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Abstract

Samarium hexaboride (SmB6) is a correlated material in which strong f -d interactions lead

to the opening of a small hybridization gap below 100 K at the Fermi energy. A long-standing

mystery in SmB6 was the plateau in resistivity below 4 K; this was recently determined to

arise from a crossover from bulk to surface conduction due to possible topological effects.

In this work, results concerning both bulk and surface conduction channels in SmB6 are re-

ported. First, SmB6 is modeled as an intrinsic semiconductor with a layer of surface charge.

Solving this model self-consistently yields band bending across the width of the bulk and

reveals that a feature observed around 10-15 K observed in transport data can be explained

by a crossover from bulk-dominated transport above this temperature to surface-dominated

transport below. The temperature at which the feature occurs is expected to increase for thin

samples and decrease for thick samples. This was tested and no difference between samples

of different thicknesses was observed, but instead, questions about the role of sample growth

technique arose. By comparing samples grown by two primary techniques, the aluminum

flux method and floating zone method, using an inverted resistance geometry, a new bulk

conduction channel at temperatures where surface conduction dominates is observed. This

new channel is attributed to a combination of impurities and one-dimensional defects, or

dislocations, and it is found to have a larger contribution in floating zone samples compared

to Al flux grown samples. At higher temperatures, transport characteristics arise from the

strong correlations, and no difference is found between samples grown by the two methods.

Specifically, a well-known anomalous sign in the Hall coefficient is investigated in the con-

text of skew scattering arising from the strong correlations. A model of skew scattering is

presented, and the effect of skew scattering on calculating the Hall mobility is discussed.

Finally, the characteristics of the surface conduction channel are investigated. One challenge

xv



in surface studies of SmB6 is precisely defining the transport geometry; conduction in sub-

surface cracks and material defects always contribute. When conduction through cracks is

accounted for, Hall bar geometry is demonstrated to be a powerful tool for accessing the

lower mobility pocket on the SmB6 surface. Further information is obtained by using ionic

liquid gating in place of traditional metallic gating to tune the surface charge. This allows

for more precise estimates of the carrier density and mobility of the lower mobility pocket.

Overall, these results improve understanding of SmB6, especially the roles of bulk effects and

transport geometry. The new results also open further avenues for study, for example on the

new bulk channel reported here and on the role of defects on the surface and bulk of SmB6.

xvi



Chapter 1

Introduction

Samarium hexaboride (SmB6) has long eluded classification due to its unique properties, be-

ginning with its unusual spectroscopic characteristics and its temperature-resistivity curve.[1,

2, 3] Early research, beginning with X-ray spectroscopy, led to the classification of SmB6 as

one of the first rare-earth mixed valence compounds. [1, 4, 5] Later, a significant develop-

ment identified SmB6 as a Kondo insulator. [6] Kondo insulators are characterized by the

opening of a small gap at the Fermi energy due to hybridization between f -electrons and

conduction electrons. [7, 8]

Although the formation of the Kondo hybridization gap suggests that SmB6 should be

an insulator, transport results over 50 years have demonstrated that resistivity becomes

temperature-independent in a conductive plateau below about 4 K. [3, 9, 10, 11] Initially

this conduction was attributed to impurities, but a breakthrough came from the prediction

that Kondo insulators can additionally be topological insulators. [12, 13, 14] Topological

insulators undergo a crossover at low temperatures from a conventional state to a bulk

insulating state with topologically protected metallic surface states. In SmB6, evidence for

such a protected surface state has been demonstrated by numerous experimental methods,

especially transport [15, 16, 17, 18] and angle-resolved photoemission spectroscopy (ARPES).

[19, 20, 21, 22, 23] However, recent work has challenged the identification of SmB6 as a

topological insulator and instead suggested that the observed physics comes from trivial

surface states or exotic bulk states. [24, 25, 26, 27]

To frame current research, developments in understanding this unique material will be

1



Figure 1.1: Sketch of cubic structure of SmB6. Red spheres are Sm atoms and blue spheres
are B atoms.

considered from a historical perspective. Emphasis will be given to discussing modern efforts

to elucidate the properties of this fascinating and unique material, in some cases calling

historical progress into question.

1.1 Early measurements

Metallic hexaborides, including SmB6, crystallize in a simple cubic structure in the Pm3m

point group. The B2−
6 octahedra are strongly bonded and form a cubic structure, [28] while

the metallic ions form a second cubic structure with each ion at the body center of the

structure formed by the boron octahedra. This structure is shown in Fig. 1.1. Most hexa-

borides can be classified as metals or insulators depending on the valence of the rare earth

ion; divalent ions form insulating hexaborides while trivalent ions form metallic hexaborides.

However, SmB6 was found to behave differently. [2] It unexpectedly seemed to act like a

metal near room temperature but demonstrate activated behavior characteristic of a semi-

conductor with a gap of about 3 meV below about 50 K. [9, 29] Below 4 K, a plateau was

observed which was even more unexpected. [3, 9, 29] Early models interpreted this conduc-

tion as arising from impurity scattering as in conventional semiconductors, but these were

insufficient to fully explain the conduction. [9] Hall effect measurements also showed a change

from negative sign below 65 K to positive sign above 65 K, [9] which was not understood at

the time.
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Early magnetic measurements showed that SmB6 is paramagnetic and follows Curie’s law

(χ(T ) ∼ 1/T ) for most of its temperature range, but it deviates at high and low temperatures.

[30, 3, 31] At high temperatures, the deviation from Curie behavior is attributed to van

Vleck susceptibility, which arises from the deformation or polarization of electron shells

when magnetic fields are applied. This effect is quite common in 4f elements, and in SmB6

the effect arises from the small splitting between the J = 5/2 and J = 7/2 sublevels. [3]

Historical measurements also attributed low temperature features to van Vleck susceptibility,

[3] but the modern understanding is that these are due to a superposition of Curie’s law, the

van Vleck deviation, and an Arrhenius behavior due to the formation of a spin gap. [32, 33]

The earliest spectroscopic measurements on SmB6 were done by X-ray L-edge absorption

and Mössbauer spectroscopy, which both provide information about the electron configura-

tions and valence of a material. In SmB6, the X-ray measurements showed that the L-edge

had two overlapping peaks corresponding to 2+ and 3+ valence states in the Sm ions. This

was initially interpreted as the presence of a mixture of Sm2+ and Sm3+ states in the lattice.

[1, 4] However, this did not agree with magnetic susceptibility; magnetic ordering would

have been observed if there were a significant number of Sm3+ ions. Later X-ray results

also showed that all Sm sites were equivalent, countering the idea of a mixture of the two

valence states. [34] Measurements of the Mössbauer isomer shift, which probes the average

valence via local electron configurations near lattice sites, helped resolve this; data showed

that the average Sm valence at each site was between 2+ and 3+. [5] These results led to

the identification of SmB6 as a homogeneous mixed valence material.

1.1.1 Mixed valence

Mixed valence (MV) materials are characterized by metallic ions with a non-integer valence.

There are two types of MV: inhomogenous MV materials have a mixture of two valence

states occuring in the lattice, whereas in homogeneous MV materials each atom fluctuates

rapidly between the two valence states, creating a superposition of the two states. MV often

occurs in compounds with an f band coexisting with an s, p, or d band at the Fermi energy.

[35] Thus, many MV compounds contain rare-earth elements; SmB6, pressurized samarium

chalcogenides like SmS or SmTe, and TmSe, were some of the first MV compounds identified
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and studied. [36, 37, 38, 35]

In the measurements discussed in the previous section, the X-ray result showed that tran-

sitions to both Sm2+ and Sm3+ states can occur, while the Mössbauer results showed evidence

for the superposition of these two states at each lattice site. Later X-ray spectroscopy and

magnetic susceptibility measurements verifed that SmB6 is homogeneous mixed valence at

all temperatures. [39] In other experiments, intentionally doped SmB6 samples were used to

shift the Sm valence towards 2+ or 3+. [40, 41, 42] Doping with a divalent ion like Sr2+, or

with an Sm vacancy, causes the overall Sm valence to shift towards 3+. Conversely, doping

with trivalent ions like La3+ shifts the Sm valence towards 2+. [42]

In other MV systems like SmS, the valence could be tuned with the application of pres-

sure. [37, 43] At atmospheric pressure, the Sm ion in SmS is divalent, but with application

of pressure SmS enters a mixed valence state and eventually becomes trivalent. [44] How-

ever, in SmB6, the Sm ion was found to remain mixed valence at all pressures studied.

[43, 45, 39, 10, 46]

1.2 Hybridization and the Kondo effect

Besides valence, the electronic structure of SmB6 was similarly initially not well-understood.

Transport results showing metallic behavior at room temperature but activated behavior be-

low about 60 K suggested a transition or crossover, but the mechanism was unknown. Two

early theories were based on f -d hybridization in MV compounds [8] and Wigner crystal-

lization. [47] Later work favored the hybridization model, and the description of the hybrid

electronic structure was extended to the framework of the Kondo lattice model. [6] In the

Kondo lattice model, each local moment (f electron) pairs with a conduction electron (d

electrons in the case of SmB6) to form a Kondo singlet. This pairing opens a small gap; in

the case of SmB6, the Fermi energy is in the hybridization gap, classifying it as a Kondo

insulator. A schematic of the electronic structure before and after hybridization is shown in

Fig. 1.2.

Experimentally, evidence for SmB6 as a Kondo insulator was provided by spectroscopy,

pressure, and magnetoresistance measurements. Photoemission results showed a shift in

4



Figure 1.2: (a) Sketch of the unhybridized band structure of SmB6. (b) Sketch of the
hybridized band structure of SmB6. Diagrams are not drawn to scale.

spectral weight with temperature, consistent with the formation of a gap. [4, 48, 49] Angle-

resolved photoemission spectroscopy (ARPES) additionally showed that this gap formed

around the X point. [50] In pressure measurements, a metal-insulator transition with a

sample-dependent critical pressure around 40-80 kbar was observed. [45, 43, 10] This transi-

tion was linked to the closing of the gap under pressure, rather than to a structural or valence

transition as in SmS. [45] Evidence showed that the gap does not close continuously with

pressure in the 40-80 kbar range, which would be inconsistent with Kondo hybridization.

However further work revealed the formation of magnetic order above the critical pressure

with a clear ordered state forming above 100 kbar. [51] The clear ordered state was eventu-

ally identified with the RKKY interaction, suggesting that the Kondo effect was primarily

responsible for the gap. [52]

Magnetoresistance measurements have also supported a gap at low temperatures. Mea-

surements have consistently shown negative magnetoresistance, consistent with insulating

behavior. [53, 54, 55, 56] Initially, this behavior suggested that SmB6 is a Kondo insulator

and verified the metal-insulator transition under pressure, [54, 57] but surprisingly, the mag-
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netoresistance remains negative even when SmB6 becomes conductive below about 4 K. Like

in electrical transport, this behavior was initially attributed to impurities [54] or the forma-

tion of an electron-polaron complex. [58] The low-temperature magnetoresistance behavior

is still an open question today, but the identification of Kondo insulators (or more generally,

hybridized insulators) as possible topological insulators led to much greater understanding

of the low-temperature behavior as a whole.

1.3 Topological Kondo insulators

From a geometrical perspective, topology is a way of classifying objects based on their shape.

Essentially, if one object can be smoothly deformed into another object, the two objects are

topologically equivalent. However, if the deformation is not smooth, for example, if a hole is

created or closed up, the two objects are not topologically equivalent. A common illustration

is that a doughnut and a coffee mug are topologically equivalent, but a sphere and a doughnut

are not topologically equivalent. Mathematically, the topology of an object is represented by

an integer. Two objects represented by the same integer are then topologically equivalent.

The idea of topology is not limited to geometrical objects; solids can also be classified by

their topology via an integer or set of integers. The first use of topology in a solid system was

the integer quantum Hall effect (IQHE), discovered in 1980 in a two-dimensional electron

gas (2DEG). In the IQHE, the electrons undergo circular motion due to the application of a

magnetic field. However, near the edges of the piece, the electrons cannot form full orbits, so

instead they bounce along the edge in one direction. This phenomenon is known as a chiral

edge state. Experimentally, the IQHE is observed as quantization of the Hall conductivity

in integer multiples of e2/h. [59] Subsequent work showed that the chiral edge state makes

the IQHE topological; the integer classifying the topology also matches the integer multiple

in the quantization of the Hall conductivity. [60]

An important aspect in the IQHE is the presence of time-reversal symmetry (TRS)

breaking when the magnetic field is applied. However, it should be possible to also have

a topological system that does not have external TRS breaking. One way of doing this is

by combining two spin polarized integer quantum Hall systems. If the electrons in the two
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systems have opposite spin polarization, the chiral edge states form a time-reversed pair,

theoretically allowing a topological system to exist when magnetic field (TRS breaking)

is not present. This system is known as the quantum spin Hall (QSH) insulator. The

original example of such a system was in graphene with spin-orbit coupling, proposed by

Kane and Mele. [61] Their model allowed spin polarization in the edge states via the spin-

orbit coupling, a phenomenon known in modern studies of TIs as spin-momentum locking.

Most importantly, the topological index that arises from this model is the Z2 index. [62] It

represents the number of times the chiral edge states cross the Fermi level, meaning that

information about topology can be contained within the band structure of a material. While

the QSH insulator was never observed in graphene, it was instead predicted to be present

and subsequently verified experimentally in CdTe/HgTe/CdTe quantum wells. [63, 64]

The QSH insulator, like the IQHE, is still a two-dimensional system; soon after its the-

oretical development, similar ideas were extended to three-dimensional systems. [65, 66]

Three-dimensional TIs have similar properties to the QSH insulator. First, the topology is

still classified by the Z2 index; this is related to the number of times a surface state crosses

the Fermi energy for the 3D case. The crossings come about via inversion of the valence and

conduction bands, which can only occur in materials with strong spin-orbit coupling. This

band inversion forms a Dirac point. To be topologically non-trivial, the surface state must

cross an odd number of times, or in other words, there must be an odd number of Dirac

points in the gap. [67] From an experimental perspective, the presence of the Dirac points

that span the gap mean that the topological surface state is conductive while the bulk of

the material is insulating. The 3D TI must also have spin-momentum locking in its surface

state, as seen previously in the QSH insulator. [67] The first experimentally identified TI

was Bi1−xSbx, [68] but likely the best known 3D TIs are Bi2Se3 and Bi2Te3. These were

identified by using angle-resolved photoemission spectroscopy (ARPES) to directly map the

band structure and reveal the Dirac cones. [69]

These first 3D TIs were all band insulators, but later work proposed that Kondo insu-

lators could also have topologically protected states. [12, 13, 14] In the topological Kondo

insulator, the valence and conduction bands form from hybridization between f electrons

and conduction electrons, and this hybridization provides the necessary spin-orbit coupling
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needed for a TI. The surface state would exist within the gap formed during Kondo hy-

bridization. SmB6 was specifically predicted to have one Dirac cone at the Γ point in the

surface Brillouin zone, and two equivalent Dirac cones at the X points, which are relevant

to the (001) crystal surface, and three equivalent Dirac points at the M points, relevant in

the (111) crystal surface. [70]

To test whether SmB6 is in fact a topological insulator, a number of different methods

have been used. Initial results showed that it is indeed a surface conductor, but little

consensus has been reached on the other crucial properties like the number of Dirac cones

or the presence of spin-momentum locking. Initial results seemed to favor the TI prediction,

but later results called this identification into question. Results on SmB6 and the ongoing

debate about the topological nature of SmB6 will be discussed in the next section.

1.4 Is SmB6 a topological insulator?

1.4.1 Spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) has been a powerful tool for identifying

predicted band TIs as it can directly map the Dirac cones. Most band TIs, like Bi2Se3, have

gaps on the order of a few eV, but the gap in SmB6 is two orders of magnitude smaller. This

makes it challenging to perform ARPES measurements on SmB6. ARPES experiments in

SmB6 have primarily looked for the predicted topologically protected surface states near the

Γ and X pockets on the (001) surface in the 2D Brillouin zone, [70] rather than the M points

on the (111) surface. Experimental data on the (001) surface indicates features not arising

from the bulk band structure at the Γ and X pockets, but wide disagreement still remains

on the topological nature of these states.

Initial reports showed that there was a Dirac point at Γ and one at each of the two

equivalent X points, making three pockets and suggesting confirmation that SmB6 hosts

topological surface states. [19] Further investigation of circular dichroism (differences in

ARPES spectra between right and left circularly polarized light) indicated a spin texture

as would be expected for topological surface states. [21, 20] Other studies have called into
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question the initial confirmation that SmB6 hosts an odd number of Dirac cones. One

observes three metallic states but finds their origin to be trivial, [23] and many reports only

observe pockets at the X points. [71, 22, 72] Some researchers have even argued for a purely

trivial origin for the observed metallic states. Possible trivial sources include dangling B

bonds introduced during cleaving [73], Rashba splitting, [24], or many-body resonances in

the 4f band. [24, 25] One possibility for reconciling these disagreements is connected to STM

and STS measurements.

Like ARPES, STM and STS are performed on samples cleaved in situ, and the cleaved

surfaces host a variety of topographies. The most common are polar unreconstructed surfaces

terminated by only B atoms or only Sm atoms, as well as a (2x1) nonpolar reconstructed

surface, which appears as stripes of B and Sm atoms. [74, 75, 76] The polar surfaces, which

have extra charge on them, can affect the band structure near the surface via band bending,

and in fact STS measurements show that the features are shifted among the Sm polar, B

polar, and nonpolar surfaces. In addition, the different types of topographies extend over

distances of order 10 nm, but methods like ARPES are performed over areas of order 10 µm.

This means that ARPES measurements could be averaging over the band structures of the

different surface topographies, unintentionally smearing the band structures they observe.

Averaging over different polarities combined with the difficulties in resolution in such a

small gap in SmB6 might prevent ARPES from obtaining clear features. [25, 77] In fact,

one way to circumvent polarity issues is to cleave SmB6 on the (111) surface. An ARPES

study performed on a cleaved (111) surface found three equivalent M pockets with a spin

texture consistent with a topological origin on the (111) surface. [78] This result has been

overlooked as much of the debate about the topological nature of SmB6 has focused on the

characteristics of the Γ and X pockets. However, this result may indicate a turning point in

TI studies of SmB6 due to the relative ease of measuring and interpreting the (111) surface

in comparison to the (001) surface.

Scanning tunneling microscopy (STM) and spectroscopy (STS) have also been used to

probe for topological surface states using quasiparticle interference. Only one report so far

has demonstrated that the observed in-gap states are topological. [79] This report reveals

three Dirac cones at the Γ and 2X points, although the parameters of the states do not
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match those given by ARPES.

1.4.2 Electrical transport

The prediction that SmB6 could host topologically protected surface states was first tested

on SmB6 via transport. [15, 16, 18] Since topological insulators have an insulating bulk and

a conductive surface, researchers could test whether the conduction below 4 K was coming

from the bulk or the surface. One way to do this is to place contacts on the top and bottom

surfaces of the sample and performing the measurements with different configurations for the

current and voltage leads. Different results are expected for current that can travel through

the bulk of the sample compared to current that must flow around the surface, and using

this method, surface conduction was verified. [15]

An independent method of performing the same test is by varying the sample thickness.

Since the Hall coefficient depends on thickness in three-dimensional systems but is indepen-

dent of thickness in two-dimensional systems, Hall measurements at different locations on a

wedge-shaped sample were performed. The Hall measurements collapsed to a single curve

below 4 K, demonstrating that the conduction is on the surface. [16] In a related study,

researchers found that the temperature at which the resistance plateau appears increases as

the sample thickness decreases (or as the ratio of bulk to surface decreases). [18]

Although electrical transport showed that the low-temperature conduction was a surface

effect, topological protection is still in question. One study has demonstrated signatures of

spin-momentum locking in SmB6, [80] but the results have not been reproduced. Instead,

other experimental methods have been used to answer this question.

1.4.3 Magnetotransport

Another way to detect a topologically protected surface is by searching for features of weak

anti-localization (WAL). A related effect, weak localization, occurs when there is constructive

interference between electron paths and their time-reversed counterparts; WAL occurs when

the interference is instead destructive. However, in materials where TRS is preserved, this

interference can no longer occur. To probe whether WAL is present, a magnetic field can be
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applied to break TRS. Then, an increase in resistance due to WAL would be observed as a

peak near zero magnetic field. WAL is characterized by a dephasing length and a prefactor

α. Each topological conduction channel is expected to contribute 1/2 to the prefactor, so

with two spin states and three proposed pockets, SmB6 would be expected to have α = 3.

Experimental searches for WAL have had mixed results. [56, 81, 82, 55] Three claim

to have observed WAL using Hall bar geometry, but in all three studies, the results for α

are highly variable and not in agreement with the expected value of 3. [81, 82, 55] Other

discrepancies are also present, for instance the observation of WAL-like features with in-

plane magnetic field. [55] One possible source of the discrepancies, however, is the use of

Hall bar geometry, since current can flow on all the surfaces. Thus, when magnetic field is

in-plane to two surfaces of the Hall bar, it will be normal to two other surfaces, so if WAL

is present, features would still be observed. A fourth study performed magnetoresistance

measurements on Corbino geometry both to confine current to a single crystal surface and

because it is not sensitive to the sign of the carriers. In this study, features were observed

near zero magnetic field, but these features were found to be dependent on the sweep rate

of the magnetic field. Since WAL should be intrinsic to the sample, the authors concluded

that no WAL was observed. [56] In these studies, the authors have mainly attributed the

lack of WAL or the discrepancies in the values of α to impurity scattering. For example,

the presence of magnetic impurities, including Sm3+ ions in a surface oxide, might provide

scattering centers that overwhelm WAL. [56, 55]

Besides WAL, magnetoresistance has been used to study the idea of a TI in SmB6. Re-

calling that the magnetoresistance in SmB6 is negative, new data revealed that the maximum

negative magnetoresistance occurs at about 5 K. [58, 83, 84] This has been used to support

the idea of a transition to topological surface conduction below about 5 K. In a topological

insulator, while metallic surface states might be expected to induce positive magnetoresis-

tance, magnetic field breaks the time reversal symmetry of these states. Thus, negative

magnetoresistance observed over a large range of magnetic field in SmB6 is not unreasonable

within a TI framework. In addition, one study performed angle-dependent magnetoresis-

tance and observed a symmetry change near 5 K. [83] Above 5 K, their data showed fourfold

symmetry, which is the expectation for a cubic bulk material. Below 5 K, however, they
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observed a change to twofold symmetry, and the formation of a surface state is one possible

origin for this symmetry change.

1.4.4 Quantum oscillations

De Haas-van Alphen (dHvA) oscillations, or quantum oscillations in magnetization, have

been used to test the low-temperature conduction for possible topological origin. The angle

dependence of dHvA oscillations allows the shape and dimensionality (2D or 3D) of the

Fermi surface of a material to be mapped. In SmB6, one study found that the Fermi surface

giving rise to dHvA oscillations was two-dimensional, consistent with the TI picture of SmB6,

[85] while another found evidence of a 3D Fermi surface. [26] In the first of these studies,

three main oscillation frequencies were observed in a flux-grown sample. Two of these were

identified with the X pockets projected on different crystal surfaces, while one was attributed

to the Γ pocket. However, the effective masses obtained for these pockets were much lower

than what was observed in ARPES. [85] In the second study, oscillations were observed at

much higher frequencies on floating zone samples, and the angular dependence was attributed

to a 3D effect, due to its similarity to trivial hexaborides. The authors proposed that a Fermi

surface of neutral quasiparticles was responsible for these results. [26] Later studies from

both collaborations provided further evidence for each side of the debate. [86, 27]

Many researchers have attempted to explain these conflicting results. First, thermal

transport has been used to search for neutral quasiparticles, which would be manifested as a

nonzero thermal conductivity as temperature approaches zero. SmB6 also has an unexplained

excess in specific heat below 4 K, [87] which could be due to neutral quasiparticles. One

study found evidence for charge-neutral quasiparticles in floating zone samples [27] while

another finds no evidence for them in flux grown samples. [88] A further study comparing

flux and floating zone grown samples found no evidence for charge-neutral quasiparticles

in either type. [89] Besides charge-neutral quasiparticles, one possibility is that flux grown

samples have non-percolating domains to which dHvA is sensitive but thermal transport

is not. [88] Alternatively, results at zero and non-zero magnetic fields could be explained

by two scattering channels, one magnetic and one non-magnetic, that might affect dHvA

results. [89]
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Besides thermal considerations, ARPES data showed a 2D Fermi surface which corre-

sponded to frequencies seen by Tan, et al., [72] suggesting that the 3D interpretation was

incorrect. Another experimental study found that aluminum inclusions in flux-grown samples

could play a role. When the aluminum was removed, the oscillations disappeared, suggesting

that inclusions were the source of the 2D dHvA data and that SmB6 does not give rise to

intrinsic quantum oscillations. [90] Oscillations arising from rare-earth impurities (rare-earth

elements are notoriously difficult to purify when preparing them for crystal growth) have also

been recently ruled out. [91]

To explain these conflicting results, theoretical proposals have considered both an intrinsic

origin, for example charge-neutral quasiparticles, and an extrinsic origin, like pockets of an

unknown metallic phase. Some of the intrinsic-origin scenarios have included oscillations

by excitonic states [92, 93] or a Majorana fermion band that breaks gauge symmetry. [94,

95] Others have proposed breakdown of the gap under magnetic field, [96, 97] or ways for

oscillations to occur in gapped systems based on the unhybridized band structure or as an

effect of the band edges. [98, 99] The other possibility is that the quantum oscillations

have an extrinsic origin from disorder or impurities. One interesting proposal was that of

a nodal semimetal, in which states from the conduction and valence band could spill into

the gap in the presence of generic short-range disorder. [100, 101] Alternatively, magnetic

impurities could be responsible for the excess heat capacity at low temperatures. [102]

These local moments in the lattice would be screened, and the amount of screening, and

thus the magnetization, would oscillate in magnetic field. [103] Still another report focused

on nonmagnetic impurities, which were found to form a deep impurity band as in a metal

as well as an in-gap band, [104] and another proposal revisited the idea of in-gap impurity

states specific to the type of band structure in Kondo insulators. [105] No consensus has yet

been reached on a full theoretical description of dHvA oscillations in SmB6.

As a final note on quantum oscillations, these studies have all focused on dHvA oscilla-

tions, but in most materials, Shubnikov-de Haas (SdH) oscillations in resistivity are much

easier to observe and should appear near the same magnetic field as dHvA oscillations. In

SmB6, no SdH oscillations have been observed up to 80 T. [106] This is another open question

in SmB6 quantum oscillations, as both effects are expected to appear at similar magnetic
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fields.

1.5 Open questions in SmB6

1.5.1 Dependence of results on sample growth method

Many of the results in the above sections can be divided along the lines of sample growth

method. In SmB6, two primary techniques for sample growth are used: aluminum flux

growth and optical floating zone growth. These techniques will be discussed in more detail in

Chapter 2. In general, samples can be grown below the melting point by the Al flux method,

which may enhance the stoichiometry of the target sample by preventing vaporization of

Sm at high temperatures. [107] Flux grown samples are small (a few mm in each direction)

and can contain inclusions of the flux. [108] In contrast, floating zone samples are grown

at or above the melting point, and the high temperatures used can introduce defects due to

thermal stresses [109] or through vaporization of Sm. Floating zone samples are quite large

(a few cm long) and are uncontaminated by flux.

In general, characterization methods like powder X-ray diffraction show no obvious dif-

ference between samples grown by the two methods. [11, 107] However, many of the exper-

imental results that disagree as to the origin (topological or trivial) of the low-temperature

physics in SmB6 can be also separated by sample growth technique. ARPES results that find

evidence for a trivial surface in SmB6 are done on floating zone samples, [24] although some

results on floating zone samples do provide evidence for a topological surface. [78]. However,

the majority of the compelling photoemission evidence for a topological surface comes from

flux grown samples. [21, 20] Similarly, dHvA results indicating a 2D Fermi surface were

performed on Al flux grown samples, while the 3D Fermi surface results were performed on

floating zone samples. [85, 26] Related to this, thermal transport results are fairly consistent

among Al flux grown samples but vary widely on floating zone samples. [27, 88, 89] Trans-

port results on both flux and floating zone samples show differences as well, but a detailed

discussion will be reserved for Chapters 4 and 5.
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1.5.2 Characteristics of the energy gap

Besides the question of whether SmB6 is indeed a topological insulator, inconsistencies also

remain in understanding the hybridization gap. Transport measurements have consistently

found activated behavior with an activated energy of 3-5 meV, [3, 9, 15, 110] while spec-

troscopic measurements have shown a larger gap of about 20 meV. [111, 22, 112] Detailed

transport studies of the activated behavior subsequently identified two activated regions sep-

arated by a feature near 10-15 K. From about 4-10 K, the extracted activation energy is 3-5

meV, but from 15-50 K (where the gap starts to close) the extracted activation energy is 5-10

meV. [113] A picture of a 20 meV total gap with an impurity level about 3 meV below the

conduction band emerged to connect all these results [111, 114, 115] In this model, the total

gap size of 20 meV corresponds with the spectroscopic results and is twice the activation

energy measured from 15-50 K in transport, while the 3 meV difference between the impurity

and conduction bands would correspond with the activation energy measured from 4-10 K.

However, other evidence indicates that the two gaps behave differently under magnetic

field and that the small gap of 3-5 meV actually corresponds with Kondo hybridization

rather than an impurity level. [84, 83] One point-contact spectroscopy measurement found

a total gap of 7 meV, and both the temperature dependence of the gap and the nonzero

spectral weight seen inside the gap suggested that this was a clean gap arising from Kondo

hybridization. [116]. Pressure measurements also reveal a metal-insulator transition as the

3-5 meV gap closes with pressure at around 60 kbar, consistent with what should be seen

for a Kondo insulator. [117, 46] Other pressure measurements show that the 20 meV gap

closes at about 100 kbar, but the origins of this mechanism are not well-understood. [46]

One hypothesis is that a magnetic state that forms near the same pressure causes bulk

metallization, [118], although studies of magnetic order in SmB6 at high pressures are still

ongoing.

Other than the model of an impurity band in the gap, other scenarios like an indirect

gap have been proposed. [119] In this case, the indirect gap would be associated with the

3-5 meV activation energy, while the direct gap would be associated with the 20 meV gap

seen in spectroscopy. In Chapter 3, the possibility of a clean, direct gap with band bending
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of the bulk band structure near the metallic surface will be discussed. Since that work

was completed, another model of in-gap impurity states that undergo activated hopping

conduction has been proposed. [105] This model and its relevance to our bulk conduction

studies will also be discussed.

1.5.3 Role of impurities

The role of impurities in SmB6 has long been puzzling. Early studies attributed the plateau

below 4 K to impurity conduction, but this was found to be untenable. [9] Recently, however,

the role of impurities has come to the forefront once again. Our recent measurements on

samples with Sm vacancies suggested that the gap in SmB6 is protected against disorder.

[110] Other results, however, suggest that both magnetic and nonmagnetic impurities could

be responsible for the dHvA oscillation results as well as some of the unusual thermal behavior

of SmB6. [120, 104]

The most common source of impurities in SmB6 is other rare-earth elements, as they

are very difficult to purify out of Sm. During growth, vacancies, higher-dimensional defects,

or other phases could also be introduced due to stresses (thermal, vibrational, chemical) in

the environment. One approach to improve sample purity is to isotopically purify the Sm,

keeping only Sm-154; then the only remaining impurity would be Gd-154. [102]

Magnetic impurities, like Gd remaining even after purification, are an important con-

sideration. First, if SmB6 is a topological insulator, magnetic impurities naturally present

in samples could destroy time reversal symmetry, meaning that the observed surface con-

duction is trivial. If SmB6 is not topological, magnetic impurities could provide a source of

disruption to the Kondo effect. These magnetic ions could act as local magnetic moments

and would be screened by the surrounding conduction electrons. One report has suggested

that the amount of screening could oscillate in magnetic field, leading to observation of bulk

oscillations in magnetization. [103] Another recent work finds that Gd impurities at very low

concentrations create enough screening to destroy the Kondo effect locally. These metallic

ions can then percolate, which would explain why dHvA oscillations are seen but SdH are

not. [121]

Nonmagnetic impurities, including rare-earth elements and Sm vacancies, also play a
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major role. Systematic transport studies of Sm doped with nonmagnetic rare earth elements

has shown that the Kondo effect and the surface conduction are interrupted even with less

than 0.5% doping. [122] One study of SmB6 with Sm vacancies found that the vacancies

provided scattering centers that increased the resistivity by about an order of magnitude

compared to a pure sample. [123] In Chapter 5, results suggesting that Sm vacancies play a

role in bulk conduction at temperatures below 2 K will be presented, [110] and the role of

Sm vacancies and other defects will be considered in more detail.
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Chapter 2

Methods and Techniques

2.1 Introduction

The primary method used to probe Sm6 in this work is electrical transport in the dc limit,

close to zero frequency. Transport measurements are performed in the linear response regime,

where an electric field E applied to the sample yields a proportional response in the current

density, j. In the linear regime, these are related by the conductivity matrix, σ, via Ohm’s

law:

j = σE. (2.1)

In the next sections, Ohm’s law will be discussed using classical transport theory, and the

conductivity matrix will be connected to parameters measured in experiment. An important

consideration in relating theory to experiment is the transport geometry, or location of con-

tacts used to apply the electric field and measure the response. Various transport geometries

will be introduced, and the measured quantities will be presented.

In the following sections, practical considerations for preparing samples for transport

measurements will be discussed. These include techniques for growing SmB6 samples, prepa-

ration of crystal surfaces before measurement, and defining the transport geometry. Finally, a

technique for preparing micro-sized pieces using a focused ion beam will briefly be described.
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2.2 Classical transport

In this work, we primarily use the Drude model to analyze transport parameters. The

conductivity tensor for particles with charge e can be derived from Newton’s equations:

dp

dt
= e(E + v ×B). (2.2)

For particles with effective mass m∗ and scattering time τ , this becomes

m∗(
d

dt
+

1

τ
)v = e(E + v ×B). (2.3)

Transport occurs at steady state, and if we assume that the magnetic field is B = Bẑ, Eq. 2.3

can be decomposed in the three dimensions as:

m∗vx
τ

= e(Ex + vyB)

m∗vy
τ

= e(Ey − vxB)

m∗vz
τ

= e(Ez).

(2.4)

The velocity components can be related to the current density in Ohm’s law (Eq. 2.1) by

j = −nev, where n is the electron (carrier) density, so that the conductivity matrix in Eq. 2.1

can be obtained for a general case. This is

σ =


neµ

1+µ2B2
neµ2B

1+µ2B2 0

− neµ2B
1+µ2B2

neµ
1+µ2B2 0

0 0 neµ

 , (2.5)

where µ = eτ/m∗ is the mobility. Usually, the quantity µ2B2 is very small, and it can

be neglected. Also, when magnetic field is applied in the z-direction, measurements are

performed only in the x− y plane. With these considerations, the conductivity matrix can
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be simplified as

σ =

 neµ neµ2B

−neµ2B neµ

 . (2.6)

The resistivity can be obtained by inverting this matrix,

ρ =
1

1 + µ2B2

 1
neµ

− B
ne

B
ne

1
neµ

 . (2.7)

Again, the prefactor is usually small and can be neglected. Thus, the basic Drude transport

equations are

ρxx =
1

neµ

ρxy = −B
ne

(2.8)

Depending on the transport geometry used, ρxx and ρxy can be calculated from the data and

used to find the carrier density n and mobility µ. Often, the Hall coefficient RH = −1/(ne)

is used in place of ρxy, and the sign of the Hall coefficient gives the sign of the charge

carriers. In this derivation, negative Hall coefficient corresponds to negative charge carriers,

but in practice, the setup of the measurement must be considered to determine whether this

convention applies.

2.2.1 Two-channel conductivity

One important example where Eq. 2.8 cannot be used is when a material has both positive

and negative charge carriers. The signs of the carriers cancel each other out in ρxy, meaning

that the magnitude of the carrier density will be wrong and the sign will only indicate the

dominant carrier. Instead, Eq. 2.8 can be modified starting from Eq. 2.6. The diagonal

terms are additive, but the off-diagonal terms depend on the signs of the carriers. The new

matrix becomes

σn,p =

 neµn + peµp neµ2
nB − peµ2

pB

−neµ2
nB + peµ2

pB neµn + peµp

 , (2.9)
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where n denotes electrons and p denotes holes. When this matrix is inverted, we obtain:

ρxx =
1

neµn + peµp

ρxy =
B

e

pµ2
p − nµ2

n

(pµp + nµn)2
.

(2.10)

This process can be carried out for any number of channels of both signs of carrier.

For exotic materials like SmB6, more nuanced analysis of the data will be necessary, and the

corresponding modifications to the above models will be discussed in depth in later chapters.

2.2.2 Connection to measurement

Transport measurements are usually performed by exciting the sample with a current, I,

and measuring the resultant voltage, V . The ratio of these two quantities gives the resis-

tance, R = V/I. Resistance is the primary parameter that is obtained from a transport

measurement, and it can be measured under different conditions. For example, resistance

is often measured as a function of temperature, magnetic field, or pressure; in this work we

mainly consider temperature and magnetic field. Resistance is also closely related to the

resistivity ρ obtained from classical transport theory. To relate ρ and R, it is necessary to

use a well-defined transport geometry, which will be discussed in the following section.

2.3 Transport geometry

In general, ρxx and ρxy can be obtained from a measurement as long as the geometry of

the sample and measurement is known. Three types of well-defined transport geometries

will be considered here: Hall bar, van der Pauw, and Corbino disk. Hall bar geometry is

used for needle-like samples and employs measurements of both transverse and longitudinal

resistance, which are then used to obtain carrier density and mobility. Van der Pauw geom-

etry is closely related, also making use of both transverse and longitudinal resistance, but

it is optimal for plate-like or oddly-shaped samples. Corbino disk geometry is comprised of

concentric circular contact pads deposited on the sample. It can be used on any flat surface

of a sample to find ρxx, and it can be used to characterize single crystal surfaces of samples
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Figure 2.1: Top views of (a) Hall bar geometry, (b) van der Pauw geometry, and (c) two-
terminal and (d) four-terminal Corbino disk geometry. The samples are shown in gray and
the contacts are shown in yellow.

or to separate contributions from bulk and surface channels.

2.3.1 Hall bar geometry

The layout of Hall bar geometry is shown in Fig. 2.1(a). Rxx is measured by R1,4;2,3 (with

numbers in reference to the figure), meaning that current is passed from 1 to 4 while voltage

is measured between 2 and 3, or by R1,4;6,5. Rxy is measured by R1,4;2,6 or R1,4;3,5.These are

converted to ρxx and ρxy by

ρxx =
wt

`
Rxx

ρxy = tRxy

(2.11)

where w, t, and ` are the width, thickness, and length of the sample. The prefactor of ρxx,

in this case wt/`, is called the “geometric factor” of the transport geometry. Often, the

quantity of interest is the Hall coefficient, RH , rather than the transverse resistance, Rxy.

The Hall coefficient is related to the above parameters by

RH =
ρxy
B

=
t

B
Rxy. (2.12)
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2.3.2 Van der Pauw geometry

Van der Pauw geometry [124] can be used for any sample shape, but in this work it is used

for square samples, as shown in Fig. 2.1(b). Rxx is obtained by an average of R1,2;4,3 = Rxx,1

and R1,4;2,3 = Rxx,2, while Rxy requires either R1,3;2,4 or R2,4;1,3. In this notation, ρxx and ρxy

are obtained by

ρxx = f
πt

ln 2

Rxx,1 +Rxx,2

2

ρxy = tRxy

(2.13)

where f satisfies the transcendental equation

Rxx,1 −Rxx,2

Rxx,1 +Rxx,2

= f cosh−1(
exp ln 2/f

2
). (2.14)

If the measurements of Rxx,1 and Rxx,2 are identical, f = 1. In square samples, f is usually

approximated as 1, although a few percent correction can be made by including this factor.

2.3.3 Corbino geometry

The simplest version of Corbino geometry is made up of two concentric circular contact pads,

as shown in Fig. 2.1(c). Current flows from the inner ring (1) to the outer ring (2), confining

the current to the annular region between the currents. [125] To find resistance, voltage is

measured in the region between the two disks. The measured Rxx is related to transport

parameters by

RCorbino =
ln (rout/rin)

2π

1 + µ2B2

neµ
= Cρxx, (2.15)

where the inner (rin) and outer (rout) radii are the radii of the two current contacts, as

shown in Fig. 2.1(c). One way of performing this measurement is to add more rings, for

example making a four-terminal Corbino disk as shown in Fig. 2.1(d). In this configuration,

the resistance R1,4;2,3 gives Rxx.

Unlike Hall or van der Pauw geometry, Corbino geometry cannot be used to measure

Rxy, and Eq. 2.15 depends on the magnetic field. This means that the magnetoresistance is
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expected to be quadratic for a Corbino disk. Angle-dependent magnetoresistance measure-

ments, where B is replaced by B cos θ, can also be used to extract the mobility and then the

carrier density.

2.3.4 Inverted resistance measurements

The property of confining current to an annular region allows Corbino disks to be used in

a number of ways. For example, in a material with different transport characteristics on

different crystal planes, Corbino disks can be used to study each plane individually. In

materials with conductive surface states, like SmB6, Corbino disks can be used to study

the properties of a single surface. This also eliminates uncertainty in the geometry in a

topological material due to corners and edges.

In addition, Corbino disks can be used in materials with both surface and bulk conduction

to study bulk physics at temperatures where surface conduction is dominant. It can also

identify whether conduction is coming from the bulk or the surface of a sample. This

technique is known as inverted resistance. [126, 127] To perform an inverted measurement,

the voltage is measured outside of the annular region where current is flowing.

To understand how the inverted resistance method works, first consider the geometry

of Fig. 2.1(d) on a two-dimensional material. A standard measurement would be made by

passing current between 1 and 4 while measuring voltage between 2 and 3 (R1,4;2,3). For

the inverted measurement, current is instead confined between 1 and 2. If the material is

two-dimensional, no voltage will be measured between 3 and 4; that is, R1,2;3,4 = 0. In this

case, contact 2 behaves like a Faraday cage, so no current can flow outside of it.

However, if the same measurement is done on a three-dimensional material, some current

could flow outside of contact 2 through the bulk. In a material with both bulk and surface

conduction, all the surface current is confined between contacts 1 and 2. Thus, the measured

voltage is a purely bulk signal. This signal will be quite small, especially in regimes where

the surface conduction dominates.

To improve the signal, different types of Corbino geometry can be used. [127] The optimal

configuration is two-sided, with a four-terminal Corbino disk on one side and a two-terminal

Corbino disk on the other, as shown in Fig. 2.2. The standard measurement can be made
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Figure 2.2: (a) Four-terminal Corbino on top surface of sample. (b) Side view of the sample
showing a standard measurement, R1,4;2,3. (c) Side view of the sample showing an inverted
measurement, R1,4;5,6 (d) Two-terminal Corbino on bottom surface of sample.
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as before (R1,4;2,3) using only the four-terminal side, as shown in Fig. 2.2(b). The inverted

measurement is made by passing current on one side fo the sample and measuring voltage

on the opposite side (R1,4;5,6), as shown in Fig. 2.2(c).

To understand how resistance and resistivity are related in Corbino measurements, we

consider three cases. First, if the material is a purely bulk conductor, the resistance is

proportional to the bulk resistivity as in Eq. 2.15:

R = Cbρxx, (2.16)

where Cb is a geometric factor (as in Eq. 2.15). In this case, standard and inverted measure-

ments differ only by the choice of electrode, so only the prefactor differs between the two

measurements. Thus, in data, the standard and inverted resistance-temperature curves have

the same shape and are parallel to each other.

However, if surface conduction is dominant, the standard measurement will be propor-

tional to the surface resistivity (also known as sheet resistance), Rsq:

R = CsRsq, (2.17)

where Cs is also a geometric factor but with different form than Cb due to the reduced

dimensionality. As discussed previously, in the presence of surface conduction, inverted

resistance will only pick up signal coming from the bulk. This signal depends on both the

bulk and surface resistivities:

RInv = CInv

R2
sq

ρxx
, (2.18)

where CInv is yet another geometric factor. Because Eq. 2.18 is inversely proportional to

bulk resistivity, the temperature dependence of the inverted measurement will be inverse

to the temperature dependence of the bulk measurement in regions where bulk conduction

dominates. For example if the bulk exhibits activated behavior, ρ(T ) ∝ exp(Ea/T ), the

inverted measurement will exhibit the opposite, ∝ exp(−Ea/T )). However, the presence of

a third conduction channel in the bulk can change this expected temperature dependence of

the inverted resistance. This will be revisited in Chapter 5.
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2.4 Growth methods

Modern SmB6 samples are typically grown either by the aluminum flux method or the optical

floating zone method. Aluminum flux growth allows SmB6 to crystallize at equilibrium in

a solution of molten aluminum and produces millimeter-sized crystals. On the other hand,

growth in the floating zone method occurs when Sm and B are directly melted together

and cooled, and it produces crystals up to 10 cm long. Both techniques make use of the

samarium-boron phase diagram. [128]

2.4.1 Flux growth

Flux growth employs a stoichiometric mixture of the target crystal dissolved into molten

metal (the flux). The material chosen as flux depends on the target crystal; for SmB6,

aluminum is almost always used. In many flux growths, the components are sealed into

a quartz ampoule to prevent contaminants from the environment from being incorporated

into the crystal. However, aluminum flux cannot be used in quartz, and SmB6 requires a

higher temperature than can be used for sealed quartz. [108] Instead, a tantalum or alumina

crucible is typically used, and these crucibles are chosen to minimize their effect on the

crystals. Since the crucibles are not sealed, growth is performed under an inert gas, often

argon. [129]

For SmB6, powders of boron and samarium are placed into the crucible along with alu-

minum pellets. The components are heated and stirred thoroughly to ensure that the Sm

and B powders are dissolved in the flux. The mixture is held at about 1600◦C before being

cooled slowly back to room temperature. The most important factor affecting the quality of

Al-flux grown SmB6 is the cooling rate. Fast cooling rates can lead to low-quality crystals;

cooling rates reported in the literature vary from a few hours to two weeks. [130, 131] After

the mixture reaches room temperature, the remaining Al is removed with a strong acid or

base, usually sodium hydroxide (NaOH). [108]

Crystals of SmB6 prepared by the Al-flux method are typically a few millimeters in each

dimension, and they can have a needle- or plate-like shape. [132] Examples can be seen in
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Figure 2.3: Al flux-grown samples. (a) As-grown sample showing clear crystal planes. (b)
As-grown sample with 2.85% Eu doping, with polycrystals in the lower right-hand corner.
(c) Al inclusions in a needle-like sample. (d) Al inclusions and voids in a sample grown with
10% Sm vacancies.

Fig. 2.3(a) and (b), respectively. Flux-grown samples are favorable because their growth

takes place at equilibrium, leading to consistent crystal quality and little susceptibility to

impurities and other phases. In fact, crystals of the related phase of samarium tetraboride

(SmB4) can also be produced by Al-flux growth, but attempts to grow SmB4 often produce

SmB6 or crystals with a mixture of the two phases. [130, 133]

The main drawback to flux-grown crystals is inclusion of the flux in the samples. In SmB6,

nearly every crystal contains small pockets of Al. In our crystals, we have observed that the

needle-like pieces contain needle-like Al inclusions and the plate-like pieces contain plate-like

Al inclusions, as shown in Fig. 2.3(c) and (d), respectively. Literature reports also show that

the Al inclusions are epitaxial to the samples and that Al and SmB6 have the same lattice

parameter at the melting temperature of Al. [107] Some reports have also suggested that

Sm3Al11 can be found in inclusions from flux growth, especially when an alumina crucible is

used in the growth. [108] However, the lattice parameter and crystal structure of Sm3Al11

[134] are quite different from those of SmB6, and such inclusions have not been detected.

Besides inclusions, flux-grown samples occasionally contain voids, twinned crystals [110] or

polycrystals arising from two pieces that grew together from separate seeds in the flux. In

our crystals, we have observed voids in samples grown with off-stoichiometry (Fig. 2.3(d))
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Figure 2.4: Floating zone grown samples (a) Floating zone sample grown with the single
isotopes 154Sm and 11B. (b) Floating zone sample cleaved from larger piece.

and polycrystals in samples grown with intentional doping with other rare-earth elements

(Fig. 2.3(b)).

2.4.2 Floating zone growth

Optical floating zone samples are grown at the melting point of SmB6, which is about 2500◦C.

Sm and B powders are packed into a “feed rod,” and a small single crystal of SmB6, called

a seed, is placed at the bottom of the rod inside a furnace. The furnace heats the tube via

halogen or xenon arc lamps which are focused to the center of the rod. Starting from the

seed crystal, the rod is heated to the melting point. The rod is slowly passed downwards so

that the molten zone moves upwards and a crystal forms from the bottom of the rod. Like

flux growth, floating zone growth is generally performed under argon gas.

An important consideration in floating zone growth is the rate at which the feed rod is

passed through the molten zone. In SmB6, slower rates tend to yield higher quality crystals

with less possibility of polycrystallinity, twinning, and cracks. [109] Counter-rotating the feed

rod and the already-formed crystal can also improve quality by ensuring that the components

mix well in the molten zone. [135] Reports also show that passing the grown crystal, or boule,

through the furnace a second or even third time can improve the quality. However, since

growth occurs at such a high temperature in SmB6, one problem that must be considered

is loss of material via evaporation, which naturally becomes more of an issue the longer the

boule is kept in the furnace. SmB6 is most susceptible to loss of Sm via evaporation as Sm

metal or in the SmB4 phase. To combat this, growers often use slightly more Sm than the

expected 1:6 ratio when initially preparing the growth.
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Floating zone-grown SmB6 samples can be up to 10 cm long and about 1 cm in diameter.

Since they are so large, quality can still vary along the boule despite precautions taken

during growth. One well-known issue is that the lattice constant decreases moving farther

away from the seed crystal. [107] Changes in lattice constant in SmB6 are known to correlate

with Sm vacancies, [136] but more importantly, they imply that one-dimensional defects, or

dislocations, are present.

Another possible issue affecting the quality of floating zone crystals is inconsistency in

the cross-section of the boule. Floating zone growth was initially developed for one-element

materials like silicon. [135] In two-element materials, one possible effect is that the center of

the rod is one phase, and another phase forms an outer ring. This has never been detected

in SmB6, as the only other possible phase, SmB4, is not the preferential product, especially

under slight Sm deficiency as in floating zone conditions.

Floating zone crystals are generally preferred over flux grown crystals in experiments like

neutron scattering or THz spectroscopy which require a large sample surface area. For use

in transport experiments, floating zone SmB6 must be cleaved. Due to the extreme hardness

of the hexaborides, spark erosion is a commonly used technique for cleaving a boule into

small pieces. [11] Examples of floating zone crystals cut to size for transport experiments

are shown in Fig. 2.4.

2.4.3 Point defects and dislocations

Both Al flux and floating zone grown SmB6 contain point defects. A major source of im-

purities is the samarium powder used in the growth, since rare earth materials are difficult

to purify. Sm vacancies can also form during growth, and floating zone samples are more

susceptible than Al flux samples due to possible material evaporation at high temperatures.

This can lead to Sm vacancy concentrations of up to a few percent. While impurities are

recognized, there is little consensus on the extent of their role in the physics of SmB6.

SmB6 also likely contains one-dimensional defects, or dislocations. Dislocations have

been studied extensively in semiconductor thin films such as GaN, where they are a signif-

icant source of scattering. [137] In thin films, dislocations form during growth, especially

at the interface between a substrate and a film with different lattice constants. This lattice
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mismatch between the two materials strains the layer, leading to the formation of disloca-

tions. [138] However, dislocations are also present in crystals. They can form from internal

stresses in the growth, especially stresses due to thermal fluctuations, local impurities in the

growth, or even vibrations in the environment. [138] Impurities in the growth can provide

nucleation sites where dislocations start to form, and high temperatures used in the growth

can compound the effect of internal stresses as well. [139] Additionally, dislocations can

extend from a seed crystal containing dislocations to new growth based on that seed. [139]

Dislocations are almost certainly present in SmB6, although they have not been well-studied.

Preliminary investigations of dislocations in SmB6 will be presented in Chapter 5.

2.5 Preparation of crystal surfaces

As-grown surfaces of single crystal SmB6 and cleaved surfaces of floating zone-grown SmB6

are typically large enough that transport experiments could be performed directly. How-

ever, with the prediction that SmB6 could be a topological insulator, having a well-defined

transport geometry becomes very important for understanding surface conduction. A rough

surface would have a larger total surface area than a smooth surface, so smoothing the

surface via polishing helps ensure that the transport geometry is well-defined.

However, simple polishing does not achieve this goal in SmB6. Polishing, especially rough

polishing (done by a lapping machine, for example), places stress on the crystals and causes

cracks to develop under the surfaces. [140] In a topological insulator all surfaces would be

conductive, and these cracks provide extra surfaces. This means that subsurface cracks also

contribute to uncertainty in the geometric factor for transport, and that surface preparation

is essential in understanding electrical transport.

To polish our samples, we used SiC grits and aluminum oxide slurry. The roughest grit,

P1200 (10.6 microns) was used for thinning or removing sharp edges from as-grown crystals,

as needed. Then, samples were polished with smaller grit sizes, P2500 (3.8 microns) and

P4000. Finally, the aluminum oxide slurry (0.3 microns) was used until no defects could

be seen under 10x magnification. When Hall bar geometry was used, the top, bottom, and

sides were polished using this method, and when van der Pauw geometry was used, the top
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and bottom surfaces were polished.

Some reports have additionally proposed that etching in dilute nitric acid may improve

surface quality in SmB6, removing any Sm oxide that may have formed as well as a thin layer

of the sample itself. [141] This method would be especially useful in as-grown or roughly

polished samples. We also tested etching on one of our samples that had been finely polished

as described above, but we found no significant difference in the transport characteristics

before and after etching.

2.6 Defining transport geometry

After polishing and etching, contact pads are deposited on the sample in the appropriate

transport geometry. To prepare a sample with Corbino disk geometry, standard photolithog-

raphy techniques at the Lurie Nanofabrication Facility are used. The CEE 100 manual spin-

ner is used to deposit S1813 photoresist with a thickness of 1.3 microns on the sample. Then,

the Corbino pattern is exposed using the MJB-3 contact aligner with an exposure time of

6 seconds. The exposure is developed in AZ726 on the CEE developer. Then, the sample

is cleaned in the YES plasma stripper to ensure that no organics remain in the area where

contacts will be deposited. The contacts are metallized in the Enerjet evaporator with 50 Å

titanium and 1500 Å gold. Liftoff is performed using acetone in an ultrasonic tank.

A challenge when performing photolithography on SmB6 crystals is the size of the crystals.

Most clean room processes are optimized for wafers, but SmB6 crystals are usually no more

than a few mm on a side. One of the primary challenges is in spinning the sample. Due to

the small size, a thicker section of photoresist, known as a bead, can form on one edge of

the sample. If the Corbino pattern is placed over the bead, the exposure and development

recipes will be unsuccessful. To prevent beads, some samples are polished while surrounded

by pieces of glass or Si to create a single larger piece. When this is done, the bead usually

forms on the Si or glass pieces rather than on the sample.

For Hall bar and van der Pauw geometry on SmB6, it is challenging to use a single mask

as the single crystals have a variety of sizes. Instead, the contacts are defined by painting the

sample with S1813 photoresist such that only the areas that will be metallized are exposed,
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Figure 2.5: (a) Painted photoresist on a Hall bar sample. (b) Contacts after metallization.
(c) Wiring with silver paste and gold wires.

as shown in Fig. 2.5(a). These samples are cleaned and metallized using the same recipes as

for the Corbino disk. An example of completed contact pads is shown in Fig. 2.5(b).

Although painting can be useful, a drawback is that the contacts do not have perfectly

uniform shapes or sizes. Contacts made with painting are usually 200 to 250 µm on a side,

but they are not necessarily square (for Hall bar) or triangular (for van der Pauw). The finite

size of the contacts leads to an imperfect geometry which can have an effect of up to 10% on

the measurements, and the nonuniform shape makes it difficult to calculate the appropriate

corrections. The placement of the contacts can also be challenging. When contacts used

to measure Hall coefficient are not at an equipotential, the data has some offset, although

this can easily be corrected for in analysis. To improve alignment and uniformity of contact

size, one of the samples presented in this work was prepared using e-beam lithography (with

assistance from LNF staff). Another option is to use shadow masking rather than painted

photolithography to cover the non-metallized regions, although this technique was not used

in this work.

Once contact pads are defined, gold wires are attached using silver paste, indium, or wire
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Figure 2.6: Top view of sample showing the preparation of the micro Hall bar with milling
pits and carbon protection.

bonding. Wire bonding is ideal for Corbino disks as the width of each contact can be quite

small. For Hall and van der Pauw samples, hand wiring with silver paste is simplest to work

with and was used for the majority of measurements. An example is shown in Fig. 2.5(c).

Indium provides a stronger contact, so it was used in some cases to prevent the leads from

breaking during the measurements. Both silver paste and indium contacts are deposited by

hand, and it is important to stay within the boundaries of the contact pads to avoid further

compounding the geometry problems of hand-defined contact pads.

2.7 Preparing micro-Hall bars with a focused ion beam

Micro Hall bar preparation was performed at the Michigan Center for Materials Character-

ization at U-M, and we used both an FEI Helios 650 NanoLab DualBeam and an FEI Nova

200 NanoLab DualBeam. Both tools are equipped with an electron (SEM) column and a

focused ion beam (FIB) column with a gallium beam. The tools each include an OmniProbe

manipulator and carbon and platinum injectors, among other imaging and characterization

attachments.

First, a clean region of about 30 µm x 15 µm of the crystal surface is selected. In the
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Figure 2.7: Liftout of of the micro Hall bar using the OmniProbe manipulator.

clean region, first the SEM and then the FIB are used to deposit layers of carbon to serve

as a protective layer from FIB damage. The carbon is 20 µm x 10 µm, with a thickness of

about 1 µm. Then, the FIB is used to mill material around the sides of the protected area.

The sample is tilted and the FIB is used to cut underneath the sample, forming a triangular

section extending down into the crystal. Fig. 2.6 shows a sample after these milling steps

have been completed.

Next, the OmniProbe manipulator is used to remove the piece from the crystal (Fig. 2.7)

and attach it to a TEM grid. Once on the TEM grid, the piece is milled to the desired

geometry with a thickness of about 2 µm, and the protective layer of carbon is trimmed

from the sample. An example of a thinned sample on the TEM grid is shown in Fig. 2.8.

Finally, the OmniProbe manipulator is used to transfer the sample from the TEM grid to a

Si chip with prepared lithographic (Ti/Au) contacts. Platinum is deposited to connect the

sample to the lithographic contacts and to define the transport geometry of the sample. An

example of a completed sample is shown in Fig. 2.9.

This process is closely related to standard TEM sample preparation performed in the

same instrument. However, a key difference is the orientation of the sample. TEM samples

are prepared with the largest surface perpendicular to the surface of the original crystal, but

our micro Hall bars are prepared with the 20 µm x 10 µm surface taken directly from the
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Figure 2.8: Thinned sample attached to TEM grid finger. The lower part of the piece was
formerly the top surface of the crystal where carbon was deposited.

Figure 2.9: Pt contacts and pre-defined Ti/Au lithography on the micro Hall bar and the Si
chip.
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surface of the original crystal.

An important consideration in both TEM preparation and in our micro Hall bar process

is the effect of beam damage. It is well-known that the ion beam can damage the sample

surface, primarily through deposition of Ga ions into the crystal. This always causes the

formation of a deformed or amorphous layer at the sample surface, but it can also induce

point defects or dislocations. In semiconductors, the layer is reported to have a thickness of

about 1 nm to 50 nm depending on the material and the beam parameters. For example,

reducing the beam energy and rotating the beam angle away from normal to the sample

surface can reduce the thickness of the layer. Reducing the beam current used can also

prevent Ga implantation in the form of point defects. [142, 143, 144]

In the process described here, beam damage is not anticipated to be especially prob-

lematic, as certain steps have been implemented to account for it. First, the carbon layer

deposited initially acts as a buffer against the very high beam currents used to perform the

milling shown in Fig. 2.6. In addition, the final thinning steps are performed at a low beam

current to prevent point defects. Based on the beam energies used in our process, we expect

a damaged layer of about 20 nm thickness. In a 2 µm thick micro Hall bar, ion damage

would affect 1% to 1.5% of the thickness of the sample on each surface. Because of this, our

micro Hall bars are not suitable for surface studies, but they can still be used to characterize

bulk properties.

Eight micro Hall bars were attempted; only two were successfully transferred to the Si

chip with prepared contacts. The majority of the failed samples were dropped or damaged

during transfer of the milled sample to the Si chip. Due to the steps required to process each

sample, the final transfer had to be completed with the chip at 45◦. Some samples slid off

because the stage couldn’t be moved to check if the welding was secure before moving the

stage back to 0◦. Other samples were unintentionally milled at a slight angle compared to

the chip, and could only be welded on one corner. The OmniProbe could be used to gently

press the sample flat, but in some cases the stress was too great and the sample snapped

off. Besides these technical challenges, one sample disconnected from the TEM grid between

sessions, and another detached from the OmniProbe during retraction and insertion.

Of the two samples for which the entire process was completed, one failed to make proper
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electrical contact between enough the Pt deposits and the Ti/Au pads; this sample was tested

using three leads but no conclusive results were obtained. The one successful sample was

measured to obtain Rxx and Rxy. Results will be presented in Chapter 3. This sample

(shown in Fig. 2.9) had visible milling marks on it, so only bulk properties could be tested.

38



Chapter 3

Bulk Transport Model from 4-40 K:

Band Bending in the Presence of a

Clean Gap

3.1 Introduction

In this chapter, a model for bulk transport in SmB6 between 4 K and 40 K will be presented.

This work was previous published in Physical Review B, vol. 95, p. 195133 in 2017. [145] In

this temperature range the Kondo gap is fully formed and activated behavior is consistently

observed, and bulk conduction is the dominant transport channel. As discussed in the

introduction, within this temperature range, two activated regions can be observed, separated

by a feature at around 10-15 K. The activated region from about 4-10 K yields an activation

energy of about 3 meV and is associated with historical transport measurements. The region

from about 15-40 K yields an activation energy of 5-10 meV and could correspond to the 20

meV gap consistently seen in spectroscopic measurements. One common picture is of a 20

meV gap with an impurity state about 3 meV below the conduction band, [111], although

other proposals like a small indirect gap but a larger direct gap have also been proposed.

Here, we consider the bulk electronic structure of SmB6 to be semiconductor-like and host

a clean gap. Additionally, the effects of a metallic surface, regardless of whether this surface

39



is of a topological or trivial origin, is explored. This problem is analogous to band bending

near a Schottky barrier in semiconductors. The effects of band bending in SmB6 is considered

in different temperature ranges and connected to measurable transport parameters including

the Hall coefficient. The calculated results are compared to experiment and we find that

band bending reproduces a feature at about 10-15 K in transport. Finally, methods of

testing whether band bending is actually present in SmB6 are discussed. Improvements on

understanding the SmB6 gap since the publication of this work are also included.

3.2 Bulk transport and the effective mass approxima-

tion

Before discussing some of the unusual properties of SmB6 that arise from its small gap and

hybridized bands, it is instructive to discuss bulk transport in standard topological insulators

(TIs). Such “standard” TIs (for example, Bi2Se3 or Bi2Te3) are characterized by a bulk band

gap as in conventional semiconductors, and after undergoing the crossover to the topological

phase, there are an odd number of surface states located in the gap. [68, 146] If the topological

surface states are not considered, all standard TIs can be treated as semiconductors. In this

picture, charge neutrality must be enforced, so the Fermi energy (EF ) is initially expected

to be exactly halfway between the top of the valence band and the bottom of the conduction

band. As in semiconductors, impurity states may also be present in the gap. For an n-

type material, donor states would be in the gap near the conduction band, and for a p-

type material, acceptor states would be in the gap near the valence band. Because charge

neutrality must also be enforced, the presence of these extra states shifts EF towards the

conduction band for donor states and towards the valence band for acceptor states. [147]

Impurity states in semiconductors and standard TIs can be treated quantitatively using

the effective mass approximation. [148] In this picture, impurities are assumed to be hydro-

genic, but with the substitution of effective mass for electron mass (m→ m∗) and dielectric
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constant for vacuum permittivity (ε0 → κε0). The results are an effective Bohr radius

a∗B =
4πκε0h̄

2

m∗e2
=

κ

m∗/m
(0.53 Å) (3.1)

and an effective ground-state energy

E∗ = − m∗e4

2(4πκε0)2h̄2 = −m
∗/m

κ2
(13.6 eV). (3.2)

Once these parameters have been calculated, the initial assumption of hydrogenic impurities

can be verified. In a donor state, for example, the extra electron must have an extent much

larger than one lattice constant for the donor to be hydrogenic. If this were not the case,

contributions from the donor itself would also have to be considered, and the hydrogen

model could not be used. Therefore, when comparing the effective Bohr radius to the lattice

constant, we must satisfy the condition a∗B � a for the approximation to be valid.

The effective mass approximation has been used successfully in all standard TIs. Stan-

dard TIs exhibit residual bulk conduction after undergoing the crossover to the topological

state, and this is well-understood as arising from impurity states that can be treated using

the effective mass approximation. Many researchers have applied the idea of impurity states

in the gap to SmB6 to try to understand the plateau at 4 K before it was thought to be a

TI, [3] and later to explain experimental discrepancies in the size of the Kondo hybridization

gap. While the presence of the gap is well-known, transport and spectroscopic methods

disagree on the size. Transport measurements, which probe the energy difference between

EF and the conduction band (the activation energy), report 3-4 meV. [9, 29, 10, 16, 15] In

analogy with semiconductors and standard TIs, it is expected that EF is exactly halfway

between the valence and conduction bands, suggesting that the total transport gap is 6-8

meV. On the other hand, spectroscopy and tunneling experiments measure the full gap near

the surface, and they report 16-20 meV. [113, 111, 20, 149, 150, 151, 112]

This discrepancy has been interpreted as arising from the presence of in-gap bulk impurity

states. [8, 151, 149, 150, 152, 111, 114, 113, 75] In this scenario, transport would measure the

difference between the impurity state and the conduction band, yielding an incorrect result

for the total gap. Since the effective mass approximation is usually so successful, it has
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been applied to SmB6 to understand this proposed in-gap impurity state. However, reported

values [111, 151] of the dielectric constant κ range from 600-1500, and as we have seen,

activation energy (which can be used to obtain effective mass) ranges from 3-10 meV. Using

these values with Eqs. 3.1 and 3.2, we obtain a minimum a∗B of 0.5 Å and a maximum a∗B of

4 Å. Reports of the effective Bohr radius are usually in this range; for example, Sluchanko

et al. report 3 Å. [152] Additionally, most reports agree that the lattice constant a of SmB6

is about 4.13 Å, so we find that the condition a∗B � a required to verify the effective mass

approximation is not satisfied anywhere in the range of Bohr radii that can be calculated.

Because the effective mass approximation fails, in-gap hydrogenic impurity states in SmB6

are not justified.

Since semiconductor theory and the effective mass approximation are successful in most

cases, this result is startling. However, upon closer examination, we find that it is perhaps

not completely unexpected. Because the gap in SmB6 arises due to hybridization, its band

structure is very different from that of a conventional semiconductor. Unlike a semicon-

ductor, SmB6 has a non-quadratic and asymmetric dispersion, because its band structure

arises due to Kondo hybridization. Both the valence and conduction bands have nearly flat

regions characterized by the localized f states as well as low-mass regions characterized by

the d states. Because of this unusual composition, while the gap and band structure effects

in SmB6 arise based on contributions from all the carriers, transport is dominated only by

the low-mass carriers. Additionally, both bands have positive curvature, unlike in a semi-

conductor, where only the conduction band has positive curvature. As we will see, this has

a significant effect on how we understand transport. The gap is also much smaller than that

of standard semiconductors or TIs. Because of these differences in the band structure, we

will see that SmB6 must be treated much more carefully than standard gapped materials.

(In contrast, other hexaboride materials can be treated as standard gapped materials, and

in these cases, impurity states are present within the bulk gap. [153])

In the context of in-gap bulk states, we can gain insight into SmB6 by analogy with

superconductors. When a material undergoes a transition to a superconducting state, some of

the electrons near the Fermi energy condense into Cooper pairs. Formation of the condensate

opens up a gap at the Fermi energy. [154] Even though this gap is so small, tunneling
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measurements [155] have shown that the addition of impurities to a superconductor does not

destroy superconductivity (until the impurity concentration becomes sufficiently high). This

suggests that the impurity states are not in the gap, or that superconductors exhibit a small

and clean gap and are not vulnerable to impurity conduction. Although the mechanism for

gap formation (the Kondo effect) is very different in SmB6, the gap is also much smaller than a

semiconductor bulk gap. This, combined with the failure of the effective mass approximation,

suggests that SmB6 should have a clean gap that is not vulnerable to impurity conduction at

low temperatures. In fact, SmB6 does not exhibit residual bulk conduction experimentally,

and this can be taken as evidence for a clean bulk gap. [15]

Another interpretation of the gap discrepancy is that spectroscopy measures the direct

gap while transport measures an indirect gap that forms during hybridization. Theoretical

treatments of Kondo hybridization predict the presence of both a direct and an indirect

gap, [119, 156, 70] and researchers have also used this idea to explain the gap discrepancy.

[10, 112] This interpretation explains the gap discrepancy while avoiding the problem of the

in-gap impurity states, but we will propose an alternative explanation that is consistent with

features observed in transport. As we have seen, in-gap impurity states in SmB6 are not

justified by the effective mass approximation, nor are they consistent with the observation of

no residual bulk conduction after the surface states become relevant. To achieve consistency,

we propose another explanation of the gap discrepancy that does not rely on in-gap states

and instead allows for a clean direct gap.

3.3 Simplified density of states and band bending cal-

culations

3.3.1 Density of states

The dispersion in SmB6 is well-known based on the success of recent high-resolution ARPES

measurements. [22, 19, 21] The gap forms at low temperature, when the conduction band

(5d) hybridizes with localized states (4f). In SmB6, there are three 4f bands, and ARPES

indicates that only one band participates in hybridization. A sketch of the band structure
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Figure 3.1: Dispersion relation of SmB6 along the Γ − X − Γ direction, focused where the
hybridization takes place. (a) Band structure before hybridization. (b) Band structure after
hybridization of the d band with one of the f bands. The vertical axis (energy) scale is
zoomed in from the scale in (a). (c). Simplified band structure used in the calculation. The
vertical scale is the same as in (b).

of SmB6 before hybridization is shown in Fig. 3.1(a), and the hybridized band structure is

shown in Fig. 3.1(b), both along the Γ−X−Γ direction. SmB6 is an insulator, so the Fermi

energy is located in the gap in the hybridized band structure. As can be seen in the figure,

the two unhybridized f bands are still present.

In addition to this basic structure, the hybridized dispersion has some subtle features,

which can also be observed by ARPES. For example, ARPES demonstrates an indirect gap

with a valence peak about 15 meV below the Fermi energy at the H point. [22] This feature

can also be observed at nearby energies due to intrinsic and thermal broadening. Compared

to the main features of the dispersion, however, this feature is small and close to the valence

band. Although ARPES cannot probe far into the conduction band at the temperatures we

are considering, there are likely some similarly small features present in the conduction band.

We refer to the regions in which such small features exist as the “region of non-parabolicity.”

In our model, we will use a dispersion that is simplified considerably from the actual

dispersion. We neglect the small features in the region of non-parabolicity, such as the

feature at the H-point and any similar features in the conduction band. To do this, we

approximate the band structure using a piecewise function, as shown in Fig. 3.1(c). Here,

the flat regions approximate the pieces of the hybridized dispersion that primarily come from
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Figure 3.2: Parameters used in the calculation. Main plot: Data [112] for dependence of the
gap size on temperature and a best fit (dashed line). Lower left inset: Simplified density of
states used in the calculation. Upper right inset: Fermi surface and Brillouin zone of SmB6

after hybridization. [71]

the 4f band, which we refer to as “f -like” states. The linear regions approximate the pieces

of the hybridized dispersion that primarily come from the 5d band, which we call “d-like”

states. Additionally, the two unhybridized 4f bands cannot be resolved separately from the

valence band by ARPES, so we approximate them to be at the top of the valence band.

Making these approximations introduces some error into the model, but the features in the

region of non-parabolicity are small, so the error is not more than a few meV.

From this dispersion, we can calculate a simplified density of states (DOS). The DOS

corresponding to our simplified dispersion (Fig. 3.1(c)) is shown in the lower inset of Fig. 3.2.

In this figure, the peaks in the DOS correspond to the f -like regions of the dispersion, and

these can be estimated from the size of the pockets in the SmB6 Brillouin zone (BZ), shown

in the upper inset of Fig. 2. The flat parts of the DOS correspond to the d-like regions of

the dispersion. In the range Egap, the DOS is zero, and the gap changes with temperature.

Data for the gap as a function of temperature [112] is shown in Fig. 2, as is the fit to this

data that was used in the calculation (dashed line).

We can represent the simplified DOS using delta functions (δ) for the f -like states and
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step functions (θ) for the d-like states:

g(ε) = Ncfδ(ε− EC) + gcdθ(ε− EC) +Nvfδ(ε− EV )− gvd(θ(ε− EV ) + 1) (3.3)

where EC is the edge of the conduction band, EV is the edge of the valence band, N is a

density in cm−3, g is a DOS in cm−3· eV−1, and the Fermi energy EF has been set to 0.

The subscripts on the four factors refer to electron type and band; e.g. Ncf is the density

of states for f -like electrons in the conduction band (c). The Fermi energy, which is in the

gap, is defined to be zero.

The sizes of these four terms can be estimated using ARPES data. [71] According to this

measurement, the hybridized f band BZ has six half-ellipsoid Fermi pockets (upper inset of

Fig. 3.2), and the total volume of these yields the number of filled states in the conduction

band, which we will denote nell. This implies that

Ncf = nell = 9.0× 1021 cm−3. (3.4)

The remaining volume in that BZ, plus the total volume of the BZs for the two unhybridized

f bands, yields the valence band contribution. We will denote the volume of the BZ as nBZ ,

so this implies that

Nvf = 3nBZ − nell = 7.6× 1022 cm−3. (3.5)

The d-like states can be calculated from data above the hybridization temperature. [71] We

approximate the dispersion to be quadratic and use the usual result for a 3D quadratic DOS,

g3D(ε) =
m∗

π2h̄3

√
2m∗ε (3.6)

In our simplified DOS we can approximate the d bands on both sides of the gap as constant.

Specifically, we approximate this constant to be g3D(EF ), because EF is in the gap and the

gap is small. This also means that this value in both bands is about the same constant,

gcd ≈ gvd ≈ g3D(EF ) = 1.8× 1019 cm−3 eV−1. (3.7)
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We note that this term is 2-3 orders of magnitude smaller than the terms in Eqs. 3.4 and

3.5. We will define this value as g0 for brevity.

3.3.2 Band structure calculation

As we have seen, the actual and simplified dispersions as well as the DOS of SmB6 can be

characterized by two types of carriers. The flat regions are dominated by f -like carriers,

and the remainder is dominated by d-like carriers. In this section, we will outline a self-

consistent calculation used to obtain the band structure. For such a calculation, we must

take all the charges into account. However, the f -like terms (Eqs. 3.4 and 3.5) are 2-3 orders

of magnitude greater than the d-like coefficients (Eq. 3.7). To get the total charge density,

the d-like states require a factor of kBT , so they become even smaller; because of this we

neglect the d-like carriers for the band structure calculation. However, we will later see that

transport is governed by the low-mass, d-like carriers.

The charge density can be calculated using usual methods for semiconductors. In semi-

conductors, the conduction band is nearly empty, so the Fermi-Dirac distribution f 0(ε) can

be approximated by the Boltzmann distribution. The electron density is

n =

∫ ∞
EC

f 0(ε)g(ε)dε = n0 e
−(EC−EF )/kBT (3.8)

where n0 is the average DOS. In SmB6 we use Eq. 3.3 for the DOS, keeping only the delta

function terms. This yields electrons in the conduction band with approximate density

n ≈ Ncf e
−(EC−EF )/kBT . (3.9)

We can similarly calculate the approximate density of holes in the valence band to be

p ≈ Nvf e
−(EF−EV )/kBT (3.10)

where EV is the valence band edge. This result resembles the carrier density of a conventional

semiconductor. For such semiconductors, charge neutrality, n = p, yields the intrinsic carrier
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density

n = p = ni ≈
√
NcfNvf e

−Egap/2kBT . (3.11)

The intrinsic picture works well for SmB6 at high temperatures. However, intrinsic

materials are sensitive to surface effects, and at low temperature, these become relevant.

All surface charges, such as TI states, if they are present, and localized surface charges

associated with oxidation on the surface, contribute. Requiring charge neutrality with the

addition of the surface charges forces the Fermi energy to be pinned in place, leading to band

bending in the valence and conduction bands. This possibility has been suggested by recent

experimental results, [157] but was not previously explored in depth.

To understand the effects of band bending, we perform a self-consistent calculation to

obtain the band structure. In this calculation, we model the effects of band bending using a

potential φ(z) of the form

eφ(z) = EC(z)− Egap/2 (3.12)

where the conduction band is now dependent on location z in the bulk, and Egap = EC−EV .

We can rewrite the carrier densities in terms of this potential to obtain

n(z) = Ncf exp

[
− eφ(z) + Egap/2− EF

kBT

]
(3.13)

and a similar expression for p(z). Using charge neutrality again, we obtain

ρ(z) = −en(z) + ep(z) = 2nie sinh

[
eφ(z)

kBT

]
(3.14)

for the total charge density. We then solve for the potential across the bulk using Poisson’s

equation in one dimension,

d2φ

dz2
=
ρ(z)

ε
=

2nie

ε
sinh

[
eφ(z)

kBT

]
. (3.15)

To solve this equation, we choose a “test sample” of thickness 200 µm, which is typical

to a real SmB6 sample. We define z = 0 as the center of the sample (so that z = ±100 µm

are the edges). In addition, we use κ = 600 as the dielectric constant. [111] To proceed
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with the solution, we now require boundary conditions. For the first boundary condition,

we simulate the band bending effects on the surface by introducing a pinning energy Epin,

which is defined with respect to the midpoint of the gap by Epin = (EC +EV )/2−EF . This

describes the energy difference between the band at zero potential and the minimum of the

bent band. Therefore, the boundary condition can be expressed as eφ(z = 100µm) = −Epin.

We can also define this pinning relative to the gap as Epin = Egap/2 − Ea. As we will see

later, when temperature is sufficiently low, Ea corresponds to the activation gap measured

by transport. The pinning energy must also be the same at both edges of the sample, and

to enforce this, the second boundary condition is that dφ/dz = 0 at z = 0, the center of the

sample.

Additionally, we can define a “built-in potential,” Vbi, as is commonly done for band-

bending calculations in semiconductors. [147] Vbi describes the magnitude of the bending in

terms of the difference between the maximum and minimum points on the conduction or

valence band. Using this built-in potential, we can determine an associated length scale (the

accumulation length) of Eq. 3.15, given by

l =

√
2εVbi
eni

=

√
2εVbi

e(NcfNvf )1/2
eEgap/4kBT . (3.16)

At low temperature, when Egap is large, the accumulation length is large, and at high tem-

perature, when Egap is small, the accumulation length is small.

With these parameters, solutions to Eq. 3.15 were found for temperatures of 4-40 K and

values of Epin between 4 and 7 meV. From a solution φ(z), the conduction and valence bands

can be obtained from Eq. 3.12, and the charge density can be obtained from Eq. 3.14. An

example of these are shown for 8 K and Epin = 5.5 meV in Fig. 3.3. Fig. 3.3(a) shows

the calculated conduction and valence bands, as well as the relationships among the band

structure and the parameters Epin, Egap, Ea, and eVbi. We note that the valence band is

always parallel to the conduction band and can be obtained by subtracting EC(z) − Egap.

Because of this symmetry, the following discussion will be confined to the conduction band,

although it will also apply to the valence band. Fig. 3.3(b) shows the calculated charge

density corresponding to this band structure. Across the sample, the charge density is
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Figure 3.3: Parameters obtained from the self-consistent solution for φ(z) in a 200 µm
sample with Epin = 5.5 meV and T = 8 K. (a) Band structure obtained using Eq. 3.12. The
relationship among the activation energy Ea, the built-in potential eVbi, the pinning Epin,
and the gap Egap are all shown. (b) Charge density obtained using Eq. 3.14.
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negative, and its magnitude is largest near the surfaces. This is expected, because excess

charge at the surfaces leads to band bending.

Fig. 3.4 shows how the band structure varies with temperature, again using Epin = 5.5

meV; the valence band is omitted. At 12 K, the highest temperature shown, the conduction

band for the majority of the bulk is Egap/2 above the Fermi energy. There is a small amount

of band bending at the edges, but it does not extend very far into the bulk, as expected

from Eq. 3.16. This means that the band structure is similar to that of a standard gapped

material, except near the surface. As the temperature is lowered, however, the band bending

effects begin to extend farther into the bulk. At 2 K, the lowest temperature shown, these

effects completely dominate the band structure. Here, the conduction band is much closer

to the Fermi energy than the valence band is, and this result is very different from what is

observed in a standard gapped material.

This process demonstrates a crossover between bulk conduction dominated by the usual

bulk effects (at high temperatures) and bulk conduction dominated by surface effects (at

low temperature). We can understand where the crossover occurs by comparing the charge

densities and relevant length scales. At high temperatures, the bulk dominates bulk trans-

port, and this can be characterized by the size of the sample (t) and the intrinsic carrier

density (ni). At low temperatures, the surface dominates bulk transport, and this can be

characterized by the accumulation length (l) and the carrier density on the surface (ns).

From this, we can estimate the crossover as occurring when tni ≈ lns. In our calculation,

we estimate that the crossover occurs at about 10-15 K. Since the crossover depends on the

relationship between the accumulation length and the sample, the crossover temperature is

dependent on the thickness of the sample. For example, in a much thinner sample such as a

thin film, the crossover would occur at a higher temperature than we have estimated in this

calculation.

These band bending results and the crossover are able to explain the gap discrepancy

between transport and spectroscopy. In our picture, spectroscopy still measures the full gap,

which does not change based on where the measurement occurs in the sample. Transport,

on the other hand, measures a different activation gap depending on temperature. Below

the crossover, transport measures the activation gap on the surface, as shown in Fig. 3(a),
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Figure 3.4: Calculated bulk conduction band at various temperatures for Epin = 5.5 meV.

but above the crossover, transport measures the average gap across the entire bulk. As a

rough estimate using our model’s parameters, at 4 K the total gap is about 19 meV, and

with a pinning of 5.5 meV the model yields Ea = 4 meV, in agreement with experiment. In

this way, the gap discrepancy can be understood without using in-gap bulk impurity states.

The crossover also has interesting implications for the gap. As we have noted, the ac-

cumulation length extends through the bulk at low temperatures. As the temperature is

lowered, the accumulation length diverges, and this can be thought of in analogy with semi-

conductors. In semiconductors, the accumulation or depletion length increases with purity,

and a completely pure material would have an infinite accumulation or depletion length. [147]

Our calculation shows that the accumulation length becomes large at cryogenic temperatures

in SmB6, consistent with the hypothesis that the gap is clean and the bulk is truly insulating.

We note that the effects of the surface, whether topological, trivial, or both, were all

included in the parameter Epin. In terms of our simulation, various surface effects including

the crystal plane, polarity, disorder, TI states, or other predicted surface effects [158, 159]

would simply change the value of Epin. We do not predict which effects are strongest, but

changes in Epin due to such effects would change the strength of the band bending for the

surface considered.

We further note that the Fermi energy pinning is not rigid, which means that fixing the
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conduction band permanently at Epin is not exact for all temperatures. Near the crossover,

the Fermi energy is allowed to shift slightly. This means that competing with the surface-

to-bulk crossover is a slightly shifting pinning. (If the surface effects are topological, we

predict that the pinning would be more rigid than if the effects were trivial.) This type of

shift does not affect the fully surface or fully bulk regions seen in the model, but if its effects

were included, it would slightly change the temperature at which the crossover occurs. We

have chosen not to include these effects, because the model is quite robust against changes.

The band bending result is always present, and even a large variation in the parameters

only slightly shifts the magnitude of the calculated effect. For example, reports of dielectric

constant [111, 151] vary from 600 to 1500. When comparing these extremes in the calculation,

the results above the crossover are exactly the same, and the results below the crossover differ

only slightly.

3.4 Connection to experiment

To assess the validity of our model, we must connect the results of the self-consistent cal-

culation to measurable parameters. Specifically, we examine Hall coefficient, resistivity, and

thermopower, comparing the simulation results for each to data. Although we have used

a semiconductor picture, SmB6 is very different from a standard semiconductor due to its

non-parabolic dispersion arising from the hybridized band structure. Because of this unusual

band structure, its transport properties are unique and must be considered in detail. We

must consider which carriers, d-like or f -like, contribute to transport phenomena, as well as

the sign of these carriers.

In the discussion of the simplified DOS above, we saw that the f -like electrons dominate

when calculating the carrier density, because their contribution to the DOS is much greater

than the contribution of the d-like electrons. However, the f -like electrons have a flat dis-

persion, which must yield zero mobility. This means they cannot contribute to transport,

so observed transport phenomena must be due to the d-like electrons. Looking back at the

features of the actual band structure, we note that the f -like electrons do not have an exactly

flat dispersion, and there is some curvature connecting the f - and d-like states. However,
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based on ARPES data, these features are small compared to the size of the gap. [22] Thus

the curvature of these features is small compared to the simplified band structure, so we can

again neglect the effects.

We can understand this more quantitatively using semiclassical (Boltzmann) transport.

First, we will consider the case of an intrinsic semiconductor in the conduction band to

demonstrate the calculation, but the valence band result can be found similarly. We will then

discuss modifications for the SmB6 case. Using the elementary solution to the Boltzmann

equation, the current due to an electric field applied in the z-direction is [160]

jz = −
∫ ∞
EC

v2
ze

2τEz
∂f 0(ε)

∂ε
gC(ε)dε (3.17)

where vz is the particle velocity, e is the electronic charge, τ is the scattering time, Ez

is the applied electric field, gC(ε) denotes the DOS for the conduction band, and ε is the

energy. We use the relaxation time approximation, where τ is independent of energy, and

the equipartition theorem, v2
z = v2/3, to rewrite Eq. 3.17. Then, using jz = σEz, we find

the conductivity,

σ ≈ −e
2τ

3

∫ ∞
EC

v2∂f
0(ε)

∂ε
gC(ε)dε. (3.18)

The derivative of the Fermi-Dirac distribution is [160]

∂f 0(ε)

∂ε
= − 1

kBT
f 0(ε)(1− f 0(ε)) (3.19)

and for a general intrinsic semiconductor, the conduction band is almost empty, so the term

in parentheses can be approximated as 1. Then the conductivity becomes

σ ≈ e2τ

3kBT

∫ ∞
EC

v2f 0(ε)gC(ε)dε. (3.20)

Since only electrons near the Fermi energy are mobile, we can approximate their velocity

as the Fermi velocity vF , and this is a constant. The remaining integral is just the usual
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method for calculating carrier density, so we find

σ ≈ e2τ

3kBT
v2
Fn (3.21)

where n is given by Eq. 3.8. To further simplify, we can use the Einstein relation for

semiconductors, which relates the diffusion constant, D = v2τ/3, to the mobility by

µkBT

e
=
v2τ

3
(3.22)

where µ is the mobility, v is the average velocity, and 3 represents the number of dimensions

(the right-hand side of this equation can be derived using the equipartition theorem). So we

find, for average velocity vF , the familiar result, written for an intrinsic semiconductor,

σ = neµ. (3.23)

In SmB6, the picture is a little more involved. We will now re-derive the general result

of Eq. 3.23 with modifications for SmB6. First, we consider the carriers. Since there are

two types of carriers (f -like and d-like), a small displacement of the Fermi surface due to an

applied electric field is not uniform. For our simplified dispersion (Fig. 1c), say the field is

being applied from right to left (so that electrons move from left to right). Then the electrons

in d-like states on the right are mobile as they would be in a conventional semiconductor.

However, the electrons in d-like states on the left are unable to move, as the f -like states

are filled and have zero mobility. This means that only half of the carriers in the band can

move when a current is present. Therefore we must include a factor of 1/2 relative to the

usual result (Eq. 3.19).

Additionally, since only the d-like carriers contribute to transport, we should only consider

the carrier density n coming from these. Using Eq. 3.8 and Eq. 3.7, we find that

n = g0kBTe
−(EC−EF )/kBT . (3.24)

Now we can rewrite g0 using Eq. 3.6. Also, the carriers should still move with an average
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speed of vF . We obtain

σSmB6 ≈
e2τv2

F

6

m∗

π2h̄3

√
2m∗EF e

−(EC−EF )/kBT (3.25)

and this can be further simplified using
√

2m∗EF = h̄kF and vF = h̄kF/m
∗ to obtain

σSmB6 ≈
e2τk3

F

6m∗π2
e−(EC−EF )/kBT . (3.26)

Next, we apply kF = (3π2n)1/3, which can be calculated by integrating to find the carrier

density at zero temperature and rearranging. This means that n in this expression is the

density of filled states up to EF , and according to Eq. 3.4, this is just nell. We also use

µ = eτ/m∗ to find

σSmB6 ≈
1

2
nell e µd e

−(EC−EF )/kBT (3.27)

where the subscript on mobility denotes that only d-like electrons are mobile.

This calculation can be repeated for the valence band, and the result is similar, except

that the exponential is replaced by exp [−(EF − EV )/kBT ]. To understand how the con-

duction and valence band contributions are related physically, we must consider the signs

of the carriers in both bands. For a conventional semiconductor, the conduction band con-

tributes electrons with positive effective mass and the valence band contributes holes with

negative effective mass. These have opposite contributions to transport. In SmB6, we still

have electrons in the conduction band and holes in the valence band, but both bands have

positive curvature in the d-like electrons. Since we are just considering the d-like carriers,

the conduction band case is the same as that of a conventional semiconductor, electrons

with positive effective mass. However, the valence band has positive curvature rather than

negative as it would for a conventional semiconductor. This means that although there are

holes in the valence band, they have a positive effective mass as well, so they contribute with

the same sign as the electrons in the conduction band.

Although this result was found by considering the simplified band structure, again we

can neglect the details of the bands. For example, the H-point feature in the valence band

observed by ARPES [22] shows up as a small bump with negative curvature in the f -like
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part of the dispersion. As discussed previously, this feature is very close to the valence band,

so although it creates some curvature in the valence band, the effect is small. This means

that there are holes with negative effective mass at these points in the valence band, but we

assume that the curvature is large, so that these carriers have a much smaller mobility than

the d-like carriers.

Because the dominant (d-like) carriers in the valence and conduction band contribute

to transport with the same sign, we can return to Eq. 3.27 and conclude that the total

conductivity for all carriers in both bands is the usual result as in Eq. 3.23, with µ = µd,

and n defined as

n =
1

2
nell e

−(EC−EF )/kBT +
1

2
nell e

−(EF−EV )/kBT (3.28)

This means that we can use the usual transport relations to connect our model to the

experimental results, provided that this expression is used to calculate the carrier density.

3.5 Transport in the model

3.5.1 Hall coeffcient and resistivity

We can now combine the results EC(z) and EV (z) of the self-consistent calculation with

Eq. 3.28 to define an effective carrier density

neff =
1

t

∫ t/2

−t/2

1

2
nell

(
e−[EC(z)−EF ]/kBT + e−[EF−EV (z)]/kBT

)
dz (3.29)

where t is the thickness of the sample (t = 200µm for our test sample). We can then use this

carrier density to compare the model to transport data. We first concentrate on the Hall

coefficient (RH = 1/ne) because it does not require any further parameters to be included;

however, if we assume that mobility is constant, the resistivity follows the same trend. This

is not a good assumption, as mobility is often temperature dependent, but the same feature

around 10 K is seen in data for both Hall coefficient and resistivity.

Fig. 3.5 shows a plot of calculated Hall coefficient as a function of temperature for various

values of Epin. As in the band structure result of Fig. 3.4, we observe a crossover around
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Figure 3.5: Calculated Hall coefficient as a function of temperature for different values of
Epin.

10 K. At temperatures above this crossover, where the bulk transport is dominated by bulk

effects, all values of Epin yield the same curve. This is expected because in this region, the

accumulation length is always much less than the sample size, regardless of Epin. Below

the crossover, however, there is some variation. In this region, the amount of bending

influences the accumulation length, so the magnitude of the Hall coefficient changes with

Epin. As mentioned previously, in this region, the activation energy can also be determined

by Ea = Egap/2− Epin.

The calculated Hall coefficient for Epin = 5.5 meV is plotted along a collection of data in

Fig. 3.6. The data agrees very well above about 10-15 K, and this agreement suggests that

the bulk carrier density in SmB6 is fairly consistent across samples. Below about 10-15 K, the

data exhibits a variation of about an order of magnitude. We do not suggest a mechanism

for this variation, but we do note that in this temperature range, our model suggests that

the bulk conduction is dominated by the surface. Around 10-15 K, a feature is observed

by all researchers, and this corresponds to the crossover discussed previously, between bulk

conduction dominated by bulk effects above the crossover and bulk conduction dominated

by surface effects below the crossover.

The calculated Hall coefficient from our model also demonstrates a crossover at about
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Figure 3.6: Comparison of one value of Epin to a collection of Hall data. [9, 10, 161, 162, 16,
152, 115]

10-15 K and correctly describes the shape of the data, although the magnitude of our result

does not agree with the data. This disagreement was expected based on the simplifications

made to the dispersion. Previously, we estimated that these simplifications yielded errors

of not more than a few meV in the dispersion, but this becomes very important for the

Hall coefficient calculation. We can estimate the size of the expected discrepancy in the

calculated Hall coefficient by using a Boltzmann factor, eΓ/kBT , where Γ is the approximate

width of the features that were neglected. For Γ in the range of 1 to 3 meV in a temperature

range of 10 to 20 K, the model is expected to be off at least by a factor of 2 and at most

by a factor of 32. Our result was consistently a factor of about 5-6 greater than the data,

and this is within the expected range of the discrepancy. Based on this estimate, agreement

would likely be improved by including more features of the dispersion and DOS. However,

this type of refinement would require many more parameters to be introduced.

3.5.2 Thermopower

We also compare the model to thermopower data, because like the Hall coefficient, it does

not require any further parameters. In the relaxation time approximation, thermopower for
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Figure 3.7: Thermopower versus temperature for various values of Epin. A feature can be
seen around 10 K, as in the Hall plot.

electrons in a semiconductor is given by [160]

SC = −kB
e

[(
α +

5

2

)
− EC − EF

kBT

]
(3.30)

where the subscript denotes the conduction band, and α is a constant between 0 and 2 that

describes how energy is related to scattering time (τ ∝ Eα). A similar expression can be

obtained for holes in the valence band; it is important to note that the sign is positive for

holes in a standard semiconductor. For a material containing both electrons and holes, these

can be combined according to

Stot =
SCσC + SV σV
σC + σV

. (3.31)

In the limit of an intrinsic semiconductor, where n = p, the intrinsic carrier density in

Eq. 3.11 and the usual conductivity in Eq. 3.23 can be used to simplify this. Assuming a

quadratic dispersion for both the valence and conduction bands, we obtain

S =
kB
e

[
b− 1

b+ 1

Egap
2kBT

+
3

4
ln
mn

mp

]
(3.32)

where b = µn/µp, and the subscripts refer to electrons (n) and holes (p). [160, 152]
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Again, the picture is slightly different in SmB6. The factor of 1/2 must be accounted

for once again, but based on the form of Eq. 3.31, it is clear that this factor cancels out for

thermopower. Also, the curvature of the valence band means that the holes contribute with

the same sign as the electrons. Using the conductivity derived in Eq. 3.27 and the analogous

result for the valence band in Eq. 3.31, we can find the total thermopower in the model.

Defining εc(z) = EC(z)− EF and εv(z) = EF − EV (z), we obtain

S(z) = −kB
e

1

kBT

εc(z)e−εc(z)/kBT + εv(z)e−εv(z)/kBT

e−εc(z)/kBT + e−εv(z)/kBT
(3.33)

where z again refers to the location in the bulk in the model. To get the total thermopower,

we must integrate this expression, but since thermopower is dependent on conductivity and

conductivity is dependent on z, it must be integrated using a form similar to that of Eq. 3.31.

Thus, the effective thermopower across the bulk is

Seff =

∫ t/2
−t/2 S(z)σ(z)dz∫ t/2
−t/2 σ(z)dz

(3.34)

where t is the thickness of the sample (here t = 200 µm) and σ(z) = n(z)eµ, where n(z) is

given by the integrand of Eq. 3.29.

Seff was calculated as a function of temperature for various values of the pinning, shown

in Fig. 3.7. Again, a feature around about 10 K is evident, although it is broader than the

feature seen for the Hall effect. The bulk behavior in Fig. 3.7 is the same for all values of

Epin, but the surface behavior and prominence of the feature varies.

Fig. 3.8 shows a collection of thermopower data with a fit from the model. The data are

consistent at high temperatures, and in this regime, there is also excellent agreement between

the data and the model. As with the Hall coefficient, this agreement is expected as bulk

effects dominate in this regime. At low temperatures, the data are more diverse. We note that

the crossover does not occur at the same temperature in each data set shown, but we do not

propose a mechanism for this. One possibility is that the transport geometries or dimensions

(specifically thickness) of the three samples were different, leading to different effects of band

bending in each sample. In the bulk-dominated regime, there is good agreement between
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Figure 3.8: Comparison of calculation for one value of Epin (solid line) to a collection of
thermopower data. [131, 152] The effects of the TI surface state crossover are also shown
(dashed line).

the data and the model. Below 4 K, a deviation between the model and the data can be

observed. We attribute this deviation to the manifestation of the conductive surface state

near 4 K, which can be added to the calculation.

To estimate the contribution of the surface state, we will again use Eq. 3.31,

Stot =
Sbσbt+ Ssσs
σbt+ σs

, (3.35)

where the subscripts b and s refer to bulk and surface contributions, respectively, and the

thickness t is included so that the units match. From the theoretical treatment of TI surface

states, [163] we expect that their contribution is much smaller than the bulk contribution.

Therefore, only the first term will have a significant contribution to the thermopower. Near

the bulk-to-surface transport crossover of Tc = 4 K, we also expect that the bulk and surface

will contribute similarly to transport, i.e. σbt ≈ σs. Each of these can be approximated using

the form σ0e
Ea/kBT , where Ea is the activation energy (the energy relevant to transport). For

σs we use Tc = 4 K in this expression, and for σbt we allow T to vary. We also assume that

near Tc, σ0 is about the same for both surface and bulk contributions. Then the thermopower
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near 4 K, with Ea = 3.47 meV, [15] is approximately

Stot ≈
eEa/kBT

eEa/kBT + eEa/kBTc
Sb. (3.36)

This expression is shown in Fig. 3.8 with a dashed line, and the result provides a better

estimate of the data near 4 K than the fit from the calculation.

Our model, with the addition of the estimation of surface effects, captures the low-

temperature features of the thermopower well. We note that there is not much thermopower

data available in the literature, which makes it difficult to understand trends in the data

as done for the Hall coefficient. Our model agrees quite well with the data from Sluchanko

et al. [152], but not as well with the other data. Again, a discrepancy between the data

and the model is present, and again we attribute this to neglecting the small features of

the dispersion. Improved agreement could likely be attained by adding more details of the

dispersion to the model.

3.6 Conclusion

We have presented a model to understand the difference between the spectroscopy and

transport gaps in SmB6 without relying on in-gap bulk states. Transport measures an

activation energy of 3-4 meV, expected to correspond to a total gap size of 6-8 meV, while

spectroscopic methods measure a gap of 16-20 meV. This discrepancy between the two results

has often been explained by introducing a localized bulk state in the gap, perhaps due to

impurities, although other explanations such as the presence of an indirect gap have also

been used. The effective mass approximation has been used to understand such an in-gap

impurity state, because this method has been successful at describing impurity states in

many gapped materials. However, we showed that the effective mass approximation fails

when it is applied to SmB6, suggesting that the in-gap impurity state picture is not justified.

Instead, we suggested a new way of understanding the SmB6 gap using self-consistent

band-bending calculations. We simplified the well-known dispersion and corresponding den-

sity of states to capture the main characteristics of SmB6 and modeled SmB6 as an intrinsic
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semiconductor. We considered the possibility of band bending, which is expected to arise

from the presence of excess surface charges. A self-consistent solution for the potential was

found by numerically solving Poisson’s equation with this charge density across the bulk of

a test sample, with the boundary conditions simulating the strength of the bending effects

at the surface and enforcing symmetry across the bulk.

The self-consistent solution was found for temperatures from 4-40 K, and from this result

the band structure was calculated. In addition, the band structure result was connected to

measurable transport parameters using semiclassical transport theory modified for SmB6.

Specifically, we concentrated on Hall coefficient, resistivity, and thermopower, as these do

not require the addition of adjustable parameters to our model. The results of these calcula-

tions demonstrated a crossover to bulk transport dominated by bulk effects (in analogy with

a standard gapped material) at high temperatures, to bulk transport dominated by surface

effects at low temperature. The calculated crossover temperature was 10-15 K, which ac-

counts for a feature that has been observed in transport data near this temperature. The

transport parameters were compared to data, and although there was qualitative agreement

between the data and the calculated curves, their magnitudes did not agree. We attributed

the disagreement to neglecting some of the small features of the actual dispersion in the

model, and found that a few meV of error in the dispersion could explain the disagreement.

We also related the feature seen in transport data to the accumulation length for a

semiconductor. At high temperatures, the accumulation length was much smaller than

the sample size, and at low temperatures, the accumulation length was much larger than

the sample size. We estimated that the crossover would occur when bulk effects in terms

of sample thickness and intrinsic carrier density become comparable to surface effects in

terms of accumulation length and surface charges. Because of this relationship between

accumulation length and sample size, our model suggests that the crossover would occur at

different temperatures for different sample thicknesses.

The divergence of the accumulation length in SmB6 at low temperatures suggests that

the gap is clean, similar to the gap in a superconductor. This, combined with the success

of our model at describing a variety of data without introducing bulk states in the gap,

agrees well with the observation that there is no residual bulk conduction in SmB6 below the
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Figure 3.9: Predicted thickness dependence of crossover for Epin = 5.5 meV.

TI crossover temperature of about 4 K. Together, these observations imply that SmB6 is a

true TI; it does not exhibit bulk conduction below the TI crossover temperature as all other

known TIs do. This would be exciting for research in technological applications that require

a clean gap and no bulk conduction. We also predict that our model could be extended to

other materials that have a dispersion similar to that of SmB6, including alloys of SmB6.

3.6.1 Experimental verification

There are a few straightforward ways to test our model. Based on the results for accumulation

length compared to sample size, the simplest method would be to determine the location of

the 10-15 K feature for samples of different thicknesses. For a thin sample, the crossover

temperature would be higher than the 10-15 K temperature calculated in our simulation,

and for a thicker sample, the crossover temperature would be lower than 10-15 K. This

dependence on thickness is shown in Fig. 3.9 for samples from 20-2000 µm in thickness, and

the change in the crossover temperature is large enough to be experimentally measurable.

We initially performed transport measurements on two samples with thicknesses of 65 µm

and 960 µm, shown in Fig. 3.10, but no difference in the location of the feature was observed.

Instead, we noticed significant differences between the transport results of the two samples.
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Figure 3.10: Resistivity measurements comparing a 65 µm thick sample and a 960 µm thick
sample.

The thin sample was grown by the Al flux method, while the thick sample was grown by

the floating zone method, prompting further studies of how growth technique affects the

results. The results from these two measurements and continued investigations of the bulk

Hall characteristics of SmB6 will be discussed in Chapter 5.

In addition, we used the focused ion beam process described in Chapter 2 to prepare

micro Hall bars of about 2 µm thickness out of the two samples initially used to test the

thickness hypothesis. The only surviving micro Hall bar was from the flux-grown sample,

and the transport results from this micro sample are shown in Fig. 3.11. No difference could

be observed between the location of the 10-15 K feature in this sample compared to the

original sample.

Another way to test the thickness dependence of the model is through ionic liquid gating.

This technique uses a liquid composed of heavy ions in place of the traditional metallic gate

and is ideal for samples with large surface area. In SmB6, this technique is especially useful

as it allows all surfaces to be gated simultaneously. As with traditional gating, ionic liquid

gating can be used to change the carrier density of the surface conduction channel, which

would change the location of the 10-15 K feature. Applying a positive voltage is expected

to raise the crossover temperature while negative voltage is expected to lower the crossover
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Figure 3.11: Resistance measurements comparing a 65 µm thick Hall bar (polished crystal,
black) and a 2 µm thick Hall bar carved using a focused ion beam (FIB prepared, red).

temperature. We also performed ionic gating measurements on SmB6 but again observed

no difference in the location of the 10-15 K feature. Ionic liquid gating will be explored in

further detail in Chapter 5 in the context of studying the SmB6 surface.

3.6.2 Subsequent studies on the gap of SmB6

After this work was published, another study of the possibility of hydrogenic impurities in

SmB6 was performed by B. Skinner. [105] In this study, the idea that the semiconductor

effective mass approximation should not be used in SmB6 is confirmed. One issue with using

the semiconductor formulation is that SmB6 does not have the same parabolic dispersion as

semiconductors. In the new study, a re-derivation of the effective mass approximation for

the “Mexican hat” dispersion of SmB6 is presented. The calculation yields new equations

for the effective Bohr radius and binding energy based on the Bohr radius in hydrogen and

a momentum scale derived fromthe lattice parameter. Additionally, the Mott criterion, or

the critical doping leading to an insulator-metal transition is found to be modified in SmB6

compared to a semiconductor. As a result, SmB6 could contain a much larger amount of

impurities and still remain a bulk insulator than previously thought.

These new results suggest that SmB6 likely hosts impurity states in the gap. In dc
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transport, the in-gap impurity states are predicted to have an activated behavior with an

activation energy much less than the activation energy related to the hybridization gap. We

believe that this model captures the electronic structure of SmB6 with much more detail and

nuance than the band bending model presented in this chapter. In addition, the experimental

tests of band bending failed to verify it. Thus, the band bending model should not be used

to describe SmB6; instead, the Skinner model provides a much more complete picture of the

gap and the impurity states in SmB6.
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Chapter 4

Comparison of Aluminum Flux and

Floating Zone Grown SmB6 Using

Hall Bar Geometry

4.1 Introduction

In the previous chapter, a simple method for experimentally testing the band bending model

was introduced: measure the 10-15 K feature in Hall effect on samples of different thicknesses.

One important consideration before undertaking such a measurement, however, is the method

by which the sample was grown. As introduced in Chapter 2, SmB6 samples are primarily

grown by the aluminum flux or floating zone methods. Al flux grown samples often contain

inclusions of aluminum, so these samples must be thinned before using them to ensure no

aluminum remains. Thus, it can be difficult to compare transport as a function of thickness

when using only Al flux grown samples. However, floating zone samples do not contain

inclusions, and since they are cut from a large boule, they can be quite thick. In this way,

data on thicker samples can be obtained.

As discussed in the previous chapter, a thinned Al flux grown sample and a thick floating

zone sample were tested to try to verify the band bending model. The 10-15 K feature was

not significantly different between the two samples, but other differences at both low and
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high temperatures were observed. It is possible that the two specific samples chosen for this

initial measurement were pathological, but after obtaining further transport data on samples

grown by the two techniques, it seems that a difference really is present. This is surprising, as

the growth method of the sample is not expected to affect transport results. In this chapter

and the next, transport results on a number of Al flux and floating zone grown samples are

presented. In this chapter, results on Hall bar geometry are discusssed, with a focus on the

bulk channel that dominates conduction from about 5-400 K. Preliminary results presented

in this chapter were published in the Journal of Superconductivity and Novel Magnetism,

vol. 33, page 265 in 2019. [164]

Besides our initial transport measurements performed in relation to band bending, a clear

variation in experimental reports can also be seen when comparing Al flux and floating zone

grown samples. For example, ARPES reports that claim the existence of a topologically

protected state [19, 20, 21] were performed primarily on Al flux grown samples, while the

reports that claim a trivial conductive state [24] were performed on floating zone grown

samples. Additionally, the dHvA results with signatures of a 2D Fermi surface [85, 86] were

performed on Al flux grown samples, but the results with signatures of a 3D Fermi surface

[26, 27] were performed on floating zone grown samples. In thermal transport, one study

finds evidence for charge-neutral quasiparticles in floating zone samples [27] while another

finds no evidence for them in flux grown samples. [88] A further study comparing flux and

floating zone grown samples found differences in behavior between the two, but no evidence

for charge-neutral quasiparticles in either type. [89] Overall, this suggests that sample growth

method in SmB6 can unexpectedly have an impact on the physical properties of the sample.

However, it is unclear whether the origin of the discrepancies is extrinsic or intrinsic in SmB6.

One possibility is that the amount of disorder differs between Al flux and floating zone

grown samples, perhaps from effects arising during growth. Generally, the level of disorder

can be probed in transport via the mobility, which requires measuring the resistance and

Hall coefficient. However, the Hall coefficient is known to change sign around 65 K, from

negative at lower temperatures to positive at higher temperatures. From ARPES results [22]

the charge carrier in SmB6 is known to be electrons, so the region where Hall coefficient is

positive makes the mobility very difficult to calculate. The sign-change behavior has been

70



well-studied in heavy fermion systems and is associated with skew scattering, [165, 166, 167]

an asymmetrical scattering of charge carriers due to strong correlations. It is enhanced in the

presence of magnetic field, leading to the change of sign in the Hall coefficient. [9, 29, 123, 164]

However, the general heavy fermion case is a bit different than what is seen in SmB6. Based

on the charge carrier type, the positive Hall coefficient due to skew scattering is seen from

the transition temperature and below, while the negative Hall coefficient is seen above the

transition temperature. The reasons for this, and the possibility of seeing a negative Hall

coefficient in SmB6 above room temperature, were not previously explored.

In this chapter, we measure resistance and Hall coefficient on both Al flux and floating

zone grown samples to compare bulk characteristics between the two sample techniques, and

to better understand the role of skew scattering in measurements of the Hall coefficient. We

find that there is some sample-to-sample variation above about 40 K but that it cannot be

clearly divided along the lines of sample growth technique; that is, both flux and floating zone

samples demonstrate skew scattering and the sign change at roughly the same temperatures.

In studying skew scattering, we extend our measurements to 400 K and find that a second

sign change is present at about 310 K. We discuss a qualitative model of skew scattering to

understand the two sign changes and how SmB6 differs from other heavy fermion systems.

4.2 Results

We measured the resistance and Hall coefficient of four floating zone and four flux grown

samples from 2-400 K using Hall bar geometry. Details of the sample origin and charac-

teristics are shown in Table 4.1. The flux grown samples were thinned to ensure that no

Al inclusions remain. All samples were prepared identically by polishing on the four sides

making up the active region of the Hall bar with progressively smaller grit sizes down to

0.3 µm. The Hall bar geometry was defined by painting photoresist in the desired pattern

and metallizing with Ti/Au. Contacts were made with silver paste and gold wire. Measure-

ments were performed in a 14 T Dynacool Quantum Design Physical Property Measurement

System (PPMS) with an SR830 lock-in amplifier.

The resistances are shown in Fig. 4.1. Resistance rather than resistivity is shown here as
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Figure 4.1: Resistance of (a) Al flux and (b) floating zone samples.
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Sample Technique Source Crystal plane Details
S1 Flux Irvine (100) Standard growth
S2 Flux LANL (100) Standard growth
S3 Flux GIST (100) Standard growth
S4 Flux GIST (100) Standard growth
S5 FZ Warwick (111) Standard growth [11]
S6 FZ Warwick (100) Standard growth [11]
S7 FZ JHU (100) Doubly-isotopic purification, Sm deficient
S8 FZ JHU (100) Standard growth [107]

Table 4.1: Growth details of eight SmB6 samples including growth technique, place of ori-
gin, and crystal plane. Abbreviations used: Floating zone (FZ), University of California
Irvine (Irvine), Los Alamos National Laboratory (LANL), Gwangju Institute of Science and
Technology (GIST), University of Warwick (Warwick), and Johns Hopkins University (JHU).

SmB6 contains regions of two- and three-dimensional conduction. Thus, three-dimensional

resistivity can be misleading at low temperatures. The resistances are within an order of

magnitude of each other at high temperatures but show an almost three orders of magnitude

range at low temperatures. In addition, the four samples with the highest resistances all

show horizontal plateaus. The two samples with lowest resistance, S6, and S8, which are

both floating zone grown, have finite slope below 5 K. This variation among the floating

zone samples is in agreement with the literature. [113, 168, 107]

Hall coefficient data is shown in Fig. 4.2. The low-temperature behavior mirrors the

resistance, in that S6 and S8 have a lower Hall coefficient and a non-horizontal plateau. The

feature seen in all samples near 5 K is due to the crossover from bulk to surface conduction.

At high temperatures, well above where surface effects are relevant, the Hall effect changes

sign. In all samples, the sign change occurs near 65 K; above 65 K the Hall coefficient is

positive but below 65 K the Hall coefficient is negative. These observations are in agreement

with the literature. [9, 29] By measuring above room temperature (up to 400 K) we also

observed a second sign change at about 305 K. Above 305 K, the Hall coefficient becomes

negative again. All the samples showed this effect, although some samples had less clearly

defined features. Two representative traces, from a flux grown sample (S3) and a floating

zone grown sample (S8) are shown in the inset of Fig. 4.2. No difference in features was

observed when comparing the flux grown and floating zone grown samples above 60 K.
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Figure 4.2: Hall coefficient of (a) Al flux grown and (b) floating zone grown samples. The
inset shows a flux grown sample (red) and a floating zone sample (purple) overlaid at high
temperatures.
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4.3 Discussion

The dominant carrier in SmB6 is known from the band curvature to be electrons, so the

positive Hall coefficient from 65-305 K does not reflect the carrier type. This anomalous sign

arises from skew scattering when f -d correlations are in strong resonance and is well-known

in SmB6. [166, 123] In general, skew scattering is common in heavy fermion systems where

each site can be viewed as a resonant scattering center at high temperatures. [165] It occurs

when the scattering from k to k′ is asymmetric; this is enhanced under external magnetic

field and is responsible for the anomalous sign in the Hall effect in SmB6.

In SmB6, the effect of skew scattering can be understood using the band structure of

SmB6 and the energy of the f and d electrons. In the band structure, shown in Fig. 4.3(a),

the f level that participates in hybridization has a weak dispersion in k as well as some

intrinsic broadening. [22] Since the actual contributions of these are difficult to separate

experimentally due to thermal effects, we define the total f -level width to be ∆Ef . The

d electrons in SmB6 are the conduction electrons, so we expect that only the d electrons

within kBT of the Fermi energy participate in transport. Also, the Fermi energy in SmB6 is

resonant with the f bands, so when kBT is comparable to the width of the f band, the f

and d electrons are resonant with each other, resulting in strong skew scattering.

At high temperatures, the thermal energy of the d electrons is large (kBT � ∆Ef ),

meaning that not many d and f electrons are in resonance. This is indicated by the arrow

for 400 K in Fig. 4.3(b). In this regime, the effect of skew scattering is small, so conventional

scattering mechanisms should dominate. This agrees with the negative sign of the Hall

coefficient observed in our data above about 305 K. As the temperature decreases, more

d electrons become resonant with the f level (kBT ∼ ∆Ef ), and skew scattering becomes

very strong. This is indicated by the arrow for 200 K in Fig. 4.3(b). In this regime, we

observe the positive sign of the Hall coefficient because of the skew scattering effect. Further

lowering the temperature leads to the opening of the Kondo gap. As the gap opens, the skew

scattering effect is destroyed, because d and f electrons are hybridized and can no longer be

in resonance, as shown in Fig. 4.3(c). In the data, we observe this as the correct, negative

sign of the Hall coefficient, consistent with the band curvature, down to lowest temperatures.
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Figure 4.3: (a) Band diagram schematic of SmB6 at room temperature. (b) Zoom of (a)
with arrows indicating kBT at 200 K and at 400 K. (c) Band diagram of SmB6 at low
temperatures were the gap is open. The three diagrams are not drawn to scale, and only the
f band that participates in hybridization is shown.

More quantitatively, skew scattering in heavy fermion materials is related to the Hall

coefficient, and that relationship depends on the temperature at which the skew scattering

is strongest. In our data, this point occurs at about 100 K, although there is some sample-

to-sample variation. Below about 100 K, the Hall coefficient is related to the magnetic

susceptibility and the total resistivity: RH ∝ χρ2. [167] Above about 100 K, the relationship

is modified to RH ∝ χρ. [165] This skew scattering term can be added to the conventional

terms. [165]

In our data, the sign change and skew scattering are not consistent across samples. Of

the samples we measured, the two shown in the inset of Fig. 4.2 demonstrate the clearest

sign changes. The differences between the high temperature effects in these samples suggests

that the strength of skew scattering varies from sample to sample. One reason for this could

be different levels of unintentional doping in each sample, leading to a greater contribution

by impurity scattering that slightly masks skew scattering.

The sign of the Hall coefficient also affects transport analysis. In conventional materials,

the carrier density and mobility can be extracted from the resistivity and Hall coefficient by
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n = 1/(eRH) and µ = 1/(neρ), respectively. This method is still valid in SmB6 below 50 K,

where activated behavior is observed. However, in the presence of skew scattering at higher

temperatures, the carrier density and mobility are inaccurate in both sign and magnitude.

Using the standard analysis would suggest that the sign of the charge carriers changes with

temperature, and it yields negative mobility, both of which are clearly incorrect.

To obtain a better picture of the true carrier density in SmB6, we used ARPES data to

estimate the high temperature carrier density. ARPES reports of the size of the d pockets

in the bulk Brillouin zone allows us to calculate the maximum number of carriers allowed, 9

× 1021 cm−3. [22, 145, 164] The carrier density extracted from transport would be expected

to approach this maximum as temperature is increased. We then smoothly connected this

to the carrier density extracted by standard methods below 50 K to obtain an estimate of

the electron-like carrier density that might be measured if skew scattering were not present.

The estimated carrier density can then be used to calculate the mobility. The mobilities

extracted by this method for the samples are shown in Fig. 4.4. A new feature appears

in mobility when using this method: a minimum is present near 100 K, but the exact

temperature at which the minimum occurs varies from sample to sample. Table 4.2 lists the

mobility minima of the samples. For S1, S5, S7, and S8, the minimum is close to 100 K. S3

may have a minimum at a slightly higher temperature as this sample is much thinner than the

others. On the other hand, S6 is much thicker than the others and showed different behavior

from the other five samples at all temperatures. In S6, to investigate the possibility that

there was an inclusion of another phase that affected the results, we polished the sample

after measuring it using the same methods we use to remove Al inclusions in flux grown

samples. We did not observe any inclusions in S6.

The mobility minimum indicates where scattering is strongest. Since skew scattering is

the dominant scattering mechanism for SmB6 at this temperature, the minimum indicates

where skew scattering is strongest, and 100 K corresponds to the approximate temperature

of the peak in the positive regime of the Hall coefficient (Fig. 4.2) as well as the temper-

ature at which the hybridization gap begins to open as temperature decreases. [112, 22]

As the temperature increases, conventional scattering mechanisms like impurity and phonon

scattering become dominant.
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Figure 4.4: Mobilities of (a) flux and (b) floating zone samples calculated using an estimate
of the Hall coefficient with the correct sign.
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Sample Tmin (K) µmin (cm2/V·s) τ (fs) ` (Å)
S1 97 2.6 1.3 7.8
S2 80 2.6 0.8 6.0
S3 142 2.0 0.98 6.0
S4 152 2.1 1.0 6.3
S5 107 1.4 0.68 4.2
S6 50 8.6 4.2 26
S7 107 4.8 2.3 14
S8 97 2.3 1.1 6.9

Table 4.2: Mobility minima of eight SmB6 samples with the corresponding temperatures,
scattering times, and mean free paths.

Table 4.2 also lists the scattering times and mean free paths for each of the samples

at the mobility minimum. In calculating the scattering time (τ = µm∗/e) and mean free

path (` = vF τ), we used an effective mass of 0.86me and a Fermi velocity of 6.1×105 m/s,

both obtained from ARPES data. [22] Our calculation of τ and ` are well within the

metallic regime of SmB6. At the minimum, all samples also satisfy kF ` > 1, confirming that

hybridization begins near this point.

4.4 Conclusion

In this chapter, we presented transport measurements on both Al flux and floating zone

grown SmB6 from 2-400 K. Below 5 K, our resistivity results on Hall bar geometry show

almost three orders of magnitude spread in their low-temperature saturation values, with

flux samples showing some of the highest magnitudes and floating zone samples having more

variation. A more detailed look at features below 5 K will be presented in the next chapter.

Here, we concentrated on the bulk characteristics above 40 K, especially the well-known sign

change feature in the Hall coefficient. The Hall coefficient is negative below 65 K, positive

from 65 K to 310 K, and negative again above 310 K. Although the sign change at 65 K

was reported in previous literature, we observed a second sign change at 305 K. The positive

Hall coefficient is successfully described using skew scattering, an anomalous asymmetrical

scattering mechanism found in heavy fermion systems. The presence of the sign change in

transport is misleading, as both the magnitude and sign of the charge carriers extracted
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for the bulk will be incorrect. Calculation of transport parameters was also revised to

account for the effects of skew scattering by combining our transport data with results from

ARPES. This yields a minimum in mobility near 100 K for most samples. This minimum

indicates where scattering is the strongest and a combination of skew, impurity, and phonon

scattering is present. The Hall sign change is observed in both flux grown and floating zone

grown samples, demonstrating that the sample growth method alone does not affect this

property of SmB6. However, other factors, including purity of the starting materials and

quality of the growth conditions in both growth methods, may have an effect on the strong

correlations and lead to noise that “smears” the high-temperature features. Overall, this

chapter strengthens the overall understanding of high-temperature bulk transport, which is

necessary to gain a complete picture of SmB6.
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Chapter 5

Bulk Transport Paths Below 4 K

Using Inverted Resistance

5.1 Introduction

In the previous chapter, bulk characteristics of SmB6 were explored from 5-400 K using

Hall bar geometry. Below about 5 K, the Hall bar measurements reveal that while flux-

grown samples have fairly consistent resistance plateaus, floating zone samples show more

variation. However, in this temperature range, surface and bulk conduction coexist (with

surface conduction dominating), so traditional four-point geometry like Hall or van der Pauw

can no longer provide information about whether the features we observed arise from the

surface or the bulk. Instead, we employ the inverted resistance method introduced in Chapter

2 to investigate bulk properties of SmB6 below 5 K.

In this chapter, inverted resistance measurements on a Corbino disk geometry are pre-

sented. This work is currently under review at Physical Review Materials. Previous data

for Al flux grown samples are included, and new data on floating zone samples are shown to

compare results on samples grown by different techniques. The pure Al flux grown sample

showed insulating behavior down to 2 K, [110] while Al flux grown samples grown inten-

tionally with off-stoichiometry show a small amount of residual bulk conduction below. On

the other hand, the floating zone samples all demonstrate bulk conduction at lowest tem-
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peratures, but with significant sample-to-sample variation. The possible origins of this new

bulk channel are also discussed in the context of recent impurity models as well as one-

dimensional defects, or dislocations. To expand experimental understanding of the role of

disorder, we also perform chemical etching to verify the presence of dislocations in both Al

flux and floating zone grown samples. The wide variation in the low-temperature results

depending on the sample used suggests that discrepancies in experimental reports on SmB6

may have an extrinsic rather than an intrinsic origin.

5.2 Summary of previous inverted resistance results

The previous results for inverted resistance on flux grown SmB6 were published in Proceed-

ings of the National Academy of Sciences, vol. 116, no. 26, p. 12638 in 2019. First, the

inverted resistance method introduced in Chapter 2 will be reviewed. This method constrains

the current to a closed loop, and voltage is measured outside of the loop. For materials with

both surface and bulk conduction, the surface conduction is contained within the loop, so

any signal measured outside of the loop must come from the bulk. [126] A Corbino disk

geometry is optimal for performing inverted resistance measurements, and a schematic of

the geometry used was previously shown in Fig. 2.2.

Inverted resistance measurements yield two curves, one from the standard measurement

(Fig. 2.2(b)), and one from the inverted measurement (Fig. 2.2(c)). As introduced in

Chapter 2, the standard resistance curve is proportional to the resistivity of the dominant

conduction channel. In SmB6, this means that the standard curve is proportional to bulk

resistivity (ρb) above about 5 K but proportional to surface resistivity (ρs) below this tem-

perature. The inverted curve is also proportional to the bulk resistivity above about 5 K,

or where bulk conduction is dominant. On the other hand, the inverted curve depends on

both the surface and bulk resistivities as RInv ∝ ρ2
s/ρb. An example of standard and inverted

resistance curves is shown in Fig. 5.1.

To calculate the bulk resistivity over the whole temperature range, 1/RInv is calculated

so that the result is proportional to the bulk resistivity. Flipping the curve in this way

extends the activated bulk behavior seen in the standard curve above 5 K to temperatures
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Figure 5.1: Example of standard and inverted curve of a stoichiometric Al flux grown sample.

below 5 K. The standard curve and the flipped inverted curve often do not match exactly

however, and this is likely due to misalignment of the two Corbino disks or imperfections in

the surface preparation (polishing) on the two faces that have Corbino disks.

This inverted method was used to measure bulk resistivity of four Al flux grown SmB6

samples from 2-300 K. [110] Of the four samples presented, S1 was grown stoichiometrically,

with a 1:6 Sm:B ratio. S2, S3, and S4 were grown with off-stoichiometry, which allowed the

introduction of Sm vacancies; the actual concentration of vacancies is difficult to measure

by x-ray diffraction and likely does not match the growth ratio. The growth ratios were

0.9:6 Sm:B for S2 (10% Sm deficiency), 0.75:6 Sm:B for S3 (25% Sm deficiency), and 0.6:6

Sm:B for S4 (40% Sm deficiency). All four samples were prepared identically by polishing

with grit sizes down to 0.3 µm. The Corbino disks were defined using photolithography and

metallized by e-beam evaporation of Ti/Au. Electrical connection was done using gold wires

attached using either silver paste or wire bonding.

Results from these four samples are shown in Fig. 5.2. S1 (black) shows insulating

behavior down to 2 K with a resistance rise of about 10 orders of magnitude. The three

samples grown with off-stoichiometry, however, show a saturation of resistance below 2.5

K. Thus, they contain a small bulk conduction channel that is usually buried beneath the
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Figure 5.2: Inverted resistance measurement of four Al flux grown SmB6 samples.

dominant surface conduction.

The resistivity values of this newly discovered bulk channel at low temperatures are

extremely high. In fact, such resistivity saturation after a high magnitude increase is only

seen in ultra clean semiconductors. [169, 170] This would correspond to a tiny conduction

channel; nevertheless, understanding the origin of this low-temperature bulk conduction is

important for understanding the unique role of disorder in SmB6. Since S2, S3, and S4 all

contain Sm vacancies, one possibility is that this third channel could arise from impurity

conduction. However, the role of vacancies is under debate within the SmB6 community.

Instead, another possibile source of the third bulk channel could be conduction through

one-dimensional defects, or dislocations, that are topologically protected. [110]

Dislocations have been studied extensively in semiconductor thin films such as GaN,

where they are a significant source of scattering in electronic devices and provide recombi-

nation sites in optoelectronic devices. [137] In thin films, dislocations form during growth,

especially at the interface between a substrate and a film with different lattice constants.
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This lattice mismatch between the two materials strains the layer, leading to the forma-

tion of dislocations. [138] The density of dislocations present in the film is related to the

difference in lattice constants between the substrate and the film, with lower dislocation den-

sity corresponding to more closely matched lattice constants. Dislocations are also present

in crystals. They can form from internal stresses in the growth, especially stresses due to

thermal fluctuations, local impurities in the growth, or even vibrations in the environment.

[138] Impurities in the growth can provide nucleation sites where dislocations start to form,

and high temperatures used in the growth can compound the effect of internal stresses as

well. [139] Additionally, dislocations can extend from a seed crystal containing dislocations

to new growth based on that seed. [139] However, not much is known about dislocations in

topological materials. Previously, dislocations in Bi-based topological thin films have been

shown to create unwanted bulk current paths. [171, 172] Dislocations in SmB6 would be

especially interesting to study in light of the previous report of a truly insulating bulk in the

dc limit.

The level of disorder can generally be measured in transport via the mobility. At low

temperatures, measurements of mobility in SmB6 are not straightforward. Experimental

reports - ARPES, dHvA oscillations, and transport - disagree on the order of magnitude of

the mobility, which ranges from about 10 cm2/V·s in transport [131] to about 1000 cm2/V·s

in quantum oscillations; [85] surface preparation can even affect the extracted mobility. [173]

A recent study also shows that the two proposed topological surface channels would have very

different mobilities, [173] and accounting for a disorder-based channel could be an additional

challenge.

Data presented in the previous chapter as well as detailed literature results have also

shown that the resistivity saturation in standard measurements at low temperature is non-

universal. [107] Al flux grown samples generally yield resistivity with temperature-independent

plateaus. [10, 152, 131] Floating zone samples are generally less consistent and can behave

similarly to flux-grown samples, show temperature-dependent behavior, or even a step-like

behavior. [174, 175, 107] An open question is whether these differences in behavior are due

to different surface characteristics or bulk characteristics. If the differences are due to surface

characteristics, the low-temperature bulk behavior should be similar between both types of
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Sample Growth details Starting powder origin
Warwick 1 Standard growth [11] Alfa Aesar
Warwick 2 Standard growth [11] American Elements
JHU 1 Standard growth [107] Testbourne Ltd.
JHU 2 Doubly-isotope enriched, Sm deficient Alfa Aesar

Table 5.1: Details of the four floating zone samples measured. Sample names indicate
growths by collaborators at University of Warwick (Warwick) and Johns Hopkins University
(JHU).

samples. But, if bulk characteristics differ at low temperatures, this would be reflected in

inverted resistance measurements.

5.3 Results on floating zone samples

Four floating zone samples were prepared for the inverted resistance measurement. Details

of the samples’ origins and growth methods can be found in Table 5.1. All samples were

polished with grits down to 0.3 µm. The Corbino disks were patterned by photolithography.

Ti/Au was deposited on the samples using e-beam evaporation and later a lift-off process

with acetone was used to define the pattern and electrodes. We used gold wires to make

electrical connection from the electronics to the sample, and attached them using either

silver paste or wire bonding.

Fig. 5.3 shows the resistance vs. temperature of all four samples. The blue curves

are the standard resistance measurements and the red curves are the inverted resistance

measurements. In the standard measurements (blue curves), all four samples show a change

in slope around 4 K that would conventionally be regarded as a surface plateau. Fig. 5.3 (a)

and (d) show little to no temperature dependence in the standard measurement below about

4 K, especially compared to Fig. 5.3 (b) and (c). Using the inverted curves (red), we can

determine whether these “plateaus” arise from surface or bulk conduction channels. We see

dramatic differences in the inverted resistance results for each sample. Fig. 5.3 (a) shows a

resistance that drops and saturates, similar to the non-stoichiometric flux growths observed

previously. [110] The inverted resistance measurement shown in Fig. 5.3 (d) has a feature

similar to Fig. 5.3 (a) but also a moderate drop at lower temperatures. In Fig. 5.3 (b) and
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Figure 5.3: Inverted resistance measurement of four floating zone grown SmB6 samples.
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Figure 5.4: Bulk resistivity conversion from Fig. 5.3 measurements.

(c), we see a temperature dependence that is close to parallel to the standard measurement.

We convert the measured resistances to bulk resistivity in Fig. 5.4, except for the sample

Warwick 1 (Fig. 5.3(a)) which was complicated to convert due to the Corbino disks being

placed on different crystal planes. We compare the results from this study to the previously

reported result on a stoichiometric flux-grown sample (black trace). [110] We find that the

remaining three floating zone grown samples have a significant slope change in bulk resistivity

which indicates that the intrinsic exponential temperature dependence in bulk resistivity is

interrupted. That is, another bulk conduction mechanism is present in these samples in

addition to the standard mechanism responsible for activated behavior.

5.4 Discussion

Figs. 5.3 and 5.4 show that the four floating zone samples presented here have non-negligible

bulk conduction, but the characteristics of the bulk conduction differ by sample. In Fig. 5.3 (b)
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and (c) the standard and inverted resistance curves are parallel to one another, demonstrat-

ing that these samples are bulk conductors and can be described by Eq. 2.16. In terms

of transport, this means that either the surface conduction is nonexistent or that the bulk

conduction channel dominates.

Many researchers have proposed impurities as a possible origin for residual bulk conduc-

tion in SmB6. Most point defects come from the starting material, as rare earth elements

are notoriously difficult to purify. In our samples, the starting materials were sourced from

different companies, so the purity of the Sm used in the growth may differ among samples.

One way to reduce rare earth impurities is via isotopic purification to Sm-154, as was done

for our sample JHU 2. The only remaining rare-earth impurity is Gd-154, which is magnetic.

[102] Gd impurities have been studied previously, beginning with the observation that the

substitution of even 1% Gd could dramatically change the electrical properties of SmB6.

[176] Later, a Gd doped sample was used to test the TI hypothesis by searching for time

reversal symmetry breaking below 4 K. [17] Gd impurities have also been shown to increase

the residual heat capacity at low temperatures [102] and have been suggested as an avenue

for screening of the Kondo effect at low temperatures. [120] Debate is ongoing about the

role of Gd impurities; recent reports have suggested that it is not responsible for bulk dHvA

oscillations. [91] However, the local environment of Gd impurities is metallic even at very

low concentrations, and at higher concentrations this could lead to percolation through the

sample in transport measurements. [121]

Results from the isotopically purified sample shown in Fig. 5.3 (d) have different features

in the inverted resistance curve compared to the non-purified samples (Figs. 5.3 (b) and

(c)). Since the standard and inverted curves are not parallel, this sample does not have

dominant bulk conduction, but it may have parallel surface and bulk channels. Since the

sample is isotopically pure, the bulk channel could come from the remaining Gd impurities,

Sm vacancies introduced during growth, or both.

A general model of impurities used in semiconductors and other materials is the effective

mass approximation, where the impurity is treated hydrogenically, with an effective Bohr

radius and binding energy. [148] As discussed in Chapter 3, the conditions for standard

hydrogenic impurites are not satisfied in SmB6 when the model for semiconductors is used.

89



[145] However, the model introduced by B. Skinner in Ref. [105] demonstrated that the

effective mass approximation can be modified for SmB6. In the Skinner model, the quadratic

potential used in the original treatment of the effective mass approximation [148] is swapped

for the “Mexical hat” dispersion seen in SmB6. New conditions for the effective radius

and binding energy of the impurity state are determined. The total dc conductivity in the

presence of these new impurity states is also derived and found to be a combination of the

standard activated behavior with activation energy E1 and an activated hopping term with

activation energy E3, [105]

σ(T ) = σ1 exp

(
E1

kBT

)
+ σ3 exp

(
E3

kBT

)
. (5.1)

This type of impurity band could be present in all samples and could describe both magnetic

and nonmagnetic point impurities, including Sm vacancies. Since the addition of Sm vacan-

cies to flux grown samples has been shown to induce bulk conductivity, [110] some portion

of the residual bulk conductivity seen in this work in floating zone samples could also be

due to Sm vacancies as described above. However, the magnitude of the bulk conduction

seen in the inverted measurements is much greater in all the floating zone samples, including

the isotopically purified sample, so it is unlikely that vacancies or impurities alone could be

the origin. The possibility of hopping conduction and even insulator-to-metal transition by

heavily doped foreign magnetic impurities will be discussed elsewhere in our future work.

Another possibility for the source of the residual bulk conduction is one-dimensional

defects, or dislocations. As discussed earlier, a mismatch in lattice constant between a

substrate and a semiconductor thin film can lead to the formation of dislocations which

terminate on the surface of the film. [138] The density of dislocations in a film can be

estimated by the change in lattice parameter, ndis = |1/a2
1 − 1/a2

2|, where a1 and a2 are the

lattice parameters on the two surfaces of the film.

In SmB6, one study reports a change in lattice constant over the length of a floating

zone sample. [107] Unlike the case of thin films, to the best of our knowledge there is no

literature describing how to estimate dislocation density in bulk crystals where there is a

variation in lattice constant. Here, we introduce a new method to understand the formation
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Figure 5.5: Sketch of dislocations in a floating zone boule. Some dislocations (green) initiate
within a slice of thickness ε, and others (blue) terminate within that slice. The remaining
dislocations (gray) form and terminate elsewhere in the sample.

of dislocations in bulk materials. Later, we use our model to estimate the dislocation density

in SmB6 samples. We consider a floating zone sample as its size allows for more variation of

lattice parameter in the crystal compared to a flux grown sample, but dislocations are still

expected to be present in flux grown crystals.

Generally, dislocations that form in films terminate on the surface of the film. In thin

films, the dislocations form in the growth direction and terminate on the top surface of the

film. In crystals, however, dislocations do not have to form and terminate only along the

direction of growth; dislocations could also terminate on the side surfaces of the crystal, as

shown in Fig. 5.5. Thus, the dislocation density in crystals is expected to depend both on the

change in lattice constant in the direction of growth and on the size (radius) of the crystal.

To estimate the dislocation density, we model the floating zone rod as forming from a

series of thin slices of thickness ε as the molten zone passes through the furnace. In analogy

with the equation above for semiconductor thin films, the total number of dislocations that
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nucleate within the slice is ∣∣∣∣ 1

(a(x))2
− 1

(a(x+ ε))2

∣∣∣∣ (πr2) (5.2)

where a(x) is the lattice parameter at a location x along the growth direction and r is the

radius of the crystal. A sketch of these is shown in green in Fig. 5.5. All the dislocations

that form in this slice must terminate somewhere on the surface of the sample, whether on

the sides or the ends. To account for the dislocation terminating on the sides, we introduce

an angle θd which the dislocation makes with respect to the growth direction. Then, the

number of dislocations that terminate within a slice (shown in blue in Fig. 5.5) is related to

the surface area of the slice, the dislocation density (ndis), and θd by

(2πrε)ndis cos θd. (5.3)

Here, cos θd = 1 would correspond to all dislocations oriented along the growth direction.

We expect cosθd < 1 in an actual sample, since dislocations are expected to terminate

randomly on the surface but form with the growth of the rod. Since all the dislocations that

formed must terminate, Eqs. 5.2 and 5.3 are equal. Expanding Eq. 5.2 as a Taylor series,

we calculate that the estimated dislocation density is

ndis =
r

cos θd

|∇a(x)|
(a(x))3

(5.4)

for the dislocation density.

We can estimate the dislocation density in the sample with reported change of lattice

constant from Ref. [107]. The lattice parameter in that sample was a1 = 4.134309 Å on

one end of the crystal and a2 = 4.133343 Å on the other end, 8 cm away. The radius of the

crystal was 3 mm. Using these values with Eq. 5.4, we estimate that the dislocation density

in this floating zone sample is ∼ 1010 cm−2.

Dislocations are commonly imaged by preparing samples as for transmission electron

microscopy (TEM). However, the estimated density of dislocations we calculated is too small

to use this method. Instead, we used chemical etching to reveal points where dislocations

terminate on the surface. During etching, material is removed from the area near a crystal
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defect at a different rate than from the lattice. The etching method allows defects, including

dislocations, to be imaged optically. [137] The “etch pit” that forms also mirrors the crystal

structure of the sample; for SmB6 we expect to see square etch pits aligned with the crystal

direction. With longer etching time, the size of the etch pits increases and more etch pits

start to form, so that the etch pit density observed provides a lower bound on the actual

dislocation density.

We used equal parts nitric and sulfuric acid diluted to 10% to etch flux grown and

floating zone SmB6 crystals. After etching, we observed etch pits using a scanning electron

microscope in both types of samples. Examples of etch pits are shown in Fig. 5.6. The floating

zone sample shown was etched for 340 seconds and had an etch pit density of 105 cm−2. The

flux grown sample shown was etched for 600 seconds and had an etch pit density of 2× 103

cm−2. Even though the flux grown sample was etched longer than the floating zone sample,

it has a lower density of etch pits observed, suggesting that the floating zone sample hosts

more dislocations than the flux grown sample. In both samples, the locations of the etch pits

is nonuniform, which suggests that local inhomogeneities in temperature or stoichiometry,

for example, during sample growth are important to the formation of dislocations. In both

cases, the observed densities are much lower than the calculated estimate of 1010 cm−2, but

since we imaged immediately after identifying that etch pits were present, our values are

lower bounds on the number of dislocations actually present in the samples. Since there is

significant sample-to-sample variation in floating zone samples, it is also possible that our

floating zone sample had fewer dislocations than the one in Ref. [107].

In addition to impurity hopping and dislocations, we briefly consider other theories pro-

posed to explain some of the novel results of SmB6. First, the proposal that SmB6 is a

nodal semimetal [100, 101] is inconsistent with the low-temperature bulk conduction that

we observe, and it does not explain the difference between flux and floating zone grown

samples. Our inverted resistance curves show two regions of activated behavior (above and

below about 4 K) rather than activated behavior above 4 K and linear-in-T behavior be-

low 4 K. Next, in heat transport, excess thermal conduction at low temperature was not

found in flux-grown samples, and reports have disagreed about whether thermal conduction

is present universally in floating zone samples. [27, 88, 89]. Theories attempting to reconcile
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200μm(a)

300μm(b)

Figure 5.6: Examples of etch pits on the (001) surfaces of (a) a floating zone sample etched
for 340 seconds and (b) a flux-grown sample etched for 600 seconds.
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these conflicting results have focused on the possibility that the floating zone samples con-

tain charge-neutral excitations and primarily explored their relevance to dHvA oscillations

rather than transport. Our data do not provide evidence for charge-neutral excitations, but

the low-temperature bulk channel we observe could conduct heat and contribute to dHvA.

Even in samples with very few rare earth impurities, [91] dislocations could still contribute

to these effects. A better understanding of the role of dislocations, or more generally, the

conduction channel we observe here, will be an intriguing area of further study.

5.5 Conclusion

In this chapter, we performed transport measurements on SmB6 using the inverted resistance

method. Standard four-point and Hall bar geometry resistance results show nonuniversal

temperature dependence below about 4 K, but the origin of this behavior is difficult to

pinpoint as both bulk and surface channels are present. The inverted resistance method

we used allowed us to characterize the bulk behavior at temperatures at which surface

conduction dominates. We found that the four floating zone samples show bulk conduction

with characteristics differing by sample. On the other hand, a stoichiometric flux-grown

sample has a truly insulating bulk, and the introduction of Sm vacancies in flux grown

samples was found to induce bulk conduction. In general, the bulk conduction channel

seems to be significantly larger in floating zone samples compared to flux grown samples,

even those grown with off-stoichiometry.

We discussed various possibilities for the origin of the new conducting channel observed

here, as well as the differences between the floating zone results presented here and the flux-

grown samples presented in the previous work. [110] We especially considered impurities,

which could be magnetic, like Gd, or non-magnetic, including defects like Sm vacancies. Our

experimental results are consistent with the Skinner model [105] for impurity hopping con-

duction at low temperatures with an activated transport behavior. In addition, we considered

one-dimensional defects, or dislocations, extending throughout the sample. We observed a

small dislocation density in both flux and floating zone samples via chemical etching, with a

larger dislocation density observed in floating zone samples compared to flux grown samples.
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While this is consistent with the relative amounts of bulk conduction observed in samples

grown by each technique, further work to explore the characteristics of the dislocations is

needed to verify that they contribute to bulk conduction with a magnitude agreeing with

our inverted resistance data. Future work could include characterizing the mobility of the

channel or thermal studies of the role of dislocations in SmB6.

96



Chapter 6

Exploring Surface Physics Using Hall

Bar Geometry and Ionic Liquid

Gating

6.1 Introduction

The previous chapters have focused on bulk behavior of SmB6, including at temperatures

where surface conduction dominates. However, characterizing the conductive, and possibly

topological, surface has been a major focus of research into SmB6 in the last few years. As

introduced in Chapter 1, the surface conduction in SmB6 has contributions from a pocket

near the Γ point and from two identical pockets at the X points in the (001) Brillouin zone.

Experimental efforts to pinpoint the properties, especially carrier density and mobility, of

these pockets have been numerous, although results obtained using different experimental

methods disagree significantly. The X pocket has a larger carrier density than the Γ pocket,

making study of the Γ pocket an additional challenge. Recent work by Eo, et al. [173] used a

Corbino disk to study conduction on a single crystal surface of SmB6, resulting in estimates

for the parameter space of the carrier density and mobility of the two pockets on the (001)

surface. Additionally, this work initially suggested that Corbino disk geometry is optimal

for studying surface physics, whereas Hall bar geometry is best suited for bulk studies.
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In this chapter, the work of Eo, et al. [173] is extended using Hall bar geometry. First,

subsurface cracks, which can be reduced by polishing but never completely eliminated, are

included in the analysis of surface conductivity. For a Hall bar geometry, where both ρxx and

ρxy are measured, we show that conductivity through cracks can effectively be eliminated,

making Hall bar geometry much more powerful than previously thought for studying the

surface. Our analysis of the Hall bar yields a Hall conductivity that is proportional to the

square of the mobility, so in materials with multiple conduction channels, the higher mobility

channel dominates. In SmB6, the higher mobility channel is the Γ pocket, which is difficult

to access using other experimental methods due to its small carrier density.

Yet more information can be obtained from the surface channels by gating the surface.

In SmB6, since all the surface are conductive, a traditional metallic gate is impractical.

Instead, an ionic liquid is used to apply voltage to a sample, in a method known as ionic

liquid gating. When voltage is applied to the ionic liquid and thus to the sample, the surface

charge (or carrier density) can be tuned within a narrow range. When used in conjunction

with Hall bar geometry, ionic liquid gating allows the carrier density of the Γ pocket to be

tuned. In this chapter, we also present ionic liquid gating results on an SmB6 Hall bar,

and use the results to further constrain the parameter space on the (001) surface from Ref.

[173]. Before measuring SmB6, we also performed a “control” measurement of ionic liquid

gating on N-polar GaN, which has a high carrier density and a two-dimensional electron gas

(2DEG) close to the surface, making it simple to tune using gating.

Finally, ionic liquid gating was noted in Chapter 3 as one method of testing whether

the band bending model is accurate. If band bending is correct, a change in surface charge

would shift the location of the 10-15 K feature. The results presented in this chapter show

that the 10-15 K feature does not change with gating.

6.2 Surface characteristics of SmB6

Topological Kondo insulator theory predicts that three surface Fermi pockets exist, each

surrounding a high symmetry point in the Brillouin zone. [70] In particular, on the (001)

crystal surface, theory predicts that one of the Fermi pockets should be centered at the Γ-
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point (also called the Γ pocket), and the other two should be centered at the X point (called

2X pockets in the remainder of the chapter). A straightforward way of identifying that the

predicted pockets are present is via Shubnikov-de Haas (SdH) oscillations, but in SmB6 these

have not been observed up to 80 T. Instead, following Ref. [173], a possible parameter space

for the carrier density and mobility of these pockets will be constructed using a combination

of theoretical arguments and experimental data. The constructed parameter space is shown

in Fig. 6.1.

First, there are fundamental limits in two-dimensional transport that constrain the pa-

rameter space. One constraint is the kF limit, or that the size of the Fermi pockets cannot be

larger than the surface Brillouin zone of the material. In SmB6, the total area of the surface

Brillouin zone corresponds to a carrier density of 1.17 ×1015 cm−2, so this places an upper

limit on the carrier density. In Fig. 6.1, this constraint is indicated in the darkly shaded

area on the right of the plot. Additionally, the Ioffe-Regel criterion indicates that the system

would undergo a metal-to-insulator transition when the surface resistance becomes larger

than the quantum of resistance, h/e2. Thus, this region, indicated in the darkly shaded

triangle in the lower left of Fig. 6.1 is also excluded from the parameter space. A final,

although less strict, constraint is that SdH oscillations have not been observed up to 80 T.

The magnetic field strength at which SdH oscillations appear is inversely proportional to

mobility, so the surface mobility would be constrained to be smaller when the onset of SdH

oscillations is at higher fields. This is shown as a gradient in the upper left-hand corner of

Fig. 6.1.

To further constrain the parameter space, experimental results are used. When com-

pared with the parameter space, transport using Hall bar geometry usually yields carrier

densities in the 1015 cm−2 or higher range, making them violate the kF limit. One possible

reason for this is that current can flow on all the surfaces, so a single (001) surface is not

isolated. Instead, Corbino geometry can be used to isolate a single surface. Additionally,

the carrier density and mobility extracted from a Corbino measurement is usually within

the theoretically allowed region of the parameter space. The carrier density and mobility

extracted from a Corbino disk prepared on a mirror-polished SmB6 surface is shown as a

triangular point in Fig. 6.1. The result places an upper bound on the conductivity, indicated
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Figure 6.1: Parameter space of SmB6 on the (001) surface.

by the diagonal line intersecting the triangular point in the figure. Additionally, the Γ and

2X pockets contribute similarly to the conductivity, meaning that one should have a larger

carrier density and smaller mobility, and the other should have a smaller carrier density and

a larger mobility. This is indicated in Fig. 6.1 by breaking up the remaining white space

(the allowed parameter space) into sub-spaces for the Γ and 2X pockets. By comparing with

ARPES data, the best estimates for the Γ pocket were n = 8 × 1012 cm−2 and µ = 170

cm2/V·s, and the best estimates for the 2X pocket were n = 2 × 1014 cm−2 and µ = 10

cm2/V·s.

This parameter space does provide reasonable ranges for the carrier density and mobility

of the two pockets on the SmB6 surface, but is it possible to further constrain the parameters?

One remaining problem is the role of subsurface cracks. Although the Corbino measurement

used to construct the parameter space was polished with grit sizes down to 0.3 µm, subsurface

cracks or defects, like voids, could still be present in the sample. These cracks would create

another surface on which current could flow, and their geometry is impossible to account

for in the analysis. Instead, without knowing the actual conductivity in subsurface cracks
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in a given sample, this parameter could be eliminated from the analysis by performing two

complementary measurements. In the following section, we show that Hall bar geometry can

do just this; it allows conductivity through subsurface cracks to be eliminated by considering

both the resistance and the Hall coefficient.

6.3 Accounting for cracks in transport analysis

Normally, Hall bar results are used to calculate the carrier density and mobility. To review

from Chapter 2, in a standard analysis including a magnetic field in the z-direction, these

are extracted from the x-y conductivity matrix,

σ =

 neµ neµ2B

neµ2B neµ

 (6.1)

where n is the carrier density, µ is the mobility, e is the electric charge, and B is the magnetic

field. The longitudinal and transverse resistance are

Rxx =
1

neµ

Rxy =
B

ne
.

(6.2)

Then, carrier density can be found from Rxy and mobility from n and Rxx. Carrying out

this process for our data yielded surface carrier densities of order 1015 cm−2 or higher, which

is a usual order of magnitude for Hall bar carrier densities. Proper surface preparation

(polishing) can reduce the carrier density, but the values are still higher than is observed in

any other experimental method. However, the size of the surface Brillouin zone (kF limit)

in SmB6 restricts the maximum carrier density to 1.17×1015 cm−2. Previous results on a

Corbino disk also suggest that the surface carrer density is closer to 2.7×1013 cm−2. [173]

One way to improve agreement and ensure that the carrier density extracted from a Hall

bar is physical is to include conduction through subsurface cracks. To do this, we add a term

for the conductivity through the cracks, σcr, to the conductivity matrix. This term should

only be added to the diagonal elements, as the subsurface cracks are oriented randomly
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and thus are unlikely to contribute to the Hall conductivity. The new conductivity matrix

becomes neµ+ σcr neµ2B

neµ2B neµ+ σcr

 . (6.3)

The new results for the longitudinal and transverse resistance are

Rxx =
1

neµ

(
1

1 + σcr/(neµ)

)
Rxy =

B

ne

(
1

1 + σcr/(neµ)

)2

.

(6.4)

These new expressions are both modified from Eq. 6.2 by the same factor containing the

conductivity of the cracks, although this factor is squared in Rxy. By dividing the two

equations, we can obtain a crack-independent quantity,

Rxy

R2
xx

= neµ2B. (6.5)

This is also equal to the off-diagonal term in the conductivity matrix, or σxy. Thus, in a

system with multiple channels, the term on the right hand side of Eq. 6.5 would simply be

summed over all the channels. The new equation allows a relationship between the carrier

density and mobility to be extracted from data, but the exact values of both cannot be

determined explicitly just from the measurement. The expression in Eq. 6.5 is general and

could be applied to any surface conductor measured by Hall bar geometry, but it is especially

useful in materials where subsurface cracks are present.

To proceed, we consider the specific case of the Γ and 2X pockets in SmB6. A Hall bar

measurement would yield the relation in Eq. 6.5, modified for two channels:

σxy = nΓeµ
2
ΓB + n2Xeµ

2
2XB. (6.6)

From Ref. [173], the Γ pocket has an estimated carrier density of 8×1012 cm−2 and mobility

of 170 cm2/V·s, while the 2X pockets have an estimated carrier density of 2×1014 cm−2

and mobility of 10 cm2/V·s. This means that the Γ pocket, which has the higher mobility

102



of the two surface pockets, dominates the Hall conductivity in SmB6. In contrast, surface

conductivity measured by a Corbino disk contains equal contributions from both pockets,

and still may depend on an unknown amount of conduction through subsurface cracks:

σxx = nΓeµΓ + nΓeµΓ + σcr. (6.7)

This suggests that although the Corbino disk is the best transport method for isolating a

single surface, it lacks the ability to independently characterize the Γ and 2X pockets of

SmB6 (or more generally, characterize individual channels in a two-dimensional conductor).

Other methods like ARPES or quantum oscillations can more readily probe the X pocket,

as it has a higher carrier density than the Γ pocket. In contrast to these, in the new method

presented here in Eq. 6.6, the dependence on the square of the mobility means that the

higher mobility channel dominates. Effectively, this means that the Γ pocket can be probed

using this method of analysis with simple Hall bar geometry.

In the following sections, these methods are used to analyize Hall bar results on SmB6.

To extend these measuremens, ionic liquid gating is also used to try to change the surface

characteristics. Before discussing the ionic gating results, the method will be introduced in

the next section.

6.4 Introduction to ionic liquid gating

6.4.1 Properties of the ionic liquid

Ionic liquids are often employed in research involving electric double layer (EDL) devices for

energy storage applications. [177, 178] They are generally formed between two large organic

molecules with a weak ionic binding. [177]. Upon application of a voltage to the ionic

liquid, the ions separate; if positive voltage is applied on an electrode, a layer of negative

charges builds up around the electrode, and a layer of positive charges builds up far from

the electrode. [179] This effectively applies a positive voltage to the sample in a similar way

to a traditional metallic gate.

In the present experiments, the ionic liquid N,N-diethyl-N-methyl-N-(2-methoxyethyl)
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ammonium bis(trifluoromethylsulphonyl)imide (DEME TFSI) was used. This liquid has a

high ionic conductivity, [179] so it can serve as an efficient medium for applying voltage to the

sample. In addition, it leaks charge very little as the temperature is reduced, so the voltage

applied to the sample is stable over a large temperature range. [180] However, DEME-TFSI

has a glassy transition at 182 K, [179, 178] so the applied voltage must be changed at higher

temperatures. The breakdown voltage of DEME-TFSI is also rather large (2-3 V) compared

to other ionic liquids, [178] but it is unclear whether damage to the liquid is permanent if

too large of a voltage is applied. DEME-TFSI may also have a finite response time, likely

due to the size of the molecules hindering movement when voltage is applied.

Ionic liquids are ideal for gating experiments in materials with a large active region.

When metallic gates are used on a large active region, often they can have leakage issues

that impede experimentation. In SmB6, all the surfaces are conductive, so the ideal way to

gate would be to gate all the surfaces at once. Since SmB6 is generally a macroscopic crystal,

this would not be feasible with a metallic gate. Using an ionic liquid instead allows voltage

to be applied to all surfaces of the sample.

6.4.2 Control measurement in N-polar GaN

Since SmB6 is a challenging material to understand, ionic gating measurements were initially

performed on N-polar GaN high-electron mobility transistors (HEMTs). This work on GaN

was published in Applied Physics Letters, vol. 114, p. 162102 in 2019, [181] but only the

aspects relevant to ionic liquid gating on SmB6 are presented here. GaN HEMTs have many

high-power and high-frequency applications due to their large band gap of 3.4 eV and high

electron mobility in the 2DEG. [182, 183, 184, 185] They can have Ga polarity or N polarity;

most GaN studies for past applications have focused on Ga-polar devices, but N-polar devices

now seem to have many advantages. In N-polar HEMTs, the two-dimensional electron gas

(2DEG) forms on top of the barrier (the larger bandgap material) whereas in Ga-polar

HEMTs the 2DEG is positioned below the barrier. This allows for better confinement of the

2DEG in N-polar devices compared to Ga polar, as well as better control of the device via

gating. [186] One reason that Ga-polar devices were previously favored was that N-polar

devices are harder to grow epitaxially in comparison. [187] Thus, there are very few transport
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Figure 6.2: Epistructure of the GaN HEMT studied in this work. The sample was grown on
a miscut semi-insulating GaN-on-sapphire template using plasma-assisted molecular beam
epitaxy.

studies on N-polar GaN.

In the published work, [181] temperature-dependent Shubnikov-de Haas and Hall mea-

surements are reported and the carrier density and mobility are presented. The presence

of persistent photoconductivity (PPC), or an increase in carrier density after illumination,

was also tested. It was not observed in the N-polar samples, in contrast to past work on

Ga-polar samples. [188, 189, 190, 191] Since PPC has been utilized to change charge density

in the channel in electron transport [192, 193], we further investigated the charge density

using ionic liquid gating.

The heterostructure of the GaN sample used in the ionic gating measurements is shown in

Fig. 6.2. The transport geometry was lithographically defined van der Pauw geometry with

Ohmic contacts. Magnetotransport measurements were carried out using a low-frequency

ac technique in a Quantum Design 14 T Physical Property Measurement System. Since

DEME-TFSI may be reactive with water vapor, it was applied to the sample immediately

before loading into the cryostat, to prevent possible reaction with air. To prevent breakdown,

gate voltages from −1 V to +2 V in steps of 0.5 V were tested. An adjacent Au pad was

used as a gate electrode. Each voltage was applied at 250 K, above the glassy transition

temperature. The sample was subsequently cooled to 1.7 K, where the longitudinal resistance

was measured in one van der Pauw configuration. The system was then warmed back to 250

K before applying the next gate voltage.
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Figure 6.3: (a) Resistance of N-polar GaN sample at selected voltages applied to the ionic
liquid. (b) Carrier density vs mobility extracted from resistance and Hall resistance (filled
circles) shown with data and fits from Manfra, et al. [194] (unfilled circles and lines).
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Figure 6.3(a) shows traces for selected gate voltages. Changing the gate voltage on the

liquid affects both the magnitude of the measured resistance and the period of the oscillations.

The carrier density was extracted for each gate voltage and showed a change from 7.5×1012

cm−2 at −1 V to 9.6×1012 cm−2 at +2 V, but no second sublevel (which would correspond

to a second oscillation frequency) was observed during this measurement. Mobility was also

extracted and showed a corresponding change, as shown in Fig. 6.3(b). In Ref. [181], this

figure was used to understand the differences in scattering mechanism between our N-polar

device (filled circles) and a previous result for traditional metallic gating on a Ga-polar device

with a similar defect density (unfilled circles, from Manfra, et al. [194]). For the purposes of

ionic gating, the experiment on GaN indicated that ionic liquid gating is a powerful tool for

changing the carrier density and mobility of a material. By comparing with a traditionally

gated result, we find that ionic gating does not allow for as wide of a range in carrier density

or mobility to be probed, but its effects are qualitatively similar.

6.5 Ionic liquid gating on SmB6

We then performed a similar measurement on an SmB6 sample. In this sample, we measured

the resistance and Hall effect at low temperatures at a variety of gate voltages using Hall bar

geometry. We used sample S1 from the previous chapter; this sample was flux grown, so it

was thinned to ensure that no Al inclusions remained. It was also polished on the four sides

making up the active region of the Hall bar with progressively smaller grit sizes down to 0.3

µm. The Hall bar geometry was defined by e-beam lithograhy followed by metallizing with

Ti/Au. Contacts were initially made using silver paste, but these were not strong enough to

withstand the glassy transition of the ionic liquid. Instead, contacts were made using indium

and gold wire. To allow all surfaces of the sample to be gated, the sample was suspended in a

small Si boat. An adjacent indium contact was used as a gate electrode. Measurements were

performed in a 14 T Dynacool Quantum Design Physical Property Measurement System

(PPMS) with an SR830 lock-in amplifier.

As with the GaN experiment, DEME-TFSI was used, and it was applied immediately

before loading the sample into the cryostat to prevent possible reaction with air. Gate

107



0.0 0.1 0.2 0.3 0.4 0.5 0.6
1/Temperature (1/K)

0

200

400

600

800

1000

1200

R
sq

 (
)

-2 V
-1.5 V
-1 V
-0.5 V
0 V
+0.5 V
+1 V
+1.5 V
+2 V

Figure 6.4: Surface resistance of SmB6 from 1.7-20 K at gate voltages between −2 V and
+2 V.

voltages from −2 V to +2 V were tested, and each gate voltage was applied at 300 K.

Keeping the reported finite response time of the liquid in mind, we found that the applied

voltages were most accurate when the liquid was allowed to rest at the newly applied gate

voltage at 300 K before cooling down; we used a resting time of 30 minutes. Additionally,

the voltages were applied in order of their magnitudes, i.e. +0.5 V, then +1 V, then +1.5 V,

etc. which seemed to enhance the accuracy of each trace. The liquid rested at 0 V overnight

between applying the positive and negative voltages. Each voltage was also applied at zero

magnetic field; for Hall effect measurements the field was applied below the glassy transition

temperature to avoid any magnetic effects on the ions in the liquid.

The resistance of the sample from 1.7 K to 20 K at all the gate voltages tested is shown

in Fig. 6.4. Instead of presenting the as-measured resistance R, we present the surface re-

sistance as Rsq. This method is chosen as ionic gating is expected to change the surface

properties below 4 K. The results show a change of about 200 Ω over all the gate voltages

measured, meaning that gating does change the surface characteristics of SmB6. However,

the magnitudes of the plateaus do not follow a consistent relationship with the gate voltages.
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Figure 6.5: Surface Hall coefficient of SmB6 from 1.7-20 K at gate voltages between −2 V
and +2 V.

The lack of a consistent relationship between gate voltage and plateau magnitude was ob-

served in all ionic gating trials we performed on this sample, but the data set presented here

most clearly demonstrates the effects of gating on the surface. It is also unclear why some of

the traces have a temperature-independent plateau while the others have some temperature

dependence below 4 K.

The Hall coefficient from 1.7 K to 20 K at all the gate voltages tested is shown in Fig. 6.5.

Again, the data are presented as the two-dimensional Hall effect to highlight the changes

in the surface properties. The results show a change of about 2000 cm2/V·s at the lowest

temperature over all the gate voltages measured. Again, the magnitudes do not follow

a consistent relationship with the gate voltages, but the ordering of the traces for negative

voltages is consistent with what was seen in resistance. In addition, since the original purpose

of this study was to test the 10-15 K feature, we found that ionic gating had no effect on the

feature in the Hall coefficient, contrary to what would be expected from the band bending

model.
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Figure 6.6: Estimated carrier density using Eq. 6.6.

6.6 Discussion

Using the analysis method for Hall bar geometry introduced above, we can estimate the

carrier density and mobility in SmB6. First, we consider the ionic gating results to determine

whether the carrier density was affected. Using the estimated mobility values obtained from

the previous Corbino disk results, the carrier density is estimated at all gate voltages from

the measurement. A plot of carrier density versus gate voltage for the data in Figs. 6.4 and

6.5 is shown in Fig. 6.6. This analysis method shows a small change in carrier density from

about 1.5×1012 cm−2 to about 1.7×1012 cm−2. The change in carrier density is small and

does not show a clear trend like what was seen in GaN, but this is expected as the SmB6

surface is more complex than a semiconductor 2DEG.

Next, to improve the overall estimates of the carrier density and mobility on the surface,

mobility is left as a parameter, and the quantity nµ2 from Eq. 6.5 is computed for the range

of voltages measured in the ionic liquid. The nµ2 results from the highest voltage and the

lowest voltage are added to the parameter space obtained earlier using the Corbino disk,

shown as the two new parallel lines in Fig. 6.7. The overlap of the new constraint with the
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Figure 6.7: Parameter space of the Γ and 2X pockets estimated using both Corbino and Hall
bar geometry. The triangle indicates the conductivity measured by a Corbino disk [110], and
the red shaded area indicates the new estimate for the Γ pocket.

constraints from the Corbino disk create a new, smaller parameter space for carrier density

and mobility for the Γ pocket, shown in red in Fig. 6.7. The estimated carrier density and

mobility of the Γ pocket based on the new constraint are 2.5×1012 cm−2 and 150 cm2/V·s,

respectively. These values agree with the estimated carrier density and mobility from the

Corbino disk and ARPES results.

The leading source of error remaining in the analyzed data is due to the contact geometry.

Both the size and location of the contacts are very important. To partly address these, we

used e-beam lithography to ensure that the Ti/Au contact pads were all the same size and

were aligned perfectly with each other. However, wiring with indium adds some error to

this as occasionally the indium contact exceeds the size of the contact pad. To reduce

error in geometry, the size of the contacts should be reduced as much as possible while still

preserving their alignment and uniformity with each other. We believe that reducing contact

size would not only lead to more accurate transport parameters, it may also improve the

clarity of results obtained in the ionic gating experiment.
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6.7 Conclusion

In this chapter, properties of the surface in SmB6 were investigated. Previous work to

determine an allowed parameter space of carrier density and mobility on the (001) surface

was reviewed. To extend this work, a new method of analyzing Hall bar geometry was

introduced. This new method significantly improves the accuracy of carrier density and

mobility extracted from Hall results, making them well within the parameter space. More

importantly, the Hall conductivity in the new analysis is independent of any conduction

through subsurface cracks, and it is proportional to the square of the mobility. Thus, Hall

bar geometry can be used to study the high-mobility, low-carrier density Γ pocket in SmB6.

This is significant because the Γ pocket, with its lower carrier density, can be difficult to

access using many experimental methods. In addition, Hall bar geometry was previously

thought to be a poor way to study the SmB6 surface; this work demonstrates that it can be

used together with Corbino measurements to obtain a complementary picture of the surface.

The improved Hall analysis also prevents significant overestimation of the surface carrier

density.

To further study the SmB6 surface, ionic liquid gating was performed. An initial mea-

surement on N-polar GaN was included to demonstrate how ionic liquid gating would work

in the case of a straightforward 2DEG. Then, resistance and Hall effect measurements as

a function of temperature for different gate voltages from −2 V to +2 V were presented.

By analyzing the ionic gating results using the crack-independent Hall conductivity, a new

constraint was placed on the parameter space for the (001) surface, specifically narrowing

down the allowed space of the Γ pocket. A major source of error remaining in these Hall

bar measurements is due to the contact size and alignment, so by improving the geometry,

a more precise parameter space could be developed.
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Chapter 7

Conclusion and Outlook

7.1 Summary

Samarium hexaboride is a fascinating material with an extensive history. Its resistivity-

temperature curve shows metallic behavior at room temperature, activated behavior from

about 5-50 K, and a plateau in resistivty below 4 K. The activated behavior was explained

when SmB6 was identified as the first Kondo insulator, in which the f and d bands hybridize

to open a small gap at the Fermi energy. Additionally, SmB6 is a classic mixed valence

compound, where an overall noninteger valence appears due to rapid fluctuation between two

integer valence states. Most recently, the plateau in resistivity was predicted to arise from

topology, and SmB6 was predicted to be the first topological Kondo insulator. Significant

experimental effort, including electrical and magnetotransport, angle-resolved photoemission

spectroscopy, and quantum oscillations, as well as more exotic methods, has been dedicated

to understanding the role that topology may play in SmB6. However, little consensus has

been reached, and more questions have been raised. In this dissertation, a few of these

open questions were addressed, including a model of the hybridization gap in Chapter 3,

high-temperature bulk behavior and the role of skew scattering in Chapter 4, a new bulk

conduction channel below 4 K arising from impurities or dislocations in Chapter 5, and the

surface carrier density and mobility using the Hall effect and ionic gating in Chapter 6. Also

considered were the role of sample growth technique, the importance of surface preparation,
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and improving the analysis of transport measurements.

In Chapter 3, Poisson’s equation was solved self-consistently across the bulk of SmB6 in

the case of a bulk that behaves like an intrinsic semiconductor and a conductive surface that

may or may not arise from topological effects. In an intrinsic semiconductor, the activation

energy is expected to be half the total gap size, but experimental results on SmB6 suggest

that the total gap size is 20 meV while the activation energy is just 3 meV. By including the

conductive surface, however, the valence and conduction bands bend significantly near the

surfaces, which allows the total gap to remain the same but reduces the activation energy,

as is seen in experiment. Semiclassical transport was used to connect the band structure

to measurable parameters; specifically the Hall coefficient and the Seebeck effect. The re-

sults simulated a feature near 10-15 K which is observed in experimental reports of both

parameters. Finally, ways of experimentally verifying the results were introduced: varying

the thickness, which would change where band bending becomes important in the bulk, or

varying the surface charge, which would change the strength of the bending effect near the

surface. These were tested by performing Hall effect measurements on samples of various

thicknesses, including a Hall bar of 2 µm thickness prepared by focused ion beam, but no

difference was observed. Ionic liquid gating was used to change the surface charge, but again

the predicted difference was not observed. Band bending is likely not the correct scenario

for describing SmB6; the model was simplified too much and improving the assumptions

would yield better results. A later, related, study [105] reformulated the effective mass

approximation for the correct dispersion in SmB6 and instead found that in-gap impurity

states are justified and described by a different effective radius, and this model is much more

appropriate for understanding impurity states and the gap in SmB6.

Chapter 4 focused on the Hall coefficient from 5-400 K, where standard bulk conduction

dominates. A well-known feature in this temperature range is a sign change near 65 K in the

Hall coefficient; below about 65 K the sign is negative, and above 65 K the sign is positive.

By extending the measurements to 400 K, a second sign change was observed, and the Hall

coefficient changes back to negative above about 305 K. Since electrons are the dominant

charge carrier in SmB6, the negative sign change is known to be the correct one, but the

positive sign between 65 and 305 K is also well-known in heavy fermion systems to arise
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from skew scattering due to the strong correlations. A qualitative model of skew scattering

is presented in SmB6 by considering the band structure and that only electrons near the

Fermi energy participate in transport. This model can explain the two sign changes we

observe: above 305 K, standard scattering from phonons or impurities dominates; when the

Hall sign is positive, skew scattering dominates; and when the Kondo gap begins to open

up, the sign is again negative, correctly reflecting the sign of the carriers. The effect of

the positive sign on transport analysis is discussed, and a method for extracting the correct

Hall mobility in the presence of an incorrect Hall sign is presented. This chapter also shows

Hall bar transport data below 5 K, including the wide variation between samples, especially

samples grown by different techniques.

A closer look at the low-temperature behavior was presented in Chapter 5. Here, inverted

resistance measurements were used to study bulk behavior of SmB6 at temperatures where

surface conduction dominates. Prior results on Al flux grown samples were shown, and

they were then compared with results on floating zone grown samples. The two types of

samples behaved very differently below 5 K; pure Al flux samples showed activated behavior

to the lowest temperature measured, but pure floating zone samples showed significant bulk

conduction. This low-temperature bulk conduction is a previously unreported conduction

channel, and it may partially explain why transport data varies so much, especially when

comparing flux and floating zone samples. The low-temperature bulk channel is attributed

to a combination of impurity scattering after the model by Skinner, et al. [105] as well

as scattering through one-dimensional defects, or dislocations. Although dislocations are

expected to be present, their presence is verified experimentally by chemical etching and

imaging with a scanning electron microscope.

In Chapter 6, the focus was on transport on the conductive surface of SmB6. First,

previous work on creating a parameter space of carrier density and mobility from theory and

Corbino measurements was summarized. The Corbino disk is generally considered a superior

method for studying the surface of SmB6 since the geometry constrains current to flow on a

single surface. However, Hall bar geometry was shown to provide complementary information

to the Corbino disk. Conduction through subsurface cracks pollutes measurements of the

surface, and combining the resistance and Hall coefficient measurements available in Hall bar
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geometry allows a crack-independent quantity to be determined. This quantity is dependent

on the square of the mobility, so in a material like SmB6 with two types of surface pockets,

the higher mobility pocket dominates. In SmB6, the high mobility pocket is the Γ pocket,

which tends to be difficult to probe experimentally due to its low carrier density; the work in

this chapter demonstrates that Hall bar geometry is in fact able to probe properties of this

elusive pocket. Ionic liquid gating measurements are also presented to extend information

about the Γ pocket. The crack-independent quantity is used to further constraints on the

Corbino parameter space, further cornering the carrier density and mobility for the Γ pocket.

Overall, these studies reflect that Hall bar geometry is an extremely useful transport

geometry in SmB6. However, it often cannot be analyzed using the standard textbook

equations to find the carrier density and mobility. At high temperatures, the effect of skew

scattering was found to give the wrong sign of the carriers and a negative mobility by using

the textbook analysis. This was improved by combining Hall bar data with ARPES. At low

temperatures, Hall bar geometry was previously thought to be a poor way of studying the

surface, but by analyzing it in a slightly different way, new information can be obtained.

Another important theme of this dissertation is that the bulk of SmB6 is quite complex.

Many of the modern studies have focused on understanding the surface, but a complete pic-

ture of the bulk is also necessary to gain a full understanding of the material as a whole. For

example, skew scattering is extremely important at high temperatures, while material defects

could dominate bulk conduction at low temperatures. It is likely that a full understanding

of the bulk will be even more important to SmB6 than determining properties (including

topology) of the surface.

7.2 Future work

7.2.1 Ionic gating and contact geometry

The ionic gating measurements shown in Chapter 6 were performed multiple times on the

same sample, and the results were not very consistent. While inconsistency is a more general

problem in SmB6, the ionic liquid gating measurement could be improved. First, although
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some properties of the liquid DEME-TFSI are reported in literature, they are mainly geared

toward capacitor applications rather than using the liquid as a gate. Systematic studies

of the properties of the ionic liquid are currently underway in our group, and this should

improve outcomes of ionic gating experiments on SmB6.

In addition, contact geometry was recognized as a significant source of error. Although

this would be relevant to any Hall bar measurement, ionic gating seems to be especially

sensitive to geometry. To improve contact geometry, the size of the contacts should be

reduced as much as possible, and the alignment of the contacts used to measure the Hall

coefficient should be as precise as possible. This can be done using spot welding, in which a

voltage is discharged over a wire to weld it directly to the sample. [195, 196] In contrast to

Ti/Au contacts and silver paste, which have sizes of about 200 µm by 200 µm, spot welding

would yield contacts that are just larger than the diameter of the wire used for the lead.

Since all the ionic gating results currently obtained were performed on the same sample,

it would be useful to compare results on different samples. To extend the work presented in

Chapter 5, where floating zone samples are found to host bulk conduction below 5 K, it would

be especially interesting to perform ionic gating measurements on a floating zone sample to

test whether the surface characteristics differ significantly from the flux grown sample from

Chapter 6. This type of result would be of interest to the wider SmB6 community, as there

is ongoing debate about ARPES and dHvA results compared between flux and floating zone

grown samples.

7.2.2 The role of impurities

Impurities, both magnetic and nonmagnetic, have been a recent subject of interest in the

SmB6 community. In light of the new bulk conduction channel below 5 K, a systematic study

of impurities and their effect on low-temperature conduction is a clear future direction. Also,

impurities have been used to explain everything from the resistance plateau [3] to the presence

of dHvA oscillations. [27, 91, 102] Recent work has also suggested that impurities play a

role in the topology of SmB6 [104] and may have a significant affect on thermal transport

at low temperatures. [197] Magnetic impurities are of particular interest as recent work has

demonstrated that they can screen local moments, perhaps disrupting the Kondo effect and
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leading to novel magnetic properties that have not yet been fully probed. [102]

Drawing from this, Ref. [197] demonstrates that magnetic impurities affect the thermal

properties of SmB6 at low temperatures. This work also suggests that purifying SmB6

isotopically is a good way to reduce rare earth impurities in SmB6. However, other work

from Ref. [91] indicates that impurities are not a significant effect in their studies of thermal

transport and dHvA oscillations. One way to resolve this could be by performing dHvA

oscillation studies on isotopically purified SmB6.

In addition to point impurities, dislocations and other material defects are another direc-

tion of future study. The work presented in Chapter 5 is the first exploration of dislocations

in SmB6, so there is significant opportunity for future work. Other material defects, like

grain boundaries, polycrystals, and twin crystals, could play a role in some SmB6 samples,

and these would also be interesting to study systematically.

Besides expanding etching studies to better understand the variation of dislocation den-

sity between samples, it would be interesting to study the properties of an individual dis-

location. To do this, the dislocation could be identified using etching and then cut out of

the larger sample using the focused ion beam technique introduced in Chapter 2. Placing a

Corbino disk on the dislocation would allow the transport characteristics of the dislocation

to be studied. Alternatively, the focused ion beam could be used to cut out a dislocation-free

region of the sample, and its properties could be compared to that of a sample that includes

dislocations.

7.2.3 Other open questions

A few of the remaining open questions in SmB6 were briefly discussed in the introduction, but

many more remain. Electrical transport has been discussed at length in this dissertation, but

magnetotransport and transport under pressure have not been investigated as deeply. One

mystery in magnetotransport is why the magnetoresistance is negative at all temperatures

measured. It would normally be expected to be positive for a metal (below 4 K in SmB6),

but this is not seen.

It would additionally be interesting to revisit pressure measurements in SmB6. Pressure

was previously studied to investigate whether SmB6 is a Kondo insulator. [198, 10] Now that
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more is known about SmB6, the effects of pressure on the various conduction channels could

be a new area of study. For example, the effect of pressure on the surface conductivity or on

the surface carrier density and mobility would be an interesting topic of study. Alternatively,

the effect of pressure on the low-temperature bulk conduction channel could be another area

of study. Related to pressure, one study [199] was performed on SmB6 under strain, and it

would be interesting to test whether those results are reproducible.

Spectroscopic results also leave room for future work. For example, discussions of ARPES

results seem to have stalled on the (001) surface, but STM and related methods are still being

used. The role of surface polarity and reconstructions has been investigated in STM, and

a recent quasiparticle interference study showed Dirac cones at the Γ and X points on the

(001) surface. [79] However, the (111) crystal surface may be even more promising. This

surface can be cleaved in situ, it is nonpolar so it does not form reconstructions, and one

study has shown evidence for an odd number of Dirac cones and spin momentum locking. [78]

Could the (111) surface, which has not been extensively studied, be the key to understanding

surface conduction in SmB6?

An obvious open question is to work towards resolving quantum oscillations, specifically

finding the origin of the de Haas-van Alphen oscillations and why results seem to differ

between Al flux and floating zone grown samples. One experimental possibility moving

forward is to measure dHvA on an isotopically purified floating zone sample to test if it

matches more closely with the flux sample results. More mysterious in quantum oscillations

is why Shubnikov-de Haas oscillations have not yet been seen in SmB6.

Results from transport, ARPES, and dHvA were the primary methods considered in this

dissertation, but a huge amount of other work on SmB6 exists. For example, ac transport

results have been performed, [200, 201] and they do not agree with dc transport in the

relevant limits. It is still unknown why this occurs. Additionally, Raman spectroscopy has

been used to study phonon modes in SmB6, [202, 203] but it is unclear how these fit in

with other results. Inelastic neutron scattering has also been studied for some time, and one

distinct signature is a 14 meV magnetic mode within the gap of SmB6. [204] This mode

seems to be well-understood in isolation, but it is still not clear if it should be related to

in-gap impurity states or topological surface states. These are not the only methods used to
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test SmB6, however, and there is still room for significant and creative breakthroughs before

a complete understanding of this material is reached.
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and E. D. L. Rienks. Samarium hexaboride is a trivial surface conductor. Nature

Communications, 9:517, 2018.

[25] H. Hermann, P. Hlawenka, K. Siemensmeier, E. Weschke, J. Sánchez-Barriga,

A. Varykhalov, N. Y. Shitsevalova, A. V. Dukhnenko, V. B. Filipov, S. Gabáni,

K. Flachbart, O. Rader, M. Sterrer, and E. D. L. Rienks. Contrast reversal in scanning

tunneling microscopy and its implications for the topological classification of SmB6.

Advanced Materials, 32:1906725, 2020.

123



[26] B. S. Tan, Y.-T. Hsu, B. Zeng, M. Ciomaga Hatnean, N. Harrison, Z. Zhu, M. Hart-

stein, M. Kiourlappou, A. Srivastava, M. D. Johannes, T. P. Murphy, J.-H. Park,

L. Balicas, G. G. Lonzarich, G. Balakrishnan, and S. E. Sebastian. Unconventional

Fermi surface in an insulating state. Science, 349:6245, 2015.

[27] M. Hartstein, W. H. Toews, Y.-T. Hsu, B.Zeng, X. Chen, M. C. Hatnean, Q. R. Zhang,

S. Nakamura, A. S. Padgett, G. Rodway-Gant, J. Berk, M. K. Kingston, G. H. Zhang,

M. K. Chan, S. Yamashita, T. Sakakibara, Y. Tanako, J.-H. Park, L. Balicas, N. Har-

rison, N. Shitsevalova, G. Balakrishnan, G. G. Lonzarich, R. W. Hill, M. Sutherland,

and S. E. Sebastian. Fermi surface in the absence of a Fermi liquid in the Kondo

insulator SmB6. Nature Physics, 14:166, 2017.

[28] H. C. Longuet-Higgins and M. de V. Roberts. The electronic structure of the borides

MB6. Proceedings of the Royal Society A, 224(1158):336–347, 1954.

[29] S. von Molnar, T. Theis, A. Benoit, A. Briggs, J. Flouquet, J. Ravex, and Z. Fisk.

Study of the energy gap in single crystal SmB6. In P. Wachter and H. Boppart, editors,

Valence Fluctuations, page 389. North-Holland Publishing Company, 1982.

[30] Yu. B. Paderno, S. Pokrzywnicki, and B Stalinski. Magnetic properties of some rare

earth hexaborides. Phys. Stat. Sol., 24:K73–K76, 1967.

[31] J. C. Nickerson, R. M. White, K. N. Lee, R. Bachmann, T. H. Geballe, and G. W.

Hull, Jr. Physical Properties of SmB6. Physical Review B, 3(6):2030, 1971.

[32] V. V. Glushkov, A. V. Kuznetsov, O. A. Churkin, S. V. Demishev, Yu. B. Paderno,

N. Yu. Shitsevalova, and N. E. Sluchanko. Spin gap formation in SmB6. Physica B,

378-380:614–615, 2006.

[33] S. Yeo, K. Song, N. Hur, Z. Fisk, and P. Schlottmann. Effects of Eu doping on SmB6

single crystals. Physical Review B, 85:115125, 2012.

[34] J. W. Allen and R. M. Martin. Surface mixed valence in Sm and SmB6. Physical

Review B, 21(4):1335, 1980.

124



[35] C. M. Varma. Mixed-valence compounds. Reviews of Modern Physics, 48:219, 1976.

[36] M. B. Maple and D. Wohlleben. Nonmagnetic 4f shell in the high-pressure phase of

SmS. Physical Review Letters, 27:511, 1971.

[37] F. Lapierre, M. Ribault, F. Holtzberg, and J. Flouquet. New states in SmS? Solid

State Communications, 40:347, 1981.

[38] G. K. Wertheim, W. Eib, E. Kaldis, and M. Campagna. Mixed valency of TmSe.

Physical Review B, 22:6240, 1980.

[39] E. Beaurepaire, J. P. Kappler, and G. Krill. X-ray-absorption near-edge structure

study in mixed-valent samarium systems. Physical Review B, 41(10):6768, 1990.

[40] T. Kasuya, K. Kojima, and M. Kasaya. Theory and experiment on SmB6. In R. D.

Parks, editor, Valence Instabilities and Related Narrow-Band Phenomena, page 137.

Plenum Press, 1977.

[41] M. Kasaya, J. M. Tarascon, and J. Etourneau. Study of the valence transition in La-

and Yb-substituted SmB6. Solid State Communications, 33:1005–1007, 1980.

[42] J. M. Tarascon, Y. Isikawa, B. Chevalier, J. Etourneau, P. Hagenmuller, and

M. Kasaya. Valence transition of samarium in hexaboride solid solutions Sm1−xMxB6

(M = Yb2+, Sr2+, La3+, Y3+, Th4+. J. Physique, 51:3877, 1980.

[43] I. V. Berman, N. B. Brandt, V. V. Moschalkov, S. N. Pashkevich, V. I. Sidorov,

E. S. Konovalova, and Yu. B.Paderno. Effect of pressure on the correlation gap in a

compound with intermediate valency SmB6. JETP Letters, 38:477, 1983.

[44] N. P. Butch, J. Paglione, P. Chow, Y. Xiao, C. A. Marianetti, C. H. Booth, and J. R.

Jeffries. Pressure-resistant intermediate valence in the Kondo insulator SmB6. Physical

Review Letters, 116:156401, 2016.

[45] J. Beille, M. B. Maple, J. Wittig, Z. Fisk, and L. E. DeLong. Suppression of the energy

gap in SmB6 under pressure. Mat. Res. Bull, 28(12):7397, 1983.

125



[46] Y. Zhou, Q. Wu, P. F. S. Rosa, R. Yu, J. Guo, W. Yi, S. Zhang, Z. Wang, H. Wang,

S. Cai, K. Yang, A. Li, Z. Jiango, S. Zhang, X. Wei, Y. Huang, Y. Yang, Z. Fisk, Q. Si,

L. Sun, and Z. Zhao. Quantum phase transition and destruction of Kondo effect in

pressurized SmB6. Science Bulletin, page 1439, 2017.

[47] T. Kasuya, K. Takegahara, Y. Aoki, K. Hanzawa, M. Kasaya, S. Kunii, T. Fujita,

N. Sato, H. Kimura, T. Komatsubara, T. Furuno, and J. Rossat-Mignod. Anomalous

properties of valence fluctuating CeB6 and SmB6. In L.M. Falicov, W. Hanke, and M.B.

Maple, editors, Valence Fluctuations in Solids, page 215. North-Holland Publishing

Company, 1981.

[48] S. Nozawa, T. Tsukamoto, K. Kanai, T. Haruna, S. Shin, and S. Kunii. Ultrahigh-

resolution and angle-resolved photoemission study of SmB6. Journal of Physics and

Chemistry of Solids, 63:1223–1226, 2002.

[49] S. Souma, H. Kumigashira, T. Ito, T. Takahashi, and S. Kunii. Direct observation of

pseudogap of SmB6 using ultrahigh-resolution photoemission spectroscopy. Physica B,

312-313:329–330, 2002.

[50] H. Miyazaki, T. Hajiri, T. Ito, S. Kunii, and S. Kimura. Momentum-dependent hy-

bridization gap and dispersive in-gap state of the Kondo semiconductor SmB6. Physical

Review B, 86:075105, 2012.

[51] A. Barla, J. Derr, J. P. Sanchez, B. Salce, G. Lapertot, B. P. Doyle, R. Ruffer, R. Lengs-

dorf, M. M. Abd-Elmeguid, and J. Flouquet. High-Pressure Ground State of SmB6:

Electronic Conduction and Long Range Magnetic Order. Physical Review Letters,

94:166401, 2005.

[52] J. Derr, G. Knebel, D. Braithwaite, B. Salce, J. Flouquet, K. Flachbart, S. Gabani, and

N. Shitsevalova. From unconventional insulating behavior towards conventional mag-

netism in the intermediate-valence compound SmB6. Physical Review B, 77:193107,

2008.

126



[53] A. Lacerda, D. Rickel, M. F. Hundley, P. C. Canfield, J. D. Thompson, Z. Fisk, P. Haen,

and F. Lapierre. High field magnetoresistance in SmB6. Physica B, 199-200:469–470,

1994.

[54] J. C. Cooley, M. C. Aronson, A. Lacerda, Z. Fisk, P. C. Canfield, and R. P. Guertin.

High magnetic fields and the correlation gap in SmB6. Physical Review B, 52(10):7322,

1995.

[55] Y. Nakajima, P. Syers, X. Wang, R. Wang, and J. Paglione. One-dimensional edge

state transport in a topological Kondo insulator. Nature Physics, 12:213, 2015.

[56] S. Wolgast, Y. S. Eo, T. Ozturk, G. Li, Z. Xiang, C. Tinsman, T. Asaba, B. Lawson,
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[140] S. Wolgast, Y. S. Eo, Ç. Kurdak, D.-J. Kim, and Z. Fisk. Conduction through subsur-

face cracks in bulk topological insulators, 2015. arXiv:1506.08233 [cond-mat.str-el].

[141] A. Kebede, M. C. Aronson, C. M. Buford, P. C. Canfield, J. H. Cho, B. R. Coles,

J. C. Cooley, J. Y. Coulter, Z. Fisk, J. D. Goettee, W. L. Hults, A. Lacerda, T. D.

McLendon, P. Tiwari, and J. L. Smith. Studies of the correlated electron system SmB6.

Physica B, 223-224:256–259, 1996.

[142] N. I. Kato. Reducing focused ion beam damage to transmission electron microscopy

samples. Journal of Electron Microscopy, 53(5):451, 2004.

[143] C. A. Volkert and A. M. Minor. Focused ion beam microscopy and micromachining.

Materials Research Society Bulletin, 32:389, 2007.

[144] J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael. TEM sample preparation and

FIB-induced damage. Materials Research Society Bulletin, 32:400, 2007.
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[193] H. Cheng, Ç. Kurdak, J. H. Leach, M. Wi, and H. Morkoç. Two-subband conduc-
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