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obeying the 𝐶2 point group, hydrogen peroxide. The 𝐶2 axis is indicated by the line in the lower 

image and is out of plane in the top image. All illustrations are adapted from and drawn using [88].

 29 

Figure III.3 – An illustration of the RA-SHG data taken on TaAs (left) and GaAs (right) in [14] in 

two different polarization channels. Both plots are normalized to the same value of +1, but the 

GaAs data is multiplied by a factor of 6.6, indicating the relative strength of the TaAs response 
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incidence onto the sample. Not pictured is the initial ND filtering used to set the power of the beam 

at the sample sight or the white light imaging arm used for alignment purposes. 75 

Figure IV.10 – Several images of the photocurrent setup. (Top Left) An image of a sample in a 

chip carrier in the cryostat. The chip carrier is inserted into two 8-pin connectors, one on either 
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(Bottom Left) The BNC box built in collaboration with Austin Kaczmarek designed to transfer the 
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information from [112] along the a-, b-, and c-axes. Here, the Te atoms are indicated in red and 
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ABSTRACT 

 

 The study of Weyl semimetals has been of interest since their first prediction in pyrochlore 

iridates in 2011 and their experimental discovery in TaAs in 2015. Since then, several 

classifications of Weyl semimetals have been identified, including electronic and magnetic, type-

I and type-II, chiral, and multifold. In addition, the nonlinear optical properties of these materials 

have stood out as being particularly remarkable. This is due in part to the topological nature of 

Weyl semimetals, which affects the strength of the nonlinear properties and yields the potential 

for quantization, and in part due to the symmetry properties of Weyl semimetals, which dictates 

the anisotropy of these effects. 

 Second harmonic generation and the photogalvanic effect have both been shown to be of 

particular interest in Weyl semimetals. A strong second harmonic response has already been 

identified in type-I Weyl semimetals even at optical wavelengths. However, there is still some 

discussion as to whether this is directly attributable to the topological nature of the type-I 

semimetal band structure. Photocurrent measurements, and particularly the circular photogalvanic 

effect, have also stood out as a potential probe of the topology of the Weyl semimetal band 

structure. Yet experiments to date have attributed photocurrent generation to multiple physical 

origins, including the linear and circular photogalvanic effects, photon drag, and the photothermal, 

photoelectric, and photovoltaic effects. 

 In this thesis, we present a survey of a variety of nonlinear optical studies on several Weyl 

semimetals. In particular, we study the second harmonic responses of the type-II Weyl semimetals 
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Td-WTe2 and Td-MoTe2 and of the chiral Weyl semimetal CoSi. We look at the rotational 

anisotropy of those responses and use point-symmetry analyses to attribute that anisotropy to the 

symmetries of the crystalline structures of these materials. We also characterize the sizes of the 

responses in these materials. Although we cannot identify with certainty a topological contribution 

to the strength of the second harmonic, our analysis suggests that the topology of these materials 

may play some role in the outsized responses observed.  

 We further present information on impulsive stimulated Raman scattering in the type-II 

Weyl semimetal Td-WTe2, which is observed through excitations of the 0.25 THz shear mode in a 

time-resolved optical reflectivity experiment. By analyzing the phase of the excitation of this 

mode, we also see indications of the shear displacement through the Pockels effect. Additionally, 

the asymmetric Fano line shape of this mode suggests possible coupling to the Weyl fermion 

quasiparticle excitations in this material. 

 We also study photocurrent generation in the chiral Weyl semimetal CoSi. We survey 

several facets of this crystal and use a point-symmetry analysis to pin down the origins of both a 

linear and circular photogalvanic effect in this material. Spatially resolved photocurrent 

measurements suggest that the experimental geometry used can potentially cause extraneous 

polarization-dependent photocurrent responses in the case of laser illumination of the electronics 

on the sample surface.  

 Finally, one of the defining characteristics which allows for the existence of the Weyl 

semimetal state is strong spin-orbit coupling. Thus, I end by presenting a study of the second 

harmonic response in another strongly correlated material, the complex oxide RbFe(MoO4)2. 

Investigating the structural phase transition of this material, we identify for the first time a 
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ferrorotational ordering, and offer a point-symmetry analysis to identify potential coupling fields 

for this new electronic state. 
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CHAPTER I 

Introduction 

I 

 Condensed matter systems are remarkably complicated physical playgrounds. A simple 

sheet of aluminum you can hold in your hand actually consists of billions of quintillions of atomic 

nuclei, and even more electrons. Remarkably, despite the large number of particles involved, many 

materials can be modeled well with the assumption that all particles are independent, or at least 

that all electrons are independent from one another and exist in a regularly patterned potential that 

can be written down mathematically in only a few terms. One important class of materials in which 

this assumption breaks down is strongly correlated materials. In strongly correlated materials, the 

interactions between the degrees of freedom of the electrons cannot be ignored. These strong 

correlations dramatically complicate mathematical modelling, but also lead to unique electronic 

and magnetic properties [1, 2].  

 One electronic structure made possible by strong correlations in materials is known as the 

Weyl semimetal (WSM). These materials have received much attention since their first theoretical 

description and prediction in pyrochlore iridates [3]. They are defined by topologically protected 

crossing points in the bulk band structure at the Fermi energy. These points, known as Weyl points 

(WPs), each have a distinct chirality and always come in pairs, with each WP in the pair having 

opposite chirality [4, 5]. These bulk topological features result in surface states, known as Fermi 

arcs, which are accessible through angle-resolved photoemission spectroscopy (ARPES) 

experiments. The first experimental confirmation of a WSM state in TaAs using ARPES in 2015 
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[6, 7] stimulated a wide-spread effort to identify the WSM state in other materials. Outside of the 

identification of these states, work has also been done to identify distinctions between electronic 

and magnetic WSMs depending on their symmetry properties and between type-I and type-II 

WSMs depending on the tilt of the band structure around the WPs [8]. A further class of chiral 

WSMs characterized by paired WPs occurring at different energies has been discovered in WSMs 

lacking mirror symmetries [9-11]. In addition, a number of different applications have been 

predicted which utilize the unique band structure and high electron mobility in WSMs to develop 

everything from broadband photodetection devices to novel lasing methods [12, 13].  

 As this field of research has grown, some of the most stunning features of WSMs identified 

have been their nonlinear optical responses. The field of nonlinear optics spans the study of any 

property in which a material response is determined by more than one copy of or by multiple 

incoming electric or magnetic field(s). In [14], it was found that the second harmonic generation 

(SHG) of TaAs is orders of magnitude larger than that of GaAs. Further studies have shown a 

strong anisotropic photocurrent response [15, 16], the nonlinear Hall effect [17, 18], and the chiral 

anomaly [19, 20], among others, in a variety of these materials. In this work, I will focus primarily 

on exploring SHG and photocurrent generation in WSMs and look at spatial and temporal 

variations in these effects. I will also look at nonlinear optical properties of one other strongly 

correlated system, RbFe(MoO4)2, using nonlinear optics to probe new ferroic orders. 

 The outline for this work is as follows. Chapters II and III provide background information 

for our experiments. Chapter II establishes a thorough definition of a Weyl semimetal. This chapter 

serves as a basic background chapter on condensed matter physics and the roles that symmetry and 

topology play in it. In particular, I will start with a review of symmetry in crystalline systems, 

discussing crystal classifications as well as some of the basic applications of group theory in 
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condensed matter physics. Then, I will move on to descriptions of band structure and topology, 

both vital to understanding what makes WSMs such unique materials. Finally, I will describe 

WSMs in this framework, discussing their unique band structure and topological properties and 

including some history into their prediction and discovery. Chapter III provides some theoretical 

background for nonlinear optics. In particular, I will begin by establishing a basic definition of 

nonlinear optics and providing some examples in WSMs. Then, I will expand on the definition by 

building up a mathematical foundation for the study of second harmonic generation and the 

photogalvanic effect, which are the primary effects studied in the experimental chapters. I will also 

include how these effects relate to both symmetry and to topology and give a review of past results 

from literature to form a foundation for our work. 

 Chapter IV describes our experimental development. Several optical setups are described, 

including an experiment to study the rotational anisotropy of the second harmonic generation (RA-

SHG), an experiment to study the photocurrent responses of materials, a time-resolved optical 

reflectivity experiment, a scanning SHG setup, and a glovebox-based fabrication system. In 

addition, some information on basic data analysis and modelling of results for each optical setup 

is presented for use as reference material in future chapters.  

 Chapters V through VII present our experimental results. In particular, Chapter V presents 

second harmonic and time-resolved optical reflectivity results on two type-II WSMs, WTe2 and 

MoTe2 [8, 21, 22]. Chapter VI introduces chiral WSMs and presents experimental results on the 

second harmonic and photocurrent responses of the chiral WSM CoSi [23-25]. Chapter VII 

expands our discussion to other strongly correlated systems by discussing the discovery of a 

ferrorotational ordering in the complex oxide RbFe(MoO4)2. We conclude in Chapter VIII with a 

quick summary of our work and suggest new directions for continuing these studies in the future. 



4 
 

CHAPTER II 

 Background 

II 

 Perhaps the broadest material class into which we can place WSMs is the class of 

crystalline materials. In contrast to liquids and gases, solid crystalline materials consist of atoms 

regularly spaced in a lattice structure. Because of this, symmetry plays a particularly vital role in 

the study of crystalline materials. We can use symmetry operations to build full crystalline lattice 

structures from a handful of atomic positions, and the symmetry properties of a given crystal 

dictate the phenomena which can be realized in that material. Symmetry plays an even more vital 

role in the study of WSMs, which require that either time reversal symmetry (TRS) or spatial 

inversion symmetry (SIS) be broken. WSMs are unique in that their symmetries allow them to host 

certain condensed matter analogues of high energy phenomena. In particular, quasiparticle 

excitations in these materials act as Weyl fermions of particle physics, massless spin-1/2 particles 

first predicted by Hermann Weyl in 1929 [26]. This appearance of high energy physics phenomena 

in condensed matter systems arises because the dispersion relation in WSMs is well-described by 

the Weyl Hamiltonian [27, 28]. This potentially allows for the first studies of Weyl fermions, 

which have not yet been experimentally observed in vacuum in high energy systems.  

 One of the main themes of the study of WSMs is the interplay between symmetry and 

topology. We have already mentioned the fundamental role played by SIS and TRS in WSMs. At 

the same time, the unique WSM band structure has topologically protected crossing points, 

meaning that they cannot be gapped out by perturbations. This leads to some interesting questions: 
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which physical characteristics of these materials are dictated by the symmetry properties and which 

by the topological properties? And how does the interplay between symmetry and topology effect 

the properties of these materials? In this chapter, I will describe the roles that symmetry and 

topology play in condensed matter systems, building up to a definition of a WSM, and review the 

history of the prediction and experimental confirmation of the WSM state. 

 

Symmetry Operations in Crystalline Materials 

 A symmetry of a physical system is an operation under which the system is invariant. 

Classically, we can find symmetries by looking at how the Lagrangian of a system varies with 

changes in generalized coordinates. In particular, if a generalized coordinate 𝑞𝑖 is a symmetry of a 

system described by Lagrangian ℒ, then it is required that 

 
𝜕ℒ

𝜕𝑞𝑖
= 0 . 

 

II.1  

The corresponding canonical momentum 𝑝𝑖 =
𝜕ℒ

𝜕𝑞�̇�
 must then be constant in time. That is, the 

symmetry of the system 𝑞𝑖 leads to a conserved physical quantity 𝑝𝑖. The same holds true in 

quantum mechanics, where most of the underlying mathematical formalism comes from unitary 

operators1 acting on quantum systems. If such an operator ℳ is a continuous symmetry of a 

system, then it can be written as 

 ℳ = 1−
𝑖휀

ℏ
𝐺 II.2 

where 𝐺 is the Hermitian generator of ℳ, and 휀 is taken to be infinitesimally small. Further, it will 

be true that [𝐺, 𝐻] = 0, so 𝐺 must be a conserved quantity of the system [29]. 

 
1 A unitary operator 𝑈 satisfies 𝑈ϯ = 𝑈−1, where 𝑈ϯ is the matrix formed by taking the complex conjugate of the 

transpose of 𝑈 [29]. 
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 In crystalline systems, we are primarily interested in discrete symmetries. This is because 

the primitive unit cell of a crystal structure has a well-defined size. Any translation by a primitive 

lattice vector must a symmetry of the system. That is to say, any such translation necessarily brings 

one primitive unit cell back onto itself. Similarly, certain rotations, inversions, and mirrors can 

exist in the lattice which will also leave the system undisturbed. Because the unit cell which defines 

the basic block of the system has a finite size, any symmetry of the system must be discretely 

defined (eg. 𝑛 translations along a primitive lattice vector, where 𝑛 ∈ ℕ). 

 Mathematically, we can describe this construction using group theory, which is reviewed 

in Appendix A. Here, we define the set of translations by linear combinations of the primitive 

lattice vectors as a group with the operation of addition. Elements of the group take the form 𝑇�⃗� , 

where 𝑋 = 𝑛1𝑎1⃗⃗⃗⃗ + 𝑛2𝑎2⃗⃗⃗⃗ + 𝑛3𝑎3⃗⃗⃗⃗  for primitive lattice vectors 𝑎1⃗⃗⃗⃗ , 𝑎2⃗⃗⃗⃗ , 𝑎3⃗⃗⃗⃗  and 𝑛1, 𝑛2, 𝑛3 ∈ ℤ. It is 

clear that such a group is closed under addition. Further, because the addition of integers is 

commutative, it is necessary that 𝑇�⃗� 𝑇�⃗� = 𝑇�⃗� +�⃗� = 𝑇�⃗� +�⃗� = 𝑇�⃗� 𝑇�⃗�  for all 𝑇�⃗� , 𝑇�⃗�  in the group of 

translations. Thus, the group of translations is also commutative, meaning it is abelian. This is a 

special property of the translation group since generally symmetry groups in physics, such as 

rotation groups, are not abelian. 

 In crystals, the group of all rotations, reflections, inversions, and their combinations under 

which the system is invariant is known as the point group of that crystal. Including translations as 

well yields the space group of the crystal. In general, there are several different types of elements 

which may be included in a point group: 

• The identity 1 

• Rotations 𝐶𝑛, describing rotation along an axis by 2𝜋/𝑛 

• Spatial Inversion/Parity 𝐼, which takes the spatial coordinates 𝑥, 𝑦, 𝑧 → −𝑥,−𝑦,−𝑧  



7 
 

• Mirror reflections 𝜎𝑖𝑗, where 𝑖𝑗 defines the mirror plane 

• Rotations followed by mirror reflections perpendicular to the rotating axis 𝑆𝑛 = 𝜎𝐶𝑛 

A full overview of crystalline point groups is presented in Appendix B. 

 In addition to the symmetry operations discussed above, it is often useful to look at how 

physical systems respond under TRS [30]. Essentially, when we think about how physical systems 

behave under TRS, we picture going from time 𝑡 to time −𝑡. For example, in statistical mechanics 

we are taught that the entropy of the universe naturally increases over time. Thus, the state of the 

universe is not invariant under TRS because entropy would decrease under the operation that takes 

𝑡 → −𝑡. Table II.1 provides information on how several common physical properties behave under 

the TRS operation. 

 

Table II.1 – A table of examples of how some physical properties behave when acted on by the 

time reversal operator. 

 

Topology of the Band Structure 

 Having now presented a review of basic symmetry operations and how they are applicable 

in the study of crystalline materials, we move on to discuss topology, which is another fundamental 

tool used in the study of materials. Topology plays a vital role in the band structure of WSMs. The 

concept of band structure and some basic examples are shown in Appendix C. Band structure is 

Under 𝒕 → −𝒕, physical quantity 𝒂 is 

invariant (𝒂 → 𝒂, or 𝒂 is even under TRS) 

Under 𝒕 → −𝒕, physical quantity 𝒂 is not 

conserved (𝒂 → −𝒂, or 𝒂 is odd under TRS) 

Position 𝑥  Velocity 𝑣  
Acceleration 𝑎  Momentum 𝑝  

Force 𝐹  Magnetic Vector Potential 𝐴  

Electric Field �⃗�  Magnetic Field �⃗�  

Electric Polarization �⃗�  Magnetization �⃗⃗�  
Energy 𝐸  

Electric Potential 𝑉  
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important because it helps us to determine transport properties of the material, among other things.  

With knowledge of the Fermi energy, the maximum energy of an electron in a system, the band 

structure can be used to quickly identify materials as conductors or insulators as shown in Figure 

II.1. In particular, if the Fermi energy occurs mid-band, the material is a conductor, and the 

intersected band is known as the conduction band.  If it occurs in a gap between two bands, the 

material is an insulator and the band immediately below the Fermi energy is the valence band. In 

a WSM, the band structure will show that the Fermi energy occurs at a crossing point of the 

conduction and valence bands, which each exhibit a linear dispersion. This structure will be 

discussed in more detail in the Defining Weyl Semimetals section below. 

 

 

Figure II.1 – An illustration of various types of band diagrams. In the insulator (blue), the 

conduction band lies above the Fermi energy, so electrons can only exist in the valence band. 

Because this band is full, there is no conduction in an insulator. In the conductor (green), the 

conduction band is intersected by the Fermi energy, so there can be a flow of electrons because 

there are both occupied states and available unoccupied states in the conduction band. The third 

example (purple) is that of a Dirac/Weyl semimetal, where the valence and conduction bands meet 

at the Fermi energy with linear dispersion relationships. In this case, only very small energy 

perturbations would be required to cause conduction in such a material. 
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 When we talk about topology in condensed matter physics, we typically do so using the 

formalism developed by Michael Berry in 1984 [31], which deals with the adiabatic evolution of 

an eigenstate of a Hamiltonian �⃗⃗� (�⃗� ) with slowly varying parameters �⃗� = (𝑅1(𝑡), 𝑅2(𝑡),⋯ ) 

which move through a closed loop C in the parameter space. We will label the instantaneous 

orthonormal eigenbasis as  

  �⃗⃗� (�⃗� )|𝑛(�⃗� )⟩ = 휀𝑛(�⃗� )|𝑛(�⃗� )⟩. 

 

II.3  

The Berry formalism tells us that a system starting in an eigenstate of this Hamiltonian will remain 

in that eigenstate and that the eigenstate will return to itself after the loop is precessed in the 

parameter space. However, it will pick up an extra geometrical, gauge-invariant phase factor 

known as the Berry phase. 

 The existence of a phase factor in such a situation was known before Berry through the 

adiabatic approximation of quantum mechanics [29]. Berry’s contribution came in identifying that 

the phase was geometric – that is, dependent only on the path taken through the parameter space. 

In particular, Berry found that this phase can be written as  

 𝛾𝑛 = ∮ 𝑑�⃗� ∙ 𝐴𝑛⃗⃗ ⃗⃗  (�⃗� )
𝐶

 

 

II.4 

where 

 𝐴𝑛⃗⃗ ⃗⃗  (�⃗� ) = 𝑖 ⟨𝑛(�⃗� )|
𝜕

𝜕�⃗� 
|𝑛(�⃗� )⟩ 

 

II.5 

is known as the Berry connection. This description, with the help of the generalized Stokes’ 

theorem, indicates that in fact the Berry phase can be written as the flux of a field 𝐵𝑛⃗⃗ ⃗⃗ (�⃗� ), known 

as the Berry curvature, which is derived from the Berry connection as 

 𝐵𝑛⃗⃗ ⃗⃗ (�⃗� ) = ∇𝑅 × 𝐴𝑛⃗⃗ ⃗⃗  (�⃗� ) 

 

II.6 

through any surface bounded by the path taken through the parameter space.  
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 Equation II.4 is very similar in form to Cauchy’s Residue Theorem, which states that the 

integral of a function over a simple closed path in complex space is equal to the sum of the residues 

of the function contained in the path up to some factor [32]. Similarly, because the integral defining 

the Berry phase is over a closed curve in the parameter space, it must be an integer multiple of 2𝜋. 

This integer multiple is known as the Chern number and defines the topology of the system, which 

is discussed below. 

 

 

Figure II.2 – The Aharonov-Bohm effect. In this effect, electrons are emitted from a source (blue 

cylinder) and sent through a double slit. On the other side of the slit, they go around a region of 

nonzero magnetic field (red). Even though the electrons do not pass through the magnetic field 

directly, they are affected by the nonzero magnetic vector potential along their path, causing an 

interference pattern on the screen. 

 

 

 A useful analogy to help us understand the Berry formalism is the Aharonov-Bohm effect 

[33]. In this phenomenon, electrons travel through free space near to, but not through, a magnetic 

field. It is required that the magnetic vector potential be continuous over all space. Thus, even 

though the magnetic field in the space traversed by the electron is zero, it does have a nonzero 
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vector potential. Physically, this nonzero vector potential causes the electrons to pick up a phase 

shift, which can be observed as an interference pattern on a screen, as shown in Figure II.2. Here, 

the phase factor picked up by the electrons is like the Berry phase. In both cases the phase is 

physical and measurable. The magnetic vector potential and magnetic field are like the Berry 

connection and curvature, respectively, having the same mathematical relationship to each other 

and to the phase [29, 34]. 

 The Berry formalism is how we relate condensed matter systems to the mathematical 

concept of topology. Mathematically, topology is the study of how manifolds depend on operations 

such as twisting and bending. Any two manifolds that can be deformed into one another by some 

means besides cutting or gluing are considered to be topologically equivalent. Each class of 

topologically equivalent manifolds can be described by its Chern number, or its topology, which 

is determined by the number of holes in the manifolds.  In Figure II.3, we demonstrate several 

examples of topological manifolds with topologies of zero, one, and two.   

 

 

Figure II.3 – Examples of different topological manifolds. The sphere, cube, and cylinder can all 

be continuously deformed one into another and so are considered topologically equivalent. They 
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have a topology of 0. In contrast, a cut would need to be made in order to realize the torus or the 

double-torus, which have topologies of 1 and 2, respectively. 

  

 We can also consider the topology of a crystalline material.  If we consider the vacuum to 

be an insulator with a conduction band (electrons), valence band (positrons), and an energy gap 

(for pair production), then materials that can undergo a metal-insulator transition by means of 

perturbations to the band structure are considered topologically equivalent to the vacuum. We say 

that this class of insulators has a Chern number of zero. However, not all materials can undergo 

such a transition with small perturbations. The simplest counterexample is that of an integer 

quantum Hall state. Such a state exists when a thin sheet of metal is placed in a magnetic field 

oriented perpendicular to its surface.  An otherwise free electron in such a system is subject to a 

Hamiltonian 

 𝐻 =
ħ2

2𝑚
(−𝑖𝜕𝑥)

2 +
1

2𝑚
(−𝑖ħ𝜕𝑦 −

𝑒

𝑐
𝐵𝑥)

2

 

 

II.7 

where the material lies in the 𝑥𝑦-plane with a magnetic field �⃗� = 𝐵�̂�, and where we have chosen 

the Landau gauge for our magnetic vector potential, 𝐴 = (0, 𝐵𝑥, 0). This reduces to the 

Hamiltonian for a quantum harmonic oscillator in the 𝑦-component, yielding quantized energy 

levels 

 𝐸𝑛,𝑘𝑦 = (𝑛 +
1

2
) ħ𝜔 = (𝑛 +

1

2
)
𝑒𝐵ħ

𝑐𝑚
 

 

II.8 

for some integer 𝑛.  We can treat this as a band structure with flat bands for each 𝑛, as shown in 

Figure II.4. However, now the gaps in this band structure are topologically protected, meaning that 

perturbations to the system or to the field will not change the fact that the gaps exist. The only 

effect perturbations can have on the bands is to change the distance between them [35].  



13 
 

 To see this, consider that in order to transition from one insulating state to the next, you 

must necessarily go through a metallic phase. This is similar to a “tear” in the manifold in the 

mathematical definition of topology. Another way to think about this is to consider that the Landau 

levels are quantized and that this quantization is intrinsically related to the Chern number. This 

arises from the fact that the Hall conductivity is the total Berry curvature of the system. Due to the 

fact that they can be well-described using the Berry formalism and because they have a nonzero 

topology, Hall insulators are known as topological insulators.  

 

 

Figure II.4 – Hall Effect illustrations. (a) The “band structure” resulting from the Hall effect. It is 

clear that the bands are flat and evenly spaced, and so the sweeping the Fermi energy would require 

transitions from insulating to metallic to insulating states. (b) A cartoon illustration of the chiral 

edge states which arise due to the topology in such a Hall system. 

  

 Earlier, we mentioned that the vacuum is an insulator with a trivial topology. Taking this 

into account, if we place a Hall insulator in vacuum, we must necessarily go from a trivial to a 

nontrivial topology. According to our mathematical definition, this requires a “tear” in the 

topological manifold. The way this “tear” manifests physically is in a conducting edge state where 

current flows in one direction around the edges of the system, as shown in Figure II.4. We can also 

picture this in terms of the classical view of electrons in the plane of the material orbiting in a 
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cyclotron motion due to the external magnetic field. At the edges of the material, the electrons 

would not be able to fully complete their orbit and would thus flow in one direction around the 

edge of the material. Importantly, this edge state is robust against impurities in the system. Such 

topological edge states are typical of topological materials and are often used as a detection 

mechanism for these systems [6, 7].  

 

Defining Weyl Semimetals 

 In WSMs, the Fermi energy occurs at a touching point of the conduction and valence bands 

and the dispersion near this touching point is both linear and protected topologically against 

perturbations. In these systems, the touching point is known as a Weyl Point (WP). Suppose for 

the sake of illustration that this WP occurs at momentum 𝑘0⃗⃗⃗⃗ , 2 where we are now working in three 

dimensions. Then we can expand the momentum-space Hamiltonian around this point as  

 𝐻(�⃗� ) = ±ħ𝑣𝐹(�⃗� − 𝑘0⃗⃗⃗⃗ ) ∙ 𝜎 , 

 

II.9 

where 𝑣𝐹 is the Fermi velocity and 𝜎 = (𝜎𝑥, 𝜎𝑦 , 𝜎𝑧) is a vector of the Pauli matrices 

 𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −𝑖
𝑖 0

) , 𝜎𝑧 = (
1 0
0 −1

). 

 

II.10 

We know that this should model the dispersion near the WP because it is indeed linear in the wave 

vector as is required by the definition of a WSM. An investigation of this Hamiltonian shows that 

small perturbations of 𝑘0⃗⃗⃗⃗  and 𝐸0 do not create a gap at the location of the WP (ie. the existence of 

the WP persists despite small perturbations).  Instead, the WP is moved around in momentum 

space. Similarly, perturbations of 𝑣𝐹 change the slope of the dispersion at the WP without 

eliminating the WP altogether. This is the first indication that the WP is protected [4].  

 
2 We will define the energy at which this crossing point occurs as the zero potential. 
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 There are two concepts that we would like to emphasize here. The first is that the WP is 

intrinsically describing a crossing point in a 3d bulk band structure – that is, a 3d cone. This 

distinction is vital to the protection of the WP. If the crossing point occurred only at a cross-section 

of the band structure (that is, in two dimensions of the available three), then a perturbation in the 

third dimension could easily gap out the crossing point [36]. The second is that such crossing 

points can only occur in materials which break one of either TRS or SIS. This is because the 

preservation of both of these symmetries in a material causes the band structure to be doubly 

degenerate, such that two WPs would perfectly overlap in momentum space [4]. This is the case 

for Dirac semimetals, which will not be discussed in this work but are described further in [37]. 

 The Hamiltonian presented in Equation II.9 is independently known as the Weyl 

Hamiltonian [26], which was first predicted by Hermann Weyl in 1929. Solutions to the Weyl 

Hamiltonian are a left- and right-handed spinors, each of which has the general form 

 𝜓(𝑟 , 𝑡) = (
𝛾1
𝛾2
) 𝑒−𝑖(�⃗�

 ∙𝑟 −𝜔𝑡). II.11 

These solutions are known as Weyl fermions, which are massless particles with a distinct chirality. 

Interestingly, quasiparticles which occur in WSMs as a result of excitations around the WPs have 

properties identical to the Weyl fermions of high energy physics. As such, WSMs, and type-I 

WSMs in particular, have been proposed as a means by which to explore the properties of the high-

energy Weyl fermions, have not yet been experimentally realized [38-40]. 

 More than this, it can be shown that the crossing points in the bulk band structure of the 

WSMs are topologically protected. To see this, we can compute the Berry curvature of our Weyl 

Hamiltonian to obtain the relation [4] 

 �⃗� (�⃗� ) = ±
�⃗� 

|�⃗� − 𝑘0⃗⃗⃗⃗ |
3. 

 

II.12 
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This relation requires that the Berry curvature must have singularities at the WP. This implies that 

the WPs serve as sources and sinks of Berry curvature [4, 36] and must correspond to a nonzero 

Berry phase. They have a nonzero Chern number and therefore must be topologically protected. 

An illustration of what this field might look like is shown in Figure II.5. Further, the Nielsen-

Ninomiya No-Go theorem then says that all WPs must come in pairs of opposite chirality [41]. 

Figure II.5 indicates a space consisting of two WPs – one of positive and the other of negative 

chirality. 

 

 

Figure II.5 – An illustration of the Berry curvature field in the simplest case of a WSM consisting 

of two WPs with opposing chirality in the bulk. Shown is a 2d vector representation of the field, 

with WP1 (positive chirality) and WP2 (negative chirality) indicated. The insets show the 3d effect 

of the singularities at WP1 and WP2, such that they serve as a source and sink of Berry curvature, 

respectively. 

  

 Because there is a requirement that either SIS or TRS be broken, WSMs are typically 

classified as either magnetic (broken TRS) or electronic (broken SIS). The existence of a WSM 

state was first described and predicted to exist in pyrochlore iridates, which are magnetic WSMs 
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[3]. However, the first successful experimental confirmation of a WSM state in a material was in 

an electronic WSM. In particular, WSM states were first predicted to exist in the TaAs class of 

materials in [27, 28] and were first experimentally observed in TaAs using ARPES [6, 7] in 2015. 

In ARPES experiments, photons are directed at the sample with a known energy and momentum, 

and electrons emitted from the material through photoemission are then detected using a detector 

sensitive to both energy and momentum. By comparing the initial and final particles in the 

photoemission process and requiring energy-momentum conservation, the energy and momentum 

of the electron in the material can be calculated. Ultimately, this provides the band structure on the 

surface of the material. This allows for the detection of the WSM state because of its topology, 

which results in surface states detectable in ARPES measurements. In WSMs, these surface states 

connect the WPs and are known as Fermi arcs. Since the confirmation of TaAs as a WSM, several 

other WSMs have also been predicted and experimentally confirmed. Some examples of these are 

shown in Table II.2. 

 

Figure II.6 – Experimental discovery of WSM in TaAs. (a) A schematic of an ARPES setup from 

Wikipedia. (b) ARPES data on TaAs at the Fermi energy around one of the Weyl points. The Fermi 

arc surface states are clear from the data [6]. 
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 TaAs falls into a class of what is known as electronic type-I WSMs, which contrasts with 

the electronic type-II WSMs predicted in [8]. The distinction between the type-I and type-II classes 

of WSMs arises from a subtlety of Equation II.9, which is that the zero-potential definition of the 

system is somewhat arbitrary. We can imagine an offset in energy by some 𝐸0 which is a function 

of the momentum �⃗� , which changes our expression of the Weyl Hamiltonian to the Dirac equation 

 𝐻(�⃗� ) = 𝐸0(�⃗� )𝜎0 ± ħ𝑣𝐹(�⃗� − 𝑘0⃗⃗⃗⃗ ) ∙ 𝜎 , II.13 

where 𝜎0 is the identity matrix. In most cases, this 𝐸0 term can be Taylor expanded in a way which 

includes a term linear in �⃗�  such that 

 𝐻(�⃗� ) = ℏ𝑣�̃�(�⃗� − 𝑘0⃗⃗⃗⃗ )𝜎0 ± ħ𝑣𝐹(�⃗� − 𝑘0⃗⃗⃗⃗ ) ∙ 𝜎 . II.14 

The distinction between type-I and type-II WSMs then comes from a comparison between 𝑣𝐹 and 

𝑣�̃�. TaAs and other type-I WSMs satisfy 𝑣𝐹 > 𝑣�̃�, but if 𝑣𝐹 < 𝑣�̃� we have a type-II WSM where 

the two bands overlap in energy yielding electron and hole pockets around the WP [4]. An example 

of these electron and hold pockets are shown in Figure II.7. 
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Figure II.7 – An illustration of the differences between type-I and type-II WSMs. In particular, the 

type-II WSMs are defined by electron and hole pockets right at the WPs in the bulk band structure. 

These figures are adapted from [4, 40]. 

  

 In addition, WSMs commonly have mirror symmetries, but these symmetries are not 

required for the existence of the WSM state. However, when a WSM does have mirror symmetries, 

it restricts the band structure in such a way that the corresponding WPs must share the same energy. 

This makes direct optical studies of the topology of these points challenging because it means that 

accessing one WP necessarily accesses the WP of the opposite chirality, and the net Chern number 

of such a process is zero. However, in the absence of mirror symmetries, it is possible for 

corresponding WPs to exist at different energies in the band structure. This means a clever choice 

of wavelength can optically access one WP and not the other, allowing for the potential to probe 
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topological features of the material. These WSMs with non-degenerate WPs are known as chiral 

WSMs [42].  

 

Type of WSM Description Example Materials References 

Magnetic TRS broken Pyrochlore Iridates 

Mackay-Terrones 

crystals 

YbMnBi2 (type-II) 

Magnetically doped 

superlattice 

[3, 43] 

[44] 

 

[45] 

[46] 

Electronic SIS broken Quantum Spin-Hall 

state 

[47] 

Type-I WSMs with minimal 

tilting of Weyl cones 

TaAs 

TaP 

NbAs 

NbP 

[6, 7] 

[48, 49] 

[50] 

[51] 

Type-II WSMs with electron 

and hole pockets at 

the WPs 

Td-MoTe2 

Td-WTe2  

LaAlGe 

[22, 52, 53] 

[8, 54-56] 

[57] 

Chiral Electronic WSMs 

lacking mirror 

symmetries 

RhSi, CoSi [25, 42, 58-60] 

Table II.2 – A summary of the various types of WSM states known and predicted today, together 

with their descriptions and a selection of example materials for each category. 

 

 The unique topological band structure and symmetry requirements of WSMs leads to 

several unique physical phenomena, including nonlinear optical properties, which will be 

discussed in Chapter III.  

 

Spin-Orbit Coupling and Strong Correlations 

 The last topic we will discuss in this chapter is the importance of spin-orbit coupling (SOC) 

and strong electron-electron correlations in WSMs. Generally, SOC refers to coupling between the 

spin and angular momentum of a particle while strong electron-electron correlations refer to 
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interactions between electrons in a material. This latter effect is in direct contradiction to the Drude 

theory of solids, which assumes that there are no electron-electron interactions and that instead 

electrons can only interact with the underlying lattice structure [61, 62]. As early as 1937, de Boer 

and Verwey discussed that this assumption of the Drude theory did not lead to accurate predictions 

in all real material systems [63]. Later work by Mott and Hubbard fully developed the inclusion 

of an electron-electron correlation term into the Hamiltonian and identified its role in metal-

insulator transitions [64]. The Mott and Hubbard model was particularly crucial for modeling 3d 

transition metal oxides and determining how electron-electron correlations contributed to effects 

such as quantum criticality and unconventional superconductivity in these materials [65-67]. 

 SOC, on the other hand, arises due to the fact that electrons are moving charged particles 

in electric fields, which means that electrons experience an effective magnetic field 𝐵𝑒𝑓𝑓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∝ 𝑣 × �⃗� . 

When this field interacts with the spin of the electron,  a term in the Hamiltonian 𝐻𝐿𝑆 ∝ �⃗� ∙ 𝑆  arises, 

for �⃗�  the orbital angular momentum and 𝑆  the spin [29]. SOC is particularly common in heavy 

elements, and a good deal of work has been done to study its effect particularly in materials with 

filled f-orbits [68] and in topological insulators [67]. The effects of SOC and strong correlations 

can both be seen commonly in 4d and 5d orbital material systems, where the interplay between the 

two can lead to novel transport phenomena like the anomalous Hall effect and control of spin 

currents. Additionally, SOC and strong correlations can lead to the onset of topological phases of 

matter [2]. An example illustration of a phase diagram for such a material is shown in Figure II.8.  

 In this phase diagram, we can see that the WSM state lies in the area of the parameter space 

where electron-electron correlations and SOC are both relatively strong.  This emphasizes the point 

that the inclusion of spin-orbit coupling is necessary to identify materials as WSMs [23]. However, 

there is a wide variety of other physical systems which also fall into this area of the parameter 
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space. The last experimental chapter of this thesis will be devoted to one particularly interesting 

material, the complex oxide RbFe(MoO4)2, which fall into this category of strongly correlated, 

strong SOC materials which are not WSMs. 

 

 

Figure II.8 – Generic band diagram of a material experiencing both SOC, with strength given by 

𝜆, and strong electron-electron correlations, with strength given by 𝑈, taken from [67]. Here, 𝑡 
described the hopping amplitude, or the probability that an electron will move from one lattice site 

to an adjoining lattice site, which is a fundamental property of the Hubbard model. 
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CHAPTER III 

Nonlinear Optics 

III 

 We have so far discussed broadly the materials we are interested in for the study of this 

thesis, and, in the process, we have developed a robust definition for the WSM state. In this chapter, 

we will introduce the experimental methods we used to complete our studies. The primary tools 

are derived from nonlinear spectroscopic techniques. In the most basic sense, nonlinear optical 

processes occur when a system undergoes a change due to the application of light which is not 

linearly proportional to the field of the applied light. All materials have the potential to experience 

nonlinear optical effects, but the strength of those effects is highly material- and geometry-

dependent. For example, light transmitted through plexiglass is unlikely to undergo a strong 

nonlinear process regardless of experimental geometry. In contrast, beta-barium borate (BBO) 

crystals are well-known for their second harmonic, or frequency doubling, effects, but the strength 

of those effects is dependent on the cut of the crystal as well as the orientation of the crystal relative 

to the wavevector and polarization of the incident light. More specifically, this dependence on the 

experimental conditions requires the wavevectors of the incoming fields add to exactly the 

wavevector of the nonlinear field generated in the material to maximize the SHG response, a 

phenomenon known as phase matching. At perfect phase matching, the dipoles within the material 

line up such that their fields can be summed coherently, yielding the largest possible nonlinear 

response [69]. 
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Figure III.1 – An illustration of the frequency doubling process which occurs in a BBO. Light of 

frequency 𝜔 is incident on the BBO and light of frequency 2𝜔 is emitted after it interacts with the 

nonlinear crystal. 

 

 The nonlinear optical response is a material property intricately related to the symmetry 

and topology of the material under investigation, as will be discussed throughout this chapter. In 

particular, we will begin with a brief review of previous experiments studying nonlinear optical 

processes in WSMs to motivate our use of nonlinear probes in our studies of these materials. Then 

we will move on to the two nonlinear optical processes in which we are most interested – SHG 

and the photogalvanic effect, or photocurrent generation. For each of these, we will present a 

mathematical foundation and a more in-depth look into the roles played by symmetry and topology 

in the manifestation of these effects in WSMs. We also note here that the 𝐸𝐸∗ formalism developed 

in this chapter to study photocurrent generation in materials is unique to our work, and was created 

jointly by myself and my advisor, Liuyan Zhao. 

 

Nonlinear Optical Effects in Weyl Semimetals 

 Because of their unique symmetry and topology, the study of the nonlinear optical 

properties of WSMs is of particular interest. Already, WSMs have been shown to exhibit strong 

nonlinear optical effects, including SHG [14, 70, 71], photocurrent generation [9-11, 15, 16, 72-

75], the nonlinear Hall effect [17, 18, 76, 77], the chiral anomaly [78], and others [79]. A summary 
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of some specific nonlinear optical effects observed in WSMs is presented in Table III.1. We will 

focus on SHG and photocurrent generation in the following sections and chapters. However, it is 

worthwhile to take a moment to describe two additional nonlinear phenomena – the chiral anomaly 

and the nonlinear Hall effect – and the role they play in WSMs. 

 

Nonlinear Effect Material Observation Reference 

Chiral Anomaly TaAs [80] 

Nonlinear Hall Effect 
TaIrTe4 

WTe2  

[81] 

[17] 

SHG TaAs [14, 70] 

Photogalvanic Effect 

TaAs 

MoTe2, WTe2  

RhSi 

[9, 82] 

[83] 

[10, 11, 58, 60] 

Table III.1 – A summary of several nonlinear optical effects and references to studies on specific 

WSMs. 

  

 The chiral anomaly is a perfect example of a high energy physics phenomenon being 

realized in a material system, appearing as the triangle anomaly in the decay of the neutral pion in 

high energy physics experiments [5, 38, 80]. This effect is nonlinear in that it relies on both 

incoming electric and magnetic fields. In particular, when these incoming fields are parallel, they 

can cause unequal populations of electrons in the Weyl cones. Because each cone is chiral, a 

nonzero chiral current can emerge which causes an increase in the conductivity of the material 

with increased magnetic field [5]. One of the ways that this physically manifests in measurements 

is through a negative longitudinal magnetoresistance [39], which is when the resistivity of the 

material decreases with increasing magnetic field. This effect has been reported in TaAs [80]. The 

connection between the nonzero chiral current and the topology is intuitive. We recall from our 

discussion in Chapter II that the chirality of the Weyl cones is described by the Chern number, 

calculated by integrating the flux of the Berry curvature. The Chern number determines the 
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topology of the system and the chiral current resulting from the unequal populations of the Weyl 

cones is a direct manifestation of this topology.  

 The nonlinear Hall effect is another process directly related to the topology of the WSM 

state. The linear Hall effect has already been discussed in some detail in Chapter II. The basic idea 

is that if a metal with a current traveling through it is placed into a magnetic field perpendicular to 

the direction of the current, then that field will cause the charge carriers to curve a particular 

direction. This leads to an accumulation of charge on the edges of the conductor which contribute 

to a voltage difference across the device perpendicular to both the current and the applied magnetic 

field [84]. This effect requires the breaking of TRS. However, the nonlinear Hall effect, which is 

a higher-order analogue of the linear Hall effect is still symmetry-allowed in electronic WSMs. In 

this case, an electric field is applied to cause a current in the material, and the Hall conductivity is 

proportional to two copies of this field [85]. The nonlinear Hall effect has already been observed 

in several WSMs, including the type-II WSMs TaIrTe4 [81] and WTe2 [17]. 

 One of the most important features of the linear and nonlinear Hall effects is quantization. 

The quantization of the linear Hall effect can be modeled using the Berry curvature. Such a 

calculation shows that the Hall conductivity is the integral of the Berry curvature over occupied 

states [86]. This means that the Chern number is the root cause of the quantized effect observable 

through linear Hall measurements. The nonlinear Hall effect is similarly related to the topology 

because the interband transitions can be modeled as the first-order integral of the Berry curvature, 

known as the Berry curvature dipole [18, 75, 87].  

 The nonlinear Hall effect is a particularly useful illustration for a theme which will emerge 

throughout this work. Symmetry considerations dictate whether this phenomenon can occur in a 

material at all, and what form the material response will take. But the strength of the response is 
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given by the quantization, which is related to the topology of the material. Throughout this work, 

we will try to draw comparisons between the allowance and anisotropy of an effect and the 

symmetries of the system, and the size of the effect and its topology. 

 

Mathematical Foundations of Nonlinear Optics and Second Harmonic Generation 

 The most generic experiment we can do when studying nonlinear optical properties of 

materials is to direct light at a material and measure the response. The light source we use is a 

pulsed laser, the details of which are presented in Chapter IV. Laser light is polarized and has a 

particular wavelength. Such a light source can be represented as 

 �̃�(𝑥 , 𝑡) =  �⃗� 𝑒𝑖(�⃗� ⋅𝑥 −𝜔𝑡) + 𝑐. 𝑐., 

 

III.1  

where �⃗�  describes the amplitude and polarization of the light, �⃗�  is the wavevector, 𝜔 is the 

frequency, and 𝑐. 𝑐. stands for taking the complex conjugate of the first term (that is, a 

monochromatic plane wave will consist of light of frequency 𝜔 and −𝜔) [69].  

 To the lowest approximation, when light shines onto a material, it will induce a change in 

the electronic polarization of that material given by 

 �̃�(𝑥 , 𝑡) = 𝜖0𝜒�̃�(𝑥 , 𝑡), 

 

III.2 

for 𝜖0 = 8.854 × 10
−12 F/m, a fundamental constant known as the permittivity of free space, and 

for 𝜒 the optical susceptibility of the material. The full effect of the electric field on the material 

polarization, however, is given by a Taylor expansion in terms of that field 

 𝑃𝑖(𝑥 , 𝑡) = 𝜖0(𝜒𝑖𝑗
(1)𝐸𝑗(𝑥 , 𝑡) + 𝜒𝑖𝑗𝑘

(2)
𝐸𝑗(𝑥 , 𝑡)𝐸𝑘(𝑥 , 𝑡) + ⋯ ), 

 

III.3 

where now we are using the Einstein summation notation typical when working with tensors. We 

can see that Equation III.2 above is simply the first term of this expansion – the linear term. The 
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additional terms are nonlinear in the electric field and are thus the basis for the field of nonlinear 

optics [69]. 

 We will be primarily focused on second-order effects, and so we will begin by exploring 

the second order nonlinear optical response in a bit more detail. We know from Equation III.3 that 

the second order response can be written as �̃�(2)(𝑥 , 𝑡) = 𝜖0𝜒
(2)�̃�2(𝑥 , 𝑡). We can write this out 

explicitly using the form of �̃� from Equation III.1 as 

 �̃�(𝑡) = 𝜖0(2𝜒
(2)𝐸𝐸∗ + 𝜒(2)𝐸2𝑒−2𝑖𝜔𝑡 + 𝜒(2)(𝐸∗)2𝑒2𝑖𝜔𝑡), 

 

III.4 

where 𝐸∗ indicates the complex conjugate. By looking at the exponentials, we can immediately 

see that we have terms of two different frequencies, neither of which is the original frequency 𝜔. 

In particular, the first term has a frequency of zero. That is, it is a direct current (DC) term. The 

second and third terms have frequency 2𝜔. These are the contributions to SHG, also aptly known 

as frequency doubling. In this calculation, we have assumed that the mixing fields have the same 

frequency, but it is also possible to mix two fields of different frequencies within the material. In 

this case, the DC term will correspond to difference frequency generation3 and the SHG term to 

sum frequency generation [69]. 

 

𝝌𝑵𝑳 and Crystal Symmetry 

 Up until now, we have discussed the effect of the incoming laser field on the nonlinear 

response of the material. To see how the nonlinear response relates to the material properties, 

however, we must use the nonlinear optical susceptibility tensor, 𝜒𝑁𝐿. This tensor is a material-

dependent property which obeys the point symmetries of the crystal. This means that we can use 

 
3 In the case of the mixing of fields of different frequencies, this term will no longer be a DC effect but rather a low-

frequency effect obeying 𝜔1 − 𝜔2 for 𝜔1, 𝜔2 the frequencies of the two incoming fields. 
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the nonlinear response of the crystal to study its symmetry properties. As a simple example, we 

can consider the 𝜒(2) tensor (ie. the second-order nonlinear response tensor) for a centrosymmetric 

material. We know that such a tensor must obey 

 𝑃𝑖(𝑥 , 𝑡) = 𝜖0𝜒𝑖𝑗𝑘
(2)
𝐸𝑗(𝑥 , 𝑡)𝐸𝑘(𝑥 , 𝑡). 

 

III.5 

However, because we are working with a centrosymmetric material, this equation must remain 

invariant in the case that we apply the spatial inversion operator to it. In particular, applying spatial 

inversion to the polarization will require 𝑃𝑖 → −𝑃𝑖 and 𝐸𝑖 → −𝐸𝑖. This means that Equation III.5 

will become  

 −𝑃𝑖(𝑥 , 𝑡) = 𝜖0𝜒𝑖𝑗𝑘
(2)
(−𝐸𝑗(𝑥 , 𝑡))(−𝐸𝑘(𝑥 , 𝑡)). 

 

III.6 

The only way that Equations III.5 and III.6 will hold simultaneously in all of space and time is if 

𝜒(2) = 0 for all tensor elements. That is, there is no second order SHG response in 

centrosymmetric crystals. 

  

 

Figure III.2 – (Left) An example of a molecule obeying the 𝑚 point group, ethylene-BrCl. The 

singular mirror is highlighted by the plane of the red circle. (Right) an example of a molecule 
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obeying the 𝐶2 point group, hydrogen peroxide. The 𝐶2 axis is indicated by the line in the lower 

image and is out of plane in the top image. All illustrations are adapted from and drawn using [88]. 

  

 In actuality, the relationship between the crystal symmetry and the nonlinear susceptibility 

tensor goes farther than dictating whether or not an effect occurs. In fact, we can use the crystal 

symmetry to derive the general form of the nonlinear susceptibility tensor by, as above, requiring 

that Equation III.5 remain invariant when it is operated on by any symmetry operation of the point 

group of the crystal. As a simple example, let us consider the 𝑚 point group, which consists of one 

mirror plane. An illustration of a molecule obeying this point symmetry is shown in Figure III.2. 

We will arbitrarily choose the mirror to lie in the 𝑥𝑧-plane. In this case, there is one symmetry 

operator for the point group, given by 

 𝑀𝑥𝑧 = (
1 0 0
0 −1 0
0 0 1

). 

 

III.7 

 For the case of the linear response, the 𝜒(1) tensor will have the generic form of 

 𝜒(1) =

(

 

𝜒𝑥𝑥
(1) 𝜒𝑥𝑦

(1) 𝜒𝑥𝑧
(1)

𝜒𝑦𝑥
(1) 𝜒𝑦𝑦

(1) 𝜒𝑦𝑧
(1)

𝜒𝑧𝑥
(1) 𝜒𝑧𝑦

(1) 𝜒𝑧𝑧
(1)
)

 . 

 

III.8 

We can apply 𝑀𝑥𝑧 to 𝜒(1) to find 

 𝜒(1)
′
= 𝑀𝑥𝑧

−1𝑋(1)𝑀𝑥𝑧 =

(

 
 
𝜒𝑥𝑥
(1)′ −𝜒𝑥𝑦

(1)′ 𝜒𝑧𝑥
(1)′

−𝜒𝑦𝑥
(1)′ 𝜒𝑦𝑦

(1)′ −𝜒𝑦𝑧
(1)′

𝜒𝑥𝑧
(1)′ −𝜒𝑧𝑦

(1)′ 𝜒𝑧𝑧
(1)′

)

 
 
. 

 

III.9 

Because 𝑀𝑥𝑧 is a symmetry, we require that Equations III.8 and III.9 be equal, which means that, 

for 𝑚, 𝜒(1) must have the general form 
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 𝑋(1) = (

𝜒𝑥𝑥
(1)

0 𝜒𝑧𝑥
(1)

0 𝜒𝑦𝑦
(1) 0

𝜒𝑥𝑧
(1) 0 𝜒𝑧𝑧

(1)

). 

 

III.10 

 We can similarly consider the form of 𝜒(2) for the 𝑚 point group. The general form of this 

higher-order tensor is 

 𝑋(2) =

(

 
 
 
 
 
 
 
 
 
 
 (

𝜒𝑥𝑥𝑥
(2)

𝜒𝑥𝑥𝑦
(2)

𝜒𝑥𝑥𝑧
(2)

)

(

 

𝜒𝑥𝑦𝑥
(2)

𝜒𝑥𝑦𝑦
(2)

𝜒𝑥𝑦𝑧
(2)
)

 (

𝜒𝑥𝑧𝑥
(2)

𝜒𝑥𝑧𝑦
(2)

𝜒𝑥𝑧𝑧
(2)

)

(

 

𝜒𝑦𝑥𝑥
(2)

𝜒𝑦𝑥𝑦
(2)

𝜒𝑦𝑥𝑧
(2)
)

 

(

 

𝜒𝑦𝑦𝑥
(2)

𝜒𝑦𝑦𝑦
(2)

𝜒𝑦𝑦𝑧
(2)
)

 

(

 

𝜒𝑦𝑧𝑥
(2)

𝜒𝑦𝑧𝑦
(2)

𝜒𝑦𝑧𝑧
(2)
)

 

(

𝜒𝑧𝑥𝑥
(2)

𝜒𝑧𝑥𝑦
(2)

𝜒𝑧𝑥𝑧
(2)

)

(

 

𝜒𝑧𝑦𝑥
(2)

𝜒𝑧𝑦𝑦
(2)

𝜒𝑧𝑦𝑧
(2)
)

 (

𝜒𝑧𝑧𝑥
(2)

𝜒𝑧𝑧𝑦
(2)

𝜒𝑧𝑧𝑧
(2)

)

)

 
 
 
 
 
 
 
 
 
 
 

. 
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When we act 𝑀𝑥𝑧 on 𝜒(2) as 𝜒𝑖𝑗𝑘
(2)′ = 𝑀𝑖𝑚

𝑥𝑧𝑀𝑗𝑛
𝑥𝑧𝑀𝑘𝑙

𝑥𝑧χ𝑚𝑛𝑙
(2)

 and require that 𝜒𝑖𝑗𝑘
(2)′

= 𝜒𝑖𝑗𝑘
(2)

, we find that, 

for the 𝑚 point group, 𝜒(2) takes the form 

 𝑋(2) =

(

 
 
 
 
 
 
 
 (
𝜒𝑥𝑥𝑥
(2)

0

𝜒𝑥𝑥𝑧
(2)
) (

0

𝜒𝑥𝑦𝑦
(2)

0

) (
𝜒𝑥𝑧𝑥
(2)

0

𝜒𝑥𝑧𝑧
(2)
)

(

0

𝜒𝑦𝑥𝑦
(2)

0

) (

𝜒𝑦𝑦𝑥
(2)

0

𝜒𝑦𝑦𝑧
(2)
) (

0

𝜒𝑦𝑧𝑦
(2)

0

)

(
𝜒𝑧𝑥𝑥
(2)

0

𝜒𝑧𝑥𝑧
(2)
) (

0

𝜒𝑧𝑦𝑦
(2)

0

) (
𝜒𝑧𝑧𝑥
(2)

0

𝜒𝑧𝑧𝑧
(2)
)

)

 
 
 
 
 
 
 
 

. 

 

III.12 

 We can take this example just one step further to illustrate the power of nonlinear optics in 

identifying the symmetries of crystal structures by examining the 𝐶2 point group. An illustration 

of a molecule obeying this point group is also found in Figure III.2. Like 𝑚, 𝐶2 is a monoclinic 
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point group. It consists also of one symmetry operation – a two-fold rotation about one axis, which 

we will take to be the 𝑦-axis. This symmetry operation can thus be represented by the matrix 

 𝐶2,𝑦 = (
−1 0 0
0 1 0
0 0 −1

). 

 

III.13 

Applying this transformation to the general form of 𝜒(1) and requiring that the matrix obey the 𝐶2 

symmetry leads to a form of 𝜒(1) for 𝐶2 of 

 𝑋(1) = (

𝜒𝑥𝑥
(1) 0 𝜒𝑧𝑥

(1)

0 𝜒𝑦𝑦
(1) 0

𝜒𝑥𝑧
(1) 0 𝜒𝑧𝑧

(1)

). 

 

III.14 

A comparison of Equations III.10 and III.14 shows that the form of these linear tensors is the same 

for both point groups, despite their different symmetry operations. In fact, this holds true across 

the different crystal classes – the linear optical susceptibility tensors can generally distinguish 

between different crystal classes4. However, it is necessary to go to higher order tensors, and thus 

to nonlinear optical effects, to make distinctions between different point groups within a particular 

crystal class. Here, for example, the form of 𝜒(2) for the 𝐶2 point group is 

 𝑋(2) =

(

 
 
 
 
 
 
 
 
 (

0

𝜒𝑥𝑥𝑦
(2)

0

) (

𝜒𝑥𝑦𝑥
(2)

0

𝜒𝑥𝑦𝑧
(2)
) (

0

𝜒𝑥𝑧𝑦
(2)

0

)

(

𝜒𝑦𝑥𝑥
(2)

0

𝜒𝑦𝑥𝑧
(2)
) (

0

𝜒𝑦𝑦𝑦
(2)

0

) (

𝜒𝑦𝑧𝑥
(2)

0

𝜒𝑦𝑧𝑧
(2)
)

(

0

𝜒𝑧𝑥𝑦
(2)

0

) (

𝜒𝑧𝑦𝑥
(2)

0

𝜒𝑧𝑦𝑧
(2)
) (

0

𝜒𝑧𝑧𝑦
(2)

0

)

)

 
 
 
 
 
 
 
 
 

, 

 

III.15 

 
4 In fact, the form of the linear optical susceptibility tensor is the same for two different groupings of crystal classes 

– the tetragonal, trigonal, and hexagonal classes and the cubic and isotropic classes [69]. 
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which is distinct from the form of 𝜒(2) for 𝑚 in Equation III.12. We will be using this method of 

deriving the 𝜒𝑁𝐿 tensors for various crystal symmetries to predict the anisotropy of nonlinear 

optical responses throughout the experimental chapters. 

  

SHG in Weyl Semimetals 

 The SHG response of the type-I WSM TaAs was one of the first experimental indications 

the physics community had that studying the nonlinear optical effects of WSMs was worth 

pursuing. In particular, in 2016, it was found that the strength of the SHG response of TaAs was 

at least one order of magnitude larger than that of GaAs, which is typically used as a reference 

sample in SHG experiments because it has such a large and robust second-order response [14]. A 

sample of the data taken is shown in Figure III.3. This study followed the approach of [77] to link 

this large SHG response with the Berry formalism and thus with the topology of the Weyl nodes. 

However, this topological explanation is not the only one which has been offered. A subsequent 

study in 2018 has suggested that this large response may be due simply to resonance effects [70]. 
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Figure III.3 – An illustration of the RA-SHG data taken on TaAs (left) and GaAs (right) in [14] in 

two different polarization channels. Both plots are normalized to the same value of +1, but the 

GaAs data is multiplied by a factor of 6.6, indicating the relative strength of the TaAs response 

compared with GaAs. 

  

 Beyond this initial study, little literature exists studying the SHG response of other WSMs. 

SHG is used as a tool to study other effects in some type-II WSMs [89, 90], but typically the 

strength of the response is not estimated, and so the topological connection is not exploited. In 

addition, many of these studies are on thin materials, which may not access the bulk Weyl cone 

band structure. This lack of additional information on the strength of the SHG response in WSMs 

will motivate many of our SHG studies in subsequent chapters. 

 

Mathematical Foundations of the Photogalvanic Effect 

 Referring to Equation III.4, we recall that the 2𝜔 terms resulted in a second harmonic 

response. There is also a DC response, which indicates the existence of the photogalvanic effect 

(PGE) [91]. This PGE is the second-order photocurrent response in a material, where photocurrent 
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is defined as the generation of current in a material without an applied external voltage due to 

exposure to light [15]5. Photocurrent generally comes from excitations of the electrons of the 

material due to the energy imparted on them by the light. But the PGE, as a nonlinear response, is 

highly dependent on the crystalline symmetries of the material under exploration. For example, 

just as with SHG, PGE cannot contribute to the photocurrent response in materials possessing a 

center of inversion symmetry. The existence and form of the PGE will also be dependent on the 

point group symmetry of the material under study.  

 The photogalvanic effect is defined as  

 𝐽 = 𝜂𝑖𝑗𝑘𝐸𝑗𝐸𝑘
∗, 

 

III.16 

where 𝜂𝑖𝑗𝑘 is a complex rank-3 tensor.6 Requiring 𝐽  be real necessarily requires 𝜂𝑖𝑗𝑘 = 𝜂𝑖𝑘𝑗
∗ . That 

is, 𝜂𝑖𝑗𝑘 is Hermitian in its last two indices. Typically, contributions to the photocurrent from the 

real and imaginary components of 𝜂𝑖𝑗𝑘 are considered separately from one another. Indeed, the 

two have distinct physical origins. The imaginary part contributions known as the circular PGE 

(CPGE), will change sign with the helicity of the incoming light while the real part contributions, 

known as linear PGE (LPGE), are independent of helicity [91].  The distinction between these two 

effects can be seen purely using symmetry arguments. 

 To highlight the different chiral dependencies of the LPGE and CPGE, we will here show 

that only the LPGE can contribute to the photocurrent response if the light incident on the material 

is linearly polarized. To do this, we note that we can write 𝜂𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑘 + 𝑖𝐵𝑖𝑗𝑘 for 𝐴𝑖𝑗𝑘 symmetric 

 
5 In this section, we will focus on DC photocurrent effects. 
6 The 𝜂(2) tensor has similar symmetry properties to the 𝜒(2) tensor, but the two are unique. In fact, a similar expansion 

of the photocurrent response can be performed using 𝜂 as was done for the induced polarization using 𝜒 in Equation 

III.3. 
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in the last two indices and 𝐵𝑖𝑗𝑘 antisymmetric in the last two indices, a requirement for a physical 

(real) photocurrent measurement. For linearly polarized light, we have  

 𝐽 = 𝐴𝑖𝑗𝑘𝐸𝑗𝐸𝑘
∗ + 𝑖𝐵𝑖𝑗𝑘𝐸𝑗𝐸𝑘

∗. 
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Because linearly polarized light is purely real, we must have  

 𝐴𝑖𝑗𝑘𝐸𝑗𝐸𝑘
∗ + 𝑖𝐵𝑖𝑗𝑘𝐸𝑗𝐸𝑘

∗ = 𝐴𝑖𝑗𝑘𝐸𝑘𝐸𝑗
∗ + 𝑖𝐵𝑖𝑗𝑘𝐸𝑘𝐸𝑗

∗ 

 

III.18 

or 

 𝐴𝑖𝑗𝑘𝐸𝑗𝐸𝑘 + 𝑖𝐵𝑖𝑗𝑘𝐸𝑗𝐸𝑘 = 𝐴𝑖𝑘𝑗𝐸𝑗𝐸𝑘 − 𝑖𝐵𝑖𝑗𝑘𝐸𝑗𝐸𝑘. 

 

III.19 

Because 𝐵𝑖𝑗𝑘 is antisymmetric in its last two indices, Equation 5 will only hold if 𝐵𝑖𝑗𝑘 does not 

contribute to the photocurrent. Thus, only the real part of 𝜂𝑖𝑗𝑘 (LPGE) will contribute to the 

photocurrent response for linearly polarized light. 

 In the literature, it is common to see CPGE represented as a rank-2 tensor 𝛽𝑖𝑗 multiplying 

the cross product of 𝐸 and 𝐸∗ (eg. [10]). Recalling that CPGE arises only due to contributions from 

the imaginary part of 𝜂𝑖𝑗𝑘, we can explicitly write out the 𝑖𝑡ℎ component of the CPGE response as 

 

𝐽𝑖
𝐶𝑃𝐺𝐸 = 𝑖(𝐵𝑖11𝐸1𝐸1

∗ + 𝐵𝑖12𝐸1𝐸2
∗ + 𝐵𝑖13𝐸1𝐸3

∗ + 𝐵𝑖21𝐸2𝐸1
∗ + 𝐵𝑖22𝐸2𝐸2

∗

+ 𝐵𝑖23𝐸2𝐸3
∗ + 𝐵𝑖31𝐸1𝐸3

∗ + 𝐵𝑖32𝐸3𝐸2
∗ + 𝐵𝑖33𝐸3𝐸3

∗). 

 

III.20 

Because 𝐵𝑖𝑗𝑘 is antisymmetric, we must have that 𝐵𝑖𝑗𝑗 = 0. Simplifying, we can say 
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𝐽𝑖
𝐶𝑃𝐺𝐸 = 𝑖(𝐵𝑖12(𝐸1𝐸2

∗ − 𝐸2𝐸1
∗) + 𝐵𝑖13(𝐸1𝐸3

∗ − 𝐸3𝐸1
∗) + 𝐵𝑖23(𝐸2𝐸3

∗ − 𝐸3𝐸2
∗)) 

=
𝑖

2
𝐵𝑖𝑙𝑚(𝐸𝑙𝐸𝑚

∗ − 𝐸𝑚𝐸𝑙
∗) 

=
𝑖

2
𝐵𝑖𝑙𝑚(𝛿𝑙𝑎𝛿𝑚𝑏 − 𝛿𝑙𝑏𝛿𝑚𝑎)𝐸𝑎𝐸𝑏

∗ 

=
𝑖

2
𝐵𝑖𝑙𝑚휀𝑗𝑙𝑚휀𝑗𝑎𝑏𝐸𝑎𝐸𝑏

∗ 

=
𝑖

2
𝐵𝑖𝑙𝑚휀𝑗𝑙𝑚(�⃗� × 𝐸∗⃗⃗⃗⃗ )𝑗  

= 𝛽𝑖𝑗(�⃗� × 𝐸∗⃗⃗⃗⃗ )𝑗  

 

 

III.21 

where we have defined 𝛽𝑖𝑗 =
𝑖

2
𝐵𝑖𝑙𝑚휀𝑗𝑙𝑚 for 휀𝑖𝑗𝑘 the levi-civita tensor. Because 𝐴𝑖𝑗𝑘 is symmetric 

in the last two indices, we can write this even more generically as 𝛽𝑖𝑗 =
1

2
𝜂𝑖𝑙𝑚휀𝑗𝑙𝑚. 

 One subtlety in the discussion of CPGE and LPGE which can easily be overlooked is that 

it is possible to have LPGE contributions when the incident light is circularly polarized. While this 

can be proved through a direct computation, it is more illustrative to investigate how CPGE and 

LPGE come into play with a generic polarization of the incident light. Doing so will allow us not 

only to show LPGE contributions from purely circular light, but also to draw some broader 

conclusions about the roles of LPGE and CPGE in photocurrent responses.  

 The most generic photocurrent experiment typically consists of light normally incident on 

an optical component such as a waveplate (WP), designed to rotate the polarization of the incoming 

light before it illuminates the sample. We will assume without loss of generality that the slow axis 

of the WP is aligned along the 𝑥-direction and the fast axis along the 𝑦-direction in the lab frame. 

We can represent such a component in the Jones calculus with a 2 × 2 matrix  
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 𝑀 = (𝑒
−𝑖𝑛𝑠

𝜔
𝑐
𝑙 0

0 𝑒−𝑖𝑛𝑓
𝜔
𝑐
𝑙
), 

 

III.22 

where 𝑛𝑠 , 𝑛𝑓 are the slow and fast indices of refraction, respectively, and 𝑙 is the thickness of the 

component. From there, we can define two phase factors, 𝜑 and 𝛤, such that  

 𝜑 = (𝑛𝑠 + 𝑛𝑓)
𝜔

𝑐
𝑙, 𝛤 = (𝑛𝑓 − 𝑛𝑠)

𝜔

𝑐
𝑙.  III.23 

Doing this, we see 

 𝑀 = (𝑒
𝑖(𝛤−𝜑)/2 0
0 𝑒−𝑖(𝛤+𝜑)/2

) = 𝑒𝑖(𝛤−𝜑)/2 (
1 0
0 𝑒−𝑖𝛤

). 

 

III.24 

For our purposes the overall phase of the incident light is not important, and so we will ignore the 

prefactor to 𝑀 in the rest of the discussion [92]. 

 In an experiment, the optical component represented by 𝑀 is typically rotated about its 𝑧-

axis. After such a rotation, we would transform 𝑀 → 𝑀(𝜃) for 𝜃 the angle of rotation clockwise 

about the 𝑧-axis, given by 

 𝑀(𝜃) = (
cos2(𝜃) + 𝑒−𝑖𝛤 sin2(𝜃)

1

2
sin(2𝜃) (1 − 𝑒−𝑖𝛤)

1

2
sin(2𝜃) (1 − 𝑒−𝑖𝛤) sin2(𝜃) + 𝑒−𝑖𝛤 cos2(𝜃)

). 

 

III.25 

If the light incident normally on such a component and was initially horizontally polarized, we 

would have an electric field polarization of (
cos2(𝜃) + 𝑒−𝑖𝛤 sin2(𝜃)
1

2
sin(2𝜃) (1 − 𝑒−𝑖𝛤)

) after it was transmitted 

through the waveplate.  

 For the purposes of illustration, we can now create a tensor representing 𝐸𝐸∗ as 

 

𝐸𝐸∗

= (
cos4(𝜃) + sin4(𝜃) + sin2(2𝜃) cos(𝛤)

1

4
sin(4𝜃) (1 − cos(𝛤)) +

𝑖

2
sin(2𝜃) sin(𝛤)

1

4
sin(4𝜃) (1 − cos(𝛤)) −

𝑖

2
sin(2𝜃) sin(𝛤)

1

2
sin2(2𝜃) (1 − cos(𝛤))

). 

 

III.26 
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We then have that nonzero photocurrent must arise from coupling between the real part of 𝜂𝑖𝑗𝑘 and 

the symmetric part of 𝐸𝐸∗, or the imaginary part of 𝜂𝑖𝑗𝑘 and the antisymmetric part of 𝐸𝐸∗. In 

other words, the real part of 𝐸𝐸∗ will contribute to LPGE and the imaginary part to CPGE. As an 

example, if we had an experiment in which our horizontally polarized light was normally incident 

on a half-waveplate (HWP), we would have that 𝛤 = 𝜋, so  

 𝐸𝐸∗ = (
cos4(𝜃) + sin4(𝜃) − sin2(2𝜃)

1

2
sin(4𝜃)

1

2
sin(4𝜃) sin2(2𝜃)

). 

 

III.27 

We immediately see that the antisymmetric part of 𝐸𝐸∗ goes to zero, verifying that, as expected, 

purely linear light does not give any CPGE contribution to the photocurrent.  

 CPGE is typically studied using a quarter-waveplate (QWP) to convert pure linear light to 

pure circular light. For an experiment with horizontally polarized light incident on a QWP, we 

have that 𝛤 =
𝜋

2
 and  

 𝐸𝐸∗ = (
cos4(𝜃) + sin4(𝜃)

1

4
sin(4𝜃) +

𝑖

2
sin(2𝜃)

1

4
sin(4𝜃) −

𝑖

2
sin(2𝜃)

1

2
sin2(2𝜃)

). 

 

III.28 

We can immediately see from Equation III.28 that the antisymmetric part of 𝐸𝐸∗, which 

determines the CPGE, has a sin(2𝜃) dependence. This is distinct from the symmetric components 

of 𝐸𝐸∗, which has a 4𝜃 dependence. In fact, this 2𝜃 versus 4𝜃 distinction is true regardless of the 

type of WP used, assuming that the CPGE term survives, as evidenced in Equation III.26. This 

angular dependence can thus be used in experiments to distinguish between the LPGE and CPGE 

contributions to the photocurrent response.  

 Continuing with the QWP example, we have that pure linear light occurs at 𝜃 =
𝑛𝜋

2
 for 

integers 𝑛, simplifying 𝐸𝐸∗ further to  
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 𝐸𝐸∗ = (
1 0
0 0

), 

 

III.29 

which indicates that all of the photocurrent response arises due to LPGE. In contrast, pure circular 

light occurs at 𝜃 =
𝜋

4
+
𝑛𝜋

2
, so 𝐸𝐸∗ becomes 

 𝐸𝐸∗ = (

1

2
±
𝑖

2

∓
𝑖

2

1

2

). III.30 

This reflects contributions from both CPGE and LPGE, proving that an LPGE response can arise 

in conjunction with the CPGE response in materials even for pure circular incident light 

polarizations. 

 More than just distinguishing the LPGE and CPGE contributions to the photocurrent, 

however, there is a further subtlety in identifying different physical contributions to the LPGE. In 

particular, another look at Equation III.27 reveals that the entirety of the cos(4𝜃) dependence of 

the LPGE comes from the diagonal elements of 𝐸𝐸∗, while the off-diagonal elements contain the 

sin(4𝜃) dependence. It is clear from the comparison between pure linear light and pure circular 

light that it is only possible to access the off-diagonal elements if there is some degree of ellipticity. 

Thus, we can identify the cos(4𝜃) dependence with the “linear contribution to the LPGE” and the 

sin(4𝜃) dependence with the “elliptical/circular contribution to the LPGE”.7 

 One peculiarity with this identification is that, for pure circular light, we have no 

contribution from the “elliptical contribution to LPGE”. Noting that, for a QWP, pure circular light 

occurs at 𝜃 =
𝜋

4
, it is clear the sin(4𝜃) term will go to zero and the cos(4𝜃) term will reach a 

nonzero minimum for pure circular light (𝜃 =
𝜋

4
+
𝑛𝜋

2
). Meanwhile, the CPGE term behaves as 

 
7 Note that here we are working with light incident normally on the sample surface. This assignment will break 

down when we introduce an oblique incidence geometry in subsequent sections and chapters. 
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expected - maximized/minimized depending on the helicity of the polarization. To investigate this 

apparent inconsistency further, we investigate 𝐸𝐸∗ for a generic polarization state 𝐸𝐺 =

(
cos(𝛼)

𝑒𝑖𝛿 sin(𝛼)
). This has the benefit that now we can focus on how the variables in play effect the 

polarization directly, and so we can say that any and all ellipticity in the polarization will come 

from our 𝛿 term.  

 With 𝐸𝐺 , we can compute our 𝐸𝐸∗ tensor 

 

𝐸𝐺𝐸𝐺
∗

= (
cos2(𝛼)

1

2
cos(𝛿) sin(2𝛼) +

𝑖

2
sin(𝛿) sin(2𝛼)

1

2
cos(𝛿) sin(2𝛼) −

𝑖

2
sin(𝛿) sin(2𝛼) sin2(𝛼)

). 

 

III.31 

Here, we can see directly that the ellipticity of the polarization contributes only to the off-diagonal 

terms. And, in particular, the imaginary part of the ellipticity contributes to the antisymmetric 

component (CPGE) and the real part to the symmetric component (LPGE). Comparing to Equation 

III.27, we see that these correspond to the sin(2𝜃) and sin(4𝜃) contributions, respectively. 

Meanwhile linear contributions come from the diagonal elements, which correspond to the 

cos(4𝜃) contributions from Equation III.27.  

 This picture also illustrates why the linear contribution to LPGE seems to dominate for 

purely circular light. We can see from Equation III.31 that the elliptical contributions alternate 

between contributions to LPGE and CPGE, such that when CPGE is maximized, elliptical 

contributions to LPGE are minimized. This is evident by the dependence of the elliptical LPGE 

contributions on cos(𝛿) and the CPGE contributions on sin(𝛿). 
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Symmetry Considerations for the Photogalvanic Effect 

 To this point, all of the statements made have been completely general and independent of 

the crystal structure, assuming that the crystal is noncentrosymmetric so that the second order 

photocurrent response is allowed. Now, we will start thinking about how certain crystal symmetry 

operations might also affect the photocurrent response. Throughout this discussion, we will refer 

to tensor elements of 𝜂 = 𝐴 + 𝑖𝐵, such that elements of 𝐴 take the form 𝑎𝑖𝑗𝑘 and elements of 𝐵 

take the form 𝑏𝑖𝑗𝑘, and to current 𝐽 = (𝐽𝑥, 𝐽𝑦, 𝐽𝑧). As discussed previously, symmetries of 

crystalline materials besides inversion take the form of either mirror planes or axes of rotation or 

some combination of the two. Thus, we will begin by exploring a simple example of each of these 

symmetries, and then we will discuss some common material point groups to look at how these 

considerations play out in real materials. 

 Our first consideration will be for a crystal with one mirror plane. The inclusion of such a 

symmetry would place restrictions on 𝜂𝑖𝑗𝑘. We will consider first a mirror along the propagation 

direction (𝑧) of the incoming light. Without loss of generality, as in our SHG discussion, we will 

assume that the mirror lies in the 𝑥𝑧-plane, which takes 𝑦 → −𝑦. In this case, 𝜂𝑖𝑗𝑘 will be zero for 

any element with an odd number of 𝑦 indices, taking a form similar to that of 𝜒(2) of Equation 

III.13. Thus, for an experiment with horizontally polarized light normally incident on a QWP, we 

find a photocurrent response of 

 

𝐽𝑥 =
1

4
(3𝑎𝑥𝑥𝑥 + 𝑎𝑥𝑦𝑦) +

1

4
cos(4𝜃) (𝑎𝑥𝑥𝑥 − 𝑎𝑥𝑦𝑦), 

𝐽𝑦 =
1

2
𝑎𝑦𝑦𝑥 sin(4𝜃) − 𝑏𝑦𝑦𝑥 sin(2𝜃), 

𝐽𝑧 =
1

4
(3𝑎𝑧𝑥𝑥 + 𝑎𝑧𝑦𝑦) +

1

4
cos(4𝜃) (𝑎𝑧𝑥𝑥 − 𝑎𝑧𝑦𝑦). 

 

III.32 
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That is, only linear contributions to the LPGE survive along axes parallel to the mirror and only 

circular contributions – to LPGE and CPGE – survive normal to the mirror. This can be physically 

motivated by the fact that any linear contribution along the 𝑦-axis will have an equal and opposite 

contribution along the 𝑦-axis from the operation 𝑦 → −𝑦, while circular contributions along the 

𝑦-axis will propagate along opposite directions but will not be equal because of the helicity 

dependence. In the 𝑥𝑧-plane, however, which contains the mirror, the symmetry will eliminate the 

helicity component of the light, thus disallowing circular contributions of any form.  

 This contrasts with the situation in which the mirror is normal to the propagation direction 

of the light (𝑧 → −𝑧). In this case, we find a photocurrent response of 

 

𝐽𝑥 =
1

4
(3𝑎𝑥𝑥𝑥 + 𝑎𝑥𝑦𝑦) +

1

4
(𝑎𝑥𝑥𝑥 − 𝑎𝑥𝑦𝑦) cos(4𝜃) +

1

2
𝑎𝑥𝑦𝑥 sin(4𝜃)

− 𝑏𝑥𝑦𝑥 sin(2𝜃), 

𝐽𝑦 =
1

4
(3𝑎𝑦𝑥𝑥 + 𝑎𝑦𝑦𝑦) +

1

4
(𝑎𝑦𝑥𝑥 − 𝑎𝑦𝑦𝑦) cos(4𝜃) +

1

2
𝑎𝑦𝑦𝑥 sin(4𝜃)

− 𝑏𝑦𝑦𝑥 sin(2𝜃), 

𝐽𝑧 = 0. 

 

III.33 

Here, we see that we now have all contributions to LPGE and CPGE in-plane (𝐽𝑥 and 𝐽𝑦), but no 

second-order nonlinear photocurrent along the direction of propagation (𝐽𝑧). This is because now 

there is no requirement on the propagation direction or helicity in-plane, but out of plane both the 

helicity and propagation directions must be equal and opposite, and so no current is allowed. 

 As the simplest example of an axis of rotation, we consider a two-fold rotational axis (𝐶2) 

about the 𝑧-axis. Such a rotation would take 𝑥 → −𝑥 and 𝑦 → −𝑦, and so we would expect 𝜂𝑖𝑗𝑘 to 

vanish for elements with odd numbers of indices of 𝑥 and 𝑦, similar to the 𝜒(2) tensor presented 

in Equation III.16. With this symmetry operation, we see a complete reversal of the case presented 
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in Equation III.33 for a mirror normal to the propagation direction. That is, we have photocurrent 

contributions of 

 

𝐽𝑥 = 0, 

𝐽𝑦 = 0, 

𝐽𝑧 =
1

4
(3𝑎𝑧𝑥𝑥 + 𝑎𝑧𝑦𝑦) +

1

4
(𝑎𝑧𝑥𝑥 − 𝑎𝑧𝑦𝑦) cos(4𝜃) +

1

2
𝑎𝑧𝑦𝑥 sin(4𝜃)

− 𝑏𝑧𝑦𝑥 sin(2𝜃). 

 

III.34 

This is due to the fact that now along both the 𝑥- and 𝑦-axes the current must be equal and opposite 

for linearly polarized light (𝑥 → −𝑥, 𝑦 → −𝑦)  as in the case of a single mirror along the 𝑧-axis, 

while now this double restriction is enough to force equal contributions from opposite chiralities 

for circular light as well. In contrast, for a 𝐶2 axis in-plane, we would expect that the requirement 

for linear current normal to the axis would still hold (that is, there would be no linear contributions 

normal to the axis). However, the requirement for the circular contributions is lifted because the 

direction of propagation relative to the rotational axis has changed. Along the 𝐶2 axis, however, 

the chiralities of the circular contributions would be equal and opposite while the linear terms 

should be allowed. For example, if we had a 𝐶2-axis about the 𝑥-axis, we have photocurrent 

contributions of 

 

𝐽𝑥 =
1

4
(3𝑎𝑥𝑥𝑥 + 𝑎𝑥𝑦𝑦) +

1

4
(𝑎𝑥𝑥𝑥 − 𝑎𝑥𝑦𝑦) cos(4𝜃), 

𝐽𝑦 =
1

2
𝑎𝑦𝑦𝑥 sin(4𝜃) − 𝑏𝑦𝑦𝑥 sin(2𝜃), 

𝐽𝑧 =
1

2
𝑎𝑧𝑦𝑥 sin(4𝜃) − 𝑏𝑧𝑦𝑥 sin(2𝜃). 

 

III.35 

That is, we now have linear contributions only along the 𝑥-axis and circular contributions only 

along the 𝑦- and 𝑧-axes, as expected. 
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Photocurrent in Real Materials 

 Equipped now with our symmetry arguments, we can consider some real materials. The 

first material we will consider is Bi2Se3, a Dirac semimetal. The QWP experiment discussed in the 

previous section has already been reported for Bi2Se3 [74]. While bulk Bi2Se3 belongs to the 𝐷3𝑑 

point group, which possesses a center of inversion symmetry, it is possible to get second-order 

surface photocurrent contributions because the surface belongs to the 𝐶3𝑣 point group, which does 

not possess inversion symmetry. The 𝐶3𝑣 point group consists of an out of plane three-fold 

rotational axis 𝐶3 and three mirror planes related to one another by that rotation. Using these 

symmetries, and taking one of the mirror planes to lie in the 𝑦𝑧-plane, we can impose restrictions 

on the elements of 𝜂𝑖𝑗𝑘 such that  

 𝜂 =

(

 
 
 
 
 
 
 (

0
−𝑎𝑦𝑦𝑦

𝑎𝑦𝑧𝑦 − 𝑖𝑏𝑦𝑧𝑦

) (

−𝑎𝑦𝑦𝑦
0
0

) (
𝑎𝑦𝑧𝑦 + 𝑖𝑏𝑦𝑧𝑦

0
0

)

(

−𝑎𝑦𝑦𝑦
0
0

) (

0
𝑎𝑦𝑦𝑦

𝑎𝑦𝑧𝑦 − 𝑖𝑏𝑦𝑧𝑦

) (
𝑎𝑦𝑧𝑦 + 𝑖𝑏𝑦𝑧𝑦

0
0

)

(

𝑎𝑧𝑦𝑦
0
0
) (

0
𝑎𝑧𝑦𝑦
0

) (
0
0
𝑎𝑧𝑧𝑧

)
)

 
 
 
 
 
 
 

, III.36 

to find an expected in-plane photocurrent response of 

 

𝐽𝑥 = −
1

2
𝑎𝑦𝑦𝑦 sin(4𝜃), 

𝐽𝑦 = −
𝑎𝑦𝑦𝑦

2
(cos(4𝜃) + 1). 

 

III.37 

That is, we expect circular contributions to LPGE along the 𝑥-axis and linear contributions to 

LPGE along the 𝑦-axis. 
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 However, it is possible to lift some of these symmetry restrictions on observable 

photocurrent responses by sending the light in at an oblique incidence. The experiment in [74] did 

just this – sending in light obliquely incident in the 𝑥𝑧-plane and observing 𝑗𝑦. Letting 𝜉 be our 

angle of incidence with this experimental geometry, we now have an electric field polarization of 

 𝐸 =

(

 

cos(𝜉) (cos2(𝜃) − 𝑖 sin2(𝜃))
1

2
(1 + 𝑖) sin(2𝜃)

− sin(𝜉) (cos2(𝜃) − 𝑖 sin2(𝜃)))

  

 

III.38 

for a QWP and a photocurrent contribution 𝑗𝑦 of 

 
𝑗𝑦 =

1

4
(𝑎𝑦𝑦𝑦(1 − cos(4𝜃) − cos

2(𝜉)(3 + cos(4𝜃))) − 4𝑏𝑦𝑧𝑦 sin(2𝜃) sin(𝜉)

− 2𝑎𝑦𝑧𝑦 sin(4𝜃) sin(𝜉)). 

 

III.39 

In other words, we expect both LPGE and CPGE contributions to the photocurrent response. The 

data and fit using a functional form of Equation III.39 are shown in Figure III.4 [74]. 

 

 

Figure III.4 – Photocurrent data and fit using the CPGE and LPGE contributions on Bi2Se3 taken 

in an oblique incidence experimental geometry. This figure is adapted from [74]. 
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Photocurrent in Weyl Semimetals 

 The photocurrent response in WSMs has also garnered much interest in recent past, and so 

we will consider now the expected photocurrent response in the type-I WSM TaAs, which belongs 

to point group 𝐶4𝑣. 𝐶4𝑣 has both a 𝐶2 and a 𝐶4 rotation about the 𝑧-axis and mirror planes in both 

the 𝑥𝑧- and 𝑦𝑧-planes. These symmetries require 

 𝜂 =

(

 
 
 
 
 
 
 
(

0
0

𝑎𝑦𝑧𝑦 − 𝑖𝑏𝑦𝑧𝑦

) (
0
0
0
) (

𝑎𝑦𝑧𝑦 + 𝑖𝑏𝑦𝑧𝑦
0
0

)

(
0
0
0
) (

0
0

𝑎𝑦𝑧𝑦 − 𝑖𝑏𝑦𝑧𝑦

) (
0

𝑎𝑦𝑧𝑦 + 𝑖𝑏𝑦𝑧𝑦
0

)

(

𝑎𝑧𝑦𝑦
0
0
) (

0
𝑎𝑧𝑦𝑦
0

) (
0
0
𝑎𝑧𝑧𝑧

)
)

 
 
 
 
 
 
 

. III.40 

For light normally incident along the 𝑧-axis then, we have a photocurrent response of 

 

𝑗𝑥 = 0, 

𝑗𝑦 = 0, 

𝑗𝑧 =
1

4
(𝑎𝑧𝑦𝑦(3 + cos(4𝜃)) + 2𝑎𝑧𝑦𝑦 sin

2(2𝜃)). 

 

III.41 

That is, there is no in-plane second-order photocurrent response. 

 It is possible to adjust the angle of incidence of the light in order to force non-zero in-plane 

contributions as we did for Bi2Se3, but another option for TaAs is to send the light normally 

incident to a different facet of the crystal. So far, all of our hypothetical experiments have assumed 

that the (001) face of the crystal was normal to the plane of incidence (ie. the 𝑐-axis of the crystal 

is along the 𝑧-axis in the lab frame). Now, we will explore the case for TaAs in which the (010) 

axis is aligned along the 𝑧-axis of the lab frame. This can be simulated by rotating 𝜂𝑖𝑗𝑘 by 90∘ 
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about the 𝑥-axis of the lab frame. With this rotated photocurrent tensor, we have a photocurrent 

response of 

 

𝑗𝑥 = 𝑏𝑦𝑧𝑦 sin(2𝜃) − 𝑎𝑦𝑧𝑦 sin(4𝜃), 

𝑗𝑦 =
1

4
((𝑎𝑧𝑧𝑧 − 𝑎𝑧𝑦𝑦) cos(4𝜃) − 3𝑎𝑧𝑦𝑦 − 𝑎𝑧𝑧𝑧), 

𝑗𝑧 = 0. 

 

III.42 

That is, now we expect a non-zero in-plane response even at normal incidence.  

 Several photocurrent experiments have been performed in the geometries presented in 

Equations III.41 and III.42, but the results of these experiments seem contradictory both to the 

symmetry arguments presented here and to one another. For example, in [9], a CPGE response 

only is measured along the 𝑗𝑥 direction for the (010) face at normal incidence. While the arguments 

presented above rule out linear contributions to LPGE along this direction, circular contributions 

to LPGE are not symmetry-forbidden, so we would still expect some 4𝜃 dependence in the 

observed photocurrent response. Another relevant example is presented in [82], where experiments 

performed with light incidence on the (001) face see non-zero in-plane response in direct 

contradiction to the symmetry arguments presented here while experiments with light incident on 

the (010) face pick out the LPGE components predicted above but do not see any CPGE 

contributions.  

 We will discuss some of these discrepancies in greater detail in Chapter VI, where we 

present our own experimental LPGE and CPGE studies on the chiral WSM CoSi. In chiral WSMs, 

the strength of the CPGE response plays a particularly important role. As discussed in Chapter II, 

chiral WSMs are typically electronic WSMs which do not possess mirror symmetries. In many 

other WSMs, these mirror symmetries restrict the paired Weyl cones to occur at the same energy 

in the band structure of the material. However, the lack of mirrors in the chiral systems means that 
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the Weyl cones of opposite chirality can occur at different energies. This means that, through 

wavelength selection, the incident light can be used to populate only one of the paired Weyl cones. 

This leads to the expectation of quantized effects, where the quantization is given by the Chern 

number of the populated Weyl cone [93]. In fact, the photocurrent response can be written directly 

in terms of the Berry curvature and Berry phase regardless of whether we are looking at the chiral 

WSMs [77]. However, even though this connection between the topology and the photocurrent 

response exists in all WSMs, the quantization is easiest to experimentally detect in these special 

chiral material systems. In particular, the quantization of the photocurrent response has been 

reported already in the chiral WSM RhSi using direct photocurrent measurements and THz 

generation techniques [10, 11, 58, 60]. 
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CHAPTER IV 

Experimental Development 

IV 

 To this point, we have discussed both the broad material class in which we are interested 

and the probe of nonlinear optics we wish to use to explore the symmetry and topology of these 

materials. We now turn our attention to the specific experimental construction which goes into this 

study. In particular, throughout this chapter, we will discuss the optical setups of our RA-SHG 

measurements, time-resolved optical reflectivity measurements, photocurrent measurements, and 

scanning measurements which will be used in subsequent chapters. At the end of this chapter, we 

will also outline the development of a glovebox-based fabrication setup for the purposes of 

building a multi-lab collaboration to study 2d materials.  

 We note here the contributions to each of these experiments by myself and other group 

members. All group members have been responsible for alignment of the NOPA systems which 

serve as the light sources for our experiments. However, I have taken a particularly active role and 

have served several times to teach other newer members of the lab the alignment procedure. The 

RA-SHG experiment was first constructed in our lab by Wencan Jin and Kara Mattioli. I have 

worked on significant realignment in the years since then. I was solely responsible for the design 

and construction of both time-resolve optical reflectivity and photocurrent generation setups. 

Austin Kaczmarek and I were both responsible for the creation of the sample mount and electronic 

detection system for the photocurrent setup. The scanning SHG setup was designed and created 

by Austin Kaczmarek, although I did help with troubleshooting problems he encountered along 
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the way in my role supervising summer undergraduate students. Members of the team which 

designed the glovebox-based 2d fabrication setup included Ziji Xiang, who took the lead in 

ordering the glovebox, myself, who ordered the microscope and designed and built the interactions 

of the relevant components for the scanning and stacking procedures, Liuyan Zhao, Lu Li, Steve 

Cundiff, Hui Deng, Jason Horng, Albert Liu, Hanna Ruth, and Spencer Batalden. Since the initial 

construction, Ian Blackman-Staves, Samia Sabir, Laura Zichi, and Shannon Gray have all worked 

on the searching and scanning component of this project. 

 All of the optical experiments we will discuss are ultrafast optical experiments. Ultrafast 

optics are studies involving lasers which have a pulsed output rather than a continuous output. 

These pulses are typically on the order of picoseconds to femtoseconds8 in length and repeat at 

frequencies on the order of kHz to MHz. Ultrafast optics is a particularly useful tool because it 

allows for time resolution which is not possible with continuous wave (CW) lasers and the 

possibility of spatial resolution down to the diffraction limit. In addition, because the intensity of 

the laser field is inversely proportional to the pulse duration, ultrafast laser sources result in high 

intensity fields which can be used to probe nonlinear optical effects, which are typically too weak 

to observe with continuous wave lasers [95]. 

 

Spirit NOPA-VISIR 

 In all studies presented here, the light source used is the Spirit NOPA-VISIR system from 

Spectra Physics [96]. The laser, known as the Spirit, is an industrial-grade femtosecond pulsed 

laser with a repetition rate of 200 kHz and an output power of 16 W at 1040 nm. The output beam 

from the Spirit is split three directions. 1 W of power is sectioned off for experiments at 1040 nm 

 
8 In fact, the shortest pulse duration so far was achieved in 2017 – 43 attoseconds (10−18s) [94]. 
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and for diagnostics which must be performed directly on the Spirit. The other 15 W is split in half, 

with each half fed into a nonlinear optical parametric amplifier (NOPA). The purpose of the NOPA 

is to allow a flexible tuning of the wavelength of the light used for experiments. Using this Spirit 

NOPA-VISIR system, we can generate light at any wavelength from 650 nm to 900 nm or from 

1200 nm to 2500 nm for use in experiments with a pulse width of < 350 fs without a prism 

compressor and typically < 70 fs with a prism compressor. Because we have two NOPAs, we can 

perform multiple experiments simultaneously at different wavelengths or use two wavelengths 

with one experiment. The specifics of the wavelengths used in a given setup will be discussed in 

more detail as the experiments are introduced below. Images of the Spirit NOPA-VISIR system in 

the lab are shown in Figure IV.1. 
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Figure IV.1 – (Top) Pictures of the Spirit NOPA-VISIR setup on the optical table in the lab. (Left) 

the externals of the NOPA (beige) and the Spirit (silver). (Center) Another image of the externals, 

this time showing both NOPAs with the Spirit between them. Also pictured is the covered optical 

beam path taking the output light of the Spirit to the NOPAs. The light output from the NOPAs to 

their prism compressors is uncovered so that it may be used to monitor the power output of the 

NOPA directly when necessary. (Right) An image of the internal optical components of the 

NOPAs. Also pictured in the upper right is the external of the prism compressor used for the output 

of the NOPA. (Bottom) A cartoon of how the setup looks from above on the table for clarification. 

The entirety of the Spirit NOPA-VISIR system is enclosed in a black box on the optical table to 

protect users in the lab from potential stray beams and to protect the laser system from fluctuations 

of the temperature and humidity in the lab. 

  

 The internal schematics of the NOPA are shown in Figure IV.2. Generally, there are three 

steps to adjust the wavelength of the light within the NOPA. First, 100 mW – 200 mW are sent to 

a nonlinear crystal to generate a white light continuum. This white light continuum provides the 

basis for the tunability of the wavelength because white light by definition contains a range of 
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wavelengths within one beam. The remaining 1040 nm light is meanwhile frequency doubled to 

520 nm. The white light continuum is then temporally dispersed such that the shorter wavelengths 

arrive after the longer ones, allowing for the selection of a particular wavelength through sum-

frequency generation by temporally overlapping the desired wavelength within the continuum with 

~400 mW of the 520 nm beam within a nonlinear crystal, referred to as the first amplification 

stage. The output of this first amplification stage serves as the seed for the second amplification 

stage, where it is spatially and temporally overlapped within a second nonlinear crystal with the 

remaining 520 nm light to increase the power of the desired wavelength to ~400 mW, which is 

then sent out of the NOPA as the signal beam.  

 

Figure IV.2 – The internal schematics of the NOPA system, taken from [96]. Each optical 

component is labeled, and the various wavelengths present throughout the system are traced in 

different colors. The pink beam is the initial 1040 nm pumped by the Spirit, the white is the white 

light continuum resulting from the white light generation crystal, the green is the 520 nm beam 

used to amplify the first and second stages, the yellow is the seed from the first stage amplification, 
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the orange is the signal from the second stage amplification, and the purple is the idler, which can 

be separated from the signal output and used for longer wavelength experiments. 

 

 Upon exiting the NOPA, the signal pulse duration can be up to 350 fs. However, because 

we are interested in nonlinear optics, which is typically associated with a low signal level, we wish 

to decrease the pulse duration as much as possible so as to increase the total electric field available 

at the sample locations of our setups. Thus, the final step is to send the signal to a prism 

compressor, shown in Figure IV.1, which uses a two-prism system to compress the pulse duration 

back to ~70 fs when the system is fully optimized. It is this compressed beam which is then directed 

to the experimental setups. 

 

RA-SHG 

 The first experimental setup we will discuss which will be used throughout the remaining 

chapters of this thesis is an optical setup which measures the rotational anisotropy of the second 

harmonic response of a material, fondly referred to from here on as the RA-SHG setup. It was first 

proposed in [97, 98], and was initially constructed in our lab by Wencan Jin and Kara Mattioli. 

The basic idea is that light of frequency 𝜔 illuminates a sample at either a normal or oblique angle 

of incidence, and the intensity of the reflected SHG is measured as a function of angle. Neumann’s 

principle states that any symmetry under which a crystal structure is invariant must also dictate the 

response of any other physical properties of that crystal [99]. This together with our understanding 

of the relationship between the nonlinear optical susceptibility and the crystalline point group 

outlined in Chapter III motivates the idea that we can use this RA-SHG technique to gather 

information on the symmetry properties of the crystal we are studying. 
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Figure IV.3 – An illustration of the optical beam path for the RA-SHG setup. The beam first passes 

through a WP which is on an automatic rotating mount to allow for polarization resolution of the 

incoming beam. It then passes through a telescope comprised of lenses L1 and L2. In the case of 

an oblique incidence geometry, as shown, a grating is placed at the focal point of L1 to split the 

beam into 𝑛 orders of beams. Here, the first order beams only are shown. A block is then used to 

stop all but one of the first order beams. This grating and the block are also on an automatic rotating 

mount to ensure that the incoming polarization is locked to the plane of incidence. The beam then 

passes through two dichroic mirrors (DM1 and DM2) which are each at a 45∘ angle to the incident 

beam and normal to each other. Then it passes through an achromatic doublet (AC1) which focuses 

the beam to the sample location. The reflected SHG is then picked up by DM2 after passing back 

through AC1 and directed to DM3, which reflects the SHG to a polarizer which acts as an analyzer 

for the experiment. This polarizer is also on an automatic rotation mount to ensure that the 

polarization of the measured SHG is locked to the incoming polarization. It then passes through a 

color filter set consisting of one bandpass (BP) and two shortpass (SP) filters to ensure that only 

the 400 nm light is measured at the CCD. Once filtered, the light is focused to the detector. Not 

pictured is a white light imaging system which allows us to place the beam at the desired location 

on the sample and helps with focusing and an optional neutral density (ND) filter placed before 

the WP. 

 

 An illustration of the optical setup for the RA-SHG experiment is shown in Figure IV.3. In 

a typical experiment, the light enters the setup collimated with vertical polarization and with a 

central wavelength of 800 nm. It first passes through an ND filter set, which is used to control the 

power of the light incident on the sample. Then it passes through a HWP, which is set on a 

motorized rotation stage so that it can be used to rotate the polarization of the light incident on the 

sample. In this experiment, the light is always linearly polarized. After the HWP, it passes through 

a telescope with lens 1 and lens 2 focal lengths in ratio 1:3, which is used to expand the beam size 
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and recollimate the beam. From there, it goes through two dichroic mirrors (Thorlabs DMLP425) 

which are oriented at 45∘ from the beam path. They are set up such that the reflective dichroic 

coating is on the transmission side of the optic relative to the incoming fundamental beam. Then, 

the beam is focused onto the sample with an achromatic doublet. As the system has been described 

so far, the angle of incidence is 0∘ (ie. normal incidence). An oblique incidence geometry will also 

be discussed below.  

 The light will at this point interact with the sample and undergo both linear and nonlinear 

optical processes which will be reflected back along the initial beam path due to the normal 

incidence geometry. However, this time, the first dichroic mirror that the reflected SHG encounters 

(DM2) will reflect the frequency doubled 400 nm light to a third dichroic mirror (DM3) which 

will send the beam to a polarizer on a motorized rotating mount used to select only certain 

orientations of the polarization of the reflected beam for the experiment. This now analyzed light 

will then pass through two shortpass filters (Thorlabs FESH0450) and a bandpass filter (Thorlabs 

FBH400-40) to remove any remaining fundamental light which was not filtered by the reflection 

off the dichroic mirror. The shortpass filters each transmit 3.07 × 10−4 percent of the fundamental 

800 nm light and 98.53% of the reflected 400 nm light, and the bandpass filter transmits 

2.82 × 10−5 percent of the fundamental 800 nm light and 96.71% of the reflected 400 nm light, 

according to their specifications on the Thorlabs website. This means that we expect a total 

transmission to the CCD of no more than 2.66 × 10−16 percent of the reflected fundamental light 

from the sample to the CCD and 93.89% of the reflected SHG. This is in addition to the filtering 

provided by the dichroic mirrors. Once the light passes through these filters, it will be focused 

down onto a single-photon sensitive Andor iXon Ultra 897 camera, a CCD camera with EM Gain 

[100].  
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 The Andor camera is one of the few detection systems available which is sensitive enough 

to measure the very small reflected SHG, which is typically on the order of femtowatts for incident 

power in the hundreds of microwatts range, and thus is worthy of some additional discussion. A 

CCD pixel is basically a piece of biased silicon. When a photon comes in, it creates an electron-

hole pair through the photoelectric effect, and this pair is separated by the bias present in the system 

to prevent recombination. Once the accumulation is completed (ie. the shutter of the camera is 

open for a set amount of time), the charge is moved into the readout register to be converted into 

a digital signal which is sent to the computer. With the EMCCD of the Andor camera, all of this 

remains the same, but the readout register is extended to include a multiplication register, where 

with some small probability each electron in the register might create an additional electron [100]. 

This occurs by using more voltage than necessary to move the charges through the register, thus 

giving them more energy and effectively increasing the chances that the excitation of another 

electron will occur as the signal moves through the material of the register. This is known as impact 

ionization. This technique is used because it is not sensitive to electronic noise and can thus be 

used to amplify the signal above that noise which is inherent in all CCDs [100]. 
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Figure IV.4 – An example of an image taken using the Andor camera on the RA-SHG setup. In 

this case, the material being investigated was the (100) face of the chiral WSM CoSi. The 

experiment was performed in a normal incidence geometry. Here, the white box contains the laser 

point of the reflected SHG from the sample. The red box, which is the same size as the white box, 

is used to subtract the background from the data. The color bar indicates the uncorrected photon 

count recorded over the experimental accumulation time by the Andor camera and is given in 

arbitrary units. The total acquisition time was 40 s. This image would correspond to one data point 

in an RA-SHG polar plot. 

 

 An example of an image of the reflected SHG obtained using the Andor camera is shown 

in Figure IV.4. It is clear that there is a small spot of light being picked up on the CCD, as expected 

when the SHG is focused down by the lens after the polarizer. To obtain signal photon count 

measurements, we integrate a small area of pixels around the beam and then subtract the 

background level by integrating a square of equal size on a random area of the screen, shown in 

Figure IV.4 in white and red, respectively. Of course, as evidenced by Equation III.3, the physical 

quantity relevant to many of our measurements will be the reflected SHG intensity or the reflected 

SHG field rather than the photon count on the CCD camera, taken by opening the shutter for a 

selected amount of time, known as the acquisition, exposure, or integration time. We can convert 

this photon count to the SHG power at the CCD as 
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 𝑃2𝜔 = 𝑝. 𝑐.
ℎ𝑐

𝜆𝜏𝑖𝑛𝑡
, 

 

IV.1 

where 𝑝. 𝑐. is the photon count, ℎ is Planck’s constant, 𝑐 is the speed of light in vacuum, 𝜆 is the 

wavelength of the reflected SHG, and 𝜏𝑖𝑛𝑡 is the integration time of the camera. However, we are 

working with a pulsed laser system, which means we will need to work with the maximum power 

at the CCD rather than the average power, given by Equation IV.1. To convert average power to 

peak power for a pulsed laser, it is necessary to divide by 𝑓𝑟𝑒𝑝𝜏, where 𝑓𝑟𝑒𝑝 is the repetition rate of 

the laser and 𝜏 is the pulse duration at the sample site. From there, we can calculate the electric 

field of the SHG as  

 𝐸2𝜔 = √
2𝑃2𝜔,𝑝𝑒𝑎𝑘

𝜋𝑟2𝜔
2 ⋅ 𝑐𝜖0

, 

 

 

IV.2 

for 𝑟2𝜔 the spot size of the SHG beam on the CCD (typically ~60 𝜇m). Of course, we must account 

as well for the EM Gain and other multiplication used by the Andor camera to increase the 

sensitivity enough to detect the SHG beam. This correction is done by multiplying the photon 

count by the sensitivity of the camera and then dividing by the quantum efficiency and the EM 

gain used in the experiment [100]. To further increase the accuracy of our measurements, we also 

account for the efficiency of the optics used to direct the SHG beam from the sample to the CCD 

using the specifications for each optic listed on the Thorlabs website. 
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Figure IV.5 – An illustration of the beam orientations for the RA-SHG experiment at oblique 

incidence (incoming red beam makes angle 𝜃 with 𝑐-axis of crystal). The 𝑎- and 𝑏-axes of a 

hypothetical sample are shown in the lower left corner. The plane of incidence is rotated by angle 

𝜙 about the 𝑐-axis of the crystal (the 𝑧-axis of the lab frame) to get angle-resolved SHG intensity 

measurements. Four polarization channels are shown using combinations of P/Sin/out [101]. 

 

 The polarization of the incoming fundamental and reflected SHG light is one of the key 

features of this experimental setup. As mentioned above, these are controlled respectively by a 

HWP and a polarizer, both of which are mounted on automatic rotation mounts. During the 

operation of this experiment, the polarization of the incoming light is set to be either vertical (S) 

or horizontal (P) and the polarizer is set to transmit either S or P light as well. This yields four 

different polarization channels, aptly labeled S-S, S-P, P-S, and P-P, as shown in Figure IV.5. 

While taking data, these two components are rotated together clockwise by angle 𝜙 in usually 
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either 5∘ or 10∘ increments and, at each new angle, a picture is taken with the CCD. This results 

in an angle- and polarization-resolved collection of SHG intensities which can be analyzed 

according to Equation III.5. 

 Let us take a moment to look a little more closely at this data analysis procedure by using 

the orthorhombic 𝐷2 point group as an example. This point group consists of 𝐶2 rotations about 

the 𝑥-, 𝑦-, and 𝑧-axes, and thus has a 𝜒(2) tensor of the form 

 𝜒𝐷2
(2) =

(
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IV.3 

which can be calculated using the procedure outlined in Chapter III. Because we are working with 

SHG, we can further simplify this by requiring that 𝜒𝑖𝑗𝑘
(2) = 𝜒𝑖𝑘𝑗

(2)
 because the two fields which are 

mixing to create the nonlinear effect are identical. In this case, Equation IV.3 becomes 

 𝜒𝐷2
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IV.4 

We can simulate the SHG pattern expected given the rotation of the beam by instead rotating the 

𝜒(2) tensor, which is equivalent to rotating the sample itself. In fact, this type of angle-resolved 

SHG experiment was traditionally done by rotating the sample directly rather than by rotating the 
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polarization of the beam. However, rotating the sample can easily lead to drift of the beam location 

which causes each data point to be taken at a different location on the sample, yielding inconclusive 

data in spatially nonuniform samples (of which there are many). The first implementation of this 

technique in which the beam is rotated rather than the sample was in [97, 98]. The key ingredient, 

so-to-speak, was the use of the DM1 in Figure IV.3 to account for the change in polarization caused 

by the insertion of DM2, which is necessary to collect the reflected SHG. 

 In our case, if we rotated 𝜒(2) about the 𝑧-axis by angle 𝜙, we find a tensor of the form 

 𝜒𝐷2
(2)
(𝜙) = 
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IV.5 

From here, we can use Equation III.5 to calculate the induced polarization for all four polarization 

geometries. Noting that the incoming fundamental fields take the form 

 𝐸𝑃⃗⃗ ⃗⃗ = (1,0,0), 𝐸𝑆⃗⃗⃗⃗ = (0,1,0), 

 

 

IV.6 

we can compute 𝑃𝑖 = 𝜒𝑖𝑗𝑘
(2)𝐸𝑗𝐸𝑘 for each possible incoming field orientation: 
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𝑃𝑃𝑖𝑛,𝑥 = 𝜒𝑥𝑗𝑘
(2)
𝐸𝑃,𝑗𝐸𝑃,𝑘 = 0 

𝑃𝑃𝑖𝑛,𝑦 = 𝜒𝑦𝑗𝑘
(2) 𝐸𝑃,𝑗𝐸𝑃,𝑘 = 0 

𝑃𝑃𝑖𝑛,𝑧 = 𝜒𝑧𝑗𝑘
(2)𝐸𝑃,𝑗𝐸𝑃,𝑘 = −2𝜒𝑧𝑦𝑥

(2) cos(𝜙) sin(𝜙) 

𝑃𝑆𝑖𝑛,𝑥 = 𝜒𝑥𝑗𝑘
(2)𝐸𝑆,𝑗𝐸𝑆,𝑘 = 0 

𝑃𝑆𝑖𝑛,𝑦 = 𝜒𝑦𝑗𝑘
(2) 𝐸𝑆,𝑗𝐸𝑆,𝑘 = 0 

𝑃𝑆𝑖𝑛,𝑧 = 𝜒𝑧𝑗𝑘
(2)
𝐸𝑆,𝑗𝐸𝑆,𝑘 = 𝜒𝑧𝑦𝑥

(2)
sin(2𝜙) 
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These must then be converted to an intensity so as to model the photon count accessible at the 

CCD detector. To do this, we approximate the polarization as the reflected SHG field. Then 

 

𝐼𝑃−𝑃
2𝜔 (𝜙) = 𝑃𝑃𝑖𝑛,𝑥

2 = 0 

𝐼𝑃−𝑆
2𝜔 (𝜙) = 𝑃𝑃𝑖𝑛,𝑦

2 = 0 

𝐼𝑆−𝑃
2𝜔 (𝜙) = 𝑃𝑆𝑖𝑛,𝑥

2 = 0 

𝐼𝑆−𝑆
2𝜔 (𝜙) = 𝑃𝑆𝑖𝑛,𝑦

2 = 0 
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 From Equation IV.8, it is apparent that, in all four polarization channels, there will be no 

signal detected at the CCD. In fact, even for point groups which do exhibit a nonzero SHG pattern 

for this experimental geometry, the P-P and S-S channels yield identical results and the P-S and 

S-P channels also yield identical results9. This is because, at normal incidence, we are restricted to 

being sensitive to only a subset of the nonzero 𝜒(2) tensor elements. However, we can overcome 

this downfall by sending the beam in at an oblique incidence, rather than a normal incidence. To 

accomplish this, we insert a diffraction grating at the focal point of the telescope and block all but 

one of the first order beams, as shown in Figure IV.3. This means that the beam incident on the 

 
9 For this reason, with a normal incidence geometry, we refer to the S-S and P-P channels jointly as the parallel 

channel and the S-P and P-S channels jointly as the crossed channel. 
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sample will be incident on the achromatic doublet used to focus the beam at an off-axis location, 

and so will be incident on the sample at an oblique angle 𝜃. In our experimental setup, the first 

order beam is removed from the center of the doublet by about ~5.5 mm. Thus, for a focal length 

of 25.4 mm, we have an angle of 𝜃 ≈ 7∘. Further, we place the grating as well on a rotation mount 

so that the incident beam can be rotated about the 𝑧-axis of the lab frame and the polarization is 

permanently parallel to (P) or perpendicular to (S) the plane of incidence of the beam. 

 In this case, we will now have 

 𝐸𝑃⃗⃗ ⃗⃗ = (− cos(𝜃) , 0, sin(𝜃)), 𝐸𝑆⃗⃗⃗⃗ = (0,1,0), 
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and we can redo the calculations from Equation IV.7 as  

 

𝑃𝑃𝑖𝑛,𝑥 = 𝜒𝑥𝑗𝑘
(2)𝐸𝑃,𝑗𝐸𝑃,𝑘 = 2(𝜒𝑥𝑧𝑦

(2) + 𝜒𝑦𝑧𝑥
(2) ) cos(𝜃) cos(𝜙) sin (𝜃)sin (𝜙) 

𝑃𝑃𝑖𝑛,𝑦 = 𝜒𝑦𝑗𝑘
(2) 𝐸𝑃,𝑗𝐸𝑃,𝑘 = −2 cos(𝜃) sin(𝜃) (𝜒𝑦𝑧𝑥

(2) cos2(𝜙) − 𝜒𝑥𝑧𝑦
(2) sin2(𝜙)) 

𝑃𝑃𝑖𝑛,𝑧 = 𝜒𝑧𝑗𝑘
(2)𝐸𝑃,𝑗𝐸𝑃,𝑘 = −2𝜒𝑧𝑦𝑥

(2) cos(𝜙) sin(𝜙) cos2(𝜃) 

𝑃𝑆𝑖𝑛,𝑥 = 𝜒𝑥𝑗𝑘
(2)𝐸𝑆,𝑗𝐸𝑆,𝑘 = 0 

𝑃𝑆𝑖𝑛,𝑦 = 𝜒𝑦𝑗𝑘
(2) 𝐸𝑆,𝑗𝐸𝑆,𝑘 = 0 

𝑃𝑆𝑖𝑛,𝑧 = 𝜒𝑧𝑗𝑘
(2)𝐸𝑆,𝑗𝐸𝑆,𝑘 = 𝜒𝑧𝑦𝑥

(2) sin(2𝜙) 
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This yields intensity calculations at the CCD of  
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𝐼𝑃−𝑃
2𝜔 (𝜙) = (𝑃𝑃𝑖𝑛,𝑥 cos(𝜃))

2
+ (𝑃𝑃𝑖𝑛,𝑧 sin(𝜃))

2

= 4 ((𝜒𝑥𝑧𝑦
(2) + 𝜒𝑦𝑧𝑥

(2) )
2

+ 𝜒𝑧𝑦𝑥
(2) 2) cos4(𝜃) cos2(𝜙) sin2(𝜃) sin2(𝜙) 

𝐼𝑃−𝑆
2𝜔 (𝜙) = 𝑃𝑃𝑖𝑛,𝑦

2 = 4 cos2(𝜃) sin2(𝜃) (𝜒𝑦𝑧𝑥
(2) cos2(𝜙) − 𝜒𝑥𝑧𝑦

(2) sin2(𝜙))
2

 

𝐼𝑆−𝑃
2𝜔 (𝜙) = (𝑃𝑆𝑖𝑛,𝑥 cos(𝜃))

2
+ (𝑃𝑆𝑖𝑛,𝑧 sin(𝜃))

2
= 𝜒𝑧𝑦𝑥

(2) 2sin2(𝜃)sin2(2𝜙) 

𝐼𝑆−𝑆
2𝜔 (𝜙) = 𝑃𝑆𝑖𝑛,𝑦

2 = 0 
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The RA-SHG patterns from Equation IV.11 are shown in Figure IV.6 for 𝜒𝑥𝑦𝑧
𝐸𝐷 = 1 pm/V, 𝜒𝑦𝑧𝑥

𝐸𝐷 =

2 pm/V, and 𝜒𝑧𝑥𝑦
𝐸𝐷 = 3 pm/V for an angle of incidence of 𝜃 = 7∘. In each image, the two-fold 

rotation is apparent in the calculated flower pattern. 

 

 

Figure IV.6 – Models of the RA-SHG patterns for the 𝐷2 point group in each of the four 

polarization channels for an oblique incidence angle of 𝜃 = 7∘. These models are obtained 
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assuming arbitrary values of 𝜒𝑥𝑦𝑧
𝐸𝐷 = 1 pm/V, 𝜒𝑦𝑧𝑥

𝐸𝐷 = 2 pm/V, and 𝜒𝑧𝑥𝑦
𝐸𝐷 = 3 pm/V. All four plots 

are normalized to the same value. 

 

Estimating the Strength of the SHG Response with the RA-SHG Experiment 

 Throughout the experiments presented here, we will be interested not only necessarily in 

what the SHG response of the material can tell us about the symmetries of the materials being 

investigated, but also about the size of that response. As discussed in Chapter III, this is due to the 

link between the topology of the WSM band structure and the strength of the nonlinear optical 

responses of the material. 

 Ordinarily, the strength of the SHG response of a material is quoted as the size of the optical 

susceptibility tensor elements. From Equation III.5, we can see that, if we want to access the size 

of 𝜒(2), it will be necessary to know the strength of the incoming electric field and the strength of 

the nonlinear polarization induced in the material. The strength of the incoming electric field is 

certainly the easier of the two to explore. We can describe the intensity of the fundamental field as 

 𝐼𝜔 =
𝑐𝜖0𝑛

2
|�⃗� |

2
=
𝑃

𝜋𝑟2
, 
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where 𝑛 is the index of refraction of the fundamental light, 𝑃 is the power, and 𝑟 is the radius of 

the fundamental beam at the sample location (typically ~15 𝜇m). Recalling that we are working 

with a pulsed laser and thus that the relevant power is the peak power rather than the average 

power, we can say that  

 |�⃗� | = √
2𝑃𝑝𝑒𝑎𝑘

𝜋𝑟2𝑐휀0𝑛
. 
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 The more challenging aspect of estimating the strength of the SHG response comes from 

putting a numerical value on the nonlinear polarization. In our simulations of the RA-SHG 

experiment, we made the approximation that the nonlinear polarization is given by the reflected 
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SHG at the CCD detector, but this approximation only works if we are interested in the shape of 

the RA-SHG pattern and does not work if we are interested in a more accurate description of the 

size of that response. This is because the index of refraction of the material is typically different 

than that of air. In order to accurately estimate the size of the response, we must work with the 

nonlinear Fresnel coefficients of the material. In effect, we must consider the air/vacuum-material 

interface and calculate the transmitted and reflected light at that interface. 

 

 

Figure IV.7 – An illustration of the basic setup of the boundary value problem which much be 

considered for the derivation of the nonlinear Fresnel corrections to the calculation of the 

magnitude of the 𝜒(2) tensor elements, taken from [102]. In this diagram, monochromatic 

light  𝐸𝑖(𝜔)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is incident at angle 𝜃𝑖 to a crystal (in this case, a KDP crystal). The linear reflected 

light 𝐸𝑅(𝜔)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and refracted light 𝐸𝑇(𝜔)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ are shown at angles 𝜃𝑅 and 𝜃𝑆 to the normal with 

wavevectors 𝑘𝑅(𝜔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and 𝑘𝑇(𝜔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , respectively. The refracted light wave induces a nonlinear 

polarization 𝑃𝑁𝐿𝑆(2𝜔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , also at angle 𝜃𝑆 and with wave vector 𝑘𝑆(2𝜔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. This induces a transmitted 
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electric field through the crystal at 2𝜔 of 𝐸𝑇(2𝜔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ with wavevector 𝑘𝑇(2𝜔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and out of the crystal 

of 𝐸𝑅(2𝜔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ with wavevector 𝑘𝑅(2𝜔)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

 

 The derivation of the linear Fresnel coefficients is familiar, but we will go through it briefly 

as a demonstration to give us the tools necessary to access the nonlinear Fresnel coefficients later. 

The basic setup of the problem is shown in Figure IV.7, which will also be used as the reference 

figure for the nonlinear Fresnel discussion below. In essence, a monochromatic plane wave is 

incident on a boundary between two media. In our case, the incidence medium is either vacuum or 

air, but this setup works just as well for any two media. When the light hits the interface, some 

portion is refracted through the material and some portion is reflected. We are interested in 

knowing what those proportions are. 

 We can imagine first the case in which the incident light is S-polarized. That is, the light is 

polarized perpendicular to the plane of incidence. In this case, we can place boundary conditions 

on the electric �⃗�  and magnetic �⃗�  fields involved in the system by requiring that the fields be 

continuous across the interface 

 

𝐸𝑖(𝑦 = 0) + 𝐸𝑟(𝑦 = 0) = 𝐸𝑡(𝑦 = 0) 

−𝐵𝑖(𝑦 = 0) cos(𝜃𝑖) + 𝐵𝑟(𝑦 = 0) cos(𝜃𝑟) = −𝐵𝑡(𝑦 = 0) cos(𝜃𝑡) 

 

 

IV.14 

where the 𝑖 subscript indicates the incident field, the 𝑟 subscript indicates the reflected field, and 

the 𝑡 subscript indicates the transmitted field. Noting that 𝜃𝑖 = 𝜃𝑟 and that Snell’s law 

(𝑛𝑖 sin(𝜃𝑖) = 𝑛𝑡 sin(𝜃𝑡)) holds, and using the fact that 𝐵 =
𝑛𝐸

𝑐
, we can solve this system of 

equations for the reflection 𝑟𝑠 and transmission 𝑡𝑆 coefficients 
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𝑟𝑆 =
𝐸0𝑟
𝐸0𝑖

=
𝑛𝑖 cos(𝜃𝑖) − 𝑛𝑡 cos(𝜃𝑡)

𝑛𝑖 cos(𝜃𝑖) + 𝑛𝑡 cos(𝜃𝑡)
 

𝑡𝑆 =
𝐸0𝑡
𝐸0𝑖

=
2𝑛𝑖 cos(𝜃𝑖)

𝑛𝑖 cos(𝜃𝑖) + 𝑛𝑡 cos(𝜃𝑡)
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We can similarly solve for the case that the incident light is P-polarized as 

 

𝑟𝑃 =
𝑛𝑖 cos(𝜃𝑡) − 𝑛𝑡 cos(𝜃𝑖)

𝑛𝑖 cos(𝜃𝑡) + 𝑛𝑡 cos(𝜃𝑖)
 

𝑡𝑃 =
2𝑛𝑖 cos(𝜃𝑖)

𝑛𝑖 cos(𝜃𝑡) + 𝑛𝑡 cos(𝜃𝑖)
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 However, we are working with a nonlinear medium. This problem was first addressed in 

[102], and we shall go through it briefly here. The basic setup is shown in Figure IV.7. We want 

to calculate the nonlinear Fresnel coefficients in order to convert between the nonlinear 

polarization in the media and the reflected SHG field, which we can then use to estimate the size 

of the nonlinear response using Equation III.5 and our RA-SHG experiment. The derivation 

presented here makes the assumption that there will be one refracted ray in the nonlinear medium. 

In fact, in most cases, there are two refracted rays in such medium. However, the assumption of 

one will hold true for cubic and uniaxial crystals or for any crystal studied using the normal 

incidence geometry. We take the interface between the vacuum and the nonlinear media to be at 

𝑧 = 0 and the plane of incidence to be at 𝑦 = 0. The wavevector of the incident light is taken to 

be 𝑘𝑖1⃗⃗⃗⃗  and of the refracted wave is 𝑘𝑡
1⃗⃗⃗⃗ , where the 1 indicates that these refer to the fundamental 

wavelength. Subsequently, an index of 2 will be used to indicate the frequency doubled 

wavelength. We can use the Fresnel laws in Equations IV.15 and IV.16 to determine the refracted 

ray 𝐸𝑡
1⃗⃗ ⃗⃗  . We can also explicitly write out Equation III.5 with the appropriate indices and variables 

as 
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 𝑃𝑁𝐿⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜒(2)𝐸𝑡
1⃗⃗ ⃗⃗  𝐸𝑡

1⃗⃗ ⃗⃗  𝑒𝑖(𝑘𝑠
⃗⃗⃗⃗ ⋅𝑟 −2𝜔𝑡) 
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for 𝑘𝑠⃗⃗  ⃗ the wavevector for the nonlinear polarization 𝑘𝑠⃗⃗  ⃗ = 2𝑘𝑡
2⃗⃗⃗⃗ .  

 We will be working with plane wave solutions to Maxwell’s equations, given by 

 

𝐸𝑟2⃗⃗ ⃗⃗  = 𝑒�̂�𝐸𝑟
2𝑒𝑖(𝑘𝑟

2⃗⃗⃗⃗  ⃗⋅𝑟 −2𝜔𝑡)
 

𝐻𝑟2⃗⃗⃗⃗  ⃗ =
𝑐

2𝜔
(𝑘𝑟2⃗⃗⃗⃗ × 𝑒�̂�)𝐸𝑟

2𝑒𝑖(𝑘𝑟
2⃗⃗⃗⃗  ⃗⋅𝑟 −2𝜔𝑡)
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for 𝑒�̂� the unit vector in the direction of 𝐸𝑟1⃗⃗ ⃗⃗  , 𝐸 the magnitude of field �⃗� , and �⃗⃗�  the magnetic field. 

As in our discussion of the linear Fresnel coefficients, we will impose boundary conditions that 

the tangential components of �⃗�  and �⃗⃗�  be continuous everywhere, which means that the individual 

frequency components at 𝜔 and 2𝜔 must be separately continuous across the boundary. This sets 

the requirements that 

 

𝑘𝑖,𝑥
1 = 𝑘𝑟,𝑥

1 = 𝑘𝑡,𝑥
1  

2𝑘𝑡,𝑥
1 = 𝑘𝑠,𝑥

2 = 𝑘𝑟,𝑥
2 = 𝑘𝑡,𝑥

2  
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and gives us a nonlinear equivalents of Snell’s law 

 

sin(𝜃𝑟
2) =

𝑘𝑟,𝑥
2

|𝑘𝑟2⃗⃗⃗⃗ |
=
𝑘𝑖,𝑥
1

|𝑘𝑟1⃗⃗⃗⃗ |
= sin(𝜃𝑖) 

sin(𝜃𝑡
2) =

𝑘𝑡,𝑥
2

|𝑘𝑡
2⃗⃗⃗⃗ |
= 𝜖−

1
2(2𝜔) sin(𝜃𝑖) 

sin(𝜃𝑠) = 𝜖
−
1
2(𝜔) sin(𝜃𝑖) 
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where 𝜖 is the dielectric constant of the material. 

 Because the vacuum is dispersionless, the reflected SHG field will go in the same direction 

as the reflected fundamental field. The nonlinear polarization will also go in the same direction as 

the transmitted fundamental, but the transmitted SHG field will generally go in a slightly different 
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direction depending on the difference between 𝜖(𝜔) and 𝜖(2𝜔) unless working with a normal 

incidence geometry. 

 When we calculate the strength of the nonlinear susceptibility tensor elements, we apply 

these requirements and boundary conditions specifically for the point group at hand and then use 

the experimental values to do the calculations because it is difficult to get a nice analytic solution 

for all experimental conditions. We also restrict ourselves to doing this computation for the normal 

incidence geometry RA-SHG experiment so that the assumption of a single nonlinear refracted ray 

holds true. An example code written for Mathematica is included in Appendix E. 

 

Time-Resolved Optical Reflectivity Measurements 

 In addition to the RA-SHG experiment, we have constructed a time-resolved optical 

reflectivity experiment, or a pump-probe experiment, which can be used to probe the time 

dynamics of various material systems. The optical components of this setup are shown in Figure 

IV.8. In this setup, there are two beams which serve as input – one from each NOPA. The pump 

beam is at 720 nm and passes through a telescope of lens focal length ratio 3:1 to shrink the beam 

slightly before being focused down to the sample using a lens at a normal incidence angle. The 

probe, on the other hand, is at 800 nm and starts by passing through a telescope of lens focal length 

ratio 1:3 to expand the beam slightly before being sent to a translation stage which can tune the 

time at which the probe pulse arrives at the sample location. The expansion and shrinking of the 

probe and pump beams, respectively, helps to ensure that the diameter of the probe beam will be 

smaller than that of the pump when they are focused down onto the sample surface. The probe is 

then picked up by a small mirror and sent parallel to the pump beam to be focused onto the sample 

with the same lens as the pump, but at a slightly oblique angle of incidence. The reflected probe 
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beam is then sent to a color filter and a lens which focuses the signal down to a silicon photodiode 

(Hamamatsu S5972).  

 

 

Figure IV.8 – An illustration of the beam path of the time-resolved optical reflectivity, or pump-

probe, setup. Here, the pump beam has a center wavelength of 720 nm and the probe has a center 

wavelength of 800 nm. Both pump and probe beams pass through their own telescopes (pump 

telescope L1, L2 and probe telescope L3, L4), where the probe beam is expanded and the pump is 

decreased in size to ensure proper overlap, with the pump beam larger than the probe beam, at the 

sample site. The pump beam is further chopped by an optical chopper at a frequency of 8 kHz 

which serves as a reference for the lock-in detector. The probe then passes through an automatic 

translation stage which allows for the tuning of the time delay between the pump and probe pulses. 

It also passes through a waveplate (WP1) to allow for polarization resolution. It is then picked up 

and directed parallel to the pump beam, which also passes through a waveplate (WP2), before both 

are focused down (L5) to the sample. The probe beam comes in at a slightly oblique angle due to 

it being incident slightly off the center of the L1 optic. As a result, it is spatially separated from 

the pump upon reflection and can be easily be picked up and directed to the silicon photodiode 

with a mirror. Further color filtering is performed to eliminate any remaining pump scatter before 

the probe is focused down (L6) to the detector. 
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 At the focal point of the pump telescope is an optical chopper which chops the beam at 8 

kHz and serves as the reference signal for a lock-in amplifier (Stanford Research SR830) which 

collects the signal from the photodiode and converts it to a current. This current is transmitted via 

a BNC cable to a variable resistor (Thorlabs VRT2) which is typically set to 5 kΩ, allowing for 

detection of a voltage at the lock-in amplifier. During the operation of this experiment, the delay 

of the probe pulse is tuned so that the pump and probe pulses temporally overlap at the time-zero 

location, and then so that the probe arrives after the pump at various time delays.  

 The beam diameters of the pump and probe on the sample are ~50 μm and ~30 μm, 

respectively, which are measured using the razor blade method. In this measurement, a razor blade 

is placed on a translation stage at the sample location and used to incrementally cut the beam. A 

power meter records how quickly the beam is cut, and that power distribution is fit with a Gaussian 

profile to extract the beam diameter from the fit. 

 

Photocurrent Setup 

 As discussed in Chapter III, we are also interested in the photocurrent generation in WSMs. 

This experiment is unique to others in our lab in that the detected signal is not optical but electronic 

in nature. This means that the samples measured must be prepared beforehand with the placement 

of leads and wires on the sample surface. The sample must be physically wired to our lock-in 

detector in order to measure the current produced. Here, I will describe first the optical setup 

necessary to generate photocurrent in our samples, and then I will describe the electronics which 

were built in order to collect and record that current. 

 The optical beam path of the photocurrent setup is shown in Figure IV.9. The beam first 

passes through a telescope with lens focal length ratio 1:3 to expand the beam and thus decrease 

the spot size on the sample. At the focal point of the telescope, an optical chopper is placed, 
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typically at 820 Hz, to chop the beam. This means that the otherwise DC effect of photocurrent 

generation will occur instead at the chopping frequency, which is used as a reference for a lock-in 

amplifier (Stanford Research SR830). The beam then passes through a waveplate. Depending on 

the experiment, it may be a HWP (LPGE) or a QWP (CPGE). In either case, the waveplate is 

placed on an automatic rotation stage which allows for computerized control of the incoming beam 

polarization.  

 

 

Figure IV.9 – An illustration of the optical beam path for the photocurrent generation setup. The 

incoming beam first goes through a telescope to expand the beam (L1, L2). At the focal point of 

L1, an optical chopper chops the beam to allow for a reference for a lock-in amplifier. The beam 

is then incident on either a QWP or HWP. There are two experimental geometries illustrated 

depending on the orientation of the flip mirror M1. In the case that M1 is not in the optical beam 

path, the light will be focused down normally onto the sample by lens L3. In the case that M1 is 

in the beam path, a series of mirrors will direct the beam to focus through L4 at an oblique 

incidence onto the sample. Not pictured is the initial ND filtering used to set the power of the beam 

at the sample sight or the white light imaging arm used for alignment purposes. 

 

 Importantly, as discussed in Chapter III, the angle of incidence is important for certain 

materials. Thus, this experimental setup was designed for easy switching between normal and 

oblique incidence (𝜃 ≈ 45∘) geometries. While we may have opted to achieve this flexibility with 

a grating as in the RA-SHG setup, here a flip mirror was chosen in order to allow for a larger 
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possible angle of incidence. The flip mirror is labeled as M1 in Figure IV.9. For a normal incidence 

geometry, the mirror is flipped down and out of the optical beam path. For an oblique incidence 

geometry, the mirror is flipped up and a series of mirrors directs the beam to another lens, which 

focuses it down to the sample at an oblique angle. Razor blade tests performed on the beams at the 

sample location indicated a normal beam FWHM of ~33 𝜇m. The oblique incidence beam becomes 

elliptical at the sample sight and the major axis of that ellipse was measured to have a FWHM of 

~460 𝜇m. 

 As mentioned above, the signal in this case is not a reflected beam from the sample surface, 

but instead an electrical signal generated in the sample. Thus, it is necessary to design a way to 

collect that signal and direct it to the lock-in amplifier where it can be measured. For air-sensitive 

materials or materials that need to be cooled, that electrical signal may additionally have to pass 

through a cryostat. The method developed for this is as follows: the sample is placed in and wired 

to a chip carrier (Chelsea Technology SB008AK959-1 for 8-pin or Chelsea Technology 

SB016L086-1 for 16-pin). These chip carriers are then inserted into two 8-pin connectors (Digikey 

S7041-ND) which are wired directly to 16 pins of a 22-pin cryostat port. This cryostat port is vital 

to holding the vacuum of the cryostat while feeding the electrical signals from our sample to the 

lock-in amplifier, which is in ambient conditions, to be measured.  

 A BNC box was built in collaboration with Austin Kaczmarek which separates each of the 

signals from the 16 pins of in the cryostat each to its own BNC cable. Each cable has a two-way 

switch which allows for the signal and ground of the BNC to be either separated or electrically 

connected. The grounds of all of the BNCs are connected together and can be either floated, 

connected to the BNC box, or connected to an external ground to allow for biasing. In a typical 

experiment, we are interested in the photocurrent across two leads on a sample, corresponding to 
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two pins on the chip carrier. We will refer to these leads as lead 1 and lead 2. To measure the 

photocurrent response across lead 1 and lead 2, all of the BNC switches are switched up to 

electrically separate the signals from the BNC common ground except that of lead 2, which is 

grounded to the BNC box. This sets the ground of the BNC for lead 1 to the signal of lead 2. Then, 

the photocurrent across these two leads is measured by attaching the lead 1 BNC to a terminator 

(Thorlabs VT2) which is used as the signal to the lock-in amplifier. That is, the photocurrent is 

measured as the voltage difference across lead 1 and lead 2 through a BNC whose ground is 

connected to lead 2 and whose signal is connected to lead 1. An illustration of this setup is shown 

in Figure IV.10. 
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Figure IV.10 – Several images of the photocurrent setup. (Top Left) An image of a sample in a 

chip carrier in the cryostat. The chip carrier is inserted into two 8-pin connectors, one on either 

side, to transfer the electrical signal from the sample to the cryostat port. (Top Right) The chip 

carrier and sample together with the shielding necessary to cool the sample down with the cryostat. 

(Bottom Left) The BNC box built in collaboration with Austin Kaczmarek designed to transfer the 

electrical signals from the sample to the lock-in amplifier. Each labeled BNC port has the ability 

to connect with one of the pads on the sample via the 8-pin connectors. Each port also has a switch 

to control the signal and ground output of the BNC. Here, we can see that a BNC cable is plugged 

into port 3 and that the switch of port 4 is set to shield grounding. All other switches are flipped 

up. This means that we are measuring the current across pads 3 and 4 on the sample. (Bottom 

Right) The sample and chip carrier on their mount which is typically used with the cryostat, 

together with the cryostat port used to transfer the electrical signal from the cryostat to the lock-in 
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amplifier, which is in ambient conditions. Here, the copper mount and cryostat port have been 

removed from the cryostat itself for a scanning measurement, discussed in the next section. 

 

Scanning  

 As discussed earlier, using a small spot size to obtain high spatial resolution allows for 

scanning measurement implementations of the various techniques discussed above. In scanning 

measurements, signal of a given quantity (usually either SHG or photocurrent) is measured at 

various points across a sample surface in order to observe spatial variations in that signal. For 

example, a scanning system was implemented on the photocurrent setup by using automated 

motorized translation stages for the sample stage which could be programmed to move the sample 

at fixed intervals to create a photocurrent image for a given polarization. However, there are 

several downsides to this method of physically moving the sample when taking a scanning 

measurement. For one, when the cryostat is mounted vertical to the table, creating a platform on 

which the motorized stages can support the weight of the cryostat is difficult and costly. This 

severely limits the samples which can be measured using this setup to only those which are not 

air-sensitive (a picture of this is shown in Figure IV.10). Further, the repeatability of the 

measurement is subject to the minimum repeatable step size of the motors used. While this is not 

a significant hindrance for the larger beam size of the photocurrent setup, it can be a problem in 

setups where the beam is significantly smaller, which is necessary especially for smaller samples. 
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Figure IV.11 – An illustration of the operating principle behind using the motorized scanning 

mirror (left) and of the resulting scanning SHG setup (right). Both images are provided by Austin 

Kaczmarek. 

 

 The necessity of performing RA-SHG experiments near the diffraction limit for micron-

length samples where the ~30 𝜇m spot size of the fundamental beam is too large and of 

implementing scanning SHG for such small samples led to the development of our scanning SHG 

setup by Austin Kaczmarek. To obtain a diffraction limited spot size, an infinite focal plane 

objective from Edmund Optics (#89350) was used to focus the beam to the sample after a telescope 

which expanded the beam by approximately a factor of 3, yielding a spot size ~3-5 𝜇m. Because 

this runs into the minimum repeatable distance of the Thorlabs motorized translation stages, it was 

also necessary to develop an alternative scanning technique, illustrated in Figure IV.11. This 

technique utilizes a scanning mirror controlled by two Galvo motors connected to an Arduino. The 

beam direction is changed slightly by the scanning mirror, and then redirected to the sample using 

a telescope comprised of two standard corrective lenses. When the beam hits the focusing objective 

to the sample, it is slightly off the center of the optic. Thus, a scanning plane is formed just beyond 

the normal focal plane of the objective. The use of the telescope helps to ensure that larger steps 
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of the Galvo motors will lead to smaller scanning increments, thus minimizing the uncertainty due 

to the minimal repeatable distance of the motors.  

 Dichroic mirrors direct the reflected SHG, in a method similar to that on the RA-SHG 

setup, to a PMT with a peak sensitivity in the 400 nm range (Hamamatsu H10720-210). This PMT 

is connected to a lock-in amplifier (Zurich Instruments MFLI 500 kHz lock-in amplifier) which 

takes as a reference the 200 kHz signal from the Spirit. This setup does have capabilities similar 

to that of the RA-SHG setup in that the polarization of the incoming light is tuned by a HWP and 

an analyzer is before the PMT detector. However, due to difficulties involved with implementing 

an oblique incidence geometry option with the scanning capabilities and the need for the objective, 

data can only be taken on this setup at normal incidence. 

 

Glovebox-Based 2d Fabrication Setup 

 Motivated by the growing interest in the field of 2d materials, which began with the 

discovery of the scotch tape method of exfoliating graphene from graphite [103] and progressed 

to similar exfoliation of TMDCs [104], current 2d material research relies heavily on being able 

to stack 𝑛-layer materials of various types and at different angles, such as magic-angle graphene 

[105], which has unconventional superconductive properties, and moiré superlattices and other 2d 

heterostructures [104, 106, 107]. The study of these materials is related to WSMs in that 

topologically protected features may occur in the band structure of these synthetically constructed 

samples, and in some cases even Dirac cones and flat band structures may be present. Further, 

several TMDCs, such as MoTe2 and WTe2, are type-II WSMs in their bulk form [8, 108]. 

 Yet the construction of these thin materials is incredibly challenging due to the air-sensitive 

nature of the constituent components. To this end, a collaborative team of scientists across the 
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physics department became interested in creating a system which could hold these air-sensitive 

samples in a nitrogen environment to avoid contamination during the exfoliation procedure. It was 

also necessary to be able to stack heterostructures in this enclosed environment to prevent oxygen 

and other dirt from lodging between the stacked layers, and to be able to load and unload these 

samples to a vacuum chamber, such as a cold-finger cryostat, for transport to optical setups. These 

requirements constituted the need for a glovebox, which had to be large enough to contain a 

microscope which could be used for the fabrication procedure as well as motorized stages which 

were sensitive enough to allow for the delicate stacking to procedure to be performed. It also 

needed a large enough antechamber to hold our cryostat. Further, we needed a sensitive enough 

microscope to be able to search for thin flakes of material suitable for stacking and which had a 

large enough focal plane to be able to visualize the stacking procedure.  
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Figure IV.12 – Pictures of the glovebox-based 2d fabrication setup in the lab in the sub-basement 

of Randall Laboratory. (Left) The 4-glove Purelab HE from Inert. (Right) The Olympus 

microscope setup for the stacking procedure inside the glovebox. Two motorized stages from 

Thorlabs are shown to allow lateral movement of the sample within the focal plane. Atop these 

lateral stages is a Thorlabs rotation stage, on which is an aluminum sample mount with a thermal 

heating pad. Also pictured is the three-axis stage used to hold the microscope slide with the top 

stack for the stacking procedure. 

 

 The full glovebox-based fabrication setup is shown in Figure IV.12. The glovebox unit 

selected was the 4-glove Purelab HE from Inert. This system is large enough to hold a high-quality 

imaging microscope, the BX63 from Olympus. We also attached a large antechamber to the 

glovebox which can hold the necessary cryostat. The BX63 was adapted so that the focusing 

operation is performed via motion of the objectives rather than of the stage. This allows the top 

and bottom stacked layers to be held in the same position while the focal plane moves up and down 

between them. Several objectives were selected – 20x, 50x, 100x – to ensure wide view when 

searching for flakes to be used in the stacking procedure and a narrow, detailed view when 
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performing the stacking. All objectives have a long focal length to allow room for the stacking 

procedure. 

 Importantly, all components necessary to stack heterostructures of 2d materials are 

motorized and can be automated. Motorized linear stages from Thorlabs form the basis for the 

sample stage, allowing for linear lateral motion to reach a desired point on a sample. In addition, 

an automatic rotation stage from Thorlabs is placed atop the linear stages, on which is mounted a 

sample mount, to allow the sample to be rotated to a specific angle. Aluminum was chosen as the 

material for the sample mount because of its ease of use and good thermal transfer properties. This 

means that the sample can be easily heated using a thermocouple placed on the aluminum stand. 

This heating is necessary for the stacking procedure, as the “stickiness” of the sample is controlled 

by its temperature.  

 The general outline of the stacking procedure is as follows. First, a 2d flake is identified 

using the microscope which will serve as the bottom layer and another is identified for the top 

layer. The top layer is placed on the bottom of a transparent microscope slide held by a motorized 

stage so that the top layer is vertically directly over the bottom layer. The microscope stage is used 

to ensure that the top layer is transparent enough that the focal plane of the microscope can be 

adjusted to focus on the both the top and bottom layers as needed. The microscope has both a 

manual coarse adjustment and a motorized fine adjustment capability. Safety stops are put in place 

for the fine adjustment to prevent damage to the top and bottom layers during the procedure which 

might be caused by accidentally moving them too quickly or too close together. The temperature 

of the bottom stack is then varied along with the height of the top stack above the bottom stack to 

allow the two layers to bond. 
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 Further, the motorized stages allow for us to scan for material flakes. In a typical exfoliation 

process, the bulk material is exfoliated multiple times onto a silicon subtrate which is typically on 

the order of a couple of cm2 in area at least. As a result, the silicon substrate is covered in exfoliated 

flakes of bulk and 𝑛-layered material, but only very few flakes of a material are useful for a 

particular experiment. These monolayer, bilayer, trilayer, etc. flakes of material typically only have 

lateral dimensions of ~10𝜇𝑚 at most, and so finding them on the silicon substrate can be a long 

and arduous process. Over the course of the last couple of years, I have worked with several 

undergraduate students (Ian Blackman-Staves, Samia Sabir, Shannon Gray, and Laura Zichi) to 

automate the scanning procedure for the glovebox system and search for and find flakes which are 

useable for experiments. Our latest efforts have included implementing machine learning to 

identify microscope images of high-quality usable flakes, which is ongoing. 
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CHAPTER V 

Nonlinear Optical Measurements on type-II Weyl Semimetals  

V 

 As discussed in Chapter II, a type-II WSM is a WSM in which the WP occurs at the 

intersection of an electron and a hole pocket. The layered TMDC WTe2 was the first predicted 

electronic type-II WSM [8]. This material had previously attracted much interest due to the 

observation of extremely large positive magnetoresistance at low temperatures [109] and of 

superconductivity [110, 111]. Like many layered TMDCs, it can exist in several different 

polytypes, including the Td, 1T’, and 2H phases. Of these, only the Td phase is noncentrosymmetric 

and hosts the WSM state. However, unlike other layered TMDCs, WTe2 exists in the Td phase 

even at room temperature. The Td phase is a distorted 1T’ structure belonging to space group (point 

group) 𝑃𝑚𝑛21 (𝐶2𝑣) [75]. An illustration of the crystal structure of Td-WTe2 can be found in Figure 

V.1. It possesses a two-fold screw axis along the 𝑐-axis, a mirror in the 𝑏𝑐-plane, and a glide mirror 

in the 𝑎𝑐-plane.  
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Figure V.1 – The crystal structure of Td-WTe2 drawn using VESTA software and crystallographic 

information from [112] along the a-, b-, and c-axes. Here, the Te atoms are indicated in red and 

the W atoms in blue. The mirror in the 𝑏𝑐-plane (solid green) and the glide mirror in the 𝑎𝑐-plane 

(dashed green) are indicated, and the unit cell is boxed in each orientation. The coordinates next 

to each plane indicate the crystal axes. 

  

 Following the prediction of the WSM band structure in Td-WTe2, there was a flurry of 

experimentation looking to confirm the topological state. Multiple ARPES studies were performed 

to investigate the surface Fermi arcs [113-115], and studies of the Shubnikov-de Haas oscillations 

similarly tried to pin down the Fermi arcs near electron and hole pockets [116], but such 

experiments were not immediately conclusive due to the slightly larger separation between the 

Fermi energy and the predicted WPs compared with TaAs and other confirmed WSMs. To 

compensate, some studies using time-resolved ARPES were performed to first excite the electrons 

up to the Weyl cone and then look at the Fermi arcs [117], but even these studies proved 

inconclusive when calculations came out predicting that observed Fermi arcs might arise without 

a topological origin [54, 55, 118]. Since then, several other studies have come out providing strong 

evidence for a type-II WSM state in Td-WTe2. These include ARPES [56, 119], time-resolved 
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ARPES [120], Xray-ARPES [121], spin-resolved ARPES [122], scanning tunneling microscopy 

[123], and transport measurements [20]. Due to this evidence, the existence of a type-II WSM state 

in Td-WTe2 is now widely accepted in the condensed matter community.  

 Shortly after the prediction of the WSM state in Td-WTe2, a type-II WSM state was 

predicted as well in the similar layered TMDC, Td-MoTe2 [124]. MoTe2, however, exists in the 

1T’ phase at room temperature and undergoes a structural phase transition to the Td phase at 250K 

[125, 126]. This 1T’ phase belongs to space group (point group) 𝑃21/𝑚 (𝐶2ℎ) [89, 127]. The 

crystal structures of the 1T’ and Td polytypes of MoTe2 are shown in Figure V.2. Like the Td 

polytype, the 1T’ polytype has a mirror in the 𝑏𝑐-plane. Unlike the Td polytype, the 1T’ phase 

possesses a 𝐶2 skew axis along the 𝑎-axis and is inversion symmetric. The energy separation 

between the Fermi energy and the WPs in this material is less than that in Td-WTe2, and so 

experimental confirmation of the WSM band structure through observation of the Fermi arcs with 

ARPES was achieved with less controversy [22, 52, 53, 108, 128, 129]. 

 

 

Figure V.2 – An illustration of the MoTe2 crystal structure for both the Td (blue Te and red Mo) 

and 1T’ (pink Te and green Mo) polytypes. The mirror plane consistent across both polytypes in 

the 𝑏𝑐-plane is indicated as solid green lines and the 𝐶2 skew axis along the 𝑎-axis specific to the 

1T’ polytype is indicated as a dashed blue line. The unit cell in each case is indicated in black. The 
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coordinates next to each plane indicate the crystal axes. We note here that the 𝑏-axis is slightly 

tilted when viewed in the 𝑏𝑐-plane when for the 1T’ phase, and so each phase has a coordinate 

indicator for this plane. These images were drawn using the VESTA software with crystal structure 

files from [112, 130]. 

  

 Nonlinear effects including SHG [71], photocurrent generation [72], the nonlinear Hall 

effect [18], and higher order effects [79] have all been observed in type-II WSMs, but they are 

often studied in few- or mono-layer materials rather than in bulk. The study of 𝑛-layer Td-MoTe2 

and Td-WTe2 has been a fertile field of research in the last several years after the discovery of the 

scotch-tape method of exfoliation of graphene [103]. Like graphite, the layers of these TMDCs are 

held together with weak van-der Waals interactions, making fabrication procedures relatively 

simple and inexpensive. Yet the topological WPs and Weyl cones are bulk phenomena, and so the 

study of nonlinear effects in bulk-like thick type-II WSMs is warranted [89, 90]. 

 In this chapter, we will present several experimental studies of second order nonlinear 

optical effects in the bulk type-II WSMs Td-WTe2 and bulk-like MoTe2. First, we examine the 

SHG response of this material and estimate the size of the nonlinear optical susceptibility tensor, 

which we compare to other nonlinear crystals. Next, we use polarized time-resolved optical 

reflectivity spectroscopy to study the coherent oscillations of the optical phonons in this material. 

We identify the excitation mechanism of the lowest-frequency mode, the 0.25 THz shear mode, as 

the nonlinear process of Impulsive Stimulated Raman Scattering (ISRS), distinct from other 

observed phonons excited through the Displacive Excitation of Coherent Phonons (DECP). We 

find the strength of this nonlinear ISRS response to be large compared with the DECP response of 

the other modes. The 0.25 THz mode is further identified with an observation of the linear electro-

optical effect. We use point-symmetry-based analyses to study the anisotropic behavior of both 

the SHG and ISRS responses to the incoming light polarization. We use fluence-dependent 
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measurements to verify our identified excitation mechanisms and to study the electron-phonon 

coupling. We will also present a brief study of the SHG response of few-layer MoTe2 and look at 

how that response varies as we evolve from thin to bulk samples as well as from the 1T’ to Td 

phases. We note here that I performed all measurements and completed all analysis for the Td-

WTe2 studies and Austin Kaczmarek and I took the measurements for the MoTe2 studies while I 

performed the analysis. Both studies were completed under the supervision of Liuyan Zhao. Adam 

Tsen and Archana Tiwari provided the MoTe2 devices and Junjie Yang provided the WTe2 

samples. 

 

Material Preparation 

 Td-WTe2 samples were synthesized using a self-flux method. 0.2 g of WTe2 powder and 

10 g of Te (99.999%) were loaded into an alumina crucible, which was sealed in a quartz tube 

under vacuum. A small amount of quartz wool was later added on top of the alumina crucible to 

act as a filter to separate the flux from the crystals in a later step. The tube was then heated to 

825∘C, held for 24 hours, and then slowly cooled to 525∘C over 150 hours. At 525∘C the flux was 

separated from the crystals by centrifuging. The WTe2 crystals were then put into another vacuum 

sealed quartz tube and annealed at 415∘C for two days. Before measurements were taken, the 

sample was cleaved using scotch tape in ambient conditions and immediately transferred to 

vacuum to prevent oxidation [131]. It was kept at room temperature in a vacuum better than 

2 × 10−6 hPa. 

 All MoTe2 crystals were also grown using the flux method with a Te solvent. Mo (Alfa 

Aesar, 99.9%) and Te (Alfa Aesar, 99.99%) powders were ground and placed into an alumina 

crucible in a 1:25 ratio and sealed in a quartz ampoule. The quartz ampoule was first heated to 



91 
 

1050∘C and held for two days. Then, it was cooled to 900∘C over 120 hours and centrifuged. 

Shiny, plate-like crystals with lateral dimensions of up to several millimeters were obtained. 

 The construction procedure for the MoTe2 devices presented at the end of this chapter is as 

follows. 45 nm Au and 5 nm Ti electrodes were pre-patterned in a circular geometry on Si wafers 

with a 285 nm oxide layer using conventional photolithography and electron-beam deposition. The 

graphene (Coorstek), hBN (HQ graphene), and MoTe2 flakes were all exfoliated inside of a 

nitrogen-filled glovebox system (Inert PureLab HE) using scotch tape onto blank SiO2/Si wafers. 

After the desired flakes were identified using an optical microscope (Olympus), a 

polydimethylsiloxane polymer stamp coated with polycarbonate was used to pick up the full 

hBN/graphene/hBN/MoTe2/hBN heterostructure. This avoided contamination between the layers. 

The heterostructure was then aligned and transferred onto the pre-patterned electrodes. The full 

exfoliation and transfer process was performed in the nitrogen-filled glovebox to avoid 

degradation. 

 

Second Harmonic Response of Td-WTe2 

 As with all noncentrosymmetric materials, we expect an electric-dipole SHG response 

from Td-WTe2, as discussed in Chapter III. We can simultaneously confirm the symmetry of the 

sample and investigate its SHG response by performing RA-SHG experiments [97, 98]. Working 

with an 800 nm incoming fundamental light source, we expect that we will not be sensitive to the 

translational symmetries of the space group because they are relevant on the length-scale of the 

lattice constants, which are only a few angstroms, and thus several orders of magnitude smaller 

than the wavelengths used in our experiments. Thus, we typically derive the relevant point group 

of a material for experiments at 800 nm by eliminating the translational symmetries of the space 
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group. For the 𝑃𝑚𝑛21 space group of Td-WTe2, this corresponding point group must consist of 

mirrors in the 𝑎𝑐- and 𝑏𝑐-planes (ie. eliminating the translational symmetries of the glide mirror 

yields a mirror) and a 𝐶2-rotation about the 𝑐-axis (ie. eliminating the translational symmetries of 

the skew axis yields a rotation). These point symmetries correspond to the 𝐶2𝑣 point group. We 

can derive 𝜒𝐸𝐷 using these point symmetries. Doing so, we find seven nonzero elements, five of 

which are independent. These are 

 𝜒𝑥𝑧𝑥
𝐸𝐷 = 𝜒𝑥𝑥𝑧

𝐸𝐷 ; 𝜒𝑦𝑧𝑦
𝐸𝐷 = 𝜒𝑦𝑦𝑧

𝐸𝐷 ; 𝜒𝑧𝑥𝑥
𝐸𝐷 ; 𝜒𝑧𝑦𝑦

𝐸𝐷 ; 𝜒𝑧𝑧𝑧
𝐸𝐷 . 

 

V.1 

 Figure V.3 shows the reflected SHG intensity as a function of polarization angle at a 

selection of normal and oblique incidence polarization channels10 [132]. We see that there is a 

nonzero response even in the normal incidence experimental geometry, and that there is a large 

anisotropy in that response. However, the out-of-plane 𝐶2-axis of 𝐶2𝑣 strictly forbids any SHG 

response at normal incidence. This contradiction between our measurements and the point-group-

based prediction can be reconciled by the fact that this 𝐶2-axis in reality is a skew axis, or a rotation 

operation followed by a half unit cell translation along the out-of-plane direction (ie. the incident 

light wavevector direction). The RA-SHG response of Td-WTe2 differentiates the skew axis from 

𝐶2-rotation and thus demonstrates a nonzero SHG response even at normal incidence.  

 We therefore model the RA-SHG response of Td-WTe2 using the symmetries of the 𝑚 

point group, which is a subgroup of 𝑃𝑚𝑛21 containing only one mirror in the 𝑏𝑐-plane. The ED 

susceptibility tensor for this point group has 14 nonzero elements, of which 10 are independent. 

These are 

 

𝜒𝑥𝑦𝑥
𝐸𝐷 = 𝜒𝑥𝑥𝑦

𝐸𝐷 ;  𝜒𝑥𝑧𝑥
𝐸𝐷 = 𝜒𝑥𝑥𝑧

𝐸𝐷 ;  𝜒𝑦𝑥𝑥
𝐸𝐷 ;  𝜒𝑦𝑦𝑦

𝐸𝐷 ;  𝜒𝑦𝑧𝑦
𝐸𝐷 = 𝜒𝑦𝑦𝑧

𝐸𝐷 ;  𝜒𝑦𝑧𝑧
𝐸𝐷 ;  𝜒𝑧𝑥𝑥

𝐸𝐷 ;  𝜒𝑧𝑦𝑦
𝐸𝐷 ;  𝜒𝑧𝑦𝑧

𝐸𝐷

= 𝜒𝑧𝑧𝑦
𝐸𝐷 ;  𝜒𝑧𝑧𝑧

𝐸𝐷 . 

 

V.2 

 
10 See Chapter III for a description of the various polarization channels accessible with the RA-SHG experiment. 
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Using this tensor, we can compute the expected forms of the RA-SHG data in both the parallel and 

crossed normal incidence polarization channels as  

 

𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑦

𝐸𝐷 sin3(𝜙) + (2𝜒𝑦𝑥𝑦
𝐸𝐷 + 𝜒𝑦𝑥𝑥

𝐸𝐷 ) cos2(𝜙) sin(𝜙))
2
 

𝐼𝑐𝑟𝑜𝑠𝑠𝑒𝑑
2𝜔 (𝜙) = cos2(𝜙) (𝜒𝑦𝑥𝑥

𝐸𝐷 cos2(𝜙) + (𝜒𝑦𝑦𝑦
𝐸𝐷 − 2𝜒𝑥𝑦𝑥

𝐸𝐷 ) sin2(𝜙))
2
. 

 

 

 

V.3 

Similar results can also be derived for the oblique incidence polarization channels as 

 

𝐼𝑆−𝑆
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑦

𝐸𝐷 cos3(𝜙) + 2(𝜒𝑥𝑦𝑥
𝐸𝐷 + 𝜒𝑦𝑥𝑥

𝐸𝐷 ) cos(𝜙) sin2(𝜙))
2
, 

𝐼𝑆−𝑃
2𝜔 (𝜙) = cos2(𝜃) sin2(𝜙) ((𝜒𝑦𝑦𝑦

𝐸𝐷 − 2𝜒𝑥𝑦𝑥
𝐸𝐷 ) cos2(𝜙)

+ 𝜒𝑦𝑥𝑥
𝐸𝐷 sin2(𝜙))

2

+ sin2(𝜃) (𝜒𝑧𝑦𝑦
𝐸𝐷 cos2(𝜙) + 𝜒𝑧𝑥𝑥

𝐸𝐷 sin2(𝜙))
2
, 

𝐼𝑃−𝑆
2𝜔 (𝜙) = (𝜒𝑦𝑧𝑧

𝐸𝐷 cos(𝜙) sin2(𝜃)

+ cos(𝜙) cos2(𝜃) (𝜒𝑦𝑥𝑥
𝐸𝐷 cos2(𝜙)

+ (𝜒𝑦𝑦𝑦
𝐸𝐷 − 2𝜒𝑥𝑦𝑥

𝐸𝐷 ) sin2(𝜙))

− (𝜒𝑥𝑧𝑥
𝐸𝐷 − 𝜒𝑦𝑧𝑦

𝐸𝐷 ) cos(𝜃) sin(𝜃) sin(2𝜙))
2
, 

𝐼𝑃−𝑃
2𝜔 (𝜙) = (−𝜒𝑦𝑧𝑧 sin

2(𝜃) sin(𝜙) − cos2(𝜃) sin(𝜙) ((2𝜒𝑥𝑦𝑥
𝐸𝐷

+ 𝜒𝑦𝑥𝑥
𝐸𝐷 ) cos2(𝜙) + 𝜒𝑦𝑦𝑦

𝐸𝐷 sin2(𝜙))

− 2 cos(𝜃) sin(𝜃) (𝜒𝑥𝑧𝑥
𝐸𝐷 cos2(𝜙) + 𝜒𝑦𝑧𝑦

𝐸𝐷 sin2(𝜙)))
2

+ sin2(𝜃) (𝜒𝑧𝑧𝑧
𝐸𝐷 sin2(𝜃) + 𝜒𝑧𝑧𝑦

𝐸𝐷 sin(2𝜃) sin(𝜙)

+ cos2(𝜃) (𝜒𝑧𝑥𝑥
𝐸𝐷 cos2(𝜙) + 𝜒𝑧𝑦𝑦

𝐸𝐷 sin2(𝜙)))
2

. 

 

 

V.4 

 We then use the signal strength of the RA-SHG measurements to estimate the strength of 

the SHG response.11 This estimation is a crucial step towards understanding the strong nonlinear 

optical effects in type-II WSMs by allowing for comparison of the nonlinear responses across other 

materials. From Chapter IV, we know that we must use the refractive index of bulk Td-WTe2 to 

adjust for the nonlinear Fresnel coefficients [102]. To our knowledge, this quantity has not been 

experimentally determined, but Density Functional Theory (DFT) calculations have recently been 

 
11 See Chapter IV for details on this procedure. 
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performed [133]. Using these calculated parameters, we find nonlinear susceptibility tensor 

elements of 𝜒𝑥𝑦𝑥
𝐸𝐷 ≈ 300 pm/V, 𝜒𝑦𝑥𝑥

𝐸𝐷 ≈ 350 pm/V, and 𝜒𝑦𝑦𝑦
𝐸𝐷 ≈ 200 pm/V, which are up to two 

orders of magnitude larger than previously reported measurements on non-topological polar metals 

[14, 134, 135].  

 

 

Figure V.3 − RA-SHG data (dots) and corresponding fits (solid curve) taken in the oblique S-S 

and P-S polarization channels (top, red) and in the corresponding parallel and crossed normal 

incidence polarization channels (bottom, blue). The models are taken from Equations V.3 and V.4 

using the electric-dipole response of the 𝑚 point group. The plot is normalized such that 1.0 

corresponds to 17.4 fW. 

 

 

 The nonlinear susceptibility tensor elements of the type-I WSM TaAs have already been 

determined to be ~7200 pm/V.12 This was found to be an order of magnitude larger than the 

 
12 Specifically, this is the 𝜒𝑧𝑧𝑧

𝐸𝐷  susceptibility tensor element which accesses the polar 𝑐-axis in this material. 



95 
 

response in GaAs at 800 nm, which is a material typically used to calibrate SHG measurements 

[14]. In contrast, our estimation for the SHG response in Td-WTe2 is about half that of GaAs. There 

are several possible explanations for this difference in strength between the type-I and type-II 

WSM second harmonic responses. One explanation could be that the experimental geometry used 

in the TaAs measurements accessed the polar 𝑐-axis, while the experimental geometries shown in 

Figure V.3 do not because of the differing point symmetries between these materials. However, 

the strength of the SHG response is pretty consistent between both the normal and oblique 

incidence geometries and so it is unlikely that this is the cause of the discrepancy. Further, the 

layered structure of Td-WTe2 means that the van der Waals bonds between layers along this polar 

𝑐-axis will be significantly weaker than the ionic bonds along the TaAs polar 𝑐-axis. This would 

naturally yield a weaker out-of-plane second harmonic response.  

 Another second possible explanation for the discrepancy between our Td-WTe2 experiment 

and previous TaAs experiments is that the wavelength of our fundamental light is farther from 

resonance than measurements taken on TaAs [70]. Although absorption measurements have not 

been performed on Td-WTe2, optical conductivity measurements and DFT calculations on Td-

WTe2 at room temperature do both indicate that the band edge is several orders of magnitude lower 

than either the fundamental (800 nm) or SHG (400 nm) wavelengths used in this experiment, and 

that there are no additional features in the optical conductivity [133, 136].  

 A third possible explanation is that the discrepancy in the strength of the SHG response is 

more directly related to the Weyl physics through carrier screening effects which might occur due 

to the presence of the electron and hole pockets present in the band structure of type-II WSMs at 

the WPs which are not present in the type-I band structure. Such an effect occurs in metals, where 

the multitude of free carriers effectively screens the incoming fundamental electric field, thus 
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reducing the SHG response. The electron and hole pockets near the WP of type-II WSMs, 

including Td-WTe2, might allow for more free carriers in these materials than in type-I WSMs. In 

any case, further study is certainly needed to pin down the exact source of this discrepancy between 

the type-I and type-II SHG responses. 

 

Time-Resolved Optical Reflectivity Studies on Td-WTe2 

 The experimental setup of the time-resolved optical reflectivity experiment is discussed in 

Chapter IV and is shown in Figure V.4. Here, the horizontal (H) polarization is along the glide 

mirror direction with an uncertainty of ±10∘ and the vertical (V) polarization is along the mirror 

direction with an uncertainty of ±10∘. In general, for this material, we will work with 12 different 

polarization channels. These are the H-H, H-V, V-H, V-V, L-L, L-R, R-L, A-A, A-B, B-A, and B-

B channels, where the A and B polarizations are linear polarizations which are 45∘ rotated from 

either H or V, and where L and R refer to left- and right-handed circularly polarized light, 

respectively.  

 

 

Figure V.4 – The experimental setup for the time-resolved reflectivity measurements. The pump 

pulse at 720 nm is normally incident on the sample and followed at a time delay by a probe pulse 
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at 800 nm at a small oblique angle (~7∘). The polarization of the pump and probe can be 

independently tuned into eight different polarization combinations and are shown here in the H-V 

channel. The lab frame is indicated in blue, and the sample coordinate system is indicated by the 

RA-SHG pattern.  

 

 Raw data obtained in the H-H and H-V polarization channels are shown in Figure V.5. The 

overall trend for both channels is defined by two key features. The first feature is a dramatic dip 

in the ∆𝑅/𝑅 value at the temporal overlap point (time-zero) of the pump and probe, which is 

attributed to the excitation of electrons in the material by the pump pulse, followed by a gradual 

recovery process. The second feature is the oscillatory behavior in the dynamic response after 

time-zero, which we associate with coherent excitations of optical phonons. Throughout all of our 

experiments, six phonon oscillations were observed at 0.25 THz, 2.4 THz, 3.5 THz, 3.9 THz, 4.9 

THz, and 6.4 THz. All observed phonons are associated with A1 modes by comparing their 

frequencies to previous Raman measurements [131, 137-140].  
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Figure V.5 – Time-resolved reflectivity measurements on Td-WTe2 for linearly polarized pump 

and probe in two polarization channels. In both channels, a dip in the change in reflectivity (Δ𝑅/𝑅) 

is observed at time zero followed by a decay with oscillations dependent on the polarization of the 

probe pulse. 

 

 To extract the frequencies of the phonon modes observed, it is necessary to perform a fit 

to the time dynamics. We fit the overall time dynamics using two exponential decays convolved 

with a Gaussian beam profile, as shown in Figure V.6. Throughout our time-resolved optical 

reflectivity measurements on Td-WTe2, we find one shorter time constant on the order of 1 ps, 

which we associate with electron-phonon thermalization, and a longer, weaker decay on the order 

of 5-10 ps which has previously been associated with phonon-assisted electron-hole recombination 

[141]. To extract the frequencies of these oscillations, the relaxation dynamics are subtracted from 

the raw data and a fast-Fourier transform (FFT) is performed on the resulting data set. The 

oscillatory response of the L-L channel after subtraction of the time dynamics is shown in the 

lower panel of Figure V.6. 
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Figure V.6 – An illustration of the fitting procedure used in the data analysis in the case of an L-L 

dataset. First, the decay dynamics are fit to the sum of two exponential decays convolved with a 

Gaussian beam. This fit is then subtracted from the data to reveal the underlying phonon 

oscillations, which are fit individually assuming decaying sinusoidal oscillations. 

 

 Figure V.7 shows time-resolved optical reflectivity measurements for circularly polarized 

pump and probe beams. The same relaxation and oscillatory features can be seen in this data as 

were observed in the linear polarization channels, although the phonon oscillations seem to be 

much more consistent for different polarizations than were seen in the linearly polarized data. The 

purpose of using circularly polarized light is to identify if there is a time-resolved magneto-optical 

Kerr effect (TR-MOKE) present in the sample. Such measurements are typically taken by using a 

balanced photodiode but may be accessible to us due to our polarization resolution. In particular, 

we can calculate the TR-MOKE signal by subtracting the raw data from our L-L and L-R channels. 

Such a signal would be an indication of the Weyl physics of Td-WTe2 because left- and right-hand 

circularly polarized light will populate the Weyl cones differently because of their distinct 
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chirality. The inset of Figure V.7 illustrates that we find a null result for the TR-MOKE signal 

under our experimental conditions. This is likely because the pump wavelength will excite 

electrons far above the chiral WPs to higher bands whose response will dominate over that 

expected using topological arguments.  

 

 

Figure V.7 – Time-resolved reflectivity measurements for circularly polarized pump and probe. 

The inset illustrates the TR-MOKE signal calculated by subtracting the L-L and L-R polarization 

channels. 

 

 While Figure V.5 and Figure V.7 demonstrate that the oscillations of the phonon modes 

depend on the polarization channel, Figure V.8 and Figure V.9 show this dependence 

quantitatively by demonstrating the polarization dependence of the phonon amplitudes and phases, 

respectively. In Figure V.8, the frequency spectra of the oscillations are shown for all 12 

polarization channels. We observe a strong anisotropy in the coherently excited phonons apparent 
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through the polarization dependence of the amplitudes of the oscillations in the linear polarization 

channels. This can be seen by comparing the 2.4 THz and the 3.9 THz modes, where we see that 

the 2.4 THz mode is preferentially sampled with vertically polarized probe while the 3.9 THz mode 

is preferentially sampled with horizontally polarized probe. In addition, we see that the A-A, A-B, 

B-A, and B-B channels sample all of the phonon modes accessible in channels with H and V 

polarized light, but at an intermediate strength. In Figure V.9, the oscillations of the two strongest 

phonons at 0.25 THz and 2.4 THz are highlighted. We observe that the 0.25 THz mode oscillates 

sinusoidally and has a phase of 𝜋 between H and V polarized probe while the 2.4 THz mode 

oscillates cosinusoidally in all linear polarization channels.  
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Figure V.8 – The FFT of the raw phonon oscillations for various linear and circular polarization 

channels, with the spectrum above 3 THz enhanced by a factor of five for clarity. There is a clear 

dependence of the strength of the observed phonons on the probe polarization. 

  

 Determining the polarization dependence of the phase of the oscillations allows us to 

identify the excitation mechanism of the coherent phonons. The origin of excitations of coherent 

phonons is typically assigned to either DECP or ISRS. In DECP, the coherent excitation is driven 

by the perturbations of the electronic distribution by the pump beam and is thus dictated by the 

potential landscape of the phonons (ie. the band structure) [142]. ISRS, in contrast, is a nonlinear 

optical effect which makes use of the fact that the pulse spectrum of the pump beam is finite rather 

than a delta-function. In ISRS, excitations occur at frequencies accessible through difference 

frequency generation of  that pulse spectrum [143]. Important differences exist between the 

phonons excited by these two mechanisms. For example, in DECP, only fully-symmetric A1 

Raman modes can be excited, and they must have a cos(𝜔𝑡) dependence. In ISRS, in contrast, 
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modes of any symmetry can be excited but those oscillations will only a cos(𝜔𝑡) dependence when 

the incoming light is at resonance excitations.  

 To extract the initial phase of the phonon mode oscillations, we first subtract out the decay 

dynamics and then fit the remaining oscillatory response to a sum of exponentially decaying sine 

curves (one for each observed frequency in the FFT). When this fit is performed, we find that the 

extracted phase of the 2.4 THz mode is 4.524 ± 0.13 rad or 260∘ ≈ 1.45𝜋 rad for the H-H channel 

and 4.880 ± 0.025 rad or 280∘ ≈ 1.55𝜋 rad for the H-V channel. That is, the 2.4 THz mode obeys 

a cosine-like oscillation in time (within 10∘). Because our pump laser is at least two orders of 

magnitude removed from the band edge according to DFT calculations and optical conductivity 

measurements [133, 136], we can identify its origin as DECP. The oscillations of the higher-

frequency phonons are too weak to be directly visualized as in Figure V.9, and fitting them to 

exponentially decaying sinusoidal functions leads to large uncertainties. However, previous 

studies have already assigned these higher-frequency phonons to DECP [144, 145]. 

 The identification of the mechanism behind the 0.25 THz mode is slightly more 

complicated. The phases extracted from the fits for this mode are 5.338 ± 0.05 rad or 305∘ ≈

1.67𝜋 rad for the H-H channel and 2.373 ± 0.189 rad or 136∘ ≈ 0.76𝜋 rad for the H-V channel. 

This implies that the oscillations of this phonon mode have a phase which places them almost 

exactly in-between pure sine and pure cosine behavior. Previous calculations have been performed 

which indicate that ISRS and DECP are actually two manifestations of the same basic effect, where 

the dominant part of the dielectric constant of the material dictates the origin of the oscillations 

[146]. In particular, if the imaginary component of the dielectric constant dominates, then DECP 

is the main mechanism of generation, and vise versa. We also consider previous experiments which 

have observed a similar phase difference in the oscillations of phonon modes depending on the 
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probe polarization. These experiments, largely performed on GaAs, also have a starting phase in-

between a pure sine and pure cosine, and still assign the mechanism of generation to ISRS [147-

149]. Indeed, a review of literature suggests that DECP is typically assigned when the oscillations 

are at most ~20∘ removed from a pure cosine dependence [150]. Thus, despite of the difference 

in phase from a pure sine oscillation, we believe that the proximity of the phase to a pure sine 

oscillation taken together with the observation of the surface field effects is sufficient to associate 

the 0.25 THz mode with ISRS excitations in Td-WTe2. 

  

 

Figure V.9 – An illustration of the oscillations at 0.25 THz and 2.4 THz for the H-H and H-V 

channels in Td-WTe2. Using the dashed line as a guide, a phase difference of 𝜋 between these two 

channels can be observed for 0.25 THz which is not present in the oscillations at 2.4 THz. This is 

indicative of the linear electro-optical effect. 

  

 Importantly, the determination of the location of time-zero is vital to the identification of 

the initial phase of the oscillations of the optical phonons and thus to our assignment of the 

excitation mechanism. Yet this determination can be incredibly challenging. In particular, it is 

often best accomplished by mirroring the pump-probe spectrum about time-zero by switching the 

roles of the pump and probe to take a backwards time trace [150, 151]. Here, we assign time-zero 

to be the minimum location of the dip in the time dynamics. Although this is not optimal from a 
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theoretical point of view, practically it can be justified with our very small autocorrelation time 

(~44 fs). The autocorrelation measurement is shown against the time dynamics of the L-L 

polarization channel in Figure V.10. The autocorrelation for this experiment is found by spatially 

overlapping the pump and probe beams inside a BBO crystal and then measuring the transmitted 

SHG power as we scan through the temporal overlap location. Because the experimental settings 

(ND filtering requiring different amounts of glass in the pump and probe beams) are different 

between the actual experiment and the autocorrelation measurement, and because the location of 

time-zero determined in the autocorrelation measurement is heavily reliant on the thickness and 

tilt of the BBO crystal, we cannot use the precise location of time-zero found in the autocorrelation 

measurement as the location for the Td-WTe2 measurements. However, the size of the 

autocorrelation is consistent across measurements. If we pessimistically assume that there is an 

uncertainty in our determination of time-zero from this autocorrelation equal to half of the 

autocorrelation time, this will correspond to a phase shift of ~2∘ for the 0.25 THz mode and a 

phase shift of ~19∘ for the 2.4 THz mode. Another possible uncertainty when determining the 

initial phase of the oscillations comes from subtracting the fit for the decay dynamics before 

performing the fit to the oscillations, which can lead to some additional oscillations near time-zero. 

However, it has been our experience that these are typically lower-frequency remnants with a quick 

decay time. This means that our method of fitting to several periods of oscillation mostly eliminates 

this problem, with any effect being incorporated in the fit to the uncertainty of the phase. 
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Figure V.10 – A plot of the autocorrelation measurement of the pump-probe setup compared with 

the time dynamics of the L-L polarization channel. 

  

 It is worthwhile at this point to compare the strength of the ISRS excitation to the DECP 

excitations. The first predictions and observations of DECP suggested that these oscillations are 

very large, especially compared with ISRS excitations [142, 150]. And indeed, in materials in 

which both excitation mechanisms are observed simultaneously, the ISRS excitations have been 

significantly weaker, often to the point of only barely being visible in the FFT spectrum [152]. 

Theory predictions state that the reason that the DECP response is typically so much stronger than 

the ISRS response comes from the fact that these two mechanisms are actually two components of 

the same tensor with different imaginary contributions such that, except when working near an 

absorption edge or an impurity feature where |𝑑𝑅𝑒(𝜖)/𝑑𝜔| ≪ 𝐼𝑚(𝜖)/Ω does not hold, coherently 

excited phonons will be displacive in nature [146]. However, DFT calculations on Td-WTe2 show 

that we are not in this special regime and so we would ordinarily expect a stronger DECP response, 
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which is contrary to what we observe [133]. This raises the possibility that the nonlinear ISRS 

response is somehow being enhanced by the topological nature of the Td-WTe2 band structure, but 

more studies would be needed to prove this conclusively. 

 There are two subtleties in our identified excitation mechanisms apparent through the 

polarization dependence of the amplitudes of the excited phonons. First, Figure V.8 illustrates that 

even though our observed frequencies correspond with A1 modes, they do not all have the same 

polarization dependence. This is because the strength of the excitation of a mode is proportional 

to the coupling of the probe polarization and the A1 Raman tensor for 𝐶2𝑣, which is 

 𝐴1 = (
𝑎 0 0
0 𝑏 0
0 0 𝑐

). 

 

V.5 

This means that it is possible for opposite probe-polarization dependencies to result from two A1 

modes depending on the strength of the 𝑎 and 𝑏 elements for each mode [140, 153]. Second, ISRS 

typically results in excitations with distinct pump polarization dependencies, which is not apparent 

in our measurements. To understand this, we can analyze the pump polarizations in the frame of 

their behavior under 𝐶2𝑣 group operations.  

 It is well-known that the polarization induced in the material by ISRS obeys [153] 

 𝑃𝑁𝐿 ∝ 𝐸𝑝𝑢𝑚𝑝𝐸𝑝𝑢𝑚𝑝
∗ 𝐸𝑝𝑟𝑜𝑏𝑒 . 

 

V.6 

We can thus form symmetry arguments surrounding our measured polarization dependencies of 

the coherently excited phonons in our data by deconstructing the polarizations of the pump and 

probe beams into symmetries of the crystalline point group. The 𝐶2𝑣 point group of Td-WTe2 is 

given in Table V.1. Because the polarizations of the linearly polarized pump and probe beams are 

aligned with the crystal axes of the sample, we can directly associate horizontally polarized light 

with 𝐵1 and vertically polarized light with 𝐵2. 
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𝐶2𝑣 𝐸 𝐶2 𝜎𝑎𝑐 𝜎𝑏𝑐 
𝐴1 1 1 1 1 

𝐴2 1 1 -1 -1 

𝐵1 1 -1 1 -1 

𝐵2 1 -1 -1 1 

Table V.1 – The character table for the 𝐶2𝑣 point group. 

  

               The product table for 𝐶2𝑣 is given in Table V.2. From Equation V.6 above, we know that 

𝑃𝑁𝐿 is proportional to two copies of the pump beam. In either case of linearly polarized light, this 

will yield an 𝐴1 phonon excitation because 𝐵1 × 𝐵1 = 𝐴1 and 𝐵2 × 𝐵2 = 𝐴1.  

 

× 𝐴1 𝐴2 𝐵1 𝐵2 
𝐴1 𝐴1 𝐴2 𝐵1 𝐵2 
𝐴2 𝐴2 𝐴1 𝐵2 𝐵1 
𝐵1 𝐵1 𝐵2 𝐴1 𝐴2 

𝐵2 𝐵2 𝐵1 𝐴2 𝐴1 

Table V.2 – The product table for the 𝐶2𝑣 point group. 

  

 Analyzing the phase of the 0.25 THz mode reveals the appearance of the linear electro-

optical effect in addition to helping to pin down the excitation mechanism. This effect, also known 

as the Pockels effect, is apparent through a phase shift between the H and V probe channels as 

shown in Figure V.9. This phase shift was first reported in time-resolved optical reflectivity 

measurements on GaAs [147]. From a symmetry perspective, because 𝐶2𝑣 is an anisotropic point 

group, the pump will cause inequivalent changes to the indices of refraction along the 𝑎- and 𝑏- 

crystal axes which are then sampled by the probe. The fact that this effect is apparent through the 

0.25 THz mode can be understood intuitively by recognizing that this mode is a shear mode. In 

particular, from Figure V.1, it is clear that the unit cell of Td-WTe2 encompasses two of the van 

der Waals stacked layers rotated 180∘ from one another. This 0.25 THz shear mode will cause 
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intra-layer motion between these two layers of the unit cell. Previous experiments have used THz 

pumps to excite this mode and use it to drive a transition from the Td phase to the 1T’ phase in 

WTe2 because the deformations it causes can be so extreme that it serves to establish a pure mirror 

symmetry in the 𝑏𝑐-plane as opposed to the glide mirror present in the Td phase [90, 144].  

 Our understanding of the Pockels effect in this material is that the 0.25 THz shear mode 

will only cause deformations of the crystal along the 𝑏-axis, and thus will cause changes in the 

index of refraction only along this axis. This also explains why we only see a phase difference 

through the 0.25 THz mode and not through the 2.4 THz mode – the anisotropic changes to the 

index of refraction must necessarily also occur at the frequency of the shear displacement. Of 

course, any change to the index of refraction must also be apparent through the overall value of 

Δ𝑅/𝑅. Indeed, looking at Figure V.5, we see that there is a difference in the maximum dip of the 

H-H and H-V channels. In particular, the difference in the dips of these channels is 0.762 × 10−3, 

which is comparable to the maximum difference in the oscillations between these two channels 

(~0.592 × 10−3). We would not, however, expect the overall sign of Δ𝑅/𝑅 to change because the 

total change in reflectivity is caused by both the coherent excitation of the phonons and the 

incoherent population of electron carriers. At time-zero, the incoherent part, which will not be 

affected by the birefringence caused by the coherent excitations, will dominate. 

 We can also explicitly calculate this effect following [92]. The electro-optical tensor 𝑟𝑖𝑘 

for the 𝐶2𝑣 point group has five independent elements: 𝑟13, 𝑟23, 𝑟33, 𝑟42, 𝑟51. The index ellipsoid can 

then be written as 

 
(
1

𝑛𝑥2
+ 𝑟13𝐸𝑧) 𝑥

2 + (
1

𝑛𝑦2
+ 𝑟23𝐸𝑧)𝑦

2 + (
1

𝑛𝑧2
+ 𝑟33𝐸𝑧) 𝑧

2 + 2𝑦𝑧𝑟42𝐸𝑦

+ 2𝑧𝑥𝑟51𝐸𝑥 = 1 

 

V.7 
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where 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧 are the indices of refraction of Td-WTe2 along the principal axes and 𝐸𝑖 is the 𝑖𝑡ℎ 

component of the surface field. For a horizontally polarized field, this can be simplified to 

 
𝑥2

𝑛𝑥2
+
𝑦2

𝑛𝑦2
+
𝑧2

𝑛𝑧2
+ 2𝑧𝑥𝑟51𝐸𝑥 = 1. 
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This equation can be diagonalized by a change of basis from (𝑥, 𝑦, 𝑧) → (𝑥′, 𝑦, 𝑧′) defined by 

 𝑥 = 𝑥′ cos 𝜃 − 𝑧′ sin 𝜃 

𝑧 = 𝑥′ sin 𝜃 + 𝑧′ cos 𝜃 
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where  

 
tan 2𝜃 =

2𝐸𝑥𝑟51
1
𝑛𝑥2
−
1
𝑛𝑧2

. 
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This yields a transformed equation for the index ellipsoid of 

 (
1

𝑛𝑥2
+ 𝐸𝑥𝑟51 tan 𝜃) 𝑥

′2 +
𝑦2

𝑛𝑦2
+ (

1

𝑛𝑧2
− 𝐸𝑥𝑟51 tan 𝜃) 𝑧

′2 = 1. 
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Given that we can define the change in the index of refraction as 𝑑𝑛 = −
1

2
𝑛3𝑑 (

1

𝑛2
), we can define 

new indices of refraction of 

 

𝑛𝑥
′ = 𝑛𝑥 −

1

2
𝑛𝑥
3𝐸𝑥𝑟51 tan 𝜃 

𝑛𝑦
′ = 𝑛𝑦 

𝑛𝑧
′ = 𝑛𝑧 +

1

2
𝑛𝑧
3𝐸𝑥𝑟51 tan 𝜃. 
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Because the change in reflectivity Δ𝑅 ∝ Δ𝑛, we can see that a horizontal probe will lead to a phase 

shift in the oscillatory data compared to a vertical probe. 

 The physical origin of the surface field is worthy of note here. Similar observations of such 

an effect in GaAs have assigned the field to a surface charge-screening field occurring due to 

pinning of the Fermi surface at the material-vacuum interface [147-149]. Indeed, such surface field 

effects have also been reported in Bi2Se3, another van der Waals layered material with a Dirac 
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semimetal band structure [74]. Therefore, it is not unreasonable to assume such an effect is also 

occurring here. 

  

Fluence-Dependent Measurements 

 To further motivate the nonlinear ISRS excitation of the 0.25 THz shear mode in Td-WTe2, 

and to try to understand the strong oscillations of this excitation mechanism compared to other 

DECP excitations observed, we investigated the pump fluence dependence of the phonon 

amplitudes, which are shown in Figure V.11. We expect this dependence to be linear because ISRS 

is reliant on the mixing of two copies of the electric field of the pump at frequencies 𝜔 and 𝜔 + Ω 

to excite a phonon of frequency Ω. Indeed, we find that the phonon amplitude is linearly dependent 

on this pump fluence. The amplitudes of the two strongest DECP excitations at 2.4 THz and 6.4 

THz are also shown in Figure V.11 to scale linearly with the pump fluence. In the case of DECP, 

this pump fluence dependence is due to the fact that there is a larger number of excited carriers at 

higher fluences. That is, the dependence is not indicative of a nonlinear optical process. 

Interestingly, it seems there is a divergence from the otherwise linear dependence of all three 

modes after 200 μJ/cm2. In similar measurements on MoTe2, such a divergence was indicative of 

a light-induced change in the lattice symmetry [89]. It is also very possible that the divergence 

seen here is due to the probe fluence at the lower pump fluence points being larger than that of the 

pump. 
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Figure V.11 – Fluence dependence of the FFT amplitudes of the three strongest coherently excited 

phonons in Td-WTe2, indicating that all measurements were taken in the linear regime. The solid 

lines guide the eye for a linear fit to the data. A kink in this linear behavior can be seen for all three 

oscillations after 200 μJ/cm2, indicated by the dashed line. 

  

 To learn more about the mechanism behind the large ISRS excitation of the 0.25 THz 

mode, we also investigated the electron-phonon thermalization time, as shown in Figure V.12. We 

can use this information to extract the electron-phonon coupling constant. This time constant has 

previously been analyzed for increasing lattice temperature [141]. We performed a two-

temperature model (TTM) fit [154-156] assuming a purely thermal effect and using material 

parameters derived using DFT calculations [133]. In this TTM, we take the electron-phonon 

thermalization time to be 

 𝜏𝑒−𝑝ℎ =
𝛾(𝑇𝑒

2 − 𝑇𝑙
2)

2𝐻(𝑇𝑒, 𝑇𝑙)
, 

 

V.13 
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where 𝑇𝑒 is the electron temperature, 𝑇𝑙 is the lattice temperature, 𝛾 is the electron specific heat 

coefficient, which is used as a heating parameter, and 𝐻(𝑇𝑒, 𝑇𝑙) is a function of 𝑇𝑒 and 𝑇𝑙 given by  

 𝐻(𝑇𝑒 , 𝑇𝑙) = 𝑓(𝑇𝑒) − 𝑓(𝑇𝑙) 

 

V.14 

for 

 
𝑓(𝑇) = 4𝑔∞

𝑇5

Θ𝐷
4 ∫

𝑥4

𝑒𝑥 − 1
𝑑𝑥

Θ𝐷
𝑇

0
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for Θ𝐷 the Debye temperature, taken to be 133.8 K [141] and 𝑔∞ the electron-phonon coupling 

constant, the second fitting parameter used in the model. 𝑇𝑒 is computed using the lattice 

temperature and the deposited laser energy density 𝑈𝑙 as 

 𝑇𝑒 = (𝑇𝑙
2 +

2𝑈𝑙
𝛾
)
1/2

. 
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In addition, an adjustment to 𝑇𝑙 is made to account for heating by the laser. In particular, we take 

 𝑇𝑙
′ = (

𝐸𝑙𝑎𝑠𝑒𝑟
𝐶

+ 𝑇𝑙
4)
1/4
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for 𝐸𝑙𝑎𝑠𝑒𝑟 the energy deposited in the material per pulse, 𝐶 a constant equal to 1.658 × 10−16, and 

𝑇𝑙 taken initially to be room temperature [157]. The extracted material parameters using this 

method are 𝛾 ≈ 10.2 mJ mol−1K−2 and 𝑔∞ = 6.79 × 10
15 Wm−3K−1. 
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Figure V.12 – The fluence dependence of time constant 𝜏1 dictating the electron-phonon 

thermalization time with a TTM fit in Td-WTe2. 

 

 While the TTM fit matches the monotonic trend of the measured fluence dependence, it 

did not provide an adequate fit to the data, in contrast with previous experiments [141]. This may 

be because the fluence used here is two orders of magnitude larger than that used in previous 

measurements and the TTM assumption of a purely thermal response between the lattice and 

excited electrons breaks down as we move away from the perturbative regime. This is especially 

because the 720 nm pump excites well above the Fermi energy. Because our fluence-dependent 

measurements of the FFT amplitude of the phonon modes indicate that we are in the linear regime 

[142, 158], and because we are well below the previously reported damaged threshold [79], there 

may be an additional mechanism involved in reaching equilibrium between the electrons and 

phonons after excitation. One such possibility is interactions between the phonons and Weyl 

fermion excitations, which has previously been reported in TaAs [159]. Indeed, our FFT spectra 



115 
 

show evidence of a Fano lineshape for the 0.25 THz mode, shown in Figure V.13. This asymmetric 

lineshape is typically used as evidence of coupling between the excited phonon mode and a 

continuous spectrum of additional particles [159-161]. 

 

 

Figure V.13 – Illustration of the asymmetry of the lineshape of the 0.25 THz mode for the L-L 

channel in Td-WTe2. Pictured here is the raw data (black circles) together with a fit using a 

Lorentzian lineshape (blue) and a Fano lineshape (red). 

 

Second Harmonic Response of Td-MoTe2 

 In addition to the SHG measurements performed on bulk Td-WTe2, we have also performed 

RA-SHG and scanning SHG measurements on few-layer MoTe2 as part of a collaboration with 

Adam Tsen’s group at the University of Waterloo. In particular, the Waterloo group was 

performing nonlinear anomalous Hall effect (NLAHE) measurements on devices they had created 

using a combination of gold and few-layer graphene leads on hexagonal boron nitride (hBN)-

encapsulated MoTe2. An illustration of the device schematic is provided in Figure V.14. They 

found an exceptionally large NLAHE effect in these devices, larger than any previous 
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measurements on other materials. In their paper, which has recently been accepted at Nature 

Communications, they attributed this large effect to scattering processes at both high and low 

temperatures. We were tasked with identifying through RA-SHG measurements the crystal axes 

of the flakes to ensure that their measurements made sense from a symmetry perspective.  

 

 

 

Figure V.14 – An illustration of the basic device schematic used the nonlinear Hall measurements 

performed by Adam Tsen’s group at the University of Waterloo, provided by Archana Tiwari. 

Gold leads are placed around and below the thin MoTe2 flake, and a top lead of graphene is used 

to collect vertical Hall measurements. The whole device is encapsulated in hBN.  

 

 In particular, we tested three devices, pictured in Figure V.15. Device 1 is a thin device, 

with an MoTe2 thickness of ~28 nm. Device 2 is of intermediate thickness, with an MoTe2 

thickness of ~50 nm, and Device 3 is particularly thick, with an MoTe2 thickness of ~127 nm. This 

difference in thicknesses has the potential to affect the observable symmetries of the material. In 

particular, previous reports have indicated a phase transition in this material below ~12 nm, where 

the crystal structure assumes the Td phase. This was modeled using the 𝑚 point group, rather than 
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the 1T’ phase even at room temperature as the thickness of the sample decreases below the critical 

thickness [127]. Another report suggests that, for thinner samples, the point symmetry depends on 

the number of layers, alternating between the bulk 1T’ phase and the 𝑚 point group for odd and 

even numbers of layers, respectively [162]. Thus, in addition to identifying the mirror plane of the 

MoTe2 devices, it is interesting to look at the SHG response above and below the Td to 1T’ phase 

transition to see how it evolves, if at all, with both temperature and sample thickness. 

 

 

Figure V.15 – Microscope images of the three MoTe2 devices studied, provided by Archana 

Tiwari. Throughout, the MoTe2 is outlined in blue, the hBN in black, and the graphene in red. 

Scale bars are included in the lower left corner of each image for reference. 

 

 The RA-SHG measurements taken on each of the three devices below the critical 

temperature is shown in Figure V.16, together with the fit to the data. These RA-SHG scans were 

taken using the scanning SHG setup, and so all data is collected in the normal incidence geometry. 

As with the RA-SHG measurements on Td-WTe2, we find that we must model the MoTe2 as 

obeying the 𝑚 point group, regardless of sample thickness. However, from the crossed and parallel 

data shown in Figure V.16, it appears that the mirror is not consistent across different polarizations. 

This inconsistency is fixed by considering as well the SHG contribution from the thin hBN which 

encapsulates the MoTe2 devices. hBN belongs to point group 𝐷3ℎ [163], which consists of a 𝐶3 
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axis along the 𝑐-axis, three 𝐶2 axes in the 𝑎𝑏-plane, three mirrors normal to the 𝑎𝑏-plane aligned 

with the 𝐶2 axes, a mirror in the 𝑎𝑏-plane, and an 𝑆3 axis along the 𝑐-axis. Applying these 

symmetries yields a 𝜒𝐸𝐷 tensor for hBN with four nonzero elements, of which one is independent. 

They are 

 𝜒𝑥𝑥𝑦
𝐸𝐷 = 𝜒𝑥𝑦𝑥

𝐸𝐷 = 𝜒𝑦𝑥𝑥
𝐸𝐷 = −𝜒𝑦𝑦𝑦

𝐸𝐷 . 

 

V.18 

 

 

Figure V.16 – A summary of the RA-SHG measurements taken at normal incidence at 80 K in 

both the crossed and parallel channels for each of the three MoTe2 NLAHE devices, together with 

white light imaging pictures taken on the scanning setup during the data collection procedure. In 

the optical images, 10 𝜇m scale bars are shown in black in the lower left corner. In the RA-SHG 
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polar plots, the raw data are displayed as open circles and the fit derived using the form of Equation 

V.19 is shown as a solid orange curve. The mirror plane for MoTe2 extracted using the fit (ie. the 

extracted value of 𝛼) is shown in green on each of the parallel RA-SHG flower patterns. Also 

shown is the orientation of the polarizations of both the incoming fundamental (red arrows) and 

reflected SHG (blue arrows) light at both 0∘ and 90∘ on the RA-SHG polar plots. The devices are 

labeled to the left of the row. The RA-SHG polar plots for Device 1 are normalized to 359 fW, for 

Device 2 to 108 fW, and for Device 3 to 54 fW. 

 

 In this case, we expect the SHG fields of both the MoTe2 and the hBN to sum in order to 

yield a total SHG intensity at the detector location. That is, if we define 𝑃𝑖 = 𝜒𝑖𝑗𝑘
𝐸𝐷𝐸𝑗𝐸𝑘 for each 

material, we will have 𝑃𝑖,𝑡𝑜𝑡 = 𝑃𝑖,𝑀𝑜𝑇𝑒2 + 𝑒
−𝑖𝛾𝑃𝑖,ℎ𝐵𝑁 for some complex phase 𝛾, which is used as 

a fitting parameter. Doing this, we find fits to the data of 

 

𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = (3𝜒𝑦𝑥𝑥

𝐸𝐷 cos2(𝛼 − 𝜙) sin(𝛼 − 𝜙) + 𝜒𝑦𝑦𝑦
𝐸𝐷 sin3(𝛼 − 𝜙))

2

− 2𝜒ℎ𝐵𝑁
𝐸𝐷 cos(𝛾) sin(𝛼 − 𝜙) (3𝜒𝑦𝑥𝑥

𝐸𝐷 cos2(𝛼 − 𝜙)

+ 𝜒𝑦𝑦𝑦
𝐸𝐷 sin2(𝛼 − 𝜙)) sin(3(𝛿 − 𝜙)) + 𝜒ℎ𝐵𝑁

𝐸𝐷 2
sin2(3(𝛿 − 𝜙)) 

𝐼𝑐𝑟𝑜𝑠𝑠𝑒𝑑
2𝜔 (𝜙) =

1

4
(cos2(𝛼 − 𝜙) (𝜒𝑦𝑥𝑥

𝐸𝐷 − 𝜒𝑦𝑦𝑦
𝐸𝐷

+ (𝜒𝑦𝑦𝑦
𝐸𝐷 − 3𝜒𝑦𝑥𝑥

𝐸𝐷 ) cos(2(𝛼 − 𝜙)))
2

+ 4𝜒ℎ𝐵𝑁
𝐸𝐷 cos(𝛾) cos(𝛼 − 𝜙) (𝜒𝑦𝑥𝑥

𝐸𝐷 − 𝜒𝑦𝑦𝑦
𝐸𝐷

+ (𝜒𝑦𝑦𝑦
𝐸𝐷 − 3𝜒𝑦𝑥𝑥

𝐸𝐷 ) cos(2(𝛼 − 𝜙))) cos(3(𝛿 − 𝜙))

+ 4𝜒ℎ𝐵𝑁
𝐸𝐷 2

cos2(3(𝛿 − 𝜙))) 
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for 𝛾 the complex phase, 𝛼 the angle between the MoTe2 sample orientation and the plane of the 

optical table, 𝛿 the angle between the hBN sample orientation and the plane of the optical table, 

and 𝜒ℎ𝐵𝑁
𝐸𝐷 = 𝜒𝑦𝑦𝑦

𝐸𝐷  of the hBN nonlinear optical susceptibility tensor of Equation V.18. An 

illustration of this summed field approach to fitting the RA-SHG patterns is shown in Figure V.17 

for Device 3. The extracted value of 𝛼 for each of the devices corresponded to within 10∘ of the 
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identification of the 𝑏-axis of the crystal structure identified by our collaborators using their 

NLAHE measurements. 

 

 

Figure V.17 – An illustration of the incoherent summation of fields used to fit the RA-SHG 

patterns of Figure V.16 using Equation V.19 for Device 3 at 80 K. The shading indicates the phase 

of the second harmonic field. The dashed lines indicate the mirrors planes extracted for MoTe2 

and hBN using 𝛼 and 𝛿, respectively. The scaling of the plots is arbitrary. 

 

 We can take this analysis a step beyond the requirements of our collaborators by looking 

at the evolution of the SHG response in these devices as a function of location and temperature. 

We can investigate the SHG response as a function of location on the device by using the scanning 

capability of this scanning SHG setup. Scanning SHG images of Devices 1 and 3 are shown in 

Figure V.18 at both low temperature and room temperature. From these images, several things are 

immediately apparent. The first is the clear enhancement of the SHG signal from both the gold and 

graphene leads. RA-SHG patterns taken to survey various locations on the device indicate that the 

graphene provides a strong but anisotropic background to the SHG response while the gold seems 

to enhance signal from the hBN. Another is that the thinner MoTe2 flakes seem to have the 
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strongest SHG signal. This is not terribly surprising given the structural transition demonstrated in 

previous measurements [127, 162]. However, the fact is nicely highlighted particularly in the 

Device 1 images, where the SHG signal is particularly strong along the edges of the sample where 

the MoTe2 thickness is presumably smallest.  

 

 

Figure V.18 – Scanning SHG images of Device 3 and Device 1 at both room temperature and 80 

K. The color bar for each image is the same and is indicated on the right. The maximum reading 

of 2 × 10−3 photons/second shown corresponds to 359 fW. A black 10 𝜇m scale bar is included 

in the lower left corner of each image. 

 

 The thickness dependence of the SHG response can be quantified by looking at the 

extracted sizes of the susceptibility tensor elements obtained using the fit from Equation V.19. The 
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method of adjusting the lock-in reading to something physically corresponding to the second 

harmonic field using the PMT of the scanning setup is similar to the procedure outlined in Chapter 

III for the Andor camera. However, we must now account for the drop in signal upon reflection 

through the objective (~60%) and the gain used to amplify the signal (5 × 104Ω for the 

measurements on Devices 1 and 3 and 5 × 105Ω for the measurements on Device 2). A plot 

illustrating the dependence of the 𝜒ℎ𝐵𝑁
𝐸𝐷 , 𝜒𝑦𝑦𝑦

𝐸𝐷 , and 𝜒𝑦𝑥𝑥
𝐸𝐷  tensor elements on the device thickness is 

shown in Figure V.19. Overall, we can see that these MoTe2 devices generally have a smaller SHG 

response than the bulk WTe2 explored earlier in this chapter. We also see that there seems to be a 

dip in the SHG response going from the thin to bulk-like samples. This corresponds to the decrease 

in SHG response observed through the scanning images in Figure V.18.  

 

Figure V.19 – A plot of the extracted susceptibility tensor elements using the parallel channel as a 

function of device thickness at 80 K. Error bars corresponding to uncertainties in the fits are 

included. 
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CHAPTER VI 

Nonlinear Optical Measurements on a Chiral Weyl Semimetal 

VI 

 To this point, we have provided background information on WSMs and nonlinear optics, 

using previous literature on type-I WSMs as examples to guide the discussion, and we have 

presented nonlinear optical studies on two type-II WSMs to try to compare and contrast results 

between these two species. We now turn our attention to an even more exotic WSM, known as a 

chiral WSM. In general, a chiral structure is a structure, like DNA, which, when mirrored, cannot 

be superposed back onto itself [24, 164]. Chiral WSMs are similarly defined by an absence of 

mirror planes in their crystal structures, which allows for the WPs in these materials to occur at 

different energies in the band structure. This contrasts with other examples we have seen of WSMs 

so far, where the mirrors restrict the paired WPs of opposite chirality to occur at the same energy 

in the band structure. Further, the symmetry of these materials allows for higher-order WPs. That 

is, WPs with Chern numbers whose absolute value is greater than one, also known as multifold 

Weyl fermions [165]. Like the tilted Weyl fermions of type-II WSMs, which break Lorentz 

invariance, these multifold fermions do not have an analogue in high energy physics [166-168]. 

 In this chapter, we will present two nonlinear optical studies on the chiral WSM CoSi. The 

first is an analysis of the RA-SHG response of this material on different crystal facets and different 

spot locations. We will use this information, together with ellipsometry data taken by Rachel 

Owen, to identify the size of the SHG response of this material. We find that it is highly facet-

dependent, both in anisotropy and in SHG strength. We also will present photocurrent studies in 
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which we look for CPGE and LPGE signals on devices built from bulk CoSi samples. We find that 

we do see that expected two-fold and four-fold angular dependence in our data, corresponding to 

CPGE and LPGE, respectively, but that the pad and lead placement can give a significant 

contribution to the observed signal. 

 We note here the contributions by various lab members to this experiment. Our CoSi 

samples were provided by Hechang Lei, Chenghe Li, and Shangjie Tian. Sample preparation and 

gold pad deposition were performed by Rachel Owen. Lu Chen, Ziji Xiang, and Kuan-Wen Chen 

from Lu Li’s group have all helped with wiring the samples to the chip carriers. This project was 

completed in collaboration with Lu Li and Steve Cundiff. In particular, Steve’s group members 

Matthew Day, Ruixue Zhang, Yiming Gong, Grace Kerber, and Kelsey Bates, as well as visiting 

researcher Dong Sun, have provided invaluable discussions and experimental collaboration as they 

have worked to build a similar experiment and perform similar measurements in their lab. 

 

CoSi Crystal and Band Structure 

 As mentioned above, the particular chiral WSM we will be focused on for these studies is 

CoSi. CoSi belongs to the space group (point group) 𝑃213 (𝑇), which is a cubic point group [60]. 

The crystal structure of CoSi is shown in Figure VI.1. The 𝑇 point group consists of four 𝐶3 axes 

located along each of the (111) axes and three 𝐶2 axes along the 𝑎-, 𝑏-, and 𝑐-axes. Importantly, 

the 𝑇 point group lacks mirror symmetries, making it a chiral point group. 
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Figure VI.1 – (Top) An illustration of the CoSi crystal structure, drawn using the VESTA software 

using material information from [169]. Here, the Co are illustrated in pink and the Si in blue. The 

unit cell is outlined in black. Shown from left to right are the views along the (100), (110), and 

(111) directions. 

 

 The CoSi samples used throughout these studies were prepared according to [24]. 

Specifically, single CoSi crystals were grown using the chemical vapor transport method. Co and 

Si powders were placed into a silica tube of length 200 mm with an inner diameter of 14 mm in a 

1:1 molar ratio. 200 mg of I2 was also added as a transport reagent. The tube was then evacuated 

to a pressure of 10−2 Pa and sealed. The tube was then placed into a two-zone horizontal furnace 

and the temperatures of the source and growth zones were raised over the course of two days to 

1173 K and 1273 K, respectively. They were held at these temperatures for seven days. Shiny 

crystals with lateral dimensions of up to several millimeters were able to be obtained using this 

method. 

 

RA-SHG Measurements on CoSi 

 We begin by presenting our results using RA-SHG measurements to survey the CoSi 

crystals to identify the crystal facet from the observed symmetry of the RA-SHG flower pattern. 
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The 𝑇 point group results in an electric dipole susceptibility tensor with six nonzero elements, of 

which one is independent. They are  

 𝜒𝑥𝑦𝑧
𝐸𝐷 = 𝜒𝑥𝑧𝑦

𝐸𝐷 = 𝜒𝑦𝑥𝑧
𝐸𝐷 = 𝜒𝑦𝑧𝑥

𝐸𝐷 = 𝜒𝑧𝑥𝑦
𝐸𝐷 = 𝜒𝑧𝑦𝑥

𝐸𝐷 . 
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We can use the method outlined in Chapter IV to calculate a predicted functional form for the RA-

SHG flower pattern obtained for light incident along the 𝑐-axis of the crystal (ie. illuminating the 

[100] crystal face). Doing so, we find 

 

𝐼𝑃𝑖𝑛−𝑃𝑜𝑢𝑡
2𝜔 (𝜙) = 5𝜒𝑧𝑦𝑥

𝐸𝐷 2 cos4(𝜃) sin2(𝜃) sin2(2𝜙) 

𝐼𝑃𝑖𝑛−𝑆𝑜𝑢𝑡
2𝜔 (𝜙) = 4𝜒𝑧𝑦𝑥

𝐸𝐷 2 cos2(𝜃) sin2(𝜃) cos2(2𝜙) 

𝐼𝑆𝑖𝑛−𝑃𝑜𝑢𝑡
2𝜔 (𝜙) = 𝜒𝑧𝑦𝑥

𝐸𝐷 2 sin2(𝜃) sin2(2𝜙) 

𝐼𝑆𝑖𝑛−𝑆𝑜𝑢𝑡
2𝜔 (𝜙) = 0 
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for incident angle 𝜃. 

 The raw data and fits to that data using Equation VI.2 are shown in Figure VI.2. As 

expected, there is no clear RA-SHG signal in the oblique 𝑆𝑖𝑛 − 𝑆𝑜𝑢𝑡 channel or in either of the two 

normal incidence channels. There does seem to be some spatial dependence, but that dependence 

is likely explained by a slight curvature of the sample surface, yielding deviations from a perfectly 

normal incident beam from one spot to another. 
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Figure VI.2 – An illustration of the RA-SHG raw data (closed circles) and derived fits using 

Equation VI.2 for three spots on the (100) crystal face for each of the four oblique incidence 

polarization channels (left of vertical line) and each of the normal incidence polarization channels 

(right of vertical line). A microscope image of the facet under investigation, complete with the 

locations of the four RA-SHG measurements, is shown on the far right. All RA-SHG flower plots 

are normalized to 15 fW. 

 

 We wish to use our RA-SHG method to determine which of the crystal facets we are 

accessing. To this end, it is necessary to both take RA-SHG measurements on a variety of crystal 

faces as well as to derive fits similar to those in Equation VI.2 to fit that data. We can do this by 

rotating the 𝜒𝐸𝐷 susceptibility tensor, whose elements are given in Equation VI.1, so that it is 

oriented along a different axis than the 𝑐-axis of the crystal. We must thus begin by deriving the 

rotation matrix necessary to align the 𝜒𝐸𝐷 tensor correctly. Such derivations of rotation matrices 

are well-known through linear algebra courses, so we will not present in-depth details here because 

they are not particularly enlightening. However, we will present the results of those derivations. 

In particular, the rotation matrix to bring the (100) face to the (111) face is given by 
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 𝑅(100)→(111) =

(

 
 
 
 
 
−
1

√2

1

√2
0

−
1

√6
−
1

√6
√
2

3

1

√3

1

√3

1

√3)

 
 
 
 
 

, VI.3 

which yields functional forms for the RA-SHG channels of 

 

𝐼𝑃𝑖𝑛−𝑃𝑜𝑢𝑡
2𝜔 (𝜙) =

1

3
𝜒𝑧𝑦𝑥
𝐸𝐷 2(5 cos4(𝜃) sin2(𝜃) − 4 cos2(𝜃) sin4(𝜃) + 4 sin6(𝜃)

− 4√2 cos5(𝜃) sin(𝜃) sin(3𝜙) + 2 cos6(𝜃) sin2(3𝜙) 

𝐼𝑃𝑖𝑛−𝑆𝑜𝑢𝑡
2𝜔 (𝜙) =

2

3
𝜒𝑧𝑦𝑥
𝐸𝐷 2 cos4(𝜃) cos2(3𝜙) 

𝐼𝑆𝑖𝑛−𝑃𝑜𝑢𝑡
2𝜔 (𝜙) =

1

3
𝜒𝑧𝑦𝑥
𝐸𝐷 2(sin2(𝜃) + 2 cos2(𝜃) sin2(3𝜙) 

𝐼𝑆𝑖𝑛−𝑆𝑜𝑢𝑡
2𝜔 (𝜙) =

2

3
𝜒𝑧𝑦𝑥
𝐸𝐷 2 cos2(3𝜙) 

 

VI.4 

The RA-SHG raw data and fits for light incident on the (111) face are shown in Figure VI.3. 

 

 

Figure VI.3 – An illustration of the RA-SHG raw data (closed circles) and derived fits using 

Equation VI.4 for eight spots on the (111) crystal face for each of the four oblique incidence 

polarization channels (left of vertical line) and each of the normal incidence polarization channels 

(right of vertical line). A microscope image of the facet under investigation, complete with the 
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locations of the four RA-SHG measurements, is shown on the far right. All RA-SHG flower plots 

are normalized to 59 fW. 

 

 Similarly, we can derive the rotation matrix to model light incident on the (110) crystal 

facet. We find 

 𝑅(100)→(111) =

(

 
 
−
1

√2

1

√2
0

0 0 1
1

√2

1

√2
0
)

 
 
, VI.5 

and 

 

𝐼𝑃𝑖𝑛−𝑃𝑜𝑢𝑡
2𝜔 (𝜙) = 𝜒𝑧𝑦𝑥

𝐸𝐷 2 cos2(𝜃) (9 cos4(𝜃) cos4(𝜙) − 6 cos2(𝜃) cos2(𝜙) sin2(𝜃)

+ 5 sin4(𝜃)) sin2(𝜙) 

𝐼𝑃𝑖𝑛−𝑆𝑜𝑢𝑡
2𝜔 (𝜙) = (−

1

4
𝜒𝑧𝑦𝑥
𝐸𝐷 cos2(𝜃) (cos(𝜙) + 3 cos(3𝜙))

+ 𝜒𝑧𝑦𝑥
𝐸𝐷 cos(𝜙) sin2(𝜃))

2

 

𝐼𝑆𝑖𝑛−𝑃𝑜𝑢𝑡
2𝜔 (𝜙) =

1

4
𝜒𝑧𝑦𝑥
𝐸𝐷 2 cos2(𝜃) (1 + 3 cos(𝜙))2 sin2(𝜙) 

𝐼𝑆𝑖𝑛−𝑆𝑜𝑢𝑡
2𝜔 (𝜙) = 9𝜒𝑧𝑦𝑥

𝐸𝐷 2 cos2(𝜙) sin4(𝜙) 

 

VI.6 

The raw data and fits for the RA-SHG measurements taken on the (110) crystal facet are shown in 

Figure VI.4. 
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Figure VI.4 – An illustration of the RA-SHG raw data (closed circles) and derived fits using 

Equation VI.6 for one spot on the (110) crystal face for each of the four oblique incidence 

polarization channels (left of vertical line) and each of the normal incidence polarization channels 

(right of vertical line). A microscope image of the facet under investigation, complete with the 

locations of the four RA-SHG measurements, is shown on the far right. All RA-SHG flower plots 

are normalized to 59 fW. 

 

 Immediately we can note several observations apparent from our RA-SHG survey of the 

crystal facets of the CoSi sample. First, the polar plots do indeed maintain the symmetry we would 

expect for a given face. That is, the 𝑇 point group has a 𝐶2 axis along the 𝑐-axis which should be 

and is apparent in the RA-SHG plots taken incident to the (100) facet, and it has a 𝐶3 axis normal 

to the (111) facet which should be and is apparent in the RA-SHG plots taken incident to that face. 

There are no true crystalline symmetries which should exist for light incident on the (110) crystal 

face. However, there is an apparent two-fold symmetry in our RA-SHG plots. This can be 

understood by imagining the cuts required to reach the (110) crystal facet from a simple cubic 

structure, shown in Figure VI.5. Although a two-fold rotation normal to the (110) facet will not 

bring the CoSi molecules back onto themselves, the cubic crystal structure predicts a two-fold 

symmetric rectangular cut for the (110) face. This explains the apparent two-fold symmetry in the 
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(110) RA-SHG polar plots. We can also see that the RA-SHG data taken on multiple spots of each 

crystal facet are remarkably consistent in terms of both strength and pattern, as discussed above. 

The orientation of the flower patterns is also consistent from spot to spot across a given crystal 

facet.  

 

 

Figure VI.5 – An illustration of the cubic CoSi crystal with imagined cuts corresponding to the 

(100), (110), and (111) crystal facets. 

 

 We wish to further investigate the strength of the SHG response of the CoSi crystal in order 

to contribute to the current literature values of the susceptibility tensor elements for the type-I 

WSM TaAs and our previous measurements on Td-WTe2 in Chapter V. As discussed in Chapter 

IV, this will require knowledge of the index of refraction at both 400 nm and 800 nm. At the time 

of this study, measurements of these values had not been performed. Thus, Rachel Owen 

performed ellipsometry measurements on multiple crystal facets using a Woollam Ellipsometer at 

the Lurie Nanofabrication Facility on the Engineering Campus at the University of Michigan. The 
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results of these measurements are shown in Figure VI.6. The CoSi crystal structure is assumed to 

be isotropic based on the 𝑇 crystal symmetry. Data was taken on both a (111) and a (100) crystal 

facet, and the extracted real and imaginary components of the index of refraction was found to be 

relatively consistent between the two (within 20%). 

 Taking this index of refraction into account, we find, using an RA-SHG flower pattern 

obtained in the normal incidence parallel channel for light incident on a (111) crystal facet, that 

the susceptibility tensor element for CoSi is given by 𝜒𝑧𝑦𝑥
𝐸𝐷 = 1200 pm/V, which falls between our 

calculated susceptibility tensor strength for Td-WTe2 and the reported result on TaAs at 800 nm 

[14, 70]. Because the of the chiral nature of this material, the polar axis arguments presented in 

Chapter V to explain the SHG strength in Td-WTe2 are not relevant here. We might also expect 

that there could perhaps be some resonance effects contributing to the strength of the SHG signal 

at this wavelength. However, optical conductivity measurements have been performed and 

calculated which indicate no features near either the incoming fundamental or reflected SHG 

wavelengths [170].  
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Figure VI.6 – Ellipsometry measurements taken by Rachel Owen. (Top) The raw data and fit 

derived assuming an isotropic crystal structure on a (100) and a (111) face. (Bottom) The derived 

components of the index of refraction for both the (100) and (111) crystal faces. 

 

 Indeed, it seems that the most consistent explanation for the strength of the SHG response 

of both the Td-WTe2 and this CoSi sample arises from the Weyl physics. In both instances, the 800 

nm incoming light for this experiment, corresponding to 1.5 eV, will excite electrons well above 

the WPs. In the case of CoSi, the chiral WPs seem to lack an electron or hole pocket, which we 
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argued in the previous chapter might explain the lower SHG strength of the WTe2 compared with 

TaAs. Thus, we might expect a larger SHG response from the CoSi. However, when we excite 

with 1.5 eV, we see from Figure VIII.2 that we will access the crossing point at the M-point of the 

band structure, which looks like it might allow for some screening effects due to the presence of 

electron and hole pockets and thus a lower SHG response than that of TaAs, as observed. 

 

Photocurrent Studies on CoSi 

 As discussed briefly in Chapters II and III, photocurrent generation in WSMs has attracted 

particular interest in recent years due to the unique band structure of these materials. CPGE, in 

particular, is of interest because of the chiral nature of the Weyl cones. As illustrated in Figure 

VI.7, circularly polarized light will cause current to flow in a particular direction from either side 

of the Weyl cone. In type-I and type-II WSMs with mirror symmetries, the tilt of the Weyl cone 

plays a particular importance because the cones lie at the same energy in the band structure. This 

means that the tilt will determine whether the flow of current in a particular direction will dominate 

[9, 15]. However, in the chiral Weyl structure, a good choice of wavelength can be used to excite 

electrons around one of the two paired Weyl cones of opposite chirality, allowing in theory a strong 

polarization-dependent response. More than that, this response has been predicted to be quantized 

in terms of fundamental constants [93]. Several THz emission experiments have been performed 

particularly on the chiral WSMs RhSi and, to a lesser extent, CoSi [10, 11, 171], which have shown 

quantization of the photocurrent response in these materials to varying confidence levels. 

However, to our knowledge, no direct photocurrent measurements have been taken on this class 

of materials. Here, we present direct photocurrent measurements on various facets of the CoSi 

crystal. 
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Figure VI.7– An illustration of the chirality-dependent photocurrent response in WSM. Here 

shown are a 2d representation of the tilted Weyl cone and the Fermi energy. When right-handed 

circularly polarized light is incident on the sample, electrons will be excitedly selected on only one 

side of the WP, yielding a nonzero CPGE. 

  

 To perform these electrical measurements, gold bonding pads were deposited onto the CoSi 

sample surface using electron-beam physical vapor deposition with an Angstrom Engineering 

Evovac Evaporator. The deposited gold layer was around 250 nm. No adhesion layer was 

deposited to allow easy removal of the gold pads if needed. A transmission electron microscopy 

copper rectangular mesh grid which was 25 𝜇m thick and had 80 𝜇m bars was used as a shadow 

mask. The mask was held flush to the sample surface using a custom sample holder which was 0.5 

in in height and which attached to the evaporator’s mounting platform. This process resulted in 

rectangular gold bonding pads of area ~530 𝜇m by ~450 𝜇m with between 30 𝜇m and 75 𝜇m 

separation between each pad. The bonding pads were aligned roughly to the face edges, which our 

RA-SHG measurements above found to correspond well with the crystal axes. Samples were then 

placed in chip carriers from Chelsea Technology and the sample bonding pads were connected to 
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the gold pads of the chip carrier using a 0.001 inch diameter gold wire with an adhesive of silver 

paste. Wires were anchored to the ceramic edges of the chip carrier using a GE varnish. 

 The form of the photocurrent tensor 𝜂 is very similar to that of the 𝜒𝐸𝐷 tensor listed above. 

However, we now are working with complex matrix elements and so must set the requirement that 

the photocurrent be real in order to derive an appropriate tensor form, as discussed in Chapter III. 

Applying this requirement and the crystal symmetries of the 𝑇 crystal structure, we find a tensor 

form of 

 𝜂 =

(

 
 
 
 
 
 
 

(
0
0
0
) (

0
0

𝑎𝑧𝑦𝑥 − 𝑖𝑏𝑧𝑦𝑥

) (
0

𝑎𝑧𝑦𝑥 + 𝑖𝑏𝑧𝑦𝑥
0

)

(

0
0

𝑎𝑧𝑦𝑥 + 𝑖𝑏𝑧𝑦𝑥

) (
0
0
0
) (

𝑎𝑧𝑦𝑥 − 𝑖𝑏𝑧𝑦𝑥
0
0

)

(
0

𝑎𝑧𝑦𝑥 − 𝑖𝑏𝑧𝑦𝑥
0

) (
𝑎𝑧𝑦𝑥 + 𝑖𝑏𝑧𝑦𝑥

0
0

) (
0
0
0
)

)

 
 
 
 
 
 
 

. VI.7 

Thus, for light incident at angle 𝜉 on the (100) crystal face, we expect a photocurrent response of  

 

𝐽𝑥 = 𝑎𝑧𝑦𝑥 sin(4𝜃) sin(𝜉) 

𝐽𝑦 = −𝑎𝑧𝑦𝑥 sin
2(2𝜃) sin(2𝜉) 

𝐽𝑧 = −𝑎𝑧𝑦𝑥 cos(𝜉) sin(4𝜃) 

 

VI.8 

for a HWP at angle 𝜃 to the vertical and  

 

𝐽𝑥 = (𝑏𝑧𝑦𝑥 + 𝑎𝑧𝑦𝑥 cos(2𝜃)) sin(2𝜃) sin(𝜉) 

𝐽𝑦 = −2𝑎𝑧𝑦𝑥 cos
2(𝜃) sin2(𝜃) sin(2𝜉) 

𝐽𝑧 = 2 cos(𝜃) (𝑏𝑧𝑦𝑥 − 𝑎𝑧𝑦𝑥 cos(2𝜃)) cos(𝜉) sin(𝜃) 

 

VI.9 

for a QWP at angle 𝜃 to the vertical. That is, we expect no in-plane response at all for a normal 

incidence geometry, and only an in-plane CPGE response along the 𝐽𝑦 direction in the case of an 

oblique incidence geometry. 

 We note here that there is a subtlety in translating the functional forms of the photocurrent 

response from Equations VI.8 and VI.9 above to the “linear” vs “circular/elliptical” contributions 
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to the LPGE discussion presented in Chapter III. Namely, even though Equation VI.8 deals with 

pure linear light arising from a HWP, we still find a sin(4𝜃) term, which under our 𝐸𝐸∗ formalism 

will arise due to an elliptic contribution. Here, however, we are working with light that starts at a 

vertical polarization rather than a horizontal polarization, which will adjust the location of the zero 

photocurrent response. Additionally, the oblique incidence geometry can allow us to access off-

diagonal elements of the 𝐸𝐸∗ formalism, whereas before we were working with only the normal 

incidence response. 

 

 

Figure VI.8 – Photocurrent data for the 𝑦-component of the (100) crystal facet. The raw data are 

shown for the HWP in blue solid dots and for the QWP in red solid dots, together with the fit to 

the data from Equations VI.8 and VI.9 displayed as solid curves of the appropriate color. A 

microscope image of the (100) crystal face with the gold pads and wires is included to the left. The 

photocurrent data was obtained using a laser spot location indicated by the solid red dot and was 

taken between the two leads highlighted in open red circles. 

 

 Photocurrent data obtained from the (100) CoSi crystal facet is shown in Figure VI.8. 

Because of some movement of the TEM grid during the gold pad evaporation and poor electrical 

contact of the lower left lead, we are only able to investigate experimentally the 𝑦-component of 

this crystal facet. As shown in Equations VI.8 and VI.9, we do not expect any CPGE contribution 
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in this direction. And indeed our data does not indicate any two-fold symmetry. Thus, we claim to 

see only LPGE contributions using either the QWP or the HWP at oblique incidence as predicted 

by our models. 

 Using the rotation matrix from Equation VI.3, we can also compute expected photocurrent 

responses for the (111) crystal face. We find a response of  

 

𝐽𝑥 =
1

√3
𝑎𝑧𝑦𝑥(√2 cos(𝜉) sin(4𝜃) + sin

2(2𝜃) sin(2𝜉)) 

𝐽𝑦 =
1

√3
𝑎𝑧𝑦𝑥(√2 cos

2(2𝜃)

− 4√2 cos2(2𝜃) cos2(𝜉) sin2(𝜃) − sin(4𝜃) sin(𝜉)) 

𝐽𝑧 = −
1

4√3
𝑎𝑧𝑦𝑥(1 + 3 cos(4𝜃) + 6 cos(2𝜉) sin

2(2𝜃)) 

VI.10 

for a HWP at angle 𝜃 from the vertical and  

 

𝐽𝑥 =
2

3
cos(𝜃) sin(𝜃) (3𝑏𝑧𝑦𝑥 sin(𝜉)

+ √3𝑎𝑧𝑦𝑥 cos(𝜉) (√2 cos(2𝜃) + sin(2𝜃) sin(𝜉))) 

𝐽𝑦 =
1

2√3
𝑎𝑧𝑦𝑥(√2 + √2 cos

2(2𝜃) − 4√2 cos2(𝜃) cos2(𝜉) sin2(𝜃)

− sin(4𝜃) sin(𝜉)) 

𝐽𝑧 = 𝑏𝑧𝑦𝑥 cos(𝜉) sin(2𝜃) −
1

8√3
𝑎𝑧𝑦𝑥(5 + 3 cos(2𝜉) + 6 cos(4𝜃) sin

2(𝜉)) 

 

VI.11 

for a QWP at angle 𝜃 from the vertical. That is, at normal incidence we should expect to see LPGE 

in only one in-plane direction with the use of a HWP and we should expect to see CPGE in only 

one direction and only at oblique incidence when we are using a QWP. 
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Figure VI.9 – Photocurrent data from the (111) facet of the CoSi crystal. The plots to the right 

indicate the dependence of the photocurrent response on the waveplate angle from vertical for the 

case of a HWP (top) and a QWP (bottom). In each plot, the raw data are indicated by open circles 

and the fits to the oblique incidence data are included as solid curves using functional forms from 

Equations VI.10, VI.11, and VI.12. The data which is not fit comes from the normal incidence 

geometry. A microscope image of the (111) crystal facet with the gold pads and the wires is 

included to the left. The solid red circle indicates the location of the beam for the data in the plots 

to the right. The lead circled in black is used in both the 𝑥- and 𝑦-component measurements, and 

the lead used with the black lead for 𝑥 is shown in red and for 𝑦 is shown in blue. 

 

 Data obtained from the (111) crystal facet is shown in Figure VI.9 for data along the 𝑥- 

and 𝑦-directions using a HWP and a QWP in both the normal and oblique incidence geometries. 

We immediately notice that we do not observe any polarization dependence at normal incidence. 

This is possibly because the normal incidence spot size, which is only ~30 𝜇𝑚, means that the 

excited photocarriers need to travel too far within the CoSi sample to be picked up efficiently by 
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the gold pad. The nonzero offset is then caused by the noise floor of the lock-in detection 

mechanism. We also see a clear four-fold symmetry for data taken with the HWP and a combined 

four- and two-fold symmetry for data taken with the QWP. However, the models we derive in 

Equations VI.10 and VI.11 do not fit the data well. In particular, we find that the peak locations 

should be different for the 𝑥- and 𝑦- components, which is not observed in our data. This is 

remedied by considering again the symmetry arguments from our RA-SHG discussions above. 

There, we discussed that this crystal facet actually is subject to a three-fold symmetry rather than 

a four-fold symmetry. This means that it will be impossible to use the TEM grid with four-fold 

symmetry to correctly align the gold pads with the crystal axes. Instead, when we measure the 𝑥- 

and 𝑦-components of the photocurrent in the lab frame, we are actually getting components from 

multiple high-symmetry directions of this crystal facet. Thus, we fit the data in Figure VI.9 with a 

model derived by weighting the 𝑥- and 𝑦- components of the photocurrent by some weight 𝑤, so 

that  

 𝐽𝑥𝑙 = 𝑤𝐽𝑥 + (1 − 𝑤)𝐽𝑦 

𝐽𝑦𝑙 = (1 − 𝑤)𝐽𝑥 +𝑤𝐽𝑦 

VI.12 

for each of the HWP and QWP, where 𝑥𝑙 and 𝑦𝑙 indicate the lab frame components measured. 

Doing so yields a weight of approximately 0.5 for both the 𝐽𝑥 and 𝐽𝑦 data. We will focus on this 

(111) face for the remainder of our discussion. 
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Figure VI.10 – Scanning photocurrent data taken on the (111) CoSi crystal facet with different 

lead combinations in an oblique incidence geometry at a peak in the polarization-resolved data 

with a QWP. A microscope image of the facet with the scanned area indicated by a purple box is 

included in the bottom right. All three scanning images have the same color scale, which is given 

in units of nA. The height and width of each pixel in the scanning photocurrent images is 30 𝜇m. 

 

 The data presented in Figure VI.9 was taken while the laser illuminated only the CoSi 

sample. However, we are interested to know how the photocurrent response varies over the entire 

crystal face. With this motivation, we obtained scanning photocurrent angles with multiple 

experimental geometries and lead combinations. One example of this is shown in Figure VI.10, 

where we see three different lead combinations in the oblique incidence geometry using a QWP. 
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We notice immediately that the silver paste attaching the wires to the gold pads for the leads which 

are used to measure the photocurrent data seem to dominate the overall photocurrent response. 

This pattern is perhaps even more apparent in the normal incidence geometry, shown in Figure 

VI.11, where the smaller beam size yields a better spatial resolution. 

 

 

Figure VI.11 – Scanning photocurrent data taken on the (111) CoSi crystal facet with different 

lead combinations in a normal incidence geometry at a peak in the polarization-resolved data with 

a QWP. A microscope image of the facet with the scanned area indicated by a purple box is 

included in the bottom right. The color bar for each image is included and are given in units of nA. 

The height and width of each pixel in the scanning photocurrent images is 30 𝜇m. 
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 We are interested in pinning down with certainty the source of the photocurrent we see in 

this material at normal incidence. One possible explanation is that we are seeing a photothermal 

effect, which would show up as a DC background. There are a couple of features of the normal 

incidence response which make this unlikely to be the primary factor, however. The first is the 

spatial distribution of the response. A thermal gradient would be expected to be largest near the 

leads, but should exhibit a relatively smooth variation between the leads [9]. In our spatial data, 

however, it is clear that there is a peak in the normal incidence data right along the edges of the 

gold pads. This means that the normal incidence background does not model what we would expect 

from a thermal effect. Further, our data presented in Figure VI.9 illustrate that the CoSi response 

at normal incidence seems to be smaller than that at oblique incidence. However, the scale bars of 

the scanning photocurrent images in Figure VI.10 and Figure VI.11 indicate that the normal 

incidence response is larger than the oblique incidence response. 

 Another possibility is that the large response at normal incidence comes from the CoSi/gold 

pad interface. The work functions of the gold and CoSi are 5.30 eV [172] and 4.36 eV [173], 

respectively. This mismatch might be responsible for a potential difference or capacitance effect 

that could enhance the photocurrent response [174]. Indeed, such an effect might not be visible 

along the bulk of the gold pad because the deposition thickness of the gold is larger than the 

penetration depth of the laser. The gold could also be contributing in the form of breaking the 

symmetry of the system at the surface around the edges of the gold pad. However, it is difficult to 

tell from the scanning data of one WP angle whether the large response along the edges of the pad 

is due to this symmetry breaking or some capacitance effect or due instead to the fact that the 

excited carriers do not need to travel through the CoSi as far to reach the pad and be picked up as 

a photocurrent response when they are excited near to the pad.  
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Figure VI.12 – Scanning photocurrent data filtered to provide the LPGE and CPGE signal for each 

pixel from the FFT of the data over all WP angles. This data follows the lower left scanning 

photocurrent data from Figure VI.11 taken on the (111) CoSi crystal facet at normal incidence 

with a QWP. The location of the beam used to obtain the data from Figure VI.9, where a pure CoSi 

photocurrent response is expected, is circled in red. The height and width of each pixel is 30 𝜇m. 

  

 To help answer these questions, we look at the filtered FFT photocurrent scanning data, 

shown in Figure VI.12 for the lead combination in the lower left scanning photocurrent plot of 

Figure VI.11. This data was obtained by extracting the polarization dependence of each pixel in 

the scanning data, performing an FFT on that data, and then filtering for LPGE by extracting the 

value of the FFT spectrum at 2/𝜋 and for CPGE by taking the value of the FFT spectrum at 1/𝜋. 

We see that there seems to be a reasonably strong CPGE and LPGE response along the edges of 

the gold pads. We would not expect a polarization-dependent response from a capacitance 

enhancement effect, and so our signal is unlikely to come from the mismatch of the work functions 

of the gold and the CoSi. Further, our symmetry analysis has shown that the CPGE response cannot 

be coming from the CoSi directly at normal incidence, and so it is reasonable to assume that the 

symmetry breaking around the edges of the gold pad is contributing not only to the photocurrent 
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response, but also to the polarization-dependent response in the case that the beam illuminates this 

edge. This conclusion is bolstered by the fact that, in the normal incidence data, the LPGE/CPGE 

contributions drop off immediately as the pixel location approaches the laser spot location used to 

take the pure CoSi data presented in Figure VI.9.  

 

 

Figure VI.13 – Scanning photocurrent data filtered to provide the LPGE and CPGE signal for each 

pixel from the FFT of the data over all WP angles. This data follows the lower left scanning 

photocurrent data from Figure VI.11 taken on the (111) CoSi crystal facet at oblique incidence 

with a QWP. The area of the sample used to take the data from Figure VI.9, where a pure CoSi 

photocurrent response is expected, is circled in red. The height and width of each pixel is 30 𝜇m. 

 

 In Figure VI.13, we see the filtered data for the same lead combination, but now for an 

oblique incidence geometry with the QWP. Now we see a much stronger LPGE/CPGE response 

along the gold/CoSi edge, but we also see that this response continues through the location in the 

center of the four gold pads which contains only CoSi signal, circled in red. Both the normal and 

oblique incidence geometries also indicate a polarization-dependent response from the silver paste 

used to secure the wires to the gold pads. This again is likely due to the decreased symmetry of 

this region. 
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 These results indicate that the experimental geometry used in the study of real photocurrent 

effects must be carefully considered. In fact, if the beam illuminates either the edge of the gold 

pad used to collect the photocurrent signal or the silver epoxy used to attach the wires to the gold, 

a polarization-dependent photocurrent response similar to the CPGE/LPGE response of the CoSi. 

This means that the beam size for these experiments must be chosen small enough to not illuminate 

the electronics on the sample, but large enough to still allow the current to be collected from the 

material by those electronics.
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CHAPTER VII 

Nonlinear Probes of Other Strongly Correlated Materials 

VII 

 As discussed near the end of Chapter II, one of the key ingredients to the electronic 

structure of electronic WSMs is the strong electronic correlations present in these systems. Here, 

we will discuss another strongly correlated system – RbFe(MoO4)2. In this study, we use the RA-

SHG experiment to explore an established structural phase transition in RbFe(MoO4)2 and identify 

with certainty the point groups above and below the critical temperature 𝑇𝑐. This study is presented 

as well in [132], and resulted in the establishment of a new type of ferroic ordering – the 

ferrorotational order – which is characterized by a vector order parameter invariant under both 

TRS and SIS. As a result, it requires a transition which maintains a center of inversion symmetry. 

This new ferroic order is important for fundamental physics, adding to the breadth of literature of 

well-known ferroic orders such as ferroelectricity, ferroelasticity, and ferromagnetism, and also 

from a device standpoint, as the ferrorotational structure is expected to be the source of 

multiferroicity in this material below 3.8 K [175]. We note here that Wencan Jin took the data for 

this study, while I performed the analysis. This project was supervised by Liuyan Zhao. Our 

samples were provided by Sang-Wook Cheong and Alemayehu Admasu. 

 

Ferroic Ordering 

 The term “ferroic” was first introduced in 1970 by Aizu, who termed it a crystal which has 

two or more orientation states in the absence of an external electric, magnetic, or strain fields, and 
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which can be switched from one to another of those states by application of such an external field 

[176]. The most common forms of ferroic ordering are ferroelectric and ferromagnetic ordering. 

In ferroelectric systems, the microscopic dipoles caused by the relationships between electrons and 

atoms in the crystal are aligned in a particular direction without application of an external field, 

and their alignment can be switched coherently through application of an external coupling field, 

in this case the electric field. In ferromagnetic systems, the magnetization vectors of the material 

are all aligned and can be switched through application of an external magnetic field. Also common 

is ferroelastic ordering, in which there is a spontaneous strain of the system which can be switched 

through application of an external force or mechanical stress. Another ferroic ordering, 

ferrotoroidal ordering, has also been recently observed. This order is characterized by toroidal 

arrangements of magnetic dipoles [177, 178]. It was first observed in 2007 [177] by using the 

broken SIS of this system to identify the SHG response, and its conjugate coupling field was found 

to be �⃗� × �⃗�  using hysteretic poling behavior in 2014 [179]. 

 Vital to any discussion of ferroic ordering is the concept of the order parameter. The 

Landau theory of phase transitions [180, 181] introduces the order parameter as a quantity which 

gains a non-zero value as the system passes through a phase transition. It can be a scalar [182], a 

vector [183], or a higher-rank tensor quantity [68] that provides insight into the microscopic origin 

of its associated phase transition. Often, ferroic systems are classified according to the symmetries 

of their order parameters. If we consider ferroic orders which have vector order parameters13, we 

can create a classification scheme according to how these order parameters behave under SIS and 

TRS. Doing this, we find that the order parameter for ferroelectricity, the electric dipole moment, 

is negative under SIS and positive under TRS. The order parameter for ferromagnetism, the 

 
13 Note that this necessarily excludes the ferroelastic order, whose order parameter is a rank-2 tensor which is 

positive under both SIS and TRS. 
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magnetic dipole moment, is just the opposite – negative under TRS and positive under SIS. We 

can also identify the toroidal moment,  �̂� × �⃗⃗� , as the order parameter for ferrotoroidal ordering 

and find that it is negative under both TRS and SIS. This classification scheme is shown in Figure 

VII.1. 

 

 

Figure VII.1 – A summary of the four vector order parameters classified by their parities under 

TRS and SIS operations, with illustrations of typical examples for realizing those order parameters. 

Here + indicates a parity-even quantity and – indicates a parity-odd quantity. The yellow 

background highlights the ferrorotational order parameter. This figure is adapted from [132]. 

 

 We can see from this image that there is a missing piece – a ferroic order with a vector 

order parameter which is positive under both TRS and SIS. This ordering is known as 

ferrorotational or ferroaxial ordering and has an order parameter �̂� × �⃗�  [183-185]. It is closely 

related to a number of phenomena such as polar vortices [186], giant magnetoelectric coupling 
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[187], and spin-helicity-driven ferroelectricity [175]. Like the ferrotoroidal order, however, it is 

considerably rarer than the ferroelectric and ferromagnetic orders and has a much more 

complicated conjugate coupling field.  

 The ferrorotational order was, however, predicted to be present in complex oxides with 

structural distortions of uniform oxygen cage rotations [183, 184, 187-190]. To this end, we 

searched for this ordering in RbFe(MoO4)2, which consists of stacks of FeO6 octahedra sharing 

vertices with MoO4 tetrahedra, as shown in Figure VII.2. It is an archetype of type-II multiferroic 

materials and was predicted to host this ferrorotational order below a structural phase transition at 

𝑇𝐶 ≈ 195 K in which the octahedra (tetrahedra) rotate counterclockwise (clockwise) about the 𝑐-

axis [175, 188, 189, 191, 192]. It is also possible to have multiple ferroic domains in this material. 

A ferroic domain or domain state is a spatial region of the crystal in which the order parameter 

consists of a particular value. For example, in a ferromagnetic crystal, it is possible to have the 

microscopic magnetization vectors aligned up in one region of the crystal (domain I – D1) and 

down in another (domain II – D2). In RbFe(MoO4)2, it is possible as well to have a second domain 

state in which the octahedra (tetrahedra) rotate clockwise (counterclockwise) about the 𝑐-axis. 

 

 

Figure VII.2 – The crystal structure of RbFe(MoO4)2 as viewed along the 𝑐-axis, both above and 

below the structural phase transition temperature 𝑇𝑐. Two domain states are expected below 𝑇𝑐, 
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corresponding to counterclockwise and clockwise rotations of the FeO6 octahedra. This figure is 

adapted from [132]. 

 

 

 It is worth noting that an axial vector invariant under both TRS and SIS must always define 

the order parameter of the ferrorotational order while the head-to-tail arrangement of electric 

dipoles shown in Figure VII.1 is just one simple example which can realize the ferrorotational 

order. That is to say, any ordered phase with an axial vector order parameter invariant under TRS 

and SIS must belong to the ferrorotational class of ordered phases. With this generalization of this 

class, the coherent ferroic rotation of oxygen polyhedral is equivalent to the head-to-tail 

arrangement of electric dipoles. Thus, both phenomena point to ferrorotational ordering because 

they share the same symmetries. 

 We can explore this relationship between the oxygen cage rotations and the ferrorotational 

order both macroscopically and microscopically. Macroscopically, we can argue that the 

ferrorotational order exists with and is linearly coupled to the coherent oxygen cage rotations in 

RbFe(MoO4)2. The coherent rotations will transform as a rotational vector along the 𝑐-axis of the 

crystal, which serves as the order parameter for describing the rotation of the oxygen polyhedral 

and is an axial vector which preserves both TRS and SIS. It also has the same rank as the 

ferrorotational order parameter, discussed below. Thus, from the Landau theory of phase 

transitions, we can say that these two order parameters should be linearly coupled in the free energy 

expansion. 

 Microscopically, the rotation of the oxygen polyhedral allows for the development of finite 

polar vectors looping around the FeO6 cages, as seen in Figure VII.3. Above the transition, without 

the oxygen polyhedral rotation, the mirror planes are preserved. If we take the mirror plane 
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highlighted by the red dashed line in Figure VII.3 as an example, we see that, above the transition, 

all of the ions arrange according to the mirror symmetry, and so a polar vector cannot develop 

along the 𝑐-axis normal to the mirror. Below the transition, however, the red dashed line is no 

longer a mirror, which allows polar vectors normal to the dashed line to be generated. We can see 

that the polar vectors generated from either allowed oxygen cage rotation will have opposite 

orientations because of the clockwise versus counterclockwise motion. Using the three-fold 

rotational symmetry, we can find the same polar vector components for the other two pairs of 

oxygen atoms around this Fe atom, which leads to the formation of a loop of six polar vectors 

around the FeO6 octahedra below 𝑇𝑐, as shown in the head-to-tail arrows in Figure VII.3. 

 

 

Figure VII.3 – An adaptation of Figure VII.2 which allows for the visualization of the coexistence 

of the coherent rotation of the oxygen polyhedral and the loop of polar vectors in RbFe(MoO4)2 

below the phase transition. The red dashed line highlights one of the three mirrors present above 

the transition and the dark arrows around the FeO6 cages illustrate the polar vectors which develop 

from the broken mirrors due to the oxygen polyhedral rotations. This figure is adapted from [132]. 
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RA-SHG on RbFe(MoO4)2 at Room Temperature 

 The discussion presented above hinged on our identifying the structural phase transition of 

RbFe(MoO4)2 as ferrorotational in order. The point group of the room temperature phase of 

RbFe(MoO4)2 is known to be 3̅𝑚 and the point group of the low-temperature phase was likely to 

be 3̅, but other possibilities including 3𝑚 and 32 had also been proposed [189, 191, 193] and 

needed to be ruled out. Thus, we will here present temperature-resolved RA-SHG data on 

RbFe(MoO4)2 crystals to pin down the symmetry properties of this material. 

 Our RbFe(MoO4)2 crystals were synthesized as single crystals by spontaneous 

crystallization using the flux melt method described in [189]. Powders of Rb2CO3 (Alfa Aesar, 5 

N purity), Fe2O3, and MoO3 were thoroughly mixed in the molar ratio 2:1:6. The homogenized 

mixture was then heated in a platinum crucible at 1100 K for 20 hours in air and cooled at a rate 

of 2 K per hour to 900 K. At that point, the mixture was cooled at a faster rate of 5 K per hour to 

room temperature. This process yielded transparent light-yellow to light-green hexagonal platelet 

crystals with dimensions on the order of 3 × 3 × 0.1 mm3 which were readily separated from the 

flux for experiments by dissolving in warm water. 

 We use the RA-SHG experiment to clearly identify the point group of both phases. To start, 

the 3̅𝑚 point group consists of a 𝐶3 axis about the 𝑐-axis of the crystal, a 𝐶2 axis along the 𝑎-axis 

of the crystal and then in the 𝑎𝑏-plane every 60∘ (three 𝐶2 axes total), a mirror 𝜎𝑏𝑐 in the 𝑏𝑐-plane 

of the crystal and two additional mirrors perpendicular to the 𝑎𝑏-plane obtained by rotating 𝜎𝑏𝑐 by 

±60∘ about the 𝑐-axis (three mirrors total), an 𝑆6 rotation about the 𝑐-axis, and inversion 

symmetry. Because we are working with a centrosymmetric crystal, we should not expect any 

electric dipole (ED) SHG response. However, we can explore higher-order terms of the nonlinear 

expansion of the polarization and see that we can get an electric quadrupole (EQ) contribution to 
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the SHG from the third-order term. Thus, we start by establishing the EQ contribution as the signal 

we see from RbFe(MoO4)2 on our RA-SHG setup. 

 To do this, it is necessary to look at all four polarization channels in the oblique incidence 

geometry. The EQ contribution to the nonlinear polarization is given by 

 𝑃𝑖
2𝜔 = 𝜒𝑖𝑗𝑘𝑙

𝐸𝑄 𝐸𝑗
𝜔𝜕𝑘𝐸𝑙

𝜔 . 

 

 

VII.1 

Thus, it is necessary to derive 𝜒𝑖𝑗𝑘𝑙
𝐸𝑄

 using the symmetries of the 3̅𝑚 point group. The general form 

of this tensor is 

 

𝜒𝐸𝑄

=

(

 
 
 
 
 
 
(

𝑥𝑥𝑥𝑥 𝑥𝑥𝑥𝑦 𝑥𝑥𝑥𝑧
𝑥𝑥𝑦𝑥 𝑥𝑥𝑦𝑦 𝑥𝑥𝑦𝑧
𝑥𝑥𝑧𝑥 𝑥𝑥𝑧𝑦 𝑥𝑥𝑧𝑧

) (

𝑥𝑦𝑥𝑥 𝑥𝑦𝑥𝑦 𝑥𝑦𝑥𝑧
𝑥𝑦𝑦𝑥 𝑥𝑦𝑦𝑦 𝑥𝑦𝑦𝑧
𝑥𝑦𝑧𝑥 𝑥𝑦𝑧𝑦 𝑥𝑦𝑧𝑧

) (

𝑥𝑧𝑥𝑥 𝑥𝑧𝑥𝑦 𝑥𝑧𝑥𝑧
𝑥𝑧𝑦𝑥 𝑥𝑧𝑦𝑦 𝑥𝑧𝑦𝑧
𝑥𝑧𝑧𝑥 𝑥𝑧𝑧𝑦 𝑥𝑧𝑧𝑧

)

(

𝑦𝑥𝑥𝑥 𝑦𝑥𝑥𝑦 𝑥𝑦𝑥𝑧
𝑦𝑥𝑦𝑥 𝑦𝑥𝑦𝑦 𝑦𝑥𝑦𝑧
𝑦𝑥𝑧𝑥 𝑦𝑥𝑧𝑦 𝑦𝑥𝑧𝑧

) (

𝑦𝑦𝑥𝑥 𝑦𝑦𝑥𝑦 𝑦𝑦𝑥𝑧
𝑦𝑦𝑦𝑥 𝑦𝑦𝑦𝑦 𝑦𝑦𝑦𝑧
𝑦𝑦𝑧𝑥 𝑦𝑦𝑧𝑦 𝑦𝑦𝑧𝑧

) (

𝑦𝑧𝑥𝑥 𝑧𝑦𝑥𝑦 𝑦𝑧𝑥𝑧
𝑦𝑧𝑦𝑥 𝑦𝑧𝑦𝑦 𝑦𝑧𝑦𝑧
𝑦𝑧𝑧𝑥 𝑦𝑧𝑧𝑦 𝑦𝑧𝑧𝑧

)

(

𝑧𝑥𝑥𝑥 𝑧𝑥𝑥𝑦 𝑧𝑥𝑥𝑧
𝑧𝑥𝑦𝑥 𝑧𝑥𝑦𝑦 𝑧𝑥𝑦𝑧
𝑧𝑥𝑧𝑥 𝑧𝑥𝑧𝑦 𝑧𝑥𝑧𝑧

) (

𝑧𝑦𝑥𝑥 𝑧𝑦𝑥𝑦 𝑧𝑦𝑥𝑧
𝑧𝑦𝑦𝑥 𝑧𝑦𝑦𝑦 𝑧𝑦𝑦𝑧
𝑧𝑦𝑧𝑥 𝑧𝑦𝑧𝑦 𝑧𝑦𝑧𝑧

) (

𝑧𝑧𝑥𝑥 𝑧𝑧𝑥𝑦 𝑧𝑧𝑥𝑧
𝑧𝑧𝑦𝑥 𝑧𝑧𝑦𝑦 𝑧𝑧𝑦𝑧
𝑧𝑧𝑧𝑥 𝑧𝑧𝑧𝑦 𝑧𝑧𝑧𝑧

)
)

 
 
 
 
 
 

. 

 

VII.2 

According to Equation VII.1, because we are working with SHG and so the two mixing fields are 

identical, we can require that 𝜒𝑖𝑗𝑘𝑙
𝐸𝑄 = 𝜒𝑖𝑙𝑘𝑗

𝐸𝑄
 based on our experimental conditions. This, combined 

with enforcing the symmetries of the 3̅𝑚 point group, yields an EQ susceptibility tensor of 

 

𝜒𝐸𝑄

=

(

 
 
 
 
 
 
(

𝑥𝑦𝑥𝑦 + 2𝑥𝑦𝑦𝑥 0 0
0 𝑥𝑦𝑦𝑥 −𝑥𝑧𝑥𝑥
0 −𝑥𝑥𝑧𝑥 𝑦𝑧𝑧𝑦

) (
0 𝑥𝑦𝑥𝑦 −𝑥𝑧𝑥𝑥

𝑥𝑦𝑦𝑥 0 0
−𝑥𝑥𝑧𝑥 0 0

) (
0 −𝑥𝑧𝑥𝑥 𝑦𝑧𝑦𝑧

−𝑥𝑧𝑥𝑥 0 0
𝑦𝑧𝑧𝑦 0 0

)

(
0 𝑥𝑦𝑦𝑥 −𝑥𝑧𝑥𝑥

𝑥𝑦𝑥𝑦 0 0
−𝑥𝑥𝑧𝑥 0 0

) (
𝑥𝑦𝑦𝑥 0 0
0 𝑥𝑦𝑥𝑦 + 2𝑥𝑦𝑦𝑥 𝑥𝑧𝑥𝑥
0 𝑥𝑥𝑧𝑥 𝑦𝑧𝑧𝑦

) (
−𝑥𝑧𝑥𝑥 0 0
0 𝑥𝑧𝑥𝑥 𝑦𝑧𝑦𝑧
0 𝑦𝑧𝑧𝑦 0

)

(
0 −𝑧𝑥𝑥𝑥 𝑧𝑧𝑦𝑦

−𝑧𝑥𝑥𝑥 0 0
𝑧𝑦𝑧𝑦 0 0

) (
−𝑧𝑥𝑥𝑥 0 0
0 𝑧𝑥𝑥𝑥 𝑧𝑧𝑦𝑦
0 𝑧𝑦𝑧𝑦 0

) (
𝑧𝑧𝑦𝑦 0 0
0 𝑧𝑧𝑦𝑦 0
0 0 𝑧𝑧𝑧𝑧

)
)

 
 
 
 
 
 

. 

 

VII.3 

Using this and Equation VII.1, we can calculate the intensity expected at the Andor CCD detector 

as 
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𝐼𝑝−𝑝
2𝜔 (𝜙) = cos2(𝜃) (sin2(𝜃) (𝑧𝑦𝑧𝑦 cos2(𝜃) + (𝑧𝑧𝑧𝑧 − 2𝑧𝑧𝑦𝑦) sin2(𝜃)

+ 𝑧𝑥𝑥𝑥 cos(𝜃) sin(𝜃) sin(3𝜙))2

+ ((𝑥𝑦𝑥𝑦 + 2𝑥𝑦𝑦𝑥 − 2𝑦𝑧𝑧𝑦) cos2(𝜃) sin(𝜃) + 𝑦𝑧𝑦𝑧 sin3(𝜃)

+ 𝑥𝑥𝑧𝑥 cos3(𝜃) sin(3𝜙) − 2𝑥𝑧𝑥𝑥 cos(𝜃) sin2(𝜃) sin(3𝜙))
2
) 

𝐼𝑝−𝑠
2𝜔 (𝜙) = (𝑥𝑥𝑧𝑥 cos3(𝜃) cos(3𝜙) − 2𝑥𝑧𝑥𝑥 cos(𝜃) cos(3𝜙) sin2(𝜃))2 

𝐼𝑠−𝑝
2𝜔 (𝜙) = cos2(𝜃) (𝑥𝑦𝑥𝑦 sin(𝜃) − 𝑥𝑥𝑧𝑥 cos(𝜃) sin(3𝜙))2

+ sin2(𝜃) (𝑧𝑦𝑧𝑦 cos(𝜃) − 𝑧𝑥𝑥𝑥 sin(𝜃) sin(3𝜙))2 

𝐼𝑠−𝑠
2𝜔 (𝜙) = 𝑥𝑥𝑧𝑥2 cos2(𝜃) cos2(3𝜙) 

 

 

VII.4 

or, more simply, 

 

𝐼𝑝−𝑝
2𝜔 (𝜙) = (𝐶1 + 𝐶2 sin(3𝜙))

2 + (𝐶3 + 𝐶4 sin(3𝜙))
2 

𝐼𝑝−𝑠
2𝜔 (𝜙) = (𝐶5 cos(3𝜙))

2 

𝐼𝑠−𝑝
2𝜔 (𝜙) = (𝐶6 + 𝐶7 sin(3𝜙))

2 + (𝐶8 + 𝐶9 sin(3𝜙))
2 

𝐼𝑠−𝑠
2𝜔 (𝜙) = (𝐶10 cos(3𝜙))

2 

 

 

VII.5 

for constants 𝐶1, … , 𝐶10 which are linear combinations of the EQ susceptibility tensor elements. 

 We can use the functional forms of Equation VII.5 to fit our oblique and normal (𝜃 = 0) 

incidence data, as shown in Figure VII.4. We see that the fit seems to be quite reasonable. 

However, it is necessary as well to eliminate other possible contributions to the SHG signal, such 

as electric-field induced SHG (EFISH), surface electric dipole SHG, and bulk magnetic dipole 

(MD) SHG. To rule out these possibilities, we simulate the expected RA-SHG patterns assuming 

these physical origins and determine which of the possibilities fits the experimental data best. 
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Figure VII.4 – Polar plots of the room temperature (𝑇 = 290 K) RA-SHG patterns fit with the 

functional forms derived from the bulk EQ SHG susceptibility tensor under point group 3̅𝑚 at 

oblique incidence (𝜃 ≈ 16∘) in all four polarization channels (left of the dashed line) and at normal 

incidence in the two unique polarization channels (𝜃 = 0∘) (right of the dashed line). Open circles 

indicate the raw RA-SHG data and the solid curves show the derived fits from Equation VII.5. The 

crystalline 𝑎- and 𝑏-axes are labeled in the oblique P-P channel and omitted for the rest. The three 

vertical mirror planes are indicated by the three dashed radial lines in every plot. All data is plotted 

on the same intensity scale, with a value of 1.0 corresponding to 22 fW. This figure is adapted 

from [132]. 

  

 To start, we can simulate the EFISH contribution for the 3̅𝑚 point group in the oblique 

incidence geometry as 

 𝐼2𝜔(𝜙) = |𝐴𝑒�̂�(2𝜔)𝜒𝑖𝑗𝑘𝑙
𝐸𝑄 (𝜙)𝑒�̂�(𝜔)�⃗� 𝑘=𝑧𝑒�̂�(𝜔)|

2
𝐼𝜔𝐼𝜔. 

 

 

VII.6 
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That is, we replace the gradient along the 𝑘 = 𝑥, 𝑦, 𝑧 component of Equation VII.1 with a DC 

electric field �⃗�  normal to the sample surface. Doing this, we find functional forms for the four 

polarization channels of 

 

𝐼𝑝−𝑝
2𝜔 (𝜙) = (𝑧𝑦𝑧𝑦 cos2(𝜃) sin(𝜃) + 𝑧𝑧𝑧𝑧 sin3(𝜃))2

+ (cos2(𝜃) (𝑦𝑦𝑧𝑦 cos(𝜃) sin(3𝜙) − 2𝑦𝑦𝑧𝑧 sin(𝜃)))
2
 

𝐼𝑝−𝑠
2𝜔 (𝜙) = (𝑦𝑦𝑧𝑦 cos2(𝜃) cos(3𝜙))2 

𝐼𝑠−𝑝
2𝜔 (𝜙) = (𝑧𝑦𝑧𝑦 sin(𝜃))2 + (𝑦𝑦𝑧𝑦 cos(𝜃) sin(3𝜙))2 

𝐼𝑠−𝑠
2𝜔 (𝜙) = (𝑦𝑦𝑧𝑦 cos(3𝜙))2 

 

 

VII.7 

We can compare this to Equation VII.5 and see that they are very similar except for the S-P 

channel, which EFISH predicts will have six even lobes and bulk EQ SHG predicts will have lobes 

of alternating size. In Figure VII.5, it is clear that the alternating peak intensities is a better fit for 

the experimental data. 
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Figure VII.5 – Fits  for the room temperature RA-SHG data in the S-P oblique polarization channel 

using the bulk EQ SHG model of Equation VII.5 and the EFISH model of Equation VII.7. This 

figure is adapted from [132]. 

 

 Similarly, we can run simulations of the RA-SHG experiment for a surface ED SHG 

contribution. At the surface, the 3̅𝑚 point group reduces to 3𝑚 due to the absence of inversion 

symmetry. We can calculate the functional form for the surface ED SHG contribution as 

 𝐼2𝜔(𝜙) = |𝐴𝑒�̂�(2𝜔)𝜒𝑖𝑗𝑘
𝐸𝐷(𝜙)𝑒�̂�(𝜔)𝑒�̂�(𝜔)|

2
𝐼𝜔𝐼𝜔 . 

 

 

VII.8 

Here now we are working with the second-order tensor 𝜒𝑖𝑗𝑘
𝐸𝐷 for the 3𝑚 point group. This point 

group has one 𝐶3 axis along the 𝑐-axis of the crystal and three mirror planes aligned with the mirror 

planes of 3̅𝑚. Imposing these symmetries as well as the tensor index symmetry for the RA-SHG 

experiment yields a 𝜒(2) tensor of 
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 𝜒(2) =

(

 
 
 
 
 
 
(

0
−𝑦𝑦𝑦
𝑥𝑥𝑧

) (
−𝑦𝑦𝑦
0
0
) (

𝑥𝑥𝑧
0
0
)

(
−𝑦𝑦𝑦
0
0
) (

0
𝑦𝑦𝑦
𝑥𝑥𝑧

) (
0
𝑥𝑥𝑧
0
)

(
𝑧𝑥𝑥
0
0
) (

0
𝑧𝑥𝑥
0
) (

0
0
𝑧𝑧𝑧
)
)

 
 
 
 
 
 

. 

 

 

VII.9 

This yields functional forms of the SHG intensity for the four polarization channels of 

 

𝐼𝑝−𝑝
2𝜔 (𝜙) = (𝑧𝑥𝑥 cos2(𝜃) sin(𝜃) + 𝑧𝑧𝑧 sin3(𝜃))2

+ cos4(𝜃) (2𝑥𝑥𝑧 sin(𝜃) − 𝑦𝑦𝑦 cos(𝜃) sin(3𝜙))2  

𝐼𝑝−𝑠
2𝜔 (𝜙) = (𝑦𝑦𝑦 cos2(𝜃) cos(3𝜙))2 

𝐼𝑠−𝑝
2𝜔 (𝜙) = (𝑧𝑥𝑥 sin(𝜃))2 + (𝑦𝑦𝑦 cos(𝜃) sin(3𝜙))2 

𝐼𝑠−𝑠
2𝜔 (𝜙) = (𝑦𝑦𝑦 cos(3𝜙))2 

 

 

VII.10 

Similar to our findings using our EFISH simulations, we see here that the surface ED SHG 

contribution predicts six even lobes for the S-P polarization channel, as show in Figure VII.6 and 

so this SHG contribution can be ruled out. 
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Figure VII.6 – Fits for the room temperature RA-SHG data in the S-P oblique polarization channel 

using the bulk EQ SHG model of Equation VII.5 and the surface ED SHG model of Equation 

VII.10. This figure is adapted from [132]. 

 

 Finally, we look to rule out the bulk MD contribution to the SHG. This MD contribution 

can be simulated as 

 𝐼2𝜔(𝜙) = |𝐴𝑒�̂�(2𝜔)𝜖𝑖𝑗𝑘�̂�𝑗𝜒𝑘𝑙𝑚
𝑀𝐷 (𝜙)𝑒�̂�(𝜔)𝑒�̂�(𝜔)|

2
𝐼𝜔𝐼𝜔, 

 

 

VII.11 

where now 𝜖𝑖𝑗𝑘 is the Levi-Civita tensor, we let �̂�𝑗 → 𝑞𝑗 for 𝑞  the wave vector of the incident light, 

and 𝜒𝑖𝑗𝑘
𝑀𝐷 is the MD susceptibility tensor for 3̅𝑚, given by 

 𝜒(2) =

(

 
 
 
 
 
 
(
𝑥𝑥𝑥
0
0
) (

0
−𝑥𝑥𝑥
𝑥𝑦𝑧

) (
0
𝑥𝑦𝑧
0
)

(
0

−𝑥𝑥𝑥
−𝑥𝑦𝑧

) (
−𝑥𝑥𝑥
0
0
) (

−𝑥𝑦𝑧
0
0
)

(
0
0
0
) (

0
0
0
) (

0
0
0
)
)

 
 
 
 
 
 

. 

 

 

VII.12 

This yields functional forms for the SHG intensity of 
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𝐼𝑝−𝑝
2𝜔 (𝜙) = cos2(𝜃) (cos4(𝜃) + sin4(𝜃))(2𝑥𝑦𝑧 sin(𝜃) + 𝑥𝑥𝑥 cos(𝜃) sin(3𝜙))2 

𝐼𝑝−𝑠
2𝜔 (𝜙) = (𝑥𝑥𝑥 cos3(𝜃) cos(3𝜙))2 

𝐼𝑠−𝑝
2𝜔 (𝜙) =

1

4
(3 + cos(4𝜃))(𝑥𝑥𝑥 sin(3𝜙))2 

𝐼𝑠−𝑠
2𝜔 (𝜙) = (𝑥𝑥𝑥 cos(𝜃) cos(3𝜙))2 

 

 

VII.13 

Yet again, we find that this MD SHG calculation predicts six even lobes for the S-P channel, as 

shown in Figure VII.7, and so our bulk EQ SHG contribution is identified as the primary source 

of the SHG signal. 

 

 

Figure VII.7 – Fits for the room temperature RA-SHG data in the S-P oblique polarization channel 

using the bulk EQ SHG model of Equation VII.5 and the MD SHG model of Equation VII.13. 

This figure is adapted from [132]. 

 

 Having now identified the source of the SHG signal as the bulk EQ SHG of RbFe(MoO4)2, 

we perform several RA-SHG measurements on RbFe(MoO4)2 in the normal incidence geometry 
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to select a subset of 𝜒𝑖𝑗𝑘𝑙
𝐸𝑄

 tensor elements. This data is shown in Figure VII.4 for both the crossed 

and parallel normal incidence configurations, complete with their fits. As in the oblique incidence 

geometry, we find that we are sensitive to both the 𝐶3 axis and the three mirror planes enforced by 

the bulk 3̅𝑚 point group. However, here, the simulated functional forms of the fits are significantly 

simpler, given by 

 

𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑧𝑦

𝐸𝑄 cos(3𝜙))
2
 

𝐼𝑐𝑟𝑜𝑠𝑠𝑒𝑑
2𝜔 (𝜙) = (𝜒𝑦𝑦𝑧𝑦

𝐸𝑄 sin(3𝜙))
2
 

 

VII.14 

where only the 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄

 tensor element is relevant. This allows us to extract the value of this tensor 

element and track its evolution with temperature. 

 

Low-Temperature Symmetries of RbFe(MoO4)2  

 Because of the simplicity of the functional forms of Equation VII.14, and because we are 

still sensitive to both the 𝐶3 axis and the three mirror planes at normal incidence, we use the normal 

incidence geometry to obtain RA-SHG patterns on RbFe(MoO4)2 at various temperatures from 

200 K to 80 K. A selection of example patterns is shown in Figure VII.8 for the parallel channel. 

There is a clear demonstration of a phase transition occurring at a 𝑇𝑐 between 200 K and 190 K, as 

evidenced by the sudden appearance of a non-zero background in the RA-SHG patterns as well as 

by the start of a rotation of the RA-SHG patterns away from the mirror planes of the room 

temperature phase. 
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Figure VII.8 – Polar plots of the RA-SHG data in the parallel channel of the normal incidence 

geometry at selected temperatures above and below 𝑇𝑐. The rotation of each pattern away from the 

room temperature vertical mirror at 90∘ is highlighted by blue shading. The pattern above 𝑇𝑐 is fit 

to the bulk EQ SHG functional form using 3̅𝑚 from Equation VII.10, and the patterns below 𝑇𝑐 
are fit to a weighted two domain state averaged model of the bulk EQ SHG contributions of 3̅, 

presented in Equations VII.21 and VII.22. All datasets are plotted on the same intensity scale, with 

a value of 1.0 corresponding to 22 fW. This figure is adapted from [132]. 

  

 We first wish to unequivocally pin down the point group of the low temperature phase, 

which until this point had been debated because previous measurements performed using infrared 

spectroscopy and Xray diffraction had trouble distinguishing between the subtle differences of 

point groups 3𝑚, 32, and 3̅ [193]. However, our RA-SHG experiment is sensitive to these 

distinctions between these point groups. We can immediately rule out the 3𝑚 point group because 

the RA patterns rotate away from the mirror planes present at room temperature. This rotation 

indicates that these mirror symmetries are broken below the transition. We can also rule out the 

32 point group by looking at the intensity of the SHG response. In particular, the 32 point group 

is noncentrosymmetric and thus we would expect an ED SHG response, which should be orders 

of magnitude larger than that seen from the EQ response at room temperature. However, we find 

that the SHG intensity remains nearly unchanged across 𝑇𝑐, indicating that the low temperature 

phase is also centrosymmetric and dominated by the bulk EQ SHG response. A comparison of our 

simulated RA-SHG patterns for the 3𝑚 and 32 point groups is shown in Figure VII.9. The 

functional form of these simulations is given by Equation VII.10 for the 3𝑚 point group. The 32 
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point group consists of a 𝐶3 axis along the 𝑐-axis of the crystal and three 𝐶2 axes aligned with the 

𝐶2 axes of the room temperature 3̅𝑚 point group. This yields a susceptibility tensor of 

 𝜒(2) =

(

 
 
 
 
 
 
(
𝑥𝑥𝑥
0
0
) (

0
−𝑥𝑥𝑥
𝑥𝑦𝑧

) (
0
𝑥𝑧𝑦
0
)

(
0

−𝑥𝑥𝑥
−𝑥𝑦𝑧

) (
−𝑥𝑥𝑥
0
0
) (

−𝑥𝑧𝑦
0
0
)

(
0
𝑧𝑥𝑦
0

) (
−𝑧𝑥𝑦
0
0
) (

0
0
0
)
)

 
 
 
 
 
 

. 

 

 

VII.15 

and functional forms for the four polarization channels of  

 

𝐼𝑝−𝑝
2𝜔 (𝜙) = 𝑥𝑥𝑥2 cos6(𝜃) cos2(3𝜙) 

𝐼𝑝−𝑠
2𝜔 (𝜙) = cos2(𝜃) ((𝑥𝑦𝑧 + 𝑥𝑧𝑦) sin(𝜃) + 𝑥𝑥𝑥 cos(𝜃) sin(3𝜙))

2
 

𝐼𝑠−𝑝
2𝜔 (𝜙) = 𝑥𝑥𝑥2 cos2(𝜃) cos2(3𝜙) 

𝐼𝑠−𝑠
2𝜔 (𝜙) = (𝑥𝑥𝑥 sin(3𝜙))2 

 

 

VII.16 

where, as always, we can get the normal incidence channels by letting 𝜃 → 0. 

 

Figure VII.9 – Polar plots of the simulated RA-SHG patterns under point groups 3𝑚 from Equation 

VII.10 (green) and 32 from Equation VII.16. This figure is adapted from [132]. 
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 This means that the only possible point group remaining for the low temperature phase of 

RbFe(MoO4)2 is 3̅. This point group consists of a 𝐶3 axis along the 𝑐-axis of the crystal, an 𝑆6 axis 

along the 𝑐-axis, and inversion symmetry. As such, the EQ susceptibility tensor is  

 

𝜒(2)

=

(

 
 
 
 
 
 
 
 (
𝑥𝑦𝑥𝑦 + 2𝑥𝑦𝑦𝑥 𝑥𝑦𝑦𝑦 −

1

2
(𝑥𝑦𝑦𝑦 + 𝑦𝑦𝑥𝑦) + 𝑦𝑦𝑥𝑦 𝑥𝑧𝑥𝑥

−𝑦𝑦𝑥𝑦 𝑥𝑦𝑦𝑥 −𝑦𝑧𝑦𝑦
𝑥𝑥𝑧𝑥 −𝑦𝑦𝑧𝑦 𝑦𝑧𝑧𝑦

) (

𝑥𝑦𝑦𝑦 + 𝑦𝑦𝑥𝑦

2
𝑥𝑦𝑥𝑦 −𝑦𝑧𝑦𝑦

𝑥𝑦𝑦𝑥 𝑥𝑦𝑦𝑦 −𝑥𝑧𝑥𝑥
−𝑦𝑦𝑧𝑦 −𝑥𝑥𝑧𝑥 𝑥𝑧𝑧𝑦

) (

𝑥𝑧𝑥𝑥 −𝑦𝑧𝑦𝑦 𝑦𝑧𝑦𝑧
−𝑦𝑧𝑦𝑦 −𝑥𝑧𝑥𝑥 𝑥𝑧𝑦𝑧
𝑦𝑧𝑧𝑦 𝑥𝑧𝑧𝑦 0

)

(

−𝑥𝑦𝑦𝑦 𝑥𝑦𝑦𝑥 −𝑦𝑧𝑦𝑦

𝑥𝑦𝑥𝑦 −
1

2
(𝑥𝑦𝑦𝑦 + 𝑦𝑦𝑥𝑦) −𝑥𝑧𝑥𝑥

−𝑦𝑦𝑧𝑦 −𝑥𝑥𝑧𝑥 −𝑥𝑧𝑧𝑦

) (

𝑥𝑦𝑦𝑥 𝑦𝑦𝑥𝑦 −𝑥𝑧𝑥𝑥

−
𝑥𝑦𝑦𝑦 + 𝑦𝑦𝑥𝑦

2
𝑥𝑦𝑥𝑦 + 2𝑥𝑦𝑦𝑥 𝑦𝑧𝑦𝑦

−𝑥𝑥𝑧𝑥 𝑦𝑦𝑧𝑦 𝑦𝑧𝑧𝑦

) (

−𝑦𝑧𝑦𝑦 −𝑥𝑧𝑥𝑥 −𝑥𝑧𝑦𝑧
−𝑥𝑧𝑥𝑥 𝑦𝑧𝑦𝑦 𝑦𝑧𝑦𝑧
−𝑥𝑧𝑧𝑦 𝑦𝑧𝑧𝑦 0

)

(

𝑧𝑥𝑥𝑥 −𝑧𝑦𝑦𝑦 𝑧𝑧𝑦𝑦
−𝑧𝑦𝑦𝑦 −𝑧𝑥𝑥𝑥 −𝑧𝑧𝑥𝑦
𝑧𝑦𝑧𝑦 0 0

) (

−𝑧𝑦𝑦𝑦 −𝑧𝑥𝑥𝑥 𝑧𝑧𝑥𝑦
−𝑧𝑥𝑥𝑥 𝑧𝑦𝑦𝑦 𝑧𝑧𝑦𝑦
0 𝑧𝑦𝑧𝑦 0

) (
𝑧𝑧𝑦𝑦 𝑧𝑧𝑥𝑦 0
−𝑧𝑧𝑥𝑦 𝑧𝑧𝑦𝑦 0
0 0 𝑧𝑧𝑧𝑧

)

) 

)

 
 
 
 
 
 
 
 

. 

 

 

VII.17 

and so the functional forms of the SHG intensity are 

 

𝐼𝑝−𝑝
2𝜔 (𝜙) = cos2(𝜃) (((𝑥𝑦𝑥𝑦 + 2𝑥𝑦𝑦𝑥 − 2𝑦𝑧𝑧𝑦) cos2(𝜃) sin(𝜃)

+ 𝑦𝑧𝑦𝑧 sin3(𝜃) + cos3(𝜃) (𝑥𝑥𝑧𝑥 sin(3𝜙) − 𝑦𝑦𝑧𝑦 cos(3𝜙))

+ 2 cos(𝜃) sin2(𝜃) (𝑦𝑦𝑧𝑦 cos(3𝜙) − 𝑥𝑧𝑥𝑥 sin(3𝜙)))
2

+ sin2(𝜃) (𝑧𝑦𝑧𝑦 cos2(𝜃) + (𝑧𝑧𝑧𝑧 − 2𝑧𝑧𝑦𝑦) sin2(𝜃)

− cos(𝜃) sin(𝜃) (𝑧𝑦𝑦𝑦 cos(3𝜙) − 𝑧𝑥𝑥𝑥 sin(3𝜙)))
2
) 

𝐼𝑝−𝑠
2𝜔 (𝜙) = ((𝑥𝑦𝑦𝑦 − 2𝑥𝑧𝑧𝑦) cos2(𝜃) sin(𝜃) + 𝑥𝑧𝑦𝑧 sin3(𝜃)

+ cos3(𝜃) (𝑥𝑥𝑧𝑥 cos(3𝜙) + 𝑦𝑦𝑧𝑦 sin(3𝜙))

− 2 cos(𝜃) sin2(𝜃) (𝑥𝑧𝑥𝑥 cos(3𝜙) + 𝑦𝑧𝑦𝑦 sin(3𝜙)))
2
 

𝐼𝑠−𝑝
2𝜔 (𝜙) = cos2(𝜃) (𝑥𝑦𝑥𝑦 sin(𝜃) + cos(𝜃) (𝑦𝑦𝑧𝑦 cos(3𝜙) − 𝑥𝑥𝑧𝑥 sin(3𝜙)))

2

+ sin2(𝜃) (𝑧𝑦𝑧𝑦 cos(𝜃)

+ sin(𝜃) (𝑧𝑦𝑦𝑦 cos(3𝜙) − 𝑧𝑥𝑥𝑥 sin(3𝜙)))
2
 

𝐼𝑠−𝑠
2𝜔 (𝜙) = (𝑦𝑦𝑥𝑦 sin(𝜃) + cos(𝜃) (𝑥𝑥𝑧𝑥 cos(3𝜙) + 𝑦𝑦𝑧𝑦 sin(3𝜙)))

2
 

 

 

VII.18 

This means that, for the parallel normal incidence channel, we will have a functional form for the 

RA-SHG response of 
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 𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = (𝜒𝑥𝑥𝑥

𝐸𝑄
sin(3𝜙) + 𝜒𝑦𝑦𝑧𝑦

𝐸𝑄
cos(3𝜙))

2
, 

 

 

VII.19 

which accounts for the rotation, but not the nonzero background, of the RA-SHG patterns below 

𝑇𝑐. 

 In fact, the only way to account for this nonzero background is to allow for the presence of 

two domain states (D1 and D2) in RbFe(MoO4)2 at low temperatures. As the 𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔  pattern 

rotates counterclockwise by an angle 

 𝛿 =
1

3
tan−1 (

𝜒𝑥𝑥𝑧𝑥
𝐸𝑄

𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 ) , 

 

 

VII.20 

the other domain, D2, is expected to rotate clockwise by the same angle 𝛿, yielding a functional 

form of 

 

𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝐷1
2𝜔 (𝜙) = (𝜒𝑥𝑥𝑥

𝐸𝑄 sin(3𝜙) + 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 cos(3𝜙))

2
, 

𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝐷2
2𝜔 (𝜙) = (−𝜒𝑥𝑥𝑥

𝐸𝑄 sin(3𝜙) + 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 cos(3𝜙))

2
. 

 

 

 

VII.21 

These two functions correspond to the two domain states with opposite ferrorotational vectors, 

where the FeO6 octahedra rotate counterclockwise and clockwise, respectively, as depicted in 

Figure VII.2 and Figure VII.3 for 𝑇 < 𝑇𝑐. The nonzero background, which cannot be accounted 

for by a single-domain state, can be well explained by a weighted linear superposition of 

contributions from both domain states, given by 

 𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = 𝐴 × 𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝐷1

2𝜔 (𝜙) + (1 − 𝐴) × 𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝐷2
2𝜔 (𝜙), 

 

 

VII.22 

where 𝐴 is the weight of D1.  
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Figure VII.10 – An example of fitting the RA-SHG pattern at 170 K, below 𝑇𝑐, with a weighted 

average of both domain states using Equation VII.22. The individual patterns (orange) from the 

two domain states rotate counterclockwise and clockwise, respectively, and their weighting to the 

total RA-SHG data are indicated by coefficients 0.4 and 0.6, respectively. The filled and open 

petals represent the phases for the SHG electric fields. This figure is adapted from [132]. 

  

 This method of weighting the two domains is intricately related to the domain sizes. In 

particular, when the domain size (𝑙) is smaller than the optical beam size (𝑑), there are two cases 

to be considered, depending on whether or not the domain size is smaller than the optical 

diffraction limit (𝜆). If 𝑙 ≤ 𝜆, we should use the superposition of the SHG fields from each domain 

state, rather than their intensities as done in Equation VII.22. If this were to be the case, we would 

write out the fields from each domain as 

 

𝐸𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝐷1
2𝜔 (𝜙) = 𝜒𝑥𝑥𝑧𝑥

𝐸𝑄 sin(3𝜙) + 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 cos(3𝜙) 

𝐸𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝐷2
2𝜔 (𝜙) = −𝜒𝑥𝑥𝑧𝑥

𝐸𝑄 sin(3𝜙) + 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 cos(3𝜙) 
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We could then set the weights of D1 and D2 to be 𝐴 and 1 − 𝐴, respectively, yielding a 

superposition of the SHG fields of 

 𝐸𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = (2𝐴 − 1) ⋅ 𝜒𝑥𝑥𝑧𝑥

𝐸𝑄 sin(3𝜙) + 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 cos(3𝜙) 
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and a resulting SHG intensity of  
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 𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = ((2𝐴 − 1) ⋅ 𝜒𝑥𝑥𝑧𝑥

𝐸𝑄 sin(3𝜙) + 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 cos(3𝜙))

2

, 
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up to a constant factor. This can be rewritten as  

 𝐼𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
2𝜔 (𝜙) = 𝐶 ⋅ cos2(3𝜙 − 𝛼), 
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for 𝐶 = ((2𝐴 − 1) ⋅ 𝜒𝑥𝑥𝑧𝑥
𝐸𝑄 )

2

+ 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 2

 and 𝛼 = arctan ((2𝐴 − 1) ⋅
𝜒𝑥𝑥𝑧𝑥
𝐸𝑄

𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 ). This expression can 

account for the RA-SHG pattern rotation below 𝑇𝑐, but cannot account for the nonzero background. 

 If 𝑙 > 𝜆, we should use the superposition of SHG intensities, as in Equation VII.22. Figure 

VII.10 shows one example of the RA-SHG pattern at 170 K with a good fit using the weighted 

domain state averaged model. Thus, the appearance of the nonzero background indicates that the 

domain size must be larger than the optical wavelengths used in this experiment. Moreover, we 

have taken RA-SHG patterns at multiple location across the sample and found consistent results. 

This suggests that the domain size is also much smaller than our optical beam diameter of 50 𝜇m. 

Thus, our estimate of the domain size is between several 𝜇m and a couple of tens of 𝜇m. 

  

Phase Transition 

 Now equipped with a good understanding of both the point symmetries of the low 

temperature phase of RbFe(MoO4)2 and the correct fits for the RA-SHG data based on those 

symmetries, we can explore the temperature dependence of the fitting parameters –  𝜒𝑥𝑥𝑧𝑥
𝐸𝑄

, 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄

, 

domain state weight 𝐴, and RA-SHG pattern rotation angle 𝛿. These parameters are plotted as a 

function of temperature in Figure VII.11. Immediately it is clear that 𝜒𝑥𝑥𝑧𝑥
𝐸𝑄

 jumps from zero to a 

finite value at the transition temperature 𝑇𝑐 ≈ 195 K and from there gradually grows larger before 

saturating at lower temperatures. This behavior suggests that 𝜒𝑥𝑥𝑧𝑥
𝐸𝑄

 is, to the lowest order, linearly 

proportional to the ferrorotational order parameter and that the structural phase transition is of 
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weak first-order character. In contrast, 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄

 is present above 𝑇𝑐, but experiences a sharp spike at 

the transition and then slowly decreases below the transition. This suggests that 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄

 is, to lowest 

order, proportional to the square of the order parameter.  

 

 

Figure VII.11 – Temperature dependence of the normalized EQ SHG susceptibility tensor 

elements 𝜒𝑥𝑥𝑧𝑥
𝐸𝑄

 and 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄

 as well as the weight 𝐴 of the domain states and the rotation 𝛿 of the 

RA-SHG patterns. The open shapes are the unique fit values from the RA-SHG data taken at that 

temperature. The solid orange lines are fits using the Landau theory-based functional forms for the 

temperature dependence of these parameters. Error bars indicate one standard error in fitting the 

RA-SHG data with the domain state averaged model. This figure is adapted from [132]. 

  

 We can take a closer look at the transition by using a group theory analysis to explain the 

coupling between the EQ SHG fields and the TRS- and SIS-symmetric ferrorotational order 

parameter. To begin, we can look at the character tables for the 3̅𝑚 and 3̅ point groups, shown in 

Figure VII.12 to see that the order parameter describing the transition between these two structures 

must transform as the 𝐴2𝑔 symmetry of 3̅𝑚. This is because the 𝐶2 and 𝜎𝑑 symmetries lost in the 

transition from 3̅𝑚 to 3̅ are also broken symmetries of the 𝐴2𝑔 irrep of 3̅𝑚. Noting that we can 
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use the plane wave approximation to express the radiated EQ SHG fields in the normal incidence 

geometry as 

 (
𝐸𝑥
2𝜔

𝐸𝑦
2𝜔) ∝ (

𝑃𝑥
2𝜔

𝑃𝑦
2𝜔) = 𝜒𝑥𝑥𝑧𝑥

𝐸𝑄 (
(𝐸𝑥

𝜔)2 − (𝐸𝑦
𝜔)

2

−2𝐸𝑥
𝜔𝐸𝑦

𝜔
)𝑘𝑧 + 𝜒𝑦𝑦𝑧𝑦

𝐸𝑄 (
2𝐸𝑥

𝜔𝐸𝑦
𝜔

(𝐸𝑥
𝜔)2 − (𝐸𝑦

𝜔)
2)𝑘𝑧 , 
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for 𝐸𝑥,𝑦
𝜔  (𝐸𝑥,𝑦

2𝜔) the incident (radiated SHG) electric field and 𝑘𝑧 the wavevector of the incident 

field. Under the 3̅𝑚 point group, we can identify that the 𝐸𝑥 and 𝐸𝑦 components will transform as 

the 𝐸𝑢 irrep, and that the 𝐸𝑧 and 𝑘𝑧 components will transform as the 𝐴2𝑢 irrep. 

 

 

Figure VII.12 – Character table for the 3̅𝑚 (𝐷3𝑑) and 3̅ (𝑆6) point groups, taken from [194]. 

  

 Because only the electric field is involved in this experiment, we can say with certainty 

that no individual component of these fields is the coupling field for the ferrorotational order 

because they do not have the correct symmetry properties. However, we can look at the composite 

fields present in Equation VII.27 to see if we can construct a field that transforms as the 

ferrorotational order parameter using the direct product table of the 3̅𝑚 point group, shown in 

Figure VII.13. In particular, we can look at terms resulting from taking the dot products of terms 

in Equation VII.27. doing this, we find that  
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 𝐹𝐷𝐶 = 𝑘𝑧(𝐸𝑥
−2𝜔(𝐸𝑥

𝜔)2 − 𝐸𝑥
−2𝜔(𝐸𝑦)

2
− 2𝐸𝑥

𝜔𝐸𝑦
𝜔𝐸𝑦

−2𝜔 
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is one DC field with the correct symmetry properties which might serve as a coupling field. 

  

 

Figure VII.13 – The direct product table of the 3̅𝑚 point group, taken from [194]. 

  

 We could imagine other experiments as well involving a magnetic field or a stress field for 

which we would be interested in identifying a coupling field for the ferrorotational order. A 

summary of how relevant physical quantities would transform under the 3̅𝑚 point group is given 

in Figure VII.14. Using this information, we can see that any coupling field would have the form 

of eg. 𝜎𝑖𝑗𝜎𝑘𝑙, 𝜎𝑖𝑗𝐸𝑘𝐸𝑙, 𝜎𝑖𝑗𝐻𝑘𝐻𝑙, 𝐸𝑖𝐸𝑗𝐸𝑘𝐸𝑙, 𝐸𝑖𝐸𝑗𝐻𝑘𝐻𝑙, etc. That is, it must have a minimum of four 

sub-indices. This suggests that the lowest rank composite coupling field to this axial vector order 

parameter under the point group 3̅𝑚 is of the fourth order, regardless of the choice of constituent 

fields. This result is consistent with coupling fields obtained using the dichromatic matrix of 

physical property tensors derived in [185]. Further, this indicates that the lowest order process in 

which it is possible to observe this ferrorotational order with electric fields is through an EQ SHG 

process or equivalent. 
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Figure VII.14 – A summary of how various physical fields transform under the 3̅𝑚 point group as 

well as TRS and SIS symmetries. This figure is adapted from [132]. 

  

 Beyond this symmetry analysis, we can use the relationships between the EQ susceptibility 

tensor elements and the order parameter as well as the Landau phenomenological theory of phase 

transitions [180] to derive fits for the temperature evolution of 𝜒𝑥𝑥𝑧𝑥
𝐸𝑄

 and 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄

. In particular, we 

can expand the Landau free energy in terms of the ferrorotational order parameter, which we will 

denote 𝜂, as 

 𝐹(𝑇) = 𝐹0(𝑇) + 𝛼(𝑇 − 𝑇𝑐)𝜂
2 + 𝛽𝜂4 + 𝛾𝜂6 
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for 𝛼 > 0, 𝛽 < 0, and 𝛾 > 0 constants near 𝑇𝑐 for small 𝜂 near the weak first-order phase transition 

[181, 195]. We can minimize this free energy to get a functional form for the temperature 

dependence of 𝜂, 

 𝜂(𝑇) = {

0, 𝑇 > 𝑇𝑐

√𝑎 + 𝑏√𝑇𝑑 − 𝑇, 𝑇 ≤ 𝑇𝑐
 

 

 

VII.30 
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for 𝑎 = −
𝛽

3𝛾
, 𝑏 = √

𝑎

3𝛾
, and 𝑇𝑑 =

𝛽2

3𝛼𝛾
+ 𝑇𝑐 [195]. We know that 𝜒𝑥𝑥𝑧𝑥

𝐸𝑄
, like 𝜂, obeys the 𝐴2𝑔 

symmetry of 3̅𝑚, while 𝜒𝑦𝑦𝑧𝑦
𝐸𝑄

 obeys the 𝐴1𝑔 symmetry. We can therefore expand the two tensor 

elements as 

 
𝜒𝑥𝑥𝑧𝑥
𝐸𝑄 = 𝑎1𝜂 + 𝑎3𝜂

3 +⋯ 

𝜒𝑦𝑦𝑧𝑦
𝐸𝑄 = 𝑎0 + 𝑎2𝜂

2 + 𝑎4𝜂
4 +⋯ 
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to arrive at their expected temperature dependences with which to fit the raw data, shown in Figure 

VII.11. These fits give an expected value of 𝑇𝑐 = 194.5 ± 0.9 K and 𝑇𝑑 = 199.6 ± 2.1 K. 

 Finally, we can look at the temperature dependence as well of the domain weight 𝐴 to see 

that the two domain states show up with uneven populations at 𝑇𝑐 and converge to equal 

populations with decreasing temperature. And the temperature dependence of the RA-SHG 

rotation angle 𝛿 exhibits a jump from 0∘ to 10∘ at 𝑇𝑐 and then gradually approaches a maximum 

of 20∘ at lower temperatures. Because this behavior mimics 𝜒𝑥𝑥𝑧𝑥
𝐸𝑄

, we can use the same functional 

form to fit 𝛿. 

 

1200 nm RA-SHG Experiments 

 Importantly, throughout this analysis, we have assumed that the nonlinear optical 

susceptibility tensor elements are real, or, at least, have negligible imaginary components. This 

would be true if the 800 nm incident and 400 nm reflected SHG wavelengths are not resonant with 

any electronic transitions. However, ellipsometry and optical conductivity studies have yet to be 

performed on this material, and so it is necessary to validate this assumption. Indeed, in the case 

that complex susceptibility tensor elements are warranted, a nonzero background might appear 

even at room temperature. 
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 To verify that we are not on resonance, we performed RA-SHG experiments using 1200 

nm incident light. In this case, both the incident fundamental and reflected SHG wavelengths are 

below the absorption edge of RbFe(MoO4)2. We examined all four polarization combination 

channels in the oblique incidence geometry as well as the crossed and parallel polarization 

channels in the normal incidence geometry, shown in Figure VII.15. Qualitatively, it is clear that 

all patterns lack a nonzero background. Quantitatively, all patterns can still be fit well by the bulk 

EQ SHG model of Equations VII.4 and VII.5 with real susceptibility tensor elements. 

 

 

Figure VII.15 – Polar plots of the room temperature (𝑇 = 290 K) RA-SHG patterns taken with a 

1200 nm incident fundamental and 600 nm reflected SHG wavelength in the oblique incidence 

geometry for all four polarization combination channels (left of dashed line) and at normal 

incidence in the parallel and crossed polarization channels (right of dashed line). Open circles are 

the raw RA-SHG data and the solid curves are the fit using the functional forms derived from the 

bulk EQ SHG susceptibility tensor under point group 3̅𝑚 from Equation VII.5. The crystalline 𝑎- 

and 𝑏-axes are labeled in the oblique P-P channel and omitted for the rest. The three vertical mirror 
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planes are indicated by the three dashed radial lines in every plot. All data is plotted on the same 

intensity scale, with a value of 1.0 corresponding to 3 fW. This figure is adapted from [132]. 
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CHAPTER VIII 

Summary and Outlook 

VIII 

 In this work, we have presented a range of nonlinear optical studies on strongly correlated 

materials, and particularly on WSMs. In general, we find that these effects are both relatively 

strong and anisotropic, especially in the topological materials. For example, we were able to add 

to previous literature on the strength of the SHG response of TaAs with new estimates for the 

strength of the SHG response in the type-II WSM Td-WTe2, in thin samples of the type-II WSM 

Td-MoTe2, and in the chiral WSM CoSi. A summary of these estimations and how they fit into the 

current breadth of literature on this topic is included in Table VIII.1.  

 

Material 
Susceptibility Estimation 

(pm/V) 
Reference 

TaAs (type-I) 𝜒𝑧𝑧𝑧
𝐸𝐷 ≈ 7200 [14] 

Td-WTe2 (type-II) 

𝜒𝑥𝑦𝑥
𝐸𝐷 ≈ 300 

𝜒𝑦𝑥𝑥
𝐸𝐷 ≈ 350 

𝜒𝑦𝑦𝑦
𝐸𝐷 ≈ 200 

Chapter V 

Td-MoTe2 (type-II) 𝜒𝑦𝑥𝑥
𝐸𝐷 ≈ 𝜒𝑦𝑦𝑦

𝐸𝐷 ≈ 10 Chapter V 

CoSi (chiral) 𝜒𝑧𝑦𝑥
𝐸𝐷 ≈ 1200 Chapter VI 

Table VIII.1 – A table summarizing the estimated strengths of the SHG responses discussed 

throughout this work and how they fit into the current picture based on previously existing 

literature on the type-I WSM TaAs. 

 

 In addition, we were able to investigate the strong appearance of ISRS in Td-WTe2 through 

the use of time-resolved reflectivity measurements. This mechanism of phonon excitation was 

responsible in particular for the 0.25 THz shear mode, which has been shown to drive a structural 
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phase transition between the WSM Td and the non-topological 1T’ phase of this material [90]. We 

also showed that this mode potentially couples to the Weyl fermion quasiparticle excitations in 

this material through the appearance of a Fano lineshape in the FFT spectrum. 

 We also studied the photocurrent response of the chiral WSM CoSi. We found that, if we 

illuminated just the CoSi, the results were consistent with our predictions based on the point 

symmetries of the CoSi crystal structure. However, the results were highly dependent on symmetry 

variations on the surface. We found a polarization-dependent response on both the edge of the gold 

pads and on the bonding location of the wires, which suggests that real photocurrent measurements 

on WSMs are the most robust when the beam size is small enough that only the material being 

studied is illuminated by the light.  

 Finally, we applied our nonlinear optical techniques to another class of strongly correlated 

materials, the complex oxide RbFe(MoO4)2, and were able to identify a structural phase transition 

in this material which was ferrorotational in nature. Through a group symmetry analysis, we were 

able to not only identify several potential coupling fields, but also to identify that the lowest-order 

coupling field must be of the same order as the electric quadrupole SHG process we used to make 

our observations.  

 These results are interesting in their own right, but also play an important role in opening 

up potential new research directions for future students and scientists. In this chapter, we will 

explore a couple of these open questions. We will begin on the experimental side, suggesting 

several new experimental setups which might help to further the work on nonlinear properties of 

WSMs. Then, we will move into open questions which arose during our type-II WSM studies and 

our chiral WSM studies. Finally, we will explore new directions for the ferrorotational ordering 
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project, including some work which has since been done by our friend and collaborator, Rachel 

Owen. 

 

Experimental Development 

 Perhaps the most obvious next step in terms of experimental development is the 

development of techniques within our lab to look at longer-wavelength effects in the WSM 

samples. Such techniques allow for the access of the topology of these materials in a more direct 

way because longer wavelengths, and particularly micron-scale wavelengths, will be able to access 

the Weyl cone without exciting far above into higher bands. One technique which would allow for 

such wavelengths would be to use a nonlinear crystal to perform difference frequency generation, 

described in Chapter III, to decrease the frequency of the light and thus increase the wavelength. 

By working with two electric field sources of differing wavelengths, one from each NOPA, we 

could tune the available wavelength within a wide range using this effect, depending on the choice 

of nonlinear crystal. The resulting longer wavelength light could then be directed to already 

existing setups after coated optics are appropriately replaced. 

 Further, we have demonstrated an ability to implement scanning spatial resolution to both 

our SHG and our photocurrent experiments, but we would very much like to implement time 

resolution as well. Time-resolved SHG studies are used to observe, among other things, light-

induced phase transitions [89, 90]. Our lab does have one setup which can study the time-resolved 

RA-SHG response of materials, but only for the normal incidence geometry. I have already 

designed an apparatus which would be able to apply time-resolution to the oblique incidence 

geometry of the already existing oblique incidence RA-SHG setup using a small D-mirror on a 

thin post on a manual translation stage to pick up the pump beam (from the other NOPA to allow 
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wavelength separation) and send it along the normal incidence beam path for an oblique incidence 

SHG probe and vise-versa. However, due to the COVID shutdowns I was unable to complete the 

alignment of this apparatus by the time of my graduation.  

 Implementation of time resolution on the photocurrent setup would also be beneficial, 

allowing us to measure quantities such as the scattering time of electrons in the material [196]. 

Implementation of this technique onto the current photocurrent setup detailed in Chapter IV would 

involve directing light from the other NOPA to this setup and again using a translation stage to 

implement the time resolution. More so even than this, THz spectroscopy is often used to 

investigate the photocurrent response of WSMs because this technique follows the same models 

as the LPGE and CPGE but is a direct optical technique rather than an electronic technique [197]. 

This eliminates the need for gold pads and wire placement directly on the sample surface [10, 11, 

171], which can dramatically affect the measured photocurrent responses as demonstrated in 

Chapter VI. 

 

Reflections on Td-WTe2 studies 

 One of the most apparent features in our WTe2 study presented in Chapter V was the 

importance of the interlayer shear mode. The nonlinear effect of ISRS was observed through this 

mode, and the apparent Fano lineshape of this mode in the FFT spectrum suggested possible 

coupling to the Weyl fermion quasiparticle excitations. Other previous studies have also linked the 

0.25 THz shear mode to the Weyl physics in Td-WTe2 [145]. This mode also exhibited signs of 

the linear electro-optical effect, observable through a phase difference for different linear polarized 

probes. Observations of this effect have been previously associated with surface field 

enhancements of phonon excitations [147-149, 198-200]. Thus, the observation of this effect 
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through the shear mode suggests the potential for enhancing the shear mode response with the 

application of some in-plane electric field, either by applying a bias or inducing a photocurrent 

[72], which might further enhance the nonlinear effects in this material. Therefore, one possible 

future experiment might be to study this mode more closely by trying to cause such an 

enhancement and looking at the time-resolved reflectivity or, more appropriately, time-resolved 

RA-SHG measurements to see if the light-induced phase transition associated with this mode could 

similarly be driven by these enhancement techniques. 

 In addition, our time-resolved reflectivity data did illuminate one feature which we could 

not immediately explain. In particular, we will take a closer look at the TR-MOKE signal. 

Traditionally, such a signal is obtained by subtracting the R-L signal from the R-R signals and 

showing that it is equal to subtracting the L-L signal from the L-R signal. That is, 

 (𝑅𝑅 − 𝑅𝐿) =  −(𝐿𝑅 − 𝐿𝐿). 

 

VIII.1 

We can rearrange these terms instead to say that 

 (𝑅𝑅 − 𝐿𝐿) =  −(𝐿𝑅 − 𝑅𝐿). 

 

VIII.2 

When we compute the relevant quantities for Equation VIII.2, as shown in Figure VIII.1, we find 

that actually there does seem to be some signal. We are not at the moment sure why this feature 

shows up in our data for one method of calculation and not the other, but believe that this 

discrepancy suggests it may be worth investigating Td-WTe2 using a TR-MOKE setup which can 

access the MOKE signal more directly and with better sensitivity using a balanced photodetector. 
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Figure VIII.1 – An illustration of the TR-MOKE signal calculated in the traditional way by 

subtracting the raw pump-probe data for different circularly polarized probes (red) together with 

the same calculation done by subtracting different circularly polarized pumps (blue). Although the 

traditional calculation does not show a TR-MOKE signal, as discussed in Chapter V, it does seem 

that there is perhaps some MOKE signal around time-zero for calculations performed in the non-

traditional way, which might be worthy of further investigation. 

 

Reflections on CoSi Experiments 

 The most immediate next step for our measurements on the chiral WSM CoSi is to take 

wavelength-dependent data to search for quantization of the photocurrent response, as predicted 

in [93] and shown in [10] for THz emission on RhSi. CoSi is predicted to host chiral multifold 

fermions even at room temperature. Previous DFT calculations have indicated that the inclusion 

of spin-orbit coupling is vital to correct theoretical predictions of this unique band structure [23, 
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58-60, 164, 201], as illustrated in Figure VIII.2. In particular, CoSi is predicted to host a threefold 

fermion of Chern number +2 near the Γ-point and a fourfold fermion of Chern number -2 near the 

R-point, separated by 0.85 eV [60]. This separation in energy corresponds to a wavelength of 1.46 

𝜇m, and so we will be trying to utilize wavelengths longer than this to access the threefold fermion. 

 

 

Figure VIII.2 – DFT calculations presented in [60] which illustrate the importance of including 

spin-orbit coupling to tease out the important topologically protected chiral multifold fermions in 

the CoSi band structure. The blue band is the highest valence band and the red is the lowest 

conduction band. 

  

 This project is already underway by our collaborator Matthew Day working in Steve 

Cundiff’s group, and we hope to be able to put out a paper combining our analyses in the near 

future. Given our illustration of the dependence on the lead and pad placement on the sample, 

however, combined with predictions of scattering effects and defects destroying the quantization 

effects [202], it seems that this quantization will be very difficult to pin down with electronic 

measurements. It is possible that direct THz optical measurements, which are electronically 

cleaner, are necessary to observe these effects. 

 Further, we would like to confirm the symmetry considerations of our photocurrent data 

from the (111) crystal facet by designing a method of depositing gold pads which will allow us to 
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align the pads with the high symmetry directions of this facet. As mentioned in Chapter VI, this is 

not possible with the square TEM grid used in our experiment. 

 

Reflections on the Ferrorotational Order Studies 

 Our study presented in Chapter VII and [132] made great strides in the discovery and study 

of the ferrorotational ordering in RbFe(MoO4)2. However, more work certainly needs to be done. 

One piece of data which we tried to obtain but were unable to due to the sensitivity of our 

experiments was to image the ferrorotational domains predicted by our RA-SHG pattern evolution 

with temperature. The imaging of such domains requires long-time SHG imaging of the EQ SHG 

response of this material, which is difficult to obtain because the signal level is so low that the 

acquisition time for such an image would be well beyond what would be reasonable for our laser 

stability and other experimental limitations.  

 Further, the identification of ferrorotational ordering in other materials is necessary to 

continue the study of this field. This torch has already been picked up by Rachel Owen, who has 

spent over a year working to identify the crystal structure of several other related complex oxides 

with oxygen cage rotations and to perform absorption measurements on them to identify features 

within the band structure. Her work has resulted in a further publication in Physical Review B 

[203]. 

 

Conclusion 

 We believe that the studies presented here are significant in furthering the scientific 

community’s understanding of topological WSMs, illustrating broadly that topological 

enhancements to the size of nonlinear optical responses can be manifest even at optical 
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wavelengths, and that the anisotropy of these effects can generally be linked to the point 

symmetries of the crystalline system under investigation. Every day, theoretical predictions of 

WSM states in new materials and experimental confirmation of new WSM states are posted to the 

arXiv. These indicate a vibrant and growing field of study, which can only lead to new exciting 

properties discovered and applications developed in the future. 

 



185 
 

 

 

 

 

 

 

APPENDICES 

 



186 
 

APPENDIX A 

A 

Group Theory Formalism 

 In this appendix, we will present the mathematical formalism of group theory including 

formal mathematical definitions and theorems. This information, including and especially 

definitions of terms, is largely taken from [204].  

 

Groups 

 To begin, a group is a set 𝐺 together with a law of composition such that the law of 

composition is associative, 𝐺 contains an identity element (denoted 1), and every element 𝑎 ∈ 𝐺 

has an inverse 𝑏 ∈ 𝐺 such that 𝑎𝑏 = 𝑏𝑎 = 1. Here, a law of composition is any rule for combining 

pairs of elements 𝑎, 𝑏 ∈ 𝐺 to get another element 𝑝 ∈ 𝐺. We can further define an abelian group 

as a group whose law of composition is commutative. We say that the order |𝐺| of a group 𝐺 is 

the number of elements in 𝐺. 

 The generators of a group are elements of the group which, when multiplied together under 

certain restrictions (the relations), yield all other elements of the group. All groups can be created 

via a set of generators and relations. As an illustrative example of this, we can consider the 

symmetric group 𝑆3. In general, the symmetric group 𝑆𝑛 is the group of permutations of the indices 

1, 2,⋯ , 𝑛. Because there are 𝑛! ways to permute 𝑛 indices, we must have the order of any 

symmetric group to be |𝑆𝑛| = 𝑛!. We choose 𝑆3 as our example because the order of the group is 

relatively small (|𝑆3| = 3! = 6), to make it possible to explicitly write out all of the group 
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properties for the purposes of illustration, but not so small as to be trivial and thus not enlightening. 

We will begin by listing the elements of this group:  

• (1,2,3) – identity 

• (1,3,2) – transpose last two digits 

• (2,1,3) – transpose first two digits 

• (2,3,1) – one clockwise permutation of identity 

• (3,1,2) – two clockwise permutations of identity 

• (3,2,1) – transpose the last two digits of the identity, then permute once clockwise 

As we can see, there are two main operations we must complete when going from one element to 

the next – cyclic permutation, which we will call 𝑥, and transposition of the first two elements, 

which we will call 𝑦. In 𝑆3, it can be verified that  

• 𝑥3 = 1 

• 𝑦2 = 1 

• 𝑦𝑥 = 𝑥2𝑦 

 Using these restrictions, we can multiply 𝑥 and 𝑦 together in every possible combination 

and, in doing so, find only six distinct elements, which translate directly to the elements of 𝑆3 we 

have already discussed as permutations on a set of three numbers: 

• 1 

• 𝑥 

• 𝑥2 

• 𝑦 

• 𝑥𝑦 

• 𝑥2𝑦 
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We thus have that 𝑥, 𝑦 are the generators of 𝑆3, and that {𝑥3 = 1, 𝑦2 = 1, 𝑦𝑥 = 𝑥2𝑦}14 are the 

defining relations.15 

 One group operation which will be important to us later is the operation of conjugation. In 

conjugation, we have elements 𝑥, 𝑔 ∈ 𝐺 and are interested in the operation (𝑔, 𝑥) → 𝑔𝑥𝑔−1. By 

closure of groups, we must have that (𝑔, 𝑥) ∈ 𝐺. Conjugation gives us a couple of important group 

properties. The first is the stabilizer or centralizer of an element 𝑥 ∈ 𝐺, defined as  

 𝑍(𝑥) = {𝑔 ∈ 𝐺 | 𝑔𝑥𝑔−1 = 𝑥} = {𝑔 ∈ 𝐺 | 𝑔𝑥 = 𝑥𝑔} . 

 

A.1  

  That is, the centralizer of 𝑥 is the set of elements of 𝐺 which commute with 𝑥. From conjugation, 

we can also look at the orbit, or conjugacy class, of 𝑥, defined as  

 𝐶(𝑥) = {𝑥′ ∈ 𝐺 | 𝑥′ = 𝑔𝑥𝑔−1 for some 𝑔 ∈ 𝐺}. 

 

A.2 

From these definitions, it can be proven that 

 |𝐺| = |𝐶(𝑥)| ∙ |𝑍(𝑥)|. 

 

A.3  

  Finally, we can talk about the center of a group 𝐺, defined as 

 𝑍 = {𝑧 ∈ 𝐺 | 𝑧𝑦 = 𝑦𝑧 ∀ 𝑦 ∈ 𝐺}. 

 

A.4  

 That is, the center of 𝐺 is the set of all elements of 𝐺 which commute with all other elements of 𝐺. 

By definition, 1 ∈ 𝑍 always. 

 

Representations 

 We often use representations to describe group operations. Because groups are typically 

not abelian, it is often convenient to represent group elements as matrices, which are generally not 

commutative under multiplication. Matrix representations are defined in terms of 

 
14 Actually, the group can be generated using the relations {𝑥3 = 1, 𝑦2 = 1} only, but the 𝑦𝑥 = 𝑥2𝑦 definition is 

very useful. 
15 Generally, the defining relations are written in the form 𝑟 = 1. 
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homomorphisms, or maps 𝜑: 𝐺 → 𝐺′ from group 𝐺 to group 𝐺′ such that, for all elements 𝑎, 𝑏 ∈

𝐺, 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏). In particular, a matrix representation of a group 𝐺 is a homomorphism to 

a particular group, 𝑅: 𝐺 → 𝐺𝐿𝑛, where 𝐺𝐿𝑛 is the general nonlinear group16 for 𝑛 the size of the 

matrices we are mapping to. It can be shown that the homomorphism will always map the identity 

in one group to the identity in another, and inverses in one group to inverses in another. 

 When we talk about homomorphisms, we frequently discuss the image of the 

homomorphism. The image of a homomorphism 𝜑: 𝐺 → 𝐺′ is defined as  

 im𝜑 = {𝑥 ∈ 𝐺′ | 𝑥 = 𝜑(𝑎) for some 𝑎 ∈ 𝐺}. 

 

A.5  

 We frequently see this denoted as im𝜑 = 𝜑(𝐺). We can similarly talk about the image of an 

individual element 𝑔 ∈ 𝐺 as all of the elements 𝑔′ ∈ 𝐺′ which can be mapped to by 𝑔. For the 

purposes of this discussion, we will denote im(𝑔) = 𝑅𝑔 when discussing the representation 

homomorphism 𝑅.17 

 Perhaps simultaneously the least and most obvious representation of any group is the 

representation which maps all elements to the identity, known as the trivial representation. More 

precisely, we are defining a homomorphism 𝑅: 𝐺 → 𝐺𝐿1. That is, we are mapping group elements 

to scalars (1 × 1 invertible matrices). In this case, however, we lose all of the uniqueness of the 

group. For example, any group of six elements will look like 𝑆3 in the trivial representation. 

Because in the trivial representation all elements of the group are mapped to 1, we have that the 

trivial representation is abelian for all groups 𝐺. This implies that the existence of a trivial 

representation is not a sufficient requirement to prove that a group is abelian. 

 
16 The general nonlinear group 𝐺𝐿𝑛 is the set of all 𝑛 × 𝑛 invertible matrices. We may specifiy the set from which 

we are drawing elements of these matrices for example as 𝐺𝐿𝑛(ℝ) for real matrices or as 𝐺𝐿𝑛(ℂ) for complex 

matrices. 
17 That is, 𝑅𝑔 is the matrix representation of 𝑔. 
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 In contrast, a faithful representation is a representation with a one-to-one correspondence. 

That is, it is a representation created by an injective, or one-to-one, homomorphism, which satisfies 

that for all elements 𝑎, 𝑏 ∈ 𝐺 such that 𝑎 ≠ 𝑏 and with representations 𝜑(𝑎), 𝜑(𝑏) ∈ 𝐺′, 

respectively, we have that 𝜑(𝑎) ≠ 𝜑(𝑏). A faithful representation must then include all of the 

information about the group and, conversely, any representation which is not faithful must 

necessarily lose some of the information about the group. In particular, because a faithful 

representation contains all of the information about the group, we can say that if the faithful 

representation of a group is abelian, then all representations of a group must be abelian and so the 

group itself must be abelian. 

 We typically think of matrices as acting on vectors. Vectors are mathematical objects 

which live in vector spaces, which are sets of vectors defined over some field 𝐹18 such that the set 

is closed under addition and scalar multiplication (multiplication by an element in 𝐹) and contains 

a zero vector (or an identity operator for addition). Thus, we can think about how the matrix 

representation of group 𝐺 might transform vectors in some vector space 𝑉. In order to do this, we 

must consider the basis in which we are working. In particular, we can find conjugate 

representations by using invertible matrices to change bases. That is, when using a matrix 𝑃 to 

change bases, we can also use 𝑃 to get a conjugate representation or equivalent representation 

𝑅𝑔
′ = 𝑃−1𝑅𝑔𝑃 of representation 𝑅𝑔 of 𝑔 ∈ 𝐺. 

 In a similar vein, we can define a vector 𝑣 ∈ 𝑉 as 𝐺-invariant if it remains fixed when acted 

on by any 𝑅𝑔 for 𝑔 ∈ 𝐺. That is, 𝑣  is 𝐺-invariant if 𝑅𝑔𝑣 = 𝑣  ∀ 𝑔 ∈ 𝐺. Further, for any 𝑣 ∈ 𝑉, we 

 
18 Here, a field 𝐹 is a set defined to be abelian under both addition and multiplication satisfying that 𝐹 (or, more 

precisely, that the nonzero elements are abelian under multiplication) and satisfying the distributive law, which 

states that for all elements 𝑎, 𝑏, 𝑐 ∈ 𝐹, 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐. 
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can form a 𝐺-invariant vector using a process known as averaging over the group. That is, ∀𝑣 ∈

𝑉, ∃ 𝑣′⃗⃗⃗   such that 𝑣′⃗⃗⃗   is 𝐺-invariant. In particular, this 𝐺-invariant average vector can be defined as  

 𝑣′⃗⃗⃗  =
1

|𝐺|
∑𝑅𝑔𝑣 

𝑔∈𝐺

. 

 

A.6  

Similarly, we can define a subspace 𝑊 ⊆ 𝑉 as a 𝐺-invariant subspace if 𝑅𝑔�⃗⃗� ∈ 𝑊 ∀ �⃗⃗� ∈ 𝑊 and 

∀𝑔 ∈ 𝐺. 

 If we have two spaces 𝑊1,𝑊2 ⊆ 𝑉 which are both 𝐺-invariant, where 𝑊1 ≠ 𝑊2, with bases 

𝐵1 = {𝑤1, 𝑤2, ⋯ ,𝑤𝑛} and 𝐵2 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑚}, respectively, and if 𝑉 has a basis 𝐵𝑉 = 𝐵1 ∪ 𝐵2, 

then we say that 𝑉 is the direct sum of 𝑊1 and 𝑊2, or 𝑉 = 𝑊1⊕𝑊2, and we will be able to find 

representations 𝑅𝑔 for all 𝑔 ∈ 𝐺 in the block-diagonal form 

 𝑅𝑔 = (
𝐴𝑔 0

0 𝐵𝑔
) 

 

A.7  

 
where 𝐴𝑔 is a representation of 𝑔 over 𝑊1 and 𝐵𝑔 is a representation of 𝑔 over 𝑊2. A representation 

which cannot be written in this block-diagonal form is said to be irreducible and is known as an 

irrep. In other words, the representation of 𝐺 which acts on vectors in space 𝑉is an irrep if 𝑉 has 

no proper 𝐺-invariant subspaces. 

 When using the matrix representations of a group, the most important thing to investigate 

is the trace of the matrices, also known as the character 𝜒𝑅 of the matrix of representation 𝑅.19 

Essentially, 𝜒𝑅 is a homomorphism 𝜒𝑅: 𝐺𝐿𝑛 → ℝ mapping elements of the representation to their 

traces. There are several important and useful properties of 𝜒(𝑔): 

• 𝜒(1) is 𝑛, the dimension of the matrices in 𝐺𝐿𝑛 being used to describe the group 𝐺. This 

is true because the representation is by definition a homomorphism, which must map 

 
19 This is not to be confused with the character of the representation of a particular element 𝑔 ∈ 𝐺, which is given by 

𝜒𝑅(𝑔) = trace(𝑅𝑔) and may be denoted 𝜒(𝑔). 
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identities to identities, and because the trace of an identity matrix is the dimension of the 

matrix. This is sometimes also called the dimension of the character. 

• The character is constant over conjugacy classes. That is, if elements 𝑔, 𝑔′ ∈ 𝐺 are both in 

the conjugacy class of ℎ ∈ 𝐺, then 𝜒(𝑔) = 𝜒(𝑔′). This comes from the fact that conjugate 

matrices have the same trace.20 

• We can define the characteristic polynomial for a representation 𝑅𝑔 as det(𝜆𝐼 − 𝑅𝑔). In 

general, this polynomial will take the form (𝑥 − 𝛾1)
𝑎1(𝑥 − 𝛾2)

𝑎2⋯(𝑥 − 𝛾𝑖)
𝑎𝑖 where 𝑎𝑘 ∈

ℕ ∀ 1 ≤ 𝑘 ≤ 𝑖, such that the order of the eigenvalue 𝛾𝑘 is 𝑎𝑘. Then, for 𝑔 ∈ 𝐺 with order 

𝑘, the roots of the characteristic polynomial of 𝑅𝑔 are powers of the 𝑘-th root of unity 𝜉 =

𝑒2𝜋𝑖/𝑘. Thus, if 𝑅𝑔 has dimension 𝑑, then 𝜒(𝑔) is a sum of 𝑑 powers. This comes from the 

fact that the trace of a matrix is the sum of its eigenvalues because the trace is independent 

of the choice of basis, and we can always find a basis where the matrix is diagonal, and its 

entries are its eigenvalues. 

• 𝜒(𝑔−1) = 𝜒(𝑔)∗ because, as mentioned above, the eigenvalues will be roots of unity. We 

can imagine working in the basis where 𝑅𝑔 is diagonalized. In this case, it is clear that the 

inverse 𝑅𝑔
−1 will be the diagonal whose entries are the complex conjugates of the entries of 

𝑅𝑔. The character then comes from adding all of these entries. 

• If a representation is isomorphic – that is, arising from a homomorphism which is both 

injective and surjective21 – then it must have the same character as all other isomorphic 

representations. 

 
20 Recall, by definition, that if 𝑥′ ∈ 𝐶(𝑥), then 𝑥′ = 𝑔𝑥𝑔−1 for some 𝑔 ∈ 𝐺. Since trace(𝐴𝐵) = trace(𝐵𝐴), it must 

also hold that trace(𝑅𝑥′) = trace(𝑅𝑔𝑅𝑥𝑅𝑔−1) = trace(𝑅𝑥𝑅𝑔−1𝑅𝑔). Since homomorphisms take inverses to 

inverses, 𝑅𝑔−1𝑅𝑔 = 1 and so trace(𝑅𝑥′) = trace(𝑅𝑔𝑅𝑥𝑅𝑔−1) = trace(𝑅𝑥) 
21 A surjective homomorphism satisfies that, for all 𝑔′ ∈ 𝐺′, there exists some 𝑔 ∈ 𝐺 such that 𝜑(𝑔) = 𝑔′.. 



193 
 

 We can define a Hermitian product on characters as 

 〈𝜒, 𝜒′〉 =
1

|𝐺|
∑(𝜒(𝑔))

∗
𝜒′(𝑔).

𝑔∈𝐺

 

 

A.8  

Because character is constant on conjugacy classes, this can be rewritten in terms of the orders of 

the conjugacy classes |𝐶𝑖| in the group: 

 〈𝜒, 𝜒′〉 =
1

|𝐺|
∑|𝐶𝑖|(𝜒(𝑔𝑖))

∗
𝜒′(𝑔𝑖)

𝑟

𝑖=1

 

 

A.9  

where 𝑔𝑖 is any representative element of the conjugacy class 𝐶𝑖 and 𝑟 is the number of conjugacy 

classes in the group 𝐺. 

 It can then be shown that all irreducible characters of a finite group 𝐺 are orthonormal 

under the Hermitian product and that, for 𝜌1, 𝜌2, ⋯ , 𝜌𝑟 the isomorphism classes of the irreducible 

representations of 𝐺 with characters 𝜒1, 𝜒2, ⋯ , 𝜒𝑟 and dimensions 𝑑1, 𝑑2, ⋯ , 𝑑𝑟, we have |𝐺| =

𝑑1
2 +⋯𝑑𝑟

2.22 Further, a character is irreducible if and only if 〈𝜒, 𝜒〉 = 1. For example, if 〈𝜒, 𝜒〉 =

2, then 𝜒 is the sum of two distinct irreducible characters. If instead 〈𝜒, 𝜒〉 = 4, then either 𝜒 is the 

sum of four distinct irreducible characters or 𝜒 = 2𝜒′ for some irreducible character 𝜒′. 

 As an example of the concepts illustrated thus far, we will look again at the group 𝑆3. In 

addition to the trivial representation, this group has two other unique representations. We will 

denote the trivial representation 𝛤1. The second representation, 𝛤2, is known as the sign 

representation and maps every permutation to the sign of the permutation. That is, 

 𝛤2,𝑥 = 1, 𝛤2,𝑦 = −1. 

} = {𝑔 ∈ 𝐺 | 𝑔𝑥 = 𝑥𝑔} . 

 

A.10  

 This is not a faithful representation, but the third representation, 𝛤3, is faithful. In particular, 𝛤3 is 

known as the standard representation and is given by 

 
22 Note that because the trivial representation is a possible representation for all groups, it must be true that at least 

one 𝑑𝑖 = 1 in this sum. 
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 𝛤3,𝑥 = (
cos (

2𝜋

3
) − sin (

2𝜋

3
)

sin (
2𝜋

3
) cos (

2𝜋

3
)

) , 𝛤3,𝑦 = (
1 0
0 −1

). 

 

A.11  

 Recall that the character of the representation is the trace. We can thus summarize the 

characters of these three representations of 𝑆3 in a character table, as shown in Figure A.1. We can 

immediately see that, in all cases, 𝜒(1) is the dimension of the representation. Further, we can 

investigate the Hermitian product defined for characters to look at whether 𝛤1, 𝛤2, 𝛤3 are all 

irreducible and independent. This can be done explicitly:  

〈𝜒1, 𝜒1〉 = 
1

6
(1 × 1 × 1 + 2 × 1 × 1 + 3 × 1) = 1 

〈𝜒1, 𝜒2〉 = 
1

6
(1 × 1 × 1 + 2 × 1 × 1 + 3 × 1 × −1) = 0 

〈𝜒1, 𝜒3〉 = 
1

6
(1 × 1 × 2 + 2 × 1 × −1 + 3 × 1 × 0) = 0 

〈𝜒2, 𝜒2〉 = 
1

6
(1 × 1 × 1 + 2 × 1 × 1 + 3 × −1 × −1) = 1 

〈𝜒2, 𝜒3〉 = 
1

6
(1 × 1 × 2 + 2 × 1 × −1 + 3 × −1 × 0) = 0 

〈𝜒3, 𝜒3〉 = 
1

6
(1 × 2 × 2 + 2 × −1 × −1 + 3 × 0 × 0) = 1 

Recalling that irreducible representations have 〈𝜒, 𝜒〉 = 1 and non-isomorphic representations 

have 〈𝜒1, 𝜒2〉 = 0, we have that indeed all three representations of 𝑆3 are irreducible and 

independent. 
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Figure A.1 – The character table for 𝑆3. 

   

 It is then useful to ask if there are any other irreducible independent representations of 𝑆3. 

It turns out that we can state definitively that there are not. This is because, as was shown above, 

 |𝐺| =∑𝑑𝑖
2

𝑖

. 

 

A.12  

In this case, the dimension of 𝛤1 is 1, as is the dimension of 𝛤2. Thus, we have  

 |𝑆3| = 𝑑𝛤1
2 + 𝑑𝛤2

2 + 𝑑𝛤3
2  

 

A.13  

or 6 = 12 + 12 + 22. Thus there can be no more independent irreducible representations of 𝑆3. 

 It may also be useful to mention that we could, for example, define a conjugate 

representation for 𝛤3 by picking our favorite 2 × 2 invertible matrix and using it to change the 

basis of the representation. However, the traces of the new representation must be the same as 

those of the old representation, and so the two representations will be equivalent. 

 

Symmetries and Degeneracies 

 A degeneracy occurs in a system where two or more eigenstates share the same energy. In 

general, there are two possible types of degeneracies – accidental and protected. An accidental 

degeneracy is a degeneracy which exists without any particular physical reason. It is usually lifted 

once further properties of the system are considered in the mathematical modelling. For example, 

when we learn about the hydrogen atom in quantum mechanics, we find it is highly degenerate, 

but many of those degeneracies are lifted when we consider the Zeeman effect or spin-orbit 
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coupling. In this case, we have not considered a full and complete picture for the hydrogen atom, 

and so the holes in our model contribute to the appearance of accidental degeneracies. A protected 

degeneracy, in contrast, is one for which there is a physical reason such that the degeneracy cannot 

be lifted as long as the reason for the degeneracy remains. It is common that the physical 

phenomenon causing a protected degeneracy is a symmetry property of the system. 

 If we have an 𝑛-fold degenerate energy level, we can relate two bases for the levels through 

a unitary matrix – that is, we can perform a change of basis operation. Because this matrix does 

not change the physics of the system, it must obey the symmetry of the system. That is, the unitary 

change of basis matrix must be a representation of the point group of the system. If it is a reducible 

representation, we can make it block diagonal, as discussed above, and thus we see that the full 

degeneracy of the system is not protected. In contrast, if the representation is irreducible, then the 

degeneracy is protected. 

 This leads to a couple of concepts. For one, if the point group has an 𝑛-dimensional 

representation, then it could have an 𝑛-fold protected degeneracy. The contrast is also true – if the 

group does not have an 𝑛-dimensional representation, then it cannot have an 𝑛-fold protected 

symmetry, and any such observed symmetry must be accidental. Along with this, we can say that 

systems modeled by abelian point groups cannot have degeneracies. 
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APPENDIX B 

B 

Crystalline Point Groups 

 We will now present an overview of crystallographic point groups. Often, when we discuss 

crystal structures, we use a concept known as the Bravais lattice, which is in a way the most basic 

lattice describing the crystal. It is formed by looking at the relations between identical points in 

each of the repeating primitive unit cells. In particular, the Bravais lattice is formed by all points 

accessible through translations by linear combinations 𝑛1𝑎1⃗⃗⃗⃗ + 𝑛2𝑎2⃗⃗⃗⃗ + 𝑛3𝑎3⃗⃗⃗⃗  for primitive lattice 

vectors 𝑎1⃗⃗⃗⃗ , 𝑎2⃗⃗⃗⃗ , 𝑎3⃗⃗⃗⃗  and 𝑛1, 𝑛2, 𝑛3 ∈ ℤ. There are 14 different Bravais lattices which can occur in 

seven different crystal systems: orthorhombic (primitive, base-centered, body-centered, face-

centered)23, monoclinic (primitive, base-centered), triclinic, tetragonal (primitive, body/face-

centered), hexagonal, trigonal, and cubic (primitive, body-centered, face-centered).  

 One of the most important Bravais lattice is the reciprocal lattice, which is the set of all 

wave vectors �⃗⃗�  that yield plane waves with the same periodicity of some other Bravais lattice of 

the crystal. In particular, for a Bravais lattice spanned by primitive unit vectors 𝑎1⃗⃗⃗⃗ , 𝑎2⃗⃗⃗⃗ , 𝑎3⃗⃗⃗⃗ , we can 

define primitive vectors for the reciprocal lattice as 

 
23 Each of these describes a different orientation of the Bravais lattice. That is, different locations of the lattice points 

on the unit cell. For primitive Bravais lattices, lattice points only exist on the corners of the cells. Every Bravais lattice 

has at least this orientation. Base-centered indicates that there are lattice points on the corners of the cell as well as at 

the center of one pair of parallel faces. Body-centered indicates lattice points on the corners of the cell and at the center 

of the cell. Face-centered indicates lattice points on the corners of the cell and at the center of each face of the cell. 
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𝑏1⃗⃗  ⃗ = 2𝜋 𝑎2⃗⃗⃗⃗ ×
𝑎3⃗⃗⃗⃗ 

𝑎1⃗⃗⃗⃗ ∙ (𝑎2⃗⃗⃗⃗ × 𝑎3⃗⃗⃗⃗ )
, 𝑏2⃗⃗⃗⃗ = 2𝜋 𝑎3⃗⃗⃗⃗ ×

𝑎1⃗⃗⃗⃗ 

𝑎1⃗⃗⃗⃗ ∙ (𝑎2⃗⃗⃗⃗ × 𝑎3⃗⃗⃗⃗ )
,

𝑏3⃗⃗⃗⃗ = 2𝜋 𝑎1⃗⃗⃗⃗ ×
𝑎2⃗⃗⃗⃗ 

𝑎1⃗⃗⃗⃗ ∙ (𝑎2⃗⃗⃗⃗ × 𝑎3⃗⃗⃗⃗ )
. 

 

⃗⃗  ⃗ 

 

 

B.1  

Because this Bravais lattice is made of wave vectors, it is essentially a visualization of the crystal 

structure in momentum space [64]. 

 

 

Figure B.1 – As an illustrative example of the Bravais lattice and the symmetry operations involved 

in creating a full crystal structure, we consider the honeycomb lattice of two-dimensional 

graphene. The black dots are the locations of the carbon atoms and the hexagonal black lines 

highlight what we typically think of as the hexagonal crystal structure of graphene. In red, we see 

that the primitive unit cell is actually a single parallelogram (shaded). The tessellation of that 

parallelogram defines the Bravais lattice, with primitive lattice vectors a1⃗⃗  ⃗, a2⃗⃗⃗⃗  labeled in green. 

  

 One oddity which arises from working with real crystals is, because we must have 

translational symmetry, we can only have 2-, 3-, 4-, or 6-fold rotational symmetry in any physical 

system. The proof of this is fairly straightforward. Referring to Figure B.2, we have that the blue 
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dots constitute one row of the Bravais lattice, the light blue dots are a rotation by 𝜃, and the dark 

blue dots are a rotation by −𝜃. If rotation by 𝜃 is a symmetry of the system, then so too must be 

the rotation by −𝜃 because all groups are closed under inverses. If these rotations are symmetries 

of the system, then the light and dark blue dots must also be part of the Bravais lattice and so the 

distance between any two of these dots must be equal to some integer times the lattice constant 𝑎. 

 

 

Figure B.2 – An illustration of the portions of a crystal lattice which might be generated using 

rotations.  This image serves as a reference for the proof that a real crystal may only have 2-, 3-, 

4-, or 6-fold rotational symmetry. It is adapted from [205]. 

 

 We can then consider the triangle formed by the central blue dot and the dots connected by 

vector 𝑚𝑎  in Figure B.2. It must be an isosceles triangle of side lengths 𝑎, 𝑎,𝑚𝑎, and the top angle 

must be 𝜋 − 2𝜃. Using the law of cosines, we must then have that  

 𝑚𝑎 = √𝑎2 + 𝑎2 − 2𝑎2 cos(𝜋 − 2𝜃) = 2𝑎 cos(𝜃). 

 

B.2  

Or cos(𝜃) =
𝑚

2
. Because 𝑚 is an integer and −1 ≤ |cos(𝜃)| ≤ 1, we can only have that 𝑚 ∈

{−2,−1,0,1,2} and so 𝜃 ∈ {𝜋,
2𝜋

3
,
𝜋

2
,
𝜋

3
, 0}.  
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 Because of the restriction of the degree of rotation, there are only 32 possible point groups 

in real crystal systems. There are two basic notational conventions used to describe these groups: 

Schoenflies notation and Hermann-Manguin notation. In Schoenflies notation, the point groups 

are denoted by a letter symbol with a subscript as follows: 

• 𝐶𝑛 – the cyclic group which has an 𝑛-fold rotational axis 

o 𝐶𝑛ℎ has, in addition to the 𝑛-fold rotational axis, a mirror plane perpendicular to 

the axis of rotation 

o 𝐶𝑛𝑣 has, in addition to the 𝑛-fold rotational symmetry, mirror planes parallel to the 

axis of rotation 

• 𝑆2𝑛 – the Spiegel group has a 2𝑛-fold rotation-reflection axis 

• 𝐷𝑛 – the dihedral group has an 𝑛-fold rotation axis and 𝑛 two-fold axes perpendicular to 

that axis 

o 𝐷𝑛ℎ has, in addition to the 𝐷𝑛 symmetries, a mirror plane perpendicular to the 𝑛-

fold axis 

o 𝐷𝑛𝑣 has, in addition to the 𝐷𝑛 symmetries, mirror planes parallel to the 𝑛-fold axis 

• 𝑇 – the tetrahedral group has the symmetry of a tetrahedron 

o 𝑇𝑑 includes proper rotations 

o 𝑇 excludes proper rotations 

o 𝑇ℎ has, in addition to the 𝑇 symmetries, a center of inversion 

• 𝑂 – the octahedral group has the symmetry of an octahedron, or cube 

o 𝑂ℎ includes proper rotations 

o 𝑂 excludes improper rotations 
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 The Hermann-Manguin notation is the standard notation for point groups. The rotation axes 

are denoted by a number 𝑛 such that the angle of rotation is given by 2𝜋/𝑛. Improper rotations are 

shown with rotoinversion axes as �̅�. Mirror planes are denoted 𝑚. The direction of a symmetry 

element is dictated by its position in the symbol. Rotations and mirrors in the same direction are 

denoted as a fraction (
𝑛

𝑚
 or 𝑛/𝑚). If the symbol contains three positions, they denote the symmetry 

elements in the 𝑥, 𝑦, 𝑧 spatial coordinates, respectively. The correspondence between the 

Schoenflies notation and the Hermann-Manguin notation for the various point groups is shown in 

Table B.1.  

 

Crystal System Full H-M Short H-M Schoenflies Order 

Triclinic 1 1 𝐶1 1 

Triclinic 1̅ 1̅ 𝐶𝑖 = 𝑆2 2 

Monoclinic 2 2 𝐶2 2 

Monoclinic 𝑚 𝑚 𝐶𝑠 = 𝐶1ℎ 2 

Monoclinic 
2

𝑚
 2/𝑚 𝐶2ℎ 4 

Orthohombic 222 222 𝐷2 = 𝑉 4 

Orthohombic 𝑚𝑚2 𝑚𝑚2 𝐶2𝑣 4 

Orthohombic 
2

𝑚

2

𝑚

2

𝑚
 𝑚𝑚𝑚 𝐷2ℎ = 𝑉ℎ 8 

Tetragonal 4 4 𝐶4 4 

Tetragonal 4̅ 4̅ 𝑆4 4 

Tetragonal 
4

𝑚
 4/𝑚 𝐶4ℎ 8 
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Tetragonal 422 422 𝐷4 8 

Tetragonal 4𝑚𝑚 4𝑚𝑚 𝐶4𝑣 8 

Tetragonal 4̅2𝑚 4̅2𝑚 𝐷2𝑑 = 𝑉𝑑 8 

Tetragonal 
4

𝑚

2

𝑚

2

𝑚
 4/𝑚𝑚𝑚 𝐷4ℎ 16 

Trigonal 3 3 𝐶3 3 

Trigonal 3̅ 3̅ 𝑆6 = 𝐶3𝑖 6 

Trigonal 32 32 𝐷3 6 

Trigonal 3𝑚 3𝑚 𝐶3𝑣 6 

Trigonal 3̅
2

𝑚
 3̅𝑚 𝐷3𝑑 12 

Hexagonal 6 6 𝐶6 6 

Hexagonal 6̅ 6̅ 𝐶3ℎ 6 

Hexagonal 
6

𝑚
 6/𝑚 𝐶6ℎ 12 

Hexagonal 622 622 𝐷6 12 

Hexagonal 6𝑚𝑚 6𝑚𝑚 𝐶6𝑣 12 

Hexagonal 6̅𝑚2 6̅𝑚2 𝐷3ℎ 12 

Hexagonal 
6

𝑚

2

𝑚

2

𝑚
 6/𝑚𝑚𝑚 𝐷6ℎ 24 

Isometric 23 23 𝑇 12 

Isometric 
2

𝑚
3̅ 𝑚3̅ 𝑇ℎ 24 

Isometric 432 432 𝑂 24 

Isometric 4̅3𝑚 4̅3𝑚 𝑇𝑑 24 
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Isometric 
4

𝑚
3̅
2

𝑚
 𝑚3̅𝑚 𝑂ℎ 48 

Table B.1 - A table of the 32 different point groups for physical crystal systems and how they are 

denoted using both the Herman-Manguin and Schoenflies notations [64]. 
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APPENDIX C 

C 

A Review of Band Structure 

 Using the Drude model of metallic crystals, we can model electrons in a crystalline material 

as a gas of otherwise free particles, subject only to the immobile potential caused by the atoms of 

the crystal [61, 62]. Thus, in effect, modeling crystal energy structures essentially boils down to 

solving the problem of a free electron in a periodic potential24.  This requires the use of quantum 

mechanics. 

 The first and simplest quantum mechanical problem we are taught in the course of our 

physics studies is that of the 1d free electron.  In this case, the Hamiltonian consists only of a 

kinetic energy term, and the Schrodinger Equation is 

 
−
ℏ2

2𝑚

𝜕2𝜓

𝜕𝑥2
= 𝐸𝜓.  

 

C.1 

We assume that the solution takes the form 𝜓(𝑥) = 𝐴𝑒±𝑖𝑘𝑥. By requiring the wave function be 

normalized, we find 𝐴 = √
2

𝑚
.  And substituting this into the Schrodinger equation, we get a 

relationship between E and k of 

 
𝐸 =

ℏ2𝑘2

2𝑚
. 

 

C.2 

 
24 Of course, this is certainly not the whole picture for the calculation of band structure, nor even for the modeling of 

electrons in a metallic state. There are numerous limitations to the Drude model which have come up in countless 

experiments and have required adjustments to the underlying assumptions, not the least of which is the requirement 

that electrons obey the Fermi-Dirac distribution rather than the Bose-Einstein distribution, which was not discovered 

until after the Drude model was first formulated [206, 207]. For a review of some other shortcomings of this model, 

please see [64]. 
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Here, we call k the wavevector of the wave function 𝜓(𝑥).  The de Broglie relation tells us that k 

is related to the momentum p of the particle as 𝑝 = ℏ𝑘, so k is frequently used as a stand-in for 

momentum in discussions of crystalline materials and band structure.  In addition, relations 

between position- and momentum-space are well-established by means of Fourier transformations. 

 Now we will go to a slightly more complicated setup – that of a free electron in a 1d 

periodic potential, as shown in Figure C.1b. This translates to a periodic spacing of atoms in a 1d 

chain providing a periodic and immovable potential which the otherwise free electrons are subject 

to.  Here, we will assume that each atom is a distance a away from each of its nearest neighbors. 

This chain of atoms yields a periodic potential 𝑈(𝑥) = 𝑈(𝑥 + 𝑎), so we must have 𝜓(𝑥) =

𝜓(𝑥 + 𝑁𝑎) for integers N. The solution to this problem is given by Bloch’s Theorem as  

 𝜓𝑘(𝑥) = 𝑢𝑛,𝑘(𝑥)𝑒
𝑖𝑘𝑥 

 

C.3 

for 𝑢𝑛,𝑘(𝑥) = 𝑢𝑛,𝑘(𝑥 + 𝑎) and where 𝑛 labels individual bands in the energy structure25.  This 

solution is known as a Bloch wave [208].  The requirement of a labeling scheme 𝑛 arises because 

for any 𝑘 there exist multiple solutions of the Schrodinger equation due to the periodic behavior 

of the potential. Because 𝑘 is a continuously varying parameter but is subject to periodicity by way 

of the reciprocal lattice, we can assign the indices 𝑛 such that, for a given 𝑛, the eigenstates and 

eigenvalues are periodic functions of 𝑘 in the reciprocal lattice. That is, 

 𝜓𝑛,𝑘+𝐾(𝑥) = 𝜓𝑛,𝑘(𝑥), 𝐸𝑛,𝑘+𝐾 = 𝐸𝑛,𝑘. C.4 

These functions 𝐸𝑛,𝑘 then form the band structure of the material. 

 
25 Here keep in mind that here, in the solution to the Bloch equation, 𝑘 does not actually obey the de Broglie relation. 

Instead, ℏ𝑘 is known as the crystal momentum (though often just referred to haphazardly as the momentum), which 

is a quantum number characteristic of the translational symmetry of the crystal. The relationship with momentum 

returns only in the presence of external electromagnetic waves. 
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 Even with a simple 1d chain potential, gaps must open up in the otherwise smooth 

wavefunction of the free particle. We have already identified the solution to the free particle 

Schrodinger equation as 𝜓(𝑥) = 𝐴𝑒±𝑖𝐾𝑥 for normalization constant 𝐴 and placeholder variable 𝐾, 

where boundary conditions dictate that 𝐾 =
𝑛𝜋

𝑎
 for some integer 𝑛. For this discussion we will 

restrict ourselves to 𝑛 = 1. If we treat the 1d chain potential as only a small perturbation, we find 

there must be gaps which open up in the energy spectrum at the edges of the Brillouin zone. To 

see this, we can construct two linearly independent superpositions of our solution to the free 

particle Hamiltonian which must be degenerate in energy: 𝜓±(𝑥) = 𝑒
𝑖𝜋𝑥

𝑎 ± 𝑒−
𝑖𝜋𝑥

𝑎 , or 

 

Figure C.1 – Band Diagram Illustrations. (a) The dispersion relation for a free particle. (b) An 

example periodic potential caused by a 1d ion chain. (c) Gaps are opened up in the free particle 

potential when it is perturbed by the 1d periodic lattice. Here, calculations assume a potential of 

the form 𝑈(𝑥) = 𝑥2 for the area between the ions. (d) An example of folding the dispersion 

relation in (c) into the first Brillouin zone to get a folded band structure diagram. 
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 𝜓±(𝑥) = {
cos (

𝜋𝑥

𝑎
)

sin (
𝜋𝑥

𝑎
)

 C.5 

Then we can see that, at the boundary of the Brillouin zone, a gap in the energy opens of size 

 𝐸𝑔 = |∫ 𝑈(𝑥)(𝜓+
2(𝑥) − 𝜓−

2(𝑥))𝑑𝑥
𝑎

0

|. 

 

C.6 

 When we are illustrating this band structure, because we are working with a periodic 

potential, it is convenient to draw the dispersion relation within a single primitive cell. The 

primitive cell of the reciprocal lattice typically chosen for this is the first Brillouin zone. For a 1d 

system, this first Brillouin zone is defined as −
𝜋

𝑎
≤ 𝑘 ≤

𝜋

𝑎
. Relations outside of this zone are then 

folded into view.  An illustration of this is shown in Figure C.1d for the case of the free particle in 

the 1d periodic potential. This type of illustration is known as the band diagram of the material 

[64]. When we are discussing band diagrams, several high symmetry points are considered to be 

of particular interest. These points are typically defined depending on the crystal structure of the 

material, but all materials will have a Γ point, which is the center of the Brillouin zone. Other 

examples of high symmetry points include the X point, which is the center of a square face for a 

simple or face-centered cubic structure, and the N point, which is the center of a face in a body-

centered cubic structure. 

 Of course, there are always exceptions to pictures we use to model behavior. Band theory 

works best in systems with minimal interactions between electrons, or when the kinetic energy of 

the electrons in the material dominates other energy scales of the system. However, some materials 

have very narrow band gaps or strong electron-electron or electron-impurity interactions which 

can cause insulating behavior in materials which would otherwise be conducting [209]. In addition, 

often perturbations of these interactions by doping, temperature, etc. may cause a metal-insulator 

transition, as for example presented in [210] for NaOsO3. 
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APPENDIX D 

D 

Chirality and Helicity 

 We know that if we have an electron in a magnetic field, the particle will move in a circular 

motion. This is because the force on the particle is necessarily perpendicular to both the field and 

the velocity of the particle. If we were to reverse the time of such a setup, we would see that the 

particle continues to rotate, but now in the opposite direction. That is, a clockwise rotation would 

become counterclockwise, and vis versa. This idea of handedness is intimately connected to the 

properties of helicity and chirality, which will play an important role in our discussion of WSMs 

below. 

 Chirality and helicity both have to do with the spin of the electron. Helicity is the sign of 

the projection of the spin vector onto the momentum vector, as shown in Figure D.1. Chirality is 

more complicated in that it depends on the point of view of the observer. For massive particles, 

which must necessarily move at speeds less than the speed of light, chirality depends on whether 

the motion of the particle appears to be clockwise or counterclockwise in the reference frame of 

the observer. In our discussion of Weyl semimetals, we will deal with massless particles. Because 

such particles must move at the speed of light, there is no frame of reference which can change the 

apparent rotation/spin of the particle, and so chirality and helicity are interchangeable. 
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Figure D.1 – An illustration of helicity. For the red electron, the spin and momentum vectors are 

aligned, so the projection of one onto another is positive. Thus, the red electron is right-handed. 

For the blue electron, the opposite is true. That is, the spin and momentum vectors are antialigned, 

so the projection of one onto another is negative – the electron is left-handed. If these electrons 

were instead photons or some other massless relativistic particle, then their helicity would also 

determine their chirality. 
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APPENDIX E 

E 

Example Code for Calculating the Size of the Nonlinear Susceptibility Tensor Elements 

The code presented below is used to derive a functional form with which to fit the data obtained 

for the WTe2 RA-SHG experiment in order to estimate the size of the susceptibility tensor elements 

and thus the strength of the SHG response in this material. This code is written in Mathematica 

 
(*Simulate RA-SHG experiments taking the Fresnel corrections into consideration for RFSeO 

in normal incidence only*) 

 

ClearAll["Global`*"] 

 

(*Angle of incidence, change to \[Theta]i to do numeric computations*) 

 

Θi = 0; 

 

(*Indices of refraction *) 

 

ni𝜔 = 1; (*Air*) 

nt𝜔 = 0.75; (*Fundamental in sample*) 

nt2𝜔 = 2; (*SHG in sample*) 

𝜅1 = 9/nt𝜔; 

𝜅2 = 3.1/nt2𝜔; 

 

(*Experimental parameters*) 

 

Pavg = 0.5*10^-3; (*Average power*) 

frep = 200*10^3; (*Rep rate*) 

tau = 120*10^-15; (*Pulse duration*) 

rFund = 30*10^-6; (*Radius of fundamental beam*) 

 

(*Compute Eiamp*) 

 

Pmax = Pavg/(frep*tau); 
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Eiamp = Sqrt[2*Pmax/(Pi*rFund^2*3*10^8*8.854*10^-12)]; 

 

(*Take absorption scale factor into account*) 

 

scaleFactor = 8.854*10^-12; 

 

(*Incoming wave vector*) 

 

ki = (𝜔c)*{Sin[Θi], 0, -Cos[Θi]}; 

 

(*Incoming E-fields*) 

 

Eipin = Eiamp*{Cos[Θi], 0, Sin[Θi]}; 

Eisin = Eiamp*{0, 1, 0}; 

 

(*Rotation matrix*) 

 

Rotz[Φ_] := {{Cos[Φ], -Sin[Φ], 0}, {Sin[Φ], Cos[Φ], 0}, {0, 0, 1}}; 

 

(*Define the nonlinear susceptibility tensor*) 

 

tensor2 = {{{0, xyx, xzx}, {xyx, 0, 0}, {xzx, 0, 0}}, {{yxx, 0, 0}, {0, yyy, yzy}, {0, yzy, yzz}}, {{zxx, 

0, 0}, {0, zyy, zzy}, {0, zzy, zzz}}}susu; 

 

(*Fundamental angle of incidence = fundamental angle of reflection*) 

 

Θr = Θi; 

 

(*Snell's law to calculate Θt for fundamental*) 

 

temp = Solve[ni𝜔*Sin[Θi] == nt𝜔*Sin[Θt], Θt]; 

Θt = (temp[[1]] /. (x_ -> y_) -> y)[[1]] 

 

0 

 

(*SHG Snell's law equivalents*) 

 

Θ2r = Θi; 

temp2t = Solve[Sin[Θi]/nt2𝜔 == Sin[Θ2t], Θ2t]; 

Θ2t = (temp2t[[1]] /. (x_ -> y_) -> y)[[1]]; 

temps = Solve[Sin[Θi]/nt𝜔 == Sin[Θs], Θs]; 

Θs = (temps[[1]] /. (x_ -> y_) -> y)[[1]]; 

 

Θr = 0; 
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Θs = 0; 

 

(*Compute wave vectors*) 

 

kx1r = ki[[1]]; 

k1rabs = 𝜔/c; 

k1r = k1rabs*{Sin[Θr], 0, Cos[Θr]}; 

kx1t = ki[[1]]; 

k1tabs = nt𝜔*𝜔/c; 

k1t = k1tabs*{Sin[Θt], 0, -Cos[Θt]}; 

kxs = 2*kx1t; 

ksabs = 2*k1tabs; 

ks = ksabs*{Sin[Θs], 0, -Cos[Θs]}; 

kx2r = 2*ki[[1]]; 

k2rabs = 2*𝜔/c; 

k2r = k2rabs*{Sin[Θ2r], 0, Cos[Θ2r]}; 

kx2t = 2*ki[[1]]; 

k2tabs = 2*nt2𝜔*𝜔/c; 

k2t = k2tabs*{Sin[Θ2t], 0, -Cos[Θ2t]}; 

 

(*pin*) 

 

(*Define E0t*) 

 

Etpin = 2*Cos[Θi]*Eipin/(nt𝜔*Cos[Θi] + Cos[Θt]); 

 

(*Define Ert*) 

 

Erpin = (Cos[Θt] - nt𝜔*Cos[Θi])*Eipin/(Cos[Θt] + nt𝜔*Cos[Θi]); 

 

(*Define E0t*) 

 

Etsin = 2*Cos[Θi]*Eisin/(Cos[Θi] + nt𝜔*Cos[Θt]); 

 

(*Define Ert*) 

 

Ersin = (Cos[Θi] - nt𝜔*Cos[Θt])* 

   Eisin/(Cos[Θi] + nt𝜔*Cos[Θt]); 

 

(*Simulate experiment by rotating tensor about the z-axis*) 

 

tensor2Rotz = FullSimplify[Transpose[Rotz[Φ - 𝛼].Transpose[Rotz[Φ - 𝛼]. (tensor2. 

Transpose[Rotz[Φ - 𝛼]])]]]; 
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(*Calculate PNLS for s-in*) 

 

PxPin = scaleFactor*Sum[tensor2Rotz[[1, i]][[j]] Etpin[[i]] Etpin[[j]], {i, 1, 3}, {j, 1, 3}] 

PyPin = scaleFactor*Sum[tensor2Rotz[[2, i]][[j]] Etpin[[i]] Etpin[[j]], {i, 1, 3}, {j, 1, 3}] 

PzPin = scaleFactor*Sum[tensor2Rotz[[3, i]][[j]] Etpin[[i]] Etpin[[j]], {i, 1, 3}, {j, 1, 3}] 

 

8.854*10^-12 (0. + 7.24635*10^15 ((2 xyx + yxx) Cos[𝛼 - Φ]^2 Sin[𝛼 - Φ] + yyy Sin[𝛼 - 

Φ]^3)) 

 

8.854*10^-12 (0. + 7.24635*10^15 Cos[𝛼 - Φ] (yxx Cos[𝛼 - Φ]^2 + (-2 xyx + yyy) Sin[𝛼 - 

Φ]^2)) 

 

8.854*10^-12 (0. + 7.24635*10^15 (zxx Cos[𝛼 - Φ]^2 + zyy Sin[𝛼 - Φ]^2)) 

 

(*Calculate PNLS for s-in*) 

 

PxSin = scaleFactor*Sum[tensor2Rotz[[1, i]][[j]] Etsin[[i]] Etsin[[j]], {i, 1, 3}, {j, 1, 3}] 

PySin = scaleFactor*Sum[tensor2Rotz[[2, i]][[j]] Etsin[[i]] Etsin[[j]], {i, 1, 3}, {j, 1, 3}] 

PzSin = scaleFactor*Sum[tensor2Rotz[[3, i]][[j]] Etsin[[i]] Etsin[[j]], {i, 1, 3}, {j, 1, 3}] 

 

8.854*10^-12 (0. + 7.24635*10^15 Sin[𝛼 - Φ] ((-2 xyx + yyy) Cos[𝛼 - Φ]^2 + yxx Sin[𝛼 - 

Φ]^2)) 

 

8.854*10^-12 (0. + 7.24635*10^15 (yyy Cos[𝛼 - Φ]^3 + (2 xyx + yxx) Cos[𝛼 - Φ] Sin[𝛼 - 

Φ]^2)) 

 

8.854*10^-12 (0. + 7.24635*10^15 (zyy Cos[𝛼 - Φ]^2 + zxx Sin[𝛼 - Φ]^2)) 

 

(*Compute B-fields*) 

 

Bipin = (c/𝜔)*Cross[ki, Eipin]; 

Brpin = (c/𝜔)*Cross[k1r, Erpin]; 

Btpin = (c/𝜔)*Cross[k1t, Etpin]; 

 

(*Compute B-fields*) 

 

Bisin = (c/𝜔)*Cross[ki, Eisin]; 

Brsin = (c/𝜔)*Cross[k1r, Ersin]; 

Btsin = (c/𝜔)*Cross[k1t, Etsin]; 

 

(*Compute shg fields*) 

 

E2tpin = FullSimplify[E2tamp*{E2tx, E2ty, E2tz} - 4*Pi*4*𝜔^2/c^2/(k2tabs^2 - ksabs^2)*({Px, 

Py, Pz} - ks*(ks.{Px, Py, Pz})/k1tabs^2)]; 
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B2tpin = FullSimplify[(c/(2*𝜔))*Cross[k2t, {E2tx, E2ty, E2tz}]*E2tamp - 4*Pi*(4*𝜔^2/c^2)*c* 

Cross[ks, {Px, Py, Pz}]/(2*𝜔*(k2tabs^2 - ksabs^2))]; 

E2rpin = E2ramp*{E2rx, E2ry, E2rz}; 

B2rpin = FullSimplify[(c/(2*𝜔))*Cross[k2r, E2rpin]]; 

 

(*Compute shg fields*) 

 

E2tsin = Simplify[E2tamp*{E2tx, E2ty, E2tz} - 4*Pi*4*𝜔^2/c^2/(k2tabs^2 - ksabs^2)*({Px, Py, 

Pz} - ks*(ks.{Px, Py, Pz})/k1tabs^2)]; 

B2tsin = Simplify[(c/(2*𝜔))*Cross[k2t, {E2tx, E2ty, E2tz}]*E2tamp - 4*Pi*(4*𝜔^2/c^2)*c* 

Cross[ks, {Px, Py, Pz}]/(2*𝜔*(k2tabs^2 - ksabs^2))]; 

E2rsin = E2ramp*{E2rx, E2ry, E2rz}; 

B2rsin = Simplify[(c/(2*𝜔))*Cross[k2r, E2rpin]]; 

 

(*Solve for z-components*) 

 

solp1 = Solve[{E2tx^2 + E2ty^2 + E2tz^2 == 1, E2rx^2 + E2ry^2 + E2rz^2 == 1}, {E2tz, E2rz}] 

 

{{E2tz -> -Sqrt[1 - E2tx^2 - E2ty^2], E2rz -> -Sqrt[1 - E2rx^2 - E2ry^2]}, {E2tz -> -Sqrt[1 - 

E2tx^2 - E2ty^2], E2rz -> Sqrt[1 - E2rx^2 - E2ry^2]}, {E2tz -> Sqrt[1 - E2tx^2 - E2ty^2], E2rz 

-> -Sqrt[1 - E2rx^2 - E2ry^2]}, {E2tz -> Sqrt[1 - E2tx^2 - E2ty^2], E2rz -> Sqrt[1 - E2rx^2 - 

E2ry^2]}} 

 

(*Select tz negative and rz positive, solve for E2tx*) 

 

E2tpinx = FullSimplify[E2tpin[[1]] /. solp1[[2]]]; 

E2rpinx = FullSimplify[E2rpin[[1]] /. solp1[[2]]]; 

E2tpiny = FullSimplify[E2tpin[[2]] /. solp1[[2]]]; 

E2rpiny = FullSimplify[E2rpin[[2]] /. solp1[[2]]]; 

E2tpinz = FullSimplify[E2tpin[[3]] /. solp1[[2]]]; 

E2rpinz = FullSimplify[E2rpin[[3]] /. solp1[[2]]]; 

B2rpinx = FullSimplify[B2rpin[[1]] /. solp1[[2]]]; 

B2tpinx = FullSimplify[B2tpin[[1]] /. solp1[[2]]]; 

B2rpiny = FullSimplify[B2rpin[[2]] /. solp1[[2]]]; 

B2tpiny = FullSimplify[B2tpin[[2]] /. solp1[[2]]]; 

B2rpinz = FullSimplify[B2rpin[[3]] /. solp1[[2]]];(*Fully solved*) 

B2tpinz = FullSimplify[B2tpin[[3]] /. solp1[[2]]];(*Fully solved*) 

 

solp2 = Solve[E2rpinx == E2tpinx, E2rx] 

 

{{E2rx -> (0. + 1. E2tamp E2tx - 3.65567 Px)/E2ramp}} 

 

E2tpinx = FullSimplify[E2tpinx /. solp2[[1]]]; 

E2rpinx = FullSimplify[E2rpinx /. solp2[[1]]]; 
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E2tpiny = FullSimplify[E2tpiny /. solp2[[1]]]; 

E2rpiny = FullSimplify[E2rpiny /. solp2[[1]]]; 

E2tpinz = FullSimplify[E2tpinz /. solp2[[1]]]; 

E2rpinz = FullSimplify[E2rpinz /. solp2[[1]]]; 

B2rpinx = FullSimplify[B2rpinx /. solp2[[1]]]; 

B2tpinx = FullSimplify[B2tpinx /. solp2[[1]]]; 

B2rpiny = FullSimplify[B2rpiny /. solp2[[1]]]; 

B2tpiny = FullSimplify[B2tpiny /. solp2[[1]]]; 

 

solp3 = Solve[E2rpiny == E2tpiny, E2ry] 

 

{{E2ry -> (0. + 1. E2tamp E2ty - 3.65567 Py)/E2ramp}} 

 

E2tpinx = FullSimplify[E2tpinx /. solp3[[1]]] 

E2rpinx = FullSimplify[E2rpinx /. solp3[[1]]] 

E2tpiny = FullSimplify[E2tpiny /. solp3[[1]]] 

E2rpiny = FullSimplify[E2rpiny /. solp3[[1]]] 

E2tpinz = FullSimplify[E2tpinz /. solp3[[1]]] 

E2rpinz = FullSimplify[E2rpinz /. solp3[[1]]] 

B2rpinx = FullSimplify[B2rpinx /. solp3[[1]]] 

B2tpinx = FullSimplify[B2tpinx /. solp3[[1]]] 

B2rpiny = FullSimplify[B2rpiny /. solp3[[1]]] 

B2tpiny = FullSimplify[B2tpiny /. solp3[[1]]] 

 

0. + E2tamp E2tx - 3.65567 Px 

 

0. + 1. E2tamp E2tx - 3.65567 Px 

 

0. + E2tamp E2ty - 3.65567 Py 

 

0. + 1. E2tamp E2ty - 3.65567 Py 

 

-E2tamp Sqrt[1 - E2tx^2 - E2ty^2] + 10.967 Pz 

 

E2ramp Sqrt[1 - (1. (1. E2tamp E2tx - 3.65567 Px)^2)/E2ramp^2 - (1. (1. E2tamp E2ty - 

3.65567 Py)^2)/E2ramp^2] 

 

0. - 1. E2tamp E2ty + 3.65567 Py 

 

ConditionalExpression[2 E2tamp E2ty - 2.74175 Py, C[1] \[Element] Integers] 

 

0. + 1. E2tamp E2tx - 3.65567 Px 

 

ConditionalExpression[0. - 2. E2tamp E2tx + 2.74175 Px, C[1] \[Element] Integers] 
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E2tpinx = E2tamp E2tx - 3.656 Px; 

 

E2rpinx = E2tamp E2tx - 3.656 Px; 

 

E2tpiny = E2tamp E2ty - 3.656 Py; 

 

E2rpiny = E2tamp E2ty - 3.656 Py; 

 

E2tpinz = -E2tamp Sqrt[1 - E2tx^2 - E2ty^2] + 10.967 Pz; 

 

E2rpinz =  \[Sqrt](E2ramp^2 - (E2tamp E2tx - 3.656 Px)^2 - (E2tamp E2ty - 3.656 Py)^2); 

 

B2rpinx = -E2tamp E2ty + 3.656 Py; 

 

B2tpinx = 2 E2tamp E2ty - 2.742 Py; 

 

B2rpiny = E2tamp E2tx - 3.656 Px; 

 

B2tpiny = -2 E2tamp E2tx + 2.743 Px; 

 

solp4 = FullSimplify[Solve[B2rpinx == B2tpinx, E2tamp]] 

 

{{E2tamp -> (2.13267 Py)/E2ty}} 

 

E2tpinx = FullSimplify[E2tpinx /. solp4[[1]]]; 

E2rpinx = FullSimplify[E2rpinx /. solp4[[1]]] 

E2tpiny = FullSimplify[E2tpiny /. solp4[[1]]]; 

E2rpiny = FullSimplify[E2rpiny /. solp4[[1]]] 

E2tpinz = FullSimplify[E2tpinz /. solp4[[1]]]; 

E2rpinz = FullSimplify[E2rpinz /. solp4[[1]]] 

B2rpinx = FullSimplify[B2rpinx /. solp4[[1]]]; 

B2tpinx = FullSimplify[B2tpinx /. solp4[[1]]]; 

B2rpiny = FullSimplify[B2rpiny /. solp4[[1]]]; 

B2tpiny = FullSimplify[B2tpiny /. solp4[[1]]]; 

 

-3.656 Px + (2.13267 E2tx Py)/E2ty 

 

-1.52333 Py 

 

Sqrt[E2ramp^2 - 2.32054 Py^2 - (3.656 Px - (2.13267 E2tx Py)/E2ty)^2] 

 

solp5 = FullSimplify[Solve[B2rpiny == B2tpiny, E2tx]] 
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{{E2tx -> (1.00016 E2ty Px)/Py}} 

 

E2tpinx = FullSimplify[E2tpinx /. solp5[[1]]]; 

E2rpinx = FullSimplify[E2rpinx /. solp5[[1]]] 

E2tpiny = FullSimplify[E2tpiny /. solp5[[1]]]; 

E2rpiny = FullSimplify[E2rpiny /. solp5[[1]]] 

E2tpinz = FullSimplify[E2tpinz /. solp5[[1]]]; 

E2rpinz = FullSimplify[E2rpinz /. solp5[[1]]] 

B2rpinx = FullSimplify[B2rpinx /. solp5[[1]]]; 

B2tpinx = FullSimplify[B2tpinx /. solp5[[1]]]; 

B2rpiny = FullSimplify[B2rpiny /. solp5[[1]]]; 

B2tpiny = FullSimplify[B2tpiny /. solp5[[1]]]; 

 

-1.523 Px 

 

-1.52333 Py 

 

Sqrt[E2ramp^2 - 2.31953 Px^2 - 2.32054 Py^2] 

 

solp6 = Solve[E2rpinz == nt2\[Omega]*E2tpinz, E2ramp] 

 

{{E2ramp -> -1. \[Sqrt](-15.8792 Px^2 - 15.8725 Py^2 + (18.1931 Py^2)/E2ty^2 - (       

187.141 Sqrt[0.999687 - 0.999687 E2ty^2 - (1. E2ty^2 Px^2)/Py^2] Py Pz)/E2ty + 481.1 

Pz^2)}, {E2ramp -> \[Sqrt](-15.8792 Px^2 - 15.8725 Py^2 + (18.1931 Py^2)/E2ty^2 - (      

187.141 Sqrt[0.999687 - 0.999687 E2ty^2 - (1. E2ty^2 Px^2)/Py^2] Py Pz)/E2ty + 481.1 

Pz^2)}} 

 

E2tpinx = FullSimplify[E2tpinx /. solp6[[2]]]; 

E2rpinx = FullSimplify[E2rpinx /. solp6[[2]]]; 

E2tpiny = FullSimplify[E2tpiny /. solp6[[2]]]; 

E2rpiny = FullSimplify[E2rpiny /. solp6[[2]]]; 

E2tpinz = FullSimplify[E2tpinz /. solp6[[2]]]; 

E2rpinz = FullSimplify[E2rpinz /. solp6[[2]]]; 

B2rpinx = FullSimplify[B2rpinx /. solp6[[2]]]; 

B2tpinx = FullSimplify[B2tpinx /. solp6[[2]]]; 

B2rpiny = FullSimplify[B2rpiny /. solp6[[2]]]; 

B2tpiny = FullSimplify[B2tpiny /. solp6[[2]]]; 

 

E2tpinx = FullSimplify[E2tpinx /. {Px -> PxPin, Py -> PyPin, Pz -> PzPin}]; 

E2rpinx = FullSimplify[E2rpinx /. {Px -> PxPin, Py -> PyPin, Pz -> PzPin}]; 

E2tpiny = FullSimplify[E2tpiny /. {Px -> PxPin, Py -> PyPin, Pz -> PzPin}]; 

E2rpiny = FullSimplify[E2rpiny /. {Px -> PxPin, Py -> PyPin, Pz -> PzPin}]; 

E2tpinz = FullSimplify[E2tpinz /. {Px -> PxPin, Py -> PyPin, Pz -> PzPin}]; 

E2rpinz = FullSimplify[E2rpinz /. {Px -> PxPin, Py -> PyPin, Pz -> PzPin}]; 
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B2rpinx = FullSimplify[B2rpinx /. {Px -> PxPin, Py -> PyPin, Pz -> PzPin}]; 

B2tpinx = FullSimplify[B2tpinx /. {Px -> PxPin, Py -> PyPin, Pz -> PzPin}]; 

B2rpiny = FullSimplify[B2rpiny /. {Px -> PxPin, Py -> PyPin, Pz -> PzPin}]; 

B2tpiny = FullSimplify[B2tpiny /. {Px -> PxPin, Py -> PyPin, Pz -> PzPin}]; 

 

(*Solve for z-components*) 

sols1 = Solve[{E2tx^2 + E2ty^2 + E2tz^2 == 1, E2rx^2 + E2ry^2 + E2rz^2 == 1}, {E2tz, E2rz}] 

 

{{E2tz -> -Sqrt[1 - E2tx^2 - E2ty^2], E2rz -> -Sqrt[1 - E2rx^2 - E2ry^2]}, {E2tz -> -Sqrt[1 - 

E2tx^2 - E2ty^2], E2rz -> Sqrt[1 - E2rx^2 - E2ry^2]}, {E2tz -> Sqrt[1 - E2tx^2 - E2ty^2], E2rz 

-> -Sqrt[1 - E2rx^2 - E2ry^2]}, {E2tz -> Sqrt[1 - E2tx^2 - E2ty^2], E2rz -> Sqrt[1 - E2rx^2 - 

E2ry^2]}} 

 

(*Select tz negative and rz positive, solve for E2tx*) 

 

E2tsinx = Simplify[E2tsin[[1]] /. sols1[[2]]]; 

E2rsinx = Simplify[E2rsin[[1]] /. sols1[[2]]] 

E2tsiny = Simplify[E2tsin[[2]] /. sols1[[2]]]; 

E2rsiny = Simplify[E2rsin[[2]] /. sols1[[2]]] 

E2tsinz = Simplify[E2tsin[[3]] /. sols1[[2]]]; 

E2rsinz = Simplify[E2rsin[[3]] /. sols1[[2]]] 

B2rsinx = Simplify[B2rsin[[1]] /. sols1[[2]]]; 

B2tsinx = Simplify[B2tsin[[1]] /. sols1[[2]]]; 

B2rsiny = Simplify[B2rsin[[2]] /. sols1[[2]]]; 

B2tsiny = Simplify[B2tsin[[2]] /. sols1[[2]]]; 

B2rsinz = Simplify[B2rsin[[3]] /. sols1[[2]]];(*Already solved*) 

B2tsinz = Simplify[B2tsin[[3]] /. sols1[[2]]];(*Already solved*) 

 

E2ramp E2rx 

 

E2ramp E2ry 

 

E2ramp Sqrt[1 - E2rx^2 - E2ry^2] 

 

sols2 = Solve[E2tsinx == E2rsinx, E2rx] 

 

{{E2rx -> -((1. (0. - E2tamp E2tx + 3.65567 Px))/E2ramp)}} 

 

(*Solve for E2ty*) 

 

E2tsinx = Simplify[E2tsinx /. sols2[[1]]]; 

E2rsinx = Simplify[E2rsinx /. sols2[[1]]] 

E2tsiny = Simplify[E2tsiny /. sols2[[1]]]; 

E2rsiny = Simplify[E2rsiny /. sols2[[1]]] 
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E2tsinz = Simplify[E2tsinz /. sols2[[1]]]; 

E2rsinz = Simplify[E2rsinz /. sols2[[1]]] 

B2rsinx = Simplify[B2rsinx /. sols2[[1]]]; 

B2tsinx = Simplify[B2tsinx /. sols2[[1]]]; 

B2rsiny = Simplify[B2rsiny /. sols2[[1]]]; 

B2tsiny = Simplify[B2tsiny /. sols2[[1]]]; 

 

0. + 1. E2tamp E2tx - 3.65567 Px 

 

E2ramp E2ry 

 

E2ramp Sqrt[1 - E2ry^2 - (1. (E2tamp E2tx - 3.65567 Px)^2)/E2ramp^2] 

 

sols3 = Solve[E2tsiny == E2rsiny, E2ry] 

 

{{E2ry -> -((1. (0. - E2tamp E2ty + 3.65567 Py))/E2ramp)}} 

 

E2tsinx = Simplify[E2tsinx /. sols3[[1]]] 

E2rsinx = Simplify[E2rsinx /. sols3[[1]]] 

E2tsiny = Simplify[E2tsiny /. sols3[[1]]] 

E2rsiny = Simplify[E2rsiny /. sols3[[1]]] 

E2tsinz = Simplify[E2tsinz /. sols3[[1]]] 

E2rsinz = Simplify[E2rsinz /. sols3[[1]]] 

B2rsinx = Simplify[B2rsinx /. sols3[[1]]] 

B2tsinx = Simplify[B2tsinx /. sols3[[1]]] 

B2rsiny = Simplify[B2rsiny /. sols3[[1]]] 

B2tsiny = Simplify[B2tsiny /. sols3[[1]]] 

 

0. + E2tamp E2tx - 3.65567 Px 

 

0. + 1. E2tamp E2tx - 3.65567 Px 

 

0. + E2tamp E2ty - 3.65567 Py 

 

0. + 1. E2tamp E2ty - 3.65567 Py 

 

-E2tamp Sqrt[1 - E2tx^2 - E2ty^2] + 10.967 Pz 

 

E2ramp Sqrt[1 - (1. (E2tamp E2tx - 3.65567 Px)^2)/E2ramp^2 - (1. (E2tamp E2ty - 3.65567 

Py)^2)/E2ramp^2] 

 

0. - 1. E2tamp E2ty + 3.65567 Py 

 

ConditionalExpression[2 E2tamp E2ty - 2.74175 Py, C[1] \[Element] Integers] 
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0. + 1. E2tamp E2tx - 3.65567 Px 

 

ConditionalExpression[0. - 2. E2tamp E2tx + 2.74175 Px, C[1] \[Element] Integers] 

 

E2tsinx = E2tamp E2tx - 3.656 Px; 

 

E2rsinx =  E2tamp E2tx - 3.656 Px; 

 

E2tsiny = E2tamp E2ty - 3.656 Py; 

 

E2rsiny = E2tamp E2ty - 3.656 Py; 

 

E2tsinz = -E2tamp Sqrt[1 - E2tx^2 - E2ty^2] + 10.967 Pz; 

 

E2rsinz =  \[Sqrt](E2ramp^2 - (E2tamp E2tx - 3.656 Px)^2 - (E2tamp E2ty - 3.656 Py)^2); 

 

B2rsinx = - E2tamp E2ty + 3.656 Py; 

 

B2tsinx = 2 E2tamp E2ty - 2.742 Py; 

 

B2rsiny =  E2tamp E2tx - 3.656 Px; 

 

B2tsiny = -2 E2tamp E2tx + 2.742 Px; 

 

sols4 = FullSimplify[Solve[B2rsinx == B2tsinx, E2tamp]] 

 

{{E2tamp -> (2.13267 Py)/E2ty}} 

 

E2tsinx = Simplify[E2tsinx /. sols4[[1]]]; 

E2rsinx = Simplify[E2rsinx /. sols4[[1]]] 

E2tsiny = Simplify[E2tsiny /. sols4[[1]]]; 

E2rsiny = Simplify[E2rsiny /. sols4[[1]]] 

E2tsinz = Simplify[E2tsinz /. sols4[[1]]]; 

E2rsinz = Simplify[E2rsinz /. sols4[[1]]] 

B2rsinx = Simplify[B2rsinx /. sols4[[1]]]; 

B2tsinx = Simplify[B2tsinx /. sols4[[1]]]; 

B2rsiny = Simplify[B2rsiny /. sols4[[1]]]; 

B2tsiny = Simplify[B2tsiny /. sols4[[1]]]; 

 

-3.656 Px + (2.13267 E2tx Py)/E2ty 

 

-1.52333 Py 
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Sqrt[E2ramp^2 - 2.32054 Py^2 - (3.656 Px - (2.13267 E2tx Py)/E2ty)^2] 

 

sols5 = FullSimplify[Solve[B2rsiny == B2tsiny, E2tx]] 

 

{{E2tx -> (1. E2ty Px)/Py}} 

 

E2tsinx = Simplify[E2tsinx /. sols5[[1]]]; 

E2rsinx = Simplify[E2rsinx /. sols5[[1]]] 

E2tsiny = Simplify[E2tsiny /. sols5[[1]]]; 

E2rsiny = Simplify[E2rsiny /. sols5[[1]]] 

E2tsinz = Simplify[E2tsinz /. sols5[[1]]]; 

E2rsinz = Simplify[E2rsinz /. sols5[[1]]] 

B2rsinx = Simplify[B2rsinx /. sols5[[1]]]; 

B2tsinx = Simplify[B2tsinx /. sols5[[1]]]; 

B2rsiny = Simplify[B2rsiny /. sols5[[1]]]; 

B2tsiny = Simplify[B2tsiny /. sols5[[1]]]; 

 

-1.52333 Px 

 

-1.52333 Py 

 

Sqrt[E2ramp^2 - 2.32054 Px^2 - 2.32054 Py^2] 

 

sols6 = Solve[E2rsinz == nt2𝜔*E2tsinz, E2ramp] 

 

{{E2ramp -> -1. \[Sqrt](-15.8725 Px^2 - 15.8725 Py^2 + (18.1931 Py^2)/E2ty^2 - (187.112 

Sqrt[1. - 1. E2ty^2 - (1. E2ty^2 Px^2)/Py^2] Py Pz)/E2ty + 481.1 Pz^2)}, {E2ramp -> \[Sqrt](-

15.8725 Px^2 - 15.8725 Py^2 + (18.1931 Py^2)/E2ty^2 - (187.112 Sqrt[1. - 1. E2ty^2 - (1. 

E2ty^2 Px^2)/Py^2] Py Pz)/E2ty + 481.1 Pz^2)}} 

 

E2tsinx = Simplify[E2tsinx /. sols6[[2]]]; 

E2rsinx = Simplify[E2rsinx /. sols6[[2]]] 

E2tsiny = Simplify[E2tsiny /. sols6[[2]]]; 

E2rsiny = Simplify[E2rsiny /. sols6[[2]]] 

E2tsinz = Simplify[E2tsinz /. sols6[[2]]]; 

E2rsinz = Simplify[E2rsinz /. sols6[[2]]] 

B2rsinx = Simplify[B2rsinx /. sols6[[2]]]; 

B2tsinx = Simplify[B2tsinx /. sols6[[2]]]; 

B2rsiny = Simplify[B2rsiny /. sols6[[2]]]; 

B2tsiny = Simplify[B2tsiny /. sols6[[2]]]; 

 

-1.52333 Px 

 

-1.52333 Py 
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\[Sqrt](-18.1931 Px^2 + (-18.1931 + 18.1931/E2ty^2) Py^2 - (187.112 Sqrt[1. + E2ty^2 (-1. 

- (1. Px^2)/Py^2)] Py Pz)/E2ty + 481.1 Pz^2) 

 

E2tsinx = Simplify[E2tsinx /. {Px -> PxSin, Py -> PySin, Pz -> PzSin}]; 

E2rsinx = Simplify[E2rsinx /. {Px -> PxSin, Py -> PySin, Pz -> PzSin}] 

E2tsiny = Simplify[E2tsiny /. {Px -> PxSin, Py -> PySin, Pz -> PzSin}]; 

E2rsiny = Simplify[E2rsiny /. {Px -> PxSin, Py -> PySin, Pz -> PzSin}] 

E2tsinz = Simplify[E2tsinz /. {Px -> PxSin, Py -> PySin, Pz -> PzSin}]; 

E2rsinz = Simplify[E2rsinz /. {Px -> PxSin, Py -> PySin, Pz -> PzSin}] 

B2rsinx = Simplify[B2rsinx /. {Px -> PxSin, Py -> PySin, Pz -> PzSin}]; 

B2tsinx = Simplify[B2tsinx /. {Px -> PxSin, Py -> PySin, Pz -> PzSin}]; 

B2rsiny = Simplify[B2rsiny /. {Px -> PxSin, Py -> PySin, Pz -> PzSin}]; 

B2tsiny = Simplify[B2tsiny /. {Px -> PxSin, Py -> PySin, Pz -> PzSin}]; 

 

-97735.9 Sin[𝛼 - Φ] ((-2 xyx + yyy) Cos[𝛼 - Φ]^2 + yxx Sin[𝛼 - Φ]^2) 

 

-97735.9 (yyy Cos[𝛼 - Φ]^3 + (2 xyx + yxx) Cos[𝛼 - Φ] Sin[𝛼 - Φ]^2) 

 

\[Sqrt](-7.489*10^10 Sin[𝛼 - Φ]^2 ((-2 xyx + yyy) Cos[𝛼 - Φ]^2 + yxx Sin[𝛼 - Φ]^2)^2 + 

1.9804*10^12 (zyy Cos[𝛼 - Φ]^2 + zxx Sin[𝛼 - Φ]^2)^2 + 4.1164*10^9 (-18.1931 + 

18.1931/E2ty^2) (yyy Cos[𝛼 - Φ]^3 + (2 xyx + yxx) Cos[𝛼 - Φ] Sin[𝛼 - Φ]^2)^2 - 1/E2ty 

7.70227*10^11 Cos[𝛼 - Φ] (yyy Cos[𝛼 - Φ]^2 + (2. xyx + yxx) Sin[𝛼 - Φ]^2) (zyy Cos[𝛼 - 

Φ]^2 + zxx Sin[𝛼 - Φ]^2) \[Sqrt](1. + E2ty^2 (-1. - (1. ((-2. xyx + yyy) Cos[𝛼 - Φ]^2 + yxx 

Sin[𝛼 - Φ ]^2)^2 Tan[𝛼 - Φ]^2)/(yyy Cos[𝛼 - Φ]^2 + (2. xyx + yxx) Sin[𝛼 - Φ]^2)^2))) 

 

(*Generate models*) 

 

pinsout = FullSimplify[(E2rpiny)^2] 

 

9.5523*10^9 Cos[𝛼 - Φ]^2 (yxx Cos[𝛼 - Φ]^2 + (-2 xyx + yyy) Sin[𝛼 - Φ]^2)^2 

 

sinpout = (E2rsinx*Cos[Θi])^2 + (E2rsinz*Sin[Θi])^2 

 

9.5523*10^9 Sin[𝛼 - Φ]^2 ((-2 xyx + yyy) Cos[𝛼 - Φ]^2 + yxx Sin[𝛼 - Φ]^2)^2 

 

sinsout = FullSimplify[E2rsiny^2] 

 

9.5523*10^9 (yyy Cos[𝛼 - Φ]^3 + (2 xyx + yxx) Cos[𝛼 - Φ] Sin[𝛼 - Φ]^2)^2 
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