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Antimicrobial resistant infections pose a continued threat to human and animal health 

globally. This work critically evaluated antimicrobial resistance genes (ARGs) present in manure 

to better quantify and assess the potential human and animal health risks associated with 

exposure to manure. We first present a systematic review and meta-analysis that identified trends 

in ARG abundances in cattle manures. We found that the lack of biological replication and 

insufficient overlap of gene targets between studies prohibited quantitative cross-study 

comparisons. The meta-analysis identified important methodological gaps and will inform the 

design of future studies that more effectively and rigorously evaluate ARG abundances in 

manure.  

To address the low-throughput limitation of quantitative PCR (qPCR) approaches to 

quantify gene concentrations, we developed a novel metagenomic gene quantification approach 

that is achieved via spike-in standards. We found this approach performed comparably to qPCR 

when applied to specific ARGs yet facilitates the absolute quantification of all ARG 

concentrations in metagenomes. We then applied this quantitative metagenomic approach to 

better identify how ARG abundance and microbial community structure vary in different stored 

manures. With a cross section of manure collected from dairy farms during land application, we 

found anaerobic digestion treatments correlated with organism and ARG concentrations. This 

demonstrated that manure management, including anaerobic digestion, shapes manure microbial 
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xiv 

communities.  Finally, to address the complexity of microbial interactions in soil after land 

application of manures, we introduce a novel mathematical modeling approach. We demonstrate 

how the approach can extract microbial network dynamics from time-series observations of 

microbial communities and outline how the approach can be used to quantify the impact of 

disturbances, like land application, on microbial community dynamics.  

This dissertation contributes important new tools to better quantify risks of ARG 

pollution and dissemination in the environment and clarifies the role of manure management in 

mitigating ARG abundances. Ultimately this work will better inform policy for manure 

management and land application to reduce the risk of ARG dissemination in the environment 

and consequently reduce the human and veterinary cost of antimicrobial resistance.  
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1.1 Antimicrobial resistance genes: an emerging contaminant in livestock manures 

Following the discovery and commercialization of antimicrobials, life expectancy at birth 

increased by 5-10 years in the United States as the leading causes of death shifted from 

communicable diseases to degenerative diseases such as heart disease and cancer (1). However, 

as the use of these drugs became widespread, so too did the prevalence of antimicrobial 

resistance (2). Microorganisms developed resistance to antimicrobials through both genetic 

mutations and the transfer of genes from proximate microbes. 

 In addition to treating microbial infections in humans, antimicrobials are used widely in 

livestock rearing. Over 11.5 million kilograms of antimicrobials are purchased annually by the 

American livestock industry (3). The widespread use of antimicrobials by this industry poses 

risks to human health. For example, while methicillin-resistant Staphylococcus aureus (MRSA) 

was initially thought to only originate in human health care settings, community spread of 

MRSA has been observed since the 1990s. Soon thereafter, livestock-associated multi-drug 

resistant strains of MRSA were identified and found to be prevalent in livestock-exposed human 

populations such as farmers (4). As a result of observations like this, livestock operations have 

been under scrutiny as potential hot spots for the emergence and spread of antimicrobial resistant 

bacteria (ARB).  
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Research on ARB and antimicrobial resistance genes (ARGs) in environmental systems 

has skyrocketed over the last decade. For example, between the years 2009-2016, the USDA's 

National Institute of Food and Agriculture (NIFA) Agriculture and Food Research Initiative 

(AFRI) awarded over $82 million USD in food safety research specifically focused on ARGs and 

ARB in agricultural environments (5). Despite the extensive number of research projects, a clear 

consensus on the role of manure management (e.g., anaerobic digestion, storage, and land 

application) on mitigating ARG pollution remains elusive (6–10). To identify limitations that are 

confounding the understanding of ARG fate through manure management systems, Chapter 2 of 

this dissertation qualitatively and quantitatively summarizes literature in a systematic review and 

meta-analysis of ARGs quantified from field-scale studies.  

1.2 Methods for detecting and quantifying ARG phenotypes and genotypes 

Methods for studying ARGs and ARB in environmental settings can be broadly classified 

into phenotypic and genotypic approaches (Figure 1). Phenotypic approaches observe the 

expression of the resistance trait (phenotype) in an organism, while genotypic approaches 

identify gene sequences known to confer resistance. Since phenotypic approaches rely on the 

expression of ARGs, these approaches are culture dependent. Although culture-dependent 

approaches, such as susceptibility testing, have advanced knowledge of ARG and ARB 

prevalence in farm settings (11, 12), the approach is limited to culturable ARB. Specifically, 

susceptibility testing typically targets genera or species of organisms with clinical relevance such 

as Campylobacter or Escherichia coli (11).  

Genotypic approaches are culture independent and are not biased to only include 

culturable, targeted organisms. PCR-based tools such as quantitative PCR (qPCR) identify ARGs 

using primer and probe sequences. qPCR assays have advanced the understanding of ARG fate 

in the environment; however the approach only targets a few genes per assay. Metagenomic 
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sequencing facilitates simultaneous screening of all documented resistant genotypes but is 

limited to providing abundances relative to universal housekeeping genes, including 16S rRNA 

genes, rather than gene concentrations in units of gene copies per sample mass or volume. 

Chapter 3 of this dissertation presents a novel quantitative, gene-level metagenomic approach 

that facilitates quantifying the concentration of all documented ARGs in complex microbiomes 

to overcome methodological barriers of current genotypic approaches.  

 
Figure 1-1: Summary of tools for detecting or quantifying ARG and ARB phenotypes and 

genotypes 

 

1.3 Farm management practices shaping ARG occurrence in land applied manure 

The USDA estimates that U.S. livestock annually produces over 500 million tons (wet 

weight) of manure to be land applied (13). It is therefore critical to understand how different 

manure management systems impact the prevalence and abundance of ARGs before the manure 

is land applied. Both farm characteristics and manure handling can shape microbial communities 
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and ARG abundances (14). Some farms employ physical and biological processes such as solid-

liquid separation, pasteurization, and anaerobic digestion (15).  

Several recent literature reviews have noted the limited number of field-scale studies on 

anaerobic digestion for ARB and ARG mitigation in manure systems (16–18). One lab-scale 

study tracked 10 ARGs through anaerobic digesters with qPCR and found gene concentrations 

were stable (19). Another bench-scale study using metagenomic sequencing found that multi-

drug, peptide, tetracycline, and aminoglycoside resistance genes dominated resistance profiles 

before and after anaerobic digestion. Comparing four biological replicates, the study 

demonstrated how variability in manure microbiomes between seasons and farms can lead to 

different outcomes of anaerobic digestion on ARG abundances (20). Wallace et al. studied 

seasonal variation in ARGs through a full-scale advanced anaerobic digestion system with pre-

digestion pasteurization and found that the abundances of two tetracycline ARGs did not differ 

significantly between raw and digested manures, but the study found small reductions in the two 

sulfonamide ARGs targeted (21). These studies have demonstrated many ARGs persist during 

anaerobic digestion but demonstrated inconsistent observations in the role of digestion on ARG 

abundances both within and across studies.  

Anaerobic digestion is not the final barrier for manure prior to land application; manure is 

typically stored in earthen or concrete pits or lagoons. The relative roles of storage and anaerobic 

digestion in mitigating ARGs are not known. Chapter 4 of this dissertation explores the impact of 

anaerobic digestion and storage on dairy manure microbial communities and ARGs in a cross-

section of dairy farms in the United States.  

1.4 Modeling and predicting microbial interactions in manure-amended soils  

Following storage, manures are land applied to restore organic carbon, nitrogen, and 

phosphorous to crop lands. Some field-scale studies have shown that the use of manure and 
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wastewater biosolids amendments have enriched soil in antimicrobial resistance (22, 23). Other 

studies, however, have found that over time, soil ARG levels return to pre-land application levels 

(24, 25). These conflicting observations highlight the complexity of interactions between soil and 

manure microbiomes. 

The public health impacts of ARGs in land applied manures are not well understood (13). 

There is concern that pathogens residing in soil can acquire ARGs from manure microbiomes 

through horizontal gene transfer (HGT). The newly resistant pathogens could then contaminate 

food and water (26–28). Soil harbors a diverse and dynamic microbiome containing naturally 

occurring ARGs (29). Early modeling work demonstrated that elevated numbers of ARB 

increase the probability of HGT events (30). However, it is still not possible to monitor or detect 

HGT in soil environments (31) so the prevalence of HGT in agricultural soil microbial 

communities is not known. 

Quantifying the rate of HGT is critical for assessing risk of gene transfer events in the 

environment. To combat the challenge of in situ HGT detection, a number of systems biology 

and mathematical modeling concepts have been proposed using mass-action (30, 32), agent-

based (33), or game theory frameworks (34). However, these models simulate microbial 

communities or populations and are not based on empirical evidence, which limits their practical 

application for risk management. Data-driven models, which infer system dynamics from time 

series observation of real microbiomes, are needed to assess risks of HGT to understand risk of 

pathogens acquiring ARGs and inform policies for land application. Chapter 5 of this dissertation 

outlines a data-driven mathematical framework for quantifying and predicting HGT events.  

1.5 Dissertation summary 

Quantifying the fate of AMR gene released into the environment is imperative to inform 

necessary mitigation strategies. The results from this dissertation will provide tools for 
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understanding the scale of ARGs in different environments, identify remaining knowledge gaps 

of manure management’s role in ARG mitigation, and better quantify risks after ARGs and ARB 

are released via land application. 
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ABSTRACT 

We summarize the last 15 years of studies focused on quantifying antimicrobial resistance genes 

(ARGs) in dairy and beef farm samples and identified common study design features, gene 

targets, and sample types. ARGs conferring resistance to sulfonamide and tetracycline drug 

classes were most commonly targeted and those in the beta-lactam drug class were most often 

found to be below method detection limits. Samples originating from cows treated with 

antimicrobials had higher concentrations than samples derived from control cows although 

different patterns were observed between studies and sample types. Similarly, manure-treated 

soils have higher ARG abundances than control soils but were target and study-specific. Future 

work on ARG abundances in field samples should include cross-sectional design elements to 

better quantify within-study variation.  

2.1 Introduction 

While the emergence and increasing prevalence of antimicrobial resistance bacteria 

(ARB) in clinical settings has evident implications to human health (1), consensus has not been 

reached on the public health risks associated with the prevalence of ARB in agricultural 

environments. Some literature reviews argue that contamination originating from livestock 

wastes poses a significant threat to resistance in the human population (2–4). Others, however, 
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argue that human health risks associated with land application are trivial relative to other daily 

life exposures and interventions targeting land application would likely result in insignificant 

benefits (5). One possible explanation for the lack of consensus across studies is that studies and 

review papers often compare antimicrobial resistance genes (ARG) abundances between 

different species of livestock (2–4, 6); different livestock species have distinctly different 

microbiomes (7) and different types of animals are administered different antimicrobials (8).  

In the United States, an estimated 1.23 billion tons (wet weight) of manure is produced 

annually, with dairy and beef accounting for about half of nitrogen and about 40% of phosphorus 

produced from all livestock manure (9). Cattle farms, including dairy and beef, tend to be more 

decentralized than hog and poultry operations (10). As a result, the risks associated with ARGs 

originating form of cattle manure are more geographically widespread than those of other 

animals. Moreover, antimicrobials used in the dairy and beef industry in the United States 

overlap with medically important antibiotics used in human medicine (11).  

Meta-analyses are important tools for quantitatively assessing the consensus across 

studies. For instance, a meta-analysis of ARGs in lake and river systems demonstrated that 

quantitative PCR (qPCR) was the most common tool for quantifying resistance in these 

environments and that genes conferring tetracycline and sulfonamides resistances were most 

frequently targeted (12). Another meta-analysis compared antimicrobial use interventions (13) 

and found statistically significant correlations between a ban on using glycopeptide 

antimicrobials (e.g., vancomycin) and vanA gene prevalence in human and animals but no effect 

between beta-lactamase and most tetracycline ARG abundances and interventions with the 

respective antibiotics (13).   
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The purpose of this systematic review and meta-analysis was to quantitatively analyze 

studies measuring abundances of ARGs in bovine manure samples to identify trends in ARG 

abundances in the beef and dairy industries. The results of the study can inform research 

directions and study designs and ultimately aid in reaching consensus on the public health risks 

associated with ARGs in cattle manures. 

2.2 Materials and Methods 

2.2.1 Systematic Search approach 

We first conducted a systematic literature review to collect data on ARGs in manure, fecal, and 

soil samples from dairy and beef farms. The systematic search involved first identifying ten 

articles known to contain data relevant to our study objectives (Table A-1). The purpose of the 

ten studies, we refer to as known relevant articles (KRAs), was to test different sets of search 

terms in various databases and identify the search criteria that find all the KRAs present in the 

given database. The KRA list was compiled to identify studies measuring ARG abundances in a 

variety of bovine sample types including fecal, digester, compost, and stored manures.  

We used three databases to collect articles for analyses: PubMed (PM), Scopus (SC), and 

AGRICOLA (AG). The first iteration of the search included all relevant search terms assigned to 

each KRA. Then, several search iterations were performed using additional search term 

synonyms. Final search iterations were considered successful when all KRAs available in the 

database were returned. These final search iterations and the dates on which they were run are 

listed in Table A-2. 

The articles that resulted from the final search were sorted to remove duplicates and titles 

and abstracts were reviewed for relevance. Studies were considered relevant if they performed 

qPCR to quantify ARGs in dairy or beef feedlot environmental samples. The applied exclusion 
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criteria included: culture-based studies, investigations utilizing a lab-scale application or 

treatment, studies not utilizing standard-based qPCR techniques, and papers written in a 

language other than English. If a review of the title and abstract was not adequate to assess 

inclusion criteria, the entire article was reviewed. 

2.2.2 Data Collection 

For the purpose of this analysis, a sample from a study was defined as ‘unique’ if it 

originated from independent sampling sites, represented different sample types within a farm or 

site, or was collected at the beginning and end of a longitudinal study. Intermediate data points 

from longitudinal studies were not recorded. Each unique sample identified in the collected 

articles was labeled and recorded. Once all unique samples from a study were identified, the 

gene targets and ARG abundances were recorded. The mean values of biological and technical 

replicates were recorded when available; in some cases, only median values were available and 

were extracted for this study. Web Plot Digitizer (https://automeris.io/WebPlotDigitizer/) was 

used to extract data presented in a graphical format. When we were unable to extract data from a 

figure, such as when data were presented as a heat map, when sample points overlapped, or when 

stacked bar charts were illegible, we reached out to the manuscript corresponding authors. 

Specifically, we emailed a request for raw data and at least one follow-up email was sent when 

no response was received.  

Various metadata were recorded for each unique sample including primer references, 

extraction kits and manufacturers, qPCR reagents, sample types (soil, feces, etc.), animal types 

(dairy, beef, unspecified), and the country where the study was conducted. Samples classified as 

feces were collected before fecal matter interacted with the environment. For the purpose of this 

study, manure was defined as a mix of feces, urine and bedding that was collected from barn 
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floors, manure storages, lagoon, manure stockpiles, etc. Different studies employed different 

names for common gene targets; we recorded the names for each gene target according to the 

Comprehensive Antibiotic Resistance Database (CARD, (14)). The CARD ontology was also 

used to leverage relationships between target genes including “ARG Family” and “target drug 

class” that describe genotypically and phenotypically related targets, respectively (Table A-3). 

The ARG primer references listed by the studies were not always the original source of the 

primers. We therefore traced back to the original manuscripts that described primer designs and 

reference those in our reporting. 

2.2.3 Data Analysis 

To compare the results from studies addressing similar research questions, each study was 

assigned at least one study design feature (Table 2-1). “Antibiotic-control” studies compared 

ARG abundances in samples derived from antibiotic-treated cows to samples derived from non-

antibiotic treated cows. “Amendment-control” studies compared soils in fields where manure 

was applied to control soils without manure amendment. Studies were identified as “Impact-

control” studies when the ARG abundances in soils from pastures or barn environments were 

compared to ARGs in soils from control ‘pristine’ areas nearby the farm site. “Exploratory/Farm 

Survey” studies compared multiple locations within a manure management system to study the 

dissipation of ARGs within farms. A single study could include multiple study design features. 

Studies were classified as “longitudinal” and/or “cross-sectional” depending on the sampling 

approach. Longitudinal sampling approaches quantified ARGs at multiple time points for 

specific locations. Cross-sectional studies were defined in this study as studies that compared 

two or more farms.  Several studies analyzed samples from other animals, but those data were 

not recorded.  
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Response ratios (RR) between control samples and treatment samples were calculated as 

the natural log of the ratio of mean ARG abundances reported in the study following Hedges et 

al. 1999 (15). This approach has been used in environmental ecology meta-analyses to track, for 

example, the impacts of fertilizers and genes involved in nitrogen cycling (16) and impacts of 

aquaculture on species diversity (17). Many of the studies reporting ARGs did not consistently 

report or fully explain measures of variance, such as standard error or standard deviation. 

Consequently, variances were not used for the RR analyses. Response ratio calculations were 

performed in R (version 4.0.2) and GGplot2 (Version 3.3.2) was used for data visualization. 

2.3 Results and Discussion 

2.3.1 Summary of extracted papers 

At the conclusion of the systematic review, 43 peer-reviewed studies were identified (Table 2-1) 

that measured antimicrobial resistance gene abundances with standard qPCR on field-scale 

samples originating from bovine farms (dairy and beef). Almost half (20) of the studies were 

conducted in the United States, followed by 7 from Canada, 6 from China, and 3 studies that did 

not explicitly state the country (Table 2-1). Publication years ranged from 2007-2020, with most 

papers published between 2014-2018 (24 articles).  
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Table 2-1: Studies meeting meta-analysis inclusion criteria organized by study design features. 

Study (Ref.) Country Farm Samples ARG Targets 

Study Designs Assigned, 

Summary of data Extracted 

Antibiotic-Control (ABX-Control) Studies 

Alali2009 (24) United States nondairy feces CMY-2 

Longitudinal, ABX-control. 

Compared fecal shedding between different ceftiofur 

treatment regimens and control over 27-day period. 

Beukers2018 (25) Canada 

nondairy, 

dairy feces 

CTX-M, ermA, ermB, 

ermC, ermF, mel, qnrS, 

sul1, sul2, TEM-1, 

tet(A), tet(B), tetM, 

tetO, tetQ, tetW 

Cross-Section, ABX-control.  

Compared fecal composites from different feedlots 

including conventional and RWA feedlots 

Boyer2012 (26) NR dairy feces CMY-2 

ABX-control. 

Compared fecal shedding between ceftiofur-treated 

and untreated dairy cows 

Chen2008 (27) NR nondairy feces 

ermA, ermB, ermC, 

ermF, ermT, ermX, 

tet(A/C), tet(G), 

tet(RPP) 

Cross-Section, ABX-control.  

Compared fecal composites from steers with tylosin in 

feed to control composite fecal samples from control. 

Feng2020 (28) United States dairy feces tetQ, mel, cfxA 

Longitudinal, ABX-control. 

Compared fecal abundances in dairy cows treated with 

pirlimycin hydrochloride, ceftiofur, and control, 

untreated cows over 2 weeks.  

Holman2019 (29) Canada nondairy feces 

str, ROB, TEM, ermA, 

ermX, sul2, tet(C), 

tet(H), tetM, tetW, tetC, 

tetH 

Longitudinal, ABX-control. 

Compared fecal shedding between different 

Oxytetracycline-treated, Tulathromycin-treated, and 

control cows over 34-day period. 

Kanwar2014 (30) United States nondairy feces 

CMY-2, CTX-M, tet(A), 

tet(B) 

Longitudinal, ABX-control. 

Compared fecal shedding between different ABX 

treatment regimens and control over 26-day period. 

Keijser2019 (31) Germany nondairy feces tetM, mel, floR 

Longitudinal, ABX-control. 

Compared fecal shedding between different 

oxytetracycline (OTC) treatment regimens and control 

over 42-day period. 

Kyselkova2013 

(32) Canada dairy feces tetQ, tetW, tetZ 

Microcosm study. ABX-control. 

Data extracted from raw manure sample collected 

from one healthy and one Oxymycine-treated dairy 

cow 
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Kyselkova2015 

(33) 

Czech 

Republic dairy 

feces, manure, 

soil, never appl, 

amended soil, soil 

unspecified tetM, tetQ, tetW, tetY 

Soil Cross-Section, Amendment Control. ABX-

Control. – within-farm study? 

Compared manure before and 8-days after ABX 

treatment, calf samples, and pre-birth heifer samples. 

Soils compared from manure-impacted and non-

impacted control locations. 

Peak2007 (34) United States 

cattle 

unspecified lagoon 

tetM, tetO, tetQ, tetW, 

tet(B), tet(L) 

Cross-Section, ABX-Control.  

Longitudinal study, concentrations measured over 6 

months, but each ABX-usage level averaged over 

time. 

Sharma2009 (35) Canada nondairy compost 

tet(A/C), tet(G), 

tet(RPP), ermA, ermB, 

ermC, ermF, ermT, 

ermX 

Longitudinal ABX-Control 

Compared genes in composted windrows from treated 

and control cattle over 11 weeks  

Thames2012 (36) United States  Feces 

ermB, ermF, sul1, sul2, 

tet(C), tet(G), tetO, 

tetW, tetX, int1 

ABX-Control. 

Compared gene abundances in calves fed with milk 

replacers with and without ABX. Measured over 12-

weeks but averaged overtime within groups recorded. 

Vikram2017 (37) United States nondairy feces 

aadA, CMY-2, CTX-M, 

KPC-2, ermB, tet(A), 

tet(B), tetM, AAC(6')-

Ie-APH(2")-Ia, mecA 

ABX-Control 

Compared fecal samples collected over a year from 

conventional and RWA feedlots.  

Wichmann2014 

(38) United States dairy manure 

bla2, bla3, bla4, tetW, 

AAC(6')-Ie-APH(2")-Ia, 

cat 

ABX-Control/Other 

Primarily a functional metagenomic study exploring 

geno-and phenotypic diversity but also compared 

pooled manure from treated and control cows. 

Xu2016 (39) Canada nondairy compost 

tet(B), tet(C), tet(L), 

tetM, tetW, ermA, ermB, 

ermF, ermX, sul1, sul2 

ABX-control, Longitudinal. 

Averaged data was reported, limiting the data 

extracted 

Amendment-Control and Impact-Control Studies of Soil 

Bastos2017 (40) Brazil dairy 

never appl, 

pasture env sul1, qnrA, erm 

Cross-Section/Impact-Control.  

Compared pristine soils to dairy farm soils 

Dungan2018 (41) United States dairy 

lagoon, never 

appl, amended 

soil 

CTX-M-1, ermB, int1, 

sul1, tet(B), tetM, tetX 

Amendment-control. 

Compared soil plots with different volumes of dairy 

manure amendments and control soils. Measured over 

time but longitudinal data not reported. 

Fahrenfeld2014 

(42) United States dairy 

slurry, hist appl, 

amended soil 

ermF, sul1, sul2, tet(G), 

tetO, tetW, vanA 

Other (Modeling Study) /Amendment-control.  

Data extracted from soil before and after dairy manure 

amendment. 
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Li2018 (43) China 

cattle 

unspecified 

pasture env, never 

appl 

sul1, sul2, tet(A), 

tetB(P), tet(C), tet(E), 

tet(G), tetM, tetO, tetQ, 

tetS, tetW, tetX 

Amendment Control 

Compared abundances in cattle-impacted soil vs. 

control soil and various samples from other livestock 

farms 

Macedo2020 (44) Netherlands dairy 

manure, never 

appl, hist appl, 

amended soil sul1, ermB, tetW, TEM 

Amendment-Control. Longitudinal? 

Compared impact of manure on different soil types. 

Marti2014 (45) Canada dairy 

hist appl, 

amended soil 

ermB, sul1, str(B), int1, 

repA 

Longitudinal, Amendment Control.  

Control and dairy manure-amended plots  sampled 

over 100-200 days post-application. study repeated 

over three seasons, two during fall application and one 

spring. 

McKinney2018 

(41) United States dairy 

soil unspecified, 

amended soil 

CTX-M-1, ermB, int1, 

sul1, tet(A), tetW, tetX 

Longitudinal, Amendment Control.  

Compared soils with different land application rates 

over for 4 years. Field plots were amended in the fall 

and soil samples were collected in spring before 

planting. Post-harvest sample were also collected in 

the fall before manure application but these data were 

not recorded in this study since they were measured at 

different depths than spring samples.  

Miller2019 (46) United States nondairy 

manure, hist 

applied, amended 

soil 

CMY-2, CTX-M, KPC-

2, AAC(6')-Ie-APH(2")-

Ia, aadA, ermB, tet(A), 

tet(B), tetM 

Longitudinal, Amendment Control.  

Compared 5 different amendments at field sites in 

three different sites with samples collected over a year 

at each site before/after applications and harvest. 

Nolvak2016 (47) Estonia dairy 

slurry, digested, 

never appl, 

amended soil 

CTX-M, OXA-2, tet(A), 

qnrS, sul1, int1, int2 

Longitudinal, Amendment Control.  

Measured abundances in soil over 150 days 

comparing amendments that were applied three times 

in 150-day period. 

Peng2017 (48) China 

cattle 

unspecified 

raw manure, 

never appl, 

amended soil 

tet(G), tet(L), tetZ, 

tetB(P), tetO, tetW, 

tetM, sul1, sul2, sul3, 

ermB, ermF, ermC, 

CTX-M, TEM, int1, int2 

Amendment Control. 

End of 30-year experiment comparing plots with 

mineral fertilizer, no fertilizer, piggery manure and 

cattle manure.  

Tien2017 (49) Canada dairy 

raw manure, 

digested, SLS, 

compost, soil 

unspecified, 

amended soil 

aadA, OXA-20, ermB, 

ermF, repA, int1, bla-

PSE, APH(6)-Id, 

APH(3")-Ib, sul1 

Longitudinal Amendment-Control. 

Compared abundances in soils land applied with 

manure at different stages of treatment over 155-day 

period 

Udikovic-

Kolic2014 (50) United States dairy 

never appl, 

amended soil, raw 

manure 

bla-CEP-02, bla-CEP-

05, bla-CEP-04, bla-

CEP-01, bla-CEP-03 

Longitudinal Amendment-Control. 

Compared beta-lactamase genes over 130-day period.  
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Wepking2017 (51) United States dairy 

never appl, 

pasture env tetO, tetW, ampC, ermB 

Cross-section, Impact-Control 

Compared abundances in soils in control or farm-

impacted environments across 11 sites across the 

United States 

Xi2015 (52) China 

cattle 

unspecified 

feces, pasture env, 

never appl 

tetO, tet(L), tet(RPP), 

rpoB, sul2, sulA, floR, 

mdtL, mphA, ermC 

Other/Impact-Control 

Primarily a source tracking study but measured 

several relevant field samples 

Exploratory/Farm Survey 

Wallace2018 (53) NR dairy 

raw manure, 

pasteurized, 

digested, lagoon, 

SLS tetO, tetW, sul1, sul2 

Exploratory/Farm Survey 

Compared ARG abundances throughout treatment 

process at two farms and over winter and spring. 

Yang2010 (54) United States 

nondairy, 

dairy 

compost, feces, 

pasture env, 

slurry, raw 

manure 

tet(B), tet(C), tetO, 

tetW, CMY-2 

Exploratory/Farm Survey 

Compared samples from different locations on a beef 

and dairy farm and compared to urban and pristine 

sites.  

Zhang2013 (55) United States nondairy lagoon 

sul1, sul2, tetO, tetQ, 

tetX 

Exploratory/Farm Survey 

Measured abundances in different storage a at a cattle 

farm, including solid and liquid fractions. Compared 

to a swine farm. 

Other Study Design Features 

Katakweba2015 

(56) Tanzania 

cattle 

unspecified feces sul2, tetW, sulII 

Cross-Section. Zebu cattle feces compared to other 

wild animals. 

Hurst2019 (57) United States dairy 

lagoon, raw 

manure int1, OXA-1, sul1, tetO 

Longitudinal Cross-Section of manure, Cross-

section of storages. 

Raw manure samples collected over two-year period. 

Ji2012 (58) China 

dairy, 

cattle 

unspecified 

raw manure, 

amended soil 

sul1, sul2, sul3, sulA, 

tet(B)P, tetM, tetO, tetW 

Cross Section of manures and soils. Compared cattle 

manure and manured soil to other farms.  

McKinney2010 

(59) United States 

dairy, 

nondairy lagoon tetO, tetW, sul1, sul2 

Cross-Section 

Lagoon samples collected over a year from dairies and 

beef feedlots. Yearly samples were averaged so not 

classified as longitudinal.  

Mu2015 (60) China nondairy feces, pasture env 

tetM, tetO, tetQ, tetW, 

sul1, sul2, qnrS, oqxB, 

ermB, ermC 

Fecal Sample Cross-Section 

Abundances in 7 fecal samples and 4 samples from 

nearby soils.  

Munir2011 (61) United States dairy 

lagoon, soil 

unspecified, 

amended soil tetW, tetO, sul1 

Cross-Section.   

Manures (3 farms) and pre- and post-amended soils (2 

farms) sampled longitudinally over 4 months but 
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abundances averaged. Results compared to biosolids 

and biosolid-amended soils. 

Chen2015 (62) China 

cattle 

unspecified slurry 

acrA, acrB, aac, aph, 

ANT(4)-Ia, ermB, 

ermC, oqxB, qnrD, 

qnrS, sul1, sul2, sul3, 

tet(A), tet(C), tet(E), 

tet(G), tetM, tetO, tetQ, 

tetT, tetW 

Other/Cross-Section. 

Compared wastewaters from farms and municipalities 

and surface water. Data collected here were averages 

of 4 cattle farms. 

Netthisinghe2018 

(63) United States nondairy pasture env sul1, ermB, int1 

Longitudinal.  

Measured mitigation of chemical and ARGs over time 

at abandoned beef feedlots. 

Ruuskanen2015 

(64) Finland dairy 

raw manure, 

lagoon, soil 

unspecified, 

amended soil OXA-58, sul1, tetM 

Longitudinal, Cross-Section. 

Compared fresh, stored and pre-/post-fertilized soils. 

Longitudinal samples taken two weeks post-

fertilization. Compared to swine samples.  

Storteboom2007 

(65) United States 

dairy, 

nondairy compost tetW, tetO 

Longitudinal. 

Compared different-level of intensity composting on 

mitigation of ARGs at beef and dairy farms. Measured 

over 180 days 
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Manure, fecal samples, and soil samples were the most probed matrices (Table 2-2). In 

total, 79 different ARGs were measured across all studies, with 40 of those genes targeted in 

only one study each. sul1, tetW and tetO were the most commonly targeted genes, measured in 

23, 22, and 18 of the 43 studies, respectively. ErmB was targeted in 17 studies and sul2 and tetM 

were targeted in 15 studies, each. Collectively, genes conferring resistance to tetracyclines were 

targeted in 36 out of the 43 studies (Table 2-1).  

Genes targeted in more than one study were often targeted using several different primer 

sets. For instance, ermC was targeted in seven studies using six different primer sets. Other cases 

where all but one study used different primers for the same targets included CTX-M, tet(C), and 

tetX. tetM had the most primer sets referenced, with 11 different sets used in 15 studies. ermB, 

sul1 and tetW were targeted in 17, 23, and 22 studies respectively with seven unique primer sets 

each for these targets. tetM, therefore, is an outlier in the number of different primer sets used for 

a single gene target.  

The most common study design feature was the “Antibiotic-control” (16 studies), which 

involved comparing samples from groups of cows that were either treated or not treated with 

antibiotics (Table 2-1). The next most common study design features were “Amendment-

control” (10 studies) and “Impact-control” (4 studies). Three studies which compared 

abundances of antimicrobial resistance genes in different stages of manure treatment were 

assigned the “Exploratory/Farm Survey” design label. Most studies incorporated longitudinal 

study designs (Table 2-1).  

After summarizing the studies and common sample types, we sought to identify trends in 

gene abundances which may help identify where the field has come to a consensus on the role of 

farm management in ARG prevalence. First, we analyzed gene abundances in the two of the 
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most targeted samples types, feces and manure to determine ranges of abundances detected 

across studies. Then, to evaluate the robustness of observations of antibiotic use and land 

application, we compared results across studies assigned to the Antibiotic-control and 

Amendment-control study designs, respectively.  

Table 2-2: Frequently targeted genes grouped by CARD drug class in different sample types 

 
1Manure includes samples designated as ‘lagoon’, raw manure, wastewater, slurry, and 

manure 
2Soil includes amended and impacted soils as well as various control soil types 
3MLS = macrolides, lincosamides, and streptogramins 

 

2.3.2 Reported concentrations in ARG abundance within fecal and manure samples range over 

10 orders of magnitude between studies. 

To determine if there is a consensus in trends of ARGs present in fecal and manure samples from 

dairy and beef farms, we observed ranges and patterns across studies of the most common 

resistance gene targets. The most common genes targeted in samples of manure and feces 

conferred resistance to tetracycline, followed by sulfonamides, beta-lactams and the macrolides, 

lincosamides, and streptogramins (MLS) group (Table 2-2). Gene abundances were most often 

reported as copies of ARGs per copies of 16S rRNA genes. Comparing abundances reported in 

both mass-standardized and 16S rRNA gene-standardized found that while mass normalized 

abundances ranged over greater order of magnitude (Figure A-1), 16S rRNA gene-standardized 

had higher coefficient of variation meaning the abundances were more dispersed (Figure A-2). 
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This suggests that 16S rRNA gene-standardized abundances may introduce more between-study 

and between-observation variability. 

2.3.2.1 ARG abundances in fecal samples 

13 studies measured gene abundances in fecal samples and reported abundances in ARG copies 

per 16S rRNA gene copies (Figure 2-1). The abundances of genes related to the tetracycline, 

beta-lactam, MLS, and sulfonamide groups varied as many as 10 orders of magnitude, excluding 

one paper which reported tetracycline genes from 0.06-13.5 log10 copies/16S rRNA gene copies 

(Thames et al. 2012). The large range in tetracycline resistance genes were driven in part by the 

diversity of the genotypes of tetracycline resistance targeted across studies. 14 different 

tetracycline resistance genes were targeted between studies, with eight targets in major facilitator 

superfamily (MFS) antibiotic efflux pump, five from the tetracycline-resistant ribosomal 

protection protein gene family, and one gene in the tetracycline inactivation enzyme gene family. 

Genes in the (MFS) antibiotic efflux pump and tetracycline-resistant ribosomal protection 

protein gene families both ranged 6.5 orders of magnitude.  

Eight studies reported non-detected genes. Genes in the beta-lactam drug class were the 

most frequently undetected; four studies reported undetected beta-lactamase genes including 

CMY-2, CTX-M, mecA, ROB, and TEM. Three studies reported undetected genes in the 

tetracycline drug class including tet(C), tet(H), tetM, and tetY.  
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Figure 2-1: Antimicrobial resistance gene abundances (log10(copies /16S rRNA gene copies)) in 

the six most targeted ARG families across the 13 studies which reported copies/16S rRNA gene 

copies from fecal samples. 

Y-axis limits cut-off tet(G), tetW, and tetO targeted by Thames et al. 2012 which were measured 

at abundances ranging 4-13.5 log10(copies/16S rRNA gene copies).  

2.3.2.2 ARG abundances in manure samples 

20 studies collectively targeted 57 different resistance genes in samples that we classified as 

manure and reported results as copies/16S rRNA gene copies. Some studies specifically reported 

the locations where manure samples were collected (i.e. barn floor, manure stockpile, lagoon, 

earthen pit) while other studies described manure samples as a “slurry” or as “dairy/beef 

wastewater.” We anticipated a greater range in ARG abundances in manures compared to feces 

due to the greater number of manure samples extracted in the systematic review as well as the 

variety of sample types characterized as manure with different water contents, storage times and 

storage conditions. In this set of studies, one was an apparent outlier, reporting abundances of 

beta lactamase genes, tetW, and AAC(6')-Ie-APH(2")-Ia as low as -22 log10 gene copies/ 16S 

rRNA gene copies (Wichmann 2014). Excluding this study, gene abundances in units of 
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copies/16S rRNA gene copies ranged four, three, seven and seven orders of magnitude in drug 

class groups aminoglycoside, beta-lactam, tetracycline, and sulfonamides, respectively (Figure 2-

2). 

A greater number of ARGs were targeted in manure samples than feces samples, likely 

due to the greater number of studies quantifying gene abundances in manure samples. Like fecal 

samples, genes in the tetracycline-resistant ribosomal protection protein gene family were the 

most commonly targeted, with all but one study targeting at least one tetracycline resistance 

gene. However, genes in the sulfonamide resistant sul gene family were more commonly 

targeted in manure (14 out of 20 studies) than fecal samples (4 out of 13 studies) with a total of 

88 unique observations. Tetracycline genes were detected in almost every sample, with only one 

study reporting a manure sample with undetected levels of tetB(P). Similar to the fecal samples, 

beta lactamases were most frequently not detected; six studies reported nine different genes in 

the beta-lactam drug class undetected or not-quantifiable. The most commonly targeted genes 

were sul1 (14 studies, 88 unique samples), tetW (12 studies, 50 unique samples), and tetO (11 

studies, 74 unique samples), (Figure 2-2). TetM was also frequently targeted (8 studies, 20 

samples), and almost every study used a unique primer set. 
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Figure 2-2: Antimicrobial resistance gene abundances (log10(copies /16S rRNA gene copies) in 

the top six most targeted ARG Families across the 19 studies which reported copies/16S rRNA 

gene copies from manure samples.  

Y-axis limits cut-off tetW targeted by Wichmann et al. 2014 and tetL targeted by Peak et al. 2017 

which were measured at abundances ranging -6.5-14 log10(copies/16S rRNA gene copies). 

Beta-lactamase gene targets with custom primer sets based on sample isolates targeted by 

Wichmann et al. 2014 and Udikovic-Kolic et al. 2014 in addition to bla-PSE gene were excluded 

since they were not measured in other studies.  

 

2.3.3 Antibiotic use on ARG abundances in manure samples 

To study the effect of antibiotic use on ARG concentrations in samples, the response ratio 

was calculated for all pairs of samples originating from cows treated with antibiotics and control 

samples. Inclusion criteria for response ratio calculation required that control samples were 

collected at the same time as the samples from treated cows. 14 of the 16 studies that were 

classified as “Antibiotic-control” studies included samples that met this criterion for calculating 

response ratios. Sample types analyzed from treated and control cows included fecal samples, 

compost, and manure samples. 

For longitudinal studies in which more than three samples were collected over the 

experimental period, only the final sample points for the treatment and control samples were 
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collected. The most administered antibiotics in these studies were in the tetracycline class, 

specifically oxytetracycline and chlortetracycline, which were administered in 7 of 13 studies. 

Three of the studies did not specify which antibiotics were administered to the cattle but instead 

described the antibiotic treatment as “conventional” and compared to samples from these animals 

to animals that were raised without antibiotics. 34 observations of gene targets out of a total of 

196 meeting the inclusion criteria were not quantified in either the control or treatment sample. 

Only one observation detected the target, CTX-M, in the treated cow sample but not in the 

control. Five studies reported at least one non-detect of 14 different gene targets from 

aminoglycoside, beta-lactamase, MLS, fluoroquinolone, sulfonamide and tetracycline antibiotic 

classes.  

Overall, the median response ratio of all ARG observations in these “Antibiotic-control” 

studies was 0.43. This equates to a 1.5-fold higher abundance of resistance genes observed in 

samples originating from animals treated with antibiotics than in manure samples from animals 

not treated with antibiotics. Peak et al. 2007, which measured abundances in stored manure 

samples from conventional and raised-without-antibiotic farms, had a median response ratio of 

3.7, a clear outlier in the analysis. This may be due to the sample types in the study—this was the 

only study that compared the abundances of genes in manure stored in lagoons.  More studies of 

stored manure would clarify if the observation of higher fold-differences between treated and 

untreated herds are indeed higher than fold-differences between treated and untreated fecal 

samples and identify why stored manure from treated cows has higher abundances of ARGs.  
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Figure 2-3: Response ratios organized by study comparing unique samples (fecal, compost, 

manure) originating from cows or herds treated with antibiotics and control cows or herds.  

Y-axis lists the antibiotics used in the treated cattle. CCFA = Ceftiofur crystalline-free acid. 

“Conventional” farms did not list the specific antibiotics and were compared to farms raised 

without antibiotics. Red dashed line at x=0.43 indicates median RR across all studies and 

samples. Dashed black line at x=0 indicates where there is no observed difference in treatment 

and control concentrations. Outliers from Thames et al. 2012 are cut off to enhance visibility of 

results. Only 16S rRNA gene-standardized gene abundances used for response ratio 

computation.  

 

2.3.4 Land application of manure increased gene abundances of some gene targets.  

Another common study design feature across the literature assess the impact of land application 

on ARG abundances in soil. To evaluate the impact of bovine manure amendment on soil 
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antimicrobial resistance gene abundances, response ratios comparing amended soils to control 

soils were computed from amendment control-studies, which included a total of 10 studies. 

Inclusion criteria for response ratio calculation required that a control plot was sampled at the 

same time as amended samples. This excluded two papers from this analysis (Fahrenfeld et al. 

2014, Macedo et al. 2020). Lastly, Tien et al. 2017 was excluded because only mass-

standardized (copies/mass) abundances were reported.  

Of the relevant studies identified through the systematic review, seven studies contained 

relevant data and met the inclusion criteria for this analysis. Response ratios were computed as 

the natural log of 16S rRNA gene-standardized concentrations for each unique sample-control 

pair. In some cases, multiple controls were performed. For instance, Miller et al. 2019 compared 

manured soil to control plots with no amendments and to control plots with mineral amendments. 

In these types of studies, two response ratios were calculated, one comparing treatment to the 

mineral amendment control and one to the no-amendment control.  From the seven studies, 422 

total unique observations were made. Miller et al. 2019 had the most observations, comparing 

sites in three different states and measuring gene abundances during three growing seasons. 

McKinney et al. 2018 also had several unique observations, comparing three different 

amendment rates ranging from 17-52 million gallons per hectare over three growing seasons 

(Table A-5).  

Over half the observations, response ratios could not be calculated for 262 amendment-

control pairs because the gene was not detected in both the control and treatment sample. 

Dungan et al. 2018 and McKinney et al. 2018 both targeted tetX and CTX-M-1 and did not detect 

or infrequently detected genes in both treatment and control samples. ermB was also not detected 

in samples from Miller et al. 2019 and McKinney et al. 2018. Beta-lactamases had the fewest 
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observations because it was not commonly targeted in soil samples (Table 2-1, Table 2-2) and 

when targeted, it was frequently not detected (Table A-5). In the studies meeting the inclusion 

criteria for this analysis, beta-lactamases from the CTX-M, OXA, TEM, KPC, and CMY gene 

families were targeted but only TEM and CTX-M classes were observed. Additionally, 

unclassified beta-lactamases identified in soil isolates (bla-CEP) were used as targets and were 

detected in control and amended soil by Udikovic-Kolic et al. 2014.  

Response ratios spanned from -1 to 5.6 with a median response ratio of 0.46 (Figure 2-4, 

Table A-5). Tetracycline and aminoglycoside resistance genes in Miller et al. 2019 exhibited 

little spread and were close to zero, meaning there was not a large difference in 16S-rRNA gene-

standardized abundances in treatment and control soils. ermB genes, however, tended to be 

higher in the treated soils across all studies targeting MLS genes. Sulfonamide, integrase, and 

tetracycline genes were also observed in higher abundances in treated soils, specifically in the 

McKinney et al. 2018 samples. This meta-analysis of gene abundance in control and manured 

soils demonstrated that gene abundances are higher in manure soils for some gene classes but 

depend in part on the gene target and study.  



30 

 
Figure 2-4: Response ratios (RR) grouped by drug classes assigned to ARGs comparing soil 

samples in control plots and manure-amended plots. 

Dashed black line at x=0 indicates where there is no observed difference in treatment and 

control concentrations. Dashed red line at x=0.46 indicates median RR across all observations. 

2.4 Conclusions 
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This systematic review and meta-analysis synthesized peer-reviewed journal articles 

reporting qPCR-quantified ARG abundances measured in samples collected from dairy and beef 

farms around the world. Metadata mined from papers identified the most common gene targets, 

primer sets, and study design features employed over the last decade and a half to determine the 

impacts of antibiotic use and manure management and investigated risks of land application of 

manure. 79 different genes were targeted across the 43 studies but only half the targets were 

quantified in more than one study (Table 2-1). We found that studies typically probe manure, 

feces, and soil (Table 2-2). Fold-differences in treated and control soil (median = 0.46, 7 studies, 

Table A-5) and fold-difference observed in fecal samples between treated and non-treated cows 

(median RR=.43, 12 studies, Table A-4) were quantified across studies.  

Differences in gene targets and primer references employed across studies makes 

comparisons across studies difficult. Future meta-analysis can evaluate differences in high-

throughput PCR or metagenomics to identify overlapping detected genes across broader gene 

families. Throughout the data extraction process, there were various inconsistencies encountered 

between studies which made data extraction and comparison difficult. Inconsistencies in sample 

terminology or vague sample descriptions also limited between-study comparisons. Lack of 

biological replicates within studies and inconsistency in reported variances in observations 

(standard error, standard deviation) prohibited extraction of these values for response ratio 

analysis which prohibited calculating the statistical significance of response ratios. Future work 

to evaluate risks posed by ARGs in cattle or other livestock settings should employ cross-

sectional design elements features to maximize biological replicates, observe within-study 

variance, and compute statistical significance.  
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ABSTRACT  

We demonstrate that an assembly-independent and spike-in facilitated metagenomic 

quantification approach can be used to screen and quantify over 2,000 genes simultaneously, 

while delivering absolute gene concentrations comparable to quantitative PCR (qPCR). DNA 

extracted from dairy manure slurry, digestate, and compost was spiked with genomic DNA from 

a marine bacterium and sequenced using the Illumina HiSeq4000. We compared gene copy 

concentrations, in gene copies per mass of sample, of five ARGs generated with (i) our 

quantitative metagenomics approach, (ii) targeted qPCR, and (iii) a hybrid quantification 

approach involving metagenomics and qPCR-based 16S rRNA gene quantification. Although 

qPCR achieved lower quantification limits, the metagenomic method avoided biases caused by 

primer specificity inherent to qPCR-based methods and was able to detect orders of magnitude 

more genes than is possible with qPCR assays. We used the approach to simultaneously quantify 

ARGs in the Comprehensive Antimicrobial Resistance Database (CARD). We observed that the 

total abundance of tetracycline resistance genes was consistent across different stages of manure 

treatment on three farms, but different samples were dominated by different tetracycline 

resistance gene families.   

IMPORTANCE 

  

 

 

Metagenomic Quantification of Genes with Internal Standards 
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qPCR and metagenomics are central molecular techniques that have offered insights into 

biological processes for decades, from monitoring spatial and temporal gene dynamics to 

tracking ARGs or pathogens.  Still needed is a tool that can quantify thousands of relevant genes 

in a sample as gene copies per sample mass or volume. We compare a quantitative metagenomic 

approach with traditional qPCR approaches in the quantification of ARG targets in dairy manure 

samples. By leveraging the benefits of non-targeted community genomics, we demonstrate high-

throughput absolute gene quantification of all known ARG sequences in environmental samples. 

3.1 Introduction 

A high-throughput, quantitative, gene-level screening tool is needed for studying 

dynamic, complex, and diverse microbial communities and the biological processes they 

perform. Quantitative PCR (qPCR) is widely used to measure the absolute concentrations of 

short segments of nucleic acid sequences, which serve as proxies of organisms or genes. This 

approach has been critical in a wide range of applications including assessing the relative roles of 

different microorganisms in nitrification and denitrification in wastewater treatment,1 the 

abundances of viruses in wastewater following outbreaks,2 and the impact of antibiotic use on 

antimicrobial resistance gene (ARG) abundances in livestock manure.3 However, qPCR is only 

capable of targeting limited sequences at a time and primer bias, sensitivity, and specificity can 

confound results.4,5 These aspects of qPCR limit our ability to compare, between samples and 

studies, the composition of microorganisms and genes in their community context.  

Metagenomic sequencing has emerged as a powerful tool to study the structure and 

functional capacity of microbial communities. Metabolic gene databases, such as Carbohydrate-

Active enZYmes Database (CAZy), have facilitated gene classification from metagenomes for 

diverse applications ranging from evaluating the gut microbiome colonization in infants6 to 

studying enrichment of cellulases in bioreactors for bioenergy production.7 Virulence gene 
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databases, such as the Virulence Factor Database (VFDB), have enabled the development of 

metagenomic pathogen screening tools applied in a variety of settings from food safety to 

wastewater.8,9 Although metagenomic analyses provide a comprehensive inventory of the genes 

and organisms that are present in samples, the data are compositional and results are typically 

reported as relative abundances. As a result, studies that perform metagenomic sequencing alone 

cannot report absolute gene abundances, which are essential in many studies; particularly those 

evaluating changes in a pathogen marker gene or ARG concentrations through food, water, 

waste, and air treatment processes. Instead, metagenomic studies are limited to reporting relative 

changes in community diversity or the enrichment of certain genes between samples by 

normalizing to total sequence reads10, 16S rRNA gene reads,11 or single copy gene reads.12 In 

some cases, hybrid approaches convert relative abundance data from metagenomic analyses to 

absolute abundances by relying on ancillary analyses such as the number of cells measured by 

flow cytometry13 or the number of 16S rRNA genes measured by qPCR.14,15 These additional 

analyses require method optimization and can introduce biases. A more direct option for 

obtaining the absolute abundance of genes from metagenomic data involves spiking nucleic acid 

internal standards into samples before extraction or sequencing.16  

Incorporating internal standard spike-ins, as commonly used in analytical chemistry, can 

establish a ratio of metagenomic read abundance to gene copy concentration. Internal standard 

protocols were first applied to sequencing methods in transcriptomics experiments (RNA-seq) to 

quantify gene expression, identify protocol-dependent biases, and compare method sensitivity 

and reproducibility.17  Since then, protocols have been developed for 16S rRNA gene-amplicon18 

metagenome,19 and metatranscriptome16 sequencing. Previous quantitative metagenomic spike-in 

studies have performed metagenome assemblies, then mapped short metagenomic reads to the 
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assembled contigs20. Such assembly-dependent methods are time-intensive and can fail to 

assemble genomes that harbor ARGs, particularly those of viruses21 or plasmids and within 

genomic islands,22,23 thus increasing false negative detection rates. Additionally, assemblies can 

introduce bias towards highly abundant organisms, which are more likely to be assembled 

correctly.24 

In this study, we applied an assembly-independent, spike-in metagenomic approach for 

quantifying gene concentrations in environmental samples. We first quantified the recovery of 

the spike-in genes across different concentrations, %G+C contents, and gene sizes. We then 

compared the spike-in quantitative metagenomic approach with traditional gene quantification by 

qPCR and with a hybrid, spike-independent metagenomic method. Finally, we applied the 

approach to quantify ARG concentrations in dairy farm samples and demonstrated the benefit of 

quantifying broader groups of genes than is possible with targeted qPCR methods. Ultimately, 

we envision this high-throughput, quantitative, gene-targeted method will improve exposure and 

risk assessment modeling, optimize treatment processes for water, waste, and air, enhance 

microbiome-driven resource recovery or bioenergy production, and quantify the roles of 

microbes in host health and global nutrient and carbon cycling. 

3.2 Results 

3.2.1 Equation for assembly-independent, absolute gene quantification using spike-in 

normalization. 

Genomic DNA of a marine bacterium, Marinobacter hydrocarbonoclasticus (ATCC® 

700491™) was spiked into DNA extracted from environmental samples to determine the 

relationship between read counts and gene copy concentrations (Fig. B-1). We used genomic 

DNA from M. hydrocarbonoclasticus as our spike-in DNA because it is a marine microbe 

foreign to our samples. In our study, DNA was spiked after extraction to ensure that differences 
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between spike-in and sample DNA recoveries were limited to sequencing and read-mapping 

biases only, rather than to biases introduced during any prior sample processing steps. Prior to 

performing the DNA extraction and spike-ins on the samples compared in this study, we 

assessed extraction recoveries and bias across different manure matrices using a gram-positive 

and a gram-negative bacterium (Supplemental Text B-1, Fig. B-2). Mean recoveries of spike-in 

gram-positive and gram-negative organisms ranged from 75-110% and did not differ 

significantly (p-value = 0.27, Fig. B-2).  

The average ratio of the known spike-in gene copy concentration to gene length-

normalized counts of mapped reads was calculated. This ratio was defined as the spike-in 

normalization factor, η: 

 𝜂 =
1

𝑛
∑

𝑐𝑠,𝑖
𝑧𝑠,𝑖

𝐿𝑠,𝑖
⁄

𝑛
𝑖    Eqn. 1 

 Where n, is the total number of genes in the M. hydrocarbonoclasticus genome, 𝑐𝑠,𝑖, is 

the known spike-in gene copy concentration for each gene i in the M. hydrocarbonoclasticus 

genome (gene copies/µL DNA extract) and 
𝑧𝑠,𝑖
𝐿𝑠,𝑖

 is the length-normalized read count 

(reads/basepair) for gene i. In this approach, we assume the relationships between gene copy 

concentrations and length-normalized read counts are consistent between the target genes and 

spike-in genes. We confirmed the gene recovery was robust across gene lengths and %G+C 

contents and different spike-in gene abundances, by observing read-mapping rates using different 

tools and settings (Supplemental Text B-2, Fig B-3, Fig B-4).  
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By multiplying η by the target gene’s length-normalized read counts (
𝑧𝑡
𝐿𝑡

, reads/basepair), 

we can predict the unknown concentration of our target gene (𝑐𝑡̂  
, gene copies/volume of DNA 

extract): 

 𝑐𝑡̂ = 𝜂 ⋅
𝑧𝑡

𝐿𝑡 
 Eqn. 2 

However, we ultimately aimed to determine the number of copies of the target gene per 

mass or volume of sample. For this, the target gene concentration was multiplied by the volume 

eluted during DNA extraction (Veluted, µL) to obtain the total copies of the target gene extracted, 

which was then divided by the mass (or volume) of the sample extracted:  

 
𝑐𝑜𝑝𝑖𝑒𝑠,𝑡𝑎𝑟𝑔𝑒𝑡

𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠
= 𝑐𝑡̂ ⋅

𝑉𝑒𝑙𝑢𝑡𝑒𝑑

𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠 
 Eqn. 3 

Here, it is assumed that spike-in genes are recovered at the same rate as the target genes in the 

sample. The spike-in facilitated approach establishes a relationship between read abundances and 

gene concentrations; we are therefore able to directly compare gene abundances between 

samples without corrections for average genome sizes or single copy gene concentrations. 

Lastly, we found that the dynamic range of the relationship between gene concentration 

and read abundance spanned over three orders of magnitude and was consistent over different 

sequencing depths by spiking aliquots of a sample with different concentrations of the internal 

standard (Fig. B-4). We found that the limit of detection corresponded to about 3x104 gene 

copies/mg sample (Supplemental Text B-2).   

3.2.2 Agreement between sequencing- and spike-independent approaches validates our method. 

We compared gene quantities measured with the spike-in quantitative metagenomic 

approach to those measured with qPCR and a hybrid, spike-independent metagenomic 

quantification approach. We used six manure samples from different farms and treatment stages 
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(untreated, composted, or digested). Five target genes, tetM, tetG, sul1, sul2, and ErmB, were 

chosen because they have been frequently quantified in environmental samples and primer sets 

are available.25–29 In the quantitative metagenomics approach, reads were assigned to ARGs in 

the Comprehensive Antimicrobial Resistance Database (CARD) using Graphing Resistance Out 

Of meTagenomes or “GROOT” (Figure 3-1A).30  Additionally, read abundances were assigned 

to resistance genes in the MEGARes database using AMR++ (Fig. B-5).31  

 

Figure 3-1: Comparisons of the gene quantification approaches using GROOT for assigning 

reads to resistance genes. The dotted line is a 1:1 line that represents theoretical perfect 

correlation between approaches. 

A. Spike-in-quantified metagenomic absolute abundance approach vs. qPCR; B. Spike-in-

quantified metagenomic absolute abundance approach vs. spike-independent, 16S rRNA gene-

based metagenomic approach. ErmB was not detected in the Farm A Samples with the 

quantitative metagenomic approach, but was detected in the Farm A Compost sample with 

qPCR. TetG was detected with qPCR in all samples, but not with the quantitative metagenome 

approach. 

 

In the hybrid, spike-independent metagenomic quantification approach, 16S rRNA gene 

concentrations are measured in each sample using qPCR. Then, target read counts are divided by 

16S rRNA gene read counts.14,15 This approach assumes that the target gene/16S rRNA gene 

quotient is equivalent for metagenomic sequencing and qPCR and is computed as follows: 
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 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠
=

𝑧𝑠,𝑖

𝑧16𝑆 𝑟𝑅𝑁𝐴
∙

16𝑆 𝑟𝑅𝑁𝐴 𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠
 

where zs,i is the number of reads mapping to the target gene, z16S rRNA is the number of reads 

mapping to a 16S rRNA sequence, and the 16S rRNA gene copies/sample mass ratio is 

determined by qPCR. 

TetG was not detected using the metagenomics approach in any of the samples but was 

detected with qPCR with abundances ranging from 1,000-2,400 copies/mg of sample, 

corresponding to about 2,000-6,000 copies/µL extract. ErmB was not detected with the 

metagenomic approach in the Farm A samples, but was detected in the Farm A Untreated sample 

with qPCR at 900 copies/mg sample. In these samples, we are approaching the method detection 

limit of the quantitative metagenomic approach (~3x104 gene copies/mg sample), but not that of 

qPCR (4-24 gene copies/µL mg sample, Supplemental Text B-2, Table B-1). 

On average, qPCR quantities were 22% greater that of those using the quantitative 

metagenomic approach, with tetM as a visible outlier. Specifically, the spike-in quantitative 

metagenomic approach predicted a four-fold greater concentration of tetM than qPCR in the 

Farm C Digester. This discrepancy between approaches for tetM could result in major 

differences in study conclusions. For example, if the qPCR assay was used to measure how tetM 

concentrations changed between the Farm C untreated and digester manures, one would observe 

a 95% decrease in tetM concentration. Using the spike-in quantitative metagenomic approach, 

however, one would observe a 140% higher concentration of tetM in the digester sample than the 

untreated sample (Figure 3-1A) These patterns were also observed with AMR++ using the 

MEGARes database (Fig. B-5).  

GROOT and AMR++ tools use different approaches to reduce ambiguous mapping to 

resistance genes. Specifically, AMR++ employs the “ResistomeAnalyzer” algorithm which 
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removes sparse alignments at thresholds that can be set by the user. GROOT uses variation graph 

representation of a user-specified database that stores shared gene sequences as graphical nodes, 

reducing ambiguous mapping to homologous gene regions. We therefore hypothesized that the 

incongruence observed for the tetM gene was due to qPCR primers failing to capture the diverse 

tetM genes in the digester manure sample. To test this hypothesis, we evaluated the read 

mapping patterns to tetM and sul1 reference genes using Bowtie232 and the Integrative Genome 

Viewer software.33 We included sul1 in the analysis because it is a highly conserved gene 

sequence; we therefore expected mapped reads to perfectly match the reference gene sequence. 

Six single nucleotide variants (SNVs) were observed in the reads mapping to the 19 basepair 

tetM forward primer sequence. When the allele frequencies at the primer binding sites were 

quantified (Table B-2), 99% of tetM-mapped reads from the Farm C Digester had a mismatch at 

five of the six SNVs in the primer sequence. In the other samples, between 60 and 80% of the 

mapped reads had a mismatch at the same primer SNVs (Table B-2). Incongruencies in primer 

binding sites and metagenomic reads were not observed for the sul1 primer set. This analysis 

demonstrates that the tetM primers likely did not capture the diversity of this gene. As a result, 

the tetM qPCR assay underestimated tetM concentrations, especially in the Farm C Digester 

sample. In other words, the spike-in quantitative metagenomic method resulted in more reliable 

absolute tetM abundances than qPCR because it did not rely on primer design and a priori 

knowledge of sequence diversity.  

To further assess the reproducibility of the spike-in quantitative metagenomic method, we 

compared the estimated absolute concentrations to a hybrid, spike-independent, 16S rRNA gene-

based quantitative metagenomic approach (Figure 3-1B). The spike-independent approach has 

been used previously for absolute quantification of ARGs in a river system34 and markers of 
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opportunistic pathogens in a drinking water distribution system.15 Percent differences between 

the hybrid, rRNA gene-based approach and the spike-dependent quantitative approach are a 

function of the two normalization factors, since the number of reads mapping to each target are 

the same for each approach. The limits of detection are the same for these approaches since they 

are both determined by read counts. Percent differences ranged from 13% to 21% between the 

spike-independent and spike-dependent approach, except for the Farm A compost sample, which 

had a 4% difference (Figure 3-1B).  

Cross-validating our approach to sequencing-independent qPCR assays and a hybrid, 

spike-independent metagenomic approach for the five ARG targets validated that our method 

generates values comparable to established gene quantification tools. Although the spike-in 

metagenomic approach had higher detection limits than qPCR, it overcomes biases caused by 

primer specificity. 

3.2.3 Spike-in metagenomic approach facilitates quantitative screening of diverse gene families. 

In six dairy farm manure samples, the spike-in metagenomic approach enabled the 

quantification of all genes in CARD. This is not feasible using traditional qPCR since each gene 

would require a validated set of primers and standard curves.  Out of the 2,617 genes in CARD, 

411 genes were detected in the six dairy manure samples using GROOT. The total number of 

different ARGs detected in each sample ranged from 62 to 361. 
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Figure 3-2: Absolute concentrations of all genes that confer resistance to tetracycline in six 

different dairy farm samples. 

Dashes (“-”) indicate non-detects (no reads mapping to target). 

 

To illustrate the diversity of genes that can be detected and quantified with a single 

approach, we leveraged the “confers_resistance_to_antibiotic” relation in the CARD ontology to 

extract genes within the tetracycline drug class. We then assessed the diversity and absolute 
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abundance of these tetracycline resistance genes across broad gene families in each sample 

(Figure 3-2). Of the 93 tetracycline resistance genes matching the 

“confers_resistance_to_antibiotic” ontology, 37 were detected in our samples with genes 

detected from four of the seven resistance gene families (Figure 3-2). Genes were not detected 

from the small multidrug resistance antibiotic efflux pump, ATP-binding cassette ribosomal 

protection protein, and ATP-binding cassette efflux pump families in the manure samples. 

Interestingly, the sums of all the tetracycline resistance gene concentrations in each sample were 

all within one order of magnitude, ranging from 3.8x104 - 3x105 copies per mg sample (Table 3-

1). However, different resistance gene families dominated the tetracycline resistance gene 

concentrations within different sample groups. Tetracycline resistance ribosomal protection 

proteins were the most abundant gene family, comprising 82-97% of the total tetracycline 

resistance genes in all samples except the compost sample from Farm A. In this sample, 

tetracycline inactivation enzymes dominated the resistance profile, comprising 85% of the total 

tetracycline resistance gene concentrations (Figure 3-2; Table 3-1). These data demonstrate that 

no single ARG could have been selected to represent the total tetracycline resistance abundances. 

For example, targeting just one or two tetracycline resistance genes with qPCR would have 

inadequately assessed the impact of residual concentrations of tetracyclines or how effective a 

manure treatment strategy had been at reducing the quantity of resistance genes within a drug 

class. 

Table 3-1: Total abundance of tetracycline resistance genes, organized by CARD Gene Family, 

in six different dairy farm samples. 

 Total abundance of tetracycline resistance genes (copies/mg sample) 

AMR Gene Family 

Farm A, 

Untreated 

Farm A, 

Compost 

Farm B, 

Untreated 

Farm B, 

Digester 

Farm C, 

Untreated 

Farm C, 

Digester 

major facilitator 

superfamily (MFS) 

antibiotic efflux pump 

7.3x103 4.5x103 7.3x103 1.7x103 6.8x103 9.1E+02 
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resistance-nodulation-cell 

division (RND) antibiotic 

efflux pump 

- - 1.2 x102 - 4.4 x102 - 

tetracycline-resistant 

ribosomal protection 

protein 

2.7 x105 1.3 x105 1.4 x105 1.2 x105 5.6 x104 1.2 x105 

tetracycline inactivation 

enzyme 

1.6 x104 3.2 x104 7.3x103 1.5x103 5.1x103 3.2x103 

Total gene abundance 3.0E+05 3.8E+04 1.5E+05 1.3E+05 6.8E+04 1.2E+05 

RND = resistance-nodulation-cell division, MFS = major facilitator superfamily,  

RPP = ribosomal protection protein 

 

2.3.4 Changes in spike-in-based absolute abundances and relative abundances through 

treatment.  

Our samples comprised untreated and treated manure samples from three dairy farms; 

two treated samples were collected from anaerobic digesters and one treated sample consisted of 

compost. Thus, this study provided an opportunity to evaluate the degree to which between-

sample relationships in gene levels compared between the relative and absolute quantities.  

The number of metagenomic reads mapping to a target gene is used to determine both 

relative and absolute abundances of that gene in the sample. However, the normalization 

parameter is different between approaches. The simplest normalization parameter is the library 

size, or total number of reads generated in a sequencing run, though the approach poorly resolves 

log-fold changes between samples.19 Another normalization parameter is the total number of 

reads mapping to 16S rRNA or single copy genes.35 These relative abundance approaches 

approximate the abundance of reads relative to bacterial and archaeal biomass. In contrast, the 

normalization factor in the absolute abundances spike-in approach derives from the relationship 

between gene concentration and read abundance established by a spike-in standard. The 

normalization parameter is the product of all terms in Equation 3, save the number of reads 
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mapping to the target. Between-sample comparisons in ARG abundances quantified by both 

relative and absolute normalization demonstrated that different approaches can predict 

conflicting directionality of change for genes for which the change in abundance is small (Figure 

3-3).  In the sample pairs from farms A, B, and C, there were 42, 71, and 49 total genes detected 

in both samples, respectively. Between the untreated and treated sample pairs on farms A, B, and 

C, conflicting directionally of the change in abundance was observed in three, 17, and seven of 

those ARGs; specifically, decreases in absolute abundance were observed, whereas increases in 

16S rRNA gene-normalized relative abundances were observed. The 1:1 correlation between 

observed changes in absolute abundance and relative abundance demonstrates that both 

approaches are functions of the reads recruited per target sequence. The intercept depends on the 

normalization parameter values for each sample. Plotting log-fold changes in absolute gene 

abundances versus the library size normalized relative abundances (Figure 3-3, blue triangles) 

resulted in a y-intercept greater than that of the absolute abundances versus the rRNA gene read 

normalized abundances (Figure 3-3, red squares). A greater intercept means more ARGs fell 

within the quadrant II for the library-size normalization approach, therefore more ARGs were 

observed to increase in relative abundances while decreasing in absolute abundance. For those 

examples where the direction of the log2-fold changes disagreed between relative and absolute 

abundances approaches, all changes were less than four-fold. When observed between-sample 

differences in abundance are small (log2-fold changes < 2), distinguishing between abundance 

increases and decreases becomes noisier and more challenging to resolve.  
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Figure 3-3: Comparing relative vs. absolute abundances of resistance genes between treated 

and untreated manure samples detected with GROOT. 

Each point represents the log2 fold change in abundance of a gene between untreated and 

treated samples. Red squares compare fold changes determined by relative abundances 

normalized by 16S rRNA gene reads to our fold changes in absolute abundance using the spike-

in quantitative metagenomic approach. Blue triangles compare fold changes in relative 

abundance normalized by library size to fold changes in absolute abundances. If a point falls in 

quadrants II (quadrants labeled in Farm A plot), a positive log2-fold change was observed with 

relative abundance and a negative log2 fold change was observed with absolute abundance.  

 

3.3 Discussion 

We demonstrated that assembly-independent, gene-targeted metagenome quantification 

with a genomic spike-in internal standard resulted in absolute gene quantities for thousands of 

genes simultaneously and at levels comparable to those obtained with qPCR and a spike-

independent hybrid metagenomic approach. The spike-in approach circumvents the low 

throughput and primer design challenges of qPCR and the bias-prone ancillary molecular 

methods required for hybrid approaches. Our approach requires only a spike-in internal DNA 

standard and a relevant gene database, such as CARD, CAZy, or a custom gene set of interest.  

Previous quantitative sequencing studies have spiked DNA into samples prior to 

extraction,18,20 into samples after cell lysis,36 and into nucleic acid extracts.19 Cellular internal 

standard spike-ins enable estimation of recovery from cell lysis to sequencing. However, each 
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organism has a unique cellular morphology and susceptibility to lysis, so one or a handful of 

cellular spike-ins may not reflect extraction efficiencies for the diverse organisms in a sample.37 

We spiked in M. hydrocarbonoclasticus genomic DNA into the DNA extracted from 

environmental samples prior to sequencing to directly observe spike-in recovery in the absence 

of these complex biases and compared extraction efficiently in separate experiments 

(Supplemental Text B-1). We note that the same nucleic acid extraction efficiency issues are 

present with any gene quantification method.  

The number of documented and catalogued genes will continue to grow as new samples 

are sequenced, as isolation and culturing of environmental strains reveals more diversity, and as 

organisms evolve. qPCR primers are designed for gene targets using the gene sequences 

available in a database at a specific point in time. The primers are often applied in future studies. 

Consequently, without constant primer redesign and evaluation, qPCR quantification methods 

lag novel gene diversity discovery. Spike-in metagenomic quantification, on the other hand, can 

provide absolute quantification comparable to qPCR while using the most up-to-date gene 

databases. Furthermore, archived metagenomes can be reanalyzed to quantify newly discovered 

genes as databases expand.  

The number of genes that can be measured simultaneously in a sample using spike-in 

metagenomic quantification is limited by database completeness. In our study, we were able to 

simultaneously screen the 2,617 genes in CARD.  qPCR assays, on the other hand, are limited by 

the number of targets they can include. ARG studies that employ qPCR, for example, commonly 

target between five to 20 genes per sample.26,38–40 Although qPCR arrays have increased the 

throughput of qPCR and provided valuable insights on ARG profiles,28,41 qPCR arrays without 

standard curves do not deliver absolute concentrations, are subject to the same primer specificity 
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limitations as traditional qPCR, and are similarly limited by available knowledge on ARGs at the 

time of qPCR array design.  

Determining detection limits and establishing detection ranges are critical for all 

quantitative methods. Here, spiking at different internal standard concentrations revealed that the 

linear range of detection spanned at least three orders of magnitude (Supplemental Text B-2). 

Spiking a standard corresponding to 0.1% of the total DNA in our sample revealed that we were 

reaching limits of detection for several genes at the order of 104 gene copies/mg sample. The 

single genome spike-in used in this study meant that nearly all internal standard genes were 

present at the same gene copies concentration in a single sample. Staggered spike-in standards, 

which contain different sequences over a range of concentrations within one spike-in, can better 

characterize the quantification range in individual samples.18,19,36  Limits of detection, which are 

trumped by qPCR assays, are a primary limitation of this quantitative approach.  

Our spike-in genome presented non-specific mapping in regions of the M. 

hydrocarbonoclasticus genome that were homologous to genes of interest in the sample. For 

example, a gene in the M. hydrocarbonoclasticus genome shared 75% homology with an efflux-

pump encoding gene in CARD. Interestingly, M. hydrocarbonoclasticus also shared >70% 

homology with three genes in the bovine genome. Synthetic DNA internal standards, as opposed 

to genomic standards, can eliminate non-specific mapping.19 Similarly, assigning metagenomic 

reads to target genes of interest within databases can also result in false positive and false 

negative assignments. We emphasize that our approach is intended for high-throughput screening 

and is not appropriate for exploring and quantifying potential novel resistance genotypes that are 

not yet represented in databases. Other tools that leverage machine learning and functional 
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metagenomics42 or build models for specific genes43 would be more appropriate in these 

applications.  

This assembly-independent, spike-in-facilitated gene quantification is a fast, effective, 

and non-targeted approach to quantify known genes from microbial communities. This approach 

will be valuable when qPCR throughput and primer design limit the conclusions that can be 

drawn and when quantifying genes at low abundances is not required. The approach is especially 

useful in ARG research, where absolute quantification of diverse genes is imperative for 

evaluating technologies to reduce ARG abundances and informing models focused on 

antimicrobial resistance risk assessment.  

3.4 Materials and Methods 

3.4.1 Sample Collection 

One-hour composite samples were collected in June of 2016 from dairy manure at three 

farms in New York following a protocol described previously.28 Samples included an untreated 

manure sample from blend pits at each farm and a post-treatment sample, either anaerobic 

digester effluent or compost. Samples were aliquoted into 15 mL centrifuge tubes, frozen at -80 

°C, and shipped overnight on dry ice to the University of Michigan.  

3.4.2 DNA Extraction, Internal Standard Spike-in, and Sequencing 

DNA was extracted from approximately 250 mg (wet weight) of each sample in duplicate 

reactions using the QiaAMP PowerFecal kit (QIAGEN, Germantown, MD). Extracted DNA was 

eluted in 100 µL of elution buffer following the kit’s protocol. Duplicate extractions were 

pooled. DNA concentrations were measured with a Qubit 2.0 Fluorometer. The pooled DNA 

extracts were spiked with genomic DNA from M. hydrocarbonoclasticus (ATCC strain 

700491D5™, GenBank AN: CP000514), obtained from ATCC (Manassas, VA) at 1% total 

DNA by mass. M. hydrocarbonoclasticus was resuspended following ATCC recommendations 
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in molecular grade water and the concentration was confirmed using the Nanodrop1000 

instrument. This marine bacterium was selected due to its typical bacterial genome size 

(4,326,849 basepairs) and GC content (57%) and because it was unlikely to be present in manure 

samples. All six pooled and spiked DNA samples were sequenced with paired-end, Illumina 

(HiSeq4000) technology at the University of Michigan DNA Sequencing Core using PCR-free 

library preparation with a read length of 250 basepairs and an insert size of 450 basepairs. Total 

post-QC reads per sample ranged from 5.1-6.3x108. To establish the linear quantification range 

of genes, replicates of one of the samples were spiked with different ratios of internal standard 

DNA to total community DNA (0.1%, 1% and 10%, by mass). 

3.4.3 Bioinformatic Approaches  

Reads were trimmed and checked for quality with BBDuk from the BBTools Package.44 

The Comprehensive Antibiotic Resistance Gene Database (CARD),45 the M. 

hydrocarbonoclasticus gene multifasta files from NCBI, and 16S rRNA gene-specific small 

subunit (SSU) SILVA database,46 and the bovine genome47 were downloaded on December 20, 

2019, October 24, 2018, May 24, 2019, and November 2, 2018, respectively. Read mapping 

approaches were first evaluated by comparing observed to expected recoveries of M. 

hydrocarbonoclasticus genes. Specifically, Bowtie232 (version 2.3.4.3) was run with default 

parameters and kallisto47 (version 0.46.0) was run with the “--single overhang” setting which 

counts reads only partially mapping to the end of reads and the bias-correction setting “--bias” 

that can reduce the bias from larger reference genes where the effects of overhanging reads are 

less impactful. These tools were selected because they represent two common algorithms for fast 

short-read mapping, pseudoalignment and Borrows-Wheeler transform-based read assignments. 

Read assignments were performed with both paired reads and unpaired reads. Average recovery 

across read lengths was assessed by clustering genes into 20 bins using quantile binning with the 
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Hmisc package in R. One-way analysis of variance (ANOVA) was performed in R to compare 

distribution of average spike-in gene recoveries. After validating read mapping performance with 

the M. hydrocarbonoclasticus genes, kallisto in an unpaired mode with the “--single overhang” 

and “--bias” setting was selected to map reads to CARD and 16S rRNA gene-specific small 

subunit (SSU) SILVA database. Reads were mapped to the bovine genome with bbmap from the 

BBTools Package in the paired setting to assess host contamination. IGV software (version 

2.7.2) was used to visual read pile-ups to assess nucleotide variants at primer binding sites.  

Two additional tools were used to assign reads to ARGs: (i) ARG-specific read 

assignment tools for antimicrobial resistance genes, AMR++31  and GROOT.30 Both tools apply 

unique approaches to reduce non-specific mapping of reads to ARGs. GROOT was run with 

default parameters using CARD2020 as a reference except that the 50% reporting threshold was 

used. AMR++ (version 2.0.0) was performed using the singularity container with the MEGARes 

database as a reference and default parameters (--threshold 80 --min 1 --max 100 --samples 5 --

skip 5). 

3.4.4 qPCR Primer Selection and Design 

ARG targets were chosen based on initial metagenomic results to capture a range of ARG 

concentrations. The ARG primer sets were selected based on their use for measuring ARGs in 

environmental samples25,48–50. The primer sets were verified for specificity using NCBI Primer-

Blast and archaea, virus, viroid, and eukaryote databases. Details of the qPCR assays, including 

primer sequences and annealing temperatures are provided in Table B-1. qPCR reactions were 

carried out on an Eppendorf MasterCyler ep realplex2 using Fast EvaGreen Fast Master Mix 

(Biotium, Fremont, CA). The 20 µL reactions were performed following the manufacturer's 

recommendations, with 0.4 µM of forward and reverse primers, 0.625 mg/mL of Ultrapure BSA 

(Invitrogen), and 2 µL of diluted DNA extracts. Plates were centrifuged for 2 minutes at 500 
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RPM at 4oC before thermocycling. Unpooled sample DNA extracts, with total DNA 

concentrations ranging from 20-50 ng/µL, were diluted 10-fold and 100-fold to detect inhibition 

from the sample matrix. Inhibition was not observed and the gene concentrations from both 

dilutions were averaged. Two technical replicates were performed per diluted sample and two 

no-template controls were conducted per plate. After amplification, melt curves were performed 

to confirm the specificity of the reactions. The template for the standard curve consisted of 

Gblock Fragments (IDT, Skokie, Illinois) with the inserted target sequences taken from a 

sequence from CARD or NCBI if the primers did not hit the CARD reference gene (Table B-1). 

The qPCR assay limit of detection and limit of quantification were evaluated for each of the 

ARGs (Table B-1) following the European Network of GMO Laboratory Guidelines.51 
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ABSTRACT 

The relative roles of dairy manure storage and anaerobic digestion (AD) in shaping community 

structure and antimicrobial resistance gene (ARG) concentrations in land-applied manure is not 

well understood. We perform a cross-sectional study of land-applied manures from 12 dairy 

farms to evaluate drivers of microbial community structure and ARG abundances. Land-applied 

manure samples were collected during spring and fall storage draw-down events. Half of the 

samples were collected from farms employing AD and the remainder from farms without AD. 

We found that stored, anaerobically digested manures were less diverse and less variable in 

community and ARG composition than stored manure without prior anaerobic digestion. Fall 

samples were also more diverse than samples collected in the spring and diversity increased with 

decreasing percent total solids. We show that AD is a major driver of microbial community 

structure in stored dairy manure, which differed from storage-only land-applied manures by 

higher concentrations of Synergistota and lower concentrations of Spirochaetota and 

Proteobacteria. ARG profiles across the farms were predominantly comprised of genes in the 

beta-lactams, aminoglycosides, macrolides, lincosamides, and streptrogramin A and B (MLS) 

drug classes.   

  

 

 

Anaerobic Digestion Shapes Land-Applied Dairy Manure Microbial Community Structure 

and Antimicrobial Resistance Gene Profiles 
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4.1 Introduction 

Land application of manure restores organic carbon and nutrients into agricultural soils, 

but also introduces antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes 

(ARGs) into the environment where they present human and veterinary health risks (Heuer, 

Schmitt, and Smalla 2011; Xie, Shen, and Zhao 2018). Understanding the major factors that 

shape the microbial community structure and ARG concentrations in land-applied manure is 

critical for designing waste management best practices that mitigate risks associated with 

antimicrobial resistance. Anaerobic digestion (AD) is a biological process employed by some 

farms to reduce pathogen prevalence, stabilize waste, and generate biogas. Compared to lower-

temperature digestion systems, thermophilic digestion has been shown to have a greater impact 

on community structure (W Sun et al. 2016), levels of viable antimicrobial resistant pathogens 

(Beneragama et al. 2013; Youngquist, Mitchell, and Cogger 2016), ARG concentrations 

(copies/mass dry solids) (Ma et al. 2011; W Sun et al. 2016), and ARG relative abundances 

(reads/total metagenome reads) (Zhang, Yang, and Pruden 2015). However, these studies have 

been largely limited to laboratory scales. 

Additionally, AD is typically not the final stage of manure management on farms before 

land application. After anaerobic digestion, treated manure is often stored for several months. 

One of the few studies on dairy manure storage showed that microbial communities became less 

diverse through storage following anaerobic treatment, aerobic treatment, and no treatment 

(McGarvey et al. 2007). Tetracycline resistance genes have been found at high abundances in 

stored manure. Abundances of six different tetracycline ARGs ranged from 101-106 copies per 

mg and 101-106 copies/16S rRNA gene copies across lagoons from 4 different cattle feedlots 

(Peak et al. 2007) and measured tetO abundances ranged from 10-3-10-2 copies/16S rRNA gene 

copies in stored manures from 11 different dairies (Hurst et al. 2019). One study found higher 
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16S rRNA gene-standardized abundances of three ARGs (sul1, tetM, and blaOXA-58) in stored 

dairy manure compared to fresh manure (Ruuskanen et al. 2016). A longitudinal cross section of 

livestock operations, including a poultry, beef, swine and dairy farms, found 16S rRNA gene-

standardized abundances of sulfonamide resistance genes were stable through storage while 

tetracycline resistance gene abundances declined over time (McKinney et al. 2010). With limited 

sample sizes from the same farms (i.e. dairy vs. swine), unrepresentative grab sampling, and 

limited number of genes targeted per study, it is difficult to draw conclusions on the impact of 

storage on ARGs and community composition. 

In this study, we compare a cross-section of 15 dairy storages from 12 farms across 

different regions in the United States using high throughput DNA sequencing. Stored manure 

samples were collected during land application events to obtain representative samples of stored 

manure. The dairy cohort is intended to serve as a cross-section of dairy farms from different 

regions, different manure management systems, and herd sizes. The aim of this study was to (1) 

determine the variability in farm characteristics, microbial community structure, and ARG 

composition of stored dairy manure as they are applied to land, (2) evaluate the factors that shape 

the microbial community structure, and (3) evaluate co-occurrence patterns in concentrations of 

ARG and microbial populations across farms.   

4.2 Results 

4.2.1 Dairy cohort 

Twelve dairy farms participated in the study representing the Upper Midwest (MW), 

Northeast (NE), and Mid-Atlantic (MA) regions of the Unites States and ranged in herd size 

from 80-4,200 cows. Samples were collected while stored manure was agitated, pumped and 

hauled for land application. Fall samples were collected in September and October, and spring 

samples were collected in April and May. Three farms were sampled twice, either in different 
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seasons or from different storages, resulting in a total of 15 samples collected from manure 

storages during land application events. All five farms using AD prior to storage (“AD+storage”) 

were located in the NE and MA regions and tended to have larger herd sizes (Table 1). 

Concentrations of nitrogen, ammonia, and phosphorus are reported in Supplemental Table 1. 

Total solids varied over three orders of magnitude in the storage-only manures, ranging from 0.2-

15.4% but only ranged from 1.3-6.7% in AD+storage manures (Table 4-1). DNA yield (ng 

DNA/mg sample) was also more variable in the storage only samples (Table 4-1). Every manure 

storage in the cohort received manure from both healthy cows and sick cows that were treated 

with antibiotics except manure storage from Farm MW2. At this farm, there was separate storage 

for manure from sick cows.  

Table 4-1: Dairy storage cohort farm and manure characteristics 

Sample 

% Total 

solids 

ng DNA/mg 

Sample Herd size Season 

Storage only Samples 

MW1 2.3 13.6 150 Fall 

MW2 15.4 22.4 600 Spring 

MW3 0.7 2.6 400 Spring 

MW4 - Storage 1 0.8 5.1 330 Spring 

MW4 - Storage 2  1.0 14.9 330 Spring 

MW5 14.1 15.7 680 Spring 

MA1 0.2 1.7 80 Fall 

NE1 4.2 15.1 1350 Fall 

Anaerobic Digestion + Storage Samples 

NE2 - Fall Storage 6.8 23.3 4300 Fall 
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NE2 - Spring Storage 4.2 18.3 4300 Spring 

NE3 - Fall Storage 6.7 19.1 2050 Fall 

NE3 - Spring storage 3.1 18.2 2050 Spring 

NE4 1.3 12.5 1820 Spring 

MA2 2.8 11.9 2700 Fall 

MA3 4.6 14.8 690 Spring 

MW = Midwest, NE = Northeast, MA = Mid-Atlantic 

4.2.2 Diversity in community compositions differed by AD status, total solids concentration, and 

season. 

phyloFlash extracts and assigns metagenomic reads to 16S rRNA gene sequences in the 

SILVA database using BBMap (Gruber-Vodicka, Seah, and Pruesse 2019). Between 1.6×105 and 

5.5×105 reads were identified as 16S rRNA genes from each of the metagenomes in this study, 

comprising between 0.1 and 0.2% of total metagenomic reads (Table C-2).  Across all samples, 

14 phyla accounted for 83-99% total read assignments (Figure 4-1). All samples but the Mid-

Atlantic 1 (MA1) sample were dominated by organisms from the Firmicutes and Bacteroidetes 

phyla; which comprised 15-59% and 10-37% of 16S rRNA reads, respectively. Across all 

samples Clostridia and Bacilli were the dominant classes in Firmicutes and Bacteroidia was the 

dominant class in Bacteroides (Fig. C-2). Proteobacteria was the dominant phylum in the Mid-

Atlantic 1 (MA1) sample. These patterns of dominant phyla were visible when comparing 

organism concentrations (16S rRNA gene copies/mg wet weight, Fig. C-1). Halobacterota, a 

phylum of archaea including several genera of methanogens, and Verrucomicrobiota, a phylum 

of bacteria prevalent in the soil (Bergmann et al. 2011) were also abundant across most samples 

(Figure 4-1).  
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Figure 4-1: Relative abundances of phyla in manure samples. 

 

Reads were assigned to ARG sequences using AMRPlusPlus (AMR++) using the 

MEGARes database (Doster et al. 2020) and relative abundances (reads/total ARG-assigned 

reads, Figure 4-2) and gene concentrations (copies/mg wet weight, Fig C-3) were computed. 

AMR++ assigned between 5.1×105 and 2.1×106 reads to ARGs, corresponding to 0.4-1.1% of 

total metagenomic reads (Table C-2). The most prevalent drug classes represented by the ARGs 

across all samples were beta-lactams, aminoglycosides, macrolides, lincosamides, and 

streptrogramin A and B (MLS) drugs, collectively comprising between 60% and 80% of the drug 

classes detected. ARGs in tetracyclines, elfamycins, and sulfonamides drug classes were 

prevalent but present at lower relative abundances (Figure 4-2). Relative abundance profiles 

were similar across all samples but NE4 and NE3-Fall samples exhibited higher prevalence of 

beta-lactams than other samples in the cohort (Figure 4-2).  
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Figure 4-2: AMR++ Relative ARG abundances grouped by drug classes. 

 

 

To assess if observed ARG read assignments were consistent across different assignment 

approaches and databases, Graphing Resistance Out Of meTagenomes (GROOT) was used to 

obtain resistance gene profiles using the Comprehensive Antimicrobial Resistance Database as a 

reference (Alcock et al. 2019). However, the relative abundance profiles were dominated by 

TEM genes which are a family of beta-lactamases. Specifically, 99% of assigned reads in each 

sample were assigned to TEM genes. TEM were also dominant in the resistance profiles using 

AMR++ with the MEGARes database but only 12-67% of ARG reads mapped to TEM using 

AMR++.   
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Compared to storage-only farm samples, AD+storage samples were less diverse in ARGs 

(Figure C-4) as well as in family and genera-level community composition, although these 

differences were not statistically different (Figure 4-3A). This pattern was observed with alpha 

diversity metrics measuring species richness (Chao1) and metrics quantified from species 

richness and relative abundances (Shannon, Simpson’s Index). AD+storage samples also had 

lower inter-quartile ranges indicating that the variability in diversity was lower than that of 

storage-only farms. At higher taxonomic levels (order and class), however, median alpha 

diversity from AD+storage samples surpassed those of storage-only samples.  

Alpha diversity differed with other manure characteristics in addition to AD treatment. 

Samples collected in the fall were more diverse than samples collected in the spring (Figure 4-

3B). Low total solids (TS) samples (0.23-2.82%) were more diverse than high TS samples (3.05-

15.4%, Figure 4-3C). The observed differences in alpha diversity with solids content and season 

were significantly different and consistent at higher taxonomic levels—in contrast to what was 

observed between AD+storage and storage-only groups (Figure 4-3).  
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Figure 4-3: Alpha diversity summarized at different taxonomic levels 

between (A) storage-only and storage+AD samples, (B) samples collected in the fall and spring, 

and (B) high and low total solids. (t-test, ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001) 
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4.2.3 AD status correlates with microbial community structure and ARG profiles across farms 

We performed canonical correlation analysis (CONCOR) to identify relationships 

between the organism concentrations (16S rRNA gene copies/mg, wet weight) and ARG 

concentrations (gene copies/mg, wet weight) with the farm management and manure metadata. 

CONCOR identifies independent factors within dominant principal components of the 

microbiome and metadata that are maximally correlated with each.  

We found that AD was the most dominant factor explaining the differences in community 

structure (Figure 4-4B). Herd size and longitude were also important factors, but they are highly 

correlated with digestion status, making it difficult to determine which of these three parameters 

drives microbial community composition (Figure 4-4B). Since CONCOR first involves linear 

dimensional reduction, co-correlated factors, such as herd size and longitude, are linearly 

combined and therefore the effects are not double counted. Storage-only manure microbial 

communities were differentiated from AD+storage manure microbial communities by higher 

concentrations of Spirochaetota and Proteobacteria phyla and lower concentrations of 

Synergistota (Figure 4-4A). Class, order, family, and genus-level data were also correlated with 

farm metadata (Fig. C-5). Methanosarcinaceae (Halobacterota phylum) and 

Caldicoprobacteraceae (Firmicutes phylum) families were more prevalent in AD+storage 

manures prior to storage but not in storage-only manures. Storage-only community profiles were 

differentiated AD+storage by the higher concentrations and prevalence of Bacteroidaceae and 

Lachnospiraceae families (Fig. C-5).  

AD was also a driver of ARG structure as demonstrated by the separation between 

AD+storage and storage-only samples along the AD axis (Figure 4-4D). However, MA2 sample 

clustered closely with storage-only samples meaning ARG concentration profiles were more 



73 

similar to those of the MW farms (Figure 4-4C). TS percent and latitude also correlated with 

ARG concentrations. Northeast farms were higher in concentrations of ERMF genes while 

Midwest farms were higher in Macrolide-resistant 23S rRNA mutations (MLS23S, Figure 4-4C).  

 

 

Figure 4-4: Canonical Correlation (CONCOR) analysis. 

Co-correlated sample Phylum-level organism concentrations (A) and meta-data (B). Co-

correlated sample (C) ARG concentrations and (D) meta-data.  

 

4.2.4 Anaerobically digested manures were more similar to each other in community structure 

and ARG composition 

The ARG and family-level taxonomic compositions (read counts) were compared 

between farms using the Procrustes algorithm with multi-dimensional scaling (MDS) of 

Pairwise-Hellinger distances (Figure 4-5). We found that AD+storage samples were more similar 
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to each other than they were to samples from storage-only farms (Figure 4-5). Samples from 

storage-only farms were less similar to each other as they did not cluster as tightly as samples 

from the AD-farms. Samples collected from the same farm were not always more similar to each 

other than to other farms, suggesting that even on-farm variability in microbial community and 

ARG composition is considerable (Figure. 4-5). The observation of tighter clustering of 

AD+storage compared to storage-only was consistent using Bray-Curtis distances instead (M2 = 

0.37, Fig. C-6). 

 

Figure 4-5: Procrustes Analysis demonstrating relationship between sample ARG and OTU 

composition across farm cohort 

M2 = 0.34. Pairwise-Hellinger distance computed between read count profiles.  

 

4.3 Discussion 

We computed the concentrations and relative abundances of microbial taxa (Fig. C-1, 

Figure 4-1) and ARGs (Fig. C-3, Figure 4-2) in dairy manure storage systems as the stored 

manure was agitated, pumped, and hauled for land application. Microbial communities in stored 

dairy manure were distinct between AD+storage and storage-only systems (Figure 4-4). The 

manures that were digested prior to storage (AD+storage) were less diverse at finer taxonomic 
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scales and less variable in diversity and community composition storage-only manures (Figure 4-

3). Across storage-only and AD+storage samples, Firmicutes and Bacteroidetes were the 

dominant phyla. Concentrations of Synergistota, Spirochaetota and Proteobacteria phyla 

differentiated the communities, with Spirochaetota and Proteobacteria more prevalent in 

storage-only manure and Synergistota more prevalent in the AD-treated manure (Figure 4-4). 

Firmicutes and Bacteroidetes were also prevalent phyla in a cross-section of feces from lactating 

dairy cows and pre-weaned calves in Pennsylvania dairies (Haley et al. 2020) and lactating cattle 

in California dairies (Hagey et al. 2019). Firmicutes was dominant in a full-scale anaerobic 

digester treating manure (De Vrieze et al. 2016).  

Anaerobic digestion is uncommon on dairy farms, less than 200 of the dairies in the 

United States, or less that 1% of US dairies use AD for manure management (Oliver et al. 2020). 

Consequently, there are limited full-scale studies on how AD shapes manure microbiomes. One 

bench-top study found temperature-dependent effects on microbial community succession 

through digestion with the most extreme changes in community structure observed during 

thermophilic digestion. Specifically, digestion shifted the dominant community members from 

Actinobacteria and Proteobacteria to Firmicutes and Chloroflexi (Wei Sun et al. 2016). In this 

study, AD use correlated with farm size and region (Table 4-1); consequently, it was not possible 

to isolate the effect AD specifically had on shaping microbial communities (Figure 4-4B). A 

larger samples size with more AD farms across different regions and herd sizes would be needed 

to address this limitation in future research.   

Minimizing the release of pathogenic organisms via land-application is critical to 

reducing risks in animal and human populations. Determining clinical relevance of observed 

differences in composition between AD+storage and storage-only manures is not possible due to 
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the lack of species and sub-species level resolution of metagenomic approaches. Salmonella spp., 

Campylobacter spp., Listeria monocytogenes, Yersinia enterocolitica, and Escherichia coli are 

clinically relevant pathogens that are prevalent in cattle manure (Pachepsky et al. 2006). Each of 

these pathogens, except Listeria monocytogenes, are in the Proteobacteria phylum, which was 

more dominant in storage only manures. However, without isolation of pathogenic species, it is 

not possible to infer if pathogen prevalence was higher in the storage-only land-applied manures 

in this study.  

To combat the complexity and growing diversity of ARGs identified and annotated, there 

has been an explosion of tools and databases for identifying and quantifying antimicrobial 

resistance from microbial communities (Boolchandani, DeSouza, and Dantas 2019). Databases 

use different ontological structures for organizing and classifying resistance genes by function, 

sequence variation, and target antibiotic. This makes comparisons between studies more 

challenging as they often employ different databases and read-assignment algorithms. Further, 

functional metagenomics, an approach where DNA fragments found to express a resistance 

phenotype are sequenced allowing discovery of novel ARG sequences, has revealed limitations 

of databases. For instance, a functional metagenomic study on manure found the majority of 

resistance genes identified shared between 30-70% identity to closest matches in GenBank 

(Wichmann et al. 2014). A study on agricultural soils found that only 0.5% of genes conferring 

resistance had >99% nucleotide identity to NCBI nucleotide sequences (Forsberg et al. 2014). 

Here we used two different open-source tools and databases to assign metagenomic reads 

to ARG sequences. We selected these two tools because they have been programmed to 

differentiate reads between homologous ARGs. Additionally, AMR++ was previously used to 

characterize resistance genes in bovine fecal systems (Zaheer et al. 2019) and calves (Liu et al. 
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2019). In a previous study, we demonstrated that both AMR++ GROOT performed comparably 

to qPCR for quantifying gene concentrations from dairy manure (Crossette et al. 2020, in 

review). In this study, however, GROOT with CARD as a reference detected only TEM beta 

lactamase gene, suggesting a potential bias in CARD and/or the GROOT read assignment 

algorithm. The total number of reads mapping to ARGs using both approaches was the same or 

higher than the total number of reads mapping to 16S rRNA gene sequences (Table C-2), 

suggesting that the cut-off thresholds for ARG read assignment might need to be set higher to 

reduce possible ambiguous mapping.  

In this cross-section of land-applied dairy manures, beta-lactams, specifically bla-TEM 

dominated the resistance gene profiles (Figure 4-2). Previous studies of fecal microbial 

communities using qPCR have found high prevalence and abundances of tetracycline resistance 

genes in fresh (Kyselková et al. 2015) and stored manure (Peak et al. 2007). Further, 

metagenomic studies of cattle manure have confirmed that tetracycline resistance genes are 

dominant resistance genes in ARG profiles in manures from beef cattle herds (Noyes et al. 2016; 

Zaheer et al. 2019) and lactating dairy cows (Haley et al. 2020; Noyes et al. 2016). One study 

reported tetracycline genes were more abundant in beef manures compared to dairy resistomes 

(Rovira et al. 2019). This suggests that over time in storage, the core gut microbial community 

members harboring tetracycline resistance gene decline relative to other populations in the 

storages.  

 We found that both community profiles and ARG profiles were shaped by similar factors 

(Figure 4-4, Fig. C-5) and indeed were correlated using the Procrustes method (Figure 4-5, Fig. 

C-6). This observation of correlated abundances profiles has been observed in soil (Forsberg et 

al. 2014; Han et al. 2018), wastewater treatment plants (Ju et al. 2019), and full-scale biogas 
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reactors (Luo et al. 2017). In other words, the differences in community structure correspond to 

differences in resistance gene profiles in the storage systems. In these previous studies, the 

coupling between ARG abundances and community structure was interpreted as evidence that 

horizontal gene transfer is not a dominant driver of gene abundances (Forsberg et al. 2014; Han 

et al. 2018; Ju et al. 2019; Luo et al. 2017). 

 This pilot-scale cross-sectional study demonstrated that stored manures vary in microbial 

community compositions and total solids. This variability in manures between farms highlights 

how studies observing community structure and ARG profiles in samples collected from on one 

or two farms are likely not generalizable, especially if the farms do not use AD. Despite the 

observed variability, we found that land-applied manure microbial communities were distinct 

between stored manure with prior AD and storage-only manure. Therefore, AD is an important 

driver of microbial community structure and ARG abundances in stored dairy manure.  

4.4 Materials and Methods 

4.4.1 Manure storage Sampling and Nutrient Analysis. 

Manure storage samples were collected during drawdown events, when storages were mixed and 

hauled for land application. Samples were collected as well distributed during the hauling as 

possible to best capture a representative sample of the stored manure that was land-applied. 

Samples for molecular analysis were collected in sterile 15 or 50mL Falcon Tubes  and stored on 

ice until returning to the lab where it was frozen at -80C until DNA extraction. Midwest stored 

manure samples were sent to the University of Wisconsin Soil and Forage Analysis Lab for 

nutrient analyses. Northeast and Mid-Atlantic stored manure sample nutrient analysis were 

performed in house as described previously (Lansing et al. 2019). Metadata about the farm was 

collected during the hauling events including herd size, bedding type, and whether or not sick 

cow bedding and manure were fed to the sampled storage.  
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4.4.2 DNA Extraction and Extraction Recovery Calculation.  

Manure samples were thawed on ice and samples from the same drawdown event were pooled in 

equal proportions and well-mixed. Between 150-200 mg of each drawdown composite sample 

was allocated into QIAAMP PowerFecal DNA extraction kit bead tubes (QIAGEN, 

Germantown, MD). Triplicate extractions were performed, one triplicate was spiked with 10 µL 

of ZymoBIOMICS Spike-in Control I (ZYMO Research, Irving CA), which contains a gram-

positive and gram-negative organism. DNA was extracted following the manufacture’s 

guidelines (Supplemental Text C-1).  

4.4.3 DNA Sequencing  

Before DNA sequencing, unspiked DNA extracts from each drawdown were pooled then spiked 

with Sequins (Hardwick et al. 2018) at 1.7% DNA by mass then sequenced on an Illumina 

NovSeq (300 cycle) instrument at the University of Michigan Advanced Genomics Core 

Facilities. PCR-Free library preparation was used with an insert size of 175 basepairs (bp) 

Approximately 200 million reads were generated per sample.  

4.4.4 Bioinformatics 

Quality control was performed using Trimmomatic (version 0.39). Performance of quality 

control steps were assessed with FastQC (version 0.11.8) and visualized with MultiQC (version 

1.8). Taxonomic counts for bacteria and archaea were generated using phyloFlash (version 

3.3b3) with default settings but specifying the read length (150 bp) and insert size (175 bp).   

Reads were assigned to antimicrobial resistance genes using GROOT and AMR++ tools. 

GROOT was run with default parameters, except a 50% reporting threshold was used and the 

read length was set to 150 bp. CARD2020 was used as the reference database. AMR++ (version 

2.0.0) was performed using the singularity container with the MEGARes database as a reference 

and default parameters (--threshold 80 --min 1 --max 100 --samples 5 --skip 5).  Read 
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abundances assigned to target antimicrobial resistance genes using GROOT and AMR++, and 

read abundances assigned to NTUs using phyloflash, were converted to absolute abundances, 

(copies per mass of sample) following Crossette et al. 2020 in prep. In short, the Sequins spiked 

after DNA extraction and before sequencing establish a ratio of read abundances to copy 

concentration. This ratio was then used to convert read counts to gene copies in each sample. 

Abundance profiles were plotted using GGplot in R.  

4.4.5 Statistical Methods 

Alpha diversity metrics were computed using the alpha diversity package from skbio and plotted 

with GGplot in R. Canonical correlation analysis (CONCOR) was used to correlate the 

abundances of NTUs with metadata and again to correlate ARG abundances with sample 

metadata. However, since the number of observed NTUs and ARGs exceed the number of 

samples, principal component analysis was first performed to reduce the NTU and ARG 

abundances into linear combinations. CONCOR is an unsupervised approach that finds linear 

combinations of two data matrices that correlate highly with each other. Percent variance 

explained by each 2-D visualization was determined as the product of the explained variation in 

the dominant principal components used in the correlation and the square of the CONCOR 

correlation coefficient. CONCOR was implemented and plotted using custom python scripts. 

Dimensional reduction and Procrustes analysis were also performed in python using custom 

scripts and plotted with matplotlib. 
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SUMMARY 

We present a simple mathematical framework to describe horizontal gene transfer (HGT) in 

microbial communities. This framework facilitates quantification and monitoring of HGT and 

dynamics of microbial communities. Our mathematical framework will ultimately facilitate 

quantification of antimicrobial resistance gene dissemination risks in different microbial 

communities under environmental stressors. First, we outline concepts in linear algebra central to 

the proposed framework. We then describe the dynamics of cell-cell interactions —

Morphogenesis—introduced by Alan Turing. We adapt Turing's system to describe HGT. Next, 

we describe how we can quantify the impact of HGT on the dynamics of microbial communities 

from time-series data using dynamic mode decomposition. Finally, we propose how this 

framework may be tested in lab-scale experiments with synthetic microbial communities.   

5.1 Introduction 

Microbial communities are complex biological entities comprised of diverse interacting 

microorganisms including viruses, fungi and bacteria. Some organisms can share genetic 

material with other organisms in their community via horizontal gene transfer (HGT). Most 

notoriously, multi-drug resistant organisms have emerging in hospitals (Sheppard et al., 2016) 
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and veterinary settings (Liu et al., 2016) as the result of horizontally transferred antimicrobial 

resistance genes has increased mortality from microbial infections (Cassini et al., 19 2019).  

Antimicrobial resistance genes are natural defense mechanisms microbes have developed 

over years competing with other microbes. Soil microbial communities are a vast reservoir of 

antimicrobial resistance genes (Gibson et al., 2015; Forsberg et al., 2014). Surveys of sequenced 

bacterial genomes in GenBank have shown that over many hundreds of thousands of years of 

microbial evolution, mobilized genes have spread across diverse populations of bacteria (Popa et 

al., 2011; Smillie et al., 2011). 

While we have evidence that use of antibiotics can increase the prevalence of 

antimicrobial resistance in clinical settings (Sheppard et al., 2016), we have little understanding 

of the complexity of selection in the environment. Specifically, the livestock industry has been 

under increased scrutiny as novel drug-resistant pathogens have emerged with use of antibiotics 

(Liu et al., 2016). Emergence of resistant pathogens during antibiotic administration is not the 

only concern, but also the increase in diversity of resistance genes in non-pathogenic organisms 

residing in soil and surface water which could be acquired by pathogens long after antibiotic 

administration (Pruden et al., 2013). Quantify the risk of pathogens acquiring antimicrobial 

resistance genes in the environment due to anthropogenic pollution remains a challenge. 

Several studies have developed models to predict HGT frequency. Mass-action model, 

for instance, are based on the theory that the transfer of genetic material occurs at a rate 

proportional to the density of a microbial population. One of the most classic of these mass-

action models quantified the stability of plasmids within a population as a function of the trade-

off between the metabolic maintenance cost and selective pressure (Levin and Stewart, 1980). 

This model was used to model synthetic fatty acids concentrations that could reduce conjugation 
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rates and cure plasmids from a population in a chemostat system (Getino et al., 2015). 

Novozhilov et al. extended Stewart and Levin’s horizontal gene transfer modeling to multiple 

populations to evaluate parameters that lead to fixation of a novel gene in a community 

(Novozhilov et al., 2005). 

While these models have provided valuable insights into evolution theory and population 

dynamics, a data-driven modeling approach capable of quantifying risks of horizontal gene 

transfer is still needed to breakdown the complexity of gene transfer in environmental microbial 

systems. We aim to develop a testable, mathematical framework to quantify horizontal gene 

transfer’s impact on microbial communities and risks of HGT. 

5.2 Dynamics of horizontal gene transfer 

Our mathematical framework for HGT is inspired by Alan Turing’s The Chemical Basis of 

Morphogenesis, which describes the impact of two cells coupling and exchanging proteins on the 

dynamics of two cells (Turing, 1952). Complex microbial systems are highly dynamic 

ecosystems prone to environmental and genetic disturbances. Chemical disturbance from 

antibiotics can kill cells in the system, reducing redundancy and diversity. Changes in nutrient 

concentrations conversely, can cause blooms in bacterial populations that can adapt to 

metabolize the chemical. Genetic disturbances, such as mutations or gene transfer change the 

fitness of organisms which can unbalance a system. Despite these disturbances, microbial 

communities are able to maintain stability in a range of systems from biological wastewater 

treatment to the human gut. The ability to maintain stability despite disturbances is the definition 

of robustness (Ellens and Kooij, 2013). The following sections outline the underlying 

mathematics of linear and nonlinear systems and how we propose to quantify HGT in microbial 

systems. 

5.2.1 Linear dynamics: Turing system 
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Applying dynamical systems theory to biological data has facilitated the discovery of cell and 

genome dynamics (Rajapakse and Smale, 2017b) and described fundamental phenomena such as 

exponential growth or decay. The most simple dynamical systems are linear and defined as: 

 

where A is a matrix of constants. For example, a two-component system of x1 and x2 which 

interact by constants a,b,c, and d, we can write as:  

 

Which simplifies to: 

 

The matrix of coefficient values is known as the adjacency matrix, denoted as A. This system, or 

network, can be also be represented as a graph, where each variable, x1 and x2, is represented as a 

node and its interaction as an edge. We can study the dynamics of these systems and evaluate 

important features of our network. Firstly, one can compute the Laplacian Matrix (L) as L = D − 

A, where D is the degree matrix. Computing the eigenvalues of both A and L then can reveal 

spectral properties of the network. Specifically, if the real parts of the eigenvalues of the 

Laplacian matrix are negative, the system dynamics are stable. 

In The Chemical Basis of Morphogenesis, Turing illustrated the breakdown of stability of 

two identical cells as they interact through chemical morphogens X and Y. When cells are 
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uncoupled, chemical reactions alone in each cell drive concentrations of morphogens (Turing, 

1952). These reactions can be modeled with a system of linear equations: 

 

We can summarize these within-cell reaction dynamics with the following: 

 

The 2 × 2 matrix of reaction coefficients is the A matrix (Rajapakse and Smale, 2017a). The 

eigenvalues of A are . Since the trace(A)= −2, and the det(A) 

= 1, the eigenvalues of A = −1, with a multiplicity of 2. Since λ1,2 < 0, the within-cell, uncoupled 

dynamics are stable for each cell. 

Now, if the cells couple, morphogens X and Y can diffuse between cells. Turing assigned 

diffusion coefficients from cell 1 to cell 2 of 0.5 for morphogen X and 4.5 for morphogen Y. Now 

the dynamics of the morphogens can be described as follows, where the subscript of each term 

represents the concentration within cell 1 or cell 2 of the coupling pair (Chua, 2005): 

 

We can think of the diffusion matrix as the Laplacian matrix (Rajapakse and Smale, 2017a). The 

eigenvalues of the diffusion/Laplacian matrix, L, are [−9,−1,0,0], so the diffusion matrix is also 

stable. We can also simplify the equation above in terms of the cell dynamics, A, and the 

diffusion dynamics, L, as 
𝑑𝒙

𝑑𝑡
 =  (𝑨 − 𝑳)𝑥. The final set of matrix values are as follows: 



 90 

 

Now, one of the eigenvalues of the system describing the within cell dynamics and between cell 

diffusion system is positive, meaning the system is no longer stable. This two-cell coupling 

resulting in a change in system dynamics is analogous to horizontal gene transfer. 

5.2.2 Nonlinear dynamics 

Many systems in nature are nonlinear, classic Monod growth kinetics of monocultures in nutrient 

limited environments are nonlinear as are competitive and generalized Lokta-Volterra models for 

interacting species. Nonlinear systems are defined as: 

where, as opposed to Equation 1, F(x) is a function that is nonlinear, so the derivative of

, does not equal a constant. However, we can still explore the dynamics using the 

properties of linear systems by linearizing the system and observing the dynamics in the 

neighborhood of equilibrium points, which occur where . The Jacobian matrix, J, is 

a matrix of partial derivatives at the equilibrium defined as: 

If any of the eigenvalues of the Jacobian solved at the equilibrium point have a positive real part, 

the system is unstable as it approaches that equilibrium point. Computing eigenvalues of the 

Jacobian Matrix can also reveal bifurcations in a dynamical system. Bifurcations occur when a 



 91 

parameter change causes the stability of an equilibrium point to emerge or break down. The Hopf 

bifurcation, for example, is notable bifurcation observed in population dynamics, which occurs 

when the parameter, µ, called the bifurcation parameter, is introduced causing a stable system to 

destabilize (Fussmann et al., 2000). In the following section we illustrate this concept in the 

context of microbial systems. 

5.2.3 Horizontal gene transfer in robust microbial networks 

Many different structural features can contribute to biological robustness (Kitano, 2004). In 

microbial communities, functional redundancy and diversity have been observed to contribute to 

stability of the system (Shade et al., 2012). We can visualize the stability of a microbial 

community using stability landscapes in Figure 5-1. Basins within a landscape represent stable 

states in a system. Disturbances can push a system out of a stability basin which can cause the 

system to stabilize in a new state or basin or remain unstable. 

 

Figure 5-1: Microbial communities are prone to environmental and genetic disturbances that 

can impact the fate of the community’s structure. 
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Horizontal gene transfer enables functional plasticity via near instantaneous adaptation to 

environmental pressures or conditions. Therefore, we hypothesize that HGT is a ‘fail-safe’ 

mechanism, a feature of robust networks. Other modeling work has demonstrated that HGT 

makes systems more robust (Juhasz et al., 2014; Fan et al., 2018). Specifically, Fan et al. applied 

a game theory-based modeling framework to show that HGT enabled a wider range of initial 

conditions enabling stable species co-existence (Fan et al., 2018). Juhasz et al. found that HGT 

in simulated microbial communities made the communities more robust to invading organisms 

using agent-based modeling (Juhasz et al., 2014). We now extend the HGT coupling to a 

microbial community consisting of three different organisms, x1, x2 and x3. Each organism 

interacts with weights defined as wi,j which reflect the net mutualistic, commensal, competitive or 

predatory interactions between two organisms. This is analogous to the generalized Lokta-

Volterra equations used to describe ecological networks including microbial communities. 

The dynamics of the system can be summarized as: 

Where A is the matrix of edge weights: 

We then define horizontal gene transfer as a coupling mechanism that changes edge dynamics: 

Here, L is a matrix that alters the weight of a species interaction due to horizontal gene transfer. 

5.3 Learning from data 



 93 

One important benefit of this framework is the ability to derive the dynamics from data. Here we 

outline how dynamics of microbial communities can be quantified from data by applying 

dynamic mode decomposition (DMD) to longitudinal sampling of an infant's microbiome.  Next, 

we outline how the approach can be leveraged for evaluating a community's susceptibility to 

horizontal gene transfer under different thresholds of environmental stress. 

5.3.1 Dynamic mode decomposition 

Before we can assess the stability and robustness of a system, we need to determine the 

underlying system dynamics, or specifically the adjacency matrix. Other approaches have been 

used to infer microbial community dynamics, based on multiple linear regression techniques 

which can inform generalized Lokta-Volterra models (Ruan et al., 2006; Faust and Raes, 2012; 

Stein et al., 2013; Bucci et al., 2016). Here we propose applying DMD to compute dynamic 

modes from time series observations. 

The benefit of extracting network dynamics from real data using DMD facilitates 

quantification of the network's robustness. Metrics which quantify features of robust 

communities enable comparison of different microbial communities or between community 

states. Robustness measures can enable quantification of the role of HGT in community stability 

before and after HGT events, between different communities with different gene transfer 

frequencies, or before and after environmental stressors. 

Using the eigenvalues computed from DMD, a couple different metrics of robustness can 

be determined. The algebraic connectivity of a network is the second smallest eigenvalue and has 

been used to infer the robustness of protein-protein networks within bacteria (Guimaraes et al., 

2018). Effective resistance is another metric of robustness which is a function of Laplacian 

eigenvalues. Comparing effective resistance between microbial networks has demonstrated that 

fungi contribute to microbial stability in human microbiomes (Tipton et al., 2018). 
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To illustrate the steps to compute system dynamics from data, we first denote the 

sequence of snapshots collected by the following description: 

where, m is total number of snapshots and X′ is the time-shifted snapshot matrix of X. Let us 

suppose that there is an unknown linear operator A such that 

 

The dynamic mode decomposition of the data matrix pair X and X′ is given by the 

eigendecomposition of A. We may think of A as describing a high dimensional linear regression 

of the nonlinear dynamics which relate X to X′. To obtain an approximation of A, one approach 

is to use the singular value decomposition (SVD) of the data matrix X = UΣV to compute its 

pseudoinverse: A≈X′X†. The DMD modes are the eigenvectors of the DMD approximated 

adjacency matrix and represent different components of the dynamics. The eigenvalues, as 

explained in the Dynamics of Horizontal Gene Transfer section reveal the behavior of the 

system. 

In summary, DMD enables data-driven estimation of a system's dynamics and can be 

applied to study the dynamics of microbial communities to quantify stability of the community. 

We now illustrate how DMD can be applied on a real microbiome dataset then describe how the 

approach can be used to quantify the impact of horizontal gene transfer on the stability of 

microbes facing environmental stress. 

5.3.2 Example: Infant gut longitudinal cohort 

To illustrate how DMD can be used to infer the dynamics of a system based on time series 

observations, we explore the dynamics of the gut microbiome from a subject in a longitudinal 
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cohort examining infant gut microbiome development. Data from the Early Childhood 

Antibiotics and the Microbiome (ECAM) study were downloaded from “MicrobiomeDB,” an 

online platform containing microbial community composition data originating from thousands of 

samples (Oliveira et al., 2018). Microbiome data at the “class” taxonomic level from the subject 

with the most sample points was downloaded. 

Every month over the first year of the infant's life and every two months in the second 

year, a fecal sample was collected. DNA was extracted from the samples and 16S rRNA genes 

were amplified and sequenced to identify and estimate relative abundances of taxa (Bokulich et 

al., 2016). At each point in time, we then obtained a vector, xt, which contains the relative 

abundance of each class at time, t. We can combine these vectors into an n × m matrix where m 

is the number of observations and n is the number of microbial classes observed in the dataset. 

 

Next, we can perform DMD to estimate the dynamics of the microbial communities. 

Eigenvalues within the unit circle represent decaying portions of the dynamics, values on the unit 

circle represent oscillatory behavior and outside the unit circle are unstable dynamics. We found 

that the dynamic modes from the subject are negative, meaning they are stabilizing (Figure 5-2). 

This agrees with the findings in the original manuscript that as the infant ages, the microbial 

composition stabilizes (Bokulich et al., 2016). Now that we have introduced DMD and 

demonstrated the process on real microbiome data from a longitudinal cohort, we can explore 

how the approach can reveal the relationship between HGT and microbial community 

robustness.  
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Figure 5-2: DMD modes computed from subject’s microbial community profile measured over 

time. 

Time series data depicted by the heatmap. DMD eigenvalues within the unit circle demonstrate 

that the system dynamics are stabilizing over time.  

 

5.3.3 Robustness and stress thresholds: Quantifying HGT in model microbiomes 

It is near impossible to track real-time gene transfer events within subjects or in 

environmental microbiomes such as those in agricultural soils because in situ gene transfer is 

difficult to observe (Sorensen et al. 2005). However, synthetic microbial communities offer an 

exciting opportunity for experimenting with drivers and outcomes of gene transfer. For example, 

to quantify the impact of HGT on community stability, one could take snapshots of a synthetic 

microbial community over time and use tools like susceptibility testing or genotyping to evaluate 

if an HGT event has occurred in the given time window. The observations of the community 

structure over time can be bisected into pre-HGT and post-HGT and DMD performed on each 

subset to quantify the impact of the gene transfer event. 

The risk of pathogenic organisms acquiring antimicrobial resistance genes through HGT 

is also a critical research question this framework, coupled with synthetic microbial 

communities, can address. By performing experiments subjecting synthetic microbiomes to 

different environmental stressors, like antibiotic loading, this modeling framework can be used to 
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quantify thresholds of stress that lead to HGT events. Paired experiments involving communities 

with and without HGT potential can quantitatively compare the robustness of communities 

(Figure 5-3).

 

Figure 5-3: Example experimental set up to quantitatively compare robustness of communities 

with and without HGT potential. 

One microbial community is capable of gene exchange (top) and one is not capable of HGT 

(bottom). The systems capable of HGT in this illustration rebounds under environmental stress 

while the system without HGT capacity is not robust to the environmental stress. These 

differences in robustness can be by quantified from the eigenvalues represented in the unit circle 

(right). 

 

5.4 Importance 

In this manuscript we have introduced a novel framework with which to explore the impact HGT 

has in disrupting or maintaining stability within microbial communities. We demonstrated how 

principles in linear and non-linear algebra enable inference of the microbial community networks 
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and identify features of robust microbial communities. Lastly, we proposed a testable framework 

for evaluating the role of HGT that can be applied to answer different scientific questions. 
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This work has resulted in an improved understanding of the role that manure 

management plays in mitigating antimicrobial resistance gene (ARG) abundances and brought 

the field closer to achieving a risk-assessment framework for ARGs in the environment. Previous 

research on anthropogenic releases of ARGs into the environment have been largely exploratory. 

Interventions effective in mitigating ARG abundances and the relative importance of different 

sources of ARGs in the environment is still unknown. To approach a consensus on the role of the 

agricultural sector in ARG pollution and to enable risk assessment frameworks capable of 

informing policy, we applied research principles in epidemiology to environmental engineering 

systems and developed novel quantitative molecular and mathematical tools. 

6.1: Applying environmental epidemiology in environmental engineering studies 

In Chapters 2 and 4, principles in environmental epidemiology study design were applied 

through a meta-analysis and cross-sectional study, respectively. Meta-analyses are important in 

the public health and clinical fields to assess the generalizability of findings between studies (1). 

While literature reviews published over the past years have qualitatively described publications 

documenting ARG abundances in livestock environment (2, 3), these reviews were broadly 

performed across different livestock species and have concluded more research is needed to 

inform policy to evaluate the risk of pathogens airing ARGs in the environment. The systematic 

review and quantitative meta-analysis of field-scale research in cattle livestock operations 

Chapter 6 

 

 

Conclusions and Future Work 
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performed in Chapter 2 demonstrated cross-study variability in observed impacts of antibiotic 

use and land application on environmental ARG abundances. Studies often lacked enough 

biological replication, preventing the computation of statistical variation and significance. These 

observations highlighted the importance of the cross-sectional study designs for evaluating 

drivers of ARG abundances.  

Cross-sectional studies are an important tool in environmental epidemiology for 

quantifying relationships between exposures and health outcomes (4). Cross-sectional studies in 

ARG research have demonstrated relationships between agricultural exposure and carriage of 

Methicillin-resistant Staphylococcus aureus (5) and prevalence resistant organisms in 

conventional farms compared to raised-without-antibiotic farms (6). In Chapter 4 we applied a 

pilot-scale cross-section study of manures from 12 dairy farms as manures were applied to land. 

This study further demonstrated the value of cross-sectional studies designs for identifying 

relationships in farm management and microbial ecology. We were able to demonstrate that 

anaerobic digestion (AD) indeed shaped the microbial ecology of stored manures. Using 

unsupervised statistical approaches, we could extract populations of bacteria and antimicrobial 

resistance genes prevalent in stored manures with and without AD prior to storage. We observed 

that the AD was a stronger driver of microbial community structure than the storage season, but 

a larger population of dairies needs to be surveyed to determine how geographic region and herd 

size shape the communities and ARG abundances.  

The meta-analysis and cross-sectional study demonstrated that exploratory study designs 

for environmental ARG research are obsolete. Well-designed studies are needed for evaluating 

field-scale interventions for mitigating ARGs and reducing risk.  
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6.2: Novel tools to approach risk assessment framework 

Chapters 3 and 5 introduced novel approaches to study ARGs in complex environmental 

matrices. In Chapter 3 we introduce a quantitative metagenomic approach which enabled non-

targeted screening of ARGs using standard spike-in DNA standards. This quantitative 

metagenomic approach filled a critical need for absolute quantification of genes (gene copies per 

sample mass or volume) in complex environmental systems. We demonstrate the value of this 

novel approach in Chapter 4, in which we apply the method in a cross-section study of stored 

manures. Using a high-throughput quantitative metagenomic tool, we could screen the entire 

resistome and better compare the impact of anaerobic digestion on stored manure ARG 

concentrations. 

Lastly, in Chapter 5, we proposed a simple, data-driven mathematical framework for 

quantifying risks of pathogen acquisition of ARGs via horizontal gene transfer (HGT); this had 

been a critical limitation of previous approaches identified in several review papers (7, 8). HGT 

involves the coupling of microbial cells and has been implicated in the dissemination of ARGs in 

clinical environments (9). With microbial community composition data over time, we outline 

how Dynamic Mode Decomposition (DMD) can extract the dynamics of a microbial network. 

Coupled with synthetic microbiomes, like “the hitchhikers of the rhizosphere” system (10) we 

describe experimentation that can be used to compute robustness of microbial communities with 

and without HGT potential and subject to environmental stress. After experimental validation of 

this approach, we envision it can be used to predict if residual antibiotics and ARGs in land 

applied manure destabilize agricultural soils, increasing the risk of HGT of ARGs to pathogenic 

organisms.  

Both the quantitative metagenomic approach and mathematical framework introduced 

tools required for assessing risks of ARGs in environmental systems. However, the tools are both 



 104 

more broadly applicable for a wide range of research questions in microbial ecology. For 

instance, the quantitative metagenomic approach could assess performance of engineered 

biological processes. The data-driven modeling framework proposed offers a promising 

approach to quantify microbial community robustness which can inform operation of engineered 

systems for more stable performance and advance in personalized medicine.  
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Figure A-1: Studies reporting both ARG copies in units of gene copies/sample mass and gene 

copies/copies 16S rRNA gene copies. 

*WW= wet weight 
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Figure A-2: Coefficient of variation between different reported units of gene abundances  
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Table A-1: Known Relevant articles (KRAs) Used to identify key search terms and assess search 

completeness. 

 

Article 

Available in 

Database 

PM AG SC 

Dungan, R. S.; Mckinney, C. W.; Leytem, A. B. Tracking Antibiotic Resistance Genes 

in Soil Irrigated with Dairy Wastewater. Sci. Total Environ. 2018, 635, 1477–1483.  
X X X 

Fahrenfeld, N.; Knowlton, K.; Krometis, L. A.; Hession, W. C.; Xia, K.; Lipscomb, E.; 

Libuit, K.; Green, B. L.; Pruden, A. Effect of Manure Application on Abundance of 

Antibiotic Resistance Genes and Their Attenuation Rates in Soil: Field-Scale Mass 

Balance Approach. Environ. Sci. Technol. 2014, 48 (5), 2643–2650.  

X X X 

Marti, R.; Tien, Y.-C.; Murray, R.; Scott, A.; Sabourin, L.; Topp, E. Safely Coupling 

Livestock and Crop Production Systems: How Rapidly Do Antibiotic Resistance Genes 

Dissipate in Soil Following a Commercial Application of Swine or Dairy Manure? 

Appl. Environ. Microbiol. 2014, 80 (10), 3258–3265.  

X 
 

X 

Munir, M.; Xagoraraki, I. Levels of Antibiotic Resistance Genes in Manure, Biosolids, 

and Fertilized Soil. J. Environ. Qual. 2011, 40 (1), 248–255. 
X X X 

McKinney, C. W.; Dungan, R. S.; Moore, A.; Leytem, A. B. Occurrence and 

Abundance of Antibiotic Resistance Genes in Agricultural Soil Receiving Dairy 

Manure. FEMS Microbiol. Ecol. 2018, 94 (3), 1–10. 

X 
 

X 

Wallace, J. S.; Garner, E.; Pruden, A.; Aga, D. S. Occurrence and Transformation of 

Veterinary Antibiotics and Antibiotic Resistance Genes in Dairy Manure Treated by 

Advanced Anaerobic Digestion and Conventional Treatment Methods. Environ. Pollut. 

2018, 236, 764–772. 

X X X 

Vikram, A.; Rovira, P.; Agga, G. E.; Arthur, T. M.; Bosilevac, J. M.; Wheeler, T. L.; 

Morley, P. S.; Belk, K. E.; Schmidt, J. W. Impact of “Raised without Antibiotics” Beef 

Cattle Production Practices on Occurrences of Antimicrobial Resistance. Appl. Environ. 

Microbiol. 2017, 83 (22).  

X 
 

X 

Tien, Y. C.; Li, B.; Zhang, T.; Scott, A.; Murray, R.; Sabourin, L.; Marti, R.; Topp, E. 

Impact of Dairy Manure Pre-Application Treatment on Manure Composition, Soil 

Dynamics of Antibiotic Resistance Genes, and Abundance of Antibiotic-Resistance 

Genes on Vegetables at Harvest. Sci. Total Environ. 2017, 581–582, 32–39.  

X X X 

Chen, J.; Fluharty, F. L.; St-Pierre, N.; Morrison, M.; Yu, Z. Technical Note: 

Occurrence in Fecal Microbiota of Genes Conferring Resistance to Both Macrolide-

Lincosamide-Streptogramin B and Tetracyclines Concomitant with Feeding of Beef 

Cattle with Tylosin. J. Anim. Sci. 2008, 86 (9), 2385–2391. 

X X X 

Li, J.; Hu, H.; Li, H.; Chen, J.; Yan, J.; Zhang, Y.; Xin, Z. Long-Term Manure 

Application Increased the Levels of Antibiotics and Antibiotic Resistance Genes in a 

Greenhouse Soil. Appl. soil Ecol. 121 (2010224060; IND605844576), 193–200. 2017 

 
X X 

PM = Pubmed, AG = AGRICOLA, SC = Scopus.  
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Table A-2: Summary of searches and date conducted. 

Database Search Date Results 

PubMed 

(PM) 

(((((((((cattle[Title/Abstract]) OR (dairy[Title/Abstract])) OR (bovine[Title/Abstract])) OR (cow[Title/Abstract])) OR 

(beef[Title/Abstract])) OR (cattle[MeSH Terms])) OR (dairying[MeSH Terms])) AND ((((manure[Title/Abstract]) OR 

(feces[Title/Abstract])) OR (waste[Title/Abstract])) OR (fecal[Title/Abstract]))) AND ((((drug resistance, 

microbial[MeSH Terms]) OR (drug resistance, bacterial[MeSH Terms])) OR (antimicrobial resistance[Title/Abstract])) 

OR (antibacterial resistance[Title/Abstract]))) NOT (((isolated[Title]) OR (salmonella[Title])) OR (escherichia 

coli[Title])) 

6 July 

2020 

262 

Scopus 

(SC) 

( TITLE-ABS-KEY ( ( "antimicrobial resistan*"  AND  gene )  OR  "antibiotic resistan* gene" )  AND  TITLE-ABS-

KEY ( manure  OR  feces  OR  waste )  AND  TITLE-ABS-KEY ( "polymerase chain 

reaction"  OR  "PCR"  OR  "QPCR"  OR  "quantitative real time PCR"  OR  "quantitative polymerase chain 

reaction"  OR  "quantitative PCR"  OR  "abundance"  OR  "relative abundance"  OR  "gene transfer" )  AND  TITLE-

ABS-KEY ( dairy  OR  beef  OR  cattle  OR  bovine  OR  cow )  AND NOT  TITLE-ABS-KEY ( "isolate" ) ) 

26 May 

2020 

166 

Agricola 

(AG) 

(su("anaerobic digesters" OR “feces” OR "anaerobic digestion" OR "animal manure management" OR "cattle manure" 

OR "composted manure" OR "Effluents" OR "Lagoons" OR "land application" OR "management systems" OR 

"manure spreading" OR "manure storage" OR "Ponds" OR "waste lagoons" OR "wastewater irrigation" OR "soil 

amendments" OR "land application" OR "manure spreading" OR “slurries” OR “aeration”) OR ti("anaerobic digesters" 

OR “feces” OR "anaerobic digestion" OR "animal manure management" OR "cattle manure" OR "composted manure" 

OR "Effluents" OR "Lagoons" OR "land application" OR "management systems" OR "manure spreading" OR "manure 

storage" OR "Ponds" OR "waste lagoons" OR "wastewater irrigation" OR "soil amendments" OR "land application" 

OR "manure spreading" OR “slurries” OR “aeration”) OR ab("anaerobic digesters" OR “feces” OR "anaerobic 

digestion" OR "animal manure management" OR "cattle manure" OR "composted manure" OR "Effluents" OR 

"Lagoons" OR "land application" OR "management systems" OR "manure spreading" OR "manure storage" OR 

"Ponds" OR "waste lagoons" OR "wastewater irrigation" OR "soil amendments" OR "land application" OR "manure 

spreading" OR “slurries” OR “aeration”)) AND (su("cattle" OR "dairy manure" OR "cattle manure" OR "manure" OR 

"dairy farming" OR "dairy cattle" OR "beef cattle" OR “dairy cows”) OR 

ti("cattle" OR "dairy manure" OR "cattle manure" OR "manure" OR "dairy farming" OR "dairy cattle" OR "beef cattle" 

OR “dairy cows”) OR  

ab("cattle" OR "dairy manure" OR "cattle manure" OR "manure" OR "dairy farming" OR "dairy cattle" OR "beef 

cattle" OR “dairy cows”)) AND (su(antibiotic resistance genes OR antibiotic resistance) OR  

ti("antibiotic resistance genes" OR "antimicrobial resistance genes") OR  

ab("antibiotic resistance genes" OR "antimicrobial resistance genes")) NOT (ti("isolate*") NOT (su(isolation OR 

culturing)) 

7 July 

2020 

390 
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Table A-3: CARD Ontology and ARG Targets identified in 43 papers included in meta-analysis 

CARD Drug Class Figure Drug 

Class 

CARD AMR Gene Family Gene Target (CARD name) 

tetracycline antibiotic tetracycline major facilitator superfamily (MFS) 

antibiotic efflux pump 

tet(A), tet(A/C), tet(B), tet(C), tet(E), 

tet(G), tet(H), tet(L), tetY, tetZ 

tetracycline-resistant ribosomal 

protection protein 

tet(RPP), tet(W), tetB(P), tetM, tetO, 

tetQ, tetS, tetT, tetW 

tetracycline inactivation enzyme tetX 

sulfonamide antibiotic sulfonamide sulfonamide resistant sul sul1, sul2, sul3, sulA 

beta-lactam antibiotic beta-lactam CfxA beta-lactamase cfxA 

class C beta-lactamase ampC 

CMY beta-lactamase CMY-2 

CTX-M beta-lactamase CTX-M, CTX-M-1 

KPC beta-lactamase KPC-2 

methicillin resistant PBP2 mecA 

other beta-lactamase bla2, bla3, bla4, bla-CEP-01, bla-

CEP-02, bla-CEP-03, bla-CEP-04, 

bla-CEP-05, bla-PSE 

OXA beta-lactamase OXA-1, OXA-2, OXA-20, OXA-58 

ROB beta-lactamase ROB 

TEM beta-lactamase TEM, TEM-1 

streptogramin antibiotic, 

macrolide antibiotic, 

lincosamide antibiotic 

MLS Erm 23S ribosomal RNA 

methyltransferase 

ermA, ermB, ermC, ermF, ermT, ermX 

other Erm erm 

aminoglycoside  

antibiotic  

aminoglycoside ambiguous aminoglycoside antibiotic str 

aminoglycoside acetyltransferase 

(AAC) 

aac 

aminoglycoside phosphotransferase 

(APH) 

aph 

ANT(3") aadA 
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ANT(4) ANT(4)-Ia 

APH(2"), AAC(6') AAC(6')-Ie-APH(2")-Ia 

APH(3") APH(3")-Ib 

APH(6) APH(6)-Id, str(B) 

fluoroquinolone antibiotic fluoroquinolone quinolone resistance protein (qnr) qnrA, qnrD, qnrS 

other other integrase (not in card) int1, int2 

major facilitator superfamily (MFS) 

antibiotic efflux pump 

mdtL 

replication initiation protein RepA repA 

phenicol antibiotic phenicol chloramphenicol acetyltransferase 

(CAT) 

cat 

major facilitator superfamily (MFS) 

antibiotic efflux pump 

floR 

rifamycin antibiotic rifamycin rifamycin-resistant beta-subunit of 

RNA polymerase (rpoB) 

rpoB 

glycopeptide antibiotic glycopeptide van ligase, glycopeptide resistance 

gene cluster 

vanA 

macrolide antibiotic macrolide macrolide phosphotransferase (MPH) mphA 

tetracycline antibiotic, 

glycylcycline, rifamycin 

antibiotic, cephalosporin, 

phenicol antibiotic, penam, 

triclosan, fluoroquinolone 

antibiotic 

multiple resistance-nodulation-cell division 

(RND) antibiotic efflux pump 

acrB 

tetracycline antibiotic, 

lincosamide antibiotic, 

phenicol antibiotic, 

pleuromutilin antibiotic, 

oxazolidinone antibiotic, 

streptogramin antibiotic, 

macrolide antibiotic 

multiple ABC-F ATP-binding cassette 

ribosomal protection protein 

mel 
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tetracycline antibiotic, 

nitrofuran antibiotic, 

fluoroquinolone antibiotic, 

glycylcycline, 

diaminopyrimidine antibiotic 

multiple resistance-nodulation-cell division 

(RND) antibiotic efflux pump 

oqxB 

tetracycline antibiotic, 

penam, rifamycin antibiotic, 

glycylcycline, cephalosporin, 

phenicol antibiotic, triclosan, 

fluoroquinolone antibiotic 

multiple resistance-nodulation-cell division 

(RND) antibiotic efflux pump 

acrA 
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Table A-4: Antibiotic-Control Response Ratio (RR) Summary statistics by meta-data grouping  
# Samples # Studies # 

ND* 

Mean RR Median 

RR 

Antibiotic Administered      

"Conventional" 7 3 10 0.99 0.46 

CCFA 5 2 0 0.47 0.31 

chlortetracycline 3 2 0 1.24 1.11 

neomycin  + oxytetracycline 2 1 4 0.07 -0.03 

not reported 1 1 0 -1.55 -1.11 

oxytetracycline 4 3 8 0.80 0.71 

tulathromycin 1 1 8 -0.24 -0.24 

tylosin 4 2 6 -0.13 -0.18 

Sample Type      

compost 2 1 0 0.33 0.37 

feces 21 9 36 0.40 0.36 

manure 3 2 0 2.17 2.30 

Study      

Alali2009 3 - 0 0.72 1.09 

Beukers2018 4 - 8 0.32 0.35 

Chen2008 3 - 6 -0.06 0.00 

Holman2019 2 - 16 0.14 0.33 

Kanwar2014 3 - 0 0.98 0.85 

Keijser2019 2 - 0 0.42 0.41 

Kyselkova2013 1 - 0 1.75 0.85 

Peak2007 2 - 0 4.03 3.68 

Sharma2009 2 - 0 0.33 0.37 

Thames2012 2 - 4 0.07 -0.03 

Vikram2017 1 - 2 1.15 1.15 

Wichmann2014 1 - 0 -1.55 -1.11 

Gene Target Antibiotic      

tetracycline 23 11 6 0.98 0.49 

beta-lactam 14 6 9 0.20 0.46 

MLS 14 6 10 0.31 0.24 

sulfonamide 8 3 2 0.06 0.01 

fluoroquinolone 4 1 4 -- -- 

aminoglycoside 4 3 3 -1.50 -1.50 

phenicol 3 2 0 1.09 1.49 

multiple 6 2 0 0.02 0.07 

other 2 1 2 -- -- 

Farm       

cattle_unspecified 2 1 0 4.03 3.68 

dairy 8 4 8 -0.02 0.03 

non_dairy 20 8 28 0.45 0.45 

Overall  26 12 36 0.57 0.43 
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*ND = non-detect reported 

Table A-5: Amendment-Control Response Ratio (RR) summary statistics by meta-data grouping  
# Sample 

Pairs 

# Studies # 

ND* 

Mean RR Median RR 

Gene Target Antibiotic      

beta-lactam 45 6 178 0.14 -0.09 

MLS 45 5 51 1.37 1.12 

sulfonamide 23 5 2 2.41 2.74 

tetracycline 44 5 69 0.70 0.23 

aminoglycoside 27 2 3 0.59 0.39 

fluoroquinolone 2 1 4 -- -- 

other 21 4 7 1.54 1.35 

Control (Non-Manure) Treatment 

mineral 44 6 154 0.89 0.41 

no nutrient amendment 44 5 160 1.02 0.51 

Study      

Dungan2018 4  20 1.75 1.86 

Marti2014 3  11 0.83 0.90 

McKinney2018 12  96 2.39 2.46 

Miller2019 24  164 0.59 0.27 

Nolvak2016 2  12 1.62 1.31 

Peng2017 2  9 0.52 0.20 

Udikovic-Kolic2014 1  2 0.46 0.09 

Farm       

cattle_unspecified 2 1 9 0.52 0.20 

dairy 22 5 141 2.11 2.21 

non_dairy 24 1 164 0.59 0.27 

Overall 48 7 314 0.95 0.46 

*ND = non-detect reported 
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Supplementary Material for Chapter 3 
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Figure B-1: Spike-in experimental and bioinformatic approach 
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Figure B-2: Extraction recovery observed for raw manure and land-applied manure slurry. 
TEXT B-1. Describes details of the approach to evaluate extraction recovery. 
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Figure B-3: Variation in spike-in gene recoveries 

A. spike-in gene recoveries (
𝑧𝑠,𝑖

𝑧𝑡𝑜𝑡𝐿𝑠,𝑖
/𝑐𝑠,𝑖) using four mapping approaches. Units of the y-axis ar 

1/
𝑔𝑒𝑛𝑒 𝑐𝑜𝑝𝑖𝑒𝑠

µ𝐿∗𝑏𝑎𝑠𝑒𝑝𝑎𝑖𝑟𝑠
 where the gene copies/µL are the known copies per DNA extract volume and 

basepairs are based on the length of the gene.  

B and C. Spike-in gene recovery of M. hydrocarbonoclasticus genes from the metagenome 

across (B) gene lengths and (C) %G+C-contents. Genes are binned into 20 quantiles and 

extended lines represent the interquartile range for each bin.
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Figure B-4: Spike-in gene recovery of internal standards across different concentrations 

A. Spike-in gene recovery of internal standards across different concentrations of spike-in.  

B. Correlation of relative number of reads mapped to spike-in genes (zi/ztot) to spike-in gene 

mass abundance (mass of Spike-in DNA/Total DNA) for the four same spike-ins in Fig 2A. 

Dotted line: Theoretical 1:1 relationship, Solid line linear regression. Analysis performed using 

the Farm C Digester Sample.
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Figure B-5: Comparisons of the gene quantification approaches using AMR++ tool for 

assigning reads to ARG reference sequences. 

The dotted line is a 1:1 line that represents theoretical perfect correlation between 

approaches. A. Spike-in-quantified metagenomic absolute abundance approach vs. qPCR; B. 

Spike-in-quantified metagenomic absolute abundance approach vs. spike-independent, 16S rRNA 

gene-based metagenomic approach. ErmB was not detected in the Farm A, Samples with 

AMR++ but was detected in the Farm A Compost sample with qPCR. TetG was detected with 

qPCR in all samples but not the quantitative metagenome approach.  
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SUPPLEMENTAL TEXT B-1: Extraction Recovery Analysis 

Spike-in and Extraction 

We validated that our extraction methods provided adequate recovery of DNA and 

minimal extraction bias between gram-positive and gram-negative bacteria in various dairy 

manure sample types. 10 µL of ZymoBIOMICS Spike-in Control I (ZYMO Research, Irvine, 

California), which contains a gram-negative bacterium, Imtechella halotolerans (LMG 26483), 

and a gram-positive bacterium, Allobacillus halotolerans (LMG 24826), was spiked into 50-250 

mg of land-applied manure slurry and manure stockpile samples. DNA was extracted from the 

Zymo-containing spikes with the QiaAMP PowerFecal kit (QIAGEN, Germantown, MD). 

Extraction efficiency – qPCR Protocol 

Custom qPCR primers were designed to target a sequence unique to each organism 

(Table B-1) and percent recovery was calculated as the (Expected Gene Copies – Recovered 

Gene copies) / Expected Gene Copies * 100. qPCR reactions were carried as described in the 

main manuscript with the following differences. Extracts were diluted 10-fold and 100-fold prior 

to qPCR to identify potential inhibition. G-Block fragments (IDT, Skokie, Illinois) containing 

amplicon sequences (reference in Table B-1) were used for the qPCR standard curve. Assuming 

one sequence per CFU or Zymo-reported cell numbers, the expected recovery was the number of 

organisms spiked into the sample. Recoveries of the Imtechella halotolerans and Allobacillus 

halotolerans from the land applied and raw manure samples ranged from 75-110% and did not 

differ significantly between the gram-positive and gram-negative organisms spiked into the 

samples (p-value = 0.27, Fig. B-2). In both sets of extraction experiments, the spiked organisms 

were not detected in unspiked samples. 
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SUPPLEMENTAL TEXT B-2: Read-mapping validation 

Spike-in gene recoveries are dependent on read mapping method, gene size, and %G+C 

content. 

We examined the impact of %G+C content and gene length on the recovery of the M. 

hydrocarbonoclasticus genes spiked into DNA extracted from dairy manure samples and 

sequenced using an Illumina HiSeq4000. This quantitative metagenomic approach uses a known 

ratio of read abundance to gene concentration to convert read abundances of target sequences to 

target gene concentrations. Therefore, it is critical to assess factors that can impact the read 

recovery rate such as gene length and %G+C content. Recovery was defined as the ratio of 

observed read abundances to the known input concentration of each spike-in gene. Specifically, 

the ratio consisted of the length-normalized number of reads that mapped to each of the M. 

hydrocarbonoclasticus spike-in genes divided by the total number of metagenomic reads in the 

sample (
𝑧𝑠,𝑖

𝑧𝑡𝑜𝑡𝐿𝑠,𝑖
) over the known concentration of that gene in the sequenced extract (𝑐𝑠,𝑖, gene 

copies/µL of DNA extract). Herein, this recovery ratio (
𝑧𝑠,𝑖

𝑧𝑡𝑜𝑡𝐿𝑠,𝑖
/𝑐𝑠,𝑖) is referred to as the “spike-

in gene recovery” and reflects recoveries through sequencing and read annotation. A uniform 

spike-in gene recovery across gene %G+C content and gene length would demonstrate that the 

sequencing and mapping approach is not biased by these factors. 

We mapped reads to the M. hydrocarbonoclasticus genes using two mapping tools, 

kallisto and Bowtie2. Kallisto and Bowtie2 were used since they are common tools for read 

alignment in metagenomic samples1–3 and employ two different algorithms for read assignment. 

Kallisto is a pseudo-alignment tool that uses k-mer hashing to find exact matches between reads 

and references, and Bowtie2 is a Burrows-Wheeler transform-based alignment. The stringency of 

read-mapping parameters was relaxed by mapping reads as individual reads (unpaired) to 
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observe the impact of paired and unpaired read-mapping on recovery of the spike-in genes. The 

four mapping approaches resulted in significantly different average gene recoveries for all 

samples (Fig. B-3 A, ANOVA, F<2x10-16 for all samples). Kallisto with paired mapping resulted 

in the lowest recoveries and is likely too strict of a read assignment approach.  

Gene length and %G+C-dependent biases in gene recovery within each read mapping 

approach were next identified. Recoveries decreased as gene lengths decreased for all the 

approaches except for kallisto in the unpaired setting (Figure B-3B). The spread of recoveries, 

measured as the inter-quartile ranges of recoveries across gene bins, decreased with increasing 

gene size (Figure B-3B). The recoveries leveled-out at gene sizes above 600 basepairs with the 

Bowtie2-paired mapping approach, but never leveled out for the kallisto-paired and Bowtie2-

unpaired mapping approaches. As gene lengths approach the library insert size (here, 450 

basepairs), read pairs are less likely to map since a critical fraction of the read pair may extend 

beyond the target gene reference sequence. Depending on the mapping approach used, this limits  

read mapping to the spike-in reference gene sequence and thus biases quantification. 

Patterns of spike-in gene recovery across %G+C contents were consistent for all mapping 

approaches (Figure B-3C). Average spike-in gene recoveries decreased as average %G+C 

content increased. A minimum average spike-in gene recovery was reached around 55% G+C 

content and then increased again as %G+C contents increased. Large biases caused by %G+C 

were not expected in this study, since previous studies using Illumina platforms found PCR-free 

library preparation minimized this bias.4,5 Minimum and maximum spike-in gene recoveries in 

the %G+C content bins within mapping tools differed at most by 10% with kallisto in the paired 

setting in all samples. For the other three tools, the average percent difference in minimum and 

maximum gene recovery across bins was between 4-5%.  



 125 

It is important to note that in complex environmental samples, some genes in the M. 

hydrocarbonoclasticus genome may share sequence similarity with genes of microorganisms 

present in the samples, whereby false-positives could artificially inflate read mapping rates. To 

assess if outliers with high read mapping drive the recovery ratio, we compared the mean and 

median spike-in gene recoveries. The mean and median values differed by less than 8% and, 

therefore, it is unlikely that false-positives have a major impact on the recovery. However, to 

completely avoid incorrect read mapping to the spike-in genome, synthetic, non-coding DNA 

can be used as an internal standard spike-in.4 The kallisto-unpaired read mapping approach was 

selected for the sequencing efficiency calculation because it consistently demonstrated the lowest 

spike-in gene recovery bias for the spike-in genes across gene lengths. 

Spike-in gene read abundances correlated with spike-in gene mass abundances over three 

orders of magnitude  

To examine the impact of the spike-in gene concentration on measured read abundances 

(zi/ztot) and to ensure the spike-in quantitative approach was valid across a range of gene 

concentrations, we compared the spike-in gene recoveries at spike-in concentrations that spanned 

three orders of magnitude. Specifically, one sample extract was separately spiked with the M. 

hydrocarbonoclasticus such that the gene concentrations were 8x104, 8x105, and 8x106 copies per 

µL (which equates to 0.1%, 1%, and 10% of total sample DNA mass as the spike-in genome 

based on fluorometric quantification (Qubit, Thermo Scientific)). Gene recoveries were 

reproducible when run at the same spike-in abundance but sequenced at different depths (Figure 

B-4A). Spike-in gene recoveries were consistent across the different mass spikes (Figure B-4A) 

and read abundances of internal standard genes were proportional to the gene concentration of 

spike-in internal standard DNA (linear regression R2 = 1; Figure B-4B).   
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In addition to confirming that read abundances increase proportionally with the known 

gene concentrations, these results indicate the general range of gene detection limits. At our 

sequencing effort in this experiment (50 million reads per sample), no reads mapped to 95 of the 

4272 genes in the sample with the lowest spike-in gene concentrations (8x104 copies of each 

gene per µL of DNA extract). Therefore, we can estimate the detection limit of detection range 

of 104 gene copies/µL extract, or about 3.2x104 gene copies/mg sample. Despite all genes being 

present at the same gene copy concentration, the mass concentrations in the extract ranged from 

9x10-7 to 6x10-5 ng DNA/μL, with a mean of 8x10-6 ng DNA/μL. The concentrations of the 95 

undetected M. hydrocarbonoclasticus genes were on the lower end of these ranges, from 9x10-7 

to 1x10-5 ng DNA/μL, with a mean of 3x10-6 ng DNA/μL. For comparison, our qPCR limits of 

detection were as low as 5 gene copies/µL DNA extract and our limits of quantification ranged 

from 10-60 gene copies/µL DNA extract, depending on the assay (Table B-1). Based on this 

assessment, qPCR remains the more appropriate method for quantifying genes at low 

abundances. However, as the cost of sequencing declines, the ability to capture more sequences 

from a sample will facilitate lower detection limits. To achieve detection limits approaching 

those of qPCR in this study, we would have needed a 1000-fold higher sequencing depth 

(equivalent to 50 billion reads).  
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Table B-1: qPCR primers used in this study with annealing temperatures and results of LOD, 

LOQ, and efficiency assessments. 

Target Primer Set (5`-3`) Amplicon  Ref LOD   LOQ LODa ATb ɳc r2 

  Accession #  copies/µL copies/mg    

sul1 CGCACCGGAAACATCGCTGCA

C 

GAAGTTCCGCCGCAAGGCTCG 

gb|JF969163|+|

1054-1893|sul 
1 20 60 8 62 98% 0.997 

sul2 TCCGGTGGAGGCCGGTATCTG

G 

CGGGAATGCCATCTGCCTTGA
G 

NG_048113.1 1 10 20 4 58 88% 0.999 

TetG GCAGAGCAGGTCGCTGG 
CCYGCAAGAGAAGCCAGAAG 

gb|AF133139|+|

1-1176|tet(G) 
2 5 20 2 53 92% 0.999 

TetM CCGTTGGGAAGTGGAATGC 

TCCGAAAATCTGCTGGGGTA 
NC_004116.1:c

929374-927455 
3 5 10 2 59 88% 0.999 

ErmB AAAACTTACCCGCCATACCA 
TTTGGCGTGTTTCATTGCTT 

gb|AF242872|+|

2132-

2878|ErmB 

4 5 20 4 50 91% 0.999 

16S rRNA ACTCCTACGGGAGGCAG 

ATTACCGCGGCTGCTGG 
CP026677.1:13

53823-1354031 
5 - - - 54 88% 1.000 

Imtechella 

halotolerans 

TTACCCGCCGACAGATTAGC 

TTGCGTCCTATGGGGCTTTCT 
LMG 26483  TSd - - - 60 82% 0.997 

Allobacillus 

halotolerans 

TCGCTCCAAACCAGTCCATC 
ACACCAGGGTAAGTGACTGC 

LMG 24826 TS - - - 60 79% 0.998 

a. LOD in sample mass = gene copies/µL * 100 µL DNA extract / Sample mass (0.250 g), b. Annealing 

Temperature, c. Efficiency from standard curve, d. TS = this study 

 

Primer References: 

1. Pei, R.; Kim, S.-C.; Carlson, K. H.; Pruden, A. Effect of River Landscape on the Sediment 

Concentrations of Antibiotics and Corresponding Antibiotic Resistance Genes (ARG). Water Res. 2006, 

40 (12), 2427–2435. 

2. Aminov, R.; Chee-Sanford, J.; Garrigues, N.; Teferedegne, B.; Krapac, I.; White, B.; Mackie, R. I. 

Development, Validation, and Application of PCR Primers for Detection of Tetracycline Efflux Genes of 

Gram-Negative Bacteria. Appl. Environ. Microbiol. 2002, 68 (4), 1786–1793. 

https://doi.org/10.1128/AEM.68.4.1786. 

3. Luo, Y.; Mao, D.; Rysz, M.; Zhou, Q.; Zhang, H.; Xu, L.; Alvarez, P. J. J. Trends in Antibiotic 

Resistance Genes Occurrence in the Haihe River, China. Environ. Sci. Technol. 2010, 44 (19), 7220–

7225. https://doi.org/10.1021/es100233w. 

4. Knapp, C. W.; Dolfing, J.; Ehlert, P. A. I.; Graham, D. W. Evidence of Increasing Antibiotic 

Resistance Gene Abundances in Archived Soils since 1940. Environ. Sci. Technol. 2010, 44 (2), 580–587. 

https://doi.org/10.1021/es901221x. 

5. Fierer, N.; Jackson, J. A.; Vilgalys, R.; Jackson, R. B. Assessment of Soil Microbial Community 

Structure by Use of Taxon-Specific Quantitative PCR Assays. Appl. Environ. Microbiol. 2005, 71 (7), 

4117–4120. https://doi.org/10.1128/AEM.71.7.4117-4120.2005. 



 129 

 

Table B-2: Allele frequencies of single nucleotide variants (SNV) compared to the tetM forward 

primer sequence aligned using Bowtie2. The base in the forward primer and position is provided 

as the column headers. Depth refers to the average read abundance. 

  Primer Position, Base (5’-3’) 

Sample 3, G 6, G 9, A 12, T 16, A 18, G Depth 

Farm A, Untreated 79%, A* 79% A 77% G 77% C 77% C 76% A ~2600 

Farm A, Compost 71% A 71% A 29% G 71% C 71% G 71% A 7 

Farm B, Untreated 79% A 78% A 21% G 78% C 78% G 77% A ~1150 

Farm B, Digester 73% A 73% A 27% G 72% C 71% G 71% A ~450 

Farm C, Untreated 63% A 62% A 38% G 60% C 60% G 56% A ~650 

Farm C, Digester 99% A 99% A 01% G 99% C 99% G 99% A ~4000 

 
*79% of reads that mapped to the former primer position 3 contained an “A” rather than a “G” 
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Appendix C  

 

Supplementary Material for Chapter 4 
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Table C-1:  Stored manure sample data and nutrient concentrations 

      

Sample Month Year Total Na NH4-Nb Total Pc 

% Total 

Solids dLatitude dLongitude Herd size 

Storage only Samples 

MW1 Sept 2019 1.671 1.007 0.357 2.3 42.27805 -83.723844 150 

MW2 April 2019 4.136 2.144 0.812 15.4 42.27805 -83.723844 600 

MW3 April 2019 0.539 0.376 0.052 0.7 42.27805 -83.723844 400 

MW4 - Storage 1 May 2019 0.995 0.780 0.129 0.8 42.27805 -83.723844 330 

MW4 - Storage 2  May 2019 0.935 0.497 0.130 1.0 42.27805 -83.723844 330 

MW5 April 2019 4.208 1.963 0.884 14.1 42.27805 -83.723844 680 

MA1 Oct 2017 0.110 0.038 0.026 0.2 38.98619 -76.942587 80 

NE1 Oct 2016 2.160 0.944 0.288 4.2 42.44206 -76.502839 1350 

Anaerobic Digestion + Storage Samples 

NE2 - Fall Storage Oct 2016 3.055 0.953 0.561 6.8 42.44206 -76.502839 4300 

NE2 - Spring Storage May 2017 NA NA NA 4.2 42.44206 -76.502839 4300 

NE3 - Fall Storage Oct 2016 2.678 1.156 0.658 6.7 42.44206 -76.502839 2050 

NE3 - Spring storage May 2017 NA NA NA 3.1 42.44206 -76.502839 2050 

NE4 May 2017 2.614 1.055 0.427 1.3 42.44206 -76.502839 1820 

MA2 Sept 2016 2.100 0.906 0.295 2.8 38.98619 -76.942587 2700 

MA3 May 2017 2.625 1.720 0.481 4.6 38.98619 -76.942587 690 

Nutrient data reported as kg/L. MW = Midwest, NE = Northeast, MA = Mid-Atlantic, NA = Not available. 
aTotal Nitrogen as N. bAmmonia-Nitrogen. cTotal Phosphorus as P. dCoordinates used are centroid of sampled region 
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Table C-2: Metagenomic read abundances 

 

Sample 

16S rRNA 

gene reads 

phyloFlash  

ARG reads 

MEGARes 

ARG reads 

GROOT 

Total post-

QC read  

MW1 2.38x105 8.88x105 9.80x105 3.17x108 

MW2 3.34x105 1.60x106 3.44x106 2.89x108 

MW3 2.92x105 1.06x106 8.01x105 3.31x108 

MW4 - Storage 1 4.17x105 1.93x106 3.15x106 4.86x108 

MW4 - Storage 2  2.41x105 1.13x106 1.64x106 3.62x108 

MW5 5.54x105 2.10x106 1.71x106 4.70x108 

MA1 2.49x105 1.63x106 1.30x106 4.81x108 

NE1 2.85x105 1.10x106 1.39x106 4.00x108 

NE2 - Fall storage 2.26x105 7.56x105 1.45x106 3.38x108 

NE2 - Spring storage 1.64x105 5.11x105 9.42x105 2.64x108 

NE3 - Fall storage 2.07x105 1.27x106 4.48x106 2.74x108 

NE3 - Spring storage 4.43x105 1.41x106 1.48x106 4.66x108 

NE4 2.49x105 2.04x106 8.26x106 3.67x108 

MA2 2.93x105 1.16x106 1.46x106 4.54x108 

MA3 2.97x105 1.08x106 1.74x106 4.44x108 
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Figure C-1: Organism concentrations summarized at the Phylum level. 

 “-” indicates no reads mapped to references sequences in a phylum. 
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Figure C-2: Relative abundances of classes in Firmicutes and Bacteroidetes phyla 

Classes in Firmicutes (top) and classes in Bacteroidetes (bottom)  
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Figure C-3: Concentrations of AMR++ ARGs grouped by Drug class. 

“-” indicates no reads mapped to references sequences in a phylum. 

 

 

 

 

Figure C-4:Diversity in microbial community and ARGs between manure storages with AD and 

storage only 
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Figure C-5: Differential signatures of AD and storage only visible at different taxonomic levels 

 

 

 

Figure C-6: Procrustes analysis on Bray-Curtis distances demonstrating relationship between 

sample ARG and OTU composition similarity across farm cohort 

M2 = 0.35. 
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Supplemental Text C-1: DNA Extraction Efficiency 

Extraction recoveries were then assessed by quantifying recovery of gene targets from the 

Imtechella halotolerans and Allobacillus halotolerans genomes. Primers were designed using 

PrimerBlast and checked for specificity against the virus, eukaryote, and bacteria nonredundant 

nucleotide and RefSeq databases. The concentration of cells (and gene targets, assuming one 

target per organism) in the DNA extract was computed as follows: 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝐺𝑒𝑛𝑒 𝐶𝑜𝑝𝑖𝑒𝑠 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  
𝑉𝑍𝑦𝑚𝑜 𝑠𝑝𝑖𝑘𝑒 ∗ 107 𝐶𝑒𝑙𝑙𝑠

𝑢𝐿
𝑉𝑒𝑙𝑢𝑡𝑒𝑑

 

Where the VZymo Spike is the amount of ZymoBIOMICS Spike-in Control I spiked into the sample, 

107 is the concentration of each cell according to the manufacturer, and Veluted is the volume in 

which the DNA was eluted using elution buffer or molecular grade water. qPCR reactions were 

then carried out on an Eppendorf MasterCyler ep realplex2 using Fast EvaGreen Fast Master Mix 

(Biotium, Fremont, CA). Details of the qPCR assays, including primer sequences and annealing 

temperatures are provided in Table C-3. 20 µL reactions were performed following the 

manufacturer's recommendations, with 0.4 µM of forward and reverse primers, 0.625 mg/mL of 

Ultrapure BSA (Invitrogen), and 2 µL of diluted DNA extracts. DNA extracts were diluted both 

10- and 100-fold. Plates were centrifuged for 2 minutes at 500 RPM at 4oC before 

thermocycling. qPCR reactions were performed in triplicate. After amplification, melt curves 

were performed to confirm the specificity of the reactions. qPCR was also performed on pooled, 

unspiked extracts to ensure no background signal was present. The template for the standard 

curve consisted of Gblock Fragments (IDT, Skokie, Illinois; Table C-3).  

 

Next, the extraction efficiency was computed as the following: 
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𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐺𝑒𝑛𝑒 𝐶𝑜𝑝𝑦 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝐺𝑒𝑛𝑒 𝐶𝑜𝑝𝑖𝑒𝑠 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
 

Where the numerator is the concentration measured by qPCR.  

Table C-3: qPCR primers and standard curve used in this study 

 

Figure C-7: DNA extraction efficiency from stored manure extraction 

 

 

 

Target Primer Set (5`-3`) Amplicon  

Accession # 

Annealing 

Temp. oC 

ɳa r2 

Imtechella 

halotolerans 

TTACCCGCCGACAGATTAGC 

TTGCGTCCTATGGGGCTTTCT 
LMG 26483  60 86% 0.996 

Allobacillus 

halotolerans 

TCGCTCCAAACCAGTCCATC 

ACACCAGGGTAAGTGACTGC 
LMG 24826 60 95% 0.990 

a. Efficiency from standard curve  
 


