals during their thinkaloud, while others focused more on code.

Even at the same stage of problem-solving, some participants mentioned sub-

goals as they described their process of understanding or choosing a plan, while

others mentioned variables, functions, loop structures, and other features of code

(see Table 5.4). For example, different approaches were employed while selecting

and ordering plans to build a full program in Writing 2. In her thinkaloud, P2

describes the plans she is choosing between in terms of each plan’s first subgoal:

”Choose between these three. Get first tag of certain type from soup, get all tags of a

certain type, get first tag of a certain type” (mentions of subgoals are bolded). P2

also describes her choice in the language of the subgoal label, saying ”I think it’s this

one, we want all tags.” By contrast, P5 doesn’t mention subgoals at all during her

thinkaloud on this problem. She begins to evaluate this part of the task by reading

part of the code, saying ”now I do tags of soup dot find” (mentions of code are under-

lined). P5 makes her choice between those same plans based on the recognition of

functions from earlier examples. She says, ”the code is the same except for that this

second one has find all in it as well and I don’t know if we need that.”

115

Subgoal labels were a part of problem-solving for many participants, providing

a vocabulary for reasoning about code using natural language. However, subgoals

were not the only aspect of the task that learners could use to make sense of code.

Some participants followed execution flow to understand programs, or focused on

code features as ”beacons” to identify and understand plans [50, 121].

5.7.2.3 Participants were able to identify and use relevant plan reference pages

for help

When filling in plan slots in the final stage of the writing activity (see Fig 5.8),

participants frequently returned to plan information pages for help. Participants

moved back and forth between code editing, reading of instructions, and informa-

tion about plans as they completed their web scraping program (see Figure 5.10 for

a trace of all participants’ actions while solving this problem). Referencing plan in-

structional content, such as directions about how to use each plan and examples,

allowed participants to fix bugs in their code. Participants made an average of 4.0

visits to plan instructional pages (sd = 2.6) during this activity. The number of vis-

its to plan pages varied widely between participants, from as few as one visit to

as many as eight. As a group, conversational programmers visited about twice as

many plan pages as those who planned to become programmers (see Table 5.5).

Participants demonstrated that they could identify and make use of relevant

plan information for their problem-solving. Participants typically referenced the

plan page most relevant to their current error or code authoring activity. Seventy-

eight percent of all visits to a plan reference page were for a plan were the par-

ticipant’s code contained an error or was incomplete at the time of the page visit.

Note that this definition of ”most relevant” penalizes visits to plan pages where

participants are ”double-checking” their work, and therefore serves as a conser-

vative estimate of relevance. The ability to identify relevant plan pages and then

116

Table 5.4: Examples of different participants focusing on subgoals or on code at the same
step in an activity. Mentions of subgoals are bolded, and mentions of code are underlined.
All quotes are from conversational programmers.

Focus on subgoals Focus on code

Writing 2 (or-
der plan code),
choosing be-
tween Plan 3,
Plan 4, and a
distractor plan

Okay. Um... First we want to
start with the getting tags from
the soup. Choose between these
three. Get first tag of certain
type from soup, get all tags of
a certain type, get first tag of
a certain type. I think it’s this
one, we want all tags. Okay.
(P2)

Okay, I don’t, I think this is
gonna be later and then now I do
tags of soup dot find. Find ver-
sus find all I know. We learned
that. I feel like... I’m not sure
which one. So I’m just gonna do
that one because I don’t know if
the code that’s, because the code
is the same except for that this
second one has find all in it as
well and I don’t know if we need
that so I’m just not going to do
that for now. (P5)

Explanation,
understanding
Plan 4

And then tags of a certain
type from the soup. So this
is the exact place it wants to
get it from [hovers over plan
slot with her mouse] , which
would be here [mouses over
the corresponding part of the
HTML]. So it’s basically saying
that it’s all this, the link and then
the title, so what it actually leads
you to. And then collect info
[unclear if she means subgoal
label or code]. This is because
it’s getting it from a certain
type, so it has to go into some-
thing else and then they want
this specific URL. I’m guessing
that’s what they need for that
type. (P6)

Oh, okay. Okay. So I guess
it’s gathering all of those links
in the get(‘href’) and it’s putting
it into this dictionary. I think
that’s a dictionary. Don’t re-
member Python super well. And
then from the multiple web-
pages... I don’t know what the
collect... Oh, oh, just kidding.
So then it’s just going through
the SI website and adding those
URLs we got and put into the
collect info dictionary, I think.
And then it’s reading them in the
soup, I think. (P1)

apply knowledge to edit code correctly shows that participants are able to work

effectively with the plan groupings prescribed by the curriculum.

117

Figure 5.10: Traces of participants’ activities when solving code Writing part 3 (fill plan
slots)

Table 5.5: Participants’ visits to plan reference pages in Writing Activity 3. ”Most relevant”
plans are plans where the participant’s code contained an error or was incomplete at the
time of the page visit.

Average
of most
relevant
plans
visited

Average
of less
relevant
plans
visited

Average
total #
of plans
visited

All participants (n=9) 3.1 0.9 4.0
Conversational programmers (n=5) 3.8 1.2 5.0
Non-conversational programmers (n=4) 2.3 0.5 2.8

5.7.2.4 During code writing, participants could identify information about how

to fill plan slots

Participants visited relevant plan information pages while tailoring plans, but

how exactly did they make use of plan information? I analyzed two participant’s

thinkalouds during the Writing 3 (fill plan slots) activity to investigate the infor-

mation that learners searched for.

P9, a Business major interested in program management or user experience de-

sign, visited plan pages seven times, and was able to complete the Writing 3 activ-

ity without researcher assistance. Examination of her actions and her thinkaloud

show that she was able to glean information about how to fill plan slots from the

instructional content, and describe the reasoning for filling plan slots in her own

118

words (see Figure 5.11).

P9 used plan reference pages to answer two main questions: What goes in a

slot? and How is it formatted? P9 spoke in short definitions or productions to de-

scribe what content should fill slots, e.g. ”that’s the part of the URL that doesn’t

really change”, and ”this would be text because I’m trying to find a comment”. P9

corrected an error in her code by applying one of these productions: she deter-

mined that because she is working with multiple tags, she should fill the last slot

with collect info rather than info. Interestingly, P9 never mentioned syntac-

tic terms like ”string”, ”parameter, ”argument”, or ”function” at any point in this

thinkaloud. Instead, her talk was focused on aspects of web scraping, like ”URL”,

”comment”, ”link”, and ”tags”.

Understanding details of formatting was also important for P9 to complete the

code. Although she filled in all slots with the correct information, in one case

she had made a formatting error (omitting an underscore). After identifying the

location of the error because of interpreter feedback, she visited the most relevant

plan page and was able to correct her mistake.

5.7.2.5 Failure to find relevant information occurred after shallow understand-

ing of or when examples were too dissimilar from an attempt

P5, an Information major interested in user experience design, was less success-

ful in her search for relevant information. She was able to fill many slots correctly,

using propositional statements and definitions as P9 did. However, she could not

determine how to fix an error in one particular slot. After expressing frustration

that she was unsure how to continue, the researcher provided a hint and she was

able to fix the error.

P5 is the only participant that referenced a plan page for a plan that was not a

part of the code in the activity. The circumstances around her multiple visits to this

119

plan page provide two reasons why novices may struggle to identify relevant plan

knowledge. First, they might perform a shallow matching of subgoals to goals,

and second, their current attempt may have too much structural dissimilarity with

the correct plan structure.

As P5 attempted to fill in a plan slot she was unsure about (”I honestly forget

what I’m supposed to put here”), she tried to find a useful example by reasoning from

plan subgoals and goals. She mentioned in her thinkaloud that she believed the

subgoals in the code would direct her to a relevant plan page, saying ”There’s these

comments left, to direct me to those [plan pages], that makes sense.” She read the subgoal

closest to the slot that she was trying to fill (”get info from tag”), found a plan goal

that used similar wording (”get info from a single tag”), and visited the plan page

with that goal to look for relevant information. While in this case the subgoal and

plan goal were similar, that plan was not the most relevant to her current task.

However, in the curriculum, plans had some redundancy—sometimes the same

lines of code appeared in multiple plans. P5 was able to find an example that was

similar enough to the plan she was working on completing, and she was able to

complete the slot successfully.

P5 visited this less relevant plan page again for a different reason. P5 had filled

a plan slot with an incorrect value and was looking for relevant plan information

to correct her error. Specifically, P5 had typed the tag description twice (’div’,

class =’Comments StyledComments-dzzyvm-0 dvnRbr’, ’div’,

class =’Comments StyledComments-dzzyvm-0 dvnRbr’), instead of only

once as she was supposed to. P5’s thinkaloud (see Figure 5.12) shows her repeated,

unsuccessful search for an example with two tag descriptions rather than only one.

P5 searched across two different plan pages as she looked for a relevant exam-

ple. As she looked at the most relevant plan information page, P5 said, ”I want to

make sure that because there’s two, a comma is what’s needed to separate those. But I’m not

120

seeing an example of that so don’t know how that works.” After not finding anything on

the most relevant page, she searched the less relevant plan page, with the same re-

sult (”Is there not an example of how to do it with two?”). P5’s attempt to fill a plan slot

was so structurally dissimilar to the plan examples she viewed that she believed

none of the plan information she viewed was relevant.

Figure 5.11: Selected quotes from P9’s thinkaloud mapped onto the actions she took while
solving Writing Activity 3 (fill plan slots).

5.7.3 Discussion

With the support provided by the purpose-first programming curriculum, nov-

ice programmers with a variety of future goals progressed from no prior experi-

ence with the BeautifulSoup library to being able to complete scaffolded coding

activities after about half an hour of instruction. This timeline is greatly acceler-

ated over the typical pattern of instruction and coding activities for BeautifulSoup

content in the data programming course, where instruction spans approximately

five hours of lecture and discussion section time, and assigned coding activities

are expected to require at least 30 minutes each [personal communication with in-

121

Figure 5.12: Selected quotes from P5’s thinkaloud mapped onto the actions she took while
solving Writing Activity 3 (fill plan slots).

structor, November 2020]. The proof-of-concept curriculum achieved the design

goal of being brief.

Through analysis of the thinkalouds and the actions participants took while

solving problems, it’s clear that purpose-first scaffolds assisted learners as they

built, edited, and understood programs. Participants utilized goal and subgoal

labels, particularly as they made choices between plans and assembled or under-

stood whole programs. While editing a program, (most) participants were able

to identify which plan was most relevant to their current problem-solving. These

findings provide encouraging initial results that novice programmers can make

effective use of purpose-first support in a purpose-first programming curriculum.

Participants did differ in their use of the scaffolding. Some participants were

more likely to reason about programs using subgoals, while others reasoned us-

ing code. As a result of the ”glass-boxed” approach of purpose-first program-

ming, participants have the flexibility to focus on either the code (as in a typical

programming activity) or the purpose-oriented subgoals (unique to purpose-first

122

programming). This feature suggests that purpose-first programming can accom-

modate both learners who do not yet feel comfortable reasoning about code, as

well as those who will later transition to deeper learning about code.

5.8 Evaluation of learners’ motivation

Does purpose-first programming motivate novices who aren’t well-served by

existing instructional approaches? If so, how exactly does this curricular approach

contribute to a feeling of motivation for future learning? To answer these ques-

tions I interviewed participants after they completed the purpose-first program-

ming curriculum, focusing on participants’ feelings of motivation, their sense of

success, their value for the tasks they had completed, and their future goals and

self-beliefs.

5.8.1 Analysis approach

Interviews were screen- and audio-recorded and transcribed. I performed de-

ductive reflective thematic analysis [16] on the interview transcripts to conceptual-

ize themes and situate them within the Eccles Expectancy-Value Model of Achieve-

ment Choice [42]. This analysis was deductive because I analyzed the data with a

framework in mind. This analysis was reflective because I took an active role in

developing a coding scheme, with the understanding that I interpret data through

my own lens of prior experience and understanding [16].

I used values coding during the coding stage of thematic analysis to highlight

the ways participants described their identity and motivations [117, 126]. Values

coding focuses on the belief system of the participants by identifying values (the

importance of people, things or ideas), attitudes (the way participants think and

feel about people, things, or ideas), and beliefs (rules and interpretations) in their

123

talk. After I conceptualized themes using the thematic analysis process outlined by

Braun and Clarke [17], I mapped those themes onto the Eccles Expectancy Value

Model of Activity Choice [42] in order to understand the process of motivation for

these novices.

5.8.2 Participants were motivated to learn with purpose-first programming in

the future

When asked if they would want to continue learning with plans in the future,

all nine participants said that they would. P1, an aspiring product manager, said,

”I could see myself really liking this curriculum for other topics.” ”If you had any other

thing besides web scraping I’d gladly sign up,” said P9, a student interested in user

interface design and management. P7, who is interested in becoming a front-end

developer, said, ”If I could have one of these to do every week, and then in two years I

would be so much more well-versed in Python, I would absolutely do it.” Both conver-

sational programmers and aspiring professional programmers were motivated to

learn with plans in the future.

5.8.3 Learners perceived the purpose-first programming curriculum as having

low cognitive load

Participants consistently described learning with plans as ”easy”, ”clear”, and

”helpful”. In comparison to other instruction, participants often described the cur-

riculum as providing more assistance to help them learn and complete tasks.

”Previously it was never building up to writing the code on my own. It was

either really, really easy questions, or really, really hard questions, and there

was no transition that really made it stick in my brain.” - P1

According to participants, purpose-first programming decreases cognitive load

124

in two ways: limiting the amount of information learners need to focus on, and

assisting in the application of information.

5.8.3.1 Plans allow learners to focus on less

Participants described plan-based activities as limiting attention to smaller and

more manageable parts of code. Learners frequently used language like ”breaks

down” and ”breaks up” when describing purpose-first programming. P3, a stu-

dent interested in data analysis, said that the curriculum ”breaks up a bigger goal

into smaller goals, that are more easy to understand, instead of just wrapping your head

around the whole thing at once.” P7, an aspiring front-end developer, agreed, saying

that when learning with the curriculum she could ”Just think about this stuff, and

then think about this stuff.” For her, plans involved ”One at a time instead of looking at

it all.”

When creating code, participants felt that choices were constrained to a man-

ageable number. P5, a student interested in UX design, described this phenomenon

by saying, ”I think its easy just because it’s one or the other. Is it just one tag, multiple

tags, is it one site, is it multiple sites, is it text, is it a link kind of thing.” P8, a fu-

ture designer, concurred, describing how limited choices in the curriculum made

a seemingly complex topic straightforward:

”The concept of web scraping, at first is kind of intimidating, because it’s like,

how do you get all this information? But the way that the plans are written

out, do you have one URL or do you have two? Are you trying to get links or

are you trying to get text? I feel like the way it was explained was very clear.”

5.8.3.2 Plans show how to apply knowledge

Participants recognized plans’ connection between code and its application. P8

described plans in terms of their goals, calling them a ”very clear group, like, this is

125

one that prints your file information. This is what sets up the URL.” Participants felt

that this association made problem-solving simpler. ”Plans make it easier to choose

what method you should be using for each type of situation,” P2 explained. P4 defined

plans as ”sort of like a formula in a sense, like you always know when you’re trying to do

this particular thing. Follow this, use this code snippet.” For these learners, plans made

it clear what to do when they had a particular goal in mind.

Understanding how to decompose tasks was a challenge participants described

in their typical programming learning. P6 recounted that in her previous program-

ming course she struggled with ”having a very general destination and not knowing

how to get there. So I thought that [the curriculum] was really helpful.” Participants fre-

quently described plans as ”steps”, one of a series of actions towards a goal. These

steps assisted with code creation and understanding. P7 described a contrast with

other programming activities: ”Usually I’m just used to being like, ’Okay, here’s point

A and B, and I want to get here. How do I get here?’ Instead of A, B, then we get to C, then

we get to D, and that’s the final thing.” In the purpose-first programming curriculum,

the difficult process of identifying sub-goals was removed, resulting in an easier

problem-solving experience.

5.8.3.3 Self-reported cognitive load ranged from moderately low to moderately

high

Participants rated their cognitive load after each writing, debugging, and ex-

planation tasks in the curriculum, using the scale proposed by Paas [111]. Writing

3 (fill plan slots) and Explanation had higher cognitive load ratings than the other

tasks (see Table 5.6). These tasks also had longer average time to completion and

lower success rates without assistance (see Table 5.2).

Participants most often described their mental effort in the middle values of the

scale (4-7). For the more challenging Writing 3 and Explanation activities, partic-

126

Table 5.6: Self-reported cognitive load on scaffolded activities (n=9). Cognitive load is
measured on a 9-point scale (Very very low mental effort (1) - Very very high mental effort
(9) [111]).

Activity Mean cognitive
load

Frequency distribution of
cognitive load

Writing 1 (order plan goals) 4.3

Writing 2 (order plan code) 4.8

Writing 3 (fill plan slots) 6.7

Debugging 4.4

Explanation 6.8

ipants most often described their mental effort as ”Rather high mental effort” or

”High mental effort”. For the less challenging Writing 1, Writing 2, and Debugging

activities, participants most often chose scale values of ”Rather low mental effort”,

”Neither low nor high mental effort”, and ”Rather high mental effort”.

5.8.3.4 Theme summary

Participants described the activities as being easier and requiring less effort

than standard programming activities. Cognitive load ratings show that partici-

pants rated activities as having moderate cognitive load. Participants described

the lower cognitive load of purpose-first programming as a result of needing to

focus on less information and having clarity about how to apply the knowledge

they’d learned.

127

5.8.4 Participants felt success and enjoyment, which came from understanding

and completing problems

When asked if they felt successful and if they enjoyed the learning experience,

participants largely agreed. Success and enjoyment were interrelated: being able

to understand and complete problems led to both success and enjoyment.

5.8.4.1 Participants largely felt successful, despite struggles and resource use

Participants often described a feeling of success after completing activities in

the curriculum, even though they didn’t necessarily expect it. ”I honestly feel like

I did better than I expected to do,” said P7, speaking generally about the experience.

When asked if she felt successful at web scraping, P8 replied, ”Yeah, which, like I

said, I wasn’t really expecting, so that was good.”

These learners felt successful, even though they often had to use resources and

hints. All but one participant described themselves as successful on the code writ-

ing problem, even though all participants used plan reference page resources, and

33% received a hint from the researcher. ”Even though I had to look back at previous

examples I still figured it out in the end, so I feel good,” said P9. When describing her

feeling of success on the code writing problem, P1 said, ”I did mess up the tags text

with the info section. Because I didn’t realize that I had the info one. But I think at the end

it worked.” P1 recalled struggling, but still felt successful overall.

5.8.4.2 Feeling that they understood and completed activities was associated

with participants’ success

These learners’ talk about success was often paired with a statement about ac-

curately completing problems in the curriculum or having a sense of understand-

ing the content. For instance, when P7 talked about feeling successful after com-

pleting the curriculum, she said, ”I feel like I was able to comprehend and understand

128

the questions and complete them.”

Participants related their perception of low cognitive load to their ability to

understand and complete problems. Reflecting on the entire curriculum, P8 said,

”it walked me through so clearly that I was able to complete the tasks very easily and

feel like I actually did it successfully.” Completion with low effort led to a feeling of

success.

P5, a conversational programmer, described her confidence building through-

out the curriculum.

I was almost a little bit nervous, am I going to get it kind of thing, but then

I think I was able to apply the knowledge really well, it went together. So it

was, and I think it’s almost like my confidence, because I have never done this

before, but my confidence of my capability to do it went up so I think near the

end when I was debugging it I was like oh, I understand what needs to be done

for this code to run. Felt a lot better than in the beginning when I was like am

I even going to understand this at all?

P5 was concerned that she was going to be unsuccessful, a worrying thought.

However, having success and a sense of comprehension allowed her to relax and

feel good about her experience.

5.8.4.3 Purpose-first programming was enjoyable, especially when participants

were successful

Most participants said that they enjoyed completing the curriculum. ”I think it

was really interesting and fun,” said P1. Interest in coding moderated enjoyment for

some participants. For instance, P8 said, ”I enjoyed it, considering I’m not a computer

science major or anything and I don’t really like this type of stuff.”

Success often influenced enjoyment. ”When I was frustrated I didn’t [enjoy it]. But

when I was getting things right like in the debugging problem I was like yeah, I really like

129

this,” said P5, who struggled with several activities. P2 was the only participant

who admitted that she didn’t really enjoy completing the curriculum, but success

on problems was a bright spot. She said, ”I don’t really like coding, I don’t really like

it but then when I got them right, it was nice.”

5.8.4.4 Theme summary

Participants typically described feeling successful after completing the curricu-

lum, and even enjoying the experience as a result. Even though the participants

were completing highly scaffolded activities that provided a great deal of assis-

tance, participants felt successful because they had a sense of understanding the

content and they knew they had solved problems correctly.

5.8.5 Participants felt that purpose-first programming was for beginners and

those who need extra help

When asked who would learn best with purpose-first programming, partici-

pants described students who were new to programming and students who could

not understand code right away. Most participants put themselves in one or both

of these categories.

5.8.5.1 Many participants, particularly conversational programmers, had low

self-efficacy for programming

Participants often characterized themselves as learners who struggled to un-

derstand programming. For instance, P5, a conversational programmer, felt that

she was often behind others in class. She said about herself, ”I’m the one who doesn’t

get it or I’m in the group of people that’s going slower.” This feeling of self-efficacy was

sometimes related to career choice. P7, a future UX designer who planned to pro-

gram in her career, said she decided to not become a software engineer because ”I

130

don’t feel like I have the intellect to become a full-time engineer, and I feel like I don’t have

enough creative solutions.”

Participants were careful to distinguish themselves from the ”smart” ”hard

coders” who would become ”backend” engineers. They described certain other

computing students as people whose ”mind just sees things like that [plan group-

ings]” (P8) or ”who just breeze through stuff” (P2). By contrast, participants often felt

that they needed more opportunities for practice and assistance.

5.8.5.2 Participants felt that plans were best for learners who struggle

Participants characterized purpose-first programming as a fit for people who

didn’t grasp concepts quickly and needed assistance to succeed. P4 described the

curriculum as ”helpful for people who need extra help and practice. Or who may have a

harder time understanding concepts.” P2 explained, ”I think it would be useful to every-

one but especially for people who maybe are like... I don’t want to say slower at learning

and need to thoroughly know what each step does in order to understand.” Participants

felt that such struggling learners could benefit from the practice opportunities and

explanations provided by purpose-first programming.

Many participants felt that learning with plans was a fit for their own needs,

since they faced difficulties while learning to code. P5 said, ”I think for someone

like me who wants a lot of help, who needs a lot of help to do well, and wants a lot of

examples and visuals and documentation, the plans worked really well.” P7 agreed that

purpose-first programming provided support she wanted, saying ”I have to fail at

the code 10 times before I realize what I’m doing, so I guess I sort of like this.” P1 believed

that learning with plans gave a greater opportunity for repetition of concepts than

other learning experiences, improving her learning. She said, ”I personally need to

practice a lot of time. So I think for someone like me, this would be more helpful.”

131

5.8.5.3 Participants felt that plans were more appropriate for beginners

Participants often described purpose-first programming as a fit for new pro-

grammers and people first learning a topic. P9 said, ”I think plans are pretty useful

for beginners like me.” P4 felt that purpose-first programming was more appropri-

ate for novices, saying, ”I think it’s better for people who are new to programming.”

Describing the process of purpose-first programming, P8 said, ”I think it’s just more

of a beginner concept.”

P1 described purpose-first programming as the right fit for inexperienced pro-

grammers because it was straightforward to understand:

For a non-programmer, I think it’s very easy to follow. So someone without any

experience or with any intention of doing really complicated stuff in the future,

I think it breaks it down really easily. So then it just makes sense logically.

Conversely, participants felt that purpose-first programming may be constrain-

ing for people with significant prior knowledge or who were already succeeding

at programming. P5 suggested,”if everybody had to go through the plans it would feel

frustrating or maybe even condescending to someone who was an advanced programmer.”

P9 felt that these more knowledgeable learners were ready to jump right to apply-

ing their knowledge. She said, ”I’m pretty sure people who are more experienced in code

who already knew Python or C++ before don’t really need plans. They just need practice

problems, right?”

5.8.5.4 Theme summary

Consistent with prior research, participants often expressed low self-efficacy

for programming, a characteristic common to conversational programmers [28,

157] and female programming learners [10]. These novices saw a fit for purpose-

first programming with their needs, either as learners new to a topic, or learners

132

who need extra practice and assistance.

5.8.6 Participants believed purpose-first programming gave them conceptual,

high-level knowledge

Participants described what they had learned from the curriculum as ”basics”,

”concepts”, and ”familiarity”. For conversational programmers, this knowledge

aligned with their goals for learning programming.

5.8.6.1 Participants felt that purpose-first programming helped them learn gen-

eral, not detailed, knowledge

While participants didn’t believe they could write web scraping code on their

own after completing the curriculum, they did feel that they gained a conceptual

understanding of web scraping. P9, an aspiring UX designer who plans to pro-

gram in her career, described her learning outcome by saying, ”I probably won’t re-

member specifically how to write the exact code line for line....I’ll understand the concepts

behind it.” Similarly, P7, also a future designer, focused on being able to describe

content at a high level: ”The next time I talk about web scraping, I’ll definitely be able to

define it, know what it is, know... I’m not going to forget the word soup.”

P8, a future designer who doesn’t plan to program often, felt that the design of

purpose-first programming allowed her to focus on key ideas rather than details.

She said,

”I liked this because you can focus on it more conceptually without worrying

about whether every part of your code is right, which I think helped me under-

stand it more. Seeing which pieces I needed to change and which pieces I could

leave alone because I knew it was right.”

P8 described her conceptual understanding as arising from her focus on plan

slots and how they are modified.

133

5.8.6.2 Conversational programmer participants were interested in basic un-

derstanding of code.

Conversational programmers felt that learning to code was practical for their

career goals, but they desired only knowledge sufficient to understand code, not

deep enough to write it. P8 described her learning goals, saying, ”I think just un-

derstanding how it works is interesting and just good knowledge for any technology major

or occupation. It’s just something that makes sense to know. I don’t know when exactly

I’ll use it but I like knowing it.” P2 felt that when talking with software developers, a

little bit of coding knowledge would be ”nice to know”. She also felt that she didn’t

need to understand code in all its intricacy, saying, ”I don’t think I feel like I have to

really know it in depth, it’s just a good baseline.”

Conversational programmers described the conceptual and general knowledge

they gained from purpose-first programming as appropriate for their needs. As

someone who wasn’t planning on coding in their job, aspiring designer P2 didn’t

believe that she needed knowledge any deeper than the curriculum provided.

Talking about web scraping programs, she said, ”maybe I can’t explain it perfectly

and explain each part in depth but if I have like a general idea of what it’s doing I think

that’s helpful.” P1, another future designer, described her experience with purpose-

first programming as giving her an accessible overview of what code does. She

said of her experience with the curriculum, ”it wasn’t like I just wrote a random line

of code one time, debugged it, and then didn’t actually remember how it works....in this

curriculum, I actually understand what’s going on. And as someone who isn’t going to

need to program in the future, I just need to understand what’s happening, I think that’s

really helpful.”

134

5.8.6.3 Theme Summary

Participants felt that purpose-first programming helped them understand code

while focusing on concepts. For conversational programmers, this type of curricu-

lum was seen as appropriate for their goals: obtaining a general understanding of

coding concepts, not detailed knowledge about how to write code [28, 157].

5.8.7 Participants found curricular content realistic and applicable

Participants found the topic of web scraping ”interesting” and ”cool”. They of-

ten described content as ”real,” because it examples showed ”real world” scenarios

and utilized ”real-life” websites.

5.8.7.1 Participants found web scraping interesting and applicable

The topic of the curriculum appealed to participants, the majority of whom

were interested in web technology. This interest motivated them to engage in

learning. P6, an aspiring conversational programmers and designer, said, ”It [web

scraping] definitely seems like something I’m interested in too, which I feel like just makes

me want to learn it.” For P8, the ability to understand why people use web scraping

contributed to her interest. She said, ”I thought Web Scraping was interesting, that

everything we learned is immediately useful, or we’re not able to apply it right but Web

Scraping is something that it’s really easy to see why it’s used, you know?”

5.8.7.2 Realistic examples reinforced the perception that content was useful

and relevant

Participants referenced examples from the curriculum as one reason that the

content was realistic. Specifically, the use of familiar websites bolstered their per-

ceptions of authenticity. P9 said, ”I liked using the Cottage Inn and the Rate My Pro-

fessor websites because they were like real life. Yeah that was cool.” For P5, the examples

135

illustrated a realistic application of the code. P5 said, ”I also did like the storyline

and being able to like oh, there’s so many different locations for this pizza place, maybe

you want to follow them. Actually making it more of a real world problem I thought was

helpful.” This participant appreciated the relatable narrative of the example.

P6 felt that the curriculum showed how to apply code to solve a problem, rather

than demonstrating how code worked in a context-free way. She said, ”Using real

websites and not only code to show it was also really helpful because just looking at a line of

code really means nothing to me if I don’t have a visual with it.” The use of real websites

also showed participants that the code ”really worked.” P8 reflected, ”I like that

these examples use real websites and SI websites. It was super interesting and you actually

go to see that they worked and how they worked.” The content of the curriculum was

clearly useful because it worked on familiar websites that participants knew about,

not a fake context only for classroom use.

5.8.7.3 Theme summary

Realism and applicability were two reasons that participants valued the curric-

ular content. For participants, a sense of authenticity came from both understand-

ing how code could be applied in the world outside the classroom and confidence

that the code they were studying would actually achieve the goals.

5.8.8 Code tracing visualizations are unhelpful if confusing, but useful for

deep knowledge if understandable

Participants drew contrasts between purpose-first programming and code trac-

ing activities they had used in prior coursework. These learners had experience

tracing code with tracing visualization tools like PythonTutor, Lobster, and debug-

gers found in IDEs. I identified two perspectives: where program visualization

tools are confusing and don’t contribute to knowledge, and where program visu-

136

alization tools are understandable and contribute to deepening knowledge.

5.8.8.1 Some participants found code tracing visualizations difficult to under-

stand and apply, and prefer plans

Some participants had prior experience with PythonTutor [60], a program vi-

sualization tool [141] designed to help novice programmers understand the exe-

cution flow of programs. When comparing use of PythonTutor to their experience

with purpose-first programming, these learners preferred purpose-first program-

ming because they found PythonTutor challenging to understand. ”I mean I guess

in theory CodeLens [a PythonTutor variant] is useful but sometimes it gets so confusing,”

said P2. ”Having the plans is helpful because it’s like if I know what to do then I can do it,

but if I don’t know what to do then it’s like where do I even start?”. P2 found purpose-

first programming more immediately useful than code tracing visualizations. P5

said, ”CodeLens is a visual thing which I thought would be helpful but honestly I hated

it and never used it. And then just from my experience CodeLens was helpful for people

who knew programming really well, so it kind of feels like the plans might be for more be-

ginners.” P5 categorized code tracing tools as for non-beginners, while plans were

understandable and useful for her current needs.

5.8.8.2 Others found code tracing visualizations to be a helpful method for

gaining deeper knowledge, after learning with plans

On the other hand, some participants spoke positively about code tracing visu-

alizations. P9 found the debugger in Visual Studio Code to be a useful tool, and a

technique that would help her generalize her knowledge: ”I think plans helped me in

the very beginning, but once I understand the concept, debugging is what really helps me

further my learning past the plans into more real life scenarios.” During the debugging

activity, P1 asked if she could run a debugger on the code, which wasn’t possi-

137

ble. However, reflecting on her problem-problem after the fact, P1 felt that she

didn’t need to use a code tracing visualization to solve problems in the curricu-

lum. When asked if the curriculum should include a debugger, she said, ”I think

the level of detail right now is at a really good spot for someone who is just starting out

with web scraping. So I think, yeah, I don’t think you need to add anything.”

P4, an aspiring software developer, was in favor of adding a program visualiza-

tion tool to the curriculum. She described such a tool as ”a little more helpful because

you can go step by step through the code and understand what this line does, understand

how create this variable, and the information you pull goes into this variable.” P4 was

able to understand and make use of code tracing visualization, and felt it would

enhance her learning in the curriculum.

5.8.8.3 Theme summary

While all participants felt that plans were useful for immediately applying

knowledge and solving problems, participants differed in the role they felt code

tracing visualizations should play. For learners who found code tracing visualiza-

tions difficult to understand, plans were much preferable. For participants who

were comfortable enough to make use of code tracing visualizations for further

learning, these technologies could play a role in deepening understanding.

5.8.9 Discussion

I provide preliminary evidence that novice conversational and end-user pro-

grammers are motivated to learn with a purpose-first programming approach.

Consistent with Eccles’ Expectancy-Value theory [41], both a sense of success on

purpose-first programming activities and value for purpose-first programming

tasks contributed to learners’ motivation (see Figure 5.13). Novice conversational

and end-user programmers found purpose-first programming activities to be less

138

Figure 5.13: The themes mapped onto the Eccles Expectancy-Value Model of Achievement
Choice [42].

cognitively difficult than typical programming learning tasks, resulting in a sense

of success because they could understand and complete tasks. These learners also

found value in purpose-first programming because they enjoyed succeeding on

problems and they found the topic interesting and applicable. For some learners,

purpose-first programming was valuable because they viewed it as appropriate

for their identity as a struggling programming learner. For others, purpose-first

programming was valuable because it was a match for their stage as new coders.

For conversational programmers in particular, purpose-first programming helped

them achieve their goals of a conceptual understanding of code.

Purpose-first programming tasks are much more highly scaffolded than typi-

cal programming learning tasks like developing a full program. Despite the high

level of support provided by the curriculum, these learners felt successful and ac-

complished rather than bored or unconfident. This may be explained by the type

of support that purpose-first programming provides. Gorson and O’Rourke [57]

found that novice programmers in introductory courses are particularly likely to

139

negatively self-assess when they don’t know how to start a problem or don’t un-

derstand a problem statement. Novices are more likely to negatively self-assess in

these moments than when they needed to look up syntax or when they get help

from others. Participants perceived purpose-first programming as helping them

”break down” problem-solving, making the path to a solution easier and clearer.

Such support may have helped learners avoid moments when they would be most

likely to negatively self-assess.

The identification of plans from ”real” programs and experts was a key design

element of purpose-first programming intended to bolster authenticity. Partici-

pants were informed at the beginning of the study that the plans they would learn

in the curriculum were generated from common patterns used by experts. Sur-

prisingly, no participant mentioned this characteristic in their interview. Instead,

participants described a sense of authenticity for elements of the curriculum based

on what worked in the ”real world”, such as use of runnable code that ”actually

worked” to collect data from familiar websites. These novices seemed to value

content that achieved a useful task, but they weren’t as concerned about using the

same coding structures as experts.

Participants related their identities as beginners and people who struggle with

programming to their feeling of value for purpose-first programming. This sug-

gests that learners who are confident in their skills and already view themselves

as an accomplished programmer may not see value in purpose-first programming.

Besides the lack of value, learners who already possess plan schemas would likely

find purpose-first scaffolds distracting and cumbersome rather than helpful, ac-

cording to the expertise reversal effect [77]. Caution should be exercised when

using purpose-first programming with populations like computer science majors

and advanced students.

140

5.9 Implications for future curriculum design

The evaluation of this proof-of-concept curriculum provides some insight into

how future purpose-first programming learning experiences can be designed to

improve learners’ experience and motivation.

5.9.1 There are opportunities to streamline activities and reduce user error

New tools designed specifically for purpose-first programming activities could

provide more efficient and targeted support than what was possible with the Rune-

stone platform. This support may help participants avoid errors they experienced

in the proof-of-concept curriculum and achieve a greater sense of success.

The accessibility of plan information is one area where the learner experience

could be streamlined. In the proof-of-concept, learners had to visit other ebook

pages to view plan information and examples. In a future system, this information

could be made available in the editor itself with approaches like pop-up windows

or dynamic sidebars. This design may help participants notice more readily when

they have formatting errors, which were the most common errors as participants

filled the plan slots. This assistance could also make it more evident which plan(s)

are the most relevant when editing code, helping learners avoid viewing less rele-

vant plan information.

5.9.2 Clear indication of success can contribute to motivation

Participants were motivated by their sense of success on purpose-first program-

ming activities. Analysis of participant interviews showed that this sense of suc-

cess came from understanding and completing activities correctly. Frequent inter-

active feedback in the curriculum made it clear when participants had ”gotten it

right”, likely contributing to their sense of success.

141

Purpose-first programming activities could be designed without the high level

of interactive feedback available in this proof of concept. My findings show that

eliminating interactive feedback would risk undermining one of the key contribut-

ing elements to learners’ motivation. Purpose-first programming provides many

opportunities to break down problems into smaller steps. Pairing these small steps

with frequent feedback appears to be a recipe for a sense of success, contributing

to motivation.

5.9.3 Fading of scaffolding could allow purpose-first programming to be more

broadly used

My results suggest that purpose-first programming can be a motivating ini-

tial learning experience in a new topic area. The best approach to transition from

purpose-first programming to a deeper understanding of code execution remains

to be understood, but such a transition is important to meet the needs of non-

conversational programmers. While conversational programmers felt that the gen-

eral, conceptual knowledge they gained from purpose-first programming was suf-

ficient for their needs, learners who planned to program in their career desired

the ability to write code on their own and to more deeply understand how code

worked.

Incorporating options to fade purpose-first scaffolding may allow a future

purpose-first programming system to meet the needs of multiple populations of

novice learners simultaneously. In the proof-of-concept, the code writing process

was staged across activities, so assembling and tailoring plans took place in sep-

arate steps. A dedicated purpose-first programming editor could combine plan

assembly and tailoring, offering the ability to drag plan blocks, edit slots, and run

code within a single editor. This structured assistance could also be faded as learn-

ers progress, or according to their preferences.

142

5.10 Conclusion

In this chapter, I conceptualized, developed, and evaluated purpose-first pro-

gramming, an approach to programming learning for novice programmers who

care more about what code can achieve than how a programming language works.

After completing a proof-of-concept purpose-first programming curriculum, nov-

ice conversational and end-user programmers were motivated to learn future pro-

gramming topics with purpose-first methods. This motivation stemmed from a

feeling of success, because learners could understand and complete problems, and

alignment with goals and self-identity, because learners found the content useful

and found the level of support appropriate for their needs. These learners were

able to utilize purpose-first supports to complete scaffolded programming activi-

ties in a new topic area after only a short period of instructional time.

My findings provide initial support for the effectiveness of purpose-first pro-

gramming as a motivating starting point for conversational programmers and cer-

tain other novice programmers during programming learning. This work connects

cognitive theories to theories of motivation in order to present a new approach

to programming learning, designed specifically for novices who care more about

the opportunities to use code than the operation of programming languages. As

aspiring conversational programmers and end-user programmers study program-

ming in greater numbers, the need for a different instructional approach is more

apparent. Purpose-first programming can provide a new pathway to program-

ming learning, designed with both the cognition and motivation of these learners

in mind. This work opens new avenues to computing, inviting a broader group

of learners to engage with programming, particularly those who are less likely to

find code semantics motivating.

143

CHAPTER VI

Summing Up and Looking Forward

6.1 Contributions of this thesis

6.1.1 Novices don’t trace code because it’s cognitively challenging and has low

value

Why would novice programmers choose to not trace code as they problem-

solve, a strategy often correlated with success [88, 33]? The first contribution of this

thesis is a cognitive and affective explanation for why novices don’t trace code. The

cognitive complexity of close tracing is a challenge for some learners (Chapter III),

who often perform searches for code’s goals and patterns instead of close tracing.

Some learners also have a low value for the task of code tracing itself (Chapter IV),

viewing it as in opposition to their beliefs that they shouldn’t have to think like the

computer or think like a programmer.

I found that cognitively, carefully tracing through code’s execution is time-

consuming and potentially overwhelming for some novices. I found that novice

learners often search for the goals of code rather than trying to trace, and they rea-

son about code’s results based on those goals. Some novices value knowledge

about what code can do more than knowledge about how code works. I found that

such learners can relate this belief to their choice to not trace code.

144

A wide variety of programming learners share this preference for a focus on

code’s applications rather than its syntax or logic, including conversational pro-

grammers and end-user-programmers [157, 36]. My findings suggest that this pop-

ulation of programming learners may be unmotivated to complete the code tracing

activities common in introductory programming courses. In my analysis of theo-

ries of instruction (Chapter II), I found that code tracing is often recommended

early in the sequence of instruction, even before activities like understanding or

writing full programs [163, 86]. For learners who have a low value or expectancy

of success for code tracing, programming learning starts with an activity they are

unmotivated to complete.

As the numbers of conversational programmers and end-user programmers

grow [21, 127], addressing their particular learning needs will become more im-

portant. If learners aren’t motivated to trace code, or even reject tracing activities,

how can they progress in programming learning that starts from a focus on trac-

ing? Is there another way?

6.1.2 Learning domain-specific programming plans can motivate both conver-

sational and end-user programmers

The second contribution of this thesis is the creation of a curriculum that leads

to success for these kinds of programmers. To create a new programming learn-

ing pathway for novices who care most about what code achieves, I developed a

learning approach called purpose-first programming that focuses on domain-specific

code plans (Chapter V). To support learners’ ability to reason about code without

the need for tracing, purpose-first programming scaffolds the ability of learners to

apply plan knowledge. Rather than using tracing to understand code, novices can

use information about the goals common code patterns achieve, and how patterns

should be modified to achieve those goals.

145

The purpose-first programming approach is likely to motivate conversational

programmers and end-user programmers because it addresses issues of both ex-

pectancy of success and value. Purpose-first programming allows novice learners

to quickly create and understand code that achieves goals in a domain of inter-

est, which aligns with the content these learners value [157, 36]. Applying plan

knowledge is less complex than performing code tracing, because the learner is

working with larger chunks [53] of information. This decrease in cognitive load

was expected to increase learners’ expectancy of success.

I implemented the purpose-first programming approach in a proof-of-concept

curriculum in the domain of web scraping and evaluated it with novice program-

mers who had lower expectancy of success or value for code tracing, and who

were planning to become conversational programmers and end-user program-

mers. These learners were able to use plan knowledge, such as information about

how to tailor plans and information about plan goals and subgoals, to create and

understand programs that accomplished tasks. I found that these novices were

motivated to continue learning with the purpose-first programming approach.

They found purpose-first programming tasks less demanding than other program-

ming learning activities, and felt that the approach was a fit for their learning needs

and their identities.

6.1.3 Considering both cognition and value can lead to effective approaches

In my investigation of the reasons novices don’t trace code, it became evident

that cognitive challenges as well as affective challenges contributed to learners’

choices. Realizing this, I drew on Expectancy-Value theory [41] to explain learners’

motivation for tracing tasks. This theory proposes that motivation is a result of

both expectancy of success on a task, and the value for that task. Expectancy and

value can influence each other, and both are influenced by goals and self-beliefs.

146

This thesis is an example of research and design that considers both the cog-

nitive and sociocultural aspects of a learning experience. Purpose-first program-

ming motivates learners by changing the cognition they need to perform to com-

plete programming tasks, and by aligning tasks with the values of learners’ com-

munities of practice [85]. Thinking with plan knowledge both decreases learners’

cognitive load and supports a focus on code’s purpose, which aligns with certain

learners’ values and goals. Thus, purpose-first programming is a “success” (as

I described in the second contribution statement) in both cognitive and affective

terms.

This approach avoids some pitfalls of work that focuses on either cognition or

values exclusively. In Chapter II, I noted that the theories of programming instruc-

tion that I analyzed did not consider learners’ motivations for tasks. These argu-

ments for ideal instructional orderings are based on inferences about how knowl-

edge of one skill may increase success on another skill. This perspective doesn’t

address how varied motivation for skills may suggest differentiated learning path-

ways.

On the other side of the spectrum, instructional designs that center learners’

values typically draw on sociocultural approaches that focus on community-level

dynamics rather than an individual’s cognition [59]. In the constructionist vision,

complex tasks, such as creation of e-textiles, provide the opportunity for integra-

tion of a wide variety of learner interests and values into programming tasks [112].

In practice, these approaches often require extensive expert support to help learn-

ers manage the cognitive challenges of creating a complex artifact with new tech-

nology [5]. The third contribution of this thesis is a theoretical lens that considers

both cognitive and affective explanations for student challenges in learning pro-

gramming. This lens has predictive power, since the approach that I designed

based on this theory was successful.

147

6.2 Future work

This thesis found some promising initial results for the ability of a purpose-first

programming approach to motivate conversational and end-user programmers.

However, there are many research directions yet to explore.

6.2.1 What learner characteristics are correlated with a benefit from purpose-

first programming?

In the proof-of-concept, participants were selected based on characteristics that

theoretically made them likely to be relatively more motivated by purpose-first

programming. However, it’s unclear how each of these learner characteristics con-

tribute to motivation. For learners who aren’t interested in the particular topic

area of a purpose-first programming module, will the activity still be motivat-

ing? For learners who are computer science majors, would the highly-scaffolded

style of purpose-first programming be demotivating? Exploring the responses to

purpose-first programming activities from a wider variety of learners would pro-

vide a deeper understanding of motivation.

6.2.2 How can purpose-first programming activities fit into an instructional se-

quence?

My findings in this thesis suggest that purpose-first programming activities

may work best as an initial activity in a new topic area, where it can serve as a

motivating introduction that lays a groundwork for later skills. However, purpose-

first programming activities must be studied in combination with other learning

tasks to make a recommendation about this ordering.

148

6.2.2.1 Can purpose-first programming activities improve self-efficacy?

In this thesis, I worked with Expectancy-Value theory as one of my primary

theoretical frameworks. Expectancy-Value theory was appropriate for my focus on

learners’ motivation for a single task: code tracing or purpose-first programming.

As I move forward to explore how success on purpose-first programming may

motivate future activities and self-beliefs, the construct of self-efficacy may be more

appropriate. Self-efficacy is an individual’s judgment of their ability to perform a

task [7], and in computing, self-efficacy is a major predictor of future success [118].

Fortunately, self-efficacy is highly manipulable. One method of improving self-

efficacy is through ”mastery experiences,” where a learner understands that they

have been successful in a task [8]. I found that purpose-first programming gave

novices an opportunity to feel successful while creating and understanding code

in an domain of interest. Could purpose-first programming activities provide a

”mastery experience” that improves self-efficacy for other programming tasks go-

ing forward?

6.2.2.2 How can learners build on a foundation of plan knowledge?

While the learners I studied felt that they would retain general knowledge

about web scraping after the activity, I did not measure learning explicitly. What

sort of knowledge do learners gain from a purpose-first programming experience,

and is this knowledge beneficial for later completion of traditional programming

learning activities, like writing code from scratch?

6.2.3 What technology can support development of purpose-first programming

curricula at scale?

The creation of the proof-of-concept curriculum required time-consuming iden-

tification of plans and development of activities. For the purpose-first program-

149

ming approach to reach a wide variety of students, technological supports may be

needed to lessen the load of curricular development.

6.2.3.1 What platform could support purpose-first programming curricula in a

variety of domains?

Purpose-first programming could be applied in any scenario where domain-

specific knowledge about programming is valued over knowledge of syntax and

semantics. The development of a platform where users could easily build their

own purpose-first programming curricula would enable a wide variety of users to

create purpose-first programming activities for their particular needs. This plat-

form could support plan-based activity types like those described in this thesis.

If provided with sufficient plan information, the purpose-first programming plat-

form could even automatically generate practice problems populated with plan

combinations.

6.2.3.2 Can data mining methods identify plans?

The generation of a new set of plans for each domain area is a limiting factor to

the adoption of purpose-first programming. If data mining approaches could be

developed to support the identification of plans in a domain, and the way those

plans can be combined into programs, the effort to build purpose-first program-

ming activities could be reduced. One might imagine a process of data mining a

repository of code from a given domain to identify common code patterns, and

then generating potential plans and plan combinations for human review and an-

notation with subgoals and goals.

My findings suggest that drawing plans from a corpus representative of expert

practice may not be as important to learners’ sense of authenticity as confirmation

that plan code works on realistic tasks. This suggests that plan identification algo-

150

rithms could optimize for the ability of combinations of plans to solve meaningful

problems.

Once plans and plan combinations are identified, the skeleton of a purpose-

first programming curriculum is in place. This information could be passed to the

platform, forming a pipeline from code corpus to curriculum.

151

BIBLIOGRAPHY

152

BIBLIOGRAPHY

[1] [n.d.]. Beautiful Soup Documentation. https://www.crummy.com/
software/BeautifulSoup/bs4/doc/. Accessed: 2020-09-15.

[2] ACM/IEEE-CS Joint Task Force on Computing Curricula. 2013. Computer
Science Curricula 2013. Technical Report. ACM Press and IEEE Computer
Society Press. https://doi.org/10.1145/2534860

[3] Beth Adelson. 1984. When Novices Surpass Experts: The Difficulty of a Task
May Increase with Expertise. Journal of Experimental Psychology: Learning,
Memory, and Cognition 10, 3 (1984), 483.

[4] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. 2013. Com-
pilers: Principles, Techniques, and Tools. Pearson.

[5] Morgan G Ames. 2018. Hackers, Computers, and Cooperation: A Critical
History of Logo and Constructionist Learning. Proceedings of the ACM on
Human-Computer Interaction 2, CSCW (2018), 1–19.

[6] Anthony Anderson, Christina L Knussen, and Michael R Kibby. 1993. Teach-
ing teachers to use HyperCard: a minimal manual approach. British Journal
of Educational Technology 24, 2 (1993), 92–101.

[7] Albert Bandura. 1977. Self-Efficacy: Toward a Unifying Theory of Behavioral
Change. Psychological Review 84, 2 (1977), 191.

[8] Albert Bandura. 1995. Self-Efficacy in Changing Societies. Cambridge Univer-
sity Press.

[9] Andrew Begel and Beth Simon. 2008. Struggles of New College Graduates
in their First Software Development Job. In Proceedings of the 39th Technical
Symposium on Computer Science Education (proceedings of the 39th technical
symposium on computer science education ed.). Association for Computing
Machinery, 226–230.

[10] Sylvia Beyer. 2008. Predictors of Female and Male Computer Science Stu-
dents’ Grades. Journal of Women and Minorities in Science and Engineering 14,
4 (2008).

153

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://doi.org/10.1145/2534860

[11] Sambasiva R Bhatta and Ashok Goel. 1997. Learning Generic Mecha-
nisms for Innovative Strategies in Adaptive Design. Journal of the Learn-
ing Sciences 6, 4 (Oct. 1997), 367–396. https://doi.org/10.1207/
s15327809jls0604_2

[12] John B Biggs and Kevin F Collis. 2014. Evaluating the Quality of Learning:
The SOLO Taxonomy (Structure of the Observed Learning Outcome). Academic
Press.

[13] John B Black, John M Carroll, and Stuart M McGuigan. 1987. What kind of
minimal instruction manual is the most effective. In ACM SIGCHI Bulletin,
Vol. 17. ACM, 159–162.

[14] Kirsten Boehner, Janet Vertesi, Phoebe Sengers, and Paul Dourish. 2007. How
HCI Interprets the Probes. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1077–1086.

[15] Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The Black Box Inside
the Glass Box: Presenting Computing Concepts to Novices. International
journal of man-machine studies 14, 3 (April 1981), 237–249. https://doi.
org/10.1016/S0020-7373(81)80056-9

[16] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psy-
chology. Qualitative research in psychology 3, 2 (2006), 77–101.

[17] Virginia Braun and Victoria Clarke. 2012. Thematic Analysis. In APA Hand-
book of Research Methods in Psychology (2 ed.). American Psychological Asso-
ciation, 57–71.

[18] Burning Glass Technologies. 2016. Beyond Point and Click: The Expanding De-
mand for Coding Skills. Technical Report. https://www.burning-glass.
com/research-project/coding-skills/

[19] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H.
Paterson, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye Move-
ments in Code Reading: Relaxing the Linear Order. In Proceedings of the 2015
IEEE 23rd International Conference on Program Comprehension (Florence, Italy)
(ICPC ’15). IEEE Press, Piscataway, NJ, USA, 255–265.

[20] Teresa Busjahn and Carsten Schulte. 2013. The Use of Code Reading in
Teaching Programming. In Proceedings of the 13th Koli Calling International
Conference on Computing Education Research (Koli, Finland) (Koli Calling ’13).
Association for Computing Machinery, New York, NY, USA, 3–11. https:
//doi.org/10.1145/2526968.2526969

[21] Tracy Camp, W Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall,
Susanne Hambrusch, Ellen Walker, and Stuart Zweben. 2017. Generation
CS: The Growth of Computer Science. ACM Inroads 8, 2 (2017), 44–50.

154

https://doi.org/10.1207/s15327809jls0604_2
https://doi.org/10.1207/s15327809jls0604_2
https://doi.org/10.1016/S0020-7373(81)80056-9
https://doi.org/10.1016/S0020-7373(81)80056-9
https://www.burning-glass.com/research-project/coding-skills/
https://www.burning-glass.com/research-project/coding-skills/
https://doi.org/10.1145/2526968.2526969
https://doi.org/10.1145/2526968.2526969

[22] Tracy Camp, W Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall,
Susanne Hambrusch, Ellen Walker, and Stuart Zweben. 2017. Generation
CS: The Mixed News on Diversity and the Enrollment Surge. ACM Inroads
8, 3 (2017), 36–42.

[23] S N Cant, David Ross Jeffery, and Brian Henderson-Sellers. 1995. A Concep-
tual Model of Cognitive Complexity of Elements of the Programming Pro-
cess. Information and Software Technology 37, 7 (Jan. 1995), 351–362. https:
//doi.org/10.1016/0950-5849(95)91491-H

[24] John M. Carroll, Penny L. Smith-Kerker, James R. Ford, and Sandra A.
Mazur-Rimetz. 1987. The Minimal Manual. Hum.-Comput. Interact. 3, 2 (June
1987), 123–153. https://doi.org/10.1207/s15327051hci0302_2

[25] Kathy Charmaz. 2006. Constructing Grounded Theory: A Practical Guide
through Qualitative Analysis. SAGE.

[26] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing Distributed Hierarchical Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 963–975.

[27] Michelene TH Chi. 1997. Quantifying Qualitative Analyses of Verbal Data:
A Practical Guide. The journal of the learning sciences 6, 3 (1997), 271–315.

[28] P. K. Chilana, C. Alcock, S. Dembla, A. Ho, A. Hurst, B. Armstrong, and
P. J. Guo. 2015. Perceptions of Non-CS Majors in Intro Programming: The
Rise of the Conversational Programmer. In 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 251–259.

[29] Parmit K. Chilana, Rishabh Singh, and Philip J. Guo. 2016. Understanding
Conversational Programmers: A Perspective from the Software Industry. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Sys-
tems (San Jose, California, USA) (CHI ’16). Association for Computing Ma-
chinery, New York, NY, USA, 1462–1472. https://doi.org/10.1145/
2858036.2858323

[30] Tony Clear, J L Whalley, Phil Robbins, Anne Philpott, Anna Eckerdal,
and M Laakso. 2011. Report on the Final BRACElet Workshop: Auck-
land University of Technology, September 2010. (2011). http://aut.
researchgateway.ac.nz/handle/10292/1514

[31] Alan Cooper et al. 2004. The Inmates Are Running the Asylum: Why High-Tech
Products Drive Us Crazy and How to Restore the Sanity. Vol. 2. Sams Indianapo-
lis.

[32] Kathryn Cunningham, Rahul Agrawal Bejarano, Mark Guzdial, and Barbara
Ericson. 2020. “I’m Not a Computer”: How Identity Informs Value and Ex-
pectancy During a Programming Activity. (2020).

155

https://doi.org/10.1016/0950-5849(95)91491-H
https://doi.org/10.1016/0950-5849(95)91491-H
https://doi.org/10.1207/s15327051hci0302_2
https://doi.org/10.1145/2858036.2858323
https://doi.org/10.1145/2858036.2858323
http://aut.researchgateway.ac.nz/handle/10292/1514
http://aut.researchgateway.ac.nz/handle/10292/1514

[33] Kathryn Cunningham, Sarah Blanchard, Barbara Ericson, and Mark Guz-
dial. 2017. Using Tracing and Sketching to Solve Programming Problems:
Replicating and Extending an Analysis of What Students Draw. In Proceed-
ings of the 2017 ACM Conference on International Computing Education Research.
164–172.

[34] Kathryn Cunningham, Shannon Ke, Mark Guzdial, and Barbara Ericson.
2019. Novice Rationales for Sketching and Tracing, and How They Try to
Avoid It, In Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education. In Innovation and Technology in
Computer Science Education (ITiCSE ’19), 37–43. https://doi.org/10.
1145/3304221.3319788

[35] Johan De Kleer. 1984. How Circuits Work. Artificial intelligence 24, 1-3 (1984),
205–280.

[36] Brian Dorn and Mark Guzdial. 2010. Discovering Computing: Perspectives
of Web Designers. In Proceedings of the Sixth International Workshop on Com-
puting Education Research. 23–30.

[37] Brian Dorn and Mark Guzdial. 2010. Learning on the Job: Characterizing
the Programming Knowledge and Learning Strategies of Web Designers. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
703–712.

[38] Benedict Du Boulay. 1986. Some Difficulties of Learning to Program. Journal
of Educational Computing Research 2, 1 (1986), 57–73. https://doi.org/
10.2190/3LFX-9RRF-67T8-UVK9

[39] Rodrigo Duran, Juha Sorva, and Sofia Leite. 2018. Towards an Analysis
of Program Complexity From a Cognitive Perspective. In Proceedings of the
2018 ACM Conference on International Computing Education Research (Espoo,
Finland) (ICER ’18). Association for Computing Machinery, New York, NY,
USA, 21–30. https://doi.org/10.1145/3230977.3230986

[40] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. 2013.
Boa: A Language and Infrastructure for Analyzing Ultra-Large-Scale Soft-
ware Repositories. In 2013 35th International Conference on Software Engineer-
ing (ICSE). IEEE, 422–431.

[41] Jacquelynne Eccles. 1983. Expectancies, Values and Academic Behaviors.
Achievement and achievement motives (1983).

[42] Jacqueline S. Eccles. 2009. Who am I and what am I going to do with my life?
Personal and collective identities as motivators of action going to do with my
life? Personal and collective identities as motivators of action. Educational
Psychologist 44, 2 (2009), 78.

156

https://doi.org/10.1145/3304221.3319788
https://doi.org/10.1145/3304221.3319788
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.1145/3230977.3230986

[43] Jacquelynne S Eccles et al. 2005. Subjective Task Value and the Eccles et al.
Model of Achievement-Related Choices. Handbook of competence and motiva-
tion (2005), 105–121.

[44] Barbara J. Ericson and Bradley N. Miller. 2020. Runestone: A Platform for
Free, On-Line, and Interactive Ebooks. In Proceedings of the 51st ACM Tech-
nical Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE
’20). Association for Computing Machinery, New York, NY, USA, 1012–1018.
https://doi.org/10.1145/3328778.3366950

[45] Barbara J. Ericson, Kantwon Rogers, Miranda Parker, Briana Morrison, and
Mark Guzdial. 2016. Identifying Design Principles for CS Teacher Ebooks
Through Design-Based Research. In Proceedings of the 2016 ACM Conference
on International Computing Education Research (Melbourne, VIC, Australia)
(ICER ’16). ACM, New York, NY, USA, 191–200. https://doi.org/10.
1145/2960310.2960335

[46] Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of the
Tenth Annual Conference on International Computing Education Research (Glas-
gow, Scotland, United Kingdom) (ICER ’14). Association for Computing
Machinery, New York, NY, USA, 35–42. https://doi.org/10.1145/
2632320.2632346

[47] Kathi Fisler, Shriram Krishnamurthi, and Janet Siegmund. 2016. Moderniz-
ing Plan-Composition Studies. In Proceedings of the 47th ACM Technical Sym-
posium on Computing Science Education (Memphis, Tennessee, USA) (SIGCSE
’16). Association for Computing Machinery, New York, NY, USA, 211–216.
https://doi.org/10.1145/2839509.2844556

[48] Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. As-
sessing and Teaching Scope, Mutation, and Aliasing in Upper-Level Under-
graduates. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). Asso-
ciation for Computing Machinery, New York, NY, USA, 213–218. https:
//doi.org/10.1145/3017680.3017777

[49] Sue Fitzgerald, Beth Simon, and Lynda Thomas. 2005. Strategies that Stu-
dents Use to Trace Code. https://doi.org/10.1145/1089786.
1089793

[50] Edward M Gellenbeck and Curtis R Cook. 1991. An Investigation of Proce-
dure and Variable Names as Beacons During Program Comprehension. In
Empirical Studies of Programmers: Fourth Workshop. Ablex Publishing, Nor-
wood, NJ, 65–81.

[51] John S Gero. 1990. Design Prototypes: A Knowledge Representation Schema
for Design. AI magazine 11, 4 (1990), 26–26.

157

https://doi.org/10.1145/3328778.3366950
https://doi.org/10.1145/2960310.2960335
https://doi.org/10.1145/2960310.2960335
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1145/2632320.2632346
https://doi.org/10.1145/2839509.2844556
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.1145/1089786.1089793
https://doi.org/10.1145/1089786.1089793

[52] John S Gero and Udo Kannengiesser. 2014. The Function-Behaviour-
Structure Ontology of Design. In An Anthology of Theories and Models of De-
sign. Springer, 263–283.

[53] Fernand Gobet, Peter CR Lane, Steve Croker, Peter CH Cheng, Gary Jones,
Iain Oliver, and Julian M Pine. 2001. Chunking Mechanisms in Human
Learning. Trends in cognitive sciences 5, 6 (2001), 236–243.

[54] Ashok Goel, Sambasiva Bhatta, and Eleni Stroulia. 1997. Kritik: An Early
Case-Based Design System. Issues and applications of case-based reasoning in
design 1997 (1997), 87–132.

[55] Ashok K Goel, Andrés Gómez de Silva Garza, Nathalie Grué, J William Mur-
dock, Margaret M Recker, and T Govindaraj. 1996. Towards Design Learning
Environments — I: Exploring How Devices Work. , 493–501 pages.

[56] Ashok K Goel, Spencer Rugaber, and Swaroop Vattam. 2009. Structure, Be-
havior, and Function of Complex Systems: The Structure, Behavior, and
Function Modeling Language. Artificial intelligence for engineering design,
analysis and manufacturing: AI EDAM 23, 1 (2009), 23–35.

[57] Jamie Gorson and Eleanor O’Rourke. 2020. Why do CS1 Students
Think They’re Bad at Programming? Investigating Self-Efficacy and Self-
Assessments at Three Universities. In Proceedings of the 2020 ACM Conference
on International Computing Education Research. 170–181.

[58] Ira Greenberg. 2007. Processing: Creative Coding and Computational Art.
Apress.

[59] James G Greeno, Allan M Collins, Lauren B Resnick, et al. 1996. Cognition
and Learning. Handbook of Educational Psychology 77 (1996), 15–46.

[60] Philip J Guo. 2013. Online Python Tutor: Embeddable Web-Based Program
Visualization for CS Education. In Proceeding of the 44th ACM Technical Sym-
posium on Computer Science Education. 579–584.

[61] Mark Guzdial. 1995. Software-realized scaffolding to facilitate programming
for science learning. Interactive Learning Environments 4, 1 (1995), 1–44.

[62] Mark Guzdial. 2003. A Media Computation Course for Non-majors. SIGCSE
Bull. 35, 3 (June 2003), 104–108. https://doi.org/10.1145/961290.
961542

[63] Mark Guzdial. 2013. Exploring Hypotheses About Media Computation. In
Proceedings of the Ninth Annual International ACM Conference on International
Computing Education Research (San Diego, San California, USA) (ICER ’13).
Association for Computing Machinery, New York, NY, USA, 19–26. https:
//doi.org/10.1145/2493394.2493397

158

https://doi.org/10.1145/961290.961542
https://doi.org/10.1145/961290.961542
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.1145/2493394.2493397

[64] Mark Guzdial, Michael Konneman, Christopher Walton, Luke Hohmann,
and Elliot Soloway. 1998. Layering scaffolding and CAD on an integrated
workbench: An effective design approach for project-based learning sup-
port. Interactive Learning Environments 6, 1/2 (1998), 143–179.

[65] Christine A Halverson. 2002. Activity Theory and Distributed Cognition: Or
What Does CSCW Need to DO with Theories? Computer Supported Coop-
erative Work: CSCW: an International Journal 11, 1 (2002), 243–267. https:
//doi.org/10.1023/A:1015298005381

[66] Brian Harvey and Jens Mönig. 2010. Bringing “No Ceiling” to Scratch: Can
One Language Serve Kids and Computer Scientists. Proc. Constructionism
(2010), 1–10.

[67] Matthew Hertz and Maria Jump. 2013. Trace-Based Teaching in Early Pro-
gramming Courses. Proceedings of the 44th ACM Technical Symposium on Com-
puter Science Education (2013), 561–566. https://doi.org/10.1145/
2445196.2445364

[68] Cindy E Hmelo and Mark Guzdial. 1996. Of Black and Glass Boxes: Scaf-
folding for Doing and Learning. (1996).

[69] Cindy E Hmelo, Douglas L Holton, and Janet L Kolodner. 2000. Designing to
Learn about Complex Systems. The Journal of the Learning Sciences 9, 3 (2000),
247–298.

[70] Cindy Hmelo-Silver. 2004. Comparing Expert and Novice Understanding of
a Complex System from the Perspective of Structures, Behaviors, and Func-
tions. , 127–138 pages. https://doi.org/10.1016/s0364-0213(03)
00065-x

[71] Cindy Hmelo-Silver, Rebecca Jordan, Catherine Eberbach, and Suparna
Sinha. 2016. Systems Learning with a Conceptual Representation: A Quasi-
Experimental Study. Instructional Science (09 2016). https://doi.org/
10.1007/s11251-016-9392-y

[72] Cindy E Hmelo-Silver, Surabhi Marathe, and Lei Liu. 2007. Fish Swim, Rocks
Sit, and Lungs Breathe: Expert-Novice Understanding of Complex Systems.
The Journal of the Learning Sciences 16, 3 (2007), 307–331.

[73] Luke Hohmann, Mark Guzdial, and Elliot Soloway. 1992. SODA: A
computer-aided design environment for the doing and learning of software
design. In International Conference on Computer Assisted Learning. Springer,
307–319.

[74] Mark A. Holliday and David Luginbuhl. 2004. CS1 Assessment Using Mem-
ory Diagrams. ACM SIGCSE Bulletin 36, 1 (2004), 200. https://doi.org/
10.1145/1028174.971373

159

https://doi.org/10.1023/A:1015298005381
https://doi.org/10.1023/A:1015298005381
https://doi.org/10.1145/2445196.2445364
https://doi.org/10.1145/2445196.2445364
https://doi.org/10.1016/s0364-0213(03)00065-x
https://doi.org/10.1016/s0364-0213(03)00065-x
https://doi.org/10.1007/s11251-016-9392-y
https://doi.org/10.1007/s11251-016-9392-y
https://doi.org/10.1145/1028174.971373
https://doi.org/10.1145/1028174.971373

[75] Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. 2002. A
Meta-Study of Algorithm Visualization Effectiveness. Journal of Visual Lan-
guages and Computing 13, 3 (2002), 259–290. https://doi.org/10.1006/
S1045-926X(02)00028-9

[76] David A Joyner, Ashok K Goel, and Nicolas M Papin. 2014. MILA–S: Gen-
eration of Agent-Based Simulations from Conceptual Models of Complex
Systems. In Proceedings of the 19th International Conference on Intelligent User
Interfaces. ACM, 289–298.

[77] Slava Kalyuga. 2009. The Expertise Reversal Effect. In Managing Cognitive
Load in Adaptive Multimedia Learning. IGI Global, 58–80.

[78] David Kirsh. 2010. Thinking with External Representations. AI & Society 25,
4 (2010), 441–454.

[79] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret
Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman,
Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan
Wiedenbeck. 2011. The State of the Art in End-User Software Engineer-
ing. ACM Comput. Surv. 43, 3, Article 21 (April 2011), 44 pages. https:
//doi.org/10.1145/1922649.1922658

[80] Kenneth R Koedinger, Albert T Corbett, and Charles Perfetti. 2012. The
Knowledge-Learning-Instruction Framework: Bridging the Science-Practice
Chasm to Enhance Robust Student Learning. Cognitive science 36, 5 (2012),
757–798. https://onlinelibrary.wiley.com/doi/abs/10.1111/
j.1551-6709.2012.01245.x

[81] Janet Kolodner. 1993. What Is Case-Based Reasoning? 3–31 pages. https:
//doi.org/10.1016/b978-1-55860-237-3.50005-4

[82] Neill Korobov and Avril Thorne. 2006. Intimacy and Distancing: Young
Men’s Conversations about Romantic Relationships. Journal of Adolescent Re-
search 21, 1 (2006), 27–55.

[83] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A Study
of the Difficulties of Novice Programmers. SIGCSE Bull. 37, 3 (June 2005),
14–18. https://doi.org/10.1145/1151954.1067453

[84] David Landy and Robert L Goldstone. 2007. How Abstract Is Symbolic
Thought? Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion 33, 4 (2007), 720.

[85] Jean Lave and Etienne Wenger. 1991. Situated Learning: Legitimate Peripheral
Participation. Cambridge University Press.

160

https://doi.org/10.1006/S1045-926X(02)00028-9
https://doi.org/10.1006/S1045-926X(02)00028-9
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1145/1922649.1922658
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2012.01245.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2012.01245.x
https://doi.org/10.1016/b978-1-55860-237-3.50005-4
https://doi.org/10.1016/b978-1-55860-237-3.50005-4
https://doi.org/10.1145/1151954.1067453

[86] Raymond Lister. 2011. Concrete and Other Neo-Piagetian Forms of Reason-
ing in the Novice Programmer. In Proceedings of the Thirteenth Australasian
Computing Education Conference - Volume 114 (Perth, Australia) (ACE ’11).
Australian Computer Society, Inc., AUS, 9–18.

[87] Raymond Lister. 2016. Toward a Developmental Epistemology of Computer
Programming. In Proceedings of the 11th Workshop in Primary and Secondary
Computing Education. Association for Computing Machinery, 5–16. https:
//doi.org/10.1145/2978249.2978251

[88] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John
Hamer, Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate
Sanders, Otto Seppälä, Beth Simon, and Lynda Thomas. 2004. A Multi-
National Study of Reading and Tracing Skills in Novice Programmers. In
Working Group Reports from ITiCSE on Innovation and Technology in Com-
puter Science Education (Leeds, United Kingdom) (ITiCSE-WGR ’04). Asso-
ciation for Computing Machinery, New York, NY, USA, 119–150. https:
//doi.org/10.1145/1044550.1041673

[89] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of
a Relationship between Explaining, Tracing and Writing Skills in Introduc-
tory Programming. , 161 pages. https://doi.org/10.1145/1595496.
1562930

[90] Raymond Lister, Otto Seppälä, Beth Simon, Lynda Thomas, Elizabeth S
Adams, Sue Fitzgerald, William Fone, John Hamer, Morten Lindholm,
Robert McCartney, Jan Erik Moström, and Kate Sanders. 2004. A Multi-
National Study of Reading and Tracing Skills in Novice Programmers. In
ACM SIGCSE Bulletin, Vol. 36. 119–150. https://doi.org/10.1145/
1041624.1041673

[91] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L Whalley, and
Christine Prasad. 2006. Not Seeing the Forest for the Trees: Novice Pro-
grammers and the SOLO Taxonomy. SIGCSE Bull. 38, 3 (June 2006), 118–122.
https://doi.org/10.1145/1140123.1140157

[92] Lei Liu and Cindy E Hmelo-Silver. 2009. Promoting Complex Systems Learn-
ing through the Use of Conceptual Representations in Hypermedia. Journal
of Research in Science Teaching: The Official Journal of the National Association for
Research in Science Teaching 46, 9 (2009), 1023–1040.

[93] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008.
Relationships Between Reading, Tracing and Writing Skills in Introductory
Programming. In Proceedings of the Fourth International Workshop on Comput-
ing Education Research (Sydney, Australia) (ICER ’08). Association for Com-
puting Machinery, New York, NY, USA, 101–112. https://doi.org/10.
1145/1404520.1404531

161

https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/1595496.1562930
https://doi.org/10.1145/1595496.1562930
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/1140123.1140157
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/1404520.1404531

[94] Liz Lyon and Aaron Brenner. 2015. Bridging the Data Talent Gap: Posi-
tioning the iSchool as an Agent for Change. International Journal of Digital
Curation 10, 1 (2015), 111–122.

[95] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Eve-
lyn Eastmond. 2010. The Scratch Programming Language and Environ-
ment. Trans. Comput. Educ. 10, 4, Article 16 (2010), 15 pages. https:
//doi.org/10.1145/1868358.1868363

[96] John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie
Rusk. 2008. Programming by choice: urban youth learning programming
with scratch. In SIGCSE ’08: Proceedings of the 39th SIGCSE technical sympo-
sium on Computer science education (Portland, OR, USA). ACM, New York,
NY, USA, 367–371. https://doi.org/10.1145/1352135.1352260

[97] Jane Margolis and Allan Fisher. 2002. Unlocking the Clubhouse: Women in
Computing. MIT press.

[98] Lauren Margulieux and Richard Catrambone. 2017. Using Learners’ Self-
Explanations of Subgoals to Guide Initial Problem Solving in App Inventor.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research (Tacoma, Washington, USA) (ICER ’17). Association for Computing
Machinery, New York, NY, USA, 21–29. https://doi.org/10.1145/
3105726.3106168

[99] Lauren E. Margulieux, Mark Guzdial, and Richard Catrambone. 2012.
Subgoal-labeled Instructional Material Improves Performance and Trans-
fer in Learning to Develop Mobile Applications. In Proceedings of the Ninth
Annual International Conference on International Computing Education Research
(Auckland, New Zealand) (ICER ’12). ACM, New York, NY, USA, 71–78.
https://doi.org/10.1145/2361276.2361291

[100] Lauren E. Margulieux, Mark Guzdial, and Richard Catrambone. 2013. Sub-
goal labeled worked examples improve K-12 teacher performance in com-
puter programming training. In Proceedings of the 35th Annual Conference of the
Cognitive Science Society, M. Knauff, M. Pauen, N. Sebanz, and I. Wachsmuth
(Eds.). Cognitive Science Society, Austin, TX, 978–983.

[101] Richard E Mayer. 1976. Some Conditions of Meaningful Learning for Com-
puter Programming: Advance Organizers and Subject Control of Frame Or-
der. Journal of educational psychology 68, 2 (April 1976), 143–150. https:
//doi.org/10.1037/0022-0663.68.2.143

[102] Robert McCartney, Jan Erik Moström, Kate Sanders, and Otto Seppälä. 2004.
Questions, Annotations, and Institutions: Observations from a Study of
Novice Programmers. In the Fourth Finnish/Baltic Sea Conference on Computer
Science Education, October 1–3, 2004 in Koli, Finland. Helsinki University of

162

https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1352135.1352260
https://doi.org/10.1145/3105726.3106168
https://doi.org/10.1145/3105726.3106168
https://doi.org/10.1145/2361276.2361291
https://doi.org/10.1037/0022-0663.68.2.143
https://doi.org/10.1037/0022-0663.68.2.143

Technology, Department of Computer Science and Engineering, Laboratory
of Information Processing Science, Finland, 11–19.

[103] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth
Simon, Lynda Thomas, and Carol Zander. 2008. Debugging: A Review of
the Literature from an Educational Perspective. Computer Science Education
18, 2 (2008), 67–92.

[104] Jan Meyer and Ray Land. 2003. Threshold Concepts and Troublesome Knowledge:
Linkages to Ways of Thinking and Practising within the Disciplines. University
of Edinburgh.

[105] Marvin Minsky. 1974. A Framework for Representing Knowledge. Technical
Report. Massachusetts Institute of Technology-AI Laboratory.

[106] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guz-
dial. 2016. Subgoals Help Students Solve Parsons Problems. In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education (Mem-
phis, Tennessee, USA) (SIGCSE ’16). ACM, New York, NY, USA, 42–47.
https://doi.org/10.1145/2839509.2844617

[107] Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. 2015. Sub-
goals, Context, and Worked Examples in Learning Computing Problem
Solving. In Proceedings of the Eleventh Annual International Conference on In-
ternational Computing Education Research (Omaha, Nebraska, USA) (ICER
’15). ACM, New York, NY, USA, 21–29. https://doi.org/10.1145/
2787622.2787733

[108] Laurie Murphy, Sue Fitzgerald, Raymond Lister, and Renée McCauley. 2012.
Ability to ’Explain in Plain English’ Linked to Proficiency in Computer-
Based Programming. https://doi.org/10.1145/2361276.2361299

[109] Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2012. ’Explain in Plain
English’ Questions: Implications for Teaching. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (Raleigh, North Carolina,
USA) (SIGCSE ’12). Association for Computing Machinery, New York, NY,
USA, 385–390. https://doi.org/10.1145/2157136.2157249

[110] Greg L Nelson, Benjamin Xie, and Amy J Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in
CS1. In Proceedings of the 2017 ACM Conference on International Computing
Education Research (Tacoma, Washington, USA) (ICER ’17). Association for
Computing Machinery, New York, NY, USA, 2–11. https://doi.org/
10.1145/3105726.3106178

[111] Fred G Paas. 1992. Training Strategies for Attaining Transfer of Problem-
Solving Skill in Statistics: A Cognitive-Load Approach. Journal of Educational
Psychology 84, 4 (1992), 429.

163

https://doi.org/10.1145/2839509.2844617
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1145/2361276.2361299
https://doi.org/10.1145/2157136.2157249
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/3105726.3106178

[112] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books.

[113] Miranda C Parker, Mark Guzdial, and Shelly Engleman. 2016. Replica-
tion, Validation, and Use of a Language Independent CS1 Knowledge As-
sessment. In Proceedings of the 2016 ACM Conference on International Com-
puting Education Research (Melbourne, VIC, Australia) (ICER ’16). Associ-
ation for Computing Machinery, New York, NY, USA, 93–101. https:
//doi.org/10.1145/2960310.2960316

[114] Dale Parsons and Patricia Haden. 2006. Parsons Programming Puzzles: A
Fun and Effective Learning Tool for First Programming Courses. In Proceed-
ings of the 8th Australasian Conference on Computing Education - Volume 52 (Ho-
bart, Australia) (ACE ’06). Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, 157–163. http://dl.acm.org/citation.cfm?
id=1151869.1151890

[115] Alan J Perlis. 1982. Special Feature: Epigrams on Programming. ACM Sig-
plan Notices 17, 9 (1982), 7–13.

[116] Leo Porter, Mark Guzdial, Charlie McDowell, and Beth Simon. 2013. Success
in Introductory Programming: What Works? Commun. ACM 56, 8 (Aug.
2013), 34–36. https://doi.org/10.1145/2492007.2492020

[117] Judith Preissle and Margaret D Le Compte. 1984. Ethnography and Qualitative
Design in Educational Research. Academic Press.

[118] Vennila Ramalingam and Susan Wiedenbeck. 1998. Development and Vali-
dation of Scores on a Computer Programming Self-Efficacy Scale and Group
Analyses of Novice Programmer Self-Efficacy. Journal of Educational Comput-
ing Research 19, 4 (1998), 367–381.

[119] R Douglas Riecken, Jurgen Koenemann-Belliveau, and Scott P Robertson.
1991. What Do Expert Programmers Communicate by Means of Descriptive
Commenting. In Empirical Studies of Programmers: Fourth Workshop. Ablex
Publishing Corporation, Norwood, New Jersey, 177–195.

[120] Robert S Rist. 1989. Schema Creation in Programming. Cognitive Science 13,
3 (1989), 389–414.

[121] Robert S Rist. 1995. Program Structure and Design. Cognitive Science 19, 4
(1995), 507–562.

[122] Robert S Rist et al. 1986. Plans in Programming: Definition, Demonstration,
and Development. In Empirical Studies of Programmers. 28–47.

[123] Kelly Rivers, Erik Harpstead, and Ken Koedinger. 2016. Learning Curve
Analysis for Programming: Which Concepts Do Students Struggle With?. In

164

https://doi.org/10.1145/2960310.2960316
https://doi.org/10.1145/2960310.2960316
http://dl.acm.org/citation.cfm?id=1151869.1151890
http://dl.acm.org/citation.cfm?id=1151869.1151890
https://doi.org/10.1145/2492007.2492020

Proceedings of the 2016 ACM Conference on International Computing Education
Research (Melbourne, VIC, Australia) (ICER ’16). Association for Computing
Machinery, New York, NY, USA, 143–151. https://doi.org/10.1145/
2960310.2960333

[124] Jorma Sajaniemi and Marja Kuittinen. 2003. Program Animation Based on
the Roles of Variables. In Proceedings of the 2003 ACM Symposium on Software
Visualization (San Diego, California) (SoftVis ’03). Association for Comput-
ing Machinery, New York, NY, USA, 7–ff. https://doi.org/10.1145/
774833.774835

[125] Jorma Sajaniemi and Marja Kuittinen. 2005. An Experiment on Using Roles
of Variables in Teaching Introductory Programming. Computer Science Edu-
cation 15, 1 (2005), 59–82.

[126] Johnny Saldaña. 2016. The Coding Manual for Qualitative Researchers (3 ed.).
SAGE.

[127] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the
Numbers of End Users and End User Programmers. In 2005 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC’05). IEEE,
207–214.

[128] Roger C Schank and Robert P Abelson. 1977. Scripts, Plans, Goals, and Under-
standing: An Inquiry into Human Knowledge Structures. Lawrence Erlbaum.

[129] Carsten Schulte. 2008. Block Model: An Educational Model of Program
Comprehension as a Tool for a Scholarly Approach to Teaching. In Proceed-
ings of the Fourth International Workshop on Computing Education Research (Syd-
ney, Australia) (ICER ’08). Association for Computing Machinery, New York,
NY, USA, 149–160. https://doi.org/10.1145/1404520.1404535

[130] Otto Seppälä, Petri Ihantola, Essi Isohanni, Juha Sorva, and Arto Vihavainen.
2015. Do We Know How Difficult the Rainfall Problem Is?. In Proceedings of
the 15th Koli Calling Conference on Computing Education Research (Koli, Fin-
land) (Koli Calling ’15). Association for Computing Machinery, New York,
NY, USA, 87–96. https://doi.org/10.1145/2828959.2828963

[131] David Williamson Shaffer and Mitchel Resnick. 1999. ”Thick” Authenticity:
New Media and Authentic Learning. Journal of interactive learning research 10,
2 (1999), 195–216.

[132] Herbert A Simon. 1996. The Sciences of the Artificial. MIT Press.

[133] Elliot Soloway. 1985. From problems to programs via plans: The content
and structure of knowledge for introductory LISP programming. Journal of
Educational Computing Research 1, 2 (1985), 157–172.

165

https://doi.org/10.1145/2960310.2960333
https://doi.org/10.1145/2960310.2960333
https://doi.org/10.1145/774833.774835
https://doi.org/10.1145/774833.774835
https://doi.org/10.1145/1404520.1404535
https://doi.org/10.1145/2828959.2828963

[134] Elliot Soloway. 1986. Learning to Program = Learning to Construct Mecha-
nisms and Explanations. Commun. ACM 29, 9 (1986), 850–858.

[135] Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich. 1983. Cognitive strategies
and looping constructs: An empirical study. Commun. ACM 26, 11 (1983),
853–860.

[136] Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming
Knowledge. IEEE Transactions on Software Engineering SE-10, 5 (Sept. 1984),
595–609.

[137] Elliot Soloway, Kate Ehrlich, Jeffrey Bonar, and J. Greenspan. 1982. What
do novices know about programming? In Directions in Human-Computer
Interaction, Andre Badre and Ben Schneiderman (Eds.). Ablex Publishing,
87–122.

[138] Elliot M Soloway and Beverly Woolf. 1980. Problems, Plans, and Programs.
https://doi.org/10.1145/800140.804605

[139] Juha Sorva. 2012. Visual Program Simulation in Introductory Programming
Education. Aalto University. https://aaltodoc.aalto.fi/handle/
123456789/3534

[140] Juha Sorva. 2013. Notional Machines and Introductory Programming Educa-
tion. Transactions on Computing Education 13, 2, Article 8 (July 2013), 31 pages.
https://doi.org/10.1145/2483710.2483713

[141] Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic
Program Visualization Systems for Introductory Programming Education.
ACM Transactions on Computing Education 13, 4 (2013), 15.1– 15.64. https:
//doi.org/10.1145/2490822

[142] Juha Sorva and Teemu Sirkiä. 2010. UUhistle: A Software Tool for Visual
Program Simulation. In Proceedings of the 10th Koli Calling International Con-
ference on Computing Education Research (Koli, Finland) (Koli Calling ’10). As-
sociation for Computing Machinery, New York, NY, USA, 49–54. https:
//doi.org/10.1145/1930464.1930471

[143] James Clinton Spohrer. 1989. MARCEL: A Generate-Test-and-Debug (GTD) Im-
passe/Repair Model of Student Programmers. Ablex Publishing.

[144] James C. Spohrer and Elliot Soloway. 1985. Putting it All Together is Hard
for Novice Programmers. In Proceedings of the IEEE International Conference
on Systems, Man, and Cybernetics. Vol. March. IEEE.

[145] James C Spohrer, Elliot Soloway, and Edgar Pope. 1985. A Goal/Plan Anal-
ysis of Buggy Pascal Programs. Human–Computer Interaction 1, 2 (June 1985),
163–207. https://doi.org/10.1207/s15327051hci0102_4

166

https://doi.org/10.1145/800140.804605
https://aaltodoc.aalto.fi/handle/123456789/3534
https://aaltodoc.aalto.fi/handle/123456789/3534
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2490822
https://doi.org/10.1145/1930464.1930471
https://doi.org/10.1145/1930464.1930471
https://doi.org/10.1207/s15327051hci0102_4

[146] James G. Spohrer and Elliot Soloway. 1986. Analyzing the high frequency
bugs in novice programs. In Empirical Studies of Programmers Workshop, Elliot
Soloway and S. Iyengar (Eds.). Ablex, 230–251.

[147] Leigh Ann Sudol-DeLyser. 2015. Expression of Abstraction: Self Explana-
tion in Code Production. In Proceedings of the 46th ACM Technical Sympo-
sium on Computer Science Education (Kansas City, Missouri, USA) (SIGCSE
’15). Association for Computing Machinery, New York, NY, USA, 272–277.
https://doi.org/10.1145/2676723.2677222

[148] John Sweller. 1988. Cognitive load during problem solving: Effects on learn-
ing. Cognitive Science 12 (1988), 257–285. Theory behind worked examples.

[149] Donna Teague. 2015. Neo-Piagetian Theory and the Novice Programmer. Ph.D.
Dissertation. Queensland University of Technology. http://eprints.
qut.edu.au/86690/

[150] Donna Teague and Raymond Lister. 2014. Longitudinal Think Aloud Study
of a Novice Programmer. In Proceedings of the Sixteenth Australasian Comput-
ing Education Conference - Volume 148 (Auckland, New Zealand) (ACE ’14).
Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 41–50.
http://dl.acm.org/citation.cfm?id=2667490.2667495

[151] Allison Elliott Tew and Mark Guzdial. 2010. Developing a Validated Assess-
ment of Fundamental CS1 Concepts. In Proceedings of the 41st ACM Techni-
cal Symposium on Computer Science Education (Milwaukee, Wisconsin, USA)
(SIGCSE ’10). Association for Computing Machinery, New York, NY, USA,
97–101. https://doi.org/10.1145/1734263.1734297

[152] Lynda Thomas, Mark Ratcliffe, and Benjy Thomasson. 2004. Scaffolding with
Object Diagrams in First Year Programming Classes: Some Unexpected Re-
sults. In Proceedings of the 35th SIGCSE Technical Symposium on Computer Sci-
ence Education (Norfolk, Virginia, USA) (SIGCSE ’04). Association for Com-
puting Machinery, New York, NY, USA, 250–254. https://doi.org/10.
1145/971300.971390

[153] Vesa Vainio and Jorma Sajaniemi. 2007. Factors in Novice Programmers’
Poor Tracing Skills. SIGCSE Bull. 39, 3 (June 2007), 236–240. https://
doi.org/10.1145/1269900.1268853

[154] Swaroop S Vattam, Ashok K Goel, Spencer Rugaber, Cindy E Hmelo-Silver,
Rebecca Jordan, Steven Gray, and Suparna Sinha. 2011. Understanding Com-
plex Natural Systems by Articulating Structure-Behavior-Function Models.
Journal of Educational Technology & Society 14, 1 (2011), 66–81.

[155] Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at
Tracing, Explaining and Code Writing Skills in the Novice Programmer. In
Proceedings of the Fifth International Workshop on Computing Education Research

167

https://doi.org/10.1145/2676723.2677222
http://eprints.qut.edu.au/86690/
http://eprints.qut.edu.au/86690/
http://dl.acm.org/citation.cfm?id=2667490.2667495
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1145/971300.971390
https://doi.org/10.1145/971300.971390
https://doi.org/10.1145/1269900.1268853
https://doi.org/10.1145/1269900.1268853

Workshop (Berkeley, CA, USA) (ICER ’09). Association for Computing Ma-
chinery, New York, NY, USA, 117–128. https://doi.org/10.1145/
1584322.1584336

[156] Lev S. Vygotsky. 1978. Socio-cultural theory. Mind in society (1978).

[157] April Y. Wang, Ryan Mitts, Philip J. Guo, and Parmit K. Chilana. 2018. Mis-
match of Expectations: How Modern Learning Resources Fail Conversa-
tional Programmers. In Proceedings of the 2018 CHI Conference on Human Fac-
tors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for
Computing Machinery, New York, NY, USA, 1–13. https://doi.org/
10.1145/3173574.3174085

[158] David Weintrop and Uri Wilensky. 2015. To Block or not to Block, that Is
the Question: Students’ Perceptions of Blocks-based Programming. In Pro-
ceedings of the 14th International Conference on Interaction Design and Children.
199–208.

[159] Daniel S Weld. 1983. Explaining Complex Engineered Devices. Technical Report.
Bolt Beranek and Newman Inc Cambridge MA.

[160] Jacqueline Whalley, Christine Prasad, and P. K. Ajith Kumar. 2007. Decod-
ing Doodles: Novice Programmers and Their Annotations. In Proceedings of
the Ninth Australasian Conference on Computing Education - Volume 66 (Bal-
larat, Victoria, Australia) (ACE ’07). Australian Computer Society, Inc., AUS,
171–178.

[161] Roger D Wimmer and Joseph R Dominick. 2013. Mass Media Research. Cen-
gage learning.

[162] David Wood, Jerome S Bruner, and Gail Ross. 1976. The Role of Tutoring in
Problem Solving. Journal of child psychology and psychiatry 17, 2 (1976), 89–
100.

[163] Benjamin Xie, Dastyni Loksa, Greg L Nelson, Matthew J Davidson, Dong-
sheng Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J
Ko. 2019. A Theory of Instruction for Introductory Programming Skills. Com-
puter Science Education 29, 2-3 (2019), 205–253.

[164] Benjamin Xie, Greg L. Nelson, and Amy J. Ko. 2018. An Explicit Strategy
to Scaffold Novice Program Tracing. In Proceedings of the 49th ACM Tech-
nical Symposium on Computer Science Education (Baltimore, Maryland, USA)
(SIGCSE ’18). Association for Computing Machinery, New York, NY, USA,
344–349. https://doi.org/10.1145/3159450.3159527

168

https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1145/3173574.3174085
https://doi.org/10.1145/3173574.3174085
https://doi.org/10.1145/3159450.3159527

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Overview of the Thesis
	Background: Code's structure, behavior, and function
	Understanding the challenge: Why novices avoid code tracing
	Novice rationales for sketching and tracing, and how they try to avoid it
	Summary of methods and findings:

	“I’m not a computer”: How identity informs value and expectancy during a programming activity
	Summary of methods and findings:

	Meeting the challenge: Purpose-first programming
	How it's designed
	Why it might work
	How I evaluated it and what I found

	Implications for programming learning

	Using the Structure Behavior Function Framework to Understand Programming Learning
	The Structure Behavior Function framework
	What is the Structure Behavior Function framework?
	Structure is the parts of the artifact and their arrangement
	Function is the purpose of the artifact
	Behavior is the mechanism by which the artifact works

	How do structure, behavior, and function interact?
	Where did SBF originate?
	Using SBF to model understanding of engineered devices
	Using SBF to model the design process
	Similarities among SBF definitions
	Differences between SBF definitions

	What do we know about SBF in learning environments?
	SBF can be a framework to assess learning
	There are novice-expert differences in SBF understanding
	Using SBF to design learning activities

	What are Structure, Function, and Behavior in the context of programming?
	Structure of a program
	From a technical perspective
	From a human perspective
	Conclusion

	Behavior of a program
	From a technical perspective
	From a human perspective
	Conclusion

	Function of a program
	From a technical perspective
	From a human perspective
	Conclusion

	Connections between structure, function, and behavior.
	Tracing code: structure to behavior
	Explaining code: structure to function
	Writing code: function to structure

	Three theories of programming instruction through an SBF lens
	The ``Neo-Piagetian" hierarchy of programming skills
	Description
	Through an SBF lens

	Xie et al.'s theory of programming instruction
	Description
	With an SBF lens

	Schulte's Block Model
	Description
	With an SBF lens

	Discussion

	Conclusion

	Novice Rationales for Sketching and Tracing, and How They Try to Avoid It
	Introduction
	Background
	Tracing and other ways novices read code
	When and why do students sketch?
	What external representations are common in novice programming?

	Method
	Class observations
	Interviews

	Why sketch (or not)?
	Goal and pattern recognition
	Identifying a goal
	Recognizing a pattern
	Goal and pattern recognition was not reliable

	Anticipated cognitive load
	Complex variable interactions
	Arithmetic or other math-like cues

	Problem-solving progression: From goal search to tracing (and re-tracing)

	Why not sketch like the instructor?
	Seen as unnecessary and time-consuming
	Visual details seem distant from code
	Boxes are reserved for another purpose

	What do novice sketches include?
	Organizing and structuring of traces
	Organizing around loop iterations
	Organizing around annotated lists

	Persistence of past values and calculations
	Anchoring with visible values and structures
	Re-writing initial values
	Using code structure to anchor tracing

	Discussion
	Search for goals and patterns is primary
	Variables are treated differently based on context
	Past values are retained
	Variables are un-boxed

	Limitations and threats to validity
	Conclusion

	“I’m not a computer”: How Identity Informs Value and Expectancy During a Programming Activity
	Introduction
	Background
	Identity, programming, and applications
	The Eccles expectancy-value model of achievement choice
	Tracing code to solve problems

	Method
	Task
	Problems
	Participants
	Interview Protocol
	Analysis

	Case Studies
	Charles: I’m not a computer
	Code reading is confusing, and I won’t improve
	Why not just execute the code?
	It’s great that we don’t do this type of work in the iSchool

	Luke: I'm not a programmer
	I don’t remember this type of stuff
	The only point of these problems is to learn the language
	I use code to achieve goals I care about

	Discussion
	Previous achievement-related experiences, Interpretations, and Affective reactions and memories
	Goals and general self schemata
	Activity-specific ability, self-concept, and expectations for success
	Subjective task value: Interest-enjoyment value
	Subjective task value: Attainment value
	Subjective task value: Utility value
	Subjective task value: Relative cost

	Conclusion

	Defining, Building, and Evaluating Purpose-First Programming
	Introduction
	Summary of contributions
	I investigated the response of a variety of novice programmers to purpose-oriented support
	I outlined a novel learning approach that emphasizes code's purpose
	I designed a proof-of-concept curriculum, implementing the approach
	I ran a lab study to evaluate novices' motivation for and use of the approach

	Motivation for the approach
	Conversational programmers and end-user programmers want to understand the purpose of complex code, but also want to avoid detailed semantics
	Programming tools for non-developers often avoid industry- standard code, so they don't provide disciplinary authenticity
	Plans may be a more motivating way for conversational programmers to think about code
	Other systems have provided plan- or example-based support

	Formative study: Investigating the responses of novice programmers to purpose-oriented assistance
	Focus group results
	Connie the conversational programmer
	Alyssa the analyst

	Survey results
	Conclusions from the formative study

	Defining Purpose-first programming
	Identifying authentic, domain-specific programming plans
	Expanding the definition of a programming plan to serve instructional needs
	A plan is a frame with slots
	A plan has subgoals as well as a goal
	Slot contents are described with domain-specific concepts

	Providing "glass-box" scaffolding to support learners as they work with plans

	Designing the purpose-first programming proof-of-conceptcurriculum
	Building a set of plans
	Choosing a domain
	Identifying plans

	Creating activities
	Choosing examples and tasks
	Sequencing activities

	Selecting a platform
	Designing purpose-first support
	Highlighting demarcates plans and slots
	Practice activities support learners in tailoring plans
	Examples and plan instruction are linked
	Staged code writing supports learners in assembling and tailoring plans

	How this prototype meets the design goals
	Purpose-first programming is brief
	Purpose-first programming prioritizes purpose
	Purpose-first programming is realistic to the work of programmers

	Method
	Study Design
	Recruitment and participants
	Recruitment criteria
	Participants and their goals

	Evaluation of learners' problem-solving
	Learners were able to complete scaffolded writing, debugging, and code explanation tasks
	Participants used purpose-first scaffolds to apply plan knowledge and complete tasks
	Participants used goal and subgoal labels to complete tasks, some tasks more than others
	Some participants used subgoals to reason about code, while others focused on code's identifiers and control flow
	Participants were able to identify and use relevant plan reference pages for help
	During code writing, participants could identify information about how to fill plan slots
	Failure to find relevant information occurred after shallow understanding of or when examples were too dissimilar from an attempt

	Discussion

	Evaluation of learners' motivation
	Analysis approach
	Participants were motivated to learn with purpose-first programming in the future
	Learners perceived the purpose-first programming curriculum as having low cognitive load
	Plans allow learners to focus on less
	Plans show how to apply knowledge
	Self-reported cognitive load ranged from moderately low to moderately high
	Theme summary

	Participants felt success and enjoyment, which came from understanding and completing problems
	Participants largely felt successful, despite struggles and resource use
	Feeling that they understood and completed activities was associated with participants' success
	Purpose-first programming was enjoyable, especially when participants were successful
	Theme summary

	Participants felt that purpose-first programming was for beginners and those who need extra help
	Many participants, particularly conversational programmers, had low self-efficacy for programming
	Participants felt that plans were best for learners who struggle
	Participants felt that plans were more appropriate for beginners
	Theme summary

	Participants believed purpose-first programming gave them conceptual, high-level knowledge
	Participants felt that purpose-first programming helped them learn general, not detailed, knowledge
	Conversational programmer participants were interested in basic understanding of code.
	Theme Summary

	Participants found curricular content realistic and applicable
	Participants found web scraping interesting and applicable
	Realistic examples reinforced the perception that content was useful and relevant
	Theme summary

	Code tracing visualizations are unhelpful if confusing, but useful for deep knowledge if understandable
	Some participants found code tracing visualizations difficult to understand and apply, and prefer plans
	Others found code tracing visualizations to be a helpful method for gaining deeper knowledge, after learning with plans
	Theme summary

	Discussion

	Implications for future curriculum design
	There are opportunities to streamline activities and reduce user error
	Clear indication of success can contribute to motivation
	Fading of scaffolding could allow purpose-first programming to be more broadly used

	Conclusion

	Summing Up and Looking Forward
	Contributions of this thesis
	Novices don't trace code because it's cognitively challenging and has low value
	Learning domain-specific programming plans can motivate both conversational and end-user programmers
	Considering both cognition and value can lead to effective approaches

	Future work
	What learner characteristics are correlated with a benefit from purpose-first programming?
	How can purpose-first programming activities fit into an instructional sequence?
	Can purpose-first programming activities improve self-efficacy?
	How can learners build on a foundation of plan knowledge?

	What technology can support development of purpose-first programming curricula at scale?
	What platform could support purpose-first programming curricula in a variety of domains?
	Can data mining methods identify plans?

	BIBLIOGRAPHY

