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Abstract 

 
Cyanobacterial harmful algal blooms (CHABs) are threats to freshwaters globally. Some 

strains of the harmful cyanobacterium, Microcystis, produce microcystins, toxins that sicken 

animals and people. The proportions of microcystin-producing (toxic) and non-microcystin-

producing (nontoxic) strains of Microcystis are an important determinant of bloom microcystin 

concentrations. Microcystins may protect cyanobacteria from hydrogen peroxide (H2O2), which 

is ubiquitous in surface waters and can stress microbes. Therefore, H2O2 concentrations may 

impact the proportions of toxic and nontoxic Microcystis during blooms by favoring toxic 

strains, but the current literature conflicts in supporting this hypothesis.  

Sources and sinks of H2O2 during CHABs are not well characterized. Some 

microorganisms produce enzymes to decompose H2O2, and microbial decomposition is the 

dominant sink for H2O2 in surface waters. However, H2O2 decomposition varies across microbial 

taxa. Some microbes lack enzymes for H2O2 decomposition and rely on other community 

members for H2O2 decomposition. In addition, microbial production is an important source of 

H2O2 in surface waters and may be greater than known chemical sources of H2O2. Thus, impacts 

from H2O2 depend on community wide H2O2 production. Microorganisms likely affect 

Microcystis growth, as CHABs contain diverse communities of microbes, some of which 

physically attach to Microcystis colonies. However, which organisms degrade and produce H2O2 

during CHABs and the microbial communities that specifically associate with Microcystis are 

unknown. 
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To address the above knowledge gaps, a combination of cultivation experiments, field 

incubations, and cultivation-independent approaches were used. Microcystis strains were 

cultured with an exogenous H2O2 scavenger to investigate how H2O2 impacts Microcystis 

growth. Several toxic and nontoxic strains were unaffected, but one toxic strain had improved 

growth rates with the H2O2 scavenger, which suggests that microcystin production alone does not 

determine the impact of H2O2 exposure on Microcystis strains. The microbes that contain and 

express genes for H2O2 decomposition during western Lake Erie CHABs were identified using 

multi-omics approaches. Key genes for H2O2 decomposition were absent in many Microcystis 

strains, and the expression of these genes in phytoplankton seston was dominated by particle-

attached bacteria, implicating the bacteria as major H2O2 sinks. These results suggest that 

bacterial decomposition of H2O2 affects growth rates of some Microcystis strains. 

To characterize the importance of colony-attached bacteria for H2O2 dynamics in 

CHABs, H2O2 production and decay rates in western Lake Erie were measured with and without 

filtering out all microbes or phytoplankton aggregates >105 μm diameter. Biotic H2O2 

production was the dominant source of H2O2 on average and was related to photosynthesis and 

microbial community composition. H2O2 production and decay were not affected by Microcystis 

colonies, implicating other free-living microbes as main sources and sinks. Colony-attached 

bacteria may protect Microcystis when H2O2 production outpaces decay in free-living 

communities.  

Bacterial communities associated with Microcystis were characterized with 16S rRNA 

amplicon sequencing of individual colonies. Microcystis microbiomes lacked universal 

members, yet colonies with shared Microcystis oligotype and sampling date had more similar 

microbiomes. Therefore, H2O2 decomposition may vary across strains and colonies over time. 



 xxiii 

Genomes of bacteria identified as key catalase producers were further analyzed to investigate 

potential metabolic interactions with phytoplankton. Evidence for uptake of vitamins, peptides, 

and algal exudates suggests that the bacteria use organic nitrogen and carbon in phytoplankton 

exudates for growth. Furthermore, use of oligopeptide exudates may be associated with efflux 

and deamination of amino acids by the bacteria, which perhaps regenerates nitrogen for 

phytoplankton growth. 
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Chapter 1 Introduction 

Harmful cyanobacterial blooms are a growing threat to freshwater ecosystems globally 

(Huisman et al., 2018). One of the most cosmopolitan bloom-forming cyanobacteria is 

Microcystis (Harke et al., 2016), some of which can produce microcystins, a class of potent liver 

toxins that can lead to illness and water shortages when they contaminate drinking water 

(Roegner et al., 2014; Steffen et al., 2017). However, microcystin production varies widely 

between bloom-forming cyanobacteria strains, as some strains and species lack the ability to 

produce microcystins (Meiβner et al., 1996; Christiansen et al., 2008), and the relative 

proportion of toxic and nontoxic cyanobacteria is an important determinant of microcystin 

concentrations in blooms (Kardinaal et al., 2007; Briand et al., 2009; Davis et al., 2009). While 

the cause of cyanobacteria bloom formation is linked to anthropogenic eutrophication and 

climate change (Carpenter et al., 1998; Paerl & Huisman, 2009; Huisman et al., 2018), the 

ecological factors that favor toxic over nontoxic cyanobacteria are unknown. Because 

microcystins are thought to protect cyanobacteria from stress caused by hydrogen peroxide 

(H2O2), increasing concentrations of H2O2 during cyanobacteria blooms have been hypothesized 

to favor toxic strains over nontoxic strains (Paerl & Otten, 2013). 

Hydrogen peroxide (H2O2) is a ubiquitous stressor in aquatic ecosystems (Zinser, 2018b), 

where it can rapidly oxidize and damage cell structures when H2O2 accumulates inside cell 

membranes (Imlay, 2003; Imlay, 2019). Because of its harmful impacts on microbial growth, 

microbes produce enzymes to degrade and detoxify H2O2 (Mishra & Imlay, 2012), but these 

enzymes are not universally distributed across microbial taxa (Passardi et al., 2007; Morris et al., 
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2008; Kim et al., 2019a). However, because H2O2 rapidly diffuses across cell membranes 

(Seaver & Imlay, 2001), decomposition of H2O2 by one microbe reduces environmental H2O2 

concentrations for the surrounding community members (Morris et al., 2011; Morris et al., 

2012). Thus, H2O2 detoxification is underpinned by interactions between microorganisms. 

Because Microcystis grows in colonies containing other non-cyanobacteria (Worm & 

Søndergaard, 1998; Parveen et al., 2013), interactions between these bacteria and Microcystis 

may have important implications in bloom development and Microcystis physiology. For 

example, interactions with bacteria can influence growth and toxin production in phytoplankton 

(Morris et al., 2011; Amin et al., 2015; Durham et al., 2017; Jackrel et al., 2020), however the 

nature of the interactions between Microcystis and its associated bacteria is relatively 

understudied.  

The research presented in this dissertation focuses on the role of microbial interactions and 

hydrogen peroxide in western Lake Erie Microcystis blooms. Specifically, this work aims to 

answer the following major knowledge gaps: How does H2O2 impact the growth of different 

Microcystis strains, and how does H2O2 decomposition by associated bacteria impact Microcystis 

strains? What is the taxonomic composition of the microbial communities associated with 

Microcystis, and does the community composition change across multiple Microcystis colonies? 

Third, what is the biological contribution to H2O2 production during blooms, and how does H2O2 

production relate to bacterial community composition and Microcystis growth during blooms? In 

the remainder of the introduction, background information is provided to better put these major 

knowledge gaps into perspective. Specifically, information on the causes and impacts of 

cyanobacteria blooms, the issue of variable microcystin-production by Microcystis strains and 

the hypothesized role of microcystin production in the cell, the importance of H2O2 in aquatic 
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environments and microbial communities, how microbial interactions determine responses to 

H2O2 and impact phytoplankton fitness generally.  

1.1 Causes and Impacts of Cyanobacterial Blooms 

Cyanobacteria are an ancient group of oxygen-producing photosynthetic bacteria that have 

important effects on the global environment. As the first oxygen-producing organisms, 

cyanobacteria were responsible for the oxygenation of Earth’s atmosphere (Knoll, 2003). 

Oxygenic photosynthesis was transferred to plants and algae through multiple endosymbioses of 

cyanobacteria (Delwiche et al., 1995; Delwiche, 1999). Cyanobacteria play important roles in the 

modern global carbon (Campbell et al., 1994; Liu et al., 1997) and nitrogen cycles (Capone et 

al., 1997; Ohlendieck et al., 2000). However, some cyanobacterial species can cause 

cyanobacterial harmful algal blooms (CHABs), which often cause discoloration of the water due 

to the proliferation of cyanobacterial biomass, that threaten ecosystem and human health 

(Huisman et al., 2018).  

CHABs have many harmful impacts on aquatic ecosystems and water quality. The 

accumulation of cyanobacteria scums in surface waters can shade and prevent growth of benthic 

vegetation (Scheffer et al., 1993; McGowan et al., 2005), and the decomposition of senescent 

cyanobacterial biomass can lead to hypoxic bottom waters in lake systems where the 

stratification regime is suitable (Rao et al., 2014; Watson et al., 2016). The resulting low oxygen 

waters can lead to fish kills (Rao et al., 2014), and may negatively impact benthic 

macroinvertebrates (Modig & Ólafsson, 1998; Bridgeman et al., 2006). Bloom-forming 

cyanobacteria also produce a variety of taste and odor compounds, which interfere with the 

recreational use of lakes and impact palatability of drinking water (Jüttner & Watson, 2007), as 

well as toxic secondary metabolites that can sicken birds, livestock, and humans (Carmichael, 
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2001; Stewart et al., 2008; Huisman et al., 2018). The combined negative effects that CHABs 

have on ecosystems also impart substantial socioeconomic costs. For example, algal and 

cyanobacteria blooms have been estimated to cost the USA $82 million – $4.8 billion US dollars 

annually and the Canadian Lake Erie Basin $86 - $164 million Canadian dollars annually (Smith 

et al., 2019).  

 While CHABs have occurred during pre-industrial times, the frequency and severity of 

CHABs are increasing globally due to increasing anthropogenic stressors on aquatic ecosystems 

(Huisman et al., 2018; Ho et al., 2019). Since the 1800s, cyanobacteria abundance has increased 

in lakes globally at rates disproportionate to increases in other phytoplankton groups (Taranu et 

al., 2015), and CHABs are now regular events in some of the largest lakes and seas in the world, 

including: western Lake Erie (Steffen et al., 2014; Watson et al., 2016), Lake Taihu (Chen et al., 

2003; Duan et al., 2009), Lake Victoria (Olokotum et al., 2020), and the Baltic Sea (Kahru & 

Elmgren, 2014).The increasing frequency of cyanobacterial blooms are largely attributed to 

cultural eutrophication, or increasing inputs of the growth limiting nutrients nitrogen (N) and 

phosphorus (P) from agricultural and urban activity (Carpenter et al., 1998). P inputs are thought 

to be the main driver of CHABs in freshwaters (Schindler, 1974; Schindler et al., 2008), and 

have been used to predict total biomass of cyanobacteria blooms in Lake Erie (Scavia et al., 

2016). However, N inputs may stimulate bloom formation in some systems (Gobler et al., 2016; 

Paerl et al., 2016) or be important in favoring growth and toxin production in non-nitrogen fixing 

cyanobacteria (Davis et al., 2015; Gobler et al., 2016; Chaffin et al., 2018). Furthermore, the fate 

of N inputs into freshwaters is likely important for the development of marine algal blooms 

downstream in coastal systems (Paerl et al., 2016; Paerl et al., 2018), where N is considered the 

primary limiting nutrient (Howarth & Marino, 2006; Paerl, 2018). 
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 While the main cause of CHABs is eutrophication, climate change is expected to 

exacerbate CHAB frequency and severity (Huisman et al., 2018; Paerl & Barnard, 2020). With 

the increasing severity of storm events due to climate change, nutrient inputs from runoff are 

projected to increase (Sinha et al., 2017), thus increasing eutrophication and potentially CHAB 

frequency and severity (Reichwaldt & Ghadouani, 2012; Michalak et al., 2013). The irregularity 

of these events interspersed with increasingly common droughts (Groisman & Knight, 2008) will 

result in larger pulses of nutrients (Kleinman et al., 2006) and decreased water residence times, 

thus allowing cyanobacteria blooms to remain in nutrient enriched waters for longer periods of 

time (Reichwaldt & Ghadouani, 2012). Furthermore, more frequent droughts and warmer waters 

will favor prolonged lake stratification (Paerl & Huisman, 2009). Many cyanobacteria are well 

equipped to take advantage of calm, stratified waters via buoyancy regulation with gas vesicles, 

which allows them to reach high light levels at the water surface (Walsby et al., 1997; Joehnk et 

al., 2008), and with the production of photoprotective pigments (Paerl et al., 1983). In addition, 

because cyanobacteria reach maximum growth rates at higher temperatures compared to other 

phytoplankton, warmer waters are expected to favor cyanobacteria over other phytoplankton 

groups (Joehnk et al., 2008; Paerl & Huisman, 2009). 

1.2 The Issue of Variable Microcystin Production Among Microcystis Strains and the 
Ecological and Physiological Role of Microcystin Production 

While a variety of cyanobacterial species form blooms (Steffen et al., 2014; Huisman et al., 

2018), one of the most globally widespread and dominant cyanobacteria genera in freshwaters is 

Microcystis (Harke et al., 2016). Some Microcystis strains and species can produce microcystins, 

a class of liver toxins that are produced nonribosomally with a series of six polyketide synthetase 

and nonribosomal peptide synthetase enzymes in addition to four tailoring enzymes that are all 

encoded by the mcy gene cluster (Dittmann et al., 1997; Tillett et al., 2000). There are over 200 
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different chemical variants (congeners) of microcystin that differ in the amino acid at two 

variable positions in the peptide chain (Spoof & Catherine, 2016; Díez-Quijada et al., 2019). 

Microcystins are potent toxins, having originally been named fast-death factor due to the rapid 

onset of poisoning symptoms and death in mice experiments (Hughes et al., 1958; Bishop et al., 

1959). Ingestion of the toxin results in liver hemorrhaging and death in extreme cases, and 

livestock and pet deaths due to microcystin ingestion are common (Carmichael, 2001; Roegner et 

al., 2014). While human illness and death due to acute microcystin exposure is rarer, it can occur 

when microcystins contaminate finished municipal water supplies (Carmichael, 2001; Roegner et 

al., 2014). Microcystis blooms in Lakes Taihu and Erie have caused drinking water shutdowns 

for the cities of Wuxi, China (Qin et al., 2010) and Toledo, OH, USA (Steffen et al., 2017) due 

to microcystin contamination of drinking water. Some evidence suggests that chronic exposure 

to low concentrations of microcystins may increase the risk of liver disease in humans (Svirčev 

et al., 2009; Li et al., 2011). For these reasons, Microcystis blooms are threats to human health 

and drinking water availability. 

Microcystin concentrations during Microcystis blooms vary both temporally and spatially 

within and across bloom events (Vaitomaa et al., 2003; Kardinaal et al., 2007; Davis et al., 2009; 

Berry et al., 2017b). This is due in part to variations in the rate of microcystin production under 

different growth conditions (Sivonen, 1990; Orr & Jones, 1998; Kaebernick et al., 2000; 

Jähnichen et al., 2007; Zilliges et al., 2011). However, not all species and strains of Microcystis 

produce microcystins, as some lack a complete mcy gene cluster (Meiβner et al., 1996; Dittmann 

et al., 1997; Christiansen et al., 2008). Microcystin-producing (referred to here as “toxic”) and 

non-producing strains (referred to here as “nontoxic”) of Microcystis often coexist during 

blooms, and the relative proportions of these different species and strains is an important 
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determinant of microcystin concentrations during CHABs (Vaitomaa et al., 2003; Kardinaal et 

al., 2007; Briand et al., 2009; Davis et al., 2009). Therefore, understanding the ecological drivers 

of successions in Microcystis strains and species is important for understanding bloom 

development and variations in bloom microcystin concentrations and will perhaps aid in future 

management decisions and designing novel bloom treatment strategies (Hellweger et al., 2019). 

The ecological role of microcystin production is contested. It is unlikely that it has evolved 

as a grazing deterrent, as the genes for microcystin production predate the evolution of metazoan 

grazers (Rantala et al., 2004). Rather, it is likely related to central metabolic processes, as 

microcystin production is strongly correlated with cell division rates (Orr & Jones, 1998). While 

nutrient availability is known to impact microcystin biosynthesis (Sivonen, 1990; Orr & Jones, 

1998; Long et al., 2001; Vézie et al., 2002; Downing et al., 2005; Ginn et al., 2010), it has been 

argued that the impact of nutrients on microcystin production within a given strain is an indirect 

effect of nutrient availability on cellular growth rates (Orr & Jones, 1998; Long et al., 2001; 

Neilan et al., 2013). Current evidence suggests that microcystin production is related to central 

carbon-nitrogen metabolism and photosynthesis, as microcystin is localized in the thylakoids, the 

membranes where the photosystem proteins are located (Young et al., 2005), and microcystin 

production increases with light intensity (Kaebernick et al., 2000; Zilliges et al., 2011) and 

inorganic carbon deficiency (Jähnichen et al., 2007). Microcystins also bind to key enzymes 

involved in photosynthesis (Zilliges et al., 2011; Meissner et al., 2013; Barchewitz et al., 2019), 

and influence the cellular localization of Rubisco, the carbon-fixing enzyme in photosynthesis 

(Barchewitz et al., 2019). There is evidence suggesting a role of microcystin in intercell 

signaling (Schatz et al., 2007), however the localization of microcystin within the thylakoid 

membranes may conflict with this hypothesis. Because microcystin binds to proteins at areas 
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sensitive to oxidative damage (Zilliges et al., 2011), and expression of the mcy operon is 

regulated by promoters involved in N starvation (Ginn et al., 2010) and iron starvation (Martin-

Luna et al., 2006; Alexova et al., 2011a), microcystin may play a role in the overall cellular 

stress response. Further supporting that microcystin is involved in stress responses, a mutant 

strain incapable of microcystin production was more sensitive to high light and hydrogen 

peroxide (Zilliges et al., 2011), expressed different amounts of proteins involved in redox control 

(Alexova et al., 2011b), and had a different metabolome composition under increased light 

exposure (Meissner et al., 2015) when compared to the wild-type.  

The uncertainty around the ecological and physiological function of microcystin production 

makes predicting the environmental factors that favor toxic over nontoxic Microcystis difficult. 

However, several observations support that some environmental conditions may favor toxic over 

nontoxic Microcystis, although the number of different Microcystis strains tested is limited in 

most cases. Toxic Microcystis strains tend to have higher nutrient demands than nontoxic strains 

(Vézie et al., 2002), suggesting that increased nitrogen availability may favor growth of toxic 

Microcystis. Supporting that nitrogen availability favors toxic Microcystis, growth of toxic 

strains increased with inorganic nitrogen additions in bottle experiments (Davis et al., 2009; 

Davis et al., 2010). However, additions of organic N forms tend to favor nontoxic Microcystis 

(Davis et al., 2010), complicating the relationship between the dominance of toxic strains and 

total N availability. Iron deficiency may also favor toxic strains, as toxic Microcystis were found 

to better tolerate iron starvation than nontoxic Microcystis in laboratory experiments (Alexova et 

al., 2011a).  

Although there appear to be some traits that separate toxic and nontoxic Microcystis, some 

phenotypic and genotypic variation between strains of Microcystis do not correlate or cluster 
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along a toxic versus nontoxic dichotomy. One example is the effect of temperature; increasing 

temperatures favored toxic Microcystis over nontoxic Microcystis in some studies (Dziallas & 

Grossart, 2011), but a nontoxic Microcystis strain was found to have a higher optimum growth 

temperature than toxic Microcystis in another study (Thomas & Litchman, 2016). Furthermore, 

the proteomes of some toxic Microcystis were more similar to those of nontoxic Microcystis 

(Alexova et al., 2011b). In addition, some studies with natural toxic and nontoxic Microcystis 

strains have supported that increasing concentrations of reactive oxygen species may favor toxic 

Microcystis (Dziallas & Grossart, 2011). However, another study found that nontoxic 

Microcystis had improved recovery from large H2O2 additions when compared to a toxic strain 

(Schuurmans et al., 2018). These conflicting results may indicate that some of the competitive 

advantages or disadvantages of toxic strains previously reported are not necessarily due to the 

production of microcystin, which complicates relating variations in Microcystis strain traits to 

outcomes for bloom microcystin concentrations. 

1.3 Reactive Oxygen Species and Their Impacts on Microbial Growth and Population 
Dynamics 

As discussed above, one proposed physiological function of microcystins is to protect the 

cell from damage from reactive oxygen species (ROS). The ROS superoxide radical anion (O2-), 

hydrogen peroxide (H2O2), and hydroxyl radical (•OH) are one-electron reduction products in the 

sequential four electron reduction of molecular oxygen to water. ROS are produced both via 

photochemical reactions with chromophoric dissolved organic matter (CDOM) (Cooper & Zika, 

1983; Cooper et al., 1989b) and biological enzymes and metabolisms (Diaz et al., 2013; Diaz & 

Plummer, 2018; Zinser, 2018b) and are ubiquitous in oxygenated aquatic ecosystems. ROS can 

rapidly oxidize and damage cell structures when they accumulate inside cell membranes (Imlay, 

2003; Imlay, 2019). Of the three, H2O2 is thought to be the most significant as an exogenous 
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stressor to microbial growth and populations because the very short half-life of •OH (Brezonik & 

Fulkerson-Brekken, 1998) likely causes it to react with dissolved molecules before it can cross 

cell membranes (Zinser, 2018b), and O2- is impermeable to cell membranes at pH above 6 

(Korshunov & Imlay, 2002), which is in contrast to the rapid rate of diffusion across cell 

membranes by H2O2 (Seaver & Imlay, 2001). However, exogenous O2- is likely important as an 

indirect exogenous stressor because it can form H2O2 via reactions with dissolved organic matter 

and metals (Voelker et al., 2000; Rose & Waite, 2006; Heller & Croot, 2010) and spontaneous 

dismutation (Zafiriou, 1990). 

ROS can play an important role in structuring microbial communities because of varying 

sensitivities to oxidative stress among taxa (Perelman et al., 2003; Morris et al., 2008; Morris et 

al., 2011; Kim et al., 2016). Differences in the sensitivity of microbial taxa to H2O2 are 

determined in part by the collection of enzymes in a given organism that decompose H2O2 into 

harmless products (Morris et al., 2008; Morris et al., 2012; Kim et al., 2016; Kim et al., 2019a). 

Microbes produce catalase and peroxidase enzymes that respectively dismutate H2O2 into water 

and molecular oxygen or reduce H2O2 to water with an electron donor (Mishra & Imlay, 2012). 

However, the distribution of these enzymes across microbial taxa is not uniform (Passardi et al., 

2007; Bernroitner et al., 2009). This can lead to large differences in H2O2 sensitivity between 

genera (Ostrowski et al., 2001; Morris et al., 2008; Morris et al., 2011; Kim et al., 2016; Ma et 

al., 2018; Kim et al., 2019a). However, differences in H2O2 sensitivity among different strains of 

the same genus or species with the same catalase and peroxidase gene content also occur (Morris 

et al., 2011; Bayer et al., 2019). Differences in H2O2 sensitivity between microbial taxa suggest 

that ROS may affect community composition at multiple taxonomic levels. Cyanobacteria are 

particularly sensitive, enabling treatment of cyanobacterial blooms with H2O2, which can be 
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dosed at levels that eliminate cyanobacteria while most algae remain unaffected (Matthijs et al., 

2012). Other bacterial groups are also suppressed by H2O2 concentrations used during 

cyanobacteria bloom treatment (Lin et al., 2018; Lusty & Gobler, 2020), and amendments of 

lower H2O2 concentrations can inhibit respiration and secondary production in natural 

communities (Xenopoulos & Bird, 1997; Weinbauer & Suttle, 1999; Anesio et al., 2005). 

Natural changes in H2O2 concentrations can also impact microbial communities. For example, an 

absence of H2O2-producing species can lead to the proliferation of H2O2-sensitive pathogens in 

human microbiomes (Eschenbach et al., 1989), and Prochlorococcus cannot tolerate H2O2 

production rates typical of the open ocean without the presence of “helper” microbes that 

degrade H2O2 (Morris et al., 2011; Ma et al., 2018; Zinser, 2018a). However, the importance of 

natural H2O2 production and decay dynamics in structuring entire microbial communities, and 

how H2O2 production and decay rates vary with microbial community composition in aquatic 

environments, is largely unknown (Zinser, 2018b). This is particularly true for freshwaters, 

where the enzymes and organisms involved in H2O2 decomposition have not been characterized 

to the same extent as in marine systems (Morris et al., 2011; Morris et al., 2016). 

Natural variations in H2O2 are hypothesized to impact the relative proportion of 

Microcystis strains in the environment (Dziallas & Grossart, 2011; Paerl & Otten, 2013). To 

date, the differential impact of H2O2 on the growth of Microcystis strains has only been explored 

along the toxic vs. nontoxic dichotomy (Dziallas & Grossart, 2011; Zilliges et al., 2011; 

Schuurmans et al., 2018), yielding conflicting results. In one study, three toxic strains had lower 

reductions in chlorophyll a content than two nontoxic strains when treated with H2O2 (Dziallas & 

Grossart, 2011), which is congruent with the hypothesis that microcystins protect the cell from 

ROS (Zilliges et al., 2011). However, the opposite result was found in another study, where a 
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mutant strain incapable of microcystin biosynthesis degraded H2O2 faster than the wild type, and 

the mutant and a natural nontoxic strain could recover from large additions of H2O2 while a toxic 

strain could not (Schuurmans et al., 2018). These conflicting results could be an artifact of the 

lack of standardized conditions between the experiments. The toxicity of H2O2 toward 

cyanobacteria is dependent on light intensity (Drábková et al., 2007; Morris et al., 2011; Piel et 

al., 2020) and wavelength (Piel et al., 2020), deviation from optimal growth temperature (Ma et 

al., 2018), cell density (Morris et al., 2008; Morris et al., 2011), and the presence of H2O2-

degrading bacteria (Morris et al., 2008; Morris et al., 2011; Kim et al., 2019a). Therefore, it is 

difficult to determine if the discrepancies in these results are due to differences in the 

sensitivities of the strains to H2O2, different culturing conditions, or some combination. In 

addition, Schuurmans et al. 2018 largely measured growth inhibition at large H2O2 doses, orders 

of magnitude above concentrations observed in natural waters (Cooper et al., 1989a; Cory et al., 

2016), and used light levels far below those typical of natural sunlight in summer surface waters 

(Sagert & Schubert, 2000). The Dziallas and Grossart and Zilliges et al. studies did not measure 

background H2O2 concentrations of the growth media during their experiment, so the total H2O2 

exposure in their experiments is unknown. Therefore, the extent to which naturally occurring 

H2O2 concentrations impact the growth of different Microcystis strains is still uncertain. 

1.4 Microbial Interactions Determine Responses to Hydrogen Peroxide 

The response of a given microorganism to H2O2 is determined by interactions with other 

community members. Because H2O2 diffuses through cell membranes at rates similar to water 

(Seaver & Imlay, 2001), intracellular H2O2 decomposition by microbes can rapidly reduce 

environmental H2O2 concentrations and in the process protect other sensitive organisms that lack 

the enzymatic pathways to decompose H2O2 themselves (Morris et al., 2012; Zinser, 2018a). For 
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example, some strains of Prochlorococcus (Morris et al., 2008; Morris et al., 2011), ammonia-

oxidizing archaea (AOA) (Kim et al., 2016; Bayer et al., 2019), and acI clade actinobacteria 

(Kim et al., 2019b), all require supplementation of an exogenous H2O2 scavenger in culture 

media to grow when exposed to environmentally relevant H2O2 concentrations. In 

Prochlorococcus and AOA, H2O2 sensitivity is thought to be due to the absence of catalase genes 

in the genomes (Morris et al., 2008; Kim et al., 2016), while in acI actinobacteria, H2O2 

sensitivity is due to either the absence of catalase in some strains or the presence of catalase with 

low specific activity and catalytic efficiency in others (Kim et al., 2019b). Co-cultivation with 

catalase-producing “helper” bacteria abolishes the H2O2 sensitive phenotype in both 

Prochlorococcus (Morris et al., 2008; Morris et al., 2011) and AOA (Bayer et al., 2019). Such 

interactions demonstrate that the impact of environmental H2O2 on a given microbial species or 

strain depends on both the sensitivity of the species or strain to H2O2 and the rate of H2O2 

decomposition by the surrounding community members. Microcystis may be especially impacted 

by the activity of the surrounding bacterial community because it grows in buoyant aggregates or 

“colonies” surrounded by an exopolysaccharide mucilage layer that other bacteria often adhere to 

(Worm & Søndergaard, 1998; Brunberg, 1999; Parveen et al., 2013; Agha et al., 2016). This 

suggests that traits in the associated bacteria may impact the response of Microcystis strains to 

H2O2 and other environmental gradients. 

1.5 The Microcystis Phycosphere  

While Microcystis is the causative organism of many CHABs, blooms are complex 

communities of interacting microorganisms (Parveen et al., 2013; Louati et al., 2015; Berry et 

al., 2017a; Chun et al., 2019; Zhu et al., 2019; Chun et al., 2020). The microbial community 

composition of Microcystis blooms varies temporally (Parveen et al., 2013; Berry et al., 2017a; 
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Chun et al., 2020; Jankowiak & Gobler, 2020), by location (Cook et al., 2020; Jankowiak & 

Gobler, 2020), and with the dominating Microcystis genotype (Chun et al., 2020), but some taxa 

appear regularly in Microcystis blooms (Cook et al., 2020). Microcystis and other phytoplankton 

harbor microbial communities within the phycosphere, a zone of close physical proximity to the 

phytoplankton cell(s) enriched in organic matter exuded by the phytoplankton (Bell & Mitchell, 

1972; Seymour et al., 2017). Many of the bacteria that occupy the phycosphere are beneficial, 

improving phytoplankton growth through a variety of mechanisms (Amin et al., 2009; Van 

Mooy et al., 2012; Amin et al., 2015; Christie-Oleza et al., 2017; Durham et al., 2017), while 

others are parasitic (Caiola & Pellegrini, 1984; Seyedsayamdost et al., 2011; Agha et al., 2016). 

Some organisms can be either beneficial or harmful to phytoplankton, depending on growth 

conditions (Grossart & Simon, 2007; Seyedsayamdost et al., 2011; Hennon et al., 2017). 

The phycosphere communities associated with Microcystis are distinct from both 

surrounding free-living communities (Parveen et al., 2013; Louati et al., 2015; Jankowiak & 

Gobler, 2020) and the phycosphere communities of other cyanobacteria (Louati et al., 2015; Zhu 

et al., 2019). This indicates that Microcystis interacts with specific bacterial populations. Despite 

this, the phycosphere communities among Microcystis strains and colonies vary taxonomically, 

with more closely related Microcystis genomes having more similar phycosphere microbiomes in 

both enrichment cultures established from single colonies and colonies isolated and immediately 

sequenced (Jackrel et al., 2019; Pérez-Carrascal et al., 2020). However, the degree to which 

strain-specific interactions, neutral effects, and temporal changes in either the environment or 

free-living communities that may seed the phycosphere structure Microcystis phycosphere 

communities is currently unknown. 
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The functional significance of distinct microbiomes across Microcystis colonies is largely 

unknown. Although the microbiomes between Microcystis strains are taxonomically distinct, the 

functional potential of communities (as defined by metagenomics) in established enrichment 

cultures were relatively similar (Jackrel et al., 2019). There are currently no data that can 

distinguish whether this is the result of cultivation bias, or if functional converge of strain-

specific microbiomes also occurs in natural Microcystis colonies. In bulk phytoplankton 

aggregates dominated by Microcystis, functional dissimilarity was lower than taxonomic 

dissimilarity (Cook et al., 2020), although how the relatively smaller functional dissimilarity 

translates into observed functional outcomes is still unknown. However, in other phytoplankton 

species, taxonomically distinct microbiomes also have strain specific growth-impacts. For 

example, growth and toxin production in species of the diatom Pseudo-nitschiza was improved 

only by their co-isolated bacteria, not bacteria co-isolated from other Pseudo-nitschiza species 

(Sison-Mangus et al., 2014). These results in Pseudo-nitschiza support that some strain-specific 

outcomes also would arise from distinct Microcystis phycosphere microbiomes. Additionally, 

microbiome members shared between multiple Microcystis strains may have strain-specific 

outcomes on Microcystis growth. For example, one strain of Pseudanabaena can colonize the 

mucilage of multiple Microcystis strains, but the impact on Microcystis growth was either neutral 

or harmful, depending on the Microcystis strain (Agha et al., 2016). Together, this supports that 

Microcystis microbiomes are likely to differ both in terms of the members present and the impact 

of shared members on Microcystis growth. For this reason, not only could differences in the 

traits of Microcystis strains account for successions in their relative abundance, but differences in 

the traits of other bacteria associated with particular Microcystis strains may also impact 

Microcystis relative abundance. 
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1.6 Dissertation Outline and Research Questions 

In Chapter 2 of this dissertation, two research questions are addressed. Which enzymes and 

organisms are involved in H2O2 decomposition during western Lake Erie cyanobacterial blooms, 

and how does the presence of an H2O2 scavenger impact different toxic and nontoxic Microcystis 

strains. The work in this chapter improves our understanding of how microbial interactions 

impact how different Microcystis strains respond to H2O2 and helps reconcile conflicting 

evidence in the current literature on whether elevated H2O2 concentrations during blooms favor 

toxic or nontoxic Microcystis strains. 

In Chapter 3, bacterial communities in the phycospheres of individual Microcystis colonies 

were examined in order to separate the communities specifically associated with Microcystis 

from those associated with other phytoplankton or large particles. As the first time series dataset 

of individual Microcystis colony microbiomes, this chapter also characterized how phycosphere 

bacterial community composition changes over time and between colonies of different 

oligotypes. This is an important first step in our understanding for how functions provided by 

associated bacteria may change over a bloom and potentially impact the relative proportions of 

different Microcystis strains. 

In Chapter 4, the genome sequences of two novel Acidobacteria that had high catalase 

transcript abundance relative to their metagenomic abundance in Chapter 2 were examined in 

order to characterize their uptake of organic carbon and nitrogen compounds. One of these 

bacteria was also identified in Microcystis phycosphere communities in Chapter 4. The genome 

and metatranscriptomic sequences were mined for evidence of uptake of cyanobacterial and 

phytoplankton derived compounds, and this research begins to characterize the complete 

interactions between phytoplankton associated bacteria in western Lake Erie cyanobacteria 

blooms. 
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In Chapter 5, the knowledge gap of how microbial communities in western Lake Erie are 

related to microbial community composition and Microcystis growth was addressed by 

measuring H2O2 production rates in western Lake Erie as a function of chlorophyll a 

concentration, respiration rates, primary production rates, the abundances of bacteria species, and 

microbial community dissimilarity, with and without light exposure, and with and without large 

phytoplankton assemblages (including Microcystis colonies >105 µm). 

In Chapter 6, the conclusions of Chapters 2-5 are synthesized, and avenues for future 

research to address shortcomings of the experimental and sampling approaches as well as new 

research questions formed from the research results are discussed. 
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Chapter 2 Heterotrophic Bacteria Dominate Catalase Expression During Microcystis 
Blooms 

2.1 Abstract 

In the oligotrophic oceans, key autotrophs depend on “helper” bacteria to reduce 

oxidative stress from hydrogen peroxide (H2O2) in the extracellular environment. H2O2 is also a 

ubiquitous stressor in freshwaters, but the effects of H2O2 on autotrophs and their interactions 

with bacteria is less well understood in freshwaters. Naturally occurring H2O2 in freshwater 

systems is proposed to impact the proportion of microcystin-producing (toxic) and non-

microcystin-producing (nontoxic) Microcystis in blooms, which determines toxin concentrations 

and human health impacts. However, how different strains of Microcystis respond to naturally 

occurring H2O2 concentrations and the microbes responsible for H2O2 decomposition in 

freshwater cyanobacterial blooms are unknown. To address these knowledge gaps, we used 

metagenomics and metatranscriptomics to track the presence and expression of genes for H2O2 

decomposition by microbes during the 2014 western Lake Erie cyanobacterial bloom. We found 

that katG, encoding the key enzyme for decomposing extracellular H2O2, was absent in most 

Microcystis cells, and that katG expression was dominated by heterotrophic bacteria. The H2O2 

scavenger pyruvate was added to axenic Microcystis cultures to assess how exogenous H2O2 

decomposition impacts the growth of toxic and nontoxic Microcystis strains. Pyruvate 

significantly improved growth rates of one toxic strain while other toxic and nontoxic strains 

were unaffected. These results indicate that heterotrophic bacteria play a key role in H2O2 

decomposition in Microcystis blooms and suggest that this activity may affect the fitness of some 
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Microcystis strains and thus the strain composition of Microcystis blooms, but not along a toxic 

versus nontoxic dichotomy. 

2.2 Introduction 

Interactions between microorganisms are pervasive in aquatic ecosystems, with potentially 

far-reaching implications for system productivity, the cycling of nutrients, and the toxin 

production of harmful algal blooms (Seymour et al., 2017). The importance of interactions 

between microorganisms is illustrated by the detoxification of hydrogen peroxide (H2O2). H2O2 

is a ubiquitous oxidative stressor on microorganisms in natural waters (Imlay, 2003; Latifi et al., 

2009; Imlay, 2019) that can shape microbial community composition and function (Morris, 

2015; Mas et al., 2016; Zinser, 2018b). In oligotrophic marine environments, dominant primary 

producers such as Prochlorococcus, heterotrophs such as Pelagibacter (SAR11), and nitrifiers 

such as ammonia-oxidizing Thaumarchaeota lack enzymatic defense against H2O2 and cannot 

grow in the presence of H2O2 concentrations typical of natural waters (concentrations between 

200 nM to ~1 μM) unless associated with organisms that produce catalases to detoxify the H2O2 

(Morris et al., 2008; Scanlan et al., 2009; Morris et al., 2011; Kim et al., 2016; Zinser, 2018b; 

Bayer et al., 2019). Because H2O2 rapidly diffuses across membranes (Seaver & Imlay, 2001a), 

decomposition of H2O2 by catalase and peroxidase enzymes produced by these heterotrophic 

“helpers” reduces environmental H2O2 concentrations to tolerable levels and provides 

community-wide protection to the sensitive “beneficiaries” (Morris et al., 2008; Scanlan et al., 

2009; Morris et al., 2012; Kim et al., 2016; Bayer et al., 2019). As long as some “helper” 

bacteria maintain low environmental H2O2 levels, other microbes can lose catalase genes in order 

to conserve resources in the nutrient-scarce open ocean (Morris et al., 2012; Morris, 2015). 
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In eutrophic systems, H2O2 has been implicated as a potential factor influencing the toxin 

concentrations of cyanobacterial harmful algal blooms (CHABs) (Paerl & Otten, 2013), which 

are a growing worldwide threat to freshwater ecosystems and associated ecosystem services, 

including drinking water supplies (Paerl & Paul, 2012; Roegner et al., 2014; Huisman et al., 

2018). Globally, freshwater CHABs are often dominated by Microcystis spp. that can produce 

microcystins, which are a class of potent liver toxins (Harke et al., 2016). Microcystins have 

been shown to increase the resistance of Microcystis to H2O2 by binding and protecting proteins 

from oxidative damage (Zilliges et al., 2011), leading to the hypothesis that transiently high 

concentrations of H2O2 in the water column may favor microcystin-producing (“toxic”) strains of 

Microcystis over non-microcystin-producing (“nontoxic”) strains (Paerl & Otten, 2013). Indeed, 

through photochemical reduction of O2 by chromophoric dissolved organic matter and aerobic 

microbial metabolisms, H2O2 often reaches high concentrations in freshwaters (Cooper et al., 

1989; Häkkinen et al., 2004; Marsico et al., 2015) that can have negative effects on 

cyanobacterial growth (Morris et al., 2008; Morris et al., 2011; Zilliges et al., 2011; Ma et al., 

2018). The highest concentrations of H2O2 in Lake Erie CHABs occur during bloom phases with 

high microcystin concentrations (Cory et al., 2016; Cory et al., 2017), supporting the idea that 

high H2O2 concentrations favor the proliferation of toxic Microcystis strains. Some laboratory 

experiments in cell culture also support this hypothesis by showing that H2O2 disproportionately 

inhibits the growth of nontoxic Microcystis strains (Dziallas & Grossart, 2011). However, a more 

recent study also suggested the opposite, that microcystin interferes with the Microcystis defense 

against H2O2 (Schuurmans et al., 2018). 

These contrasting conclusions on the role of H2O2 on Microcystis strains may be due to 

differences in H2O2 exposure of the cells in the lab or field. For example, laboratory studies of 
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cell cultures generally have not measured background concentrations of H2O2 in the growth 

medium (Dziallas & Grossart, 2011; Zilliges et al., 2011). Without such H2O2 quantification, the 

effect of H2O2 on the growth of Microcystis strains remains uncertain. In addition, most studies 

to date have measured the response of Microcystis to single, large doses of H2O2 that exceed 

natural concentrations by 3-6 orders of magnitude, but are typical for doses of H2O2 used to 

control CHABs (Ding et al., 2012; Mikula et al., 2012; Lürling et al., 2014; Gao et al., 2015; 

Schuurmans et al., 2018; Daniel et al., 2019; Kim et al., 2019a; Piel et al., 2020). Thus, the 

responses of different Microcystis strains to naturally occurring H2O2 concentrations are 

unknown. 

Despite the hypothesized role of H2O2 in influencing Microcystis population dynamics, the 

microbes responsible for H2O2 decomposition in eutrophic systems or during CHABs have not 

been studied. The distribution of catalase and peroxidase genes in Microcystis mirrors that of 

Prochlorococcus and ammonia-oxidizing archaea in that Microcystis lacks catalases and heme 

peroxidases but has multiple peroxiredoxin genes, suggesting that it may benefit from H2O2 

decomposition by other community members (Kim et al., 2019a). Such interactions could 

potentially improve the fitness of Microcystis strains more sensitive to H2O2, thus influencing the 

relative proportions of Microcystis strains in the environment and, by extension, microcystin 

concentrations during blooms. However, there are currently no data showing the impacts of 

community wide H2O2 detoxification on Microcystis growth at naturally occurring H2O2 

concentrations.  

Here, the following research questions are addressed: 1) What is the impact of H2O2 on the 

growth of various toxic and nontoxic Microcystis strains? 2) Which genes encoding proteins that 

detoxify H2O2 are expressed in Microcystis bloom communities, and how does the expression of 
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these genes relate to the proportion of toxic and nontoxic Microcystis strains? 3) Which 

community members express H2O2 detoxification genes? We analyzed the relative abundance of 

toxic and nontoxic Microcystis populations and the expression of genes encoding enzymes that 

are responsible for H2O2 decay in aquatic ecosystems (catalases and peroxidases) (Moffett & 

Zafiriou, 1990; Zinser, 2018a) during the 2014 western Lake Erie Microcystis bloom, which led 

to a drinking water ban for the city of Toledo (Steffen et al., 2017). Our results show that 

catalase transcripts are dominated by heterotrophic bacteria, but that only some cultured 

Microcystis strains benefit from an H2O2 scavenger, suggesting that the impact of catalase 

activity from heterotrophic bacteria on Microcystis growth varies between strains and thus may 

impact in situ Microcystis strain and species composition. 

2.3 Results 

2.3.1 Dynamics in Pigments, Microcystin Concentrations, Toxic Microcystis Abundance, and 
H2O2 

 Changes in concentrations of H2O2, pigments, and microcystin concentrations at three 

stations (two nearshore and one offshore, Figure S 2.1) during the 2014 western Lake Erie 

CHAB show that the cyanobacteria bloom more heavily impacted nearshore stations (WE2 and 

WE12) than the offshore station (WE4, Figure 2.1). This pattern is discussed in detail in Cory et 

al. (Cory et al., 2016) and Berry et al. (Berry et al., 2017). Phycocyanin (a pigment found in 

cyanobacteria) and chlorophyll a were highly correlated at all stations, confirming that the 

blooms were dominated by cyanobacteria (Berry et al., 2017). Phycocyanin concentrations 

peaked in early August, with a second peak in late September at the nearshore stations (Figure 

2.1A). 

Concentrations of particulate microcystins correlated with phycocyanin in July through 

early August, with the highest microcystin concentrations occurring at the nearshore stations 
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(Figures 2.1A, 2.1B). Biomass captured in the >100 μm particle size fraction is responsible for 

most of the microcystin production and contains 93-99% of the total Microcystis biomass during 

Microcystis blooms (Kurmayer et al., 2003; Chaffin et al., 2011). In this particle size fraction, 

peak microcystin concentrations at the nearshore stations coincided with a Microcystis 

population that was dominated by toxic strains (60-100% of the Microcystis cells; Figure 2.1B) 

as determined by the ratio of the relative abundance of the mcyD and 16S rRNA genes in 

Microcystis (Davis et al., 2009). At the nearshore stations, microcystin concentrations decreased 

substantially starting in mid-August and remained low, despite high cyanobacterial biomass and 

Microcystis abundance (Berry et al., 2017). This reduced microcystin concentration coincided 

with a Microcystis population shift towards dominance of nontoxic cells (25% to less than 1% of 

Microcystis cells contained mcyD; Figures 2.1B, S 2.2). At nearshore station WE2, a smaller 

second peak in microcystin concentrations and the percentage of toxic Microcystis occurred with 

the increase in phycocyanin in September, although microcystin concentrations and percent toxic 

Microcystis were lower than levels detected in July. At the offshore station, microcystins and 

phycocyanin concentrations both decreased, suggesting a decline in overall Microcystis 

abundance rather than a compositional change in the population as observed at the nearshore 

stations (Figure 2.1B). Consistent with this interpretation, Microcystis 16S copy number was 

substantially lower at the offshore station (Table 2.1) and the proportion of toxic Microcystis 

cells (40-60%) was more consistent over time than at the nearshore stations (Figure 2.1B).  

The percentage of toxic Microcystis determined by metagenomic mapping and qPCR 

generally agreed for samples analyzed by both methods (Figure 2.1B). The exception was a 

sample collected on August 25th at nearshore station WE12, where the qPCR ratio was higher 

than that determined by the metagenome by 85% (Figure 2.1B). However, the overall trends in 
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the percentage of toxic Microcystis agree between the two methods. The percentage of toxic 

Microcystis determined in the metagenomic samples was generally higher when normalizing to 

the single-copy housekeeping gene rpoB rather than the 16S rRNA gene (Figure S 2.2). This is 

likely due to the presence of multiple 16S rRNA gene copies per Microcystis cell, which would 

inflate estimates of total Microcystis cells. Indeed, many bacteria have multiple rRNA operons 

(Roller et al., 2016), and all closed Microcystis genomes in the NCBI database (Pruitt et al., 

2007) have two 16S rRNA gene copies (Table 2.2). However, estimates of percent toxic 

Microcystis were not doubled when normalizing to rpoB (Figure S 2.2), suggesting variable 16S 

rRNA gene copy numbers between Microcystis strains. This prevents accurately correcting 

estimates of percent toxic Microcystis in the qPCR. However, the overall trends in percent toxic 

Microcystis agree when normalizing to both rpoB and the 16S rRNA gene in the metagenomic 

samples (Figure S 2.2), which suggests that the trends in the qPCR data are robust despite 

potentially underestimating the percentage of toxic Microcystis. 

H2O2 ranged from 20 ± 36 to 590 ± 4 nM (standard error (SE) of technical replicates) in 

the surface waters of Lake Erie over the course of the bloom (Cory et al., 2016; Cory et al., 

2017). The highest concentrations of H2O2 were observed at each nearshore station in late July, 

the week prior to peaks in both microcystins and pigments. At nearshore station WE2, a smaller 

second peak in H2O2 (260 ± 51 nM) coincided with the smaller, second peak in microcystin 

concentrations in September. Peaks in H2O2 concentrations at offshore station WE4 were lower 

than those nearshore, reaching a maximum of 210 ± 94 nM (Figure 2.1C). 

2.3.2 Catalase and Peroxidase Gene Abundance and Taxonomy 

Metagenomes were obtained from the > 0.22 μm size fraction (targeting the whole 

microbial community) and from the > 100 μm particle-attached fraction (targeting Microcystis 
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colonies, microplankton and attached bacteria). Assembly and binning of sequence reads 

produced metagenome-assembled genomes (MAGs) of the dominant cyanobacteria (Microcystis, 

Synechococcus, Pseudanabaena, and Anabaena/Dolichospermum) and other bacteria 

(Supplemental File 1 & 2), allowing us to assess the distribution and expression of genes 

encoding catalases and peroxidases among specific microbial taxa during the bloom (see 

methods). The taxonomy of MAGs that contained the following genes were determined, and the 

abundances of these genes were quantified: monofunctional heme catalase (katE), catalase-

peroxidase (katG), manganese catalase (MnCAT), ascorbate peroxidase (APX), and alkyl 

hydroperoxide reductase subunit C (ahpC) (Table 2.3, see methods). These genes were targeted 

because there is biochemical evidence supporting that they scavenge H2O2 as a defense against 

H2O2 toxicity (Mishra & Imlay, 2012), or use of H2O2 as a terminal electron acceptor, as in the 

case of ccpA (Khademian & Imlay, 2017). We targeted APX because it can be abundant in 

marine metatranscriptomes (Morris et al., 2016). Of these genes, the periplasmic katG has the 

primary function to decompose extracellular H2O2 while the primary role of cytoplasmic ahpC is 

to decompose intracellularly produced H2O2 and organic peroxides (Tichy & Vermaas, 1999; 

Seaver & Imlay, 2001a; Seaver & Imlay, 2001b; Perelman et al., 2003; Cosgrove et al., 2007). 

However, both can compensate for each other under certain physiological conditions (Tichy & 

Vermaas, 1999; Seaver & Imlay, 2001b; Cosgrove et al., 2007). 

Genes encoding the catalase-peroxidase katG and the peroxiredoxin ahpC had the highest 

abundance relative to bacterial rpoB (Figures 2.1C, S 2.3). In most cases, ahpC was the more 

abundant of the two genes. KatG was equally abundant in both the particle-attached and total 

community size fractions, while ahpC had a higher relative abundance in the particle-attached 

fraction (Figures 2.1C, S 2.3). Neither katG nor ahpC gene relative abundances were 
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significantly correlated with microcystins, pigment, or H2O2 concentrations in the lake (p > 0.05, 

ANOVA). Genes encoding katE and ccpA were consistently present at low relative abundance 

and comprised an average of 0.06 ± 0.08 % and 3 ± 1 % (95% confidence interval on mean of all 

samples) of the total catalase and peroxidase reads, respectively. However, the cytochrome c 

peroxidases share many structural similarities with the methylamine-utilization protein mauG, 

and many of the genes identified as ccpA hit equally well to mauG genes in NCBI and 

paperBLAST (Price & Arkin, 2017). Therefore, their role in H2O2 decomposition is uncertain, 

and we report their abundances separately in Figure S 2.4. Genes encoding MnCat and APX 

were rare. MnCat was only detectable in the September 29th sample from the particle size 

fraction, while APX comprised 0 - 0.4 % of the total catalase and peroxidase reads. 

In the metagenomes of the particle-attached fraction from all bloom samples, katG was 

present in MAGs from diverse groups of bacteria (Figure S 2.5). Of the genes that could be 

assigned a taxonomy in the particle-attached fraction, katG from Microcystis, Phenylobacterium, 

Flammeovirgaceae bins 42896 C11 and 42896 E20, Burkholderiaceae bin 53603 E6, and 

Rhodobacteraceae bin 49625 E6 were most abundant in the particle-attached fraction (Figure S 

2.5). Microcystis katG comprised 0.1 – 47 % (mean 14 ± 8 %) of the total katG reads in the 

particle-attached metagenomes whenever present. While no katG from a single organism 

dominated, Microcystis was often the most abundant of the katG that could be assigned a 

taxonomy in the metagenomes (Figure S5). The ratio of Microcystis katG to Microcystis 

housekeeping genes (estimated by dividing Microcystis katG reads to Microcystis rpoB and recA 

reads) ranged from 0.4 – 26 % (mean 9 ± 4 %) but was relatively consistent throughout most of 

the bloom season in the particle-attached fraction (Figure S6). The fraction of the Microcystis 

population with katG was consistent whether normalizing to rpoB or recA, with the exception of 
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two samples (8 July nearshore and 4 August offshore total community samples). KatG was also 

detected in Cyanobium/Synechococcus MAGs, another abundant cyanobacterium in the bloom 

(Berry et al., 2017), but was only occasionally present at low relative abundance (Table 2.3, 

Figure S 2.5). AhpC from Microcystis was also the most abundant in the particle-attached 

fraction; however, Microcystis accounted for a larger proportion of the total ahpC reads than for 

katG (2 – 80 %, mean 40 ± 15 %, Figure S8). The percentage of the Microcystis population with 

ahpC ranged from 60 – 140 % (mean 100 ± 15 %).  

The dominant organisms with katG and ahpC in the whole community were distinct from 

those in the particle-attached fraction. In the whole community, katG from Candidatus 

Fonsibacter and unclassified Chloroflexi had the highest abundance consistently throughout the 

bloom (Figure S 2.5), but they were largely absent in the particle-attached fraction. Similarly, the 

most abundant taxa containing katG in the particle-attached fraction were rare in the total 

community fraction, with Microcystis only accounting for < 0.01 – 0.5 % of the total katG in this 

size fraction (mean 0.2 ±	0.1	%) (Figure S 2.5). The fraction of the Microcystis population with 

katG was highest in early July and decreased into the fall (Figure S 2.6). Microcystis ahpC was 

also less abundant in the whole community fraction, comprising an average of 8 ± 6 % of the 

total ahpC reads (Figure S 2.8). No single organism dominated ahpC reads in the total 

community, but, in addition to Microcystis, ahpC from Clavibacter, Pelagibacterales, 

Limnohabitans, and Candidatus Methylopumilus were the most abundant (Figure S8). 

To confirm the presence/absence of catalases in dominant bloom-forming cyanobacteria, 

we surveyed publicly available cyanobacterial genomes (Figure S 2.9, see methods). The 

genomes of Microcystis, Anabaena/Dolichospermum, Pseudanabaena, Planktothrix, and 

Synechococcus were targeted because they are regular members of cyanobacterial blooms, 
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especially in Lake Erie and its surrounding bays and tributaries, with Microcystis and 

Planktothrix being the dominant potential microcystin-producers (Ouellette et al., 2006; Davis et 

al., 2014; Davis et al., 2015; Berry et al., 2017). We also compared the distribution of catalases 

and peroxidases in these genomes to that of Prochlorococcus, a dominant cyanobacterium in the 

open ocean that has been shown to be dependent on other community members for detoxification 

of H2O2 (Morris et al., 2011). In total, 343 public genomes were analyzed, and 99 % of the 

genomes had a gene encoding the peroxiredoxin ahpC. Nearly all of the 150 Microcystis 

genomes lack genes encoding catalases, with the exception of four Microcystis genomes that 

have katG. Similarly, catalase genes were absent in all published Prochlorococcus genomes, 

consistent with previous genomic studies and the low tolerance of H2O2 by this genus (Morris et 

al., 2008; Bernroitner et al., 2009). In contrast, 57 % of Pseudanabaena genomes possess 

catalases, while 43% of Anabaena-Dolichospermum genomes contain manganese catalases. All 

the Anabaena-Dolichospermum genomes lack heme catalases. A majority of Synechococcus 

genomes have either or both katE and katG, which is consistent with previous observations of the 

relatively high H2O2 tolerance of this genus as well as previous intergenomic comparisons 

(Bernroitner et al., 2009; Morris et al., 2011).  

2.3.3 Catalase and Peroxidase Transcript Abundance 

To focus on Microcystis and their particle-associated bacteria, metatranscriptomes were 

obtained from the particle-attached fraction. AhpC transcripts were the most abundant, followed 

by katG. While no significant correlations were observed between the relative abundance of 

ahpC or katG with H2O2, phycocyanin, or chlorophyll a concentration throughout the entire field 

season (p > 0.05, F-test), qualitative patterns were observed with H2O2. The highest katG 

transcript relative abundance was observed at the nearshore station WE12, shortly after the 
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highest concentrations of H2O2 and during peak bloom microcystin concentrations (Figure 2.2). 

The highest ahpC transcript abundance occurred in late August and September when 

concentrations of H2O2 were within the lower range of measured concentrations (Figures 2.3A, 

2.3B). Genes encoding katE were sporadically expressed at low levels. Genes encoding 

ccpA/mauG were expressed at low levels with no apparent patterns with any bloom parameters, 

with the exception of one sample collected on 23 September at WE12, where expression of 

ccpA/mauG relative to total bacterial rpoB expression was closer to the lower range of katG 

transcript abundance. No transcripts for MnCAT encoding genes were found in the 

metatranscriptomes (Figure 2.2). APX transcripts were rare (< 0.01 relative to bacterial rpoB) or 

absent in most samples. The exception was one sample collected on 8 September at the offshore 

station and 23 September at nearshore station WE12. On 8 September, unbinned APX was the 

most abundant gene in the metatranscriptome apart from ahpC, but on 23 September unbinned 

APX was 10-fold less abundant than katG (Figure 2.2). 

Heterotrophic bacteria dominated katG transcripts in all samples (Figure 2.4A), while 

Microcystis dominated the ahpC transcript pool in five of the seven samples (Figure 2.3C). 

Microcystis katG transcripts comprised only 0 - 17 % (mean 7 ± 3 %) of the total katG reads, 

despite being the most abundant in the metagenome, and only accounted for 0.8 % of katG reads 

during peak katG expression. Highly abundant katG transcripts were often from organisms 

present at low relative abundance in the metagenomic reads (Figure 2.4B). The most striking 

example of this result was observed on 4 August, when total katG transcript relative abundance 

was the highest; katG in Paludibaculum (Acidobacteria) and Bryobacter (Acidobacteria) 

comprised ~40% and ~6% of the total katG RNA reads, respectively (Figure 2.4B). Bryobacter 

and Paludibaculum comprised a lower proportion of the total katG transcripts in other samples, 
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but the relative abundance of transcripts from both organisms was consistently enriched relative 

to gene abundance when present. KatG expression by an uncultured Flammeovirgaceae (Bin 

42896 E20, Bacteroidetes) was also a significant portion of total katG expression during peak 

katG expression (17.8 %), and was a major proportion of total katG transcripts for all dates, with 

the exception of 21 July. Throughout the bloom, katG transcripts from Phenylobacterium 

(Alphaproteobacteria) and Rhodobacteraceae (Alphaproteobacteria) were less abundant but 

present in nearly all samples except at the offshore station WE4, which lacked Rhodobacteraceae 

katG transcripts. 

2.3.4 Axenic Culturing Experiments 

 To assess how bacterial cross-protection from natural H2O2 concentrations impacts the 

growth of toxic and nontoxic Microcystis strains, we grew axenic Microcystis cultures for 12-13 

days in the presence and absence of sodium pyruvate, a rapid scavenger of H2O2 that is used to 

remove H2O2 in cell cultures (Kim et al., 2016; Lopalco et al., 2016; Kawasaki & Kamagata, 

2017; Ma et al., 2018). We found that one strain had a significant improvement in maximum 

specific growth rate (µmax) when cultured with sodium pyruvate, while the remaining strains 

showed no differences in maximum specific growth rate (Figure 2.5). The potential benefit of 

sodium pyruvate for a Microcystis strain was unrelated to the presence or absence of the mcy 

gene cluster or catalase and peroxidase genes in its genome. Although there were slight increases 

in the cell densities of four strains when cultured with sodium pyruvate, final cell densities at the 

end of the experiment were not significantly different in the majority of strains when cultured 

with pyruvate (p > 0.05, Welch’s T-test, Figure S 2.10). One strain had significantly lower mean 

final cell densities when cultured with sodium pyruvate (p = 0.01102, Welch’s T-test, Figure S 

2.10). 
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 In the pyruvate treated cultures, H2O2 concentrations could not be quantified because 

pyruvate decayed the H2O2 standard 10-25 % during the flow injection analysis (Figure S 2.11, 

see methods). However, the rapid decay of the standard suggests that H2O2 concentrations were 

maintained at very low levels in the pyruvate treatments. The initial H2O2 concentrations of the 

control treatments ranged from 910 – 1330 nM (mean 1000 ± 148 nM, 95% confidence interval; 

Figure 2.6). In four strains, H2O2 concentrations subsequently declined to 170 ± 40 nM. Three 

strains did not decay H2O2 as efficiently; H2O2 concentrations in these cultures declined to 370 ± 

70 nM. In sterile BG-11 2N media, H2O2 concentrations showed complex dynamics, decreasing 

to 580 ± 50 nM within 2 days and subsequently increasing to 1700 ± 100 nM; therefore, declines 

in H2O2 below ~580 nM were attributed to the presence of the strain. 

2.4 Discussion 

2.4.1 Microcystin Production Does not Determine the Response of a Microcystis Strain to an 
Exogenous H2O2 Scavenger 

Variations in H2O2 concentrations have been hypothesized to impact the relative 

proportions of toxic and nontoxic Microcystis strains in the environment. However, there is 

conflicting evidence on whether the growth of toxic Microcystis is either less (Schuurmans et al., 

2018) or more (Dziallas & Grossart, 2011; Zilliges et al., 2011) favored than nontoxic 

Microcystis when exposed to elevated H2O2 concentrations. The Microcystis strains tested here 

(3 naturally toxic, 3 naturally nontoxic, and 1 nontoxic mutant) showed different impacts of 

H2O2 on growth. The maximum growth rate of most strains was not significantly impacted by 

pyruvate, an external scavenger of H2O2, suggesting no fitness benefit from the removal of H2O2 

from the growth medium (Figure 2.5). However, strain PCC 7806 (toxic) showed a significantly 

higher maximum growth rate when cultured with pyruvate (Figure 2.5), indicating that H2O2 in 

the growth media imposed oxidative stress on this strain despite its ability to decompose H2O2. 
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Reductions in PCC 7806 growth rate by H2O2 is consistent with other laboratory culture 

experiments with this strain that showed growth of PCC 7806 was inhibited by higher H2O2 

concentrations than those used in this study (Schuurmans et al., 2018). However, final maximum 

cell densities in this strain were not significantly higher when cultured with the H2O2 scavenger 

relative to controls (Figure S 2.10), suggesting that growth benefits of H2O2 removal were 

limited to when growth rates were highest. Such reduced growth rate may be important during 

competition with other Microcystis strains and phytoplankton taxa in communities. 

The mutant strain of PCC 7806, incapable of microcystin biosynthesis (Dittmann et al., 

1997), did not display significantly different growth rates in the presence or absence of pyruvate 

as observed in the wild type strain (Figure 2.5), indicating that the environmentally relevant 

concentrations of H2O2 in the medium have no detectable effect on growth of the mutant. The 

lack of any effect of the H2O2 scavenger on the mutant suggests that it does not benefit from help 

decomposing H2O2. The lack of change in maximum growth rates with H2O2 exposure in the 

microcystin knockout mutant contrasts with the hypothesized protection provided by 

microcystins and with previous results showing higher growth impairments of H2O2 additions to 

the mutant strain when compared to the wildtype (Dziallas & Grossart, 2011; Zilliges et al., 

2011). However, the data are inconsistent with the idea that production of microcystins directly 

impairs the response of Microcystis to H2O2 (Schuurmans et al., 2018), because growth rates in 

the wild-type and mutant are not significantly different when exposed to naturally relevant H2O2 

concentrations, and both strains degraded H2O2 similarly (Figure 2.6). 

In the absence of H2O2, wild type PCC 7806 had significantly higher maximum growth 

rates than the mutant strain (Figure 5, p < 0.05, Welch’s two-sided T-test). This indicates that 

growth rates of the mutant strain of PCC 7806 are reduced compared to those of the wild-type 
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under these experimental conditions, but the reduced growth rates are unrelated to H2O2 

exposure. This growth rate reduction may be related to other changes in the mutant due to the 

absence of microcystins. For example, previous studies have shown that the mutant PCC 7806 

strain has an altered metabolome (Meissner et al., 2015; Barchewitz et al., 2019), proteome 

content (Dittmann et al., 2001), assembly and subcellular localization of the RubisCO enzyme 

(Barchewitz et al., 2019), and has higher relative expression of peroxiredoxins and other genes 

involved in oxidative stress response (Schuurmans et al., 2018) when compared to the wild type. 

Such metabolic differences between the wild-type and mutant PCC 7806 may also explain how 

the two strains differ in whether or not they benefit from an exogenous H2O2 scavenger despite 

having similar growth rates in the presence of naturally occurring H2O2 concentrations. 

Furthermore, these differences in the effect of H2O2 scavengers may suggest that metabolic 

differences between Microcystis strains may lead to tradeoffs between growth rates when 

exposed to H2O2 and potential maximum growth rates under reduced H2O2 exposure. However, 

with the data and experimental design here, the mechanism of growth rate reduction in the 

mutant strain of PCC 7806 cannot be confirmed. 

While cultivation with an H2O2 scavenger had different impacts on the growth of wild-

type strain PCC 7806 and the nontoxic knockout mutant, other strains that varied in their ability 

to produce microcystin (2 toxic, 3 nontoxic), showed no significant differences in maximum 

growth rate when cultured with or without sodium pyruvate (Figure 2.5). All of the tested strains 

have ahpC, lack katG, and could degrade H2O2 in the growth medium (Figure 2.6), which 

suggests that the presence or absence of microcystin biosynthesis, catalases, and peroxidases 

alone does not determine whether or not a given strain will benefit from help decomposing H2O2. 



 46 

Therefore, other traits must also determine the overall impact of H2O2 on the growth of a given 

Microcystis strain. 

Several mechanisms could potentially explain the differences in the response of the 

Microcystis strains to H2O2. Previous studies with H2O2-sensitive Nitrosopumilus found that cell 

surface proteins rather than canonical H2O2 scavengers were differentially expressed based on 

H2O2 exposure, suggesting that alteration of the cell wall and membrane make it less permeable 

to H2O2 at higher concentrations  (Bayer et al., 2019). These findings suggest that differences in 

the cell surface structures of the Microcystis strains tested could explain their different responses 

to pyruvate. Supporting this hypothesis, Microcystis cells excrete exopolysaccharide that can 

degrade H2O2 (Gao et al., 2015), and the exopolysaccharide composition varies between 

Microcystis strains (Forni et al., 1997). However, how changes in exopolysaccharide chemistry 

impact H2O2 resistance in Microcystis have not been measured.  

In addition, light intensity determines whether or not Prochlorococcus strains benefit 

from H2O2 decomposition by a “helper” bacterium (Morris et al., 2011); some Prochlorococcus 

strains benefitted at low light intensity, while other strains benefitted at high light intensity. 

Deviation from optimal growth temperature also determines the toxicity of H2O2 to 

Prochlorococcus (Ma et al., 2018). Therefore, Microcystis strains may only benefit from H2O2 

removal at certain temperatures. Because the optimal growth temperatures of Microcystis strains 

vary (Xiao et al., 2017; Bui et al., 2018), the temperature at which a given strain becomes 

sensitive to H2O2 should also vary if the same temperature dependent response to H2O2 observed 

in Prochlorococcus also occurs in Microcystis. Some evidence suggests that nutrient limitation 

impacts the sensitivity of Microcystis to H2O2 (Sandrini et al., 2020), so differences in the 

nutrient quotas between Microcystis strains may also create differences in H2O2 sensitivity under 
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different nutrient regimes. Finally, the sensitivity of a given strain to H2O2 may be determined by 

the susceptibility of its cellular components in addition to its mechanism for H2O2 

decomposition. Some Microcystis strains may have more proteins in their proteomes that are 

sensitive to H2O2 damage, as H2O2 damage is limited to specific protein structures in the absence 

of free iron (Imlay, 2003). Microcystis proteomes do vary between strains (Alexova et al., 2011), 

however the number and variation of H2O2 sensitive structures within Microcystis proteomes has 

not been measured. 

2.4.2 The Ability of Microcystis to Degrade H2O2 Does not Preclude Benefit From an 
Exogenous H2O2 Scavenger 

Bloom-forming cyanobacteria in eutrophic lakes may benefit from helper bacteria in a 

manner similar to Prochlorococcus in the oligotrophic oceans. The presence of alkyl 

hydroperoxide reductase (ahpC) and absence of catalases (katG and katE) in most published 

Microcystis genomes is the same as the case of some Prochlorococcus (Morris et al., 2008; 

Morris et al., 2011; Morris, 2015; Kim et al., 2019a) and some species of Thaumarchaeota (Kim 

et al., 2016; Bayer et al., 2019), which are completely inhibited by sub-micromolar H2O2 

concentrations. The presence of ahpC and the lack of katG in these marine organisms means that 

they must depend on other microorganisms to scavenge H2O2. In this study, we found that most 

Microcystis cells in Lake Erie blooms also lack katG, and that community katG expression is 

dominated by heterotrophic bacteria. However, in contrast to Prochlorococcus and some 

Thaumarchaeota, all of the Microcystis strains tested could degrade and tolerate H2O2 

concentrations within the range of some of the highest concentrations observed in Lake Erie 

blooms (Cory et al., 2016) and that inhibit Prochlorococcus (Morris et al., 2011). 

Despite degrading H2O2 in the growth medium, one Microcystis strain had significantly 

higher maximum growth rates when cultured with sodium pyruvate (Figure 2.5). Because the 
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cultured Microcystis strains in our experiment all lack katG, the decomposition of H2O2 is 

presumably from ahpC, which is known to compensate for the loss of katG in some bacteria at 

the sub-micromolar concentrations typically observed in natural waters (Tichy & Vermaas, 1999; 

Seaver & Imlay, 2001b; Perelman et al., 2003; Cosgrove et al., 2007). These results support that 

AhpC protein can scavenge extracellular H2O2 for some organisms and suggest that Microcystis 

can lower environmental H2O2 to some extent even without katG. However, the presence of an 

exogenous H2O2 scavenger still improved growth rates in one Microcystis strain, suggesting that 

H2O2 caused stress despite H2O2 degradation by the cells. Growth impairment from H2O2 despite 

its decomposition has also been observed in other Microcystis strains (Daniel et al., 2019). This 

may indicate that a portion of H2O2 decay comes from reactions that damage cellular structures, 

or that there is a fitness cost to H2O2 decomposition in some Microcystis strains. Indeed, AhpC 

activity requires thioredoxin or glutathione and NADH as electron donors (Nogoceke et al., 

1997; Tichy & Vermaas, 1999; Hosoya-Matsuda et al., 2005; Mishra & Imlay, 2012); thus, H2O2 

decomposition in Microcystis may impart a cost to growth in conditions under which electron 

donors limit growth. For example, the form and concentration of nitrogen in the environment 

changes the intracellular concentrations of NAD(P)H in Microcystis (Steffen et al., 2014) which 

may impact H2O2 decomposition by AhpC. Additionally, if the environmental conditions that 

cause electron donor limitation vary between Microcystis strains, electron donor availability 

could be another factor that determines differences in the sensitivity of H2O2 between strains.  

Given that the toxicity of H2O2 toward cyanobacteria is dependent on temperature (Ma et 

al., 2018), nutrient availability (Robles-Rengel et al., 2019; Sandrini et al., 2020), and light 

wavelength (Piel et al., 2020), and that H2O2 concentrations during the growth phase of our 

cultures (Figure 2.6) were lower than peak H2O2 concentrations during Microcystis blooms 
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(Figure 2.1) we cannot rule out that H2O2 may inhibit growth of the Microcystis strains tested 

here more broadly or severely than shown by our lab experiments. Ultimately, additional 

experiments over a range of culturing conditions are required to fully characterize the response 

of each Microcystis strain to H2O2. We also note that H2O2 present at high concentrations in 

culturing media (Morris & Zinser, 2013; Kawasaki & Kamagata, 2017), exerts strong bias on the 

cultivation of bacteria from the environment (Tanaka et al., 2014), and may even inhibit 

successful cultivation of some cyanobacterial strains but not others (Morris et al., 2008; Morris 

et al., 2011). Thus, cultured strains of Microcystis, especially those that have been in culture for 

years like those used here, may have higher tolerance of H2O2 than natural populations. 

Unfortunately, axenic cultures of Microcystis strains from Lake Erie are not currently available 

to our knowledge. 

2.4.3 The Relative Contribution of Attached Bacteria to H2O2 Decomposition in 
Phytoplankton Assemblages 

Metatranscriptomics revealed that Microcystis katG comprised very few total katG 

transcripts (<1 % of total transcripts during peak expression) in the particle-attached fraction, and 

a small fraction of Microcystis cells in Lake Erie had katG. The most highly expressed katG 

genes in the particle-attached fraction were from heterotrophic bacteria, suggesting that they may 

be responsible for most of the H2O2 degradation in phytoplankton assemblages and thus provide 

protection from H2O2 to other community members. However, katG expression may not 

necessarily be indicative of efficient H2O2 decomposition in some bacteria because some 

organisms have katG with low specific activity and catalytic efficiency (kcat/Km) and still require 

helpers in order to tolerate naturally-relevant H2O2 concentrations (Kim et al., 2019b). As the 

organisms responsible for the majority of katG expression are uncultured, and no axenic isolates 

of Microcystis with katG are currently available, it is unclear how katG expression of these 
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organisms relates to rates of H2O2 decomposition in the environment. However, Microcystis 

colonies are encapsulated by exopolysaccharide slimes (Plude et al., 1991; Forni et al., 1997; 

Gao et al., 2015) that can impart resistance to oxidative stress (Gao et al., 2015) and are 

colonized by heterotrophic bacteria (Worm & Søndergaard, 1998; Brunberg, 1999; Parveen et 

al., 2013). Thus, bacterial cells attached to the colony perimeter are likely exposed to more 

exogenous H2O2 than Microcystis cells in the colony interior, perhaps making them larger sinks 

for H2O2 than Microcystis cells in the colony interior. However, cultivation of the katG-

containing organisms and measurements of their H2O2 decomposition rates are required to 

understand their roles in H2O2 decomposition during cyanobacterial blooms.  

2.5 Conclusions 

In summary, the Microcystis strains tested here all decompose H2O2, yet differ in their 

sensitivity to H2O2. One strain of Microcystis benefited from the presence of a scavenger of 

H2O2. Whether a strain benefitted or was unaffected by an exogenous H2O2 scavenger was not 

related to its ability to produce microcystins. This suggests that H2O2 is a stressor during natural 

bloom development that can impair growth of some Microcystis strains in situ but does not 

necessarily favor toxic over nontoxic Microcystis. There is some evidence that the sensitivity of 

a given strain may change with environmental conditions, suggesting whether or not H2O2 

impairs the growth of a given strain may change with environmental conditions. 

H2O2 concentrations are determined by the relative strength of its sources and sinks in the 

environment, and the main sink for H2O2 in aquatic environments are microbial catalases 

(Moffett & Zafiriou, 1990). Thus, taken together with the differential sensitivity of Microcystis 

strains toward H2O2, the drawdown of H2O2 via catalase production by heterotrophic bacteria 

may shape temporal changes in the relative proportion of Microcystis strains. When 
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heterotrophic catalase and peroxidase activity is low and H2O2 production rates are high, H2O2 

would accumulate to higher concentrations and may give a competitive advantage to Microcystis 

strains that are more resistant to H2O2 (Figure 2.7). Indeed, we observed a succession of strains 

during the 2014 bloom event, reflected by a transition in the proportion of Microcystis containing 

the mcy genes (Figure 2.1B). While our results do not support the idea that H2O2 favors 

microcystin-producing strains per se, it is possible that the strains present during the early phase 

of the bloom dominated, in part, due to a higher resistance to the elevated H2O2 concentrations. 

How changes in H2O2 production and decay influence Microcystis strain composition remains to 

be tested directly, and how the sensitivity of Microcystis strains to H2O2 varies with 

environmental conditions is unknown. However, the interactive effect of stress from H2O2 with 

other factors such as temperature, light intensity, and nutrient form and availability could 

perhaps explain strain succession patterns during bloom events and may improve our 

understanding of the widely observed transition (65) from high to low microcystin 

concentrations during early to late phases of Microcystis blooms. 

2.6 Methods 

2.6.1 Field Sampling and Water Chemistry 

Weekly sampling was conducted at three locations in the western basin of Lake Erie in 

conjunction with the NOAA Great Lakes Environmental Research Laboratory long-term HABs 

monitoring program. These sites correspond to NOAA stations WE2, WE12, and WE4 (Figure S 

2.1). The average depth at nearshore stations WE2 and WE12 is 4.8 ± 0.1 m and 5.9 ± 0.1 m, 

respectively, while the average depth at offshore station WE4 is 7.8 ± 0.1 m. Water chemistry 

measurements (pH, conductivity, nutrients) are detailed elsewhere (Berry et al., 2017). At all 

stations, pH ranged from 7.80-9.29 (mean=8.55 ± 0.06), conductivity ranged from 175.5-314.6 
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μS/cm (mean=250.6 ± 5.2 μS/cm), water temperature ranged from 25.0 °C (mid-August) to 12.5 

°C (mid-October) with a mean of 20.6 ± 0.6 °C from June-October. Total N as nitrite/nitrate and 

ammonium ranged from 0-1.1 mg/L and 0.1-36.4 μg/L while soluble reactive phosphorus and 

total phosphorus ranged from 0.04-21.2 and 9.9-132.7 μg/L, respectively. These values are 

typical of Lake Erie (Winter et al., 2015; Gobler et al., 2016) and other eutrophic lakes impacted 

by CHABs (Jensen & Andersen, 1992; Paerl et al., 2011). Water quality data were collected by 

the NOAA Great Lakes Research Lab as are available under NCEI accession 0187718. 

In-situ hyperspectral light profiles were collected at each sampling site using a Sea-Bird 

HyperPro II© (Sea-Brid Scientific, Philomath, OR) profiler equipped with up- and down-facing 

HyperOCR radiometers measuring wavelengths 348 – 801 nm (bin size = 3.3 nm), plus an 

identical fixed surface radiometer to record sky conditions. The profiler was deployed on the 

sunny side of the vessel and allowed to free-fall through the water column to avoid the vessel 

shadow. A duplicate cast was collected as soon as the profiler was returned to the surface to 

capture identical light conditions. Profiles were collected after the vessel had been drifting 

without power for several minutes, so the water column through which the profiler traveled had 

as little artificial disturbance as possible. Light profile data were processed using ProSoft (Sea-

Brid Scientific, Philomath, OR). Output spectral light intensities in power units (W/m2) were 

converted to photon flux units (µmol photons/m2/s) by dividing by the photon energy, which was 

calculated using the following equation: 

Eph = hc/ λ 

where h is Planck’s constant (6.626x10-34 J/s), c is the speed of light (per m), and λ is the 

wavelength of light in meters. Total photon flux was calculated as the sum of the spectral photon 

fluxes from a single Sea-Bird cast.  
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Microbial samples were obtained from a 20L depth-integrated water sample collected 

from the surface to 1 meter above the lake bottom. To collect the whole community fraction, 150 

mL of depth-integrated sample was filtered onto a 47 mm Millipore Express® PLUS membrane 

with a 0.22 μm pore size, placed into 2 mL cyrovials with 1 mL RNAlater, and kept on ice 

during cruise transit. To collect the colony-associated fraction, 2 L of depth-integrated sample 

was filtered through a 100 μm pore-size mesh, and the retentate was backwashed into a falcon 

tube using altered BG-11 medium (Table 2.4). RNAlater was added in a 2:1 ratio with the 

backwash. The backwash was filtered onto a 1.6 μm pore size Glass Fiber Filter with a 

syringe.  After filtration, all filters were placed into 2 mL cryovials with 1mL of RNAlater and 

kept on ice during cruise transit. Upon arrival at the lab, all filters were frozen at -80 °C until 

extraction. H2O2, chlorophyll, and microcystin measurements were conducted as described in 

(Cory et al., 2016), and phycocyanin measurements were conducted as described in (Berry et al., 

2017).  

2.6.2 DNA and RNA Extraction and Sequencing 

Filters with collected biomass were thawed, folded with biomass facing inwards, and 

rinsed with sterile PBS to remove RNAlater preservative. Filters were incubated in 100 μL 

Qiagen ATL tissue lysis buffer, 300 μL Qiagen AL lysis buffer, and 30 μL proteinase K for 1 

hour at 56 °C on a rotisserie (Qiagen, Hilden, Germany). Cells were further lysed by vortexing in 

this lysis buffer for 10 minutes. Lysates were homogenized using a Qiashredder column, and 

DNA was purified from the filtrate using the Qiagen DNeasy Blood and Tissue kit according to 

the manufacturer’s standard protocol. The quantity and quality of DNA in each sample were 

determined using a NanoDrop Lite Spectrophotometer (Thermo Scientific). DNA extracts were 

frozen at -80 °C until analysis. 
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For RNA extraction, the filters were incubated in 600 μL Qiagen RLT+ buffer and 6 μL 

β-mercaptoethanol for 90 minutes on a rotisserie. The filters were then vortexed for 10 minutes 

and homogenized using a Qiashredder column. RNA was purified from the homogenized 

solution using the RNeasy kit according to the manufacturer’s standard protocol.  

 All sequencing was performed at the University of Michigan Sequencing Core. Paired-

end DNA sequencing (2 x 125) was conducted on Illumina Hiseq 2000 with V4 chemistry 

reagents with “low-input prep” using the Rubicon ThruPlex kit. RNA single-read sequencing (1 

x 50) was performed on Illumina HiSeq 2000 with V4 chemistry reagents. Before sequencing, 

RNA libraries were prepared with a 50/50 mix of plant and bacterial ribo-zero kits to remove 

rRNA sequences. In total, 23 metagenomes and 7 metatranscriptomes were sequenced, and the 7 

metatranscriptomes were paired with 7 of the metagenomes collected at the same date and 

sampling location. Of these, 15 metagenomes are from the 100 μm fraction and 8 are from the 

total community fraction. All metatranscriptomes are from the 100 μm fraction. 

2.6.3 qPCR and Toxic:nontoxic Microcystis Ratio 

Two Microcystis-specific gene targets for qPCR were used during this study, the 16S 

rRNA gene and mcyD gene. Targeting the 16S rRNA gene allowed for quantification of the total 

Microcystis population. The mcyD gene is found within the microcystin synthetase gene operon, 

which is responsible for the production of microcystin and is only found in toxic strains of 

Microcystis (Tillett et al., 2000). Quantitative polymerase chain reaction (qPCR) was executed 

using an Applied Biosystems 7500 Fast Instrument using TaqMan® labeled probes (Applied 

Biosystems) and Microcystis-specific mcyD and 16S rRNA primers (Table 2.5)(Kaebernick et 

al., 2000; Rinta-Kanto et al., 2005; Ouellette et al., 2006). Standard curves for the Microcystis 

16S rRNA and mcyD were composed using a double-stranded synthetic DNA construct (gBlock; 
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Integrated DNA Technologies, IA, USA) that can be tailored to contain any sequence of interest. 

The sequence tested was identical to the PCR product obtained from the qPCR process for the 

Microcystis 16S rRNA and mcyD genes. Ten-fold serial dilutions of the gBlock ranging in 

concentration from 102-108 copies were run in duplicate 25 μL reactions using the cycling 

conditions described below. For amplification of the 16S targets, the cycling conditions were 95 

°C for 10 minutes, followed by 45 cycles of 95 °C for 15 sec and 60 °C for 1 minute. For 

amplification of the mcyD gene, the cycling conditions were 95 °C for 10 min, followed by 45 

cycles of 95 °C for 15 sec, 50 °C for 1 min, and 60 °C for 1 min. For dates that we had a 

corresponding metagenomic sample, we also assessed the toxic:nontoxic Microcystis ratio by 

mapping quality-checked, dereplicated metagenomic reads to the mcyD and 16S rRNA gene 

sequences of the V4 region from all publicly available Microcystis genomes in the Integrated 

Microbial Genomes database (IMG) using the blastn function of the Basic Local Alignment 

Search Tool (BLAST, version 2.2.28+) (Altschul et al., 1990). Because the 16S rRNA gene can 

be present in two identical copies in some strains of Microcystis, we also checked that the values 

for percent toxic Microcystis strains were similar when normalizing to the single-copy 

housekeeping gene rpoB in Microcystis rather than the 16S rRNA gene. All blast hits against the 

reference genes were filtered to exclude hits with a bit score less than 50 and an e-value greater 

than 1x10-5 for all genes using the postBlast.pl script. Reads were only counted if they had a 

percent identity of at least 99% for the 16S rRNA gene, 95% for mcyD, and 97% for rpoB. All 

final read counts for each gene target were normalized by the length of the reference gene. 

2.6.4 Metagenomic Assembly 

Metagenomic short reads from each sample were individually processed and assembled 

de novo. Before assembly, metagenomic short reads from each sample were dereplicated at 
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100% length and identity using a custom made dereplicate.pl script, and sequencing adaptors 

were removed with Scythe (https://github.com/vsbuffalo/scythe). Sickle was then used to remove 

low quality reads (Joshi & Fass, 2011), and the forward and reverse reads were interleaved using 

the custom script interleave.pl. The de novo assembly for each sample was constructed using 

IDBA-UD with the following parameters: min kmer = 55, max kmer = 115, kmer step size = 10 

(Peng et al., 2012). 

Because the quality of the assembly of a genome from a metagenome can be reduced 

when its read coverage exceeds 20X (Hug et al., 2016), we performed a subsampling approach to 

optimize Microcystis coverage, which could be as high as 1200X in some samples. Microcystis 

coverage in each sample was estimated by mapping the unprocessed reads to the complete 

Microcystis aeruginosa NIES-843 genome using the Burrows-Wheeler Aligner version 0.7.9a 

(Li & Durbin, 2009). Our results confirmed that the longest contigs containing Microcystis 

housekeeping genes were obtained when Microcystis coverage was between 20-35X. Therefore, 

for each sample in which the Microcystis coverage was greater than 35X, an additional de novo 

assembly was constructed by obtaining a randomized subset of the reads to normalize the 

Microcystis coverage to 35X using IDBA-UD with the following parameters: min kmer = 52, 

max kmer = 92, kmer step = 8 (Peng et al., 2012). In total, 42 assemblies were constructed from 

the metagenomic reads. 

To improve the assembly of lower abundance bacteria, combined-sample assemblies (co-

assemblies) were generated with MEGAHIT (Li et al., 2015) using kmin 21, kmax 141, and 

kmer step size of 12. We performed 3 co-assemblies in total: one from the two samples with 

highest Paludibaculum abundance (Aug-4 and Aug-25 particle metagenomes from WE12), 

another containing all the samples in which Paludibaculum was present (8 samples total), and 
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another with the same 8 samples, but the read kmer coverage was normalized to 20X prior to 

assembly with BBnorm in the BBtools package (Bushnell, 2018). Paired-end short reads were 

quality and adapter screened and dereplicated with BBtools prior to co-assembly (Bushnell, 

2018). An additional single sample MEGAHIT assembly was constructed on the particle size 

fraction sample from August 4th at WE12 following the same pipeline.  

2.6.5 Read Mapping, Contig Binning, and MAG Quality Assessment 

 The metagenomic read coverage of contigs in each assembly was obtained by mapping 

reads to their corresponding assembly using bowtie2 (Langmead & Salzberg, 2012). Differential 

coverage across samples was determined by iteratively mapping reads from each sample used in 

the assembly to the co-assembled contigs. Binning of contigs in single sample IDBA-UD 

assemblies was iteratively performed by clustering assembled contigs by the Euclidean distance 

of tetranucleotide frequencies and visualized in Databionics Emergent Self-Organizing Maps 

(ESOMs) (Dick et al., 2009). Genome sequences of Microcystis aeruginosa NIES-843, 

Rhizobiales bacterium AUSA02, and Brevundimonas subvibrioides were included in all ESOM 

maps as reference genomes. Each sample received its own ESOM, but contigs generated from 

full and subsampled reads were binned together in the same ESOM map. For most 100 μm 

fraction samples, contigs greater than 5000 bp in length were split into 5000 bp pieces, while 

contigs below 2500 bp in length were not included in the binning process. For the total 

community fraction and the 100 μm sample from Sept. 29 at WE4, a contig size window of 

4000-10,000 bp was used because the larger number of contigs above 2500 bp became 

computationally unmanageable. 

 In the co-assemblies, contigs were binned using a multi-algorithm binning approach. 

Contigs were binned using differential coverage and tetranucleotide frequencies in CONCOCCT 
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(Alneberg et al., 2014) and Metabat2 (Kang et al., 2019) and with tetranucleotide frequencies 

alone using VizBin (Laczny et al., 2015) and ESOMs. The contig size window for ESOM was 4-

10 kbp and 2.5-10 kbp for the other binners. The resulting redundant bin datasets from each 

assembly were dereplicated using DASTool (Sieber et al., 2018). The single-sample MEGAHIT 

assembly was binned using the above co-assembly workflow. For this assembly, differential 

coverage was estimated by mapping reads from August 4th WE12 and August 25th WE12 to the 

contigs. 

The completeness, contamination, and redundancy estimates of each genomic bin were 

generated using the lineage workflow in CheckM (Parks et al., 2015). The bins from single 

sample IDBA-UD assemblies with contamination metrics greater than or equal to 5%, which is 

the established benchmark for a draft genome of low contamination (Parks et al., 2015), were 

refined by plotting GC content versus the read coverage of all scaffolds within the target bin, and 

removing outlier contigs. Coverage and tetranucleotide frequencies of the co-assembly bins were 

visualized for manual refinement in Anvio (Eren et al., 2015).  Refined bins were reanalyzed 

using the lineage workflow in CheckM (Parks et al., 2015). All bins with contamination scores 

greater than 5% after refinement were eliminated from downstream analysis. Contamination 

scores of the final bins were considered while ignoring the amount of contamination due to strain 

heterogeneity. Redundant marker genes were considered to be from closely related strains if their 

shared amino acid identity was greater than 90% (CheckM default). In total, 315 MAGs were 

generated with low contamination (< 5%), and varying levels of completeness (Supplemental 

File 1). This redundant bin dataset was dereplicated using dRep (Olm et al., 2017) with 97 % 

ANI and 60 % alignment coverage cutoffs and skipping the MASH pre-clustering step. Only 
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MAGs with completeness above 75% were included in the final dereplicated MAG dataset, 

leaving a total of 136 MAGs (Supplemental File 2). 

The taxonomy of each dereplicated bin was obtained with CheckM’s tree qa function and 

GhoastKoala taxonomy annotations of gene calls (Kanehisa et al., 2016). Taxonomic 

classification with these methods remained coarse in many cases, so EMIRGE was used to 

assemble 16S rRNA genes (Miller et al., 2011), which were then assigned to bins by matching 

fragments of the 16S at the ends of contigs via the blastn function of the Basic Local Alignment 

Search Tool (BLAST, version 2.2.28+) (Altschul et al., 1990). The mean insert size and 

accompanying standard deviation input used in the EMIRGE 16S assemblies were estimated 

from the mapping results of the raw metagenomic reads to their corresponding assembled 

contigs. The SILVA SSU 16S rRNA database version 128 was curated by the 

emirge_makedb.py script provided in the EMIRGE package then used as the reference in 

EMIRGE to map short reads for assembly (Pruesse et al., 2007). The final assembled 16S rRNA 

sequences were compared to the original reference database via BLAST version 2.2.28+ and 

taxonomy was assigned with the Wang method (Wang et al., 2007) in MOTHUR v. 1.43.0 

(Schloss et al., 2009). An EMIRGE sequence was only considered as belonging to a bin if the 

percent match to a bin 16S fragment covered greater than 10% of the assembled 16S rRNA gene, 

had a bit score of at least 50 and an E-value of at most 1x10-5, and did not conflict with 

taxonomy as determined by CheckM and GhostKoala. Final bin taxonomy was assigned using 

EMIRGE whenever available, otherwise the CheckM and GhostKoala taxonomy was used. 

2.6.6 Gene Annotations and Abundance 

Gene calls and functional annotations of metagenome assembled contigs were obtained 

using IMG annotation pipeline (Huntemann et al., 2015).  Genes of interest were obtained from 
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the IMG database by conducting a KEGG orthology search of bacterial genomes in the IMG 

online interface (Markowitz et al., 2011). The following KEGG Orthology IDs were used to 

target our specific genes of interest: K03781 (katE/katA/catB, herein listed collectively as katE), 

K07217 (katN/ydbDA/cotG/yjqC herein listed collectively as MnCAT), K03782 (katG), K00428 

(ccpA/yhjA/mauG herein listed collectively as ccpA), K03386 (ahpC), K00434 (ascorbate 

peroxidase, APX), K03043 (rpoB), and K03553 (recA). Custom BLAST databases were 

constructed from the gene calls with KEGG orthology annotations of interest if their final IMG 

annotation matched that of the KEGG Orthology ID. The taxonomy of genes was assigned to 

match the taxonomic assignments of the dRep bin cluster in which they were found. Unbinned 

genes were assigned a taxonomy if they had a ≥ 95% match to a protein in NCBI nr (as of 

October 17th, 2018) with blastx (Altschul et al., 1990). All other unbinned genes were included 

as unassigned. Genes in the custom databases were sorted by gene length (longest to shortest) 

and clustered at 95 % identity with vsearch (Rognes et al., 2016).  

To determine the abundance of catalases and peroxidases in the metagenomes and 

metatranscriptomes, BBtool screened short reads were mapped to the assembled gene databases 

with BLAST version 2.2.31+ (Altschul et al., 1990). The quality-screening pipeline for 

metatranscriptomic reads did not include a dereplication step. The alignments to the assembled 

genes were filtered to exclude hits with a percent identity less than 95 % and an e-value greater 

than 1x10-5 using the postBlast.pl script. To avoid double counting reads, only the best matches 

were counted for each read using the top5.pl script. Only read counts to genes with at least 70% 

AAI and alignment coverage to other proteins with the same functional annotation in the NCBI 

nr protein database with blastx version 2.2.31+ (Altschul et al., 1990) were included. Because 
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more reads inherently map to longer genes, the read counts of each gene were normalized by 

gene length. 

In order to correct for varying library and genome sizes between samples, the gene 

abundances were reported as ratios to the number of reads that mapped to a custom database of 

the single-copy housekeeping gene rpoB, encoding the beta-subunit of the bacterial RNA 

polymerase. BLAST mappings against rpoB were filtered and quality checked as described 

above for the catalase and peroxidase blasts. We chose to normalize to bacterial rpoB rather than 

total library size to reduce the impact of eukaryotic genomes on the abundance and expression 

values for the bacterial community. However, we checked the assumption that rpoB is 

constitutively expressed and a good normalization strategy by normalizing metatranscriptomic 

read counts via total library size, expressed as reads per kilobase of transcript per million mapped 

reads (RPKM). We found that the expression patterns were generally the same, with the 

exception of the two early samples that showed much lower gene expression overall due to the 

dominance of eukaryotic genomes (Figure S 2.12). 

2.6.7 Culturing Experiments 

 The growth of seven axenic Microcystis cultures was assessed with and without the 

presence of 1 mM sodium pyruvate, a scavenger of extracellular H2O2 (Kim et al., 2016; Ma et 

al., 2018). Six strains were purchased axenic from the Pasteur Culture Collection of 

Cyanobacteria (PCC 7806, PCC 7806 ΔmcyB, PCC 7941, PCC 9806, PCC 9701, PCC 7005). 

Strain NIES 843 was generously provided by Dr. Steve Wilhelm at the University of Tennessee. 

The cultures were maintained at room temperature under cool white fluorescent lights (30-60 

µmol photons/m2/sec) in BG-11 2N, a variant of standard BG-11 media (Allen & Stanier, 1968) 

with the sodium nitrate concentration reduced to 2 mM. Axenicity was monitored by light 
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microscopy, DAPI fluorescence microscopy, and inoculating Microcystis cultures into LB and 

TSB media and monitoring for the development of turbidity after 3-4 weeks.  

The experimental cultures were grown in 1 L glass pyrex bottles at 24.4 °C (average in 

July-August of 2014-2017) and 330 µmol photons/m2/sec (average PAR intensity at 0.5 m depth 

in Lake Erie during July-August of 2017 as determined from approximately biweekly 

hyperspectral profiles) for 12-14 days in a Caron Plant Growth Chamber (model 7311-50, Caron 

Marietta, OH). The growth medium was BG-11 2N. The positions of the bottles were 

randomized to correct for potential differences in light intensity across incubator shelving. Cell 

densities and H2O2 concentrations were monitored every other day. Cell density was measured 

via cell counts under a compound microscope using a Reichert Bright-Line™ Hemacytometer 

(Hausser Scientific, Horsham, PA). Maximum growth rates were determined by taking the 1st 

derivative of a spline curve fit to the cell density data of each biological replicate (average R2 = 

0.994 ± 0.006, 95% confidence interval). 

H2O2 concentration was measured using the chemiluminescent reaction of the conjugate 

base of hydrogen peroxide with 10-methyl-9-(p-formylphenyl)acridinium carboxylate 

trifluoromethanesulfonate in a FeLume flow-injection analysis (King et al., 2007). Standard 

additions of a nominal 200 µM H2O2 solution were added to each sample to correct for matrix 

effects (final nominal concentrations of added standard were 0, 500, 750 nM). The concentration 

of the H2O2 standard solution was measured from its absorbance at 240 nm in a 5 cm quartz 

cuvette and the molar absorptivity of H2O2 (38.1 M-1s-1) (King et al., 2007). A new standard 

solution was prepared from a 30% H2O2 stock solution on each day measurements were 

performed. Decay of the standard additions during the flow-injection analysis was used to 

confirm H2O2 degradation by sodium pyruvate treated samples. Signal decay was monitored by 
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taking 4 replicate injections of each sample, and the normalized signal decay was calculated as 

the difference in the peak integrals of the chemiluminescent signal in the first and final replicate 

injections divided by the peak integral of the first injection. 

2.6.8 Scripts and Data Availability 

All custom bioinformatics scripts and pipelines used in this study can be found on our github 

page: https://github.com/Geo-omics/scripts. All read datasets are publicly available in NCBI 

SRA under BioSample accession numbers: SAMN09102072-87.  All metagenomic assemblies 

are submitted to IMG and publicly available (IMG assembly IDs: 3300005044-3300021599, 

3300028428- 3300028430 and 3300034010). The R package growthrates v. 0.8.1 

(https://github.com/tpetzoldt/growthrates) was used to calculate growth rates, and Welch’s T-

tests were computed with base R v. 4.0.2.  
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2.7 Figures and Tables 
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Figure 2.1: Temporal dynamics in algal pigments, toxic:nontoxic Microcystis, hydrogen 
peroxide, and catalase and peroxidase gene abundance in the 2014 western Lake Erie 
cyanobacterial bloom. Dotted lines separate data from each station. A: Changes in phycocyanin 
concentrations at each station. B: Percentage of Microcystis population containing the mcyD 
gene required for microcystin production as determined by qPCR (red) and BLAST against 
metagenomic reads (blue) at each station. BDL = below detection limit. C: Relative abundance 
of catalase and peroxidase genes from all organisms in Lake Erie metagenomes from the 100 μm 
particle size fraction at each station. Read counts in C are normalized to the length of the 
matching gene in the database and to the number of reads that mapped to bacterial rpoB, 
encoding the beta-subunit of RNA polymerases. Error bars on H2O2 concentrations show the 
standard error of technical replicates measurements (n=3). 
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Figure 2.2: Temporal and spatial variation in the relative abundance of transcripts encoding 
catalases and peroxidases (excluding ahpC) in Lake Erie metatranscriptomes from the 100 μm 
particle size fraction collected during the 2014 western Lake Erie cyanobacterial bloom. Read 
counts were normalized to the length of each gene and to the number of reads that mapped to 
bacterial rpoB, encoding the beta-subunit of RNA polymerases. Error bars on H2O2 
concentrations show the standard error of technical replicates measurements (n=3). A: 
Abundance of genes at nearshore stations WE2 and WE12. Square symbols show WE2 H2O2. 
Circles show WE12 H2O2. B: Abundance of genes at offshore station WE4. 
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Figure 2.3: Relative abundance and taxonomic composition of ahpC transcripts from the 2014 
western Lake Erie cyanobacterial bloom. A: Relative abundance of ahpC in Lake Erie 
metatranscriptomes of the 100 μm size fraction from nearshore stations WE2 and WE12. B: 
Relative abundance of ahpC in Lake Erie metatranscriptomes of the 100 μm size fraction from 
offshore station WE4. C: Taxonomic composition of ahpC in metatranscriptomes of the >100 
μm size fraction. 
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Figure 2.4: Taxonomic composition of katG transcripts from the 2014 western Lake Erie 
cyanobacterial bloom. A: Taxonomic composition of katG in Lake Erie metatranscriptomes from 
the >100 μm particle size fraction. B: Comparison of the abundance of katG in the metagenome 
and metatranscriptome collected when overall katG expression was highest (August 4th, WE12). 
Taxa are ranked by their abundance in the metagenome. All gene abundances are normalized to 
the abundance of rpoB gene, encoding the beta-subunit of bacterial RNA polymerases. 

 

Figure 2.5: Impact of sodium pyruvate on maximum growth rates of Microcystis strains. 
Maximum specific growth rates of seven Microcystis strains with and without 1 mM sodium 
pyruvate supplemented to the growth medium. Treatment groups for each strain contained three 
biological replicates. P-values were calculated with a Welch’s two-sided T-test. 
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Figure 2.6: H2O2 concentrations in axenic Microcystis cultures. Mean H2O2 concentrations 
observed in axenic Microcystis cultures and sterile BG-11 2N media without sodium pyruvate. 
Error bars show 95% confidence intervals of three biological replicates for the Microcystis 
strains and 95% confidence interval of the standard addition slope for sterile BG-11 2N media. 

 

Figure 2.7: Conceptual diagram of H2O2 production, concentrations, and decomposition by the 
microbial community influencing Microcystis population structure. 
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Figure S 2.1: Sampling sites in western Lake Erie. 
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Figure S 2.3: Temporal and spatial variation in the relative abundance of catalase and 
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peroxiredoxin ahpC. No APX homologs were detected in cyanobacteria genomes. 
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Figure S 2.10: Growth curves of seven axenic Microcystis strains cultured with and without 1 
mM sodium pyruvate supplemented to the growth medium. 



 81 

 

843 9701 9806

7005 7806 7806 ΔmcyB 7941

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

Days after innoculation

N
or

m
al

ize
d 

Si
gn

al
 D

ec
ay

Figure S 2.11: Decay of 500 nM H2O2 standard in the filtrates of 
Microcystis cultures supplemented with1 mM sodium pyruvate. Decay is 
expressed as the difference in the chemiluminescent signal between two 
replication measurements collected 6 minutes apart, divided by the initial 
chemiluminescent signal at the beginning of replicate measurements. 
Shown is the mean normalized signal decay of three biological replicates. 
Error bars show 95% confidence intervals. 
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Figure S 2.12: Relative expression of katG (top) and ahpC (bottom) using read counts 
normalized by total library size. Included in the same plot are samples from all three stations and 
their average H2O2 concentrations (black dotted line). Error bars show standard error of average 
H2O2 concentration across the three stations. 
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Table 2.1: Microcystis 16S rRNA and mcyD gene copy numbers and percentage of Microcystis 
population with the potential to produce the toxin microcystin as determined by qPCR analysis. 

Nearshore 

Station WE2 

                

Date 16S rRNA Copy 

Number 

mcyD copy 

number 

% Toxic 

Micorcystis 

Average 

(%) 

STDE

V 

Part. MC 

(μg/L) 

Average STD 

DEV 

21-Jul 162,255 47,196 29.1 35.4 22.0 4.94 3.0 2.2 

29-Jul 109,963 31,081 28.3     3.98     

18-Aug 6,318,419 4,396,621 69.6     4.71     

2-Sep 415,647 40,672 9.8     0.60     

8-Sep 110,701 44,739 40.4     0.60     

15-Sep 1,040,929 22,150 2.1 0.9 1.0 0.70 0.6 0.6 

23-Sep 613,340 8,498 1.4     1.35     

6-Oct 571,508 BDL 0.0     0.00     

15-Oct 92,454 BDL 0.0     0.45     

Offshore 

Station WE4 

                

Date 16S rRNA Copy 

Number 

mcyD copy 

number 

% Toxic 

Micorcystis 

Average 

(%) 

STD 

DEV 

Part. MC 

(μg/L) 

Average STD 

DEV 

21-Jul 73,881 53,376 72.2 44.7 13.6 1.82 0.7 0.7 

29-Jul 227,902 95,765 42.0     1.01     

18-Aug 280,301 113,234 40.4     0.21     

25-Aug 18,810 7,441 39.6     0.10     

2-Sep 47,629 17,683 37.1     0.20     

8-Sep 428,055 157,423 36.8     0.80     

15-Sep 128,190 1,514 1.2 10.5 20.3 0.10 0.3 0.2 
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Table 2.2: Coordinates of 16S rRNA genes in closed Microcystis genomes available in the 
NCBI genome database. 

Microcystis strain GenBank accession 16S rRNA gene coordinates 

PCC 7806SL CP020771.1 

 

608249..609725 

2236412..2237888 

MC 19 CP020664.1 1023751..1025240 

2178504..2180000 

NIES 2481 CP012375.1 1..1460 

23-Sep 53,261 21,818 41.0     0.30     

6-Oct BDL BDL 0.0     0.10     

15-Oct 67,891 BDL 0.0     0.54     

Nearshore 

Station 

WE12 

                

Date 16S rRNA Copy 

Number 

mcyD copy 

number 

% Toxic 

Micorcystis 

Average 

(%) 

STD 

DEV 

Part. MC 

(μg/L) 

Average STD 

DEV 

21-Jul 10,360 8,800 84.9 62.9 30.9 6.14 4.0 2.6 

29-Jul 3,464,712 2,088,253 60.3     6.93     

18-Aug 410,386 189,368 46.1     3.39     

25-Aug 4,655,920 4,682,178 100.6     3.10     

2-Sep 589,887 133,209 22.6     0.30     

8-Sep 157,234 13,475 8.6 4.4 2.9 0.40 0.7 0.6 

15-Sep 4,593,926 142,257 3.1     1.30     

23-Sep 1,748,321 31,412 1.8     0.90     

6-Oct 134,216 5,470 4.1     0.00     
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 2452450..2453909 

NIES 2549 CP011304.1 

 

1..1460 

2455677..2457136 

NIES 298 CP046058.1 

 

1267476..1268964 

4095284..4096772 

NIES 843 AP009552.1 

 

1885807..1887295 

3597272..3598760 

FD4 CP046973.1 

 

2373640..2375133 

4731957..4733450 

FACHB 1757 CP011339.1 

 

4352152..4353641 

4953781..4955270 

NIES 102 AP019314.1 

 

1512507..1513991 

5700022..5701506 

 

 

Table 2.3: Taxonomy of MAGs containing genes encoding the catalase and peroxidase genes of 
interest. An “X” indicates that the specified gene was found in at least one MAG of the listed 
taxonomy. 

Bin Taxonomy CAT katG Mn Cat ccpA/mauG ahpC 

Algoriphagus    X  

Acetobacteraceae 49624 E11     X 

Acidibacter  X   X 

Alphaproteobacteria CoA8 M99     X 

Alphaproteobacteria CoA8N C25     X 

Alphaproteobacteria CoA8N M8     X 
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Alphaproteobacteria 49628 E19     X 

Anabaena   X  X 

Hyphomonadaceae 42896 C36  X   X 

Bacteroidetes CoA8 C16    X X 

Bacteroidetes 49613 E12    X  

Bacteroidetes 49614 E21     X 

Bacteroidetes 49618 E68  X  X  

Betaproteobacteria CoA8 M57  X  X  

Betaproteobacteria CoA8N M60  X  X X 

Betaproteobacteria CoA2 C61    X  

Betaproteobacteria 49628 E42  X  X  

Blastopirellula  X  X  

Burkholderiaceae 49618 E8     X 

Burkholderiaceae 49638 E11    X  

Burkholderiales CoA8 M58  X   X 

Burkholderiales CoA8N M101    X  

Burkholderiales 49624 E46  X   X 

Burkholderiales 49632 E5  X  X X 

Burkholderiales 53603 E6    X X 

Bryobacter  X  X X 

Caenarcaniphilales CoA8 M2.1    X X 

Candidatus Jidaibacter     X 

Chitinophagaceae 49614 E54    X  

Chitinophagaceae 49621 E24  X    

Chloroflexaceae 49614 E51  X    

Comamonadaceae 49613 E28     X 

Comamonadaceae 49613 E45     X 
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Comamonadaceae 49618 E9  X  X X 

Cryomorphaceae 49613 E39    X X 

Cryomorphaceae 49618 E18  X  X X 

Cryomorphaceae 49628 E59  X  X X 

Cryomorphaceae 49632 E27    X X 

Cryomorphaceae 49632 E31    X X 

Cyanobium  X   X 

Fimbriimonadaceae CoA8N M5  X    

Fimbriimonadaceae 49621 E14    X  

Flammeovirgaceae CoA8 M5  X    

Flammeovirgaceae CoA8N M18  X  X  

Flammeovirgaceae 42896 E20  X    

Flammeovirgaceae 42896 C11  X    

Flammeovirgaceae 49625 E12  X  X  

Fluviicola    X X 

Gemmataceae 49613 E7     X 

Gemmataceae 49618 E45  X  X  

Gemmatimonadetes CoA8N M110  X  X  

Gemmatimonadetes CoA8N M4  X  X X 

Gemmatimonadetes CoA2 M2  X  X X 

Gemmatimonadetes 49618 E39  X    

Ignavibacteriae 49624 E23  X  X  

Ilumatobacteraceae 49618 E24  X    

Limnohabitans     X 

Microcystis     X 

Nitrosomonadaceae CoA8N V37     X 

Novosphingobium  X    
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Opitutus  X    

Oxalobacteraceae 49613 E41    X X 

Oxalobacteraceae 49613 E42    X  

Oxalobacteraceae 49613 E43    X X 

Oxalobacteraceae 49614 E52    X X 

Paludibaculum  X  X X 

Parachlamydia     X 

Pedosphaeraceae 49614 E7    X X 

Phenylobacterium  X    

Pirellula  X  X X 

Planctomyces    X X 

Planctomycetaceae 49613 E24  X  X  

Planctomycetaceae 49613 E25  X    

Planctomycetaceae 49613 E27  X  X  

Planctomycetaceae 49618 E55.1    X X 

Planctomycetaceae 49618 E55.3    X  

Planctomycetaceae 49628 E33    X X 

Planctomycetaceae 53600 E7  X    

Proteobacteria CoA8 C15.2    X X 

Proetobacteria CoA8 M100  X   X 

Proteobacteria 49628 E63  X   X 

Pseudanabaena     X 

Rhizobiales CoA2 C13  X    

Rhodobacteraceae 49625 E6  X    

Rickettsiaceae 49624 E59     X 

Rickettsiales CoA8 M105.1  X   X 

Rickettsiales 49632 E25  X   X 
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Rubrivivax CoA2 C44  X  X X 

Rubrivivax CoA2 C48  X  X X 

Rubrivivax CoA2 C53    X X 

Rubrivivax 49636 E6  X  X X 

Rubrivivax 53601 E5  X  X X 

Saprospiraceae 49614 E9  X  X X 

Saprospiraceae 49618 E65    X  

Saprospiraceae 49624 E15    X  

Sediminibacterium  X  X X 

Sphingobacteriales CoA8 V48  X  X  

Sphingobacteriales 49613 E9  X  X  

Sphingobacteriales 49618 E60    X X 

Sphingobacteriales 49624 E34  X  X X 

Sphingomonadaceae 49628 E11     X 

Terrimonas  X  X  

Verrucomicrobiaceae 49632 E14  X  X X 

Xanthomonadaceae CoA8 M120  X   X 

Xanthomonadaceae 49613 E30  X    

Xanthomonadales 49613 E26    X  

 

 

Table 2.4: Modified BG-11 recipe used in backwash solution for collecting biomass retentate on 
100 μm filter mesh. 

BG-11 
 

Chemical Quantity per liter 

NaNO3 1 mg 

MgSO4*7H2O 75 mg 
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K2HPO4 100 mg 

CaCl2*2H2O 36 mg 

Na2CO3 20 mg 

Citric Acid 6 mg 

Ferric Ammonium Citrate 6 mg 

Disodium EDTA 1 mg 

Trace metal mix A5 1 mL 
  

Trace Metal Mix A5 
 

Chemical Quantity per liter 

H3BO3 2.86 g 

MnCl2*4H2O 1.81 g 

Na2MoO4*2H2O 0.39 g 

ZnSO4 *7H2O 0.222 g 

CuSO4*5H2O 0.079 g 

Co(NO3)2*6H2O 0.049 g 

 

 

Table 2.5: A list of primers (Integrated DNA Technologies, IA, USA) and probes (Applied 
Biosystems, Foster City, CA, USA) used in the qPCR analysis. 

DNA Target Primer Sequence (5'-3') Reference 

Microcystis 16s rDNA 184F GCCGCRAGGTGAAAMCTAA Ouellette et al. (2006) 

 431R AATCCAAARACCTTCCTCCC Ouellette et al. (2006) 

 Probe (Taq) FAM-AAGAGCTTGCGTCTGATTAGCTAGT-BHQ-1a Rinta-Kanto et al (2005) 

Microcystis mcyD F2 GGTTCGCCTGGTCAAAGTAA Kaebernick et al. (2000) 

 R2 CCTCGCTAAAGAAGGGTTGA Kaebernick et al. (2000) 

 Probe (Taq) FAM-ATGCTCTAATGCAGCAACGGCAAA-BHQ-1a Rinta-Kanto et al (2005) 

F: forward primer R: reverse primer. 

a Black Hole Quencher-1 (quenching range 480-580 nm) 
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Chapter 3 Individual Microcystis Colonies Harbor Distinct Bacterial Communities That 
Differ by Microcystis Oligotype and With Time 

3.1 Abstract 

Interactions between bacteria and phytoplankton in the phycosphere have impacts at the 

scale of whole ecosystems, including the development of harmful algal blooms. The 

cyanobacterium Microcystis causes toxic blooms that threaten freshwater ecosystems and human 

health globally. Microcystis grows in colonies that harbor dense assemblages of other bacteria, 

yet the taxonomic composition of these phycosphere communities and the nature of their 

interactions with Microcystis are not well characterized. To identify the taxa and compositional 

variance within Microcystis phycosphere communities, we performed 16S rRNA V4 region 

amplicon sequencing on individual Microcystis colonies collected biweekly via high-throughput 

droplet encapsulation during a western Lake Erie cyanobacterial bloom. The Microcystis 

phycosphere communities were distinct from microbial communities in whole water and bulk 

phytoplankton seston in western Lake Erie but lacked “core” taxa found across all colonies. 

However, dissimilarity in phycosphere community composition correlated with sampling date 

and the Microcystis 16S rRNA oligotype. Several taxa in the phycosphere were specific to and 

conserved with Microcystis of a single oligotype or sampling date. Together, this suggests that 

physiological differences between Microcystis strains, temporal changes in strain phenotypes, 

and the composition of seeding communities may impact community composition of the 

Microcystis phycosphere. 
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3.2 Introduction 

Microbial interactions play a central role in many biogeochemical processes and have 

ecosystem wide impacts. A familiar example is the interaction between phytoplankton and 

heterotrophic bacteria, which can often be mutualistic. Specifically, phytoplankton provide 

organic carbon and sulfur that support heterotrophic bacterial growth while their heterotrophic 

partners improve phytoplankton growth by producing essential vitamins and growth promotors 

(Croft et al., 2005; Amin et al., 2015; Durham et al., 2015; Durham et al., 2017), increasing the 

bioavailability of trace metals (Amin et al., 2009; Basu et al., 2019), regenerating nutrients from 

organic material (Van Mooy et al., 2012; Amin et al., 2015; Arandia-Gorostidi et al., 2017; 

Christie-Oleza et al., 2017), and detoxifying reactive oxygen species (Morris et al., 2011; Ma et 

al., 2018).  

Many phytoplankton-bacteria interactions occur in close proximity or with physical 

attachment of the interacting cells (Paerl & Gallucci, 1985; Segev et al., 2016; Arandia-Gorostidi 

et al., 2017; Frischkorn et al., 2017) within a zone of interaction called the phycosphere (Bell & 

Mitchell, 1972; Cole, 1982; Seymour et al., 2017). The phycosphere is rich in dissolved organic 

carbon (DOC) exuded by phytoplankton or released upon cell lysis, which attracts chemotactic 

bacteria (Bell & Mitchell, 1972; Paerl & Gallucci, 1985; Barbara & Mitchell, 2003; 

Sonnenschein et al., 2012; Smriga et al., 2016). Interactions within the phycosphere can take 

place between conserved heterotrophic community members and phytoplankton taxa (Jasti et al., 

2005; Sison-Mangus et al., 2014; Durham et al., 2015; Frischkorn et al., 2017; Lee et al., 2017). 

The recruitment of specific heterotrophic taxa may be driven by the production of signaling-

molecules (Durham et al., 2015; Segev et al., 2016; Durham et al., 2017) or through the unique 

exometabolomes of each phytoplankton taxon (Bell & Mitchell, 1972; Seymour et al., 2010; 

Landa et al., 2017), which may elicit chemotactic responses in specific taxa (Bell & Mitchell, 
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1972; Bassler et al., 1991; Miller et al., 2004). Interactions within the phycosphere have impacts 

at the scale of whole ecosystems (Azam & Malfatti, 2007; Seymour et al., 2017), such as driving 

carbon cycling (Smriga et al., 2016) or algal bloom development and termination 

(Seyedsayamdost et al., 2011) in marine systems. 

While a growing body of literature has characterized phycosphere interactions between 

marine taxa (Ferrier et al., 2002; Jasti et al., 2005; Sison-Mangus et al., 2014; Amin et al., 2015; 

Segev et al., 2016; Frischkorn et al., 2017), comparatively little work has been conducted in 

freshwater systems despite their importance for recreation, fisheries, biodiversity, agriculture, 

and drinking water. Globally, freshwaters are increasingly threatened by cyanobacterial harmful 

algal blooms (CHABs) due to anthropogenic nutrient pollution and global climate change 

(Huisman et al., 2018). Microcystis is a globally dominant cyanobacterium in many freshwater 

CHABs, and some strains produce microcystins, a class of potent hepatotoxins that can cause 

liver damage and death in mammals when ingested (Harke et al., 2016). Microcystis spp. grow in 

large, buoyant colonies (50-1000 µm diameter) (Zhu et al., 2014) that can be either clonal or 

nonclonal (Otten et al., 2017; Jackrel et al., 2019) and harbor other bacteria (Hindák, 1996; 

Worm & Søndergaard, 1998). Studies on bulk phytoplankton aggregates dominated by 

Microcystis suggest that the bacterial communities associated with Microcystis colonies are 

distinct from those associated with other cyanobacteria and free-living communities in the 

surrounding water column (Parveen et al., 2013; Louati et al., 2015; Zhu et al., 2019; Jankowiak 

& Gobler, 2020). Interactions between other phytoplankton and bacteria influence the growth 

and toxin production of marine harmful algal blooms (Ferrier et al., 2002; Adachi et al., 2003; 

Sison-Mangus et al., 2014), with some strain and species specific effects (Sison-Mangus et al., 

2014), and bacteria can influence the invasion capability of some Microcystis strains into 
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established green algae cultures (Schmidt et al., 2020). Together, these observations suggest that 

bacteria associated with Microcystis could affect the relative fitness and proportion of 

Microcystis strains, which is an important determinant of Microcystis bloom microcystin 

concentrations (Kardinaal et al., 2007; Davis et al., 2009; Davis et al., 2010; Otten et al., 2012). 

While previous studies have characterized heterotrophic bacteria populations in enrichment 

culture with Microcystis (Jackrel et al., 2019; Kim et al., 2019) or in total communities during 

blooms (Parveen et al., 2013; Louati et al., 2015; Berry et al., 2017a; Shi et al., 2018; Chun et 

al., 2019; Kim et al., 2019; Zhu et al., 2019; Chun et al., 2020; Cook et al., 2020; Jankowiak & 

Gobler, 2020), the microbes that comprise natural Microcystis colonies and the variation in 

community composition across individual colonies are comparatively understudied. To our 

knowledge, only two studies have identified the bacterial communities associated with single 

Microcystis colonies (Shia et al., 2010; Tu et al., 2019). Both were limited to single timepoints 

and low numbers of colonies, and one did not deeply characterize colony-associated 

communities with high-throughput sequencing (Shia et al., 2010). Therefore, the extent to which 

Microcystis phycosphere communities on individual colonies vary across strains and species of 

Microcystis and with time and space is unknown.  

In order to characterize the bacterial communities associated with the Microcystis 

phycosphere, we isolated single Microcystis colonies from a western Lake Erie CHAB in 2019 

via droplet encapsulation, which provides higher throughput and precision than traditional 

methods of colony isolation. We then performed amplicon sequencing of the V4 region of the 

bacterial 16S rRNA genes. With the resulting dataset, we focus on answering the following 

questions: 1) Do Microcystis colonies harbor taxa that are regularly present, comprising a “core” 

phycosphere community? 2) How do Microcystis phycosphere communities vary between 
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individual colonies? 3) How do Microcystis phycosphere communities change throughout bloom 

development? We found that Microcystis colonies harbor phycosphere communities that are 

distinct from whole water bacterial communities and bulk phytoplankton seston (100 µm 

retentate, including Microcystis colonies) communities, and differ by sampling date and 

Microcystis oligotype. We hypothesize that these distinct phycosphere communities are shaped 

by strain-specific interactions as well as changes in either seeding communities or the 

physicochemical environment over time. 

3.3 Methods 

3.3.1 Field Sampling 

Microcystis colonies were collected approximately biweekly at two locations in western 

Lake Erie (Figure S 3.1) during the 2019 CHAB. The majority of colonies were sampled from 

NOAA station WE8, with the exception of one date (9-Sep-19) on which station WE16 was 

sampled. Sample collection covered a range of bloom development stages and microcystin 

concentrations (Figure S 3.2). Microcystis biomass was collected with 2-4 casts of a 53 µm 

plankton net, which retains 99 % of Microcystis cells (Chaffin et al., 2011). Biomass retained on 

the net was backwashed into 1-2 50 mL centrifuge tubes with 0.22 µm filtered and autoclaved 

Lake Erie water. The collected material was stored in a cooler filled with lake water until arrival 

back at the lab. Between each cruise, the plankton net was disinfected with 10% bleach and 

rinsed with DI water. Environmental and water chemistry data were obtained from NOAA’s 

National Centers for Environmental Information (accession 0209116). 

3.3.2 Individual Colony Isolation via Droplet Encapsulation 

Immediately upon arrival to the lab, the biomass was filtered through a 300 µm pore size 

filter mesh and retained on filter mesh with 105 µm pore size. The 105 µm retentate from all 
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samples collected on a given date were transferred to a new 50 mL falcon tube using a squirt 

bottle containing molecular grade PBS. Then the falcon tube was filled to 30 mL with molecular 

grade PBS. The biomass was allowed to settle for 10 minutes, which caused non-cyanobacterial 

particles to sink and cyanobacteria colonies to buoyantly float to the top of the solution (Shi et 

al., 2018; Zhu et al., 2019). The buoyant colonies were then transferred to a new falcon tube 

using a sterile pipette, and resuspended in new molecular grade PBS solution. The colony wash 

and transfer was repeated 5 additional times to separate loosely attached or free-living bacteria 

from the colonies. On the final washing step, the colonies were collected and placed into a sterile 

2 mL microcentrifuge tube. The concentration of colonies was estimated by dispensing 5 µL 

aliquots onto multiple glass slides and counting colonies under an inverted light microscope.  

After washing, droplet encapsulation of the cyanobacterial colonies was performed using 

a syringe pump to encapsulate the colony suspension into droplets that could be individually 

processed (Figure 3.1). First, the cyanobacterial colonies were diluted to approximately 67 

colonies/mL (1 colony in every 15 µL) with PBS solution and loaded into a 10 mL luer-lock 

syringe with a 23 gauge needle (337 µm inner diameter), along with 1 mL of air. The syringe 

was loaded into a syringe pump (Kent Scientific, GenieTouchä) set to a continuous flow rate of 

600 µL/min and placed on top of an orbital shaker set to 100 - 150 rpm (Figure 3.1). Tubing 

(PTFE, 0.022x0.042’’, Cole-Parmer EW-06417-21) attached to the syringe needle allowed a 

droplet (~15 µL volume) to form and fall onto a section of a sterile petri dish. Before droplets 

were formed with the colony suspension, several droplets were formed with sterile PBS solution 

to serve as blank controls for subsequent sequencing. All droplets were inspected and imaged 

with an inverted light microscope (Nikon Eclipse Ti-S). Droplets containing one Microcystis 

colony were transferred to a 96 well PCR plate using a P1000 micropipette tip. The larger 
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volume tip was required to prevent the colonies from clogging the tip. The PCR plate was 

covered with sterile aluminum foil (VWR 89049-034) and frozen at -20 °C until DNA 

extraction. In total, we screened 800 droplets and collected 210 droplets that contained a single 

Microcystis colony. 

 Colony dimensions were measured from microscopy images with ImageJ (2.0.0-rc-

69/1.52i). Length and width were defined by drawing lines through the longest and shortest 

dimensions, respectively, on 2D colony images. Area was drawn by manual free-hand selection 

around the distinguishable boundary of the colony. The scale (µm/pixel) was calculated using 

scale bars from microscopy. Colony morphology was assigned using published morphospecies 

classifications (Otsuka et al., 2000). 

3.3.3 DNA Extraction and Sequencing 

 DNA extractions of colonies and PBS blanks were performed with ChargeSwitchâ gDNA 

Mini Bacteria Kits (Invitrogen Life Technologies, California, USA) using a protocol modified 

for single Microcystis colonies (Pérez-Carrascal et al., 2019). From the 210 droplets collected, 

DNA was extracted from 122 colonies (17-25 for each sampling date) in a laminar flow-hood to 

minimize contamination from the lab. Because single colony samples had very low biomass, the 

samples were subjected to a round of PCR using dual indexed primers targeting the V4 region of 

the bacterial 16S rRNA gene (Kozich et al., 2013) to confirm the presence of amplifiable DNA 

in the samples and its absence in PBS blanks. The raw DNA extracts of blanks and all 

amplifiable samples (n=60) were submitted for sequencing using Illumina MiSeq V2 500 cycle 

chemistry (Illumina cat# MS102-2003) at the University of Michigan Microbial Community 

Analysis Core following their SOP (Schloss & Bishop, 2019). 
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 DNA was collected from microbial communities in whole and 105 µm filtered water 

from western Lake Erie in the summer and fall of 2014 and 2017-2019 to compare with 

phycosphere communities. Amplicon data from the 2014 bloom was obtained from a previously 

published study (Berry et al., 2017a). Whole water microbial communities from 2017-2019 were 

collected by filtering 100-200 mL of lake water through a 0.22 µm PES filter. The filter was 

preserved in RNAlater and frozen at -80 °C until DNA extraction. Microbial communities from 

the < 100 µm size fraction (smaller than the Microcystis colonies sequenced) were collected by 

filtering whole lake water through a 100 µm plankton mesh and collecting the filtrate into an 

acid-washed 2L polycarbonate bottle. Then, 200 mL of the 100 µm filtrate was filtered through a 

0.22 µm PES filter, preserved in RNAlater and frozen at -80 °C until DNA extraction. In 2017, 

filters were collected weekly at NOAA monitoring station WE2 and periodically near the 

drinking water intake for Toledo, OH, and at various Environment Canada monitoring sites 

during two research cruises (Figure S 3.1). In 2018 and 2019, filters were collected during pre-

bloom, early bloom, mid bloom, and late bloom phases from NOAA station WE2 and the 

drinking water intake for Toledo, OH in 2018, and at locations of highest bloom density as 

predicted by the NOAA HAB tracker in 2019 (Wynne et al., 2013). The water used for total 

microbial communities in 2017-2019 was stored for 12-15 hours in an outdoor water bath set to 

lake water temperature before sample collection. DNA was extracted from the filters using 

QIAgen DNeasy Blood & Tissue Kits with QIAshredder columns (QIAGEN, Maryland, USA). 

Genomic DNA from Thermus thermophilus strain DSM 7039 was added to the samples after the 

cell lysis step of the extraction as an internal standard. Thermus thermophilus DNA was obtained 

from the American Type Culture Collection (ATCC; product number BAA-163D-5). The 

internal standard was added as ~ 1 % of DNA yield, which was estimated based on an 
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empirically determined relationship between total mass of chlorophyll a on the filter and DNA 

yield. DNA yields were measured with Quant-iT Picogreen dsDNA Assay Kit (Invitrogen, 

Carlsbad, CA). The true percentage of the internal standard was 0.72 ± 0.37 % of total DNA 

yield on average. The extraction protocol is included as a supplemental data file. 

3.3.4 Bioinformatic and Statistical Analyses 

Forward and reverse reads were quality screened to remove sequences below 250 bases 

and trimmed to Q20 using BBDuk (Bushnell, 2018). Any read pairs in which a read had 50 % or 

more of the bases trimmed were removed from downstream analysis. Any samples that had 

fewer than 1000 reads after QC were not included in downstream analysis (final n=44). 

Following trimming, overlapping forward and reverse reads were assembled into contigs, 

aligned, screened for chimeras, and clustered into operational taxonomic units (OTUs) using 

MOTHUR v. 1.43.0, following the SOP as of February 2020 (Kozich et al., 2013). OTU 

clustering was performed using a 97 % similarity cutoff with the OptiClust algorithm (Westcott 

& Schloss, 2017). Contigs were aligned with the align.seqs function in MOTHUR, and 

taxonomy was assigned using the Wang method (Wang et al., 2007). v. 138 SSU database 

(Pruesse et al., 2007) was used as the reference to align and classify the contigs. The data were 

also clustered into oligotype OTUs (referred to as nodes in the original paper) using minimum 

entropy decomposition (MED) without outlier replacement (Eren et al., 2015). The minimum 

substantial abundance at which an MED node was reported was set to 854, following the 

previously published suggestion of using N/10 000, where N is the total number of sequences in 

the dataset (Eren et al., 2015). The relative abundance of the 97 % OTUs and MED nodes in 

each sample was calculated as the proportion of the total reads from a sample that were assigned 

to a given OTU or MED node. MED nodes were used to resolve finer-scale variation in 
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Microcystis sequences, and 97% OTUs were used for overall comparisons of non-Microcystis 

community composition to avoid confounding effects of sequence variation in MED nodes that 

may reflect nonidentical gene copies originating from a single genome rather than genes from 

different species. All OTUs classified as Thermus in bulk samples were removed from the 

dataset prior to NMDS analysis. 

To determine the nucleotide similarity of multiple 16S rRNA gene copies in Microcystis 

genomes, we downloaded 16S rRNA gene sequences from each closed Microcystis genome 

available in NCBI (as of June 24, 2020; n = 9). Then the gene copies from each genome were 

aligned using Blastn in the NCBI web tool. Microcystis colonies were assigned to oligotype 

groups based on the identity of their pairs of MED sequence variants (Oligoype 1 = Nodes 8432-

8432, Oligoype 2 = Nodes 1993-8432, Oligoype 3 = Nodes 8437-8437, Oligoype 4 = Nodes 

8432-8437).  

Because interpretations of community structure in low biomass samples are significantly 

altered by contamination from the lab and DNA extraction kits (Salter et al., 2014), we screened 

the final OTUs for contaminating taxa, following previously published suggestions (Salter et al., 

2014; Sheik et al., 2018). First, all OTUs comprised of 1-2 sequences or present in only one 

colony at £ 0.1 % abundance were removed from the data set. Second, we checked the 

legitimacy of any OTUs in the Microcystis colonies classified with a taxonomy that matched to 

known contaminants from DNA extraction kits (Salter et al., 2014; Sheik et al., 2018) by 

screening for their presence in the field samples. Potential contaminant OTUs with a relative 

abundance that was not significantly different from zero in all field samples were removed from 

the colony dataset. The taxonomic assignments of contaminant OTUs flagged for removal were 

confirmed by blasting the representative sequence against the NCBI nr database. 
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Alpha diversity metrics, Bray-Curtis dissimilarities between colonies, non-metric 

multidimensional scaling (NMDS) ordinations, mantel tests, and ANOSIM tests were computed 

using the R package Vegan v. 2.5-6 (Oksanen et al., 2013). Bray-Curtis dissimilarity was used as 

the distance metric for all beta-diversity calculations. Euclidean distance was used to measure 

dissimilarity in environmental parameters. Hierarchical clustering (HC) of samples by Bray-

Curtis dissimilarity was performed using an average linkage algorithm. All calculations of beta-

diversity were performed without including Microcystis OTUs. Diagnostic species (species that 

are statistical predictors for classes of sites or samples) of sample date and oligotype were 

identified by calculating a complete Indval.g metric for each OTU using the R package 

indicspecies v. 1.7.9 (Cáceres & Legendre, 2009). Correlation analyses and other standard 

calculations were calculated using base R. Three-dimensional NMDS plots were made with 

plotly v. 4.9.2 (https://github.com/ropensci/plotly). All other plots were made with ggplot2 v. 

3.2.1 (https://cran.r-project.org/web/packages/ggplot2/index.html). The code for the entire 

bioinformatic and statistical analysis pipeline is publicly available at (https://github.com/Geo-

omics/Characterizing-individual-Microcystis-colony-phycosphere-communities). The raw 

sequence data is deposited in NCBI SRA under BioProjects PRJNA645738 and PRJNA646259. 

3.4 Results and Discussion 

3.4.1 Microcystis Colony Oligotype Assignment 

MED analysis showed that the Microcystis sequences in each colony were primarily 

composed of either a single oligotype or two oligotypes at approximately equal proportions 

(Figure S 3.3). We interpret that the colonies with primarily two oligotypes represent clonal 

colonies comprised of Microcystis strains with two distinct 16S rRNA gene copies, while the 

colonies with primarily one oligotype represent clonal Microcystis colonies comprised of strains 
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with two identical V4 regions of the 16S rRNA gene. Although some atypical colonies can form 

from aggregation of multiple strains (Otten et al., 2017), Microcystis colonies from eutrophic 

environments are primarily clonal (Jackrel et al., 2019). Furthermore, if colonies were comprised 

of multiple Microcystis strains, the proportions of the oligotypes should be more variable across 

the sequenced colonies. Inspection of all publicly available and closed Microcystis genomes 

(n=9) confirmed that all have two 16S rRNA gene copies. Pairwise alignment of the two gene 

copies from each genome showed that the shared nucleotide composition of the gene copies 

varies between Microcystis strains, and the nucleotide sequence variation occurred at different 

nucleotide positions in each strain (Table 3.1). From these MED results, we classified the 

colonies into oligotype groups based on their pair of sequence variants (see methods). While 

oligotypes do not perfectly represent all genotypic differences between closely related bacterial 

strains (Berry et al., 2017b), oligotyping has been shown to identify closely related sequence 

variants that covary along environmental and biological gradients while ignoring artifactual 

sequence variation (Eren et al., 2013; Eren et al., 2014; Berry et al., 2017b). Here, we use 

Microcystis oligotypes as an approximation of closely related Microcystis strains/species. 

3.4.2 Microcystis Phycosphere Community Diversity 

Microscopy showed that Microcystis colonies from western Lake Erie are densely packed 

with small, non-Microcystis bacterial cells (Figure 3.2). Amplicon sequencing of individual 

colonies revealed the presence of many different non-Microcystis taxa, some of which occurred 

frequently at high relative abundance across different colonies (Figure 3.3). In total, we 

identified 197 different non-Microcystis OTUs in the phycosphere. Of all the non-Microcystis 

OTUs identified in the phycosphere, the most frequently occurring and abundant were from the 

Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, and Cyanobacteria as previously 
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observed in bulk colony samples (Parveen et al., 2013; Louati et al., 2015; Shi et al., 2018; Zhu 

et al., 2019). There were also abundant but less frequent OTUs from the Acidobacteria, 

Oligoflexia, and Gammaproteobacteria (Figure 3.3).  

Estimated species richness of individual colonies ranged from 2-74 non-Microcystis 

OTUs (Figure S 3.4). However, the majority of colonies had 10-40 non-Microcystis OTUs and a 

Shannon Index of 1.2-2.6 (a higher Shannon Index indicates a more diverse community in terms 

of species richness and evenness) and were less diverse than the communities in whole and 105 

µm filtered water (Figure S 3.4). Mean colony species richness and diversity was highest in July 

and August (Figure S 3.5) and differed by Microcystis oligotype (Figure S 3.6). Phycosphere 

communities from oligotype 3 colonies had significantly greater estimated species richness and 

Shannon index than those of other Microcystis oligotypes, and oligotype 1 had higher richness 

and Shannon index than oligotype 2 on average. There were no significant correlations between 

species richness or Shannon index and colony size (Figure S 3.7). 

3.4.3 Microcystis Phycosphere Communities are Dissimilar From Bulk Community Samples 

To compare Microcystis phycosphere communities with surrounding communities, we 

performed hierarchical clustering (HC) and ordination of the colony-associated sequences 

together with those from whole water, 105 µm filtered samples, and bulk 100 µm retentate from 

western Lake Erie CHAB communities in 2014 and 2017-2019. HC and NMDS yielded four 

clearly separated main clusters (Figure 3.4): one containing all whole and 105 µm filtered water 

samples (Cluster 1), another containing Microcystis colonies dominated by Cyanobium (Cluster 

2), another containing the remaining Microcystis colonies (Cluster 3), and another containing all 

the bulk 100 µm retentate samples from 2014 (Cluster 4). This clustering is supported by the 

results of an ANOSIM test, which showed statistically significant differences in mean 
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community dissimilarity between the HC groups (R = 0.9787, p = 1x10-5). Whole water samples 

across the four sampling seasons clustered together by month collected (Figure S 3.8) and 

chlorophyll a concentration (Figure S 3.9), suggesting that the whole water microbial 

communities in western Lake Erie are similar between years and change in a consistent manner 

both seasonally and as Microcystis blooms develop. Despite these shifts in bulk community 

composition, the dissimilarity within sample types (whole water, filter fraction, or individual 

colony) across all years was significantly lower than the dissimilarity across sample types 

(ANOSIM, R = 0.7534, p = 1x10-5) and indicates that the Microcystis phycosphere harbors a 

community of bacteria distinct from the total and free-living communities, as suggested 

previously in bulk cyanobacterial colony samples dominated by Microcystis (Parveen et al., 

2013; Louati et al., 2015; Jankowiak & Gobler, 2020). In addition, high dissimilarity between 

single colony communities and bulk 100 µm retentate communities demonstrates that bacterial 

communities in bulk seston samples include communities associated with multiple 

phytoplankton and other particles that are not representative of Microcystis phycosphere 

communities. While the retentate samples were collected in a different year from the single 

Microcystis colonies, the low dissimilarity within groups of the same sample type across multiple 

years supports that this comparison is robust, albeit imperfect. These results support the idea that 

the Microcystis phycosphere provides an ecologically distinct microenvironment, similar to the 

phycospheres of other algae (Hasegawa et al., 2007; Burke et al., 2011b) and cyanobacteria 

(Hmelo et al., 2012; Zhu et al., 2019). The distinct communities directly associated with 

Microcystis colonies versus those in the filter fraction dominated by Microcystis coloines (i.e., 

bulk 100 µm retentate) also shows that bacteria in the latter should not necessarily be considered 
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physically associated with Microcystis and may be attached to other phytoplankton or particles > 

100 µm in size. 

3.4.4 The Microcystis Phycosphere Lacks a Core Community 

While the Microcystis phycosphere communities are more similar to each other than 

whole water communities, there was high variation in phycosphere community composition. 

Dissimilarity was higher between Microcystis phycosphere communities than between bulk 

samples (Figure S 3.10). Consistent with this finding, only 9 OTUs were conserved across all 

colonies of a specific date or oligotype (Table 3.2). The majority of non-Microcystis OTUs 

occurred infrequently, yet some could comprise a large proportion of the phycosphere 

community when present (Figure 3.3). A few OTUs occurred more frequently, and the top 4 

most frequently observed non-Microcystis OTUs were present in 61 - 84 % of all Microcystis 

colonies sequenced (n = 44, Figure 3.3, Table 3.4), suggesting that while these taxa are not 

universally present, they are more conserved taxa across the phycospheres of multiple 

Microcystis strains. Supporting this interpretation, OTUs 7 and 11 (Pseudanabaena) and OTU 32 

(uncultured Microscillaceae) were found at high relative abundance on multiple Microcystis 

oligotypes (Figure 3.5). The observation of more conserved taxa across multiple strains is 

consistent with previously published results with bulk communities that identified a few bacterial 

taxa as regular members of the Microcystis phycosphere (Parveen et al., 2013; Cook et al., 2020; 

Jankowiak & Gobler, 2020).  

Although some OTUs were frequently associated with Microcystis colonies, the relative 

abundance of all OTUs that were detected showed high variance across all colonies, as reflected 

in the difference between their maximum and mean relative abundances (Figure 3.3). 

Furthermore, no non-Microcystis OTUs were found in every colony (Figure 3.3). The high 
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variability in Microcystis phycosphere community composition contrasts with the phycosphere 

communities of other phytoplankton taxa, which have more stable core phycosphere 

communities (Frischkorn et al., 2017; Lee et al., 2017; Behringer et al., 2018). However, high 

variation in the phycosphere communities of Microcystis has been previously observed (Shia et 

al., 2010; Parveen et al., 2013; Kim et al., 2019; Jankowiak & Gobler, 2020), and the 

phycospheres of other phytoplankton can vary based on morphology (Hmelo et al., 2012; Rouco 

et al., 2016), strain (Jasti et al., 2005; Sapp et al., 2007; Ajani et al., 2018; Jackrel et al., 2019; 

Kim et al., 2019), stage of growth (Sapp et al., 2007), location (Rouco et al., 2016; Ajani et al., 

2018; Kim et al., 2019; Jankowiak & Gobler, 2020), and time of year (Jankowiak & Gobler, 

2020). Our results from individual colonies suggest that few bacterial taxa are commonly 

associated with all Microcystis strains or inhabit the phycosphere throughout the growing season. 

Thus, Microcystis lacks a “core” microbiome from a taxonomic perspective. 

3.4.5 Microcystis Phycosphere Communities Vary With Time and Microcystis Oligotype 

To investigate drivers of the differences in Microcystis phycosphere community 

composition, we performed HC and NMDS ordination of Microcystis phycosphere communities 

alone. This analysis revealed that the Microcystis phycosphere communities could be assigned to 

five groups based on Bray-Curtis dissimilarity. Group membership is correlated with sampling 

date and oligotype as supported by an ANOSIM test, which revealed significant differences in 

mean colony dissimilarity by sampling date (R = 0.4111, p = 1x10-4) and Microcystis oligotype 

(R = 0.4933, p = 1x10-4, Figures 3.6 & 3.7) . There was also a significant difference based on 

colony morphology, but the correlation coefficient was low (R = 0.1974, p = 0.004). Results 

using MED nodes were similar, showing significant correlations with sampling date (R = 0.476, 

p = 1x10-4) and oligotype (R = 0.3747, p = 1x10-4) that were similar in value to the results with 
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OTUs, although the effect was stronger with date when using MED nodes. One HC cluster was 

comprised of a community from a single oligotype 1 colony (cluster 2), while the remaining four 

HC groups included communities from multiple colonies (Figure 3.7). In the following, we 

consider the evidence for oligotype and sampling date as drivers of phycosphere community 

composition, then discuss these results in the context of two competing hypotheses: (1) 

recruitment of Microcystis microbiome is selective based on allelopathic or metabolic 

interactions, or (2) recruitment of the Microcystis microbiome is neutral or influenced by 

different “seeding communities” in the surrounding water that change through time. 

Microcystis oligotype appears to be a strong driver of community dissimilarity. Three of 

the four major groups identified with HC were comprised of communities from a single 

Microcystis oligotype (clusters 1, 3, 4), with the exception of one colony in cluster 3 (Figure 

3.7). suggesting that Microcystis oligotype is a major driver of community dissimilarity. In 

addition, some abundant OTUs were primarily associated with a single Microcystis oligotype 

(Figure 3.5). For example, while present on colonies throughout the bloom season, OTU 43 

(uncultured Sutterellaceae) and OTU 46 (Tabrizicola) were predominantly found on oligotype 1 

and oligotype 3 colonies, respectively (Figure 3.5). This finding is consistent with previous 

studies that have shown that the abundance of certain bacterial OTUs during blooms are 

correlated with the abundance of specific Microcystis genotypes (Chun et al., 2020). The 

clustering by colony oligotype suggests that different Microcystis strains harbor characteristic 

microbiomes. 

There were also significant differences in phycosphere communities by sampling date. 

Two of the HC clusters (clusters 1 and 3), were comprised of primarily one sampling date. Three 

clusters were comprised primarily of colonies collected within a single month; clusters 1 and 3 
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were comprised entirely of colonies collected in September, while cluster 5 was comprised of 

colonies from July and August, with the exception of one colony that was collected in September 

(Figure 3.7). The abundances of Microcystis MED nodes in the colonies had comparable 

abundances in whole water samples, and both were most abundant in July-August and decreased 

in September (Figure S 3.11), which supports that the effect of time cannot be attributed to an 

autocorrelation with shifts in Microcystis oligotype abundance. Further supporting this, colonies 

in cluster 5 where all collected in July and August, yet spanned multiple oligotypes, and 

oligotype 1 colonies collected in September were separated into two HC clusters (clusters 3 and 

4, Figure 3.6). These clustering patterns suggest that temporal effects play a role in driving 

phycosphere community dissimilarity. However, with our data, we cannot rule out the possibility 

that the significant clustering by time is not due to shifts in the abundance of Microcystis strains 

that are not differentiated with 16S V4 oligotypes. Overall, the currently available data are not 

sufficient to determine the relative influence of colony oligotype and sampling date. 

Of the HC clusters that separated by Microcystis oligotype, cluster 1 included all the 

samples from station WE16 (Figure 3.7, station WE16 was sampled on 9-Sep-19). While this 

cluster was not exclusive to colonies from station WE16, the predominance of colonies from 

station WE16 could indicate that differences in this cluster are driven by spatial differences in 

bacterial communities rather than by differences in date or Microcystis oligotype. However, the 

dissimilarity in whole water communities from multiple nearshore sites in the lake were low 

(Figure 3.4), and a previous study showed that microbial communities in western Lake Erie vary 

more seasonally than spatially (Berry et al., 2017a). Therefore, it unlikely that cluster 1 is an 

effect of station rather than Microcystis oligotype or time. 
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3.4.6 Potential Mechanisms to Explain Clustering by Microcystis Oligotype 

Several mechanisms could feasibly explain a strain-dependence in Microcystis 

phycosphere community composition. Different Microcystis strains may release distinct 

antibiotics that differently inhibit the growth of various bacterial taxa in the phycosphere. 

Production of antibiotic compounds has been observed in Microcystis (Casamatta & Wickstrom, 

2000) and other phytoplankton (Ribalet et al., 2008). Likewise, given that many bacteria are able 

to colonize the phycosphere via chemotaxis (Bell & Mitchell, 1972; Paerl & Gallucci, 1985; 

Sonnenschein et al., 2012; Raina et al., 2019) to specific types of organic compounds (Bell & 

Mitchell, 1972; Bassler et al., 1991; Casamatta & Wickstrom, 2000; Miller et al., 2004; Seymour 

et al., 2010), different Microcystis strains may excrete a unique pool of organic molecules that 

attract different heterotroph populations. Differences in the production of secondary metabolites 

(Le Manach et al., 2019) and the sugar composition of exopolysacchrides (Forni et al., 1997) 

have been observed between Microcystis strains and species, suggesting that metabolites in the 

phycospheres of different strains vary. Similarly, the production and consumption of metabolites 

by the bacteria that colonize the phycosphere may also impact the chemotaxis of other bacterial 

populations. For example, Cyanobium, Pseudanabeana, uncultured Sutterellaceae, and 

uncultured Microscillaceae likely play a major role in uptake and production of metabolites in 

the Microcystis phycosphere due to their high relative abundance in the colonies on which they 

were present (Figure 3.3). To our knowledge, the composition and structure of DOC in the 

Microcystis phycosphere has not been fully characterized. Future studies that identify the organic 

compounds that are in the phycosphere and transferred among community members, characterize 

their ability to attract chemotactic bacteria, and determine how they vary between different 

Microcystis strains are required to describe the mechanism of how different strains of 

Microcystis harbor distinct phycosphere communities. 
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Despite significant clustering by Microcystis oligotype, there was also substantial 

dissimilarity between phycosphere communities that shared a colony oligotype. For example, 

oligotype 1 colony communities were separated into two main HC clusters (clusters 3 and 4, 

Figure 3.7). The Bray-Curtis dissimilarity between these groups was > 0.8 and could be > 0.6 

within the groups (Figure 3.7). The effect of sampling date alone is unlikely to explain the 

differences between clusters 3 and 4 because cluster 4 included colonies from a range of 

different sampling dates, which included colonies from September. The high dissimilarity within 

and between HC groups that share an oligotype and sampling dates suggests that Microcystis 

oligotype and date alone are insufficient to describe all of the dissimilarity in phycosphere 

community composition. 

Dissimilarity in phycosphere communities between colonies that share an oligotype and 

sampling date could be explained by unresolved Microcystis strain differences, or by neutral 

effects. Because Microcystis 16S oligotypes are paraphyletic (Berry et al., 2017b), colonies of 

the same oligotype may not necessarily be similar strains. Therefore, distinct HC clusters of 

primarily the same Micorcystis oligotype may reflect microbiomes of Microcystis strains that 

share a 16S oligotype but vary in other traits that determine phycosphere community 

composition. Alternatively, neutral processes such as the random colonization of the 

phycosphere could explain the differences in phycosphere communities from colonies of the 

same oligotype. Neutral processes were hypothesized as the primary determinant of the 

community composition in epiphytic communities of macroalgae (Burke et al., 2011b). Indeed, 

the lack of a core microbiome and the low number of consistently present taxa in Microcystis 

phycosphere communities is similar to the epiphytic communities of macroalgae (Burke et al., 

2011b). Random colonization of distinct niches within the phycosphere by specific bacterial 
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groups with similar ecologies, referred to as the “lottery hypothesis” (Burke et al., 2011a; Burke 

et al., 2011b), may reconcile the significant clustering by both time and oligotype and the high 

phycosphere community dissimilarity between colonies of the same oligotype. The lottery 

hypothesis requires functional redundancy across the potential colonizing species (Burke et al., 

2011a), which has been observed in taxonomically different bacterial communities in 

Microcystis dominated bulk seston (Cook et al., 2020) and Microcystis enrichment cultures 

(Jackrel et al., 2019). However, the significant clustering by date and oligotype (Figures 3.6, 

3.7), and the consistent patterns in the abundance of certain OTUs with time and Microcystis 

oligotype (Figure 3.5) conflict with the hypothesis that random colonization is a major 

determinant of Microcystis phycosphere community composition and rather suggest that 

selective mechanisms have a role in determining the differences in Microcystis phycosphere 

community composition, at least in part. The idea that selective mechanisms determine 

Microcystis phycosphere community composition is congruent with previous observations in that 

phytoplankton cultures of the same genus or species have more similar associated bacteria 

communities than those from other phytoplankton taxa (Grossart et al., 2005; Jasti et al., 2005; 

Sapp et al., 2007; Bagatini et al., 2014; Behringer et al., 2018), and bacteria colonize diatom 

cultures in a predictable manner (Mönnich et al., 2020). Ultimately, future datasets with better 

resolution of Microcystis strains, along with colonization experiments using different Microcystis 

strains and bacterial inocula, are required to determine the relative importance of selective and 

neutral processes in shaping Microcystis phycosphere community composition. 

3.4.7 Potential Mechanisms to Explain Clustering by Sampling Date 

Our results provide evidence that shifts in seeding communities from the surrounding 

water may have a significant role in shaping phycosphere community structure. Supporting this 
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hypothesis, several OTUs (OTU 7 Pseudanabaena, OTU 10 Roseomonas, OTU 11 

Pseudanabaena) that were present on multiple Microcystis oligotypes showed decreases in the 

average relative abundances of these OTUs on the colonies that corresponded with decreases in 

their average relative abundance in 105 µm filtered water (Figure 3.5). This observation is 

consistent with previous work showing that inoculum source had a significant impact on 

bacterial community composition in a Microcystis culture colonization experiment (Dziallas & 

Grossart, 2011), and that the composition of bacterial communities in western Lake Erie show 

strong seasonal shifts (Berry et al., 2017a). Therefore, shifts in the dominant members of 

chemotactic populations that seed the phycosphere may change phycosphere community 

composition over time. However, the abundance patterns of other OTUs (OTU 43 Sutterellaceae 

and OTU 46 Tabrizicola) on Microcysits colonies are not similar to trends in abundance in 105 

µm filtered water (Figure 3.5), which suggests that shifts in seeding communities may impact the 

abundances of only some phycosphere taxa.  

Phenotypic differences based on changes in physiological state may impact the 

Microcystis phycosphere, as previously observed in other phytoplankton (Bell & Mitchell, 1972; 

Sapp et al., 2007). Indeed, Microcystis produces different classes and amounts of DOC at 

different growth phases, growth rates, and temperature and nutrient regimes (Dziallas & 

Grossart, 2012; Li et al., 2013; Xu et al., 2013), which may serve as chemoattractants for 

different bacterial populations. The decline in both bulk phycocyanin and bulk chlorophyll a 

concentration in September (Figure S 3.2) indicates that a change in physiological state due to 

bloom termination could explain differences in the phycosphere communities collected at this 

time (Figure 3.5). Larger data sets across multiple years with better resolution of Microcystis 

genotypes along with studies of how Microcystis metabolite excretion changes with 
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physiological state are required to determine the relative importance of phenotypic changes 

across bloom development or growth stages on Microcystis phycosphere community 

composition. 

Finally, we evaluated the potential influence of physicochemical environment on 

phycosphere community composition. Mantel tests revealed that most environmental parameters 

(and combinations thereof) did not have a strong, significant correlation to phycosphere 

community dissimilarity. The exceptions were chromophoric dissolved organic matter (CDOM) 

absorbance (a proxy for CDOM concentration), depth-integrated PAR (surface - 0.5 m), nitrate 

concentration, and temperature (Table 3.5). However, linear regression models of community 

dissimilarity versus Euclidean distances of each environmental parameter had poor fits to the 

data (R2 < 0.1 for all parameters, Figure S 3.12). Furthermore, there is high dissimilarity between 

colonies collected on the same date and location (Figure 3.7), which would experience the same 

bulk water chemistry. Therefore, differences in the measured environmental parameters of the 

surrounding water cannot explain Microcystis phycosphere dissimilarity. However, changes in 

bulk DOC and nutrient concentrations relative to concentrations in the phycosphere may alter 

phycosphere community composition because the chemotactic response of heterotrophic bacteria 

is reduced under lower concentration gradients of chemoattractants (Paerl & Gallucci, 1985; 

Bassler et al., 1991). 

3.4.8 Interactions Between Cyanobacteria in the Phycosphere 

In addition to non-cyanobacteria, the phycosphere communities included two 

Pseudanabaena OTUs and one Cyanobium OTU (highly similar to an OTU classified as 

Synechococcus in a previous western Lake Erie study (Berry et al., 2017a)), that occurred at high 

relative abundance whenever present (Figure 3.2). While Cyanobium dominated the colonies in 



 123 

which it occurred, micrograph images showed that Microcystis cells still made up the inner 

structure of those colonies and comprised a high percentage of the total colony communities 

(19.9 - 38.6 %). While both cyanobacterial genera have been observed in Microcystis blooms 

(Ouellette et al., 2006; Berry et al., 2017a; Chun et al., 2019; Chun et al., 2020), only 

interactions between Pseudanabaena and Microcystis have been studied to our knowledge (Agha 

et al., 2016; Zhang et al., 2020). We note that Cyanobium was only observed in colonies 

collected on two dates, and single Microcystis cells were present in the droplets containing these 

colonies on one date (Figure S 3.13). We interpreted the stray Microcystis cells as breaking off 

colonies, and because Cyanobium is known to form aggregates by itself (Jezberová & 

Komárková, 2007), we cannot rule out that the Cyanobium in these samples are contaminants 

from broken Cyanobium colonies. However, other picocyanobacteria like Cyanobium were 

previously observed growing attached to Microcystis colonies (Hindák, 1996), so their 

association with Microcystis here likely reflects a true interaction within the phycosphere. The 

association of cyanobacteria within the Microcystis phycosphere is intriguing because it indicates 

that colonization of the phycosphere is not driven solely by a need for organic carbon to fuel 

respiration. It may indicate that Pseudanabaena and Cyanobium adhere to Microcystis colonies 

in order to obtain organic compounds (either from Microcystis or other attached bacteria) for 

which they are auxotrophic, or to actively inhibit growth of Microcystis via allelopathic 

interactions. Indeed, allelopathic interactions between Pseudanabaena and Microcystis have 

been observed previously, although the harmful effects on growth were limited to certain 

Microcystis strains (Agha et al., 2016). Further characterization of the nature of the interactions 

between cyanobacteria genera in Microcystis colonies is required to fully understand their 

significance to Microcystis physiology. 
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3.5 Conclusions 

This study found that bacterial communities in the Microcystis phycosphere of individual 

Microcystis colonies vary both with time and Microcystis oligotype and are distinct from 

communities in surrounding lake water as well as 100 µm community assemblages. Although 

Microcystis harbors a distinct microbiome in which certain bacterial taxa are commonly present 

and abundant, the absence of universal members of these communities indicates that there is no 

core Microcystis microbiome from a taxonomic perspective. The mechanism behind associations 

of Microcystis phycosphere community composition with time and oligotype are uncertain, but 

our data suggest that both selective and neutral processes are likely involved. The link of 

Microcystis phycosphere community composition to time and Microcystis oligotype suggest that 

interactions in the phycosphere may differentially impact specific Microcystis strains at different 

times. The impacts bacteria have on the growth of Microcystis (Agha et al., 2016; Schmidt et al., 

2020) and other phytoplankton taxa (Sison-Mangus et al., 2014; Amin et al., 2015) vary 

depending on the phytoplankton strain. Therefore, the taxa occupying the phycosphere could 

influence competition between Microcystis strains through their different impacts on Microcystis 

growth, which may in turn change Microcystis strain composition in blooms and influence bloom 

development and production of microcystins. However, recent studies found that phycosphere 

communities of Microcystis enrichment cultures (Jackrel et al., 2019) and bulk cyanobacteria 

colonies (Cook et al., 2020) that were taxonomically distinct between strains had similar 

functional potential. Therefore, the extent to which phycosphere communities yield different 

outcomes on Microcystis growth and physiology remains unclear. Additionally, further 

investigation is needed to better understand how changes in phycosphere community 

composition of individual colonies interact with surrounding physicochemical conditions and 

free-living heterotrophic bacteria communities to influence Microcystis bloom development and 
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production of microcystins. These results highlight the crucial need to characterize the 

interactions that take place between Microcystis spp. and their phycosphere communities and 

determine how they influence Microcystis biology and bloom development. 

3.6 Figures and Tables 

 

Figure 3.1: Description of individual Microcystis colony sampling via droplet encapsulation. a) 
Encapsulation of Microcystis colonies into droplets with a syringe-pump on an orbital shaker. 
The colony suspension flowed out of the syringe into the tubing at a constant rate of 600 µL/min. 
A homogenous suspension of buoyant colonies was maintained through the jostling of the air 
bubble in the syringe using the orbital shaker (100-150 RPM). Tubing was manually moved so 
that droplets were dispensed onto number sections of a sterile petri dish. Each droplet was then 
examined with an inverted light microscope. b) Example micrograph image of a droplet 

RPM

Flow rate:
600 uL/min

Syringe pump

Orbital shaker

Syringe with colony 
suspension and air bubble

PTFE tubing

Gridded petri dish

b.) c.)

d.)

a.)



 126 

containing one Microcystis colony. c) Higher-resolution image of the colony in b. d) Image of 
the colony in c shown with phycocyanin autofluorescence. 

 

Figure 3.2: Example black and white micrographs of Microcystis colonies in bulk phytoplankton 
seston collected from western Lake Erie blooms. The larger, dark cells are Microcystis cells, and 
the surrounding rod and cocci cells are the non-Microcystis cells that colonize the phycosphere. 
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Figure 3.3: Maximum and mean relative abundance of all non-Microcystis OTUs identified in 
the Microcystis phycosphere plotted against their observation frequency. Observation frequency 
was calculated as the percent of total colonies on which a given OTU was observed. Bubble size 
is scaled to mean relative abundance of the OTU in colonies where it was present. Bubble color 
represents the OTU phylum (or class in the case of Proteobacteria). 
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Figure 3.4: NMDS ordination and hierarchical clustering of bacterial communities in the 
Microcystis phycosphere, 100 µm retentate, whole water communities from western Lake Erie. 
The plot axes show NMDS scores. Points in the ordination are colored by hierarchical clustering 
assignment. The point shapes in the ordination reflect sample type. 
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Figure 3.5: Changes in the relative abundance of OTUs that are frequently present or indicators 
of date and Microcystis oligotype in Microcystis phycosphere communities. Mean relative 
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abundances in both 105 µm filtered water samples from 2019 (top) and single Microcystis 
colonies (bottom) are shown. Error bars depict 95 % confidence intervals. No error bars indicate 
that only one colony of the given oligotype was sampled on that particular date. 

 

Figure 3.6: NMDS ordination of bacterial communities in the Microcystis phycosphere. Points 
in the ordination are colored by sampling date, while their shape reflects the oligotype of 
Microcystis from that colony. 
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Figure 3.7: Hierarchical clustering of bacterial communities in the Microcystis phycosphere. 
Clades in the dendrogram are colored by hierarchical clustering assignments (shown as numbers 
in hexagons) based on Bray-Curtis dissimilarity. The shape and color of the points at the leaves 
of the dendrogram indicates oligotype and sampling date, respectively, and match the 
corresponding point in the NMDS ordination (Figure 6). 
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Figure S 3.1: Sampling sites in western Lake Erie. Colony samples from 9-September-2019 
were collected at station WE16; colony samples from all other dates were collected at WE8. The 
other stations shown were used only for collection of bulk communities. 
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Figure S 3.2: Weekly changes in bloom pigments and microcystin concentrations over time at 
the sites sampled. Vertical dashed lines indicate times when Microcystis colonies were collected 
for phycosphere characterization. All samples were collected at WE8, with the exception of the 
9-Sep-19 sample, which was collected at WE16. 
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Figure S 3.3: The relative proportions of each Microcystis MED node identified in Microcystis 
colonies. Each x-axis entry represents a single Microcystis colony, ordered by the final colony 
oligotype assignment based on the major two MED nodes in the colony. Colored circles at the x-
axis depict sampling date. 
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Figure S 3.4: Distribution of observed richness, estimated richness, and Shannon diversity index 
of Microcystis colony phycosphere communities (A), whole water field samples (B), and 105 µm	
filtered field samples (C). Microcystis OTUs were excluded in calculations. 

 

 

Figure S 3.5: Temporal change of alpha diversity metrics. Bar height shows the mean values at 
each date and error bars show the 95% confidence intervals. 
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Figure S 3.6: Mean alpha diversity metrics of phycosphere communities associated with 
different Microcystis oligotypes. Bar height shows the mean value for each Microcystis oligotype 
and error bars show the 95% confidence intervals. Significance values computed from Welch’s 
two-sided T tests. 
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Figure S 3.7: Linear regression between Shannon Index (A) and Chao1 estimated species 
richness (B) and colony area. The solid line shows the regression line, while the shaded region 
shows the standard error of the slope. Significance values on slopes were computed via an F-test. 
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Figure S 3.8: NMDS ordination of whole water bacterial communities in western Lake Erie over 
four years colored by month. Data point shapes indicate the year of sample collection. 
Microcystis OTUs were not included in the analysis. 
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Figure S 3.9: NMDS ordination of whole water bacterial communities in western Lake Erie over 
four years colored by the natural log of chlorophyll a concentration. Data point shapes indicate 
the year of sample collection. Microcystis OTUs were not included in the analysis. 
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Figure S 3.10: Dendogram of Bray-Curtis dissimilarity in bacterial communities in the 
Microcystis phycosphere, 100 µm retentate, whole water communities from Lake Erie. Groups 
are colored by hierarchical clustering assignment. 
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Figure S 3.11: Absolute abundances of Microcystis MED nodes in whole water communities 
collected in 2019. Error bars show the 95% confidence intervals of replicate filters (n = 4). 
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Figure S 3.12: Correlation in Bray-Curtis dissimilarity between Microcystis phycosphere 
communities and Euclidean distance in CDOM absorbance (A), total PAR in top 0.5 m (B), 
temperature (C), and nitrate concentration (D) at the time of colony collection. For each panel, 
the solid line shows the regression line, while the shaded region shows the standard error of the 
slope. 
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Figure S 3.13: Representative colony droplet micrographs. The colonies collected on 9 Sep 19 
had a large amount of loose Microcystis that presumably were broken off colonies. 
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Table 3.1: The number and position of nucleotide variations between 16S rRNA gene copies 
found within each closed Microcystis genome. 

Strain Number of 
copies 

Nucleotide 
Mismatches 

Gaps Positions of sites 
with differences 

PCC 7806 2 2 0 165, 227 
MC19 2 19 3 233, 338, 842, 

843, 850, 851, 
1064, 1065, 
1091, 1117, 
1147, 1148, 
1153, 1164, 
1165, 1170, 
1179, 1198, 
1260 

NIES 2481 2 0 0 n/a 
NIES 2549 2 0 0 n/a 
NIES 298 2 0 0 n/a 
NIES 843 2 4 0 84, 165, 233, 

234 
FD4 2 0 0 n/a 
FACHB 1757 2 0 0 n/a 
NIES 102 2 0 0 n/a 

 

Table 3.2: OTUs identified as significant diagnostic OTUs for either sampling date or oligotype 
along with their Indval g statistics. 

OTU 
# 

Lowest Taxonomic 
Assignment 

Obs. Freq. 
(%) 

Indicator 
Group 

Group 
size 

Specificity Sens-
itivity 

Indval.
g 

p 

603 Rickettsiaceae 4.55 22-Jul-19 3 1.00 0.67 0.82 0.0034 
59 Comamonadaceae 18.18 5-Aug-19 12 0.96 0.50 0.69 0.0342 
246 Bdellovibrio 18.18 5-Aug-19 12 1.00 0.67 0.82 0.0080 
108 Alphaproteobacteria 13.64 19-Aug-19 6 0.99 0.67 0.81 0.0014 
200 Candidatus 

Paracaedibacter 
11.36 19-Aug-19 6 0.99 0.67 0.81 0.0018 

210 Neisseriaceae 11.36 19-Aug-19 6 0.95 0.67 0.80 0.0028 
396 Gemmatimonadaceae 13.64 19-Aug-19 6 0.79 0.67 0.72 0.0066 
402 Vampirovibrio 4.55 19-Aug-19 6 1.00 0.33 0.58 0.0239 
415 Parachlamydiaceae 4.55 19-Aug-19 6 1.00 0.33 0.58 0.0261 
442 Silvanigrellaceae 4.55 19-Aug-19 6 1.00 0.33 0.58 0.0261 
571 Rickettsiales; 

SM2D12 
6.82 19-Aug-19 6 1.00 0.50 0.71 0.0091 

694 Peredibacter 4.55 19-Aug-19 6 1.00 0.33 0.58 0.0266 
55 Alphaproteobacteria 45.45 3-Sep-19 7 0.68 0.86 0.76 0.0424 
130 Silvanigrellaceae 18.18 3-Sep-19 7 0.82 0.71 0.76 0.0052 
164 Comamonadaceae 15.91 3-Sep-19 7 0.91 0.71 0.81 0.0030 
4 Cyanobium 15.91 9-Sep-19 4 0.90 1.00 0.95 0.0002 
171 Rhizobiales 9.09 9-Sep-19 4 1.00 0.50 0.71 0.0154 
312 Reyranella 11.36 9-Sep-19 4 0.90 1.00 0.95 0.0001 
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4787 Cyanobium 4.55 9-Sep-19 4 1.00 0.50 0.71 0.0107 
342 Roseomonas 18.18 16-Sep-19 12 1.00 0.67 0.82 0.0023 
357 Hydrogenophaga 11.36 16-Sep-19 12 1.00 0.42 0.65 0.0301 
80 Nitrosomonadaceae; 

DSSD61 
31.82 August 18 1.00 0.78 0.88 0.0001 

87 Proteobacteria 34.09 August 18 0.98 0.78 0.87 0.0012 
140 Bacteroidia 29.55 August 18 0.98 0.67 0.81 0.0017 
220 Labrys 15.91 August 18 1.00 0.39 0.62 0.0490 
226 Nitrosomonadaceae; 

966-1 
27.27 August 18 0.96 0.61 0.77 0.0066 

256 Pirellula 25.00 August 18 0.97 0.56 0.74 0.0094 
10 Roseomonas 45.45 July-August 21 0.99 0.76 0.87 0.0021 
34 Caulobacteraceae 45.45 July-August 21 0.94 0.81 0.87 0.0002 
11 Pseudanabaena 45.45 July-August 21 1.00 0.86 0.93 0.0030 
35 Microscillaceae 43.18 July-August 21 1.00 0.90 0.95 0.0001 
46 Tabrizicola 38.64 July-August 21 1.00 0.76 0.87 0.0007 
7 Pseudanabaena 72.73 July-August 21 0.91 1.00 0.95 0.0001 
4 Cyanobium 15.91 Type_2 5 1.00 1.00 1.00 0.0001 
312 Reyranella 11.36 Type_2 5 1.00 1.00 1.00 0.0001 
35 Microscillaceae 43.18 Type_3 12 0.89 0.92 0.91 0.0423 
19 Kapabacteriales 2.27 Type_4 1 1.00 1.00 1.00 0.0216 
2 Sporichthyaceae; 

hgcI_clade 
18.18 Type_4 1 0.86 1.00 0.93 0.0265 

304 Caedibacteraceae 11.36 Type_4 1 0.98 1.00 0.99 0.0151 
445 Bdellovibrio 4.55 Type_4 1 0.93 1.00 0.97 0.0322 
603 Rickettsiaceae 4.55 Type_4 1 0.99 1.00 1.00 0.0190 
8161 Microscillaceae 2.27 Type_4 1 1.00 1.00 1.00 0.0216 

 

Table 3.3: Maximum and mean percent abundance for each OTU with observation frequency 
between 50 and 18% or lower than 18% with maximum abundance higher than 5%. 

OTU # Lowest Taxonomic 
Assignment 

Observation 
Frequency (%) 

Maximum 
Percent 
Abundance  

Mean Percent 
Abundance 
(excluding 
zeros) 

11 Pseudanabaena 45.45 9.96 1.89 
34 Caulobacteraceae 45.45 7.20 2.49 
10 Roseomonas 45.45 5.70 0.88 
55 Alphaproteobacteria 45.45 1.92 0.41 
35 Microscillaceae 43.18 12.12 2.07 
46 Tabrizicola 38.64 12.32 2.55 
114 Phreatobacter 36.36 10.65 3.02 
167 Silanimonas 34.09 9.10 1.08 
87 Proteobacteria 34.09 1.39 0.32 
80 Nitrosomonadaceae; 

DSSD61 
31.82 4.17 1.63 

82 Oxalobacteraceae 29.55 4.59 0.66 
140 Bacteroidia 29.55 2.42 1.07 
56 Microscillaceae 27.27 20.14 2.17 
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53 Sphingobacteriales; 
OPS 17 

27.27 8.43 0.93 

226 Nitrosomonadaceae; 
966-1 

27.27 0.31 0.14 

96 Bryobacter 25.00 4.42 1.07 
256 Pirellula 25.00 0.17 0.087 
4 Cyanobium 15.91 75.19 46.66 
312 Reyranella 11.36 6.15 4.23 
171 Rhizobiales 9.09 7.96 3.61 
342 Roseomonas 18.18 9.90 3.20 
182 Bacteria 9.09 7.26 1.98 
64 Oligoflexus 20.45 12.93 1.79 
63 Microscillaceae 22.73 13.56 1.54 
169 Comamonadaceae 22.73 2.51 0.54 
246 Bdellovibrio 18.18 1.85 0.31 
72 Microscillaceae 18.18 0.67 0.31 
130 Silvanigrellaceae 18.18 0.96 0.27 
59 Comamonadaceae 18.18 0.53 0.14 
215 Peredibacter 20.45 0.54 0.13 
2 Sporichthyaceae 18.18 0.32 0.090 

 

Table 3.4: Maximum and mean percent abundance of each frequent OTU (observation 
frequency greater than 50%). 

OTU # Lowest 
Taxonomic 
Rank 

Observation 
Frequency (%) 

Maximum 
Percent 
Abundance  

Mean Percent 
Abundance 
(excluding 
zeros) 

32 Microscillaceae 84.09 15.36 2.51 
43 Sutterellaceae 81.82 56.1 7.07 
7 Pseudanabaena 72.73 24.45 3.85 
52 Microscillaceae 61.36 5.69 0.75 

 

Table 3.5: Mantel test results. 

Environmental Parameter(s) Mantel spearman's rank ρ p-value 
temperature 0.3009 1.00E-04 
specific conductivity 0.1697 4.00E-04 
particulate microcystin 0.2062 2.00E-04 
dissolved oxygen 0.1248 7.30E-03 
surface to 0.5m integrated 
PAR 

0.3915 1.00E-04 

total phosphorus 0.02254 3.56E-01 
total dissolved phosphorus 0.2719 1.00E-04 
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soluble reactive phosphorus 0.2676 2.00E-04 
ammonium 0.299 1.00E-04 
nitrate 0.3335 1.00E-04 
CDOM absorbance (400 nm) 0.381 1.00E-04 
CDOM + PAR 0.3895 1.00E-04 
all nutrients 0.3564 1.00E-04 
all phosphorus 0.278 1.00E-04 
all nitrogen 0.3335 1.00E-04 
colony area -0.01037 5.28E-01 
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Chapter 4 Metagenomic and Metatranscriptomic Evidence for Uptake of Phytoplankton-
Derived Carbon by Novel Acidobacteria Genera in Microcystis Blooms 

4.1 Abstract 

Bacteria and phytoplankton often interact in close physical association in a zone termed 

the phycosphere. Interactions between heterotrophic bacteria and their phytoplankton hosts have 

important outcomes on primary production, community composition, and algal bloom 

development. However, these interactions are poorly described for many phycosphere consortia, 

particularly for freshwater bloom-forming cyanobacteria. In this study, gene expression was 

assessed in two uncultivated Acidobacteria genomes from Lake Erie Microcystis bloom 

metagenomes. These organisms were targeted because they were previously identified as 

important catalase producers, suggesting that they may protect Microcystis from H2O2. 

Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic 

compounds that are known cyanobacterial products and exudates, including lactate, glycolate, 

amino acids, peptides, and vitamin B12. Expressed pathways for amino acid metabolism in the 

Acidobacteria suggest that they may provide regenerated nitrogen for Microcystis growth in 

return. Although correlations between Acidobacteria and Microcystis abundance were weak, 

both organisms were detected in Microcystis blooms worldwide. Together, the data support that 

uncultured and previously unidentified Acidobacteria exchange metabolites with phytoplankton 

during harmful cyanobacteria blooms and influence the form and availability of nitrogen 

available to phytoplankton. Thus, Acidobacteria may play a role in cyanobacterial physiology 

and bloom development in western Lake Erie. 
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4.2 Introduction 

Interactions between microorganisms have profound impacts on global biogeochemistry 

by influencing microbial fitness, metabolism, and community composition. For example, many 

microbes may use the waste products of others in the community for growth or produce 

compounds required by other community members (Embree et al., 2015; Anantharaman et al., 

2016; Hug & Co, 2018). A widely recognized example of such metabolic handoffs is in the 

interactions between phytoplankton and heterotrophic bacteria. Phytoplankton support 

heterotrophic bacterial growth by providing organic carbon and sulfur, and their heterotrophic 

partners can improve phytoplankton growth by producing essential vitamins and growth factors, 

such as B12 vitamins (cobalamins) (Croft et al., 2005; Durham et al., 2017), increasing the 

bioavailability of trace metal cofactors (Amin et al., 2009), regenerating nutrients from organic 

material (Amin et al., 2015; Arandia-Gorostidi et al., 2017; Christie-Oleza et al., 2017), and 

detoxifying reactive oxygen species (Morris et al., 2011). Heterotrophic bacteria are known to 

impact the fitness of phytoplankton through the transfer of metabolites (Amin et al., 2009; 

Seyedsayamdost et al., 2011; Amin et al., 2015; Segev et al., 2016) in a zone of close physical 

association termed the phycosphere (Bell & Mitchell, 1972; Seymour et al., 2017). 

Interactions between heterotrophic bacteria and phytoplankton also influence competition 

between phytoplankton taxa (Schmidt et al., 2020). Therefore, phycosphere interactions likely 

play a role in shaping successions of phytoplankton taxa (Cole, 1982) and may have implications 

at the level of whole ecosystems by modulating primary productivity and phytoplankton bloom 

formation (Seyedsayamdost et al., 2011; Smriga et al., 2016; Seymour et al., 2017). Interactions 

in the phycosphere can have both strain and species and specific outcomes (Sison-Mangus et al., 

2014; Amin et al., 2015), and the fitness impacts on phytoplankton have been linked to the 

exchange of specific metabolites (Croft et al., 2005; Seyedsayamdost et al., 2011; Segev et al., 



 159 

2016). Therefore, identifying the bacterial taxa associated with a given phytoplankton taxon and 

the metabolites exchanged between them can improve our understanding of phytoplankton 

physiology and competition between phytoplankton in natural assemblages with co-occurring 

bacteria.  

An improved understanding of the impact of phycosphere interactions on phytoplankton 

fitness and successions will likely improve our predictions and modelling of ecosystem wide 

processes such as primary productivity and harmful algal bloom formation (Seyedsayamdost et 

al., 2011; Smriga et al., 2016; Seymour et al., 2017). For example, successions in toxin-

producing and non-producing strains of the cyanobacterial harmful algal blooms (CHAB)-

forming genus Microcystis are an important driver of toxin concentrations in many freshwater 

CHABs (Kardinaal et al., 2007; Davis et al., 2010). Microcystis grow in colonies that harbor 

heterotrophic bacterial communities (Shia et al., 2010; Parveen et al., 2013). In Chapter 3 of this 

dissertation, the Microcystis phycosphere communities were found to be distinct from the 

surrounding microbial communities and differ both seasonally and by colony genotype. 

However, the nature of the interactions between Microcystis and its associated phycosphere 

communities and their impact on Microcystis growth and physiology remain uncharacterized, in 

part because many of the microbes associated with Microcystis colonies are yet uncultured (Shia 

et al., 2010; Parveen et al., 2013). Direct recovery of bacterial genomes from the environment 

can provide insights into the biochemical and ecological characteristics of these uncultivated 

organisms of interest. 

In Chapter 2, metagenome-assembled genomes (MAGs) of two uncultivated 

Acidobacteria from a western Lake Erie cyanobacterial bloom in the summer-fall of 2014 were 

identified to have high abundance of catalase genes relative to catalases from other taxa in 
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metatranscriptomes despite having low catalase relative abundance in metagenomes. Both 

genomes were reconstructed from phytoplankton and particle attached size-fractions, and one of 

the Acidobacteria was represented in amplicon sequences from Microcystis phycosphere 

communities characterized in Chapter 3. Together, these results suggest that the Acidobacteria 

may interact with Microcystis and other phytoplankton and decompose H2O2. Here, the gene 

content and expression of the Acidobacteria MAGs during the 2014 western Lake Erie 

cyanobacterial bloom was examined in order to explore potential interactions with freshwater 

cyanobacteria and other phytoplankton. In addition, the abundance of both Acidobacteria in 

amplicon datasets from a range of eutrophic environments and size fractionated samples was 

examined to determine their specificity to cyanobacterial blooms and Microcystis colonies.  

4.3 Methods 

4.3.1 Genome Assembly and Gene Annotation 

 Acidobacteria metagenome-assembled genomes (MAGs) were obtained from a MAG 

collection assembled with metagenomic Illumina reads from Lake Erie Microcystis blooms in the 

summer-fall of 2014, which is described in more detail in Chapter 2 methods. Both genomes 

were assembled from metagenomes collected in 100 µm retentate samples, which indicates that 

they are attached to phytoplankton seston or other particles retained on the filter. One MAG 

(CoA2 C42) was not binned with a ribosomal RNA operon, but an unbinned contig with the full 

rRNA operon was assigned to the bin by examining the assembly De Bruijn graph using 

Bandage v. 0.8.1 (Wick et al., 2015) and the paired-end mapping information. Gene calls and 

functional annotations were generated using the Integrated Microbial Genomes annotation 

pipeline (Huntemann et al., 2015). Genes annotated as iron complex transporters were compared 

to biochemically confirmed cobalamin transporters from E coli str. K-12 (UniProtKB accessions: 
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P06129, P06609, P06611) via protein BLAST v. 2.2.31+ (Altschul et al., 1990). We excluded 

any significant hits in the results with alignment coverage less than 70% of the gene in the 

Acidobacterium genomes. All predicted open reading frames were compared to proteins in NCBI 

non-redundant protein database (as of October 17th, 2018) via protein BLAST v. 2.2.31+ 

(Altschul et al., 1990). Gene expression was determined by mapping metatranscriptomic short 

reads to predicted gene sequences using nucleotide BLAST v. 2.2.31+ (Altschul et al., 1990). 

Only alignments with percent identity ≥ 95% and e-value ≥ 1x10-5, and alignment coverage ≥ 80 

% of read length were counted. Some reads below the alignment coverage cutoff were counted if 

they mapped to either the start or stop end of the gene. Relative abundance of transcripts for each 

gene was calculated as reads mapped per gene kilobase per million reads mapped (RPKM), using 

total number of reads mapped to the appropriate genome. 

From the predicted gene calls, functional annotations, and metatranscriptomic gene 

mapping, we predicted the in situ metabolism of Bryobacter and Acidobacterium CoA2 C42. 

Due to the novelty of the Acidobacteria genomes reported here, most of the predicted protein 

coding genes have low shared amino acid identities with published protein sequences with the 

same function (< 70 % shared identity to the best matches in many cases, Figure S 4.1), so we 

present these results as putative functions and interactions of interest that require validation with 

future work. Because Acidobacterium CoA2 C42 only had a sufficient amount of reads in the 

August 4th sample (Figure S 4.2), which coincides with an early peak in pigments at this station 

(Berry et al., 2017), this sample is the focus when reporting RPKM values in the main text and 

figures. Both Acidobacterial MAGs are deposited in the IMG database (IMG Genome IDs: 

2806310633 and 2806310632). 
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4.3.2 16S rRNA Phylogenetic Analysis 

The 16S rRNA genes from each MAG were compared to the SILVA SSU database v. 138.1 

(Pruesse et al., 2007) using the online SINA Aligner v. 1.2.11 (Pruesse et al., 2012). Maximum 

likelihood phylogenetic trees with published 16S rRNA genes from Acidobacteria available in 

NCBI (as of 8 Nov 2020) was computed with RAxML v. 8.2.4 using the GTRGAMMA 

nucleotide substitution model (Stamatakis, 2006). The 16S rRNA genes were aligned using 

Clustal Omega v. 1.2.1 (Sievers et al., 2011). Shared average nucleotide identity (gANI) was 

performed with whole genome alignments of Acidobacteria genomes available in IMG (as of 

November 5th 2018), which were computed using the compare function in dRep v. 2.0.5 (Olm et 

al., 2017) without the MASH pre-clustering step. Genomes were only included in the gANI 

analysis if the completeness was above 90% and the contamination was below 5% calculated 

with the CheckM lineage workflow (Parks et al., 2015). 

4.3.3 Amplicon Dataset Mining 

To assess if these Acidobacteria regularly occur in or are specific to Microcystis blooms, we 

searched for their presence in previously published rRNA amplicon datasets (Kara et al., 2013; 

Berry et al., 2017; Tromas et al., 2017; Shi et al., 2018; Chun et al., 2019; Rozmarynowycz et 

al., 2019; Cook et al., 2020; Paver et al., 2020), which are described in Table 4.1. To assess the 

MAGs abundance in western Lake Erie, the relative abundance of OTUs generated in Chapter 3 

were reported. For the Bryobacter CoA8 C33 MAG, the relative abundance of OTUs classified 

as Bryobacter were reported. For the Acidobacterium CoA2 C42 MAG, the relative abundance 

of OTUs classified as Paludibaculum were reported if the 16S rRNA gene in the MAG aligned 

to the amplicon sequence with 97 % or more shared nucleotide identity as determined via 

nucleotide BLAST v. 2.2.31+ (Altschul et al., 1990). Because the public datasets used a range of 
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different primer sets, we determined the abundance of each organism in these datasets by 

mapping amplicon reads to the 16S rRNA gene sequence in each MAG with BLAST v. 2.2.31+ 

(Altschul et al., 1990). The relative abundance of Microcystis, Synechococcous, and 

Dolichosperumum were similarly determined in these datasets by mapping amplicon reads to 

reference sequences. We mapped to full-length 16S rRNA sequences from Anabaena cylindrica 

PCC 7122, Microcystis aeruginosa PCC 7806SL, Microcystis aeruginosa PCC 9806, 

Synechococcus elongatus PCC 6301, Synechococcus elongatus PCC 7942, as well as sequences 

assembled from Lake Erie metagenomes using EMIRGE (Miller et al., 2011) and classified as 

Microcystis, Anabaena, Dolichospermum, and Synechococcus using the Wang classifier (Wang 

et al., 2007) in MOTHUR v 1.43.0 (Schloss et al., 2009). The relative abundance of each 

organism in a given sample was calculated as the number of reads mapped for that given 

organism divided by the total number of reads in the dataset. 

4.3.4 Identification of Pseudocobalamin in Microcystis Cultures 

 Two strains of Microcystis aeruginosa (PCC 7806 and PCC 9806) were grown on a 

variant of BG-11 growth media (Allen & Stanier, 1968) with the sodium nitrate concentration 

reduced to 2 mM in preparation for screening for pseudocobalamin production via liquid 

chromatography-mass spectrometry (LC-MS) analysis. The Microcystis strains were grown as 

batch cultures at room temperature under cool white fluorescent bulbs. The light intensity was 

kept between 30-60 µmol photons/m2/sec by covering the lights with a single layer of neutral 

density 0.3 filter screen (product 209R, LEE Filters, Burbank, CA). For each strain, 300 mL of 

late log phase culture was split into six 50 mL aliquots and harvested by centrifugation at 10,000 

xg for 15 minutes, decanting liquid media, and freezing at -80 °C until extraction. Analysis of 

cell pellets was carried out using a previously published method (Heal et al., 2017), with some 
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modifications. Briefly, cell pellets were resuspended in 6 mL of cold acetonitrile:methanol:water 

(40:40:20 ratio by volume) with 0.1% formic acid and transferred to 15 mL centrifuge tubes. The 

cells where lysed via bead beating with 250 mg each of 100 and 500 µm glass beads on a vortex 

mixer set to max speed for 40 sec. Bead beating was performed three times, with samples resting 

on ice for five minutes between each treatment. The suspension was pelleted via centrifugation at 

10,000 xg and the supernatant was transferred to a round bottom flask. The pooled supernatants 

from each strain were dried in a rotary evaporator under 300 mbar pressure at 30 °C, then 

resuspended in a small volume of solvent A (described below) before LC-MS analysis. 

Extraction from ~ 6 g Spirulina powder was also performed as a positive control (Heal et al., 

2017) following the same procedure described above for the Microcystis cells, with the exception 

that the powder was suspended in 10 mL of cold acetonitrile:methanol:water solution. All 

extraction and processing steps were conducted under low light conditions to minimize 

photodegradation of pseudocobalamin. 

 LC-MS analysis was carried out on a Thermo Scientific UHPLC coupled to a Q-Exactive 

Orbitrap High Resolution Mass Spectrometer equipped with an ESI source and running in 

positive mode. Sample (1 µL) was injected onto a 2.6 µm Kinetex RP C18 column (150 x 4.6 

mm inside diameter) held at 25 °C. The HPLC gradient used was 5% to 95% solvent B over 22 

minutes, where solvent A consisted of 20 mM ammonium formate and 0.1% formic acid in 

water, and solvent B consisted of 0.1% formic acid in acetonitrile. MS data was collected over a 

mass range of 600-1400 m/z, using data-dependent MS/MS analysis with 0.5 s dynamic 

exclusion enabled. Pseudocobalamin variants were identified by comparing the obtained 

compound masses and MS/MS spectra to previously reported literature values (Heal et al., 2014; 

Heal et al., 2017) and the Spirulina extract.  
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4.4 Results and Discussion 

4.4.1 The MAGs From Western Lake Erie are Novel Species of Subdivision 3 Acidobacteria 

Metagenome assembled genomes (MAGs) of two Acidobacteria were obtained from 

published metagenomic assemblies of microbial communities from a western Lake Erie 

Microcystis bloom during the summer-fall of 2014. We focused on these genomes because they 

contained catalase-peroxidase genes (katG) that were among the most highly expressed during 

peak katG expression during a cyanobacteria bloom in western Lake Erie and were in particle or 

phytoplankton attached samples (described in Chapter 2 of this dissertation). Therefore, they 

may be important H2O2 degraders in phytoplankton-associated communities.  

Both genomes are near-complete with low contamination (Table 4.2) and have assembly 

metrics that meet the standards for high-quality draft genomes (Bowers et al., 2017). The 16S 

rRNA gene sequences of MAGs CoA2 C42 and CoA8 C33 were classified as Paludibaculum 

and Bryobacter (see methods), and were closest matches to 16S sequences from Paludibaculum 

fermentans and Bryobacter aggregatus strains (92.29 and 96.5 %), respectively, which were both 

isolated from peat bogs (Kulichevskaya et al., 2010; Kulichevskaya et al., 2014). The 16S rRNA 

percent similarity score for the CoA8 C33 MAG with Bryobacter aggregatus is above genus 

level thresholds, and the similarity score for the CoA2 C42 MAG with Paludibaculum 

fermentans is below genus level but above family level thresholds (Yarza et al., 2014). A 

maximum likelihood tree including published acidobacterial 16S rRNA sequences placed both 

genomes within subdivision 3 Acidobacteria, Bryobacteraceae, with high bootstrap support 

(Figure 4.1A). While the CoA8 C33 MAG was placed as a sister lineage to Bryobacter 

aggregatus with high confidence, the specific placement of the CoA2 C42 MAG within 

subdivision 3 Acidobacteria had lower bootstrap support. The percent identity scores of the 16S 

matches and the bootstrap support of the 16S tree supports a taxonomic placement of genome 
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CoA8 C33 as a novel species of Bryobacter, while genome CoA2 C42 likely represents a novel 

genus within the subdivision 3 Acidobacteria sister to Paludibaculum. Here, both species will be 

referred to as Bryobacter CoA8 C33 and Acidobacteria CoA2 C42. 

The 16S rRNA based taxonomic classification is further supported by whole genome 

alignments. Both genomes were most similar to Acidobacteria genomes from subdivision 3 

(Figures 4.1B, 4.1C). The CoA8 C33 genome was most similar to Bryobacter aggregatus strains. 

The gANI and coverage values were within the range of other intragenus comparisons but below 

species level cutoffs (Konstantinidis & Tiedje, 2005; Varghese et al., 2015), further supporting 

that this genome sequence represents a novel species of Bryobacter. The CoA2 C42 genome was 

most similar to another uncultivated MAG from a drinking water metagenome (IMG Gold Study 

ID: Gs0114768), with the next most similar genomes being the CoA8 C33 genome from Lake 

Erie, both Bryobacter aggregatus strains, and Candidatus Solibacter usitatus. While subdivision 

3 Acidobacteria have been recognized as numerically important in soils (Jones et al., 2009; 

Serkebaeva et al., 2013) and present in freshwaters (Chun et al., 2020), to our knowledge, this 

study represents the first detailed description of Bryobacteraceae genomes from an aquatic 

environment. 

4.4.2 Evidence for Expression of Genes Involved in Biofilm Adhesion and Respiration of 
Exopolysaccharides and Phytoplankton Exudates 

In both the Bryobacter CoA8 C33 and Acidobacterium CoA2 C42 genomes, the most 

highly expressed genes were involved in translation, ribosomal proteins, secretion proteins, 

peptidases of unknown function, chaperonins, H2O2 detoxification, and ATP synthesis, along 

with hypothetical or uncharacterized proteins (Figures S 4.3 & S 4.4). Highly expressed genes 

encoding hypothetical proteins did not align to RNA gene sequences in NCBI, and either had 

best hits to other hypothetical proteins or no significant hits to any proteins in the database 
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(Appendix 1). Both genomes have a complete TCA cycle, near complete glycolysis and Entner-

Doudoroff pathways (Figure S 4.5), and lack known pathways for carbon fixation and synthesis 

of bacteriochlorophyll and rhodopsin pigments, which indicates that these organisms are 

chemoheterotrophs and fits the description of known subdivision 3 Acidobacteria isolates 

(Dedysh & Damsté, 2018). Included among the more highly expressed membrane associated 

genes were genes involved in biofilm adhesion, chemotaxis, flagellum biosynthesis, and motility, 

which indicates that these organisms are chemotactic, seeking out and adhering to phytoplankton 

or other particles (Figures S6, S7).  

The functional annotations and expression of predicted protein coding genes suggests that 

both Acidobacteria appear to obtain carbon from the breakdown of complex exopolysaccharides 

produced by phytoplankton. Both genomes possess putative pectate-lyase, alpha-mannosidase, 

and xylan esterase exoenzymes to completely degrade homogalacturonan, mannose, and xylose 

polymers completely to the constituent monosaccharides (Figure S5). Additionally, the 

Bryobacter MAG contains genes for degradation of galactose and arabinofuranose polymers, 

while the Acidobacteria CoA2 C42 MAG contains genes for the degradation of alginate (Figure 

S5). Cyanobacteria, including Microcystis, have an exopolysaccharide (EPS) mucilage encasing 

their cells that is comprised mainly of galacturonan polymers in certain strains and species 

(Wolk, 1973; Plude et al., 1991; Forni et al., 1997), suggesting that the EPS in Microcystis 

colonies could be a substrate of these exoenzymes. Furthermore, both genomes possess and 

expressed genes involved in the degradation of galacturonate monomers along with other 

constituents of cyanobacterial EPS such as xylose, glucose, galactose, and mannose (Wolk, 

1973; Plude et al., 1991; Forni et al., 1997; Li et al., 2009), suggesting that they can derive 

carbon from the degradation of cyanobacterial EPS. Supporting this, bacterial degradation of 
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Microcystis EPS has been observed in co-cultures with heterotrophic bacteria (Li et al., 2009). 

Eukaryotic phytoplankton also produce extracellular polysaccharides composed of these same 

constituents (Meon & Kirchman, 2001; Grossart & Simon, 2007; Mühlenbruch et al., 2018), 

which could potentially provide carbon to these organisms (Meon & Kirchman, 2001; Grossart 

& Simon, 2007; Mühlenbruch et al., 2018; Ferrer-González et al., 2020). 

4.4.3 Evidence for Uptake of Low Molecular Weight Organics in Phytoplankton Exudates 

In addition to sugar uptake, the metatranscriptomic data suggest that low molecular 

weight phytoplankton exudates are a source of carbon and nitrogen for both Acidobacteria in 

Lake Erie cyanobacteria blooms and further support the hypothesis that both Acidobacteria 

participate in metabolic exchanges within phycosphere communities (Figure 4.2). Among the 

most highly expressed transporters in both Acidobacteria during the Microcystis bloom were 

concentrative nucleoside transporters (CNT, Figures S 4.7 & S 4.8), suggesting that they uptake 

nucleosides released into the environment as a carbon source. Although their relative abundance 

in the metatranscriptomes was lower, there was also detectable expression of many proteins 

putatively involved in amino acid, peptide, and polyamine uptake (Figure 4.2). This suggests that 

a substantial portion of the nitrogen demand for both Acidobacteria is likely met by the uptake of 

organic nitrogen in dissolved amino acids, peptides, and nucleosides. Indeed, nucleosides and 

amino acids are a common component of phytoplankton exudates that can serve as carbon and 

nitrogen sources for bacteria in marine phytoplankton co-cultures (Beliaev et al., 2014; Christie-

Oleza et al., 2017; Durham et al., 2017; Ferrer-González et al., 2020), and amino acids are an 

important source of nitrogen for natural bacterial assemblages (Kirchman et al., 1989; Tupas & 

Koike, 1990; Tupas et al., 1994). Expression of amino acid oxidases was also detected, 
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suggesting that both Acidobacteria may need to deaminate some amino acids in order to access 

the nitrogen (Palenik & Morel, 1990b; Palenik & Morel, 1990a; Tupas & Koike, 1990). 

Both Acidobacteria also expressed genes to oxidize lactate and glycolate and 

dephosphorylate phosphoglycolate (Figure 4.2), which are common exudates of cyanobacteria 

(Bateson & Ward, 1988; Beliaev et al., 2014; Barchewitz et al., 2019) and eukaryotic 

phytoplankton (Hellebust, 1965; Tolbert, 1979). Expression of lactate permease, which is 

involved in uptake of both lactate and glycolate (Núñez et al., 2001), was detected, along with 

transporters putatively involved in the uptake of other organic acids (Figure 4.2). Both genomes 

lack genes in the glyoxylate cycle, methylaspartate cycle, and the majority of genes in the 

ethylmalonyl-CoA and 3-hydroxypropanoate cycles, but possess and express genes in the serine 

pathway (Figure 4.2). The presence of genes in the serine pathway suggest that the glyoxylate 

formed from the oxidation of glycolate is incorporated into amino acids (Sinha & Cossins, 1965; 

Renström-Kellner & Bergman, 1989; But et al., 2019) and the metabolism of C1 compounds 

(But et al., 2019). The final two genes of the serine pathway, which regenerate glyoxylate from 

malate, were missing from both genomes. While a putative malate synthase enzyme in the 

Bryobacter genome could potentially fill this role, it is unclear from our data if the absence of the 

glyoxylate regeneration steps in Acidobacterium CoA2 C42 is indicative of glyoxylate 

auxotrophy, an artifact of incomplete genome reconstruction, or the use of an as of yet 

uncharacterized pathway for use of glyoxylate formed from glycolate oxidation. The potential 

for glyoxylate auxotrophy is intriguing, as this may implicate glycolate excreted by 

phytoplankton as an essential growth factor for these Acidobacteria. More recently described 

pathways for glyoxylate assimilation (von Borzyskowski et al., 2019) may also be present; 

however, genes involved in these pathway could not be confidently identified in this study due to 
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the limited annotations for these pathways and low shared amino acid identities of the 

Acidobacteria genomes with published sequences (Figure S 4.1). 

4.4.4 Evidence for Regeneration of Nitrogen From Peptides and Amino Acids 

The detectable expression of dipeptide and oligopeptide transporters, peptidases, and 

cyanophycinase-like proteins along with amino acid efflux proteins suggests that amino acid 

efflux by the Acidobacteria may be linked to peptide degradation (Figure 4.2) and, along with 

the detectable expression of amino acid oxidases, may regenerate reduced nitrogen from 

dissolved peptides and amino acids that is subsequently used for phytoplankton growth. Because 

intracellular accumulation of some amino acids can inhibit the biosynthesis of other amino acids 

(Zakataeva et al., 1999; Livshits et al., 2003), amino acid secretion via efflux proteins allow 

bacteria to excrete excess amino acids and their derivatives, thus allowing the biosynthesis of 

other amino acids to proceed and meet cellular amino acid demands (Zakataeva et al., 1999; 

Bellmann et al., 2001; Livshits et al., 2003). This amino acid efflux activity is essential for 

maintaining balanced growth from the degradation of oligopeptides (Payne & Bell, 1979; Nisbet 

& Payne, 1982; Bellmann et al., 2001) by allowing bacteria access to specific amino acid 

moieties while remaining unimpacted by moieties within the peptide that would lead to an amino 

acid imbalance (Payne & Bell, 1979). Assuming that amino acid quotas between phytoplankton 

and phycosphere bacteria differ such that excess amino acids in heterotrophic bacteria are 

limiting growth in their phytoplankton hosts, peptide degradation followed by amino acid efflux 

by bacteria could regenerate amino acids from peptides released from phytoplankton cells by cell 

lysis or excretion.  

Additionally, expression of amino acid oxidases on the cell membranes of bacteria 

(Duerre & Chakrabarty, 1975; Bouvrette & Luong, 1994) and phytoplankton (Palenik & Morel, 
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1990b; Palenik & Morel, 1990a) may convert excess amino acids excreted by bacteria into 

inorganic nitrogen that could subsequently be taken up by phytoplankton and phycosphere 

bacteria for growth (Palenik & Morel, 1990b; Palenik & Morel, 1990a). Supporting this 

hypothesis, exchange of nitrogen between phytoplankton and bacteria was detected in co-

cultures (Arandia-Gorostidi et al., 2017; Christie-Oleza et al., 2017), and linked to regeneration 

of nitrogen from DOM (Christie-Oleza et al., 2017). Furthermore, amino acid use by natural 

bacterial assemblages coincides with ammonia excretion under conditions when amino acids are 

the major sources of nitrogen for growth (Kirchman et al., 1989) or under carbon limiting 

conditions (Goldman et al., 1987; Goldman & Dennett, 1991), although simultaneous ammonia 

uptake by bacteria was measured in some systems (Tupas & Koike, 1990; Tupas et al., 1994). 

The C:N ratio of dissolved organic matter in cyanobacterial blooms can be within the range that 

favors ammonia regeneration from amino acids in marine systems (Ye et al., 2011; Lehman et 

al., 2015), and ammonium uptake can outpace regeneration in eutrophic systems, including 

Microcystis blooms (Gardner et al., 2017). Thus, conditions during Microcystis blooms can favor 

bacterial amino acid uptake or deamination and subsequent ammonium regeneration. Cultivation 

of freshwater Acidobacteria along with measurements of amino acid fluxes and demand in 

natural microbial communities is required to fully constrain the importance of peptide 

degradation and amino acid efflux by Acidobacteria on phytoplankton growth in situ. 

4.4.5 Evidence for Vitamin B12 Auxotrophy and Uptake 

The gene annotation and expression data of both Acidobacteria genomes suggest that 

both organisms are auxotrophs of vitamin B12. There are many variants of vitamin B12 that differ 

in the chemical groups that make up the upper and lower axial ligands (Banerjee & Ragsdale, 

2003; Helliwell et al., 2016). Some B12-dependent enzymes are involved in critical cellular 
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functions such as methionine and nucleotide synthesis (Banerjee & Ragsdale, 2003), thus B12 

availability is important for growth of organisms with these enzymes. Organisms that lack genes 

for cobalamin biosynthesis must obtain B12 released into the environment by B12-producing 

organisms (Croft et al., 2005; Helliwell et al., 2016). Both Acidobacteria lack the entire pathway 

for biosynthesis of the corrin ring structure of vitamin B12s, and the Bryobacter genome 

expressed genes annotated as cobalamin transporters (Figure 4.3A); however, the Acidobacteria 

CoA2 C42 MAG lacked genes annotated as cobalamin transporters. Expression of genes 

encoding TonB-family proteins, required to energize the membrane for cobalamin transport 

(Bassford et al., 1976; Reynolds et al., 1980), were also detected in both genomes and were 

among the most highly expressed membrane associated proteins in Acidobacteria CoA2 C42 

(Figure S 4.6). In addition, the expression of the B12-dependent enzymes nrdJ, encoding a class 

II ribonucleotide reductase, and metH, encoding methionine synthase, was detected in 

Bryobacter (Figure 4.3B). Bryobacter lacks B12-independent alternatives to nrdJ, which suggests 

that B12 is a requirement for this organism. Acidobacteria CoA2 C42 uses B12-independent 

alternatives to nrdJ, nrdA and nrdB (Supplemental Datafile 1). However, Acidobacteria CoA2 

C42 expressed metH despite having the B12-independent version metE, for which no expression 

was detected (Table 4.3). Together, this suggests that both Acidobacteria cannot synthesize 

vitamin B12s de novo, were actively transporting B12 from the water column into the cell, and 

were producing B12-dependent enzymes during the cyanobacteria bloom.  

We detected expression of genes involved in remodeling cobalamin axial ligands in both 

Acidobacteria genomes. Mechanisms to remodel B12 are necessary for microbes to convert the 

various exogenous B12 forms into the correct chemical forms needed for growth (Anderson et al., 

2008; Helliwell et al., 2016; Ma et al., 2019) because most microbial taxa exclusively use 
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specific lower axial ligand variants of vitamin B12 (Stupperich & Kräutler, 1988; Helliwell et al., 

2016; Heal et al., 2017). Genes for attaching an adenosyl group to the upper ligand were present 

in both genomes (Figure 4.3C, Table 4.3), but we only found genes for remodeling the lower 

axial ligand in the Bryobacter genome (Figure 4.3C). The absence of remodeling genes together 

with the presence of B12-independent nucleotide synthesis enzymes and lack of annotated 

cobalamin transporters may indicate that Acidobacterium CoA2 C42 is not reliant on vitamin B12 

for growth to the same extent as Bryobacter. 

Several lines of evidence suggest that Bryobacter CoA8 C33 obtains pseudocobalamin 

from cyanobacteria, including Microcystis. Bryobacter CoA8 C33 expresses genes that are 

involved in cobalamin remodeling (Figure 4.3B), expresses genes that require vitamin B12 for 

nucleotide and methionine synthesis (Figure 4.3C), and amplicon sequences classified as 

Bryobacter were identified in Microcystis phycosphere communities (Table 3.3). Furthermore, 

we identified pseudocobalamin in axenic cultures of Microcystis aeruginosa PCC 7806 and PCC 

9806 (Figure 4.4). This confirms that Microcystis produces pseudocobalamin for growth, as do 

other cyanobacteria (Bonnet et al., 2010; Helliwell et al., 2016), which contrasts previous studies 

that suggested Microcystis could not synthesize pseudocobalamin based on the absence of a few 

genes in B12 biosynthesis pathway annotations from MAG sequences (Xie et al., 2016; Cook et 

al., 2020). Therefore, Microcystis could be a potential source of B12 for Bryobacter CoA8 C33. 

However, it is unclear from our data which chemical forms are required by Bryobacter CoA8 

C33, and by extension which organisms Bryobacter CoA8 C33 rely on for vitamin B12. 

Pseudocobalamin (lower axial ligand is adenosine) is produced by cyanobacteria (Helliwell et 

al., 2016; Heal et al., 2017) and some Lactobacillus (Santos et al., 2007) and methanogenic 

bacteria (Stupperich & Kräutler, 1988) while cobalamin (the lower axial ligand is 5,6-
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dimethylbenzimidazol [DMB]) is produced by Thaumarchaeota and some proteobacteria (Heal et 

al., 2017), and used by most eukaryotic phytoplankton (Helliwell et al., 2016; Heal et al., 2017). 

Bryobacter CoA8 C33 lacks the ability to synthesize the nucleotide DMB required for the axial 

ligand of cobalamin, which may indicate that Bryobacter CoA8 C33 uses pseudocobalamin and 

derives pseudocobalamin from cyanobacterial cell lysis or excretion (Bonnet et al., 2010). 

However, other organisms that lack DMB synthesis pathways in fact use cobalamin, and can 

remodel other B12 vitamins in the presence of an exogenous source of DMB (Anderson et al., 

2008). Therefore, we cannot rule out that the Acidobacteria either directly uptake cobalamin 

from other sources, or convert pseudocobalamin into cobalamin using DMB derived from other 

phycosphere bacteria. Regardless, our data support the idea that freshwater Bryobacter spp. rely 

on other microorganisms to meet vitamin B12 demands. 

4.4.6 Presence and Relative Abundance in Amplicon Datasets 

To determine if these Acidobacteria regularly occur in, or are specific to, Microcystis-

dominated blooms, we measured their abundance in published 16S rRNA amplicon datasets 

spanning a range of freshwater systems where Microcystis-dominated blooms occur (Table 4.1, 

see methods). Amplicon sequences with high percent similarity (97 %) to variable regions of the 

16S rRNA sequences in both Acidobacteria MAGs were present at low relative abundance in 

western Lake Erie (Bryobacter mean 0.072 %, range 0-1.41 %; Acidobacterium CoA2 C42 mean 

0.13 %, range 0-0.69 %) and other systems (Bryobacter mean 0.006 %, range 0-0.40 %; 

Acidobacterium CoA2 C42 mean 0.048 %, range 0-0.72 %). There was a weak but significant, 

positive relationship between the relative abundance of both Acidobacteria taxa and Microcystis 

relative abundance in western Lake Erie cyanobacterial blooms (Figures 4.5A & 4.5B). In other 

freshwater systems, there was also a significant, positive correlation between Bryobacter relative 
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abundance and Microcystis relative abundance (Figure 4.5C). In contrast, Acidobacterium CoA2 

C42 had a significant negative correlation in the other datasets, however the correlation was 

weak (Figure 4.5D), indicating that while it can co-occur with Microcystis blooms, it is a 

generalist that also occurs in freshwater systems when and where Microcystis is absent. 

Bryobacter amplicon sequences were also present in some freshwater datasets when Microcystis 

relative abundance was low, indicating that a few species or strains may also occur outside 

Microcystis blooms. However, Bryobacter relative abundance in these samples was typically 

low, averaging at 0.001 % in samples where Microcystis relative abundance was below 1 %. The 

weak positive correlation between Microcystis and Bryobacter in Lake Erie and other lakes 

suggests that Bryobacter often associates with Microcystis during cyanobacterial blooms, 

although the interaction is not conserved across all bloom periods and locations. Both 

Acidobacteria could also be absent while Microcystis was present at high abundance, suggesting 

that while both may occur in Microcystis blooms, they are not consistently present in Microcystis 

bloom communities. Bryobacter spp. were previously found to be correlated with specific 

Microcystis genotypes (Chun et al., 2020), which could suggest that Bryobacter associates with 

only some Microcystis strains. 

We assessed the abundance of both Acidobacteria groups in particle-attached microbial 

communities of various sizes, which may indicate a physical association with phytoplankton, 

including Microcystis, which grow in large, buoyant colonies (Zhu et al., 2014). The relative 

abundance of both Bryobacter and Acidobacteria CoA2 C42 amplicons were enriched in 

particle-attached communities (> 100 µm retentate samples) during the 2014 western Lake Erie 

Microcystis bloom (Figure 4.6). Similarly, although it was only present in August and 

September, Bryobacter was associated with the size fraction that contained the majority of 
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Microcystis in Lake Taihu, but absent from smaller particles and free-living communities (Figure 

4.7). In contrast, Acidobacterium CoA2 C42 was absent from large aggregates and present in 

smaller particles and free-living communities in Lake Taihu (Figure 4.7), which is in contrast 

with the results from Lake Erie (Figure 4.6). Bryobacter was also absent from free-living 

communities throughout the Great Lakes, while Acidobacterium CoA2 C42 was present (Figure 

S 4.8). A previous study identified Bryobacter in ~25 % of Microcystis colonies sampled, while 

other Acidobacteria largely were absent (Table 3.3), and another study found that Bryobacter 

relative abundance was significantly correlated with the relative abundance of certain 

Microcystis genotypes (Chun et al., 2020). Together with the relationships between 

Acidobacteria percent abundance and Microcystis percent abundance (Figure 4.5), this suggests 

that Bryobacter is present in some Microcystis blooms when conditions are favorable and 

physically attaches to Microcystis colonies, while Acidobacterium CoA2 C42 facultatively 

colonizes other particles and is not specifically associated with Microcystis blooms. 

4.5 Conclusions 

The abundance patterns and putative metabolic exchanges identified here suggest that 

Bryobacter and Acidobacterium CoA2 C42 interact with phytoplankton as members of 

phycosphere communities and may influence phytoplankton physiology. Metatranscriptomic 

evidence suggests that both bacteria play a role in the regeneration of reduced N which can fuel 

phytoplankton growth, including certain Microcystis strains (Davis et al., 2010; Chaffin et al., 

2018; Newell et al., 2019). While both organisms were detected in Microcystis blooms, only 

Bryobacter was found directly associated with Microcystis colonies. Conversely, while it occurs 

in Microcystis blooms, Acidobacterium CoA2 C42 is not physically associated with Microcystis 

but may be associated with other phytoplankton groups. However, we cannot rule out that 
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Acidobacterium CoA2 C42 instead attaches to abiotic or detrital particles, a common trait of 

Acidobacteria (Dedysh & Damsté, 2018), so its involvement in phycosphere interactions is 

uncertain. Future studies are needed to determine which particle types Acidobacterium CoA2 

C42 physically associates with. In addition, the cultivation of novel, uncultivated freshwater 

Acidobacteria and co-culture experiments with phytoplankton, including Microcystis, are 

required to confirm if the inferred metabolite exchanges between Acidobacteria and 

phytoplankton occur, are a result of mutualistic growth or decomposition of lysed phytoplankton 

cells, and to characterize their impacts on Microcystis growth. 

4.6 Figures and Tables 

 

Figure 4.1: Taxonomic assignment of novel Acidobacteria MAGs based on 16S rRNA 
phylogeny and whole genome alignments (gANI). A: Maximum likelihood tree of published, 
full-length Acidobacteria 16S rRNA gene sequences. The tree is rooted with the sequence from 
the Deltaproteobacterium Geobacter metallireducens. Branch labels show bootstrap support (n = 
2000). Branch lengths have no information. Subdivision 3 Acidobacteria are highlighted in 
green, subdivision 4 Acidobacteria are highlighted in gold, and subdivision 6 Acidobacteria are 
highlighted in. The leaf labels for the 16S rRNA sequences from the Lake Erie MAGs are 
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colored red. B and C: gANI comparisons of Bryobacter CoA8 C33 (B) and Acidobacteria CoA2 
C42 (C) with published, high-quality Acidobacteria genomes in IMG (n = 63). 

 

Figure 4.2: Relative abundance of low molecular weight organic carbon transporters and 
enzymes related to their metabolism by Bryobacter CoA8 C33 (blue) and Acidobacterium CoA2 
C42 (red) associated with phytoplankton seston in the August 4th metatranscriptome from 
nearshore western Lake Erie station WE12. Relative abundance is expressed as reads mapped per 
kb of gene per million reads mapped to the respective genome (RPKM). A range of RPKM 
values indicates that multiple genes were predicted to drive the indicated reactions, and only 
maximum and minimum RPKM values are shown. 
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Figure 4.3: Relative abundance of transcripts from Bryobacter CoA8 C33 genes involved in 
cobalamin transport (A), cobalamin remodeling (B), and cobalamin-dependent genes and their 
independent counterparts (C) in the August 4th metatranscriptome from western Lake Erie 
nearshore station WE12. Relative abundance is expressed as reads mapped per kbp of gene per 
million reads mapped to the genome (RPKM). 
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Figure 4.4: MS2 spectra of pseudocobalamin forms in Microcystis cultures and Spirulina 
powder, which served as a positive control. 6A: Detailed mass spectrum of 
hydroxopseudocobalamin from Microcystis aeruginosa PCC 7806 with the chemical structures 
for each fragment associated with the mass peaks (colored) and for the entire molecule (black 
box). 6B: Mass spectra of hydroxopseudocobalamin and methylpseudocobalamin detected in 
Spirulina powder. 6C: Mass spectra of hydroxopseudocobalamin and methylpseudocobalamin 
detected in Microcystis aeruginosa PCC 7806. 6D: Mass spectra of hydroxopseudocobalamin 
and methylpseudocobalamin detected in Microcystis aeruginosa PCC 9806. 

 

Figure 4.5: Percent abundance of Bryobacter and Acidobacterium CoA2 C42 as a function of 
Microcystis percent abundance in whole water microbial community rRNA amplicon datasets 
from freshwaters. A: Bryobacter OTU percent abundance vs. Microcystis OTU percent 
abundance in V4 16S rRNA amplicon datasets collected during western Lake Erie cyanobacterial 
blooms. B: Acidobacterium CoA2 C42 OTU percent abundance vs. Microcystis OTU percent 
abundance in V4 16S rRNA amplicon datasets collected during western Lake Erie cyanobacterial 
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blooms. C: The percent abundance of reads in published amplicon datasets that mapped to the 
16S rRNA gene from the Bryobacter CoA8 C33 MAG vs. the percent abundance of amplicon 
reads that mapped to 16S rRNA from Microcystis. D: The percent abundance of reads in 
published amplicon datasets that mapped to the 16S rRNA gene from the Acidobacterium CoA2 
C42 MAG vs. the percent abundance of amplicon reads that mapped to 16S rRNA from 
Microcystis. In all panels, the shaded area around the regression line indicates the regression 
standard error, error bars show the 95% confidence intervals determined from replicate filters (n 
= 4 or 8), and p-values show the significance of the regression slope calculated with an F-test. 

 

Figure 4.6: Percent abundance of Bryobacter and Acidobacterium CoA2 C42 OTUs in size 
fractionated samples from a western Lake Erie time series collected in the summer-fall of 2014. 
Bar colors depict size fraction. 
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Figure 4.7: Percent abundance of Acidobacteria of interest and major Cyanobacteria taxa, 
Anabaena / Dolichospermum and Microcystis in size fractionated samples from a time series of 
Lake Taihu cyanobacterial blooms. 

 

Figure S 4.1: Histogram of shared amino acid identity between protein coding genes in 
Acidobacteria MAGs and NCBI non-redundant database. 
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Figure S 4.2: Total number of metatranscriptomic reads mapped to each Acidobacterium MAG. 
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Figure S 4.3: Ranked relative abundance plot of top 50 most abundant genes from the 
Acidobacterium CoA2 C42 MAG in the 2014 western Lake Erie metatranscriptome collected 
from > 100 µm size fraction during August phycocyanin peaks (nearshore station WE12, August 
4th). Relative abundance was calculated by normalizing to gene length (kbp) and total reads 
mapped to all genes in the Acidobacterium CoA2 C42 MAG. 
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Figure S 4.4: Ranked relative abundance plot of top 50 most abundant genes from the 
Bryobacter CoA8 C33 MAG in the 2014 western Lake Erie metatranscriptome collected from > 
100 µm size fraction during August phycocyanin peaks (nearshore station WE12, August 4th). 
Relative abundance was calculated by normalizing to gene length (kbp) and total reads mapped 
to all genes in the Bryobacter MAG. 
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Figure S 4.5: Putative central carbon metabolism and sugar degradation pathways in Bryobacter 
CoA8 C33 and Acidobacterium CoA2 C42. Blue values indicate the relative transcript 
abundance of the gene from Bryobacter CoA8 C33. Red values indicate the relative transcript 
abundance of the gene from Acidobacterium CoA2 C42. A range of values show the highest and 
lowest relative abundance values when multiple gene copies are present. Relative abundance was 
calculated by normalizing to gene length (kbp) and total reads mapped to all genes in each 
respective genome (RPKM). 
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Figure S 4.6: Ranked relative abundance plot of top 50 most abundant genes encoding 
transporters from the Acidobacterium CoA2 C42 MAG in the 2014 western Lake Erie 
metatranscriptome collected from > 100 µm size fraction during August phycocyanin peaks 
(nearshore station WE12, August 4th). Relative abundance was calculated by normalizing to 
gene length (kbp) and total reads mapped to all genes in the Acidobacterium CoA2 C42 MAG. 
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Figure S 4.7: Ranked relative abundance plot of top 50 most abundant genes encoding 
transporters from the Bryobacter CoA8 C33 MAG in the 2014 western Lake Erie 
metatranscriptome collected from > 100 µm size fraction during August phycocyanin peaks 
(nearshore station WE12, August 4th). Relative abundance was calculated by normalizing to 
gene length (kbp) and total reads mapped to all genes in the Bryobacter MAG. 
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Figure S 4.8: Percent abundance of Acidobacterium CoA2 C42 in free-living microbial 
communities in the Great Lakes. Bar color depicts sampling date. Bryobacter was not detected in 
these samples. 
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study. 

NCBI Accession Location and 
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Material Type Size Fraction(s) Reference 
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PRJNA386411 Lake Taihu, China 

time series 

size fractionated 

communities 
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PRJNA479553 monthly sampling 

of Nakdong River, 

South Korea 

whole water 

communities 

>0.22 µm Chun et al. 2019 

SRA211417 transect across the 

Laurentian Great 

Lakes 

whole water 

communities 

>0.22 µm Rozmarynowycz et 

al. 2019 

PRJNA353865 Lake Champlain, 

Canada time series 

whole water 

communities 

>0.22 µm Tromas et al. 2017 

PRJEB14911 Lake Mendota, 

USA time series 

whole water 

communities 

>0.22 µm Kara et al. 2012 

 

 

Table 4.2: Quality information for Acidobacteria MAGs from western Lake Erie cyanobacterial 
blooms. 

BinID Genus Complete-

ness (%) 

 

Contam- 

ination 

(%) 

 

 

GC % 

Size 

(Mbp) 

N50 Gene
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16S 

# 

23S 

# 

tRNA 

# 

CoA8_C33 Bryobacter 

 

98.21 

 

0.87 

 

60.89 5.0536

47 

7548 4488 1 1 47 

CoA2_C42 

 

unclassified 

 

98.70 

 

2.17 

 

64.93 6.0672

78 

3891

6 

5163 1 1 47 
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Table 4.3: Expression of B12 dependent genes in Acidobacteria CoA2 C42 MAG. 

Gene Kegg 
number 

KO IMG annotation gene 
symbol 

4-Aug 
transcript 
abundance 
nearshore 
(RPKM) 

Gene 

2806999884 2.1.1.13 K00548 methionine synthase (B12-
dependent)  

metH 216.8002 2806999884 

2807002171 2.1.1.14 K00549 5-
methyltetrahydropteroyltriglutamate-
-homocysteine methyltransferase 

metE 0 2807002171 

2807000579 2.5.1.17 K00798 cob(I)alamin adenosyltransferase cobA, 
pduO 

93.77295 2807000579 
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Chapter 5 Characterization of Biological H2O2 Production and Decay During Lake Erie 
Cyanobacterial Blooms 

5.1 Abstract 

Hydrogen peroxide (H2O2) is ubiquitous in freshwaters, where it stresses microbes. 

Microbes are likely a substantial source of H2O2 during cyanobacterial harmful algal blooms 

(CHABs), where H2O2 may impact the strain composition of Microcystis within blooms. 

However, biological H2O2 production and the H2O2-producing organisms in freshwater CHABs 

are poorly characterized. Therefore, net and gross H2O2 production and decay were measured in 

both whole water and 0.22 μm filtered water approximately weekly in 2017 and at various stages 

of bloom development in 2018 and 2019. To determine if H2O2 fluxes were linked to 

photosynthesis by Microcystis colonies, H2O2 production and decay was measured in light and 

dark incubations and in water with large phytoplankton assemblages removed in 2018 and 2019. 

Microbes were the dominant source and sink of H2O2 on average. While some biotic H2O2 

production was independent of light, biotic H2O2 production was higher in light-exposed water, 

and H2O2 production was significantly correlated with chlorophyll a concentration and primary 

production rates. Filtration of phytoplankton assemblages did not affect biotic H2O2 production 

and decay. The results indicate that most biotic H2O2 production in western Lake Erie is light-

dependent and related to photosynthesis, but that neither production nor decay are directly from 

large Microcystis colonies. This suggests that free-living microbial populations are the main 

sources and sinks of H2O2 in Lake Erie CHABs rather than Microcystis colonies. The biological 

H2O2 production may be linked to respiration of phytoplankton exudates or produced directly by 

small phytoplankton. 
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5.2 Introduction 

The reactive oxygen species (ROS) superoxide radical anion (O2-), hydrogen peroxide 

(H2O2), and hydroxyl radical (·OH) are unstable intermediates in sequential one electron 

reductions of oxygen to water. They are ubiquitous in oxygenated aquatic ecosystems, where 

they influence biogeochemical cycles by controlling the redox state of dissolved transition metals 

such as iron (Rose & Waite, 2006; Fujii et al., 2011; Trusiak et al., 2018), manganese (Wuttig et 

al., 2013; Andeer et al., 2015), and copper (Voelker et al., 2000) and by oxidizing organic matter 

(Andrews et al., 2000; Goldstone & Voelker, 2000; Xie et al., 2004; Heller & Croot, 2010; 

Trusiak et al., 2018). ROS also impact biogeochemistry by affecting microbial growth. ROS can 

stimulate respiration by increasing the lability of dissolved organic matter (DOM) via oxidation 

(Anesio et al., 2005) but also inhibit microbial growth by damaging cellular structures (Imlay, 

2003). For example, ROS can inhibit microbial respiration and secondary production in natural 

assemblages (Xenopoulos & Bird, 1997; Weinbauer & Suttle, 1999; Anesio et al., 2005) and 

constrain the growth (Morris et al., 2011; Kim et al., 2016; Tolar et al., 2016; Ma et al., 2018; 

Bayer et al., 2019) and thermal niche (Ma et al., 2018) of globally dominant marine autotrophs, 

thus impacting carbon and nitrogen cycling.  

In addition to their impacts on biogeochemistry, ROS also impact microbial community 

composition and ecology. While some microbes are highly sensitive to ROS (Morris et al., 2011; 

Kim et al., 2016; Ma et al., 2018; Bayer et al., 2019), others readily degrade and tolerate ROS 

concentrations that exceed those measured in natural waters by orders of magnitude (Seaver & 

Imlay, 2001; Cosgrove et al., 2007; Morris et al., 2008; Morris et al., 2011). Differing 

sensitivities to ROS between microbial taxa can create inter-dependencies, where sensitive 

organisms depend on more resistant microbes to degrade environmental H2O2 (Morris et al., 

2011; Morris, 2015; Kim et al., 2016; Zinser, 2018b). Some microbes exploit differences in ROS 
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sensitivities. For example, microbes from marine (Lucas-Elío et al., 2006) and human-host 

systems (Eschenbach et al., 1989; Lucas-Elío et al., 2006; Tong et al., 2007; Tong et al., 2008) 

secrete H2O2 to inhibit the growth of other organisms, resulting in a growth advantage for the 

H2O2-producing taxa. These differences in ROS sensitivity can drive community dynamics. For 

example, in human microbiomes, an absence of H2O2-producing species can lead to the 

proliferation of H2O2-sensitive pathogens (Eschenbach et al., 1989). In aquatic systems, the 

relative abundances of cyanobacteria and certain heterotrophic taxa were reduced in lake water 

amended with H2O2 while some bacterial and phytoplankton taxa remained unaffected (Matthijs 

et al., 2012; Lin et al., 2018; Lusty & Gobler, 2020). Although the H2O2 concentrations added 

were 2-3 orders of magnitude above some of the highest concentrations observed in natural 

waters, these experiments suggest that H2O2 production may also impact microbial community 

composition in aquatic systems. However, the outcome of natural H2O2 production dynamics on 

microbial community composition is unknown. 

Because of the impact ROS have in aquatic ecosystems, characterization of their sources and 

sinks is critical for a complete understanding of microbial community composition, stressors of 

microbial growth, and biogeochemistry in aquatic ecosystems. ROS are produced 

photochemically from the reduction of O2 by photo-excited chromophoric dissolved organic 

matter (CDOM) (Cooper & Zika, 1983; Garg et al., 2011). The initial product of the reaction is 

O2-, which can then dismutate, forming H2O2 and O2 (Petasne & Zika, 1987; Zafiriou, 1990). 

This photochemical source was originally thought to be the dominant source of O2- and H2O2 in 

surface waters (Cooper & Zika, 1983; Petasne & Zika, 1987; Cooper et al., 1988). However, 

microorganisms also produce extracellular O2- (Diaz et al., 2013; Hansel et al., 2016; Schneider 

et al., 2016; Diaz & Plummer, 2018; Diaz et al., 2018; Hansel et al., 2019; Bond et al., 2020) 
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and H2O2 (Lucas-Elío et al., 2006; Tong et al., 2007; Kim et al., 2016; Schneider et al., 2016; 

Diaz et al., 2018; Bayer et al., 2019; Bond et al., 2020). Microbial production can be a 

significant source of both H2O2 and O2- in natural waters (Rose et al., 2008; Vermilyea et al., 

2010a; Vermilyea et al., 2010b; Dixon et al., 2013; Marsico et al., 2015; Sutherland et al., 2020), 

and may exceed photochemical H2O2 production in some systems (Dixon et al., 2013; Cory et 

al., 2016). Because H2O2 and O2- production rates vary widely between microbial taxa (Diaz et 

al., 2013; Schneider et al., 2016; Diaz & Plummer, 2018; Diaz et al., 2018; Bond et al., 2020) 

and in the same organism at different growth phases (Hansel et al., 2019), microbial community 

composition and physiology likely determine the magnitude of biotic H2O2 production in the 

environment, which can vary by 1-2 orders of magnitude between systems (Vermilyea et al., 

2010b; Dixon et al., 2013; Marsico et al., 2015). Therefore, the magnitude of biological H2O2 

production is likely shaped by dynamics in H2O2-producing microbes. While many enzymes and 

organisms are known to produce extracellular ROS, it is unknown which organisms and 

pathways are the largest contributors to environmental ROS production (Zinser, 2018a; Hansel & 

Diaz, 2020), and the relationships between natural H2O2 production dynamics and microbial 

community composition have not been explored. 

ROS are also thought to have important impacts on cyanobacterial harmful algal blooms 

(CHABs). For example, strains of Microcystis, a potentially toxic cyanobacterium that forms 

blooms globally (Harke et al., 2016), have different sensitivities to H2O2 additions in culture 

(Dziallas & Grossart, 2011; Schuurmans et al., 2018). Therefore, changing H2O2 concentrations 

during blooms have been hypothesized to effect the relative proportions of Microcystis strains 

(Paerl & Otten, 2013), which is one determinant of microcystin concentrations during blooms 

(Kardinaal et al., 2007; Briand et al., 2009; Davis et al., 2009). H2O2 concentrations during 
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blooms can vary by two orders of magnitude, and accumulate to levels that can impact the 

growth of some cyanobacteria species (Morris et al., 2011; Ma et al., 2018). In some cases, peak 

H2O2 concentrations cannot be explained by photochemical production rates, which suggests that 

biological production is a substantial and important source of H2O2 during blooms (Cory et al., 

2016; Cory et al., 2017). Therefore, changes in H2O2 production and decay by CHAB microbial 

communities may influence the relative proportions of Microcystis strains, interactions between 

microorganisms, and cyanobacteria physiology during CHABs. While microbial catalases are 

known as a major sink for H2O2 in aquatic environments (Moffett & Zafiriou, 1990; Cooper et 

al., 1994), the organisms and pathways responsible for H2O2 production in aquatic microbial 

communities are largely unknown. Thus, it is unclear whether increasing H2O2 production during 

blooms impacts or results from Microcystis growth. 

To determine how H2O2 production in western Lake Erie is related to the development of 

Microcystis blooms, we measured H2O2 production and decay rates over different periods of a 

Microcystis bloom in summer-fall 2017, 2018, and 2019. Significant correlations between 

modeled gross and net H2O2 production rates and chlorophyll a concentration, respiration rate, 

primary production rate, and microbial community composition were detected, supporting that 

H2O2 production and decay rates are related to differences in microbial growth rates and 

microbial community composition. While net H2O2 production rates were correlated with 

Microcystis abundance and light-dependent, filtration of large Microcystis colonies did not 

reduce H2O2 production and decay rates, and Microcystis OTUs were not an important predictor 

of H2O2 production in random forest models. Therefore, increasing H2O2 production rates in 

Microcystis blooms is not directly attributed to Microcystis and is rather from other microbial 
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populations, suggesting that Microcystis physiology and fitness may be impacted by changes in 

biological H2O2 production during CHABs. 

5.3 Methods 

5.3.1 Field Sampling 

Whole water was collected from various sites across western Lake Erie during the 

summer and fall of 2017, 2018, and 2019 (Figure S 5.1). In 2017, water was collected 

approximately biweekly from NOAA station WE2 in conjunction with the NOAA Great Lakes 

Environmental Research Lab harmful algal bloom monitoring program. Various sites in 

Environment and Climate Change Canada’s monitoring program were also sampled during two 

research cruises in August and October 2017. In 2018 and 2019, water was collected at several 

stages of bloom development (pre-bloom, early bloom, late bloom, and post bloom). In 2018, 

water was collected at NOAA monitoring stations WE2 and WE12 and at the drinking water 

intake for the City of Toledo (TWI). In order to ensure capture of microbial communities from 

dense cyanobacteria blooms, in which biotic H2O2 production rates are hypothesized to be 

highest (Cory et al., 2016), areas predicted to have high bloom biomass in the NOAA HAB 

forecast model and HAB tracker bulletins (Wynne et al., 2013) were targeted in 2019. Exact 

sampling locations were chosen based on the presence of surface scums and cyanobacterial 

colonies. Non-bloom samples in this year, water was collected near Turtle Island. 

For all sites, 20 L (2017) or 60 L (2018 & 2019) depth integrated water samples (surface 

to 1 meter from lake bottom) were collected in 20 or 60 L acid-washed carboys. Water was 

collected from the NOAA stations using a peristaltic pump by slowly moving the pump hose up 

and down through the water column. From the Toledo water intake, and targeted high biomass 

samples, water was collected at discrete depths of 1 meter intervals from surface to 1 meter from 
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lake bottom using a Van Dorn bottle and pooled to create a depth integrated sample. During 

Environment Canada cruises, water was collected using a depth-integrating sampler. Back at the 

lab, pH was measured using a benchtop meter, water was filtered through a 0.22 µm PES filter to 

measure dissolved nutrients, and a subsample of whole water was taken for total phosphorus 

analysis. For 2017, pH data was obtained from monitoring buoys. The water samples were stored 

in carboys placed in an outdoor aquaculture tank and held at water temperature measured at the 

time of collection using copper piping attached to a NESLAB RTE refrigerated water bath 

(Thermo Scientific, Newington, NH) until the start of the bottle experiments the following 

morning.  

5.3.2 H2O2 Bottle Experiments and H2O2 Measurements 

 The day following field sampling, carboys containing whole water were retrieved from 

the outdoor tank at approximately 6:00 EDT and whole water was distributed into 2L acid-

washed, transparent, polycarbonate bottles to measure H2O2 production and decay rates. The 

water was allowed to acclimate to the bottles for 1 hour before the start of the experiments at 

approximately 8:00 EDT. All experiments were performed at the same time of day, with the 

exception of two experiments from the Environment Canada cruises, which started 0.5-1 hour 

later due to the timing of ship arrival on site. 

Observed H2O2 production rates in aquatic systems are the net result of co-occurring and 

rapid production and decay processes, which makes measurements of H2O2 challenging as decay 

processes can potentially mask production and vise-versa (Moffett & Zafiriou, 1990; Vermilyea 

et al., 2010b; Dixon et al., 2013). Therefore, gross H2O2 production rates (PH2O2) were 

estimated measured using a spike-batch incubation approach as described previously (Vermilyea 

et al., 2010b; Marsico et al., 2015). Briefly, this method estimates gross H2O2 production rates 
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from measured net H2O2 in unspiked and measured net H2O2 decay from spiked incubations of 

lake water. Paired bottles of unamended water and water spiked with a nominal 10 mM H2O2 

solution to a final target concentration of 1 µM were placed in the outdoor tank and the H2O2 

concentrations were measured every 3 hours over a 9 hour period. Observed H2O2 concentrations 

in both the spiked and unamended bottles are related to PH2O2 and kloss via the following 

differential equation: 

1. ![#!$!]
!&

 = PH2O2 – kloss[H2O2] 

Assuming that PH2O2 and kloss are both constant with time and independent of [H2O2], the 

following integrated form of the equation gives [H2O2] as a function of time (t): 

2. [H2O2]t = '#!$!
("#$$

− (1 − 𝐴𝑒)*"#$$∗&) 

3. Where 𝐴 = 1 − ( *"#$$
'#!$!
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Measured H2O2 concentrations from both the spike and unamended bottles were fit to equation 2 

by choosing values for PH2O2 and Kloss that minimized the error sum of squares in the modelled 

[H2O2] at each timepoint using Microsoft Excel’s Solver function. In five of the 34 experiments, 

Solver could not converge on a solution in one or both replicate experiments, so PH2O2 and Kloss 

were not calculated on these dates. Gross biotic H2O2 production rates were calculated by 

subtracting net H2O2 production in 0.22 µm filtered controls from total gross production rates 

calculated with the above model.  

Net H2O2 production rates were calculated from unamended bottles in all experiments as 

the difference in [H2O2] from the start of the experiment to maximum [H2O2] over the 

experimental time period. Net H2O2 decay rates were calculated from the spiked bottles as the 

difference in [H2O2] at the start and end of the experiment. In the five experiments where the 

measured data did not fit the model, rates of H2O2 decay were exceptionally fast; within 3-6 
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hours H2O2 reached concentrations similar to those reached within 6-9 hours in the majority of 

experiments. In these experiments, net decay was calculated as the difference in [H2O2] divided 

by the difference in time between the start and the time when [H2O2]spike approached 

[H2O2]unamended prior to subsequent increases in [H2O2] concentrations (t=3 hours). These time 

windows for net H2O2 production and decay were chosen as a best representation of H2O2 

production and decay that were not confounded by any subsequent net production and decay 

throughout the day.  

Experiments were conducted in 2018 and 2019 to measure the impact of light exposure, 

large particles (i.e., large phytoplankton and Microcystis colonies), and biology on H2O2 

production. The effect of light exposure was measured by including a set of spike and 

unamended bottles with whole water in dark 2L chocolate HDPE bottles. The impact of large 

particles was measured by including a set of spiked and unamended bottles with water filtered 

via a 105 µm nylon mesh (item # U-CMN-105-C, Component Supply Company, Inc., Sparta, 

TN) attached to PVC pipe via epoxy resin. For all experiments, 2L polycarbonate bottles were 

also filled with 0.22 µm filtered water to serve as abiotic controls. In 2017, duplicate unamended 

and spiked 0.22 µm filtered water controls were run in transparent, polycarbonate bottles 

(allowing light exposure and photochemical H2O2 production). In 2018 and 2019, dark 0.22 µm 

filtered water controls were also included. Because the average decay in replicate abiotic controls 

was not significantly different from zero for all but one date (19-Sep-17) in 2017, and were only 

10 ± 0.06 % of whole water net decay rates on average, 0.22 µm filtered water decay controls 

were not performed in 2018 and 2019 due to sampling and measurement throughput. 

Samples for DNA and H2O2 were collected by filtering 100-200 mL of water from each 

bottle through a 0.22 µm pore size PES filter, and collecting the last 50 mL of filtrate into a 
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centrifuge tube. The filter was saved for DNA extraction by freezing in a cryovial containing 1 

mL RNAlater at -80 °C. The filtered H2O2 samples were stored in the dark at 4 °C until later 

analysis (within 4 hours of collection). H2O2 concentrations were measured using the 

chemiluminescent reaction of the conjugate base of H2O2 with 10-methyl-9-(p-

formylphenyl)acridinium carboxylate trifluoromethanesulfonate (AE) in an FeLume flow 

injection analysis (King et al., 2007). Matrix effects were corrected using standard additions of 

dilute H2O2 solution. The standard solution was made fresh to a nominal concentration of 200 

µM the day prior to the experiments, stored at 4 °C, and wrapped in aluminum foil to protect it 

from light. The exact concentration of the H2O2 standard was determined with its absorbance at 

240 nm in a 5 cm pathlength quartz cuvette and the H2O2 molar absorptivity of 38.1 M-1cm-1  

(King et al., 2007). While in transit for Environment Canada cruises, the standard was prepared 

ahead of time and kept frozen at -20 °C until the day of experiments. 

5.3.3 Calculations of Experimental Light Conditions and In Situ Profiling 

The opening of the outdoor tank used for experimental incubations was covered with 

neutral density 0.3 filter screen (product 209R, LEE Filters, Burbank, CA) to shade the bottles 

and mimic light conditions in the PAR range at approximately 1 meter depth (Figure S 5.2). To 

compare light conditions in the experimental bottles with in situ conditions, spectral irradiance 

profiles in the PAR range were measured approximately biweekly using a Sea-Bird HyperPro II 

profiler equipped with up- and down-facing HyperOCR radiometers measuring wavelengths 348 

– 801 nm (bin size = 3.3 nm), plus an identical fixed surface radiometer to record sky conditions 

(Sea-Bird Scientific, WA, USA). Duplicate casts were performed on each date. Profiles in the 

UV wavelengths were collected using a compact optical profiling system for UV light in natural 

waters (UV C-OPS Biospherical Instruments Inc., CA, USA), which measures downwelling 



 211 

irradiance at seven wavebands (305, 313, 320, 340, 380, 395, 412 nm). Replicate C-OPS casts 

were collected at 5 nearshore stations on 25 Sept. 2017. Both profilers were deployed on the 

sunny side of the vessel and allowed to free-fall through the water column to avoid the vessel 

shadow. In order to minimize disturbance of the water column, profiles were collected after the 

vessel had been drifting without power for several minutes.  Data were processed using ProSoft 

(Sea-Bird Scientific) proprietary software. Attenuation coefficients (Kd, λ) for 305-801 nm were 

calculated from the profiles using the following relationship between irradiance and depth: 

4. Iλ,z = Iλ,0	∗	e−( Kd, λ	∗z) 

Where 𝐼.,0 is the down-welling irradiance at depth (z) for a given wavelength (λ), and 𝐼.,- is 

surface irradiance for a given wavelength. The above equation was rearranged into the linear 

form: 

5. ln(Iλ,z) = ln(Iλ,0) – Kd,λ ∗	z 

so that the slope of the regression of log transformed irradiance vs depth yields Kd,λ. To compare 

light conditions in situ with those in the experiments, the depth at which the fraction of light 

transmitted at each wavelength (1%,'
1%,(

) equals the fraction of light transmitted through the neutral 

density screening and polycarbonate bottles was calculated using average Kd, λ values and 

equation 4. PAR conditions during the experiments were representative of light levels within the 

top meter of western Lake Erie based on replicate Sea-Bird casts; however, UV conditions in the 

experiment were lower than surface water conditions. Light transmission of the polycarbonate 

and neutral density filter was measured using a diffuse reflectance accessory (Cary 5000, Varian 

Inc., CA, USA). 



 212 

5.3.4 Chlorophyll a, CDOM, DIC, Nutrient, Respiration, and Primary Production 
Measurements 

 Samples for chlorophyll a concentration were collected at the start and end of each 

experiment by filtering 50 mL of water from each bottle with 0.22 µm PES filters. The filters 

were stored frozen at -20 °C with the biomass folded inwards until extraction in the lab. 

Chlorophyll a was extracted from the collected biomass by suspending the filters in 8 mL of 

dimethylformamide in plastic 15 mL centrifuge tubes followed by a 45 minute incubation in a 65 

°C water bath. After the incubation, the samples were agitated via vortexing at speed setting 7 

and centrifuged for 10 minutes at 10,000 xg at 25 °C. Chlorophyll a fluorescence was measured 

by decanting dimethylformamide into clean borosilicate glass cuvettes, and measuring the 

fluorescence in a 10-AU field fluorometer (Turner Designs, CA, USA) using excitation/emission 

wavelengths 436/680 nm. Clean filters were included during each round of extractions as blanks, 

and extractions were performed in the dark to prevent degradation of extracted chlorophyll. 

There were no significant differences for chlorophyll concentration in the start and end of all but 

one experiment on 31 May 2017, so chlorophyll concentrations were averaged from both time 

points.  

Samples for CDOM absorbance were taken from each 0.22 µm filtered water bottle (n=4) 

at the start of each experiment and measured following procedures described in (Cory et al., 

2016). Samples for dissolved inorganic carbon (DIC) concentration were taken from each whole 

water bottle at the start of each experiment and killed with 1% HgCl2 in air-tight, pre-combusted 

12 mL borosilicate exetainer vials. The samples were stored at 4 °C until analysis using a DIC 

analyzer (Apollo SciTech, DE, USA). 

Concentrations of soluble reactive phosphorus (SRP), total dissolved nitrite+nitrate (NO2-

+NO3-), and ammonium (NH4+) in 0.22 µm filtrate samples were measured via segment flow 
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analysis on a Seal AA3 AutoAnalyzer with AutoSampler (SEAL Analytical, WI, USA) using 

method-specific reagents. SRP was measured using the molybdenum blue technique (Murphy & 

Riley, 1962). Briefly, ammonium molybdate and antimony potassium tartrate react with 

orthophosphate in an acid medium to form an antimony-phosphomolybdate complex. The 

complex is then exposed to ascorbic acid, which produces a blue complex and the absorbance is 

measured at 880 nm. NO2-+NO3- was measured by passing the water sample through a cadmium 

reduction column to reduce nitrate to nitrite, mixing with sulfanilamide followed by N-(1-

napthyl)ethylenediamine to form a red azo dye, the absorbance of which is read at 520 nm 

(Wood et al., 1967). Ammonium was measured via a variant of the Berthelot reaction (Ivančič & 

Degobbis, 1984), where dichloro isocyanuric acid, phenol, and sodium nitroprusside are mixed 

with NH4+ in the sample under basic conditions to form a blue iodophenol complex and the 

absorbance is measured at 630 nm. 

Total phosphorus (TP) and total dissolved phosphorus (TDP) were measured in whole 

water and 0.22 µm filtered water samples, respectively, using a QuAAtro Auto Analyzer and 

AutoSampler (SEAL Analytical, WI, USA). Samples were treated with an acidic potassium 

persulfate digestion, which converts organic phosphate groups to free phosphate ions that are 

subsequently measured using the molybdenum blue method described above. 

In 2018 and 2019, respiration in whole water and 105 µm filtered water was measured by 

incubating the water for approximately 24 hours in the outdoor tank alongside controls killed 

with 1% HgCl2 in air-tight, pre-combusted 12 mL borosilicate exetainer vials. The exetainer 

vials were protected from light by wrapping in 2 layers of aluminum foil. Respiration was 

measured as the dissolved oxygen consumption relative to the killed controls using a membrane 
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inlet mass spectrometer (Cory et al., 2014). From total DIC concentration and pH data, H2CO3*, 

HCO3-, and CO32- concentrations were calculated. 

Primary production in whole and 105 µm filtered water was measured as the uptake of 

14C in light relative to a dark control by incubating 20 mL of water in triplicate glass scintillation 

vials in a Precision 818 Plant Growth Chamber (Thermo Scientific, MA, USA) for 1 hour. The 

vials were rested on their side to prevent shading from the vial caps. The temperature was held at 

water temperature at the time of sample collection. Light levels were kept at ~ 45 % of those 

measured at noon on the day of measurements using a LiCor QUANTUM PAR sensor attached 

to a LI-250A light meter (Li-Cor Biosciences, Lincoln, NE, USA). Light levels in the incubator 

were adjusted by covering the lamp with neutral density screen and adjusting the distance 

between the vials and the lamp. The light source was a King Plus 1000W full spectrum LED 

lamp (Shenzheng King Lighting Co., Ltd, Shenzhen, China). The 14C was added as sodium 

bicarbonate to a final concentration of 0.1 µCi/mL. After the incubation, 250 µL aliquots were 

sampled from each bottle and filtered onto a 25 mm Whatman GF/F via vacuum filtration. Any 

remaining inorganic 14C was removed by placing the filters in a new 20 mL glass scintillation 

vial with 250 µL of 0.5 N HCl. The vials were uncapped and loosely covered with foil while the 

HCl was allowed to completely dry for 2-3 days. Once dry, the filters were resuspended in 10 

mL of Scinti-Safe scintillation cocktail and allowed to sit overnight before measuring activity in 

counts per minute (CPM) using a liquid scintillation counter. CPM was converted to mol C/L/hr 

as described previously (Knap et al., 1996). 

5.3.5 DNA Extraction, Sequencing, and Bioinformatics Analysis 

 To measure microbial community composition, DNA was extracted from the filters 

collected from each bottle at the beginning (T=0) of each experiment using a Qiagen DNeasy 
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Blood & Tissue Kit with QIAshredder columns (QIAGEN, MD, USA). The extraction protocol 

is included as a supplemental file. For absolute quantification of sequence data, genomic DNA 

from Thermus thermophilus strain DSM 7039 was added to the samples after the cell lysis step 

of the extraction as an internal standard. Thermus thermophilus DNA was obtained from the 

American Type Culture Collection (ATCC; product number BAA-163D-5). The internal 

standard was added as ~ 1 % of DNA yield, which was estimated based on an empirically 

determined relationship between total mass of chlorophyll a on the filter and DNA yield. DNA 

yields were measured with Quant-iT Picogreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA). 

The true percentage of the internal standard was 0.72 ± 0.37 % of total DNA yield on average. 

The V4 region of the bacterial 16S rRNA gene was amplified using a dual indexed 

primer set (Kozich et al., 2013), and amplicon sequencing was performed using Illumina MiSeq 

V2 500 cycle chemistry (Illumina cat# MS102-2003) at the University of Michigan Microbial 

Community Analysis Core following their SOP (Schloss & Bishop, 2019). Forward and reverse 

reads were quality screened to remove sequences below 250 bases and trimmed to Q20 using the 

BBDuk tool in BBTools (Bushnell, 2018). Following trimming, overlapping forward and reverse 

reads were assembled into contigs, aligned, screened for chimeras, and clustered into operational 

taxonomic units (OTUs) using MOTHUR v. 1.43.0, following the SOP as of February 2020 

(Kozich et al., 2013). OTU clustering was performed using a 97 % similarity cutoff with the 

OptiClust algorithm (Westcott & Schloss, 2017). Contigs were aligned with the align.seqs 

function in MOTHUR, and taxonomy was assigned using the Wang method (Wang et al., 2007). 

The Silva v. 138 SSU database (Pruesse et al., 2007) was used as the reference to align and 

classify contigs. The absolute abundance of each OTU per volume of lake water was estimated 

from the recovery of the internal standard as described in (Lin et al., 2019). All OTUs classified 
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as Thermus were removed from downstream analysis. The raw sequence data is available in 

NCBI under BioProject PRJNA646259. 

5.3.6 Statistical Analyses 

 Bray-Curtis dissimilarities between microbial communities and Principle Coordinates 

Analysis (PCoA) were computed using the R package Vegan v. 2.5-6 (Oksanen et al., 2013). 

Stepwise linear regression analyses between environmental and biological parameters and the 

score of microbial communities on PCoA axes were computed using the stepAIC function in the 

R package boot.stepAIC v. 1.2-0 (Rizopoulos, 2009). Models were chosen for each PCoA axis 

by initially including all environmental parameters and removing variables that did not 

significantly increase the Bayesian Information Criterion (BIC). A bootstrap analysis was 

performed to assess the stability of each variable in the final regression models. Regressions 

were performed both with and without samples in which gross H2O2 production and decay could 

be calculated. Linear regression and other standard calculations were made using base R v. 4.0.2.  

Random forest regression models were generated to predict gross and net H2O2 

production rates with bacterial OTU abundances using Scikit-learn v. 0.23.1 (Pedregosa et al., 

2011). In the model for gross production, samples missing values for gross production and decay 

were excluded. Hyperparameters for each model were tuned with a grid search using k-fold cross 

validation (k = 4 for both models). Hyperparameters that yielded the highest R2 score across each 

training set generated during cross validation were used for the final model. OTUs with 

maximum abundances below 500 reads/mL were left out of the analysis, because important 

OTUs below this abundance threshold were often found to be near the limit of detection based on 

95 % confidence intervals on the average abundance. The final model for net H2O2 production 

had the following hyperparameters: number of decision trees (n_estimators) = 4000, number of 



 217 

randomly chosen features to consider when splitting tree branches (max_features) = 40 % of total 

features, minimum number of samples required to split an internal node in a decision tree 

(min_samples_split) = 4. The final model for gross biotic H2O2 production had the following 

hyperparameters: n_estimators = 500, max_features = 70 % of total features, min_samples_split 

= 3. The importance of each OTU in the random forest models was calculated as the permutation 

importance, or the average decline in model R2 when the abundance of each OTU is randomly 

shuffled over a series of permutations (n = 10). 

5.4 Results 

5.4.1 H2O2 Concentrations, Net H2O2 Production, and Modeled Gross H2O2 Production 

H2O2 concentrations during the experiments were within the range of concentrations 

observed in coastal marine (Zika et al., 1985) and freshwaters (Häkkinen et al., 2004; Dixon et 

al., 2013; Ueki et al., 2020), including Lake Erie (Cory et al., 2016). In the majority of the bottle 

experiments, hydrogen peroxide concentrations increased during the day, peaking between 11:00 

and 17:00 EST (Figure S 5.3). H2O2 concentrations ranged from 16-1540 nM during the day in 

all unamended incubations (Appendix 2), with peak H2O2 concentrations ranging from 50-1540 

(mean 420 ± 63 nM). 

Net whole water H2O2 production rates ranged from -14 – 165 nM/hr (mean 30 ± 16 

nM/hr) in the light (Figure 5.1) and -5 - 0.7 nM/hr in the dark (Figure 5.2). Net 0.22 µm filtered 

water H2O2 production rates were similar to those in whole water, ranging from 4 – 188 nM/hr 

(Figure 5.1, mean 30 ± 16 nM/hr). On average, net H2O2 production rates in whole water and 

0.22 µm filtered water were not significantly different (p = 0.36, Welch’s two-sided T-test), and 

were not significantly different in 26 experiments (76 % of total, n = 34). Net H2O2 production 

was significantly lower in whole water than in 0.22 µm filtered water in 6 experiments (18 % of 
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total, p < 0.05, Welch’s two-sided T-test), and only significantly higher in whole water in one 

experiment (Sept 14, 2018). 

Rates of gross H2O2 production estimated using paired unamended and H2O2 spiked 

bottles (see methods) ranged from 14-432 (mean 109 ± 36 nM/hr, Appendix 2) in the light and 3-

31 nM/hr in the dark (mean 11 ± 3 nM/hr, Appendix 2). The gross production rates in both the 

light and dark are within the range of gross H2O2 production rates previously reported in 

freshwater systems (Vermilyea et al., 2010a; Dixon et al., 2013; Marsico et al., 2015). Gross 

H2O2 production rates were 2-21 times higher than corresponding net production rates on days 

when net production was observed (Table 5.1). Gross biotic H2O2 production was calculated as 

the difference in total gross H2O2 production and observed H2O2 production in 0.22 µm filtered 

water and ranged from 9-244 nM/hr in the light (mean 70 ± 23 nM/hr) and 3-28 nM/hr in the 

dark (mean 10 ± 3 nM/hr, Figure 5.2). Biotic production accounted for 44 - 94 % of total gross 

production in the light (mean 66 ± 5 %) and 90 - 100% of total gross production in the dark 

(mean 99 ± 1 %). On average, gross biotic production in the dark was 35 ± 3 % of that in the 

light. There were no significant differences in gross biotic and net H2O2 production rates in 

whole and 105 µm filtered water (Figure 5.3). 

Net whole water H2O2 decay rates ranged from 51 – 397 nM/hr (Figure 5.1, mean 110 ± 

25 nM/hr). On average, net H2O2 decay rates in 0.22 µm filtered water were significantly lower 

than those in whole water (p = 6.3x10-9, Welch’s two-sided T-test), ranging from 0-54 nM/hr 

(mean 13 ± 6 nM/hr). In 0.22 µm filtered water, net H2O2 decay was only observed in spiked 

bottles, and not significantly different from zero on any date (p > 0.05, Welch’s one sample T-

test). Whole water net H2O2 decay rates in spiked bottles had a weak positive correlation with net 
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H2O2 production rates in the paired unamended bottles, and absolute decay constants (kloss,H2O2) 

had a weak positive correlation with total gross H2O2 production rates (Figure 5.4). 

5.4.2 Failed Model Assumptions and Uncertainty in Gross H2O2 Production Rates 

Gross biotic H2O2 production in the light could not be calculated during experiments 

conducted on five dates because the change in H2O2 concentrations over time did not conform to 

the underlying assumptions in the spike-decay model, suggesting that the model assumptions 

were invalid in these waters. The spike-batch incubation model assumes that PH2O2 and kloss are 

both constant over time (see methods); however, experiments with poor model fit had midday 

increases and decreases H2O2 concentration at different time periods during the incubation which 

suggest that one or both model parameters changed with time (Figures S 5.4-S 5.10). The model 

error was related to chemical and biological parameters. Error sum of squares in model fit was 

significantly correlated with chlorophyll a concentrations, primary production rates, and CDOM 

absorbance (Figure S 5.11), and experiments that had poor model fit had significantly higher 

chlorophyll a concentration, CDOM absorbance, and pH and significantly lower H2CO3* 

concentration and areal UVA over the experimental period (Figure 5.5). Exclusion of bottles 

with poor model fit resulted in stronger correlation between the error sum of squares in model fit 

and CDOM absorbance was stronger (Figure S 5.11). 

In experiments with poor model fit, H2O2 concentrations in the spike bottles were rapidly 

decayed, approaching the concentrations in the control bottles within 3-6 hours (Figures S 5.4-S 

5.10). In three of these experiments, the majority of the decay took place within the first 3 hours. 

The rapid decay within 3 hours is in contrast to most other experiments, where H2O2 

concentrations in the spiked bottles either reached concentrations in the control between 6-9 

hours after the addition of the spike, or not at all (Appendix 3). This result suggests that gross 
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H2O2 decay rates were faster in these experiments and that the three-hour sampling window was 

inadequate for capturing the H2O2 decay curve in these experiments, which may have contributed 

to poor model fit. Despite the initial decline in the spike concentrations, midday H2O2 

concentrations increased to levels equal to or higher than the spike in two of these experiments 

(Figures S 5.4 & S 5.6), suggesting high gross H2O2 production rates midday. Higher variation in 

H2O2 concentrations between replicates was also observed in these experiments, which may be 

explained by higher H2O2 decay during sample processing. 

5.4.3 Correlations Between H2O2 Production and Chemical and Biological Parameters 

CDOM absorbance was significantly correlated with both gross biotic H2O2 (Figure 5.6) 

and net H2O2 production rates (Figure 5.7). The correlation between CDOM absorbance and 

gross biotic H2O2 production was weaker than the correlations with chlorophyll a concentration, 

respiration rate, and primary production rates, although the correlation with respiration and 

primary production was driven by one data point (Figure 5.6). However, net H2O2 production 

rates were also correlated with these parameters and were supported by multiple data points 

(Figure 5.7). There were also significant correlations between net H2O2 production and 

phosphorus and nitrate concentrations, although the R2 values were lower than the regressions 

with CDOM, chlorophyll a, respiration, and primary production (Figure S 5.12).  

Dark biotic production rates in Lake Erie were not significantly correlated with 

chlorophyll a concentration, respiration rate, primary production rates, nor any water chemistry 

measurements (Appendix 4). The difference between gross biotic production in the light and 

dark bottles was significantly correlated with respiration rates, primary production rates, and 

CDOM absorbance; however, the correlation between the difference in light and dark biotic 
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H2O2 production and primary production rates and CDOM absorbance were driven by one data 

point (Figure S 5.13). 

5.4.4 Correlations Between H2O2 Production and Microbial Community Dissimilarity and 
OTU Abundances 

Net H2O2 production rates, kloss,H2O2, and maximum H2O2 concentrations were 

significantly correlated with microbial community composition (Tables 5.2 and 5.3). In some 

cases, H2O2 production and decay were among the best predictors of PCoA score. In the analysis 

with gross production rates, absolute Kloss was the most significant predictor of ordination along 

PCoA1, and maximum H2O2 concentration was a highly significant predictor for PCoA3 with 

high bootstrap support (Table 5.2). Gross biotic H2O2 production rate was also significantly 

correlated with PCoA1 score and had higher bootstrap support than kloss. However, nitrate and 

chlorophyll a concentration had high bootstrap support and p-values comparable to gross biotic 

H2O2 production, which makes interpretation of the correlations with this axis difficult. In the 

analysis with net H2O2 production and decay, PCoA3 was significantly correlated with net H2O2 

decay rate and maximum H2O2 concentrations, which also had the strongest bootstrap support 

along this axis (Table 5.3). Net H2O2 production rates were also significantly correlated with 

PCoA3 score, although bootstrap support was lower, suggesting that H2O2 dynamics are related 

to differences in microbial community composition along this axis. 

The random forest models using OTU abundances had better fits to the data than linear 

regressions with both chlorophyll a concentration and CDOM absorbance when predicting both 

gross biotic and net H2O2 production rates (Table 5.4). Random forest models increased the R2 

values by 197 and 95 % for net H2O2 production and by 147 and 345 % for gross biotic H2O2 

production when compared to regression models for both chlorophyll a and CDOM, 

respectively. Average R2 values from cross validation were also higher than chlorophyll a 
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regression models for both gross and net rates, but only higher than the CDOM regression 

models for the gross biotic H2O2 production rates. In both models, the majority of the OTUs only 

resulted in minor reductions in R2 values during the permutation tests (Tables 5.5 and 5.6); only 

three OTUs across both models reduced R2 values by ~ 0.1 or more (OTU 123 Unclassified 

Comamonadaceae, OTU 311 Flavobacterium, and OTU 822 Lacihabitans). Of the three OTUs 

with relatively higher impacts on random forest R2, only one (Unclassified Comamonadaceae 

OTU 123) was ever present at high abundance (Figure 5.9). 

5.5 Discussion 

5.5.1 Biological Production was a Major Source of H2O2 During the Experiments 

 While not always the predominant source, modeled gross biological production was a 

substantial source of H2O2 (> 40 % of total gross production) in all experiments. While 

complications with estimating gross biological H2O2 production (discussed in further detail 

below) create hidden uncertainty in the relative proportion of biological versus photochemical in 

these experiments, several additional lines of evidence support that substantial biological H2O2 

production occurred in the bottle experiments. Total net H2O2 production rates in whole water 

were not significantly different from production rates measured in 0.22 µm filtered water despite 

zero or low rates of H2O2 decay in 0.22 µm filtered water (Figure 5.1), which indicates that total 

H2O2 production is masked by decay in whole water. Therefore, gross whole water H2O2 

production rates in western Lake Erie are higher than production measured in 0.22 µm filtered 

water and suggests a particle dependent source of H2O2. Such particle-dependent H2O2 

production has been previously attributed to microorganisms (Dixon et al., 2013; Marsico et al., 

2015; Palenik & Morel, 1988; Vermilyea, Paul Hansard, et al., 2010).  Further supporting that 

H2O2 production was attributed to biological processes in the experiments, both gross biotic and 
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total net H2O2 production rates were correlated with chlorophyll a concentration, respiration rate, 

and primary production rate (Figures 5.6 & 5.7), which suggests that H2O2 production in western 

Lake Erie increases with phytoplankton biomass and microbial growth rates. This observation is 

consistent with previous observations that the highest H2O2 concentrations in western Lake Erie 

precede peaks in chlorophyll a and respiration rate (Cory et al., 2016).  

 The observation that, on average, H2O2 production during the experiments is 

predominantly biological adds more support to the previous hypothesis that elevated H2O2 

concentrations during cyanobacterial blooms are primarily from biological sources (Cory et al., 

2016). However, some aspects of the experimental design prevent a quantitative assessment of 

the relative contribution of biological and photochemical sources of H2O2 in situ. First, exclusion 

of UV wavelengths in the experiment biased biological production over photochemical 

production as UV wavelengths have the highest H2O2 yield per photon (Powers & Miller, 2014). 

Second, model assumptions failed in some waters. While poor model fit may be attributed to 

inadequate sampling of rapid decay curves in some experiments (Figures S 5.4-S 5.10), midday 

peaks in H2O2 concentrations (Figure S 5.6-S 5.10) and lags in H2O2 accumulation (Figure S 5.4 

& S 5.5) indicate that H2O2 production rates changed over time in some experiments with poor 

model fit. Supporting this interpretation, higher amplitude diel peaks in H2O2 concentration were 

previously attributed to high gross H2O2 decay coinciding with decreasing photochemical 

production rates as solar irradiation decreased with solar zenith angle (Ueki et al., 2020). 

Furthermore, photochemical production of H2O2 should show complex dynamics throughout the 

day as solar irradiation increases with sunrise, decreases with sunset, and changes with variation 

in cloud cover throughout the day. Indeed, the experiments with poor model fit had significantly 

higher CDOM absorbance and significantly lower UVA irradiance than the other experiments 
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where the error in model fit was lower (Figure 5.5), all dark experiments fit the model (Appendix 

2), and CDOM absorbance became a significant predictor of model error when the poorly fit 

experiments were excluded from the regression (Figure S 5.11). Thus, experiments with higher 

photochemical production rates or larger changes in light exposure throughout the incubation 

period may have larger error in estimates of biological H2O2 production. 

While photochemical production likely prevented accurate measurement of gross H2O2 

production in some experiments, the conclusion that biological production was substantial is still 

supported. Biological mechanisms may have also contributed to changing PH2O2 over the diel 

cycle. This is supported in that the experiments with poor fit to the model had significantly 

higher chlorophyll a concentration (Figure 5.5), and production of extracellular O2- (a precursor 

to H2O2) by eukaryotic phytoplankton (Diaz & Plummer, 2018; Diaz et al., 2018; Schneider et 

al., 2016) and cyanobacteria (Diaz & Plummer, 2018; Hansel et al., 2016) increases with light 

exposure. While CDOM absorbance was also correlated with gross biotic H2O2 production, the 

correlation strength was weaker than correlations with chlorophyll a concentration, respiration, 

and primary production (Figure 5.6), and OTU abundances could describe more of the variation 

in gross biotic H2O2 production than CDOM absorbance (Table 5.4). Furthermore, patterns in net 

H2O2 production and H2O2 decay are independent of the model, yet still support the presence of a 

particle-dependent source that is related to chlorophyll a concentration, respiration rates, and 

primary production rates. Thus, while the relative contribution of biological and photochemical 

sources to total H2O2 production remains uncertain, the experiments support that biological 

controls on H2O2 production are substantial during western Lake Erie cyanobacterial blooms. 
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5.5.2 Biological H2O2 Production is Light-Dependent but not Directly Attributed to Large 
Phytoplankton and Microcystis Colonies 

Despite the correlation between H2O2 production rates, chlorophyll a concentration, and 

primary production rates (Figures 5.6 & 5.7), and that much of the biotic H2O2 production was 

light-dependent (Figure 5.2), the production cannot be directly attributed to Microcystis or large 

phytoplankton. While Microcystis 16S rRNA read abundance was significantly correlated with 

net H2O2 production rates, it was not correlated with gross biotic H2O2 production rates (Figure S 

5.14). Furthermore, both gross biotic and net H2O2 production rates did not significantly decrease 

with filtration of particles 105 µm and greater (Figure 5.3), which reduced Microcystis 16S 

rRNA read abundance by 60 ± 10 % and chlorophyll a concentrations by 50 ± 7 % on average 

(Figure 5.8). The interpretation that H2O2 production is not directly attributed to Microcystis is 

further supported by the random forest regression models, as Microcystis OTU abundance was 

not a significantly important model feature when predicting either gross biotic H2O2 or net H2O2 

production rates (Tables 5.5 & 5.6). Therefore, biological H2O2 production is primarily from 

free-living bacteria or smaller nano- and microplankton. Indeed, the abundances of the most 

important OTUs in the random forest models were not significantly different in whole and 105 

µm filtered water (Appendix 5), which mirrors H2O2 production rates in whole vs. 105 µm 

filtered water. 

Although it is unlikely that large Microcystis colonies are directly responsible for the 

H2O2 production, the evidence for light-dependent biotic production and the significant 

correlations between H2O2 concentration and chlorophyll a concentration suggest that the 

variation in biotic H2O2 production during Lake Erie cyanobacterial blooms is connected to 

photosynthesis. One mechanism that may reconcile the apparent relationship with photosynthesis 

with the lack of difference between H2O2 production in whole water and 105 µm filtered water is 
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the respiration of algal exudates. Cyanobacteria and other phytoplankton are known to excrete a 

variety of organic carbon compounds as a product of photosynthesis or photorespiration 

(Hellebust, 1965; Beliaev et al., 2014). Of these, glycolate is a major exudate in many species of 

cyanobacteria and algae, including Microcystis (Cheng et al., 1972; Renström & Bergman, 1989; 

Barchewitz et al., 2019) and can be up to 58 % of the excreted photosynthate in cyanobacterial 

mats (Bateson & Ward, 1988). Excretion of glycolate and other photosynthates is light-

dependent (Hellebust, 1965; Han & Eley, 1973; Bateson & Ward, 1988; Renström & Bergman, 

1989). Plants process glycolate in the photorespiratory cycle by oxidizing it to glyoxylate with 

the enzyme glycolate oxidase, and a by-product of this reaction is H2O2 (de Duve, 1969; Rojas et 

al., 2012). While some microbes use an alternative enzyme to oxidize glycolate that does not 

produce H2O2 (Codd et al., 1969; Nelson & Tolbert, 1970; Lord, 1972; Eisenhut et al., 2006; Lau 

& Armbrust, 2006; Lau et al., 2007; Hackenberg et al., 2011; Kern et al., 2011; Aboelmy & 

Peterhansel, 2014; Schmitz et al., 2017), some cyanobacteria, green algae, and heterotrophic 

bacteria possess homologs of H2O2-producing lactate oxidases that have promiscuous glycolate 

oxidase activity (Xu et al., 1996; Seki et al., 2004; Tong et al., 2007; Hackenberg et al., 2011; 

Kern et al., 2011). In addition to glycolate, the oxidation of other photosynthates such as lactate 

(Beliaev et al., 2014) and amino acids (Hellebust, 1965; Tolbert, 1979; Beliaev et al., 2014) 

could also produce H2O2 through L-amino acid oxidase (Palenik & Morel, 1990; Geueke & 

Hummel, 2002; Lucas-Elío et al., 2006; Tong et al., 2008) and lactate oxidase activity (Xu et al., 

1996). Therefore, photosynthate excretion by cyanobacteria may induce H2O2 production in 

some heterotrophic bacterial taxa, and link H2O2 production in free-living heterotrophic 

communities to photosynthesis. Further supporting this interpretation, respiration rates had the 
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most robust correlation with the difference between gross biotic production rates in the light and 

dark (Figure S 5.13). 

We cannot rule out an alternative hypothesis that smaller eukaryotic phytoplankton or 

single-celled cyanobacteria are sources of H2O2 in western Lake Erie. O2- production has been 

documented across a diverse array of heterotrophic bacteria and phytoplankton (Rose et al., 

2008; Diaz et al., 2013; Hansel et al., 2016; Schneider et al., 2016). O2- is a precursor to H2O2, 

and the conversion of O2- to H2O2 can occur by reactions with microbial enzymes (Zinser, 

2018a), dissolved transition metal complexes (Voelker et al., 2000; Rose & Waite, 2006; Wuttig 

et al., 2013), dissolved organic matter (Heller & Croot, 2010) and uncatalyzed dismutation 

(Zafiriou, 1990). While this process occurs in the dark (Diaz et al., 2013), light exposure 

increases O2- production by eukaryotic phytoplankton (Schneider et al., 2016; Diaz & Plummer, 

2018; Diaz et al., 2018; Diaz et al., 2019) and cyanobacteria (Hansel et al., 2016; Diaz & 

Plummer, 2018). Because biotic H2O2 production was higher in light exposed bottles, this may 

indicate that H2O2 production in western Lake Erie is the result of extracellular superoxide 

production by phytoplankton cells in the < 105 µm size fraction.  

While only measurements of dark O2- production for Microcystis exist currently (Fujii et 

al., 2011), published O2- production rates by Trichodesmium exposed to light cannot explain the 

H2O2 production in the bottle experiments (Appendix 6). However, diatoms produce more O2- 

than cyanobacteria (Sutherland et al., 2020), and if we assume that superoxide production in 

Lake Erie equals the maximum dark O2- production rates by diatoms reported in Sutherland et al. 

2020, and that superoxide production by diatoms and cyanobacteria increases by a factor of 2-8 

with light exposure as reported previously (Schneider et al., 2016), direct O2- production by 

diatoms could account for the H2O2 production on some dates in 2017 and 2018 when diatom 
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abundance was high (Kharbush et al., 2019). However, these estimates assume no oxidative loss 

of superoxide in western Lake Erie, which does not result in H2O2 formation (Lee-Ruff, 1977; 

Petasne & Zika, 1987; Fujii et al., 2010; Heller & Croot, 2010) and can be a significant 

proportion of total superoxide decay in aquatic environments (Petasne & Zika, 1987; Andrews et 

al., 2000). Increasing O2- production with light exposure only occurred at low colony densities in 

Trichodesmium (Hansel et al., 2016) and O2- production rates decrease with increasing cell 

densities (Diaz et al., 2019; Hansel et al., 2019), which is in contrast to the relationship between 

H2O2 production rates and chlorophyll a concentration observed during the experiments. While 

some of the H2O2 production in Lake Erie is likely derived from extracellular O2- production by 

both phytoplankton and bacteria, our data suggests other potential sources of H2O2 during 

western Lake Erie cyanobacterial blooms. Future studies that quantify light and dark superoxide 

production in Microcystis, freshwater diatoms, and natural western Lake Erie communities, H2O2 

production from respiration of phytoplankton exudates, and the relationship between superoxide 

production, superoxide dismutation and hydrogen peroxide production during Lake Erie 

cyanobacterial blooms are required to fully understand the relative importance of biotic O2- 

production as a source of H2O2 in Lake Erie. 

5.5.3 H2O2 Production is Related to Microbial Community Composition 

 The PCoA axis with the most robust correlations with H2O2 production and decay rates 

explained a relatively low amount of the community dissimilarity (Tables 5.2 & 5.3), which 

suggests that H2O2 dynamics do not shift as strongly with microbial community composition 

when compared with other factors such as pH and chlorophyll a concentration. However, the 

correlations between net H2O2 production rates, H2O2 decay rates, and maximum H2O2 

concentrations with microbial community dissimilarity along PCoA3 and OTU abundances 
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supports that H2O2 dynamics influence, or are influenced by, microbial community composition. 

The relationship between microbial community dissimilarity and H2O2 production rate must be 

attributed to shifts in the populations of multiple bacterial taxa rather than a few select species, 

because no single OTU had a large impact on the random forest model performance (Tables 5.5 

and 5.6). 

While the data support that different microbial communities are associated with different 

H2O2 production and decay dynamics, it is impossible to determine whether the effect is due to 

shifts in taxa with differing sensitivities to H2O2 or due to shifts in taxa with different H2O2 

production and decay rates with this data. There are large variations in the production and decay 

rates of both H2O2 and O2- between microbial taxa (Bayer et al., 2019; Bond et al., 2020; Diaz et 

al., 2013; Diaz & Plummer, 2018) and within a single taxon at different growth phases (Diaz et 

al., 2019; Gonzalez-Flecha & Demple, 1997; Hansel et al., 2019). However, there are also large 

differences in sensitivities between microbial taxa due to differences in the presence and 

efficiency of genes that decompose H2O2 (Kim et al., 2016; M. Kim et al., 2019; S. Kim et al., 

2019; Morris et al., 2008). The abundances of two of the more important OTUs in the random 

forest models (Unclassified Comamonadaceae OTU 123 and Flavobacterium OTU 311) were 

significantly correlated with gross biotic H2O2 production rates (Figure 5.9), suggesting that they 

may be high H2O2 producing organisms. Information on the capacity of these taxa for H2O2 

production is lacking, but H2O2-producing enzymes have been isolated from Flavobacterium 

species (Koga et al., 1997). Many of the important OTUs that were positively correlated with 

H2O2 production during the experiments are from the phyla Bacteroidetes and Proteobacteria, 

which were more resistant to large additions of H2O2 representative of H2O2 additions used to 

control harmful cyanobacterial blooms (Lusty & Gobler, 2020). In addition, several OTUs were 
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negatively correlated with H2O2 production rates, indicating that these taxa are more sensitive to 

H2O2 and that the growth of these organisms is disfavored when H2O2 production is high (Figure 

5.10), which supports the hypothesis that the relationship between H2O2 production and 

microbial community structure is due in part to the differing sensitivities of microbes to H2O2. 

While further experiments are required to determine the exact mechanisms behind the 

association between natural H2O2 production and decay dynamics and microbial community 

composition and the abundances of specific bacteria species, this study is the first to show that 

natural H2O2 production and decay rates are related to microbial community composition. 

5.5.4 Absolute Decay Rate Constants are Correlated With Gross H2O2 Production 

 Absolute decay rate constants were significantly correlated with total gross H2O2 

production rates (Figure 5.4), as previously observed in dark incubations with sea water 

(Vermilyea et al., 2010b), which indicates that microbial decomposition of H2O2 increases with 

H2O2 production rates. This may suggest that microbes increase their production of catalase and 

peroxidase enzymes, and by extension their H2O2 degradation capability, as a defense against 

stress caused by elevated H2O2 production. Supporting this interpretation, diel regulation of 

genes encoding catalase and peroxidase enzymes has been observed in marine microbial 

communities (Morris et al., 2016), as well as up-regulation of catalase and peroxidase genes in 

response to increasing concentrations of intracellular H2O2 concentrations (Gonzalez-Flecha & 

Demple, 1997) or additions of H2O2 to bacteria cultures (Loewen et al., 1985; Daniel et al., 

2019). Alternatively, if the relationship between H2O2 production rates and microbial community 

composition is underpinned by changes in the sensitivity of the microbial communities to H2O2, 

increasing H2O2 decay rates with H2O2 production rate could be attributed to higher H2O2 

production rates favoring bacteria taxa that are more efficient H2O2 degraders. Indeed, the ability 
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to degrade H2O2 varies widely across microbial taxa (Morris et al., 2011; Kim et al., 2019a; Kim 

et al., 2019b). To test these hypotheses, future studies should examine how the abundance and 

expression of catalase and peroxidase genes changes with total H2O2 production rates. 

Regardless of the mechanism, the data support that increasing H2O2 production rates lead to 

higher H2O2 decomposition rates in order to mitigate oxidative stress from H2O2 accumulation. 

5.6 Conclusions 

 In summary, the data indicate that biological H2O2 production is an important source of 

H2O2 during western Lake Erie cyanobacterial blooms. In addition, this work provides evidence 

that biological H2O2 production is related to photosynthesis, which could be explained by 

respiration of phytoplankton exudates by free-living bacteria or direct production by nano- and 

microplankton cells smaller than 105 µm diameter. Differences in H2O2 production are explained 

by shifts in the abundance of multiple bacteria taxa.  

 Because filtration of large Microcystis colonies, which contained a large proportion of 

Microcystis cells during the experiments, did not impact H2O2 production rates, the H2O2 

produced cannot be attributed to large Microcystis colonies. Therefore, Microcystis may not only 

be impacted by H2O2 decomposition by the surrounding bacterial community as discussed in 

Chapter 2 and elsewhere (Kim et al., 2019a) but also by community-wide H2O2 production. 

Indeed, H2O2 producing taxa are thought to influence the proliferation of other microbes in the 

human microbiome (Eschenbach et al., 1989). Furthermore, the high rates of net H2O2 

production despite increases in net H2O2 decay rates indicates that changes in H2O2 

concentration are largely due to differences in H2O2 production rates, which can sometimes 

outpace microbial decay. Thus, community-wide decay is unable to mitigate stress to sensitive 

organisms from H2O2 in some waters. Any negative impacts to H2O2-sensitive Microcystis 
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would be highest when rates of primary production, respiration, and perhaps exudate excretion 

are highest, which may maximize growth advantages of Microcystis strains that are relatively 

H2O2-resistant. However, the impact of the H2O2 fluxes measured here on growth of Microcystis 

relative to other factors such as water temperature, light availability, and nutrient concentrations 

remains unknown. In Chapter 2, H2O2 concentrations observed in the cultures were 

representative of the highest H2O2 concentrations measured in these experiments, which suggests 

that the effect of H2O2 production on Microcystis may be minor; however, gross H2O2 fluxes in 

the Microcystis cultures where not quantified. Therefore, how the total H2O2 exposure in the 

cultivation experiments relate to the fluxes observed here is uncertain. 

 Failed model assumptions in some experiments led to increased uncertainty in the gross 

H2O2 production and indicates a need for a revised model to quantify biological production in 

light exposed waters. While photochemical production can be modelled using CDOM and 

irradiance data (Cory et al., 2016; Powers & Miller, 2014; Ueki et al., 2020), the relationship 

between light-dependent biological H2O2 production and time over a diel cycle unknown, which 

prevents creating a model of biotic H2O2 production in the light that includes variables with 

biological or chemical meaning. Previous models included biotic H2O2 production by altering the 

model used here with curve fitting parameters and assuming that PH2O2 increases nonlinearly 

with time (Dixon et al., 2013). However, only the portion of the curve when PH2O2 is increasing 

was modeled in this study, which is not sufficient for the time frame of a full diel curve where 

light-dependent H2O2 is expected to decrease with solar zenith angle in the afternoon or with 

increasing cloud cover. A better characterization of how light-dependent biological H2O2 

production changes with light intensity and other environmental parameters is ultimately 

required to model biological H2O2 production in situ. 
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5.7 Figures and Tables 

 

Figure 5.1: Net H2O2 production and decay rates in whole (blue) and 0.22 µm filtered water 
(red) exposed to light. A: Net H2O2 production rates in unamended bottles. B: Net H2O2 decay 
rates in spiked bottles exposed to light. Net decay in spiked 0.22 µm filtered water was only 
measured in 2017. ND: no data in both whole and filtered water. Error bars show upper and 
lower bounds determined by 95 % confidence intervals. 
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Figure 5.2: H2O2 production in whole water incubated in light (blue) and dark (red) bottles. A: 
Estimated gross biotic H2O2 production rates, showing the full range of data. B: Measured net 
H2O2 production rates in unamended whole water, showing the full range of data. C: Estimated 
gross biotic H2O2 production rates, zooming in on smaller rates. D: Measured net H2O2 
production rates in unamended whole water, zooming in on smaller dates. Error bars show upper 
and lower bounds determined by 95 % confidence intervals. Gross production rates could not be 
calculated from light exposed bottles on 23-Jul-19. 
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Figure 5.3: H2O2 production in whole (blue) and 105 µm filtered (red) water. A: Estimated gross 
biotic H2O2 production rates. Gross production rates could not be calculated from bottles on 6-
Aug-19 and 24-Aug-19. B: Measured net H2O2 production rates. Error bars show upper and 
lower bounds determined by 95 % confidence intervals. 

 

Figure 5.4: Linear regressions with net H2O2 production and net H2O2 decay rates (A) and with 
absolute decay constants and total gross H2O2 production (B). 
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Figure 5.5: Significant differences in chlorophyll a, H2CO3*, CDOM concentrations, pH, and 
day integrated UVA were detected between experiments on dates where the model did and did 
not fit the data. All p-values were calculated using a Welch’s two-sided T-test. 
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Figure 5.6: Linear regressions of gross biotic H2O2 production rates and chlorophyll a 
concentration, respiration rate, primary production rates, and CDOM absorbance. Only values 
from experiments where the model fit the data are included. Statistics in parenthesis were 
calculated excluding the outlier point in the dashed circle. Error bars show upper and lower 
bounds determined by 95% confidence intervals. 
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Figure 5.7: Linear regressions of net H2O2 production rates and chlorophyll a concentration, 
respiration rate, primary production rate, CDOM absorbance, and DOC concentration. Error bars 
show upper and lower bounds determined by 95% confidence intervals. 

 

Figure 5.8: Reductions in Microcystis abundance and chlorophyll a concentration in 105 µm 
filtered water compared to whole water. Differences in both Microcystis abundance and 
chlorophyll a concentrations had p-values < 0.05 on all dates (Welch’s one-sided T-test). 

−50
0

50
100
150
200
250
300

0 50 100 150 200
Chlorophyll a ( μg/L)

Ne
t H

2O
2 p

ro
du

cti
on

 (n
M

/h
r)

−50
0

50
100
150
200
250
300

0 50 100 150 200
Respiration (μM O2/day)

Year: 2017 2018 2019

−50
0

50
100
150
200
250
300

0 25 50 75 100
Primary Production (μM O2/day)

−50
0

50
100
150
200
250
300

0 5 10 15 20 25
CDOM absorbance (a305)

−50
0

50
100
150
200
250
300

200 300 400 500 600
DOC (μM)

Pearson’s R = 0.54
R2 = 0.29
p = 9.7x10-4

Pearson’s R = 0.61
R2 = 0.37
p = 0.012

Pearson’s R = 0.74
R2 = 0.54
p = 0.001

Pearson’s R = 0.66
R2 = 0.44
p = 1.8x10-5

Pearson’s R = 0.65
R2 = 0.42
p = 0.006

Ne
t H

2O
2 p

ro
du

cti
on

 (n
M

/h
r)

Ne
t H

2O
2 p

ro
du

cti
on

 (n
M

/h
r)

Ne
t H

2O
2 p

ro
du

cti
on

 (n
M

/h
r)

Ne
t H

2O
2 p

ro
du

cti
on

 (n
M

/h
r)

0
30
60
90

120
150
180

3−A
ug−

18

10−
Aug−

18

21−
Aug−

18

14−
Sep−

18

6−A
ug−

19

24−
Aug−

19

20−
Sep−

19

Ch
lor

op
hy

ll a
 (μ

g/
L)

0e+00

1e+05

2e+05

3e+05

4e+05

3−A
ug−

18

10−
Aug−

18

21−
Aug−

18

14−
Sep−

18

6−A
ug−

19

24−
Aug−

19

20−
Sep−

19

Mi
cro

cy
sti

s
ab

un
da

nc
e 

(re
ad

s/m
L)

105 μm filtered Whole water



 239 

 

Figure 5.9: Linear regression of gross biotic H2O2 production rate and abundance of important 
OTUs in random forest models. 
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Figure 5.10: The 12 OTUs with the highest negative correlation with net H2O2 production rate 
according to a Spearman’s rank-order correlation. 
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Figure S 5.1: Sites of water collection in western Lake Erie. 
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Figure S 5.2: Light attenuation in Lake Erie water column and bottle experiments. A: Spectral 
attenuation coefficients calculated from UV and PAR profiles measured in western Lake Erie. 
Error bars represent the upper and lower bound determined from 95% confidence intervals. B: 
The percent of light transmitted through neutral density screening and plastic bottles used during 
the experiments. C: The average depth in western Lake Erie at which the fraction of light 
transmission equals the fraction of light transmission in the experimental bottles. 
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Figure S 5.3: Histogram of the time of maximum H2O2 in unamended whole water bottles. 

 

 

 

Figure S 5.4: Measured and modeled H2O2 concentrations from experiments with poor fit on 22-
Aug-2017 with whole water. 
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Figure S 5.5: Measured and modeled H2O2 concentrations from experiments with poor fit on 30-
Aug-2017 with whole water. 

 

 

 

Figure S 5.6: Measured and modeled H2O2 concentrations from experiments with poor fit on 23-
Jul-2019 with whole water. 
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Figure S 5.7: Measured and modeled H2O2 concentrations from experiments with poor fit on 6-
Aug-2019 with whole water. 

 

 

 

Figure S 5.8: Measured and modeled H2O2 concentrations from experiments with poor fit on 6-
Aug-2019 with 105 µm filtered water. 
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Figure S 5.9: Measured and modeled H2O2 concentrations from experiments with poor fit on 24-
Aug-2019 with whole water. 

 

 

 

Figure S 5.10: Measured and modeled H2O2 concentrations from experiments with poor fit on 
24-Aug-2019 with 105 µm filtered water. 
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Figure S 5.11: Correlation with model error sum of squares and chlorophyll a concentrations 
and primary production rates. Column A contains regression with all experiments, and column B 
contains regressions excluding the experiments with poor fit to the model. Error bars show upper 
and lower bounds determined by 95% confidence intervals. 
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Figure S 5.12: Significant correlations between net H2O2 production, total phosphorus (P), total 
dissolved phosphorus (TDP), soluble reactive phosphorus (SRP), and nitrate (NO3) 
concentrations in bottle experiments. Error bars show upper and lower bounds determined by 
95% confidence intervals. 
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Figure S 5.13: Correlations between the difference in whole water gross biotic H2O2 production 
rate in the light and dark and respiration rates, primary production rates, and CDOM absorbance. 
Statistics in parenthesis were calculated excluding the outlier point in the dashed circle. Error 
bars show upper and lower bounds determined by 95% confidence intervals. 

 

Figure S 5.14: Correlations between Microcystis abundance and gross biotic H2O2 production 
rates (A) and net H2O2 production rates (B). Error bars show upper and lower bounds determined 
by 95% confidence intervals. 
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Table 5.1: Comparison of total gross H2O2 production and net H2O2 production in experiments 
where gross H2O2 production rates could be calculated. Fold differences between gross and net 
production rates were only calculated for dates when net production was observed (23/28 
observations). 

Experiment 
date 

Total gross H2O2 
production 

(nM/hr) 

95 % 
CI 

(nM/hr) 

Net H2O2 
production 

(nM/hr) 

95 % 
CI 

(nM/hr) 

Fold 
difference 

(Gross:net) 
2017-06-13 432 7 153 18 2.8 
2017-06-27 24 9 11 1 2.2 
2017-07-06 160 99 66 2 2.4 
2017-07-12 60 52 -10 12 NA 
2017-07-18 340 57 87 2 3.9 
2017-07-25 258 0.4 14 2 18 
2017-08-01 130 18 50 21 2.6 
2017-08-15 50 42 6 32 8.3 
2017-08-31 58 4 0 0 NA 
2017-09-06 130 79 -7 57 NA 
2017-09-12 70 1 3 7 23 
2017-09-19 170 29 -2 40 NA 
2017-09-26 170 49 -8 11 NA 
2017-10-04 200 122 20 16 10 
2017-10-05 117 5 21 4 5.6 
2018-07-10 68 4 25 7 2.7 
2018-07-24 18 5 6 1 3.0 
2018-07-31 14 1 4 1 3.5 
2018-08-03 32 8 15 0.5 2.1 
2018-08-07 39 0.02 5 2 7.8 
2018-08-10 18 5 5 2 3.6 
2018-08-14 48 8 8 2 6.0 
2018-08-21 19 2 7 1 2.7 
2018-09-14 46 - 22 1 2.1 
2018-09-18 28 9 8 2 3.5 
2019-08-02 150 37 26 6 5.8 
2019-09-17 33 3 17 0.4 1.9 
2019-09-20 60 3 25 1 2.4 
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Table 5.2: Bootstrap support and p-values of chemical and biological variables (rows) in 
stepwise linear regression models generated with ordination of microbial community 
dissimilarities on PCoA axes (columns). Only samples with values for gross H2O2 production 
were included in stepwise regression. All p-values were calculated with an F-test. Significant p-
values are in bold print. Bootstrap support was calculated with 300 replicates. 

  PCoA1 (35 %) PCoA2 (18 %) PCoA3 (7.7 %) PCoA4 (6.9 %) 

Predictor
s 

Boot-
strap p df Boot-

strap p df Boot-
strap  

p df Boot-
strap p df 

Kloss 0.89 <0.001 16 0.81 0.015 16 0.78 0.054 20 0.86 0.011 14 

Net 
H2O2 
prod. 

0.76 0.035 16 
         

Max. 
H2O2 
conc. 

0.79 0.058 16 
   

0.84 0.006 20 0.84 0.019 14 

Gross 
biotic 
H2O2 
prod. 

0.91 0.003 16 0.70 0.064 16 
   

0.82 0.055 14 

pH 0.74 0.058 16 
      

0.89 0.014 14 

Chl a 0.91 0.002 16 0.77 0.054 16 0.76 0.005 20 
   

Nitrate 0.91 0.001 16 0.75 0.135 16 
   

0.86 0.013 14 

NH4+ 0.75 0.079 16 0.76 0.133 16 
   

0.83 0.006 14 

Temp 0.90 0.007 16 0.75 0.017 16 
   

0.94 0.001 14 

CDOM 
   

0.85 0.009 16 
   

0.89 0.043 14 

TP 
   

0.81 0.032 16 0.77 0.063 20 0.91 <0.00
1 

14 

TDP 
   

0.78 0.002 16 0.85 0.012 20 0.85 0.020 14 

SRP 
         

0.82 0.042 14 

n 26 26 26 26 

R2 / R2 
adjuste
d 

0.875 / 0.805 0.821 / 0.721 0.734 / 0.667 0.875 / 0.777 

BIC -42.752 -31.489 -53.518 -54.978 

 

Table 5.3: Bootstrap support and p-values of variables in stepwise linear regression models 
generated with stepAIC of chemical and biological parameters (rows) vs ordination of microbial 
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community dissimilarities on PCoA axes (columns). Gross H2O2 production and decay rates 
were not considered as model features during stepwise regression. Four samples with missing 
values in nutrient, pH, or net decay data were excluded. All p-values were calculated with an F-
test. Significant p-values are in bold print. Bootstrap support was calculated with 300 replicates. 

  PCoA1 (35 %) PCoA2 (18 %) PCoA3 (7.7 %) PCoA4 (6.9 %) 

Predictors Boot-
strap p df Boot-

strap p df Boot-
strap p df Boot-

strap p df 

Chl a 0.87 <0.001 26 0.94 0.003 22 
   

0.77 0.066 24 

pH 0.66 0.001 26 0.71 0.001 22 
      

Net H2O2 
prod. 

   
0.70 <0.001 22 0.75 <0.001 24 

   

CDOM 
   

0.82 <0.001 22 
      

SRP 
   

0.70 0.001 22 
      

Temp 
   

0.81 0.068 22 
   

1.0 0.007 24 

Net H2O2 
decay 

      
0.94 <0.001 24 

   

Max H2O2 
conc. 

      
0.95 <0.001 24 

   

TDP 
      

0.82 0.001 24 
   

Nitrate 
         

0.87 <0.001 24 

TP 
         

0.91 <0.001 24 

n 29 29 29 29 

R2 / R2 
adjusted 

0.745 / 0.726 0.749 / 0.681 0.783 / 0.747 0.693 / 0.641 

BIC -28.271 -35.201 -68.092 -55.582 

 

 

 

 

 

Table 5.4: Comparison of R2 values and mean absolute errors (MAE) in models for predicting 
gross biotic and net H2O2 production rates. Two R2 values are reported for the random forest 
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models; the first value is the fit to all data points, and the second value is the average R2 across 
the held-out datasets during the k-fold cross validation (k=4). 

Statistic OTU random forest Chlorophyll a regression CDOM regression 

Gross biotic H2O2 production R2 0.89 / 0.43 0.36 0.20 

Gross biotic H2O2 production MAE 15 35 47 

Net H2O2 production R2 0.86 / 0.31 0.29 0.44 

Net H2O2 production MAE 10 27 21 

 

Table 5.5: OTUs in the random forest model for gross biotic H2O2 production with importance 
lower bounds above 0.01. 

Importance 
rank 

OTU 
number 

Lowest Taxonomic 
Assignment 

Model 
Importance 

Importance 
95 % CI 

1 OTU 123 Comamonadaceae 0.18 0.046 

2 OTU 311 Flavobacterium 0.08 0.025 

3 OTU 276 Alphaproteobacteria 0.024 0.003 

4 OTU 257 Burkholderiales; TRA3-20 0.022 0.006 

5 OTU 240 Gemmataceae 0.014 0.006 

6 OTU 264 Sporichthyaceae; hgcI_clade 0.013 0.005 

7 OTU 16 Aphanizomenon 0.013 0.003 

8 OTU 167 Silanimonas 0.012 0.003 
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Table 5.6: OTUs in the random forest model for net H2O2 production with importance lower 
bounds above 0.01. 

Importance 
rank 

OTU 
number Lowest Taxonomic Assignment Model 

Importance 
Importance 

95 % CI 

1 OTU 822 Lacihabitans 0.09 0.02 

2 OTU 579 Runella 0.045 0.009 

3 OTU 378 Spirosomaceae 0.03 0.006 

4 OTU 323 Lacibacter 0.029 0.007 

5 OTU 258 Alcaligenaceae; GKS98 
freshwater group 

0.029 0.006 

6 OTU 123 Comamonadaceae 0.017 0.005 

7 OTU 433 Candidatus Aquiluna 0.017 0.004 
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Chapter 6 Conclusions 

 

6.1 Overview and Summary 

 In this chapter, the major conclusions of the research in this dissertation are discussed 

along with remaining research gaps to be addressed in future work. In this section, an overview 

and summary of the research questions is given, and following sections expand on specific 

conclusions and future work. In Chapter 2, the hypothesis that hydrogen peroxide (H2O2) 

concentrations in lakes may favor microcystin producing (“toxic”) and non-microcystin 

producing (“nontoxic”) strains of the harmful cyanobacterium Microcystis (Paerl & Otten, 2013) 

was tested using two approaches. First, the genes and organisms that participate in hydrogen 

peroxide (H2O2) decomposition during cyanobacteria blooms in western Lake Erie were 

identified. Second, the response of toxic and nontoxic Microcystis strains that lack catalase genes 

to an exogenous H2O2 scavenger was measured. While some published genomes of the harmful 

bloom forming cyanobacterium Microcystis have catalase genes, most do not, which suggests 

that Microcystis strains vary in their ability to resist damage from H2O2. While expression of 

katG by Microcystis was detected during blooms, katG transcripts in phytoplankton seston were 

dominated by other non-cyanobacteria, which may indicate that community wide decomposition 

of H2O2 by bacteria in the phycosphere benefits the growth of Microcystis strains lacking 

catalase genes. Although all Microcystis strains degraded H2O2 without catalase, which suggests 

that ahpC activity is sufficient to degrade and detoxify H2O2 in Microcystis under the 

experimental conditions tested here, the study found that some Microcystis strains benefit from 
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help decomposing extracellular H2O2. However, maximum growth rates of both toxic and 

nontoxic Microcystis strains were unimpacted by the H2O2 scavenger, which suggests that other 

genotypic and phenotypic differences apart from microcystin production determine how H2O2 

affects Microcystis growth. Thus, changes in H2O2 concentrations and H2O2 decomposition by 

phycosphere bacteria may favor some Microcystis strains over others although not along a toxic 

versus nontoxic dichotomy. 

 Chapter 3 identified which bacteria in bulk phytoplankton seston are specifically 

associated with Microcystis colonies, and characterized how bacterial community composition in 

the Microcystis phycosphere varies across colony oligotypes and seasonally over Microcystis 

bloom development. Several bacteria species were found to be frequent members of individual 

Microcystis colonies. However, no bacteria species were present on every Microcystis colony, 

and phycosphere community composition was significantly more similar between colonies that 

shared a sampling date and Microcystis oligotype. The significant differences between sampling 

date and colony oligotype suggests that phycosphere communities change over time and that 

different Microcystis strains harbor characteristic microbiomes; however, future experimental 

work is required to test the extent to which time of sampling and strain identity explain 

differences in phycosphere community composition. 

 Chapter 4 described the genome sequences of two novel Acidobacteria assembled from 

metagenomic sequences collected from phytoplankton seston during western Lake Erie 

cyanobacterial blooms. These organisms were of interest because they comprised a large 

proportion of katG transcripts during peak katG metatranscriptomic abundance in Chapter 2. The 

metabolism and potential interactions with Microcystis or other phytoplankton were inferred 

from the assembled genome sequences and gene functional annotations. The genome sequences 
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involved in the uptake and processing of oligopeptides, including cyanobacterial-derived 

peptides, amino acids, and known algal exudates suggests that these bacteria derive organic 

carbon and nitrogen from cell lysis or organic carbon excretion by phytoplankton. Efflux of 

amino acids during oligopeptide degradation may regenerate amino acids for phytoplankton 

growth. Both Acidobacteria lack B12 synthesis pathways yet express genes that require B12, 

suggesting that they are auxotrophs and may also derive vitamins from phytoplankton or other 

bacteria in the phycosphere. Both organisms were detected in amplicon datasets from 

Microcystis blooms, including Microcystis colony phycosphere communities in Chapter 3. 

However, they were not specific to or found in all bloom datasets. Both Acidobacteria were 

present in some non-bloom samples, and were not present in every sample that contained 

Microcystis. Their irregular and non-specific presence in cyanobacteria blooms suggests that the 

Acidobacteria may only be associated with some Microcystis species or strains under certain 

conditions, and may also be attached to other phytoplankton taxa or inorganic and detrital 

particles. 

 Chapter 5 characterized the nature of H2O2 production and decay and tested the 

hypothesis that microbial community composition is related to H2O2 production rates in western 

Lake Erie cyanobacterial blooms. Net H2O2 production in whole water was similar to net H2O2 

production in 0.22 µm filtered water despite higher net H2O2 decay in unfiltered water and no 

decay in 0.22 µm filtered water, which suggests a particle-dependent source of H2O2 that is 

attributed to microorganisms. This particle dependent source was found to be the predominant 

source in the experiments on average, although complications with estimating gross H2O2 

production in light exposed bottles and the light wavelengths included in the experiment 

preclude a quantitative assessment of biological H2O2 production relative to photochemical 
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production of H2O2 in situ. H2O2 production increased with chlorophyll a concentrations, 

respiration rate, and primary production rate, suggesting that biological production of H2O2 

increases with phytoplankton biomass and microbial growth. Microbial community similarity 

and OTU abundances were also correlated with H2O2 production rates, with OTU abundances 

explaining more of the variation in H2O2 production than chlorophyll a concentration or CDOM 

absorbance. However, future work is required to determine to what extend variable H2O2 

sensitivities or variable H2O2 production rates between taxa can explain the observed 

relationships between H2O2 production rates and microbial community composition. In addition, 

a large portion of biotic H2O2 production was light-dependent, and filtration of large 

phytoplankton assemblages, including Microcystis colonies, did not significantly change H2O2 

production rates. The results from filtration of phytoplankton assemblages >105 µm together 

with the light-dependency of biotic H2O2 production and the correlations between biotic H2O2 

production and chlorophyll a concentration and primary production rates suggest that biotic 

H2O2 production in western Lake Erie is related to photosynthesis, but cannot be attributed to 

large phytoplankton assemblages and large Microcystis colonies. 

6.2 Variable katG Distribution Across Microcystis Strains and its Importance for H2O2 
Resistance 

 An investigation of the catalase and peroxidase genes in published Microcystis genomes 

revealed that most isolated Microcystis strains to date lack catalase genes, including katG, the 

primary scavenger of high concentrations of exogenous H2O2 in bacteria (Seaver & Imlay, 

2001a; Perelman et al., 2003; Cosgrove et al., 2007). High sensitivity to H2O2 has been attributed 

to the absence of catalases in the cyanobacterium Prochlorococcus (Morris et al., 2008; Morris 

et al., 2011; Morris et al., 2012) and in some species of Thaumarchaeota (Kim et al., 2016; 

Bayer et al., 2019). In addition, some strains of abundant freshwater bacterial clades require 
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removal of H2O2 in growth media for successful cultivation, which was attributed to the presence 

of a low efficiency katG in these bacteria (Kim et al., 2019b). These H2O2-sensitive organisms 

require catalase producing helpers to tolerate naturally occurring H2O2 concentrations in media 

(Morris et al., 2008; Kim et al., 2016; Bayer et al., 2019; Kim et al., 2019b) and the environment 

(Morris et al., 2011; Tolar et al., 2016). Therefore, the variable distribution of katG in 

Microcystis may indicate that some strains are better equipped to degrade H2O2 than others. 

However, this hypothesis assumes that katG in Microcystis is comparable to the high activity 

catalases present in “helper” bacteria. Thus, comparisons of the catalase activity in Microcystis 

katG with those of efficient catalases is required to assess the role of katG in H2O2 detoxification 

in Microcystis. 

 Despite the absence of katG, several strains of Microcystis could degrade and tolerate 

H2O2 concentrations in growth media that inhibited the growth of other katG-lacking microbes 

(Morris et al., 2011; Kim et al., 2016). Because Microcystis could tolerate H2O2 concentrations 

in culture that are representative of some of the higher concentrations observed during blooms 

(Cory et al., 2016; Cory et al., 2017), KatG activity may not be essential for Microcystis, unlike 

other organisms. The H2O2 degradation by the Microcystis cultures is likely attributed to AhpC 

activity, which can compensate for the loss of katG in some bacteria at submicromolar H2O2 

concentrations (Tichy & Vermaas, 1999; Seaver & Imlay, 2001a; Perelman et al., 2003; 

Cosgrove et al., 2007). However, ahpC genes in Prochlorococcus (Kim et al., 2019a) could not 

compensate for the absence of katG at comparable H2O2 concentrations (Morris et al., 2011). 

The data in the literature together with the results in this dissertation suggests that AhpC activity 

only compensates for a lack of katG in cyanobacteria under certain conditions or in certain 

organisms. 
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Several mechanisms could perhaps explain how Microcystis is less dependent on katG 

than other aquatic microbes. Because Microcystis grows in eutrophic waters with higher CDOM 

concentrations than those in the open ocean, it is likely that Microcystis has evolved to tolerate 

the higher H2O2 concentrations that would be produced. For example, AhpC in Microcystis may 

be more efficient at H2O2 degradation than in sensitive organisms such as Prochlorococcus. 

Indeed, AhpC protein in bacteria are less prone to over-oxidation and deactivation by H2O2 than 

their eukaryotic homologs, which is attributed to insertion sequences in the eukaryotic homologs 

that are absent in bacterial ahpC (Wood et al., 2003). Insertion sequences in ahpC that are unique 

to certain cyanobacteria and proteobacteria have also been observed (Wood et al., 2003), but the 

significance of the insertion sequences in these organisms to protein function and the resistance 

of the organism to exogenous H2O2 are currently unknown. 

Second, the ability for ahpC to compensate for the loss of katG may depend on the 

availability of NADPH and reduced thioredoxin, which are required electron donors for AhpC 

activity (Tichy & Vermaas, 1999; Hosoya-Matsuda et al., 2005; Pérez-Pérez et al., 2009). 

Thioredoxins have a variety of target enzymes (Wolosiuk & Buchanan, 1978; Buchanan, 1980; 

Schürmann & Jacquot, 2000; Kumar et al., 2004) that may compete with AhpC for electron 

donor. AhpC activity may also change with nutrient status of the cell, as intracellular NAD(P)H 

concentrations in Microcystis change with the form and availability of nitrogen (Steffen et al., 

2014). Light availability may also determine AhpC activity, as the regeneration of reduced 

thioredoxin can occur through a light-dependent ferredoxin:thioredoxin reductase system in 

cyanobacteria (Buchanan et al., 1971; Wolosiuk & Buchanan, 1978). Indeed, katG mutants of 

cyanobacteria require light to decompose H2O2 (Tichy & Vermaas, 1999; Perelman et al., 2003); 
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however, how H2O2 degradation rates change as a function of light intensity in the mutant strains 

or in cyanobacteria that naturally lack katG is unknown. 

Third, the sensitivity of Microcystis toward H2O2 may change with environmental 

conditions independent of AhpC activity. For instance, while Prochlorococcus strains did not 

vary in their ability to degrade H2O2, whether or not a given Prochlorococcus strain relied on 

catalase-producing helpers to grow was dependent on light intensity (Morris et al., 2011) and 

deviation from optimal growth temperature (Ma et al., 2018). Furthermore, the effectiveness of 

H2O2 treatments in suppressing Microcystis growth depended on the wavelength and intensity of 

light (Piel et al., 2020) and nutrient availability (Sandrini et al., 2020). Changes in 

exopolysaccharide production (Gao et al., 2015) or cell surface structures (Bayer et al., 2019) 

with environmental conditions may also alter the ability of a strain to tolerate H2O2 by changing 

the amount of H2O2 that diffuses into the cell. This suggests that KatG activity (either from 

helper bacteria or within its own cells) may be essential for some Microcystis strains only under 

a specific set of environmental conditions. In addition, the H2O2 concentrations present in growth 

media may select for Microcystis strains that are more tolerant to high H2O2 concentrations, as 

observed in other bacteria (Tanaka et al., 2014; Kawasaki & Kamagata, 2017). Therefore, H2O2 

may also more widely impair Microcystis growth than indicated by the experiments in this 

dissertation. To test if Microcystis strains become more sensitive to H2O2 under certain 

environmental conditions, the experiments conducted in Chapter 2 of this dissertation should be 

repeated under a wider range of culturing conditions. 

6.3 Increased H2O2 Concentrations do not Favor Microcystin-Producing Microcystis 
Strains per se 

 Some evidence suggests that microcystin may protect cyanobacteria from oxidative stress 

caused by H2O2. Previous studies have showed that toxic Microcystis strains have lower 
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decreases in chlorophyll a concentrations when treated with H2O2 (Dziallas & Grossart, 2011; 

Zilliges et al., 2011) and that microcystin binds to proteins at areas sensitive to H2O2 damage 

(Zilliges et al., 2011), which lead to the hypothesis that higher concentrations of H2O2 during 

Microcystis blooms favor the proliferation of toxic Microcystis over nontoxic Microcystis strains. 

However, other studies have presented contradicting evidence, that toxic strains are more 

susceptible to H2O2 (Schuurmans et al., 2018). Neither hypothesis is supported by the results of 

this dissertation in that 1) several toxic and nontoxic Microcystis strains were unimpacted by the 

addition of an H2O2 scavenger to the growth medium, which should have improved the growth of 

strains that were impaired by H2O2, and 2) the only strain with improved growth rates in the 

presence of a scavenger was toxic. Therefore, the ability of a strain to produce microcystin does 

not inherently make it more or less resistant to H2O2 than a naturally nontoxic strain. This 

suggests that other genotypic and phenotypic differences between Microcystis strains determine 

their sensitivity to H2O2. However, this interpretation may be impacted by the caveat that the 

Microcystis strains tested here may become sensitive to H2O2 under different growth conditions 

than those tested in this dissertation. Therefore, a comparison of growth impairments from H2O2 

in toxic and nontoxic Microcystis strains over a wider range of culturing conditions is warranted. 

6.4 The Impact of Community Wide H2O2 Decomposition on the Composition of 
Microcystis Strains During Blooms 

 Despite the ability of all the Microcystis strains tested to degrade H2O2, one of the strains 

had improved growth rates when cultured with a scavenger of H2O2 and thus was sensitive to 

H2O2 in the growth medium. This result demonstrates that 1) Microcystis strains can have 

variable sensitivities to H2O2 in spite of having similar H2O2 degradation capabilities, and 2) the 

presence of ahpC and H2O2 degradation does not preclude a microorganism from benefitting 

from H2O2 decomposition by other H2O2 scavengers. Therefore, H2O2 decomposition by bacteria 



 272 

in the phycosphere could impact growth of some Microcystis under certain conditions. While this 

dissertation does not support that changes in H2O2 concentrations favor nontoxic or toxic 

Microcystis strains specifically, it does indicate that changes in H2O2 concentrations can 

differently impact growth rates of Microcystis strains. The differential impact of changing H2O2 

concentrations on Microcystis strain growth could impact the composition of Microcystis strains 

during blooms, albeit not along a toxic and nontoxic dichotomy as previously hypothesized 

(Paerl & Otten, 2013; Schuurmans et al., 2018). However, it is still uncertain at what H2O2 

concentration thresholds Microcystis strains begin to experience negative outcomes on growth, 

and how these concentration thresholds may change as a function of other environmental 

conditions as described above. Future work should better characterize under which 

environmental conditions and concentrations H2O2 effects various Microcystis strains. 

Furthermore, competition experiments between various Microcystis strains at a range of H2O2 

concentrations are ultimately required to explicitly demonstrate that H2O2 concentrations can 

impact Microcystis strain composition during blooms. 

  Although katG expression by Microcystis was detected in western Lake Erie 

cyanobacterial blooms, katG expression in phytoplankton seston was dominated by attached non-

cyanobacteria (nc-bacteria). Additionally, because phycosphere bacteria colonize the perimeter 

of Microcystis colonies (Parveen et al., 2013), they likely are exposed to more exogenous H2O2 

than Microcystis cells on the colony interior and may act as a first line of defense against 

exogenous H2O2 for colonial Microcystis cells. However, the H2O2 decomposition rates of many 

of the enzymes and organisms identified in western Lake Erie are unknown and thus require 

biochemical validation in order to identify which organisms are likely important “helpers” for 

H2O2 degradation in cyanobacterial colonies. 
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6.5 Microcystis Phycosphere Bacterial Communities are Distinct From Bacterial 
Communities in Bulk Whole Water and Phytoplankton Seston 

 In Chapter 2, the organisms that express catalases and peroxidases in phytoplankton 

seston were identified. While Microcystis dominates colonial cyanobacteria in western Lake Erie 

blooms (Berry et al., 2017), other phytoplankton such as diatoms (Kharbush et al., 2019) can 

also be a substantial portion of the phytoplankton community during western Lake Erie blooms. 

Therefore, the bacteria identified in bulk phytoplankton seston may not necessarily be associated 

with Microcystis nor could their gene expression or abundance patterns be related to Microcystis 

physiology. The results in Chapter 3 demonstrate that bacterial communities associated with 

Microcystis colonies are distinct from total water column communities and bulk phytoplankton 

communities and suggests that the Microcystis phycosphere is a microenvironment that harbors a 

specific subset of the bacteria present in bulk seston. This characterization of the communities 

physically associated with Microcystis is important for understanding their interactions, which 

are limited to small spatial scales when the uptake rates of molecules exchanged between 

community members is fast compared to their diffusion rates (Dal Co et al., 2020). However, 

rates of metabolite uptake and leakage in Microcystis colonies have yet to be measured, thus the 

spatial scale of interactions between nc-bacteria and Microcystis is uncertain. 

6.6 Microcystis Phycosphere Community Composition Varies With Sampling Date and 
Microcystis Oligotype 

Although Microcystis phycosphere communities were found to be distinct from bulk 

communities, they varied by both sampling date and Microcystis oligotype, which suggests that 

phycosphere communities of different Microcystis strains have characteristic microbiomes and 

that the phycosphere communities change over time. However, due to limitations in the sampling 

of Microcystis colonies and the resolution of oligotyping to identify Microcystis strains, we 
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cannot determine the mechanism that drives the observed taxonomic divergence in phycosphere 

community composition, nor can we infer whether temporal effects or genotypic and phenotypic 

differences between Microcystis are more important in determining phycosphere community 

composition. However, the relative abundance patterns of specific OTUs identified in the 

Microcystis phycosphere suggest that both mechanisms likely play a role for different bacterial 

species in the phycosphere. Colonization experiments are required to test the hypotheses 

emerging from the results of Chapter 3. 

The observation that different bacterial communities occupy the Microcystis phycosphere 

at different times and are associated with different Microcystis strains suggests that the impact 

associated bacteria have on Microcystis fitness also changes by time and strain. Indeed, bacterial 

isolates can have strain specific impacts on phytoplankton growth, and the same isolate can be 

beneficial, neutral, or harmful to different phytoplankton taxa, which includes species or strains 

of the same genus (Sison-Mangus et al., 2014; Amin et al., 2015; Agha et al., 2016). As there is 

experimental evidence that bacteria can influence competition between Microcystis and other 

phytoplankton groups (Schmidt et al., 2020), such strain specific impacts on growth may 

influence successions in phytoplankton taxa during cyanobacteria blooms. However, 

taxonomically divergent Microcystis phycosphere communities in enrichment cultures converged 

in their functional potential (Jackrel et al., 2019), and host-specific recruitment of bacterial 

communities does not always translate into host-specific outcomes on phytoplankton fitness 

(Jackrel et al., 2020). Therefore, the significance of taxonomically distinct microbiomes over 

time and between Microcystis genotypes on the growth of different Microcystis strains is 

uncertain. Measurements of the impact that taxonomically distinct microbiomes have on growth 
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of various Microcystis strains is required to assess their importance in affecting bloom 

development and Microcystis strain successions. 

6.7 Genomic Analysis Highlights Potential Peptide, Amino Acid, and Vitamin Exchange 
Within the Microcystis Phycosphere 

 In Chapter 4, analysis of gene expression in two Acidobacteria genomes that had high 

katG expression relative to their abundance in phytoplankton seston from Microcystis blooms 

suggested that a bacterium in the Microcystis phycosphere (a novel Bryobacter sp.) uptakes 

oligopeptides, amino acids, nucleosides, and organic acid exudates from phytoplankton. 

Furthermore, there was metatranscriptomic evidence that Bryobacter regenerates ammonia from 

amino acids with amino acid oxidases and may export and regenerate amino acids during 

oligopeptide decomposition. The regeneration of these nitrogen containing compounds may fuel 

phytoplankton growth during blooms (Davis et al., 2010; Paerl et al., 2011), especially during 

periods when dissolved inorganic nitrogen is depleted. Another unclassified Acidobacterium 

showed expression of genes with similar functional annotations, but its absence from the 

Microcystis phycosphere communities described in Chapter 3 and its presence in datasets where 

Microcystis is absent suggests that it associates with other phytoplankton or other particles. 

Because the specific particle types that the unclassified Acidobacterium associates with are 

unknown, and both Acidobacteria genomes have high sequence dissimilarity from known 

organisms, their role in affecting phytoplankton growth remains uncertain. Cultivation of these 

organisms and biochemical characterization of their proteins is required to assess their impact on 

and dependence on phytoplankton growth. 
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6.8 Biotic H2O2 Production can be an Important Source of H2O2 During Microcystis Blooms 

 In Chapter 5, H2O2 production rates in the summer-fall in western Lake Erie were 

correlated with chlorophyll a concentration, respiration rates, primary production rates, OTU 

abundances, microbial community dissimilarity and CDOM absorbance, suggesting that both 

biological and photochemical sources of H2O2 are important during western Lake Erie 

cyanobacterial blooms. Further supporting this, observed net H2O2 production in whole water 

was comparable to observed H2O2 production in 0.22 µm filtered water (which removes most 

microorganisms) despite increased decay of H2O2 in whole water, which indicates increased total 

gross H2O2 production in whole water due to an additional particle-dependent source. The most 

parsimonious source in freshwaters is currently production from microorganisms (Vermilyea et 

al., 2010; Diaz et al., 2013; Marsico et al., 2015; Diaz & Plummer, 2018), which is supported in 

that bacterial OTU abundances could explain more of the variation in gross particle dependent 

H2O2 production than both chlorophyll a concentration (a proxy of phytoplankton biomass) and 

CDOM absorbance.  

Although it was not always the predominate source, estimated biotic production was 

consistently a substantial portion (> 40 %) of total H2O2 production during the experiments. 

However, error in the model used to derive gross biotic production rates increased with 

increasing CDOM absorbance, which may indicate that experiments with high photochemical 

production confounded estimates of biological production in the light. In addition, UV light, 

which has the highest H2O2 yield per mol photon (Powers & Miller, 2014), during the 

experiments was lower than those experienced by surface waters in Lake Erie. Therefore, the 

results in Chapter 5 may bias biological production over photochemical production, and the 

relative importance of the two sources in situ remains uncertain. Despite this shortcoming, it is 



 277 

clear from the reduced UV conditions in the experiments and the differences in whole and 0.22 

µm filtered water that biological production is a substantial source of H2O2 in Lake Erie waters. 

6.9 Biotic H2O2 Production in Western Lake Erie is Related to Photosynthesis but not 
Attributed to Large Phytoplankton Assemblages and Microcystis Colonies 

 Results from Chapter 5 provide evidence that biotic H2O2 is related to photosynthesis yet 

is not related to large Microcystis colonies and other large phytoplankton assemblages. Light-

dependent biotic H2O2, and significant correlations between biotic H2O2 production, chlorophyll 

a concentration, and primary production rates support that H2O2 production is related to 

phytoplankton growth, but filtration of Microcystis colonies and phytoplankton assemblages > 

105 µm diameter did not changes H2O2 production rates. Respiration of algal exudates by 

heterotrophic bacteria could be a potential source of H2O2, as excretion of photosynthates by 

phytoplankton is light dependent (Hellebust, 1965; Han & Eley, 1973; Bateson & Ward, 1988; 

Renström & Bergman, 1989), and microbial oxidation of some organics in photosynthate, such 

as glycolate, amino acids, and lactate and produces H2O2 (Xu et al., 1996; Tong et al., 2008; 

Hackenberg et al., 2011). Alternatively, small micro- and nanophytoplankton may be sources of 

H2O2 during Lake Erie blooms (Schneider et al., 2016; Diaz & Plummer, 2018; Diaz et al., 

2019). While future experimental work is required to determine which microbial species and 

pathways are most important for H2O2 production during western Lake Erie cyanobacterial 

blooms, the results from this dissertation support that Microcystis may not only be impacted by 

H2O2 decomposition by the surrounding bacterial community as discussed in Chapter 2 and 

elsewhere (Kim et al., 2019a) but also by community-wide H2O2 production. Because biotic 

H2O2 increases with primary production rates and chlorophyll a concentrations in western Lake 

Erie, potential negative impacts to H2O2-sensitive Microcystis would be highest when rates of 

primary production, respiration, and perhaps exudate excretion are highest, which may maximize 
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growth advantages of Microcystis strains that are relatively H2O2-resistant. However, the impact 

of the H2O2 fluxes measured here on growth of Microcystis relative to other factors such as water 

temperature, light availability, and nutrient concentrations remains unknown. 

6.10 Phytoplankton Assemblages do not Impact Whole Water H2O2 Decomposition Rates 

 In Chapter 5, filtration of phytoplankton assemblages and large Microcystis colonies also 

had no significant impact on H2O2 decay rates, suggesting that large Microcystis colonies have 

little or no impact on whole water H2O2. This result suggests that free-living or smaller particles 

are responsible for the majority of whole water H2O2 decomposition, which brings to question 

the significance of the katG expressing bacteria attached to phytoplankton seston identified in 

Chapter 2. It is uncertain whether the lack of importance of Microcystis colonies and their 

phycospheres for whole water H2O2 decomposition rates means that H2O2 decomposition in the 

phycosphere is unimportant for Microcystis growth and physiology. Previous work has 

demonstrated that community-wide H2O2 decomposition is important in determining the 

response of a given microbe to H2O2 (Morris et al., 2011; Bayer et al., 2019). However, this 

work was performed strictly in single-cell batch cultures. Therefore, how the benefits of potential 

H2O2 interactions across various degrees of physical association and interaction scales is 

unknown. Previous work determined that interactions underpinned by metabolite exchange occur 

on the scale of a few cell lengths when the uptake rates of the exchanged metabolites are fast 

compared to metabolite excretion rates (Dal Co et al., 2020). Because H2O2 diffuses in and out 

of cells rapidly (Seaver & Imlay, 2001b), and H2O2 production and decay can also be rapid 

(Seaver & Imlay, 2001b; Marsico et al., 2015), interactions based on H2O2 decomposition may 

also be limited to short interaction ranges. Therefore, while unimportant for measured H2O2 

concentrations in whole water, H2O2 decomposition of attached bacteria in the phycosphere may 
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be important for fitness of H2O2-sensitive Microcystis strains. However, interaction ranges of the 

organisms must then also vary between organisms with different H2O2 decomposition rates, 

which varies widely (Bond et al., 2020). Future work that quantifies the interaction ranges of 

H2O2 decomposition of microbes in the phycosphere is required to assess their importance to 

Microcystis growth and physiology. 

6.11 H2O2 Production Rates are Correlated With Microbial Community Composition and 
OTU Abundances 

 H2O2 production rates in western Lake Erie were correlated with microbial community 

dissimilarity and OTU abundances, however it is difficult to determine from the results presented 

in this dissertation whether this is due to increasing H2O2 production favoring the proliferation of 

resistant microbes or a proliferation of high H2O2 producing species that cause increasing H2O2 

production. Production of H2O2 and its precursor superoxide radical anion (O2-) varies widely 

across bacterial and phytoplankton taxa (Diaz et al., 2013; Diaz & Plummer, 2018; Bayer et al., 

2019; Bond et al., 2020; Sutherland et al., 2020), as does the sensitivity of microbes to H2O2 

(Morris et al., 2008; Zinser, 2018; Lusty & Gobler, 2020), so it is likely that both mechanisms 

are at play, although this hypothesis remains speculative at this point. The abundance of most 

OTUs had a low overall importance in predicting observed total and estimated biotic H2O2 

production rates, which indicates that the response to H2O2 is a community-wide response (or at 

least a response of multiple populations) rather than a response in a few key species. Therefore, 

if a change in the abundance of H2O2 producing species explains the correlation between 

microbial community composition and H2O2 production rates, it may be due to changes in 

community-wide H2O2 production rates or the abundances of specific H2O2 producing genes and 

metabolisms that are distributed across multiple taxonomic groups. While the mechanism behind 

the correlation between microbial community composition and H2O2 production is uncertain, the 



 280 

results presented here are the first to show that microbial community composition is related to 

natural H2O2 production rates in aquatic ecosystems, and is an important advance in 

understanding the relationship between reactive oxygen species production and microbial 

communities. 

6.12 Future Directions 

 Overall, this dissertation has advanced our understanding of the role of H2O2 on 

impacting Microcystis fitness and the relative proportions of toxic and nontoxic Microcystis 

strains, the nature of H2O2 production during harmful cyanobacterial blooms, the composition of 

bacterial communities associated with the Microcystis phycosphere, and how microbial 

interactions underpin the effects that H2O2 have on CHAB ecology. This dissertation has 

provided the first evidence suggesting that H2O2 concentrations relevant to natural systems 

impact CHABs, rather than the large H2O2 treatments that are used to mitigate CHABs (Matthijs 

et al., 2012; Schuurmans et al., 2018; Daniel et al., 2019; Lusty & Gobler, 2020; Piel et al., 

2020), and that other genotypic and phenotypic differences in Microcystis strains determine their 

sensitivity to H2O2. Thus, future work should place less emphasis on strains being toxic versus 

nontoxic strains when comparing Microcystis H2O2-sensitivities, and perhaps also differences in 

other traits. However, how differences between strains and changing environmental conditions 

lead to different sensitivities to H2O2 across Microcystis strains is unknown and requires further 

investigation. 

 In addition, this dissertation provides the first evidence that bacteria associated with 

Microcystis colonies may impact growth and physiology of some Microcystis strains under 

certain conditions. However, how H2O2 decomposition rates in the phycosphere bacteria 

compare to those in various Microcystis strains is still unknown and requires future 
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characterization. Furthermore, the relative importance of H2O2 decomposition by free-living and 

Microcystis attached bacteria remains uncertain, and future work that identifies the interaction 

range of H2O2 degradation is also needed to assess the importance of H2O2 decomposition in the 

phycosphere. 

 This dissertation also is the first to characterize natural H2O2 production and decay rates 

during freshwater CHABs. Evidence was provided that suggests biological production is an 

important source of H2O2 during CHABs and that the production is related to photosynthesis yet 

not directly attributed to Microcystis colonies. These results suggest that free-living microbes 

produce more H2O2 as photosynthesis increases, although the specific populations and pathways 

behind H2O2 production in CHABs could not be identified. Combined with the results of chapter 

2, this suggests that community-wide H2O2 production and decay may impact Microcystis 

physiology as well as H2O2 decay. This dissertation also provides the first direct measurement of 

how microbial community composition and bacterial species abundance relate to natural 

production and decay rates of H2O2. However, the data presented here are not adequate to 

determine the mechanism behind the identified correlations. Future experimental work is 

necessary to pinpoint the cause of the significant relationships between H2O2 production rates 

and microbial community composition as well as to identify which pathways are important 

sources of H2O2 during CHABs. 

 This dissertation provides the first characterization of bacterial communities in the 

Microcystis phycosphere in individual colonies collected in a time series, thus allowing 

comparisons of how Microcystis phycosphere communities vary both with time and between 

different colonies and Microcystis strains. Microcystis phycosphere community composition 

varied by both sampling date and Microcystis oligotype. While the relative importance of time 
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and Microcystis oligotype on Microcystis phycosphere community composition could not be 

quantified, evidence suggests that both are important drivers in determining the abundance of 

certain OTUs on Microcystis colonies. However, limitations on identifying Microcystis strains 

by 16S rRNA oligotyping may confound interpretation of phycosphere community dissimilarity 

by sampling date and Microcystis oligotype. Therefore, further sampling of larger colony 

datasets with better resolution of Microcystis strains is warranted. Furthermore, the functional 

significance of taxonomically distinct phycosphere communities is also unknown, and should be 

a focus of future work.  

Last, novel Acidobacteria genomes identified in the phycosphere of Microcystis and other 

particles were described. This work represents the first description of Acidobacteria genomes 

from aquatic environments and identifies putative interactions with phytoplankton. However, 

cultivation of the Acidobacteria and experimental verification of the putative interactions 

inferred here are required from future work. 
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Appendix Table 1: Blastn Results of Acidobacteria Hypothetical Protein Sequences Against 
NCBI nr Database 

Query Database 
Subject 

Shared 
ANI (%) 

Alignment 
Length (bp) 

E-value Bit Score 

2807003360_Acidobacteria_CoA2_BinC42 CP063849.1 71.91 267 4.83E-27 136 
2807003360_Acidobacteria_CoA2_BinC42 CP063849.1 76.423 123 1.80E-13 92.4 
2807003360_Acidobacteria_CoA2_BinC42 CP020715.1 83.673 49 0.045 53.6 
2807006060_Bryobacter CP039252.1 91.724 145 7.22E-50 208 
2807006060_Bryobacter CP059256.1 91.034 145 3.07E-48 204 
2807006060_Bryobacter CP059256.1 91.034 145 3.07E-48 204 
2807006060_Bryobacter CP039252.1 90.345 145 3.74E-47 199 
2807006060_Bryobacter CP059256.1 90.345 145 3.74E-47 199 
2807006060_Bryobacter CP059256.1 90.345 145 3.74E-47 199 
2807006060_Bryobacter CP059256.1 90.345 145 3.74E-47 199 
2807006060_Bryobacter LR134356.1 89.041 146 5.55E-45 192 
2807006060_Bryobacter CP039252.1 90.58 138 1.94E-44 191 
2807006060_Bryobacter CP020046.1 88.966 145 1.94E-44 190 
2807000547_Acidobacteria_CoA2_BinC42 No Hits NA NA NA NA 
2807000092_Acidobacteria_CoA2_BinC42 No Hits NA NA NA NA 
2807002401_Acidobacteria_CoA2_BinC42 No Hits NA NA NA NA 
2807005264_Bryobacter No Hits NA NA NA NA 
2807006953_Bryobacter No Hits NA NA NA NA 
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Appendix 2  
 

Appendix Table 2: Total Gross H2O2 Production, Absolute Decay Constants, Maximum H2O2 
Concentrations, and Model Fit in H2O2 Production and Decay Experiments 

Experiment 
Date 

Rep Site Condition Model 
Fit 

Sum Error 
Squares 

PH2O2 
(nM/hr) 

Kloss (hr-1) Max 
H2O2 
(nM) 

0.22 µm 
filt. Max 
H2O2 
(nM) 

31-May-17 1 WE2 Whole water 
light 

Yes 299193.59 314 0.31 940 1330 

31-May-17 2 WE2 Whole water 
light 

Yes 97350.8 113 0.08 890 1040 

13-Jun-17 1 WE2 Whole water 
light 

Yes 360172.55 428 0.34 1550 2600 

13-Jun-17 2 WE2 Whole water 
light 

Yes 156842.25 436 0.34 1340 2730 

27-Jun-17 1 WE2 Whole water 
light 

Yes 1774.58 20 0.08 186 250 

27-Jun-17 2 WE2 Whole water 
light 

Yes 2524.2 29 0.10 240 250 

6-Jul-17 1 WE2 Whole water 
light 

Yes 75294.79 111 0.18 610 1010 

6-Jul-17 2 WE2 Whole water 
light 

Yes 17354.75 212 0.38 600 1000 

12-Jul-17 1 WE2 Whole water 
light 

Yes 78393.5 88 0.20 500 530 

12-Jul-17 2 WE2 Whole water 
light 

Yes 79862.86 34 0.12 650 560 

18-Jul-17 1 WE2 Whole water 
light 

Yes 53309.84 372 0.40 1060 1270 

18-Jul-17 2 WE2 Whole water 
light 

Yes 20617.85 314 0.34 910 1340 

25-Jul-17 1 WE2 Whole water 
light 

Yes 18032.86 259 0.41 600 1600 

25-Jul-17 2 WE2 Whole water 
light 

Yes 53819.79 258 0.40 730 980 

1-Aug-17 1 WE2 Whole water 
light 

Yes 14912.53 143 0.28 540 NA 

1-Aug-17 2 WE2 Whole water 
light 

Yes 6183.06 125 0.25 430 940 

15-Aug-17 1 WE2 Whole water 
light 

Yes 42008.79 30 0.14 470 940 

15-Aug-17 2 WE2 Whole water 
light 

Yes 10478.11 74 0.17 421 590 

22-Aug-17 1 WE2 Whole water 
light 

No 829377.27 NA NA 1660 610 

22-Aug-17 2 WE2 Whole water 
light 

No 997084.69 NA NA 1420 530 

30-Aug-17 1 EC 
973 

Whole water 
light 

No 177080.68 NA NA 780 520 
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30-Aug-17 2 EC 
973 

Whole water 
light 

Yes 2340.81 142 0.25 543 400 

31-Aug-17 1 EC 
885 

Whole water 
light 

Yes 5885.21 56 0.32 200 240 

31-Aug-17 2 EC 
885 

Whole water 
light 

Yes 2415.38 60 0.28 220 220 

6-Sep-17 1 WE2 Whole water 
light 

Yes 8932.13 168 0.49 383 600 

6-Sep-17 2 WE2 Whole water 
light 

Yes 43336.22 88 0.28 680 300 

12-Sep-17 1 WE2 Whole water 
light 

Yes 27637.99 71 0.27 300 270 

12-Sep-17 2 WE2 Whole water 
light 

Yes 27213.12 70 0.27 320 180 

19-Sep-17 1 WE2 Whole water 
light 

Yes 20372.59 159 0.51 550 380 

19-Sep-17 2 WE2 Whole water 
light 

Yes 3755.82 188 0.53 360 280 

26-Sep-17 1 WE2 Whole water 
light 

Yes 21266.02 146 0.49 440 1000 

26-Sep-17 2 WE2 Whole water 
light 

Yes 12921.99 196 0.58 400 540 

4-Oct-17 1 EC 
973 

Whole water 
light 

Yes 21839.35 258 0.60 460 310 

4-Oct-17 2 EC 
973 

Whole water 
light 

Yes 4610.08 133 0.30 420 280 

5-Oct-17 1 EC 
1461 

Whole water 
light 

Yes 16832.28 115 0.21 610 360 

5-Oct-17 2 EC 
1461 

Whole water 
light 

Yes 11462.6 120 0.22 540 290 

10-Jul-18 1 WE2 Whole water 
dark 

Yes 1640.9 13 0.38 50 410 

10-Jul-18 2 WE2 Whole water 
dark 

Yes 408.28 11 0.34 60 244 

10-Jul-18 1 WE2 Whole water 
light 

Yes 1705.84 70 0.35 210 380 

10-Jul-18 2 WE2 Whole water 
light 

Yes 7312.16 66 0.35 220 480 

24-Jul-18 1 WE2 Whole water 
dark 

Yes 2915 2 0.18 30 51 

24-Jul-18 2 WE2 Whole water 
dark 

Yes 1083.5 6 0.21 40 40 

24-Jul-18 1 WE2 Whole water 
light 

Yes 26.36 20 0.24 80 95 

24-Jul-18 2 WE2 Whole water 
light 

Yes 2321.25 15 0.19 80 100 

31-Jul-18 1 WE2 Whole water 
dark 

Yes 1056.7 3 0.24 24 27 

31-Jul-18 2 WE2 Whole water 
dark 

Yes 299.93 4 0.26 30 25 

31-Jul-18 1 WE2 Whole water 
light 

Yes 681.02 15 0.29 60 60 

31-Jul-18 2 WE2 Whole water 
light 

Yes 196.83 14 0.28 50 80 

3-Aug-18 1 TWI 105 µm filtered 
light 

Yes 1931.28 25 0.31 97 178 

3-Aug-18 2 TWI 105 µm filtered 
light 

Yes 2632.73 23 0.32 91 170 

3-Aug-18 1 TWI Whole water 
light 

Yes 1465.27 36 0.39 102 178 

3-Aug-18 2 TWI Whole water 
light 

Yes 2266.79 27 0.32 105 170 
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7-Aug-18 1 WE2 Whole water 
dark 

Yes 165.23 15 0.37 36 58 

7-Aug-18 2 WE2 Whole water 
dark 

Yes 1398.76 9 0.31 40 74 

7-Aug-18 1 WE2 Whole water 
light 

Yes 1278.16 39 0.43 104 131 

7-Aug-18 2 WE2 Whole water 
light 

Yes 2680.03 39 0.43 90 140 

10-Aug-18 1 TWI 105 µm filtered 
light 

Yes 1907.42 14 0.22 72 79 

10-Aug-18 2 TWI 105 µm filtered 
light 

Yes 431.6 15 0.26 50 99 

10-Aug-18 1 TWI Whole water 
light 

Yes 234.78 21 0.28 76 79 

10-Aug-18 2 TWI Whole water 
light 

Yes 758.96 16 0.25 70 99 

14-Aug-18 1 WE2 Whole water 
dark 

Yes 1689.98 14 0.32 61 62 

14-Aug-18 2 WE2 Whole water 
dark 

Yes 2123.16 13 0.30 60 63 

14-Aug-18 1 WE2 Whole water 
light 

Yes 1004.6 44 0.36 133 150 

14-Aug-18 2 WE2 Whole water 
light 

Yes 291.97 52 0.44 120 161 

21-Aug-18 1 WE1
2 

105 µm filtered 
light 

Yes 262.3 17 0.29 69 31 

21-Aug-18 2 WE1
2 

105 µm filtered 
light 

Yes 165 18 0.30 60 25 

21-Aug-18 1 WE1
2 

Whole water 
light 

Yes 626.31 18 0.30 70 60 

21-Aug-18 2 WE1
2 

Whole water 
light 

Yes 671.89 21 0.33 79 70 

14-Sep-18 1 TWI 105 µm filtered 
light 

Yes 7774.53 51 0.23 240 175 

14-Sep-18 2 TWI 105 µm filtered 
light 

Yes 30915.96 27 0.12 172 153 

14-Sep-18 1 TWI Whole water 
light 

Yes 16656.98 46 0.20 233 175 

14-Sep-18 2 TWI Whole water 
light 

Yes NA NA NA 226 153 

18-Sep-18 1 WE2 Whole water 
dark 

Yes 887.7 8 0.25 60 54 

18-Sep-18 2 WE2 Whole water 
dark 

Yes 1315.41 6 0.22 60 49 

18-Sep-18 1 WE2 Whole water 
light 

Yes 2744.23 24 0.24 115 103 

18-Sep-18 2 WE2 Whole water 
light 

Yes 5568.06 33 0.24 139 160 

23-Jul-19 1 Bloo
m 
Chas
e  

Whole water 
dark 

Yes 173.38 11 0.79 45 32 

23-Jul-19 2 Bloo
m 
Chas
e  

Whole water 
dark 

Yes 206.23 8 0.64 40 37 

23-Jul-19 1 Bloo
m 
Chas
e  

Whole water 
light 

No 779320.84 NA NA 1260 350 

23-Jul-19 2 Bloo
m 

Whole water 
light 

No 228365.33 NA NA 840 337 
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Chas
e  

2-Aug-19 1 Bloo
m 
Chas
e  

Whole water 
dark 

Yes 524.49 34 0.53 80 124 

2-Aug-19 2 Bloo
m 
Chas
e  

Whole water 
dark 

Yes 91.71 28 0.45 76 120 

2-Aug-19 1 Bloo
m 
Chas
e  

Whole water 
light 

Yes 13151.39 133 0.58 248 572 

2-Aug-19 2 Bloo
m 
Chas
e  

Whole water 
light 

Yes 9656.31 171 0.80 220 620 

6-Aug-19 1 Bloo
m 
Chas
e  

105 µm filtered 
light 

No 39762.17 NA NA 369 2040 

6-Aug-19 2 Bloo
m 
Chas
e  

105 µm filtered 
light 

No 24706.12 NA NA 378 1490 

6-Aug-19 1 Bloo
m 
Chas
e  

Whole water 
light 

No 22582.2 NA NA 390 2040 

6-Aug-19 2 Bloo
m 
Chas
e  

Whole water 
light 

No 46950.85 NA NA 459 1490 

24-Aug-19 1 Bloo
m 
Chas
e  

105 µm filtered 
light 

No 22745.38 NA NA 318 770 

24-Aug-19 2 Bloo
m 
Chas
e  

105 µm filtered 
light 

No 20302.03 NA NA 350 770 

24-Aug-19 1 Bloo
m 
Chas
e  

Whole water 
light 

No 11853.13 NA NA 365 NA 

24-Aug-19 2 Bloo
m 
Chas
e  

Whole water 
light 

No 20163.48 NA NA 420 770 

17-Sep-19 1 Bloo
m 
Chas
e  

Whole water 
dark 

Yes 4094.8 5 0.14 35 40 

17-Sep-19 2 Bloo
m 
Chas
e  

Whole water 
dark 

Yes 2145.42 6 0.13 50 48 

17-Sep-19 1 Bloo
m 
Chas
e  

Whole water 
light 

Yes 5604.18 34 0.18 179 160 
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17-Sep-19 2 Bloo
m 
Chas
e  

Whole water 
light 

Yes 8929.47 31 0.14 187 177 

20-Sep-19 1 Bloo
m 
Chas
e  

105 µm filtered 
light 

Yes 14905.63 77 0.25 280 290 

20-Sep-19 2 Bloo
m 
Chas
e  

105 µm filtered 
light 

Yes 7821.71 54 0.18 250 300 

20-Sep-19 1 Bloo
m 
Chas
e  

Whole water 
light 

Yes 27564.68 58 0.20 260 290 

20-Sep-19 2 Bloo
m 
Chas
e  

Whole water 
light 

Yes 3949.34 61 0.20 260 300 
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Appendix Table 3: Time Point When [H2O2]spike ≈ [H2O2]unamended in Light-Exposed H2O2 
Production and Decay Experiments 

Experiment_Date Rep Site Condition Time after spike 
(hours) 

31-May-17 1 WE2 Whole water light 9 
31-May-17 2 WE2 Whole water light NA 
13-Jun-17 1 WE2 Whole water light 9 
13-Jun-17 2 WE2 Whole water light 9 
27-Jun-17 1 WE2 Whole water light NA 
27-Jun-17 2 WE2 Whole water light NA 
6-Jul-17 2 WE2 Whole water light 6 
6-Jul-17 1 WE2 Whole water light 9 
12-Jul-17 1 WE2 Whole water light NA 
12-Jul-17 2 WE2 Whole water light NA 
18-Jul-17 1 WE2 Whole water light 6 
18-Jul-17 2 WE2 Whole water light 6 
25-Jul-17 2 WE2 Whole water light 6 
25-Jul-17 1 WE2 Whole water light 9 
1-Aug-17 1 WE2 Whole water light 9 
1-Aug-17 2 WE2 Whole water light 9 
15-Aug-17 1 WE2 Whole water light NA 
15-Aug-17 2 WE2 Whole water light NA 
22-Aug-17 1 WE2 Whole water light 6 
22-Aug-17 2 WE2 Whole water light 6 
30-Aug-17 1 EC 973 Whole water light 6 
30-Aug-17 2 EC 973 Whole water light 9 
31-Aug-17 1 EC 885 Whole water light 9 
31-Aug-17 2 EC 885 Whole water light 9 
6-Sep-17 1 WE2 Whole water light 6 
6-Sep-17 2 WE2 Whole water light 6 
12-Sep-17 1 WE2 Whole water light 9 
12-Sep-17 2 WE2 Whole water light 9 
19-Sep-17 1 WE2 Whole water light 6 
19-Sep-17 2 WE2 Whole water light 6 
26-Sep-17 1 WE2 Whole water light 6 
26-Sep-17 2 WE2 Whole water light 6 
4-Oct-17 1 EC 973 Whole water light 6 
4-Oct-17 2 EC 973 Whole water light 6 
5-Oct-17 1 EC 1461 Whole water light 9 
5-Oct-17 2 EC 1461 Whole water light 9 
10-Jul-18 1 WE2 Whole water light 9 
10-Jul-18 2 WE2 Whole water light 9 
24-Jul-18 1 WE2 Whole water light 9 
24-Jul-18 2 WE2 Whole water light 9 
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31-Jul-18 1 WE2 Whole water light 9 
31-Jul-18 2 WE2 Whole water light 9 
3-Aug-18 1 TWI 105 µm filtered 

light 
6 

3-Aug-18 2 TWI 105 µm filtered 
light 

6 

3-Aug-18 1 TWI Whole water light 6 
3-Aug-18 2 TWI Whole water light 6 
7-Aug-18 1 WE2 Whole water light 9 
7-Aug-18 2 WE2 Whole water light 9 
10-Aug-18 1 TWI 105 µm filtered 

light 
9 

10-Aug-18 2 TWI 105 µm filtered 
light 

9 

10-Aug-18 1 TWI Whole water light 9 
10-Aug-18 2 TWI Whole water light 9 
14-Aug-18 1 WE2 Whole water light 9 
14-Aug-18 2 WE2 Whole water light 9 
21-Aug-18 1 WE12 105 µm filtered 

light 
9 

21-Aug-18 2 WE12 105 µm filtered 
light 

9 

21-Aug-18 1 WE12 Whole water light 9 
21-Aug-18 2 WE12 Whole water light 9 
14-Sep-18 1 TWI 105 µm filtered 

light 
9 

14-Sep-18 2 TWI 105 µm filtered 
light 

9 

14-Sep-18 1 TWI Whole water light NA 
18-Sep-18 1 WE2 Whole water light 9 
18-Sep-18 2 WE2 Whole water light 9 
23-Jul-19 1 Bloom Targeting  Whole water light 3 
23-Jul-19 2 Bloom Targeting  Whole water light 3 
2-Aug-19 1 Bloom Targeting  Whole water light 6 
2-Aug-19 2 Bloom Targeting  Whole water light 6 
6-Aug-19 1 Bloom Targeting  105 µm filtered 

light 
3 

6-Aug-19 2 Bloom Targeting  105 µm filtered 
light 

3 

6-Aug-19 1 Bloom Targeting  Whole water light 3 
6-Aug-19 2 Bloom Targeting  Whole water light 3 
24-Aug-19 1 Bloom Targeting  105 µm filtered 

light 
3 

24-Aug-19 2 Bloom Targeting  105 µm filtered 
light 

6 

24-Aug-19 1 Bloom Targeting  Whole water light 6 
24-Aug-19 2 Bloom Targeting  Whole water light 6 
17-Sep-19 1 Bloom Targeting  Whole water light 9 
17-Sep-19 2 Bloom Targeting  Whole water light 9 
20-Sep-19 1 Bloom Targeting  105 µm filtered 

light 
9 

20-Sep-19 2 Bloom Targeting  105 µm filtered 
light 

9 

20-Sep-19 1 Bloom Targeting  Whole water light 9 
20-Sep-19 2 Bloom Targeting  Whole water light 9 
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Appendix Table 4: Correlation and Regression Statistics Between Gross Biotic H2O2 
Production in Dark Bottles and Measured Biological and Chemical Parameters. 

Independent Variable Pearson's R F-test p-value R2 
kloss,H2O2 0.49 0.18 0.24 
chlorophyll a 0.13 0.74 0.016 
dissolved inorganic 
carbon 

-0.31 0.42 0.096 

carbonic acid -0.52 0.15 0.27 
bicarbonate -0.36 0.34 0.13 
carbonate 0.56 0.11 0.32 
dissolved organic carbon 0.34 0.37 0.12 
respiration rate 0.59 0.096 0.35 
primary production rate 0.37 0.33 0.13 
CDOM 0.44 0.24 0.19 
Day Integrated UVA 0.35 0.36 0.12 
Day Integrated UVB 0.59 0.097 0.34 
UVA + UVB 0.36 0.34 0.13 
pH 0.58 0.11 0.33 
total phosphorus 0.25 0.52 0.061 
total dissolved 
phosphorus 

-0.16 0.69 0.025 

nitrate 0.042 0.91 0.002 
ammonium 0.014 0.97 2.00E-04 
soluble reactive 
phosphorus 

-0.21 0.58 0.046 

incubation temperature 0.41 0.27 0.17 
incubation temperature 
standard deviation 

0.041 0.92 0.0017 
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Appendix Table 5: Welch’s T-Test Results Testing the Hypothesis That the Mean Abundance 
of Important OTUs in Random Forest Models in Whole Water and 105 µm Filtered Water are 
Significantly Different. 

Otu # Experiment Date T-stat p-value 
Otu00016 26-Jul-19 3.46094809 0.02639031 
Otu00016 6-Aug-19 2.87452294 0.03433594 
Otu00016 3-Aug-18 2.78633619 0.03690915 
Otu00016 24-Aug-19 2.1738578 0.0921491 
Otu00016 14-Sep-18 -0.9891138 0.38679893 
Otu00016 10-Aug-18 0.13616709 0.89871516 
Otu00016 21-Aug-18 -0.1321111 0.90061407 
Otu00016 20-Sep-19 NaN NaN 
Otu00123 24-Aug-19 2.37320612 0.05686578 
Otu00123 24-Aug-19 2.37320612 0.05686578 
Otu00123 14-Sep-18 -2.7531918 0.05820877 
Otu00123 14-Sep-18 -2.7531918 0.05820877 
Otu00123 3-Aug-18 1.08790057 0.34755301 
Otu00123 3-Aug-18 1.08790057 0.34755301 
Otu00123 6-Aug-19 0.81860297 0.44908353 
Otu00123 6-Aug-19 0.81860297 0.44908353 
Otu00123 21-Aug-18 0.74431534 0.50335837 
Otu00123 21-Aug-18 0.74431534 0.50335837 
Otu00123 26-Jul-19 0.53673679 0.61208646 
Otu00123 26-Jul-19 0.53673679 0.61208646 
Otu00123 10-Aug-18 -0.3660297 0.72984789 
Otu00123 10-Aug-18 -0.3660297 0.72984789 
Otu00123 20-Sep-19 0.05272989 0.95989179 
Otu00123 20-Sep-19 0.05272989 0.95989179 
Otu00167 6-Aug-19 3.73895163 0.02205341 
Otu00167 20-Sep-19 2.51302239 0.08578314 
Otu00167 26-Jul-19 2.02668144 0.11940833 
Otu00167 24-Aug-19 1.79783098 0.15056155 
Otu00167 10-Aug-18 1.76179202 0.15566474 
Otu00167 3-Aug-18 1.49165818 0.20930052 
Otu00167 14-Sep-18 0.43878546 0.68445464 
Otu00167 21-Aug-18 -0.1382628 0.89458756 
Otu00240 24-Aug-19 2.9339608 0.03652298 
Otu00240 6-Aug-19 -1.9183395 0.12252249 
Otu00240 14-Sep-18 1.20996629 0.31293537 
Otu00240 20-Sep-19 -1 0.39100222 
Otu00240 3-Aug-18 -0.8096838 0.4490413 
Otu00240 21-Aug-18 0.81772648 0.45008538 
Otu00240 26-Jul-19 -0.7408805 0.49850033 
Otu00240 10-Aug-18 0.44237415 0.68294873 
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Otu00257 24-Aug-19 3.71041006 0.02788177 
Otu00257 3-Aug-18 2.28170853 0.07051078 
Otu00257 10-Aug-18 -2.5850203 0.08058608 
Otu00257 6-Aug-19 2.10499405 0.10546948 
Otu00257 20-Sep-19 1.64979287 0.15125812 
Otu00257 21-Aug-18 1.47631677 0.23365846 
Otu00257 26-Jul-19 0.63188045 0.5607405 
Otu00257 14-Sep-18 -0.2241863 0.83162395 
Otu00258 10-Aug-18 -1.1982585 0.27827775 
Otu00258 6-Aug-19 1.22527833 0.28092214 
Otu00258 24-Aug-19 0.85265878 0.43119169 
Otu00258 14-Sep-18 0.65549893 0.54719557 
Otu00258 21-Aug-18 0.60445274 0.57806073 
Otu00258 26-Jul-19 0.26217381 0.80227616 
Otu00258 20-Sep-19 0.25306519 0.8086801 
Otu00258 3-Aug-18 -0.0327012 0.97544367 
Otu00264 10-Aug-18 -2.3337871 0.07806454 
Otu00264 6-Aug-19 -1 0.39100222 
Otu00264 14-Sep-18 -0.8197738 0.44395055 
Otu00264 26-Jul-19 0.32619934 0.76339169 
Otu00264 3-Aug-18 0.19121289 0.85636096 
Otu00264 20-Sep-19 0.16527507 0.8783814 
Otu00264 21-Aug-18 -0.034552 0.97357909 
Otu00264 24-Aug-19 NaN NaN 
Otu00276 24-Aug-19 6.44523413 0.00449844 
Otu00276 21-Aug-18 3.09717568 0.0215151 
Otu00276 20-Sep-19 0.99671527 0.38910406 
Otu00276 10-Aug-18 1 0.39100222 
Otu00276 14-Sep-18 -1 0.39100222 
Otu00276 3-Aug-18 0.74773221 0.50280115 
Otu00276 6-Aug-19 0.66524157 0.54024662 
Otu00276 26-Jul-19 -0.0978861 0.92522343 
Otu00311 24-Aug-19 2.11111111 0.09631356 
Otu00311 21-Aug-18 -2.3176518 0.10330558 
Otu00311 14-Sep-18 -1.6220396 0.17317494 
Otu00311 20-Sep-19 1.09913864 0.32681592 
Otu00311 26-Jul-19 0.95674849 0.37703318 
Otu00311 6-Aug-19 0.31658592 0.76844576 
Otu00311 3-Aug-18 NaN NaN 
Otu00311 10-Aug-18 NaN NaN 
Otu00323 6-Aug-19 1.8565517 0.12665289 
Otu00323 20-Sep-19 -1.7154308 0.18477397 
Otu00323 26-Jul-19 1.11134806 0.34290819 
Otu00323 10-Aug-18 -1 0.39100222 
Otu00323 24-Aug-19 0.71556283 0.52022484 
Otu00323 3-Aug-18 NaN NaN 
Otu00323 21-Aug-18 NaN NaN 
Otu00323 14-Sep-18 NaN NaN 
Otu00378 24-Aug-19 -1.7315076 0.18178997 
Otu00378 26-Jul-19 1.32542122 0.26310421 
Otu00378 21-Aug-18 1 0.39100222 
Otu00378 6-Aug-19 -0.0500974 0.96288875 
Otu00378 3-Aug-18 NaN NaN 
Otu00378 10-Aug-18 NaN NaN 
Otu00378 14-Sep-18 NaN NaN 
Otu00378 20-Sep-19 NaN NaN 
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Otu00433 26-Jul-19 -1.5297883 0.17878761 
Otu00433 20-Sep-19 1.07612413 0.34618148 
Otu00433 3-Aug-18 1 0.39100222 
Otu00433 10-Aug-18 1 0.39100222 
Otu00433 21-Aug-18 -1 0.39100222 
Otu00433 6-Aug-19 1 0.39100222 
Otu00433 24-Aug-19 -1 0.39100222 
Otu00433 14-Sep-18 NaN NaN 
Otu00579 20-Sep-19 -1.5571122 0.2173135 
Otu00579 26-Jul-19 0.90832935 0.41277727 
Otu00579 6-Aug-19 0.32686054 0.759251 
Otu00579 3-Aug-18 0.00626362 0.995236 
Otu00579 10-Aug-18 NaN NaN 
Otu00579 21-Aug-18 NaN NaN 
Otu00579 14-Sep-18 NaN NaN 
Otu00579 24-Aug-19 NaN NaN 
Otu00822 6-Aug-19 1.73173929 0.18174737 
Otu00822 26-Jul-19 1.04018513 0.34933681 
Otu00822 20-Sep-19 -0.5487788 0.61256392 
Otu00822 14-Sep-18 0.05453215 0.95829184 
Otu00822 3-Aug-18 NaN NaN 
Otu00822 10-Aug-18 NaN NaN 
Otu00822 21-Aug-18 NaN NaN 
Otu00822 24-Aug-19 NaN NaN 
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Appendix Table 6: Estimates of Biotic O2- Production in Western Lake Erie From Literature 
Values 

Ref. Lake 
Erie 
organis
ms and 
scenario
consid- 
ered 

Date Trichodes
mium/ 
Micro-
cystis O2

- 
Prod. 
(nM/cell) 

Synecho- 
coccus O2

- 
Prod. 
(nM/cell) 

Diatom 
O2

-Prod. 
(nM/cell
) 

Cyan-
obium 
abund 
(cells/
L) 

Micro-
cystis 
abund. 
(cells/L
) 

Hypo-
thetical 
Diatom 
abund. 
(cells/L
) 

Est. 
O2

-Prod. 
rate 
(nM/hr) 

Est. 
H2O2 
from O2

- 
(nM/hr) 

Obs. 
biotic 
H2O2 
prod. 
(nM/hr) 

Sutherlan
d et al. 
2020 

Microcy
stis and 
Cyanobi
um 
(approxi
mately 
equal 
abundan
ce) 

1-
Aug
-17 

1.5e-6  5.5e-7  - 97280
00 

872700
0 

- 18 9 87 

Sutherlan
d et al. 
2020 

Microcy
stis, 
Cyanobi
um, 
Diatoms 
(date of 
approxi
mately 
equal 
fluoropr
obe 
fluoresce
nce) 

19-
Sep-
17 

1.5e-6  5.5e-7  1.3e-5  33390
00 

752500
0 

108640
00 

154 77 160 

Sutherlan
d et al. 
2020; 
Schneider 
et al. 2016 

Microcy
stis, 
Cyanobi
um, 
Diatoms 
(date of 
approxi
mately 
equal 
fluoropr
obe 
fluoresce
nce) 

19-
Sep-
17 

1.5e-6  5.5e-7  1.3e-5  33390
00 

752500
0 

108640
00 

296 148 160 

Sutherlan
d et al. 
2020; 
Schneider 
et al. 2016 

Microcy
stis, 
Cyanobi
um, 
Diatoms 
(date of 
approxi
mately 
equal 
fluoropr
obe 

19-
Sep-
17 

1.5e-6  5.5e-7  1.3e-5  33390
00 

752500
0 

108640
00 

1143 571 160 
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fluoresce
nce) 

Fujii et al. 
2011, 
Sutherlan
d et al. 
2020 

Microcy
stis and 
Cyanobi
um 
(approxi
mately 
equal 
abundan
ce) 

1-
Aug
-17 

1.20E-09  5.5e-7  - 97280
00 

872700
0 

- 5 3 87 

Fujii et al. 
2011, 
Sutherlan
d et al. 
2020 

Microcy
stis and 
Cyanobi
um 
(approxi
mately 
equal 
abundan
ce) 

1-
Aug
-17 

1.20E-09  5.5e-7  - 97280
00 

872700
0 

- 43 21 87 

Fujii et al. 
2011, 
Sutherlan
d et al. 
2020 

Microcy
stis and 
Cyanobi
um 
(approxi
mately 
equal 
abundan
ce) 

1-
Aug
-17 

1.20E-09  5.5e-7  - 97280
00 

872700
0 

- 11 5 87 

Sutherlan
d et al. 
2020; 
Schneider 
et al. 2016 

Microcy
stis, 
Cyanobi
um, 
Diatoms 
(date of 
highest 
biotic 
H2O2 
producti
on) 

13-
Jun-
17 

1.5e-6  5.5e-7  - 25000 2000 - 0.02750
48 

0.01375
24 

290 

Sutherlan
d et al. 
2020; 
Schneider 
et al. 2016 

Microcy
stis, 
Cyanobi
um, 
Diatoms 
(date of 
highest 
biotic 
H2O2 
producti
on) 

13-
Jun-
17 

1.5e-6  5.5e-7  - 25000 2000 - 0.02750
48 

0.01375
24 

290 

 


