
Computational Modeling and Design of Financial
Markets: Towards Manipulation-Resistant and

Expressive Markets

by

Xintong Wang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2021

Doctoral Committee:

Professor Michael P. Wellman, Chair
Professor David M. Pennock
Professor Uday Rajan
Professor Satinder Singh

Xintong Wang

xintongw@umich.edu

ORCID iD: 0000-0002-0867-8807

© Xintong Wang 2021

To my mom, dad, and grandparents

ii

ACKNOWLEDGMENTS

The past five years at Michigan have been an unforgettable and rewarding journey.

I would not have been able to make through it without the help and support of so

many people whom I feel deeply indebted to.

First and foremost, my greatest appreciation goes to my advisor Michael Wellman.

When I first started my PhD study, Mike provided me invaluable guidance on how

to become a researcher, from choosing an interesting and meaningful research topic

to solving a problem with appropriate tools, from writing a paper and delivering a

presentation to making the right word choice! Mike offers high-level insights about

the field, as well as detailed understanding and comments on specific problems. As I

become a senior PhD student, Mike also provides me the freedom to explore different

directions that I am passionate about. He is always patient with me and believes in

me, even when I do not have the patience and confidence in myself. Now after all

these years of PhD study, I have realized how privileged I am to learn from one of the

most generous mentors and work with one of the most brilliant minds in the field. I

am grateful for his encouragement, patience, and guidance in all aspects!

I would also like to sincerely thank Dave Pennock, Uday Rajan, and Satinder

Singh for being on my thesis committee and for their sharing of ideas and insightful

comments from different perspectives during my thesis proposal, defense, and beyond.

I appreciate their generous offerings of time and efforts. This thesis would not have

been possible without their invaluable feedback and support.

During my PhD study, I have done two wonderful internships at Microsoft Re-

search and J.P. Morgan AI Research. I am extremely lucky to have Dave Pennock as

my mentor at MSR, who introduced me to exciting topics in financial options market

and later prediction markets, which have become part of this thesis. I am grateful for

his sharing of ideas, guidance on research projects, and mentorship even after my in-

ternship! I would also like to thank Miro Dud́ık (for introducing me to the prediction

market project), David Rothschild, and Nikhil Devanur for many useful discussions,

as well as help and feedback on paper writings. At J.P. Morgan AI Research, my

mentor Tucker Balch offered not only insights on research projects, but also helpful

iii

resources and opportunities for me to discuss problems with traders and people from

different teams. I greatly enjoyed these conversations at JPM that have been moti-

vating me to think more about the impact and practicability of research projects and

solutions in real-world financial markets.

I have also been extremely fortunate to work with and learn a great deal from many

wonderful collaborators: Yevgeniy Vorobeychik, Arunesh Sinha, Junyi Li, Christo-

pher Hoang, Biaoshuai Tao, and many others. I would like to thank them for having

inspiring conversations, sharing expertise and ideas, and making my PhD a fun, ac-

companied, and rewarding journey.

I sincerely thank the whole Strategic Reasoning Group for contributing to a great

research environment. I have been extremely lucky to work with (and have fun with)

my lovely labmates: Erik Brinkman, Mason Wright, Frank Cheng, Kareem Amin,

Megan Shearer, Arunesh Sinha, Thanh Nguyen, Zun Li, Yongzhao Wang, Max Smith,

Christine Konicki, Katherine Mayo, and Mithun Chakraborty (who has also been my

undergraduate TA!). I missed the times when we could still chat in the office and go

out for lunch (or bowling or kayaking) together! I appreciate the selfless help from

Erik on all those things/bugs that I would otherwise spend tons of time on (and I

hope that I have shared at least some of those I learned from him with my fellow

labmates).

I would also like to thank everyone in the NSF manipulation project team (though

we still do not have a good name for it). The team has offered invaluable knowledge

and understanding on market manipulation and financial regulation from disciplinar-

ies across finance, law, and public policy, making me to think about and evaluate

computational solutions from new and important aspects. I am especially grateful

for the conversations I have had with Uday Rajan, Gabriel Rauterberg, and Zhen

(Zach) Yan.

I would like to extend my special thanks to Sanmay Das who initiated and taught

the multi-agent system course at WashU (which introduced me to this field), encour-

aged me to pursue this graduate study, and has been providing me helpful advice

even after my undergraduate study. I would also like to thank Zhuoshu Li, Elaine

Wah, Yuqing Kong, Hongyao Ma, Bo Li, Fei Fang, and many other friends in the EC

community for their mentorship and encouragement in various ways.

Outside research, I have been extremely lucky to be surrounded by so many great

friends in Ann Arbor, in the U.S., and all the way across the ocean. I thank them for

helping me navigate through the peaks and valleys of this journey, and for keeping

me protected and loved all the time!

iv

Lastly, but most importantly, I want to thank my parents for everything they have

done for me! I thank them for always being on my side, even though we could only

spend two or three weeks together every year. I thank them for always supporting

me, encouraging me, believing in me, and bearing with me as I pursue whimsy and

wonder in life. I dedicate this thesis to them.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF APPENDICES . xiii

ABSTRACT . xiv

CHAPTER

1. Introduction . 1

1.1 Designing Manipulation-Resistant Markets 3
1.1.1 Dynamics between a Manipulator and Investors . . 3
1.1.2 Dynamics between a Manipulator and a Regulator . 5

1.2 Designing Expressive Markets 6
1.3 Dissertation Overview . 8

2. Spoofing the Limit Order Book:
A Strategic Agent-Based Analysis 10

2.1 Introduction . 11
2.2 Related Work . 13

2.2.1 Agent-Based Modeling of Financial Markets 13
2.2.2 Autonomous Bidding Strategies 14
2.2.3 Spoofing in Financial Markets 15

2.3 Market Model . 15
2.3.1 Market Mechanism 16
2.3.2 Valuation Model . 16
2.3.3 Background Trading Agents 18
2.3.4 The Spoofing Agent 21

vi

2.4 Empirical Game-Theoretic Analysis 22
2.4.1 Profile Search . 22
2.4.2 Game Reduction . 23

2.5 Spoofing the Limit Order Book 24
2.5.1 Market Environments 24
2.5.2 Games without Spoofing 26
2.5.3 Games with Spoofing 28
2.5.4 Discussion . 31

2.6 A Cloaking Mechanism to Mitigate Spoofing 32
2.6.1 A Cloaking Market Mechanism 33
2.6.2 Tradeoff Faced by Cloaking Mechanisms 36
2.6.3 Finding the Optimal Cloaking 38
2.6.4 Probing the Cloaking Mechanism to Spoof 39

2.7 Learning-Based Trading Strategies under the Presence
of Market Manipulation . 41

2.7.1 Two Variations of HBL 42
2.7.2 Empirical Evaluation 43
2.7.3 Combine Order Blocking and Price Offsets 49

2.8 Conclusions . 49

3. Modeling the Evasion of Manipulation Detection:
An Adversarial Learning Framework 51

3.1 Introduction . 51
3.2 Related Work . 54

3.2.1 Agent-Based Modeling of Trading Roles 54
3.2.2 Learning via Adversarial Training 55

3.3 Problem Formulation . 55
3.3.1 Trading Strategies and Representations 55
3.3.2 An Adversarial Learning Framework 57

3.4 Experimental Results . 60
3.4.1 Dataset and Implementation Details 60
3.4.2 Generating Adapted Manipulation Examples 61

3.5 Conclusions . 65

4. Designing a Combinatorial Financial Options Market 67

4.1 Introduction . 68
4.2 Related Work . 70

4.2.1 Rational Option Pricing 70
4.2.2 Combinatorial Market Design 71

4.3 Background and Notations 71
4.4 Consolidating Standard Financial Options 72

4.4.1 Match Orders on Standard Options 72
4.4.2 Quote Prices for Standard Options 75

vii

4.5 Combinatorial Financial Options 76
4.5.1 Match Orders on Combinatorial Options. 79

4.6 Experiments: OptionMetrics Data 82
4.7 Experiments: Synthetic Combinatorial Options Market 83

4.7.1 Generate Synthetic Orders 83
4.7.2 Evaluation . 84

4.8 Discussion . 86

5. Log-time Prediction Markets for Interval Securities 87

5.1 Introduction . 87
5.2 Formal Setting . 90

5.2.1 Cost-Function-Based Market Making 90
5.2.2 Complete Markets and LMSR 91
5.2.3 Interval Securities over [0, 1) 92

5.3 A Log-time LMSR Market Maker 93
5.3.1 An LMSR Tree for [0, 1) 93
5.3.2 Price Queries . 95
5.3.3 Buy Transactions 96

5.4 A Multi-Resolution Linearly Constrained Market Maker . . . 99
5.4.1 A Multi-Resolution LCMM for [0, 1) 99
5.4.2 Price Queries . 104
5.4.3 Buy and Cost Operations 105

5.5 Discussion . 108

6. Conclusion . 111

APPENDICES . 116

BIBLIOGRAPHY . 155

viii

LIST OF FIGURES

Figure

1.1 The decision-making process of an agent in the market. 1
1.2 Example of alleged spoofing. 4
2.1 An agent-based model of spoofing in a CDA market with a single

security traded. 12
2.2 Comparisons of background-trader surplus for equilibria in each en-

vironment, with and without the HBL strategies available to back-
ground traders. 27

2.3 Comparisons of price discovery for equilibrium in each environment,
with and without the HBL strategies available to background traders. 27

2.4 Transaction price differences throughout the trading horizon with
and without a spoofer against each HBL-and-ZI equilibrium found in
non-spoofing games. 29

2.5 HBL adoption rates at equilibria in games with and without spoofing. 31
2.6 Background-trader surplus achieved at equilibria in games with and

without spoofing. 31
2.7 HBL adoption rate in equilibrium across different cloaking markets

without spoofing. 37
2.8 The impact of cloaking on spoofing effectiveness. 37
2.9 Equilibrium outcomes in games with and without cloaking. 38
2.10 Exploitation payoff and transaction risk as we vary price increment δ

and probing limit l. 41
2.11 Price deviations caused by spoof orders placed behind different price

levels in the order book. 45
2.12 Correctly blocking spoof orders increases background-trader surplus

and decreases manipulation profits. 45
2.13 Average HBL surplus differences and total number of transactions in

non-spoofing markets where HBL traders use different price offsets. 47
2.14 Market price deviations caused by spoofing in markets where HBL

traders use different price offsets. 47
2.15 Total background-trader surpluses and HBL strategy adoption rates

achieved at equilibria across different market settings. 48
3.1 Overview of the proposed adversarial learning framework that reasons

about evading a manipulation detector. 54

ix

3.2 Order streams associated with EXP, SP, and MM in a set of controlled
simulations. 58

3.3 Comparisons of the respective statistics on the SP order streams,
adapted outputs, and MM order streams. 63

3.4 The manipulation effect of order streams associated with the corre-
sponding level of SP strategy. 63

3.5 Examples of adapted manipulation order streams. 64
4.1 Payoffs of the matched options as a function of the value of the un-

derlying asset at expiration. 75
4.2 Payoff of combinatorial options matched in Example 4.3 as a function

of SAAPL and SMSFT. 78
4.3 Results of using Mechanism M.2 to match orders in synthetic combi-

natorial options markets. 84
5.1 Left and right rotations with node z as an input. 97
5.2 The price convergence error as a function of the number of trades,

measured at two resolution levels. 110
C.1 The price convergence error as a function of liquidity and the number

of trades for the three respective market makers. 154

x

LIST OF TABLES

Table

2.1 Background trading strategies included in EGTA. 25
2.2 Additional background trading strategies included in EGTA for cloak-

ing mechanisms. 36
2.3 Least number of probing attempts required to beat equilibrium per-

formance. 41
2.4 Background trading strategies included to evaluate the two HBL vari-

ations. 44
2.5 Average payoffs of learning-based background traders and the ex-

ploiter, as they deviate from the equilibrium strategy profiles. . . . 45
3.1 Summary statistics of the respective trading strategy on test dataset. 62
A.1 Background-trader surplus and HBL proportion in equilibrium of

markets without spoofing. 117
A.2 Background-trader surplus and HBL proportion in equilibrium of

markets with spoofing. 118
A.3 Equilibria for games without spoofing, N = 28, calculated from the

4-player DPR approximation. 119
A.4 Equilibria for games without spoofing, N = 65, calculated from the

5-player DPR approximation. 120
A.5 Equilibria for games with spoofing, N = 28, calculated from the 4-

player DPR approximation. 121
A.6 Equilibria for games with spoofing, N = 65, calculated from the 5-

player DPR approximation. 122
A.7 Equilibria for games where agents are restricted to ZI strategies, N =

28, calculated from the 4-player DPR approximation. 123
A.8 Equilibria for games where agents are restricted to ZI strategies, N =

65, calculated from the 5-player DPR approximation. 123
A.9 Background trading strategies included in EGTA for cloaking mech-

anisms. 124
A.10 Equilibria for games where the exploiter does not spoof. 124
A.11 Detailed equilibria for games where the exploiter does not spoof. . . 125
A.12 Equilibria for games where the exploiter strategically chooses to spoof.126
A.13 Detailed Equilibria for games where the exploiter strategically chooses

to spoof. 127

xi

A.14 Background trading strategies used in EGTA for HBL variations. . . 128
A.15 Equilibria for games where the learning-based trading strategy set is

restricted to standard HBL. 129
A.16 Equilibria for games where the learning-based trading strategy set is

comprised of standard HBL and HBL with price level blocking. . . . 130
A.17 Equilibria for games where the learning-based trading strategy set is

comprised of standard HBL and HBL with price offsets. 131
A.18 Equilibria for games where the learning-based trading strategy set

is comprised of standard HBL, HBL with price level blocking, HBL
with price offsets, and HBL with both price offsets and price level
blocking. 132

B.1 Summary statistics (matching) of options on each stock in DJI by
consolidating options related to the same underlying asset and expi-
ration date. 142

B.2 Summary statistics (quoting) of options on each stock in DJI by con-
solidating options related to the same underlying asset and expiration
date. 143

B.3 Summary statistics (matching with L = 0) of options on each stock
in DJI by consolidating options related to the same underlying asset
and expiration date. 144

B.4 Summary statistics (quoting with L = 0) of options on each stock
in DJI by consolidating options related to the same underlying asset
and expiration date. 145

xii

LIST OF APPENDICES

Appendix

A. Detailed Equilibrium Results for Chapter 2 117
B. Additional Proofs and Results for Chapter 4 133
C. Deferred Proofs and Additional Experiments for Chapter 5 146

xiii

ABSTRACT

Electronic trading platforms have transformed the financial market landscape,

supporting automation of trading and dissemination of information. With high vol-

umes of data streaming at high velocity, market participants use algorithms to assist

almost every aspect of their decision-making: they learn market state, identify op-

portunities to trade, and express increasingly diverse and nuanced preferences. This

growing automation motivates a reconsideration of market designs to support the new

competence and prevent potential risks.

This dissertation focuses on the design of (1) manipulation-resistant markets that

facilitate learning genuine market supply and demand, and (2) expressive markets

that facilitate delivering preferences in greater detail and flexibility. Advances towards

each may contribute to efficient resource allocation and information aggregation.

Manipulation-Resistant Markets. Spoofing refers to the practice of submitting

spurious orders to deceive others about supply and demand. To understand its effects,

this dissertation develops an agent-based model of manipulating prices in limit-order

markets. Empirical game-theoretic analysis on agent behavior in simulated markets

with and without manipulation shows that spoofing hurts market surplus and de-

creases the proportion of learning traders who exploit order book information. That

learning behavior typically persists in strategic equilibrium even in the presence of

manipulation, indicating a consistently spoofable market.

Built on this model, a cloaking mechanism is designed to deter spoofing via strate-

gically concealing part of the order book. Simulated results demonstrate that the

benefit of cloaking in mitigating manipulation outweighs its efficiency cost due to

information loss. This dissertation explores variations of the learning-based trading

strategy that reasonably compromise effectiveness in non-manipulated markets for

robustness against manipulation.

Regulators who deploy detection algorithms to catch manipulation face the chal-

lenge that an adversary may obfuscate strategy to evade. This dissertation proposes

an adversarial learning framework to proactively reason about how a manipulator

xiv

might mask behavior. Evasion is represented by a generative model, trained by aug-

menting manipulation order streams with examples of normal trading. The framework

generates adapted manipulation order streams that mimic benign trading patterns

and appear qualitatively different from prescribed manipulation strategies.

Expressive Markets. Financial options are contracts that specify the right to

buy or sell an underlying asset at a strike price in the future. Standard exchanges

offer options of predetermined strike values and trade them independently, even for

those written on the same asset. This dissertation proposes a mechanism to match

orders on options related to the same asset, supporting trade of any custom strike.

Combinatorial financial options—contracts that define future trades of any linear

combination of underlying assets—are further introduced to enable the expression

of demand based on predicted correlations among assets. Optimal clearing of such

markets is coNP-hard, and a heuristic algorithm is proposed to find optimal matches

through iterative constraint generation.

Prediction markets that support betting on ranges (e.g., on the price of S&P 500)

offer predetermined intervals at a fixed resolution, limiting the ability to elicit fine-

grained information. The logarithmic market scoring rule (LMSR) used in this setting

presents two limitations that prevent its scaling to large outcome spaces: (1) oper-

ations run in time linear in the number of outcomes, and (2) loss suffered by the

market can grow unbounded. By embedding the modularity properties of LMSR into

a binary tree, this dissertation shows that operations can be expedited to logarithmic

time. A constant worst-case loss can also be achieved by designing a liquidity scheme

for intervals at different resolutions.

xv

CHAPTER 1

Introduction

Financial markets were heretofore perceived as places where people gather to trade

assets.1 The design of mechanism or auction rules underlying a market plays a key

role that directs the decision-making of participants, the aggregation of information,

and the allocation of resources. Over the past few decades, markets have become to

operate almost entirely electronically, supporting automation of trading and conse-

quential scaling of volume and speed across geography and asset classes. With data

streaming on a short timescale, often below the limits of human response time, au-

tonomous agents directed by algorithms operate on behalf of human traders. Such

increasing automation has transformed the financial market landscape from a human

decision ecosystem to an algorithmic one, motivating a reconsideration of market

designs that can support the new competence and prevent potential risks.

Whereas exactly how agents trade is proprietary and unknown, the incorporation

of algorithmic assistance in almost every aspect of a decision loop is evident. Fig-

ure 1.1 illustrates three main aspects involved: (1) assessing market states, (2) iden-

tifying opportunities to trade, and (3) expressing demands and preferences. The first

and last involve direct interactions with a market, and the second can be affected

by these interactions. This dissertation focuses on the design of market mechanisms

and algorithms to better facilitate (1) and (3), with the ultimate goal of ensuring the

efficient resource allocation and information aggregation.

Figure 1.1: The decision-making process of an agent in the market.

1As chronicled in Flash Boys: A Wall Street Revolt by Lewis (2014).

1

With the assistance of algorithms, market participants have the unprecedented

ability to gather and exploit information from a plethora of sources, from news arti-

cles to order book information disclosed by many financial exchanges. Learning and

assessing market states helps to make informed trades and may contribute to improved

market efficiency. However, the prevalent use of automated learning techniques intro-

duces new possibilities for manipulation, and a distortion to one source of information

can lead to a cascading effect in the greater marketplace. One common type of ma-

nipulative practices is order-based manipulation, applied through a series of direct

trading actions in a market. Rather than expressing true trading intent, spurious or-

ders are submitted—often also aided by algorithms—to maneuver the market state:

they feign a strong buy or sell interest to deceive investors who learn from others’

bidding activities. As algorithms respond to information much faster than humans,

the market can reflect misled beliefs in milliseconds, with prices moving toward the

crafted direction that benefits the manipulator. This dissertation combines methods

from agent-based modeling, game-theoretic analysis, and adversarial learning to ex-

amine the mechanics behind such manipulation and propose manipulation-resistant

designs.

With the assistance of algorithms, market participants become more capable

of computing and identifying complex but well-defined investment objectives (e.g.,

achieving a particular return, hedging exposure risks, or speculating the movement

of a portfolio of assets). This competence is accompanied with the need of custom fi-

nancial instruments, as well as a higher level of expressiveness in the mechanism—the

ability to provide agents the means to express more diverse demands and nuanced

preferences. Most current markets, however, fail to tailor to such individualized

needs, offering standardized contracts with predetermined characteristics. This keeps

the mechanism and its operations clean and simple, but puts burdens on investors

who have to craft trades across available markets and bear the risk of execution

failure. Increasing expressiveness may in fact benefit a mechanism: the market is

able to incorporate information of greater detail to optimize outcome, improving eco-

nomic efficiency, and obtain high-quality information aggregation. The second part

of this dissertation investigates expressive designs for financial options markets and

prediction markets, analyzing computational complexity of increased expressiveness

and proposing algorithms to facilitate computationally efficient operations.

In sections below, I provide more background on the two identified problems, and

outline the computational approaches this dissertation adopts.

2

1.1 Designing Manipulation-Resistant Markets

Market manipulation is defined by the U.S. Securities and Exchange Commission

(SEC) as “intentional or willful conduct designed to deceive or defraud investors by

controlling or artificially affecting the price of securities, or intentional interference

with the free forces of supply and demand”. Though it has long been present, the

practice has evolved in its forms to exploit automated trading and the dissemination

of market information offered by many trading platforms (Lin 2015).

On July 22, 2013, the U.S. Commodity Futures Trading Commission (CFTC) filed

charges against Michael Coscia for manipulating a broad spectrum of commodities

on the Chicago Mercantile Exchange (Patterson and Trindle 2013). Coscia utilized

a computer algorithm that quickly placed and canceled orders to mislead the market

about demand and supply for these contracts. The trial evidence suggested that such

practice allowed Coscia to buy low and sell high in a market artificially distorted by

his actions, purportedly earning him $1.4 million. Figure 1.2 illustrates an episode of

the alleged spoofing activity conducted over the course of 0.6 seconds.

The case of Coscia was the first prosecuted under the Dodd-Frank Act passed

in 2010, but not the only one occurring in today’s marketplace. A recent lawsuit

claimed evidence of thousands of manipulation episodes in the U.S. Treasury futures

observed during 2013 and 2014 (Hope 2015b). Since 2016, the SEC has brought legal

action over a hundred cases of manipulation (U.S. SEC 2017, 2018, 2019), and new

allegations have been emerging on a regular basis.

Despite regulatory enforcement efforts, manipulation is hard to eliminate due to

(1) the difficulty of determining the manipulation intent behind placement of orders,

and (2) the adversarial nature of a manipulator who adapts to evade regulation and

detection. This calls for a more comprehensive understanding of the dynamics be-

tween a manipulator and other market participants—as well as the dynamics between

a manipulator and a regulator—to design deterrent measures, ensuring the general

efficiency and integrity of a marketplace.

1.1.1 Dynamics between a Manipulator and Market Participants

Prior work that investigates order-based market manipulation has primarily re-

lied on examination of historical trading data (Lee, Eom, and Park 2013; Wang

2019). Researchers conduct empirical analysis to characterize manipulation patterns

and market conditions where manipulation is more likely to occur and be effective.

Grounding on historical data, pure data-driven approaches can provide insights to ob-

3

cumulative buy orders cumulative sell ordersmarket mid price

A sequence of limit orders
submitted by Coscia over the
course of 0.6 seconds. A series
of large out-of-the money ma-
nipulation sell orders (red tri-
angles) are first placed to drive
the price down and make the
buy order accepted (the filled
blue triangle). These sell or-
ders are immediately replaced
with large buy ones (blue trian-
gles) to push the price up and
profit from the sale at a higher
price (the filled red triangle).

Figure 1.2: Example of alleged spoofing. Source: UK Financial Conduct Authority
Final Notice 2013.

servational questions, delivering findings that may better reflect the real world situa-

tion. However, they present fundamental limitations when concerning counterfactual

questions (e.g., what would change if a certain action is not taken), and answers to

such questions can be highly relevant to identifying manipulation and understanding

its impact.

Analytic models can be an useful approach to analyze the mechanics behind mar-

ket manipulation. Allen and Gale (1992) develop a model of transaction-based manip-

ulation, and compute equilibrium based off of this model where the existence of noise

traders makes it possible to manipulate prices. Fishman and Hagerty (1995) propose

a one-period equilibrium model of information-based manipulation where uninformed

insiders can make a profit by pretending they are informed and disclosing their trades.

Both models rely on highly simplified context and assumptions (e.g., limited num-

ber of trading stages, probabilistic information disclosure) to derive equilibrium and

demonstrate the theoretical possibility of manipulation. In our case, however, the

manipulation practice of interest relies on complex features, such as frequent entries

into the market and propagation of order book information between the market and

agents. These features are essential to the problem at hand and may not be removed

or easily stylized for tractability.

This dissertation adopts a computational approach that lies somewhere in be-

tween of the two approaches discussed: it combines agent-based modeling (ABM)

and empirical game-theoretic analysis (EGTA) (Wellman 2006) to study the effect

of manipulation on trading behavior and market performance in equilibrium. ABM

4

takes a simulation approach to reproduce phenomena of interest through the dy-

namic interactions of agents. It enables the designer to incorporate any desired level

of complexity into the model, and provides the means to acquire counterfactual in-

formation. By simulating different scenarios and conducting controlled experiments,

one can evaluate how a certain factor affects agent and system behavior. Despite the

merits and flexibility, ABM presents a challenge that may affect its practicability:

simulated data can vary as one adopts different design choices (e.g., environment,

prescribed strategies, agent composition), and thus analysis conducted upon it may

or may not accurately reflect situation in reality.

This dissertation alleviates this issue by exploring a wide range of environments

and employing EGTA in each to focus on the most relevant strategic context. From

the agent-based model, EGTA induces a normal-form game defined by heuristic strat-

egy space and simulated agent utilities, and solves for Nash equilibria (or other game-

theoretic solution concepts) to determine agent behavior. By such, rather than pre-

scriptively assigning strategies to agents and exploring all possible combinations, a

designer is directed to a strategically stable setting where agents are making the best

choices among their available strategies, given an environment and others’ choices.

Combining ABM and EGTA, Chapter 2 develops the first computational model

that reproduces spoofing in a dynamic limit-order mechanism, and demonstrates the

effectiveness of manipulating against approximate-equilibrium traders. The model

offers a constructive basis to quantify the effect of manipulation practices and evaluate

any preventive or deterrent proposals under strategic settings. Chapter 2 proceeds to

explore variations of trading strategies that may exploit market information in less

vulnerable ways, and proposes a mechanism to disincentive manipulation via strategic

disclosure of the order book.

1.1.2 Dynamics between a Manipulator and a Regulator

Deterrent mechanisms intend to render manipulative strategies uneconomical; a

more direct approach is to detect any manipulation activity. The automated and

high-frequency nature of many manipulation practices has led efforts to automate

detection. Nasdaq announced an AI-based surveillance system trained with histori-

cal data and spotted patterns of market-abuse techniques to detect suspect equities

trading episodes (Rundle 2019). Despite recent advances in pattern recognition al-

gorithms, developing high-fidelity detection systems faces the all-time challenge that

an adversary may obfuscate its strategies to escape detection (e.g., manipulating in a

way that appears as normal trading activity). This causes regulators to play a costly

5

game of cat-and-mouse with manipulators who constantly innovate to evade.

Such a contest resembles the workings of generative adversarial nets (GANs)

(Goodfellow et al. 2014): the generative model—analogous to the manipulator—

learns to fool a discriminative model—the detector, by producing novel candidates

that the discriminator believes are part of the true data distribution (e.g., normal

trading patterns). Building on this connection, the dissertation proposes an adver-

sarial learning framework to proactively reason about how a manipulator might mask

its behavior to evade detection. The framework differs from a vanilla GAN model in

two main aspects. First, it takes prescribed spoofing traces as inputs as opposed to

randomized inputs in GANs. Second, it attempts to resemble a target distribution

while preserving a comparable manipulation effect, whereas resemblance is the only

objective in GANs. Ultimately, the generated “unseen” manipulative examples can

serve to train more robust detection algorithms.

Biggio, Fumera, and Roli (2014) identify four stages in the scheme of proactive

security: (1) model adversary, (2) simulate attack, (3) evaluate attack’s impact, and

(4) develop countermeasures, if the attack has relevant impact. The proposed adver-

sarial framework combines a variant of GAN and the developed agent-based model

of manipulation to perform the four steps iteratively. Evasion (or the adversary)

is modeled by a generator that learns to adapt original manipulation activities to

resemble trading patterns of a normal trader. The agent-based simulator performs

(2) and (3), and the generative and discriminative model respectively conducts (1)

and (4). Whereas such an adversarial framework cannot capture all changing as-

pects of an adversary, it is generally believed that proactive reasoning delays each

step of the reactive arms race, forcing the adversary to exert greater efforts to find

vulnerabilities (Biggio, Fumera, and Roli 2014).

1.2 Designing Expressive Markets

The second part of this dissertation studies mechanisms and algorithms to improve

the expressiveness of financial markets. By giving participants greater flexibility to

express preferences and beliefs, a market mechanism can incorporate more inputs to

optimize for outcome, increase economic efficiency, and obtain high-quality informa-

tion aggregation. However, a higher-level of expressiveness may come at the cost of a

more intricate mechanism that is computationally expensive.2 This dissertation inves-

2Several works have formally described and quantified tradeoffs of this form (Benisch, Sadeh, and
Sandholm 2008; Golovin 2007).

6

tigates the use of optimization methods and computationally-efficient data structures

to facilitate and expedite key operations required by an expressive market.

Take financial options markets as an example. An option is a contract that spec-

ifies the contract holder the right to buy or sell of an underlying asset at some agreed

strike price in the future. On standard exchanges, markets for options written on a

specific underlying asset feature a selective set of predetermined strike prices. For ex-

ample, as of this writing, the Chicago Board Options Exchange (CBOE) offers around

forty distinct strike prices, ranging from $100 to $320 at intervals of $5 or $10, for

MSFT options expiring on September 17, 2021. While one can engineer custom con-

tracts (e.g., a MSFT call option with strike price $202) by simultaneously purchasing

multiple available options at appropriate proportions, it requires monitoring several

markets to ensure that a bundle can be constructed at a desired price. Often, execu-

tion risk and transaction costs prevent traders from carrying out such strategies. As

a result, the exchange may fail to aggregate supply and demand requests of greater

detail, leading to a loss of economic efficiency.

For the set of offered strikes, standard exchanges operate separate markets, having

each independently aggregate and match orders of a designated strike price, despite

the interconnectedness and their common dependency on the underlying asset. Such

independent market design fails to match options with different strike prices, and

may introduce arbitrage opportunities. Moreover, investments get diluted across

independent markets even when participants are interested in the same underlying

asset. This can cause the problem of thin markets, where few trades happen and

bid-ask spreads become wide. Empirical evidence has shown that even for some of

the most actively traded options, liquidity can vary much across option types and

strikes (Cao and Wei 2010).

Besides financial options market, prediction markets that facilitate trading the

outcome of events share a similar limitation due to their predetermined designs. For

instance, markets that elicit predictions of an outcome variable, such as the time

FDA will approve a vaccine or the threshold S&P 500 will hit by the end of the year,

often restrain the outcome space to some pre-defined intervals at a certain resolution

(e.g., quarters of a year, or ranges of every thousand dollars). Such prescriptive

design, by clustering betting interest, attenuates the thin market problem. However,

it prevents agents with expert knowledge from expressing more accurate information

(e.g., the month, date, or even time of a vaccine release). The popular logarithmic

market scoring rule (LMSR) (Hanson 2003) has been used in this setting to subsidize

trading and aggregate information at different granularity levels in a single market.

7

However, it suffers two limitations that prevent its scaling to markets with large

outcome spaces. First, the worst-case loss of an LMSR market can grow unbounded

if agents select outcomes with prior probability approaching zero (Gao, Chen, and

Pennock 2009). Second, standard implementations of LMSR operations run in time

linear in the number of outcomes or distinct future values agents define, which can

be arbitrarily many in a continuous outcome space.

To address issues identified above, this dissertation proposes mechanisms and al-

gorithms to improve market expressiveness. In many cases, computational techniques

can help to exploit certain payoff properties or outcome structures present in a mar-

ket to enjoy a desired level of expressiveness without compromising computational

efficiency. Chapter 4 presents a mechanism that utilizes a linear program to consol-

idate and match orders on standard options related to the same underlying asset,

while providing traders the flexibility to specify any custom strike value. Market

operations, including match and price quotes, require time polynomial in the number

of orders. Chapter 5 proposes a balanced-binary tree data structure that success-

fully decomposes LMSR calculations along the tree nodes, thus expediting market

operations exponentially faster than previous designs.

This dissertation also demonstrates the case when a higher level of expressive-

ness renders a market computationally intractable. Chapter 4 generalizes standard

options to combinatorial financial options, which specify the right to buy or sell any

defined linear combination of underlying assets at some agreed strike price. Such

contracts provide investors the means to speculate relative movements among stocks,

thus enabling the elicitation of future correlations among underlying assets. This

increased expressiveness of the mechanism, however, comes at the cost of higher com-

putational complexity: optimal clearing of such a market is coNP-hard. Chapter 4

demonstrates that with a proposed heuristic algorithm, the computational hardness

may be surmountable in practice.

1.3 Dissertation Overview

This introductory chapter has provided a broad perspective on the two categories

of problems the dissertation aims to address and a brief description of the employed

methodology and computational techniques. The remainder of this dissertation pro-

vides the details.

Chapter 2 presents the computational agent-based model of spoofing (Section 2.3),

proposes deterrent mechanisms (Section 2.6), and explores trading strategies to im-

8

prove learning robustness against manipulation (Section 2.7). Section 2.4 details the

EGTA methodology, which is adopted in all three studies to provide strategic anal-

ysis. Some of the material in this chapter has appeared in published work (Wang,

Hoang, and Wellman 2020; Wang, Vorobeychik, and Wellman 2018; Wang and Well-

man 2017).

Chapter 3 describes the adversarial learning framework developed to reason about

evading any manipulation detection. It uses the built agent-based market simulator

in Chapter 2 to generate spoofing and non-manipulative order streams (served as

training data) and to evaluate the manipulation effect of adapted outputs. Part of

the material from this chapter has appeared in published work (Wang and Wellman

2020).

Chapter 4 studies expressive designs for financial options markets. Section 4.4

specifies the mechanism that improves matching standard options. Section 4.5 defines

combinatorial financial options, and investigates matching mechanisms and computa-

tional complexity for such a market. Material from this chapter is under submission

(Wang et al. 2020).

Chapter 5 presents two efficient designs of prediction markets that recover a com-

plete and fully general probability distribution of a random variable. Section 5.3

details the balanced tree construction that embeds LMSR calculations and expedites

market operations. Section 5.4 describes a different binary tree structure, augmented

with a liquidity scheme to enable a constant loss bound. Some of the material in this

chapter is in paper to appear at the 20th International Conference on Autonomous

Agents and Multiagent Systems (Dud́ık, Wang, Pennock, and Rothschild 2020).

Chapter 6 concludes with a summary of contribution and a discussion of limita-

tions and future directions.

9

CHAPTER 2

Spoofing the Limit Order Book: A Strategic

Agent-Based Analysis

This chapter presents an agent-based model of manipulating prices in financial

markets through spoofing ; it is a form of order-based manipulation that operates by

submitting spurious orders to mislead traders who learn from the order book. Built

around the limit-order mechanism, the model captures a complex market environ-

ment with combined private and common values, the latter represented by noisy

observations upon a dynamic fundamental time series. In this model, we consider

background agents following two types of trading strategies: the non-spoofable zero

intelligence (ZI) that ignores the order book and the manipulable heuristic belief

learning (HBL) that exploits the order book to predict price outcomes. We conduct

empirical game-theoretic analysis upon simulated agent payoffs across parametrically

different environments, and measure the effect of spoofing on market performance in

approximate strategic equilibria.

We demonstrate that HBL traders can improve price discovery and social welfare,

but their existence in equilibrium renders a market vulnerable to manipulation: simple

spoofing strategies can effectively mislead traders, distort prices, and reduce total

surplus. Based on this model, the chapter further proposes to mitigate spoofing from

two aspects: (1) mechanism design to disincentivize manipulation and (2) trading

strategy variations to improve the robustness of learning from market information. We

evaluate the proposed approaches, taking into account potential strategic responses

of agents, and characterize the conditions under which these approaches may deter

manipulation and benefit market welfare. The model proposed here provides a way

to quantify the effect of spoofing on trading behavior and market efficiency, and thus

can help to evaluate the effectiveness of various market designs and trading strategies

in mitigating an important form of market manipulation.

10

2.1 Introduction

On April 21, 2015, nearly five years after the “Flash Crash”,1 the U.S. Department

of Justice charged Navinder Singh Sarao with 22 criminal counts, including fraud

and spoofing. Prior to the Flash Crash, Sarao allegedly used an algorithm to place

orders amounting to about $200 million seemingly betting that the market would

fall, and later replaced or modified those orders 19,000 times before cancellation.

The U.S. Commodity Futures Trading Commission (CFTC) concluded that Sarao’s

manipulative practice was responsible for significant order imbalances. Though recent

analysis has cast doubt on the causal role of Sarao on the Flash Crash (Aldrich,

Grundfest, and Laughlin 2017), many agree that such manipulation could increase the

vulnerability of markets and exacerbate market fluctuations. An illustrative execution

trace of a similar spoofing strategy has been presented and discussed in Chapter 1

Figure 1.2, demonstrating how quickly and effectively such manipulation behavior

can affect the market and profit from the spoofed belief.

Specifically, spoofing operates through a series of direct trading actions in a mar-

ket. Traders interact with the market by submitting orders to buy or sell. Orders

that do not transact immediately rest in the order book, a repository for outstanding

orders to trade. At any given time, the order book for a particular security reflects the

market’s expressed supply and demand. A spoofer (or manipulator) submits large

spurious buy or sell orders with the intent to cancel them before execution. The

orders are spurious in that instead of expressing genuine trading intent, they feign

a strong buy or sell interest in the market, thus corrupting the order book’s signal

on supply and demand. Such orders can be viewed as targeted attacks (Huang et al.

2011), designed to mislead others who learn from the order book to believe that prices

may soon rise or fall and subsequently alter their trading behavior in a way that will

directly move the price. To profit on its feint, the manipulator can submit a real order

on the opposite side of the market and as soon as the real order transacts, cancel all

the spoof orders.

In 2010, the Dodd-Frank Wall Street Reform and Consumer Protection Act was

signed into U.S. law, outlawing spoofing as a deceptive practice. In describing its

concern about spoofing, the CFTC notes that “many market participants, relying on

the information contained in the order book, consider the total relative number of bid

and ask offers in the order book when making trading decisions”. In fact, spoofing

1The Flash Crash was a sudden trillion-dollar dip in U.S. stock markets on May 6, 2010, during
which stock indexes collapsed and rebounded rapidly (Kirilenko, Kyle, Samadi, and Tuzun 2017).

11

AS
KS

BI
DS

… …

101.12 4

101.10 15

101.04 20

101.03 8

101.01 3

101.00 200

100.99 11

100.98 18

… …

Order Book
Price Shares

ManipulatorHBL Traders

Inject spoof ordersLearn from order book

Rely on market quotesSubmit genuine orders

ZI Traders

Time

Fundamental Value

Noisy Observations

Figure 2.1: An agent-based model of spoofing in a CDA market with a single security
traded.

can be effective only to the extent that traders actually use order book information

to make trading decisions. In ideal markets without manipulation, traders may ex-

tract useful information from the order book, making more informed decisions over

those that neglect such information. A manipulator exploits such learning process,

minimizing its own risk in the process. Spoof orders are typically placed at price

levels just outside the current best quotes to mislead other investors, and withdrawn

with high probability before any market movement could trigger a trade (Hope 2015a;

Montgomery 2016).

This chapter reproduces spoofing in a computational model, as a first step toward

developing more robust measures to characterize and prevent spoofing. We adopt

an agent-based modeling approach to simulate the interactions among players with

different strategies. Figure 2.1 gives an overview of our proposed agent-based market

model. The model implements a continuous double auction (CDA) market with a

single security traded. The CDA is a two-sided mechanism adopted by most financial

and commodity markets (Friedman 1993). Traders can submit limit orders at any

time, and whenever an incoming order matches an existing one they trade at the

incumbent order’s limit price.

The market is populated with multiple background traders and in selected treat-

ments, one manipulator who executes the spoofing strategy. Background traders are

further divided to follow two types of trading strategies: zero intelligence (ZI) that

ignores the order book and heuristic belief learning (HBL) that learns from the order

book to predict price outcomes. Upon each arrival to trade, a background trader

receives a noisy observation of the security’s fundamental value. Based on a series of

fundamental observations and its private value, a ZI agent computes the limit-order

12

price by shading a random offset from its valuation, and thus is non-manipulable. An

HBL agent, on the other hand, is susceptible to spoofing: it considers information

about orders recently submitted to the market, estimates the probability that orders

at various prices would be transacted, and chooses the optimal price to maximize

expected surplus. The manipulator in our model executes a spoofing strategy similar

to that illustrated in Figure 1.2. The spoofer injects and maintains large spurious

buy orders at one tick behind the best bid, designed to manipulate the market by

misleading others about the level of demand.

We conduct extensive simulation over hundreds of strategy profiles across paramet-

rically different market environments with and without manipulation. The simulation

data is used to estimate normal-form game models, from which we derive empirical

equilibria, where every agent chooses its best response to both the market environ-

ment and others’ behavior. Our goal is to (1) reproduce spoofing and understand its

impact on market performance (Section 2.5) and (2) propose and evaluate variations

of market designs (Section 2.6) and learning-based trading strategies (Section 2.7) in

mitigating manipulation.

2.2 Related Work

2.2.1 Agent-Based Modeling of Financial Markets

Agent-based modeling (ABM) takes a simulation approach to study complex do-

mains with dynamically interacting decision makers. ABM has been frequently ap-

plied to modeling and understanding phenomena in financial markets (Lebaron 2006),

for example to study the Flash Crash (Paddrik et al. 2012) or to replicate the volatility

persistence and leptokurtosis characteristic of financial time series (LeBaron, Arthur,

and Palmer 1999). A common goal of agent-based finance studies is to reproduce

stylized facts of financial market behavior (Palit, Phelps, and Ng 2012), and to sup-

port causal reasoning about market environments and mechanisms. Researchers have

also use ABM to investigate the effects of particular trading practices, such as market

making (Wah, Wright, and Wellman 2017) and latency arbitrage (Wah and Wellman

2016). ABM advocates argue that simulation is particularly well-suited to study

financial markets (Bookstaber 2012), as analytic models in this domain typically re-

quire extreme stylization for tractability, and pure data-driven approaches cannot

answer questions about changing market and agent designs.

13

2.2.2 Autonomous Bidding Strategies

There is a substantial literature on autonomous bidding strategies in CDA markets

(Wellman 2011). The basic zero intelligence (ZI) strategy (Gode and Sunder 1993)

submits offers at random offsets from valuation. Despite its simplicity, ZI has been

shown surprisingly effective for modeling some cases (Farmer, Patelli, and Zovko

2005). In this study, we adopt an extended and parameterized version of ZI to

represent trading strategies that ignore order book information.

Researchers have also extended ZI with adaptive features that exploit observations

to tune themselves to market conditions.2 For example, the zero intelligence plus

(ZIP) strategy outperforms ZI by adjusting an agent-specific profit margin based

on successful and failed trades (Cliff 1997, 2009). Vytelingum, Cliff, and Jennings

(2008) introduce another level of strategic adaptation, allowing the agent to control

its behavior with respect to short and long time scales.

Gjerstad proposed a more direct approach to learning from market observations,

termed GD in its original version (Gjerstad and Dickhaut 1998) and named heuristic

belief learning (HBL) in a subsequent generalized form (Gjerstad 2007). The HBL

model estimates a heuristic belief function based on market observations over a specific

memory length. Variants of HBL (or GD) have featured prominently in the trading

agent literature. For example, Tesauro and Das (2001) adapt the strategy to markets

that support persistent orders. Tesauro and Bredin (2002) show how to extend beyond

myopic decision making by using dynamic programming to optimize the price and

timing of bids.

We adopt HBL as our representative class of agent strategies that exploit order

book information. HBL can be applied with relatively few tunable strategic param-

eters, compared to other adaptive strategies in the literature. We extend HBL to a

more complex market environment that supports persistent orders, combined private

and fundamental values, noisy observations, stochastic arrivals, and the ability to

trade multiple units with buy or sell flexibility. The extended HBL strategy consid-

ers the full cycle of an order, including the times an order is submitted, accepted,

canceled, or rejected.

2To some extent, the adaptive functions of these strategies are implicitly achieved by the game-
theoretic equilibration process which we employ to determine the parametric configurations of the
(non-adaptive) trading strategies (Wright and Wellman 2018).

14

2.2.3 Spoofing in Financial Markets

The literature on spoofing and its impact on financial markets is fairly limited.

Some empirical research based on historical financial market data has been conducted

to understand spoofing. Lee, Eom, and Park (2013) empirically examined spoofing

by analyzing a custom data set, which provides the complete intraday order and

trade data associated with identified individual accounts in the Korea Exchange.

They found investors strategically spoof the stock market by placing orders with

little chance to transact to add imbalance to the order book. They also discov-

ered that spoofing usually targets stocks with high return volatility but low market

capitalization and managerial transparency. Wang investigated spoofing on the in-

dex futures market in Taiwan, identifying strategy characteristics, profitability, and

real-time impact (Wang 2019). Mart́ınez-Miranda, McBurney, and Howard (2016)

implemented spoofing behavior within a reinforcement learning framework to model

conditions where such behavior is effective. Tao, Day, Ling, and Drapeau (2020)

presented a micro-structural study of spoofing in a static setting, providing condi-

tions under which a market is more likely to admit spoofing behavior as a function

of the characteristics of the market. Beyond traditional financial markets, Chen et

al. (2007) studied the equilibrium behavior of informed traders interacting with au-

tomated market makers in prediction markets, and examined circumstances when

traders can benefit by either hiding or lying about information.

To our knowledge, we provide the first computational model of spoofing a dynamic

financial market, and demonstrate the effectiveness of spoofing against approximate-

equilibrium traders in this proposed model. Our model provides a way to quantify

the effect of spoofing on trading behavior and efficiency, and thus a first step in the

design of methods to deter or mitigate market manipulation.

2.3 Market Model

We present the general structure of the agent-based financial market environment

in which we model spoofing. Our model comprises agents trading a single security

through a continuous double auction (CDA), the mechanism adopted by most finan-

cial markets today. We first describe the market mechanism in Section 2.3.1. Our

model is designed to capture key features of market microstructure (e.g., fundamen-

tal shocks and observation noise), supporting a configurable simulator to understand

the effect of spoofing under different market conditions. The market is populated

with multiple background traders who represent investors in the market, and in se-

15

lected treatments, a spoofer who seeks trading profit through manipulative action.

We specify the valuation model of background traders in Section 2.3.2 and the two

families of background-trader strategies in Section 2.3.3. In Section 2.3.4, we discuss

the behavior of the spoofing agent.

2.3.1 Market Mechanism

The market employs a CDA mechanism with a single security traded. Prices are

fine-grained and take discrete values at integer multiples of the tick size. Time is

also fine-grained and discrete, with trading over a finite horizon T . Agents in the

model submit limit orders, which specify the maximum (minimum) price at which

they would be willing to buy (sell) together with the number of units to trade. Orders

are immediately matched as they arrive: if at any time, one agent’s maximum price

to buy a unit is greater than or equal to another agent’s minimum price to sell a unit,

a transaction will occur and the agents trade at the price of the incumbent order.

The CDA market maintains a limit order book of outstanding orders, and provides

information about the book to traders with zero delay. The buy side of the order

book starts with BIDt, the highest-price buy order at time t, and extends to lower

prices. Similarly, the sell side starts with ASKt, the lowest-price sell order at time

t, and extends to higher prices. On order cancellation or transaction, the market

removes the corresponding orders and updates the order book. Agents may use order

book information at their own discretion. In Section 2.6, we investigate how changes

made in such order book disclosure may help to mitigate spoofing.

2.3.2 Valuation Model

Each background trader has an individual valuation for the security, which is com-

prised of a private value and a common value component. The common component is

represented as a fundamental value, rt, which changes throughout the trading period

according to a mean-reverting stochastic process:

rt = max{0, κr̄ + (1− κ)rt−1 + ut}; r0 = r̄. (2.1)

Here rt denotes the fundamental value of the security at time t ∈ [0, T], and the pa-

rameter κ ∈ [0, 1] specifies the degree to which the value reverts back to a fundamental

mean r̄. A process with κ = 0 corresponds to a martingale Gaussian fundamental,

whereas κ = 1 specifies a process of i.i.d. Gaussian draws around the fundamental

mean. A mean-reverting time series of this sort has been empirically observed in

16

financial markets such as foreign exchange and commodity markets (Chakraborty

and Kearns 2011). The perturbation ut captures a systematic random shock upon

the fundamental at time t, and is normally distributed as ut ∼ N(0, σ2
s), where σ2

s

represents an environment-specific shock variance. The shock variance governs fluc-

tuations in the fundamental time series, and consequently affects the predictability

of future price outcomes.

Our time-varying fundamental induces adverse selection, a situation where out-

standing orders reflect outdated information and thus can be at a disadvantage at

the current time. If the fundamental shifts significantly, subsequent agents are more

likely to transact with orders on the side opposite to the direction of fundamental

change. That is, a positive price shock will tend to trigger transactions with stale

sell orders, and a negative shock with stale buys. An agent’s exposure to adverse

selection in a market is jointly controlled by the fundamental shock variance σ2
s , the

degree of mean reversion κ, and the arrival rate of that agent.

The entries of a background trader follow a Poisson process with an arrival rate

λa. Upon each entry, the trader observes an agent-and-time-specific noisy fundamen-

tal ot = rt + nt, where the observation noise nt is drawn from nt ∼ N(0, σ2
n). Just as

in real financial markets, investors will never know the true value of the underlying

security, such noisy observations represent each trader’s assessment of the security’s

fundamental value at that time. Given its incomplete information about the funda-

mental, the agent can potentially benefit by considering market information, which is

influenced by and therefore reflects the aggregate observations of other agents. When

it arrives, the trader withdraws its previous order (if untransacted) and submits a

new single-unit limit order, either to buy or sell as instructed with equal probability.

The private value of a background trader i represents its individual preferences

on holding a long or short position of the security:

Θi = (θ−qmax+1
i , . . . , θ0

i , θ
1
i , . . . , θ

qmax

i).

The vector has a length of 2qmax, where qmax is the maximum number of units a trader

can be long or short at any time. Element θqi in the vector specifies the incremental

private benefit foregone by selling one unit of the security given a current net position

of q. Alternatively, θq+1
i can be understood as the marginal private gain from buying

an additional unit given current net position q. To capture the diminishing marginal

utility, that is θq
′ ≤ θq for all q′ ≥ q, we generate Θi from a set of 2qmax values drawn

independently from N(0, σ2
PV), sort elements in descending order, and assign θqi to its

17

respective value in the sorted list.

Agent i’s incremental surplus for a trade can be calculated based on its position q

before the trade, the value of the fundamental at the end of the trading horizon rT ,

and the transaction price p:

incremental surplus =

rT − p+ θq+1
i if buying 1 unit,

p− rT − θqi if selling 1 unit.

An agent’s total surplus is the sum of the agent’s incremental surplus over all trans-

actions. Alternatively, we can also calculate an agent’s total surplus by adding its net

cash from trading to the final valuation of holdings. Specifically, the market’s final

valuation of trader i with ending holdings H is

vi =

rT ×H +
∑k=H

k=1 θ
k
i for long position H > 0,

rT ×H −
∑k=0

k=H+1 θ
k
i for short position H < 0.

We define background-trader surplus as the sum of all background agents’ surpluses

at the end of the trading period T .

2.3.3 Background Trading Agents

Recall that background traders represent investors with actual preferences for

holding long or short positions in the underlying security. The limit-order price

submitted by a background trader is jointly decided by its valuation and trading

strategy, which we describe in detail below.

2.3.3.1 Estimating the Final Fundamental

As holdings of the security are evaluated at the end of a trading period (i.e.,

rT ×H), a background trader estimates the final fundamental value based on a series

of its noisy observations. We assume the market environment parameters (mean

reversion, shock variance, etc.) are common knowledge for background agents.

Given a new noisy observation ot, an agent estimates the current fundamental by

updating its posterior mean r̃t and variance σ̃2
t in a Bayesian manner. Let t′ denote

the agent’s preceding arrival time. We first update the previous posteriors, r̃t′ and

18

σ̃2
t′ , by mean reversion for the interval since preceding arrival, denoted δ = t− t′:

r̃t′ ← (1− (1− κ)δ)r̄ + (1− κ)δ r̃t′ and σ̃2
t′ ← (1− κ)2δσ̃2

t′ +
1− (1− κ)2δ

1− (1− κ)2
σ2
s .

The estimates for the current arrive at time t are then given by

r̃t =
σ2
n

σ2
n + σ̃2

t′
r̃t′ +

σ̃2
t′

σ2
n + σ̃2

t′
ot and σ̃2

t =
σ2
nσ̃

2
t′

σ2
n + σ̃2

t′
.

Based on the posterior estimate of r̃t, the trader computes r̂t, its estimate at time t

of the terminal fundamental rT , by adjusting for mean reversion:

r̂t =
(
1− (1− κ)T−t

)
r̄ + (1− κ)T−tr̃t. (2.2)

2.3.3.2 Zero Intelligence (ZI) as a Background Trading Strategy

We consider parameterized trading strategies in the zero intelligence (ZI) family

(Gode and Sunder 1993). Background traders who choose to adopt ZI strategies com-

pute limit-order prices solely based on fundamental observations and private values.

Specifically, the ZI agent shades its bid from its valuation by a random offset, which

is uniformly drawn from [Rmin, Rmax]. Specifically, a ZI trader i arriving at time t

with position q generates a limit price

pi(t) ∼

U [r̂t + θq+1
i −Rmax, r̂t + θq+1

i −Rmin] if buying,

U [r̂t − θqi +Rmin, r̂t − θqi +Rmax] if selling.
(2.3)

Our version of ZI further considers the market’s current best quotes, and can

choose to immediately trade to get a certain fraction of its requested surplus. This

option is governed by a strategic threshold parameter η ∈ [0, 1]: if the agent could

achieve a fraction η of its requested surplus at the current price quote, it would simply

take that quote rather than submitting a new limit order. Setting η to 1 is equivalent

to the strategy without a threshold.

2.3.3.3 Heuristic Belief Learning (HBL) as a Background Trading

Strategy

The second background trading strategy family we consider is heuristic belief

learning (HBL). Background traders who choose to adopt HBL go beyond their own

observations and private values by also considering order book information. We make

19

a set of changes to adapt the strategy to our dynamic market environment, supporting

multiple-unit trading with a flexible buy or sell role.

The strategy is centered on the belief function that a background trader forms on

the basis of its observed market data. The agent uses the belief function to estimate

the probability that orders at various prices would be accepted in the market, and

then chooses a limit price that maximizes its expected surplus at current valuation

estimates.

Specifically, an HBL agent constructs its belief function based on a dataset D
that records accepted and rejected buy and sell orders during the last L trades. The

strategic parameter L represents the agent’s memory length, which controls the size of

D. Upon an arrival at time t, the HBL agent builds a belief function ft(P), designed

to represent the probability that an order at price P will result in a transaction.

Specifically, the belief function is defined for any encountered price P as the following:

ft(P | D) =


TBLt(P | D) + ALt(P | D)

TBLt(P | D) + ALt(P | D) + RBGt(P | D)
if buying,

TAGt(P | D) + BGt(P | D)

TAGt(P | D) + BGt(P | D) + RALt(P | D)
if selling.

(2.4)

Here, T and R specify transacted and rejected orders respectively; A and B represent

asks and bids ; L and G describe orders with prices less than or equal to and greater

than or equal to price P respectively. For example, TBLt(P | D) is the number

of transacted bids found in the memory with price less than or equal to P up to

time t. An HBL agent updates its dataset D whenever the market receives new order

submissions, transactions, or cancellations, and computes the statistics in Eq. (2.4)

upon each arrival.

Since our market model supports persistent orders and cancellations, the classifi-

cation of an order as rejected is non-obvious and remains to be defined. To address

this, we associate orders with a grace period τgp and an alive period τal. We define

the grace period as the average time interval per arrival, that is τgp = 1/λa, and the

alive period τal of an order as the time interval from submission to transaction or

withdrawal if it is inactive, or to the current time if active. An order is considered as

rejected only if its alive period τal is longer than τgp, otherwise it is partially rejected

by a fraction of τal/τgp. As the belief function Eq. (2.4) is defined only at encountered

prices, we further extend it over the full price domain by cubic spline interpolation.

To speed the computation, we pick knot points and interpolate only between those

20

points.

After formulating the belief function, an agent i with the arrival time t and current

holdings q searches for the optimal price P ∗i (t) that maximizes its expected surplus:

P∗i (t) =

arg maxP (r̂t + θq+1
i − P)ft(P | D) if buying,

arg maxP (P − θqi − r̂t)ft(P | D) if selling.
(2.5)

Under the special cases when there are fewer than L transactions at the beginning

of a trading period or when one side of the order book is empty, HBL agents behave the

same as ZI agents until enough information is gathered to form the belief function.

As those cases are rare, the specific ZI strategy that HBL agents adopt does not

materially affect the overall performance. In Section 2.7, we explore variations of the

HBL strategy to improve its learning robustness in the face of market manipulation.

2.3.4 The Spoofing Agent

The spoofing agent seeks profits only through manipulating prices. Unlike back-

ground traders, the spoofer has no private value for the security. We design a simple

spoofing strategy which maintains a large volume of buy orders at one tick behind

the best bid. Specifically, upon arrival at Tsp ∈ [0, T], the spoofing agent submits a

buy order at price BIDTsp − 1 with volume Qsp � 1. Whenever there is an update

on the best bid, the spoofer cancels its original spoof order and submits a new one at

price BIDt−1 with the same volume. Since in our model, background traders submit

only single-unit orders, they cannot transact with the spoof order, which is always

shielded by the order at a higher price BIDTsp . If that higher-price order gets exe-

cuted, the spoofer will immediately cancel and replace its spoof orders before another

background trader arrives. Here, we assume in effect that the spoofing agent can

react infinitely fast, in which case its spoof orders are guaranteed never to transact.

By continuously feigning buy interest in the market, this spoofing strategy specif-

ically aims to raise market beliefs. To profit from such manipulation practice, a

spoofing agent may first buy some shares of the security, manipulate the market to

push prices up, and later sell those previously bought shares at higher prices. Other

spoofing strategies such as adding sell pressure or alternating between buy and sell

pressure can be extended from the basic version.

21

2.4 Empirical Game-Theoretic Analysis

To reproduce spoofing and understand its effect, we employ a computational ap-

proach that combines agent-based modeling, simulation, and equilibrium computa-

tion. The point of identifying equilibria of the agent-based model is to focus on the

most relevant strategic contexts, where agents are making the best choices among

their available strategies, given others’ choices. To derive Nash equilibria, we employ

empirical game-theoretic analysis (EGTA), a methodology that finds approximate

equilibria in games defined by heuristic strategy space and simulated payoff data

(Wellman 2016). We conduct systematic EGTA studies over a range of parametrically

defined market environments, based on the market model described in Section 2.3.

We model the market as a game with players in two roles : N background traders,

treated symmetrically, and a single spoofer. In most of our games, the spoofing

agent, when present, implements a fixed policy so is not considered a strategic player.

Symmetry of the background traders means that each has the same set of available

strategies (from the ZI and/or HBL families) to choose from, and their payoffs depend

on their own strategy and the number of players choosing each of the other strategies

(i.e., it does not matter which other-agent plays which other-strategy). For each game,

we evaluate a wide variety of strategy profiles (i.e., agent-strategy assignments), and

for each profile, we conduct thousands of simulation runs to account for stochastic

effects such as the market fundamental series, agent arrival patterns, and private

valuations. Given background trader symmetry, the payoff of a specific strategy in

a profile can be taken as the average payoff over all agents playing that strategy

in the profile. From the payoff data accumulated from these simulated samples of

explored strategy profiles, we induce an empirical game model, and from that derive

an approximate Nash equilibrium.

EGTA employs an iterative process: find candidate equilibria in subgames (i.e.,

games over strategy subsets), confirm or refute candidate solutions by examining de-

viations, and incrementally extend subgames, until termination criteria are satisfied.

We use the EGTAOnline infrastructure (Cassell and Wellman 2013) to conduct and

manage experiments. Below, we describe two key components of the EGTA process

we follow: profile search (Section 2.4.1) and game reduction (Section 2.4.2).

2.4.1 Profile Search

We apply EGTA iteratively to guide the profile search over the strategy space.

Exploration starts with singleton subgames, and incrementally considers each strat-

22

egy outside the subgame strategy set. Specifically, the singleton subgames are profiles

where the same strategy is adopted by all background agents. Starting from this base,

we extend evaluation to neighboring profiles with single-agent deviations. Following

such a procedure, we systematically explore profiles and incorporate their payoff es-

timates into the partial payoff matrix corresponding to the empirical game model.

A subgames are completed (all profiles explored for strategy subsets), we com-

pute their equilibria, and consider these as candidate solutions of the full game. We

attempt to refute these candidates by evaluating deviations outside the subgame

strategy set, constructing a new subgame when a beneficial deviation is found. If

we examine all deviations without refuting, the candidate is confirmed. We continue

to refine the empirical subgame with additional strategies and corresponding simula-

tions until at least one equilibrium is confirmed and all non-confirmed candidates are

refuted (up to a threshold support size).

The procedure aims to confirm or refute promising equilibrium candidates found

throughout our exploration of the strategy space. Since it is often not computationally

feasible to search the entire profile space, additional distinct equilibria (e.g., equilibria

of large support sizes) are possible. In addition, equilibria identified in empirical

games must generally be viewed as provisional, as they are subject to refutation by

strategies outside the restricted set considered in the analysis.

2.4.2 Game Reduction

As the game size (i.e., number of possible strategy profiles) grows exponentially in

the number of players and strategies, it is computationally prohibitive to directly ana-

lyze games with more than a moderate number of players. We therefore apply aggrega-

tion methods to approximate a many-player game by a game with fewer players. The

specific technique we employ, called deviation-preserving reduction (DPR) (Wieden-

beck and Wellman 2012), defines reduced-game payoffs in terms of payoffs in the full

game as follows. Consider an N -player symmetric game, which we want to reduce

to a k-player game. The payoff for playing strategy s1 in the reduced game, with

other agents playing strategies (s2, . . . , sk), is given by the payoff of playing s1 in the

full N -player game when the other N − 1 agents are evenly divided among the k − 1

strategies s2, . . . , sk. To facilitate DPR, we choose values for N and k to ensure that

the required aggregations come out as integers. For example, in one of the market

environment, we reduce games with 28 background traders to games with four back-

ground traders. With one background player deviating to a new strategy, we can

reduce the remaining 27 players to three. For games that vary smoothly with the

23

number of other players choosing any particular strategy, we can expect DPR to pro-

duce reasonable approximations of the original many-player games with exponential

reduction in simulation.

2.5 Spoofing the Limit Order Book

This section reproduces spoofing in the agent-based market model, and studies its

effect on background trading behavior and market outcomes. We start in Section 2.5.1

by exploring a range of market environments that can affect the effectiveness of both

learning and spoofing. Section 2.5.2 addresses agents’ choices among ZI and HBL

strategies in markets without spoofing. This is an important step, as spoofing can

be effective only if some fraction of background traders choose to learn from the

order book information. Section 2.5.3 investigates games with spoofing. We first

illustrate that a market populated with HBL traders is susceptible to spoofing: a

simple spoofing strategy can cause a rise in market prices and a redistribution of

surplus between ZI and HBL traders. We finally re-equilibrate the game with spoofing

to investigate the impact of spoofing on HBL adoption and market surplus. Details

of the HBL adoption rates and market surpluses of all found equilibria in games with

and without spoofing are provided in Appendix A.1.

2.5.1 Market Environments

Based on the defined market model, we conduct preliminary explorations over

a range of market settings, and include the most salient and meaningful ones for

our study. We consider nine market environments that differ in fundamental shock,

σ2
s ∈ {105, 5 × 105, 106}, and in observation noise, σ2

n ∈ {103, 106, 109}. Recall that

shock variance controls fluctuations in the fundamental time series, and observation

variance governs the quality of information agents get about the true fundamen-

tal. The nine environments cover representative market conditions that can affect an

agent’s ability and need to learn from market information. For example, when the

market shock is high, prices fluctuate more and market history may become less pre-

dictive; when observation noise is high, agents can glean only limited information from

their own observations and may gain more from the market’s aggregated order book

information. We label the low, medium, and high shock variances as {LS ,MS ,HS}
and noisy observation variances as {LN ,MN ,HN } respectively. For instance, the

label LSLN refers to a market with low shock, σ2
s = 105, and low observation noise,

σ2
n = 103.

24

Strategy ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7 HBL1 HBL2 HBL3 HBL4

L – – – – – – – 2 3 5 8
Rmin 0 0 0 0 0 250 250 – – – –
Rmax 250 500 1000 1000 2000 500 500 – – – –
η 1 1 0.8 1 0.8 0.8 1 – – – –

Table 2.1: Background trading strategies included in EGTA.

The global fundamental time series is generated according to Eq. (2.1) with fun-

damental mean r̄ = 105, mean reversion κ = 0.05, and a specified shock variance σ2
s .

The minimum tick size is fixed at one. Each trading period lasts T = 10, 000 time

steps. For each environment, we consider markets populated with N ∈ {28, 65} back-

ground traders and in selected treatments, a spoofer. Background traders arrive at

the market according to a Poisson distribution with a rate λa = 0.005 and upon each

arrival, the trader observes a noisy fundamental ot = rt + nt, where nt ∼ N(0, σ2
n).

The maximum number of units background traders can hold at any time is qmax = 10.

Private values are drawn from a Gaussian distribution with zero mean and a variance

of σ2
PV = 5 × 106. The spoofing agent starts to manipulate at time Tsp = 1000 by

submitting a large buy order at price BIDTsp − 1 with volume Qsp = 200, and later

maintains spoofing orders at price BIDt − 1 throughout the trading period.

To provide a benchmark for market surplus, we calculate the social optimum—the

expected total possible gains from trade, which depends solely on the trader popu-

lation size and valuation distribution. From 20,000 samples of the joint valuations,

we estimate mean social optima of 18,389 and 43,526 for markets with 28 and 65

background traders respectively. We further calculate the average order book depth

(on either buy or sell side) in markets without spoofing. Throughout the trading

horizon, the N = 28 market has a relatively thin order book with an average depth

of 12 per side, whereas the N = 65 market has a thicker one with an average depth

of 30.

The background trading strategy set (see Table 2.1) includes seven versions of ZI

and four versions of HBL. Agents are allowed to choose from this restricted set of

strategies. We have also explored ZI strategies with larger shading ranges and HBL

strategies with longer memory lengths, but they fail to appear in equilibrium in games

where they were explored.

25

2.5.2 Games without Spoofing

Since spoofing targets the order book and can be effective only to the extent

traders exploit order book information, we investigate whether background agents

adopt the HBL strategy in markets without spoofing. Applying EGTA to the eleven

background strategies in Table 2.1, we found at least one equilibrium for each market

environment.

Figure 2.5 (blue circles) depicts the proportion of background traders who choose

trading strategies in the HBL family. In most non-spoofing environments, HBL is

adopted with positive probability, suggesting that investors generally have incentives

to make bidding decisions based on order book information. We find that HBL is

robust and widely preferred in markets with more traders, low fundamental shocks,

and high observation noise. Intuitively, a larger population size implies a thick order

book with more learnable aggregated data; low shocks in fundamental time series

increase the predictability of future price outcomes; and high observation noise limits

what an agent can glean about the true fundamental from its own information. This

is further confirmed in the two exceptions where all agents choose ZI: HSLN and

HSMN with N = 28, the environments with fewer traders, high fundamental shocks,

and at most medium observation noise.

We further quantify how learning from market information may benefit overall

market performance. We conduct EGTA in games where background traders are

restricted to strategies in the ZI family (ZI1–ZI7 in Table 2.1). This is tantamount to

disallowing learning from order book information. We compare equilibrium outcomes

for each environment, with and without HBL available to background traders, on

two measures: surplus (Figure 2.2) and price discovery (Figure 2.3). Recall that

we define background-trader surplus as the sum of all background agents’ surpluses

at time T , the end of trading. Price discovery is defined as the root-mean-squared

deviation (RMSD) of the transaction price from the estimate of the true fundamental

in Eq. (2.2) over the trading period. It reflects how well transactions reveal the true

value of the security. Lower RMSD means better price discovery. We calculate the

two measures by averaging the outcomes of 20,000 simulations of games with strategy

profiles sampled according to each equilibrium mixture.

Overall, background traders achieve higher surplus (Figure 2.2) and better price

discovery (Figure 2.3) when the market provides order book information and enables

the HBL strategy option. When HBL exists in the equilibrium, we find transactions

reveal fundamental estimates well, especially in markets with lower shock and obser-

vation variances (i.e., LSLN, LSMN, MSLN, MSMN). We also notice small exceptions

26

in scenarios with high observation variance and more background traders (environ-

ments LSHN and HSHN with 65 players) where ZI-only equilibria exhibit higher

surplus than equilibria combining HBL and ZI.

16500
16750
17000
17250
17500
17750
18000
18250
18500

Su
rp

lu
s

HBL and ZI ZI

LN MN HN LN MN HN LN MN HN
LS MS HS

(a) N = 28

39500
40000
40500
41000
41500
42000
42500
43000
43500

Su
rp

lu
s

HBL and ZI ZI

LN MN HN LN MN HN LN MN HN
LS MS HS

(b) N = 65

Figure 2.2: Comparisons of background-trader surplus for equilibria in each environ-
ment, with and without the HBL strategies available to background traders. Blue
circles represent equilibrium outcomes when agents can choose both HBL and ZI
strategies; orange triangles represent equilibrium outcomes when agents are restricted
to ZI strategies. Overlapped markers are outcomes from the same equilibrium mix-
ture, despite the availability of HBL. The market generally achieves higher surplus
when HBL is available.

120
130
140
150
160
170
180
190
200

Pr
ice

 D
isc

ov
er

y
(R

M
SD

)

HBL and ZI ZI

LN MN HN LN MN HN LN MN HN
LS MS HS

(a) N = 28

90
100
110
120
130
140
150
160
170

Pr
ice

 D
isc

ov
er

y
(R

M
SD

)

HBL and ZI ZI

LN MN HN LN MN HN LN MN HN
LS MS HS

(b) N = 65

Figure 2.3: Comparisons of price discovery for equilibrium in each environment, with
and without the HBL strategies available to background traders. Blue circles repre-
sent equilibrium outcomes when agents can choose both HBL and ZI strategies; orange
triangles represent equilibrium outcomes when agents are restricted to ZI strategies.
Overlapped markers are outcomes where the equilibrium mixture is ZI only, despite
the availability of HBL. The market generally achieves better price discovery when
HBL is available.

27

2.5.3 Games with Spoofing

2.5.3.1 Comparing across Fixed Strategy Profiles

We examine the effectiveness of our designed spoofing strategy (Section 2.3.4) by

playing a spoofer against each HBL-and-ZI equilibrium found in Section 2.5.2. As

ZI agents are oblivious to spoofing, we ignore the ZI-only equilibria in this analysis.

We perform controlled comparisons on these games with and without spoofing. In

the paired instances, background agents play identical strategies, and are guaranteed

to arrive at the same time, receive identical private values, and observe the same

fundamental values. Therefore, any change in behavior is an effect of spoof orders

on HBL traders. For every setting, we simulate 20,000 paired instances, evaluate

transaction price differences (Figure 2.4), and compare surplus attained by HBL and

ZI traders. Transaction price difference at a specific time is defined as the most recent

transaction price in the run with spoofing minus that of the paired instance without

spoofing. Similarly, surplus difference of HBL or ZI is the aggregated surplus obtained

in an environment with spoofing minus that of the corresponding environment without

spoofing.

Figure 2.4 shows positive changes in transaction prices across all environments,

subsequent to the arrival of a spoofing agent at Tsp = 1000. This suggests that

HBL traders are tricked by the spoof buy orders: they believe the underlying security

should be worth more, and therefore submit or accept limit orders at higher prices.

Though ZI agents do not change their bidding behavior directly, they may transact

at higher prices due to the increased bids of HBL traders.

Several other interesting findings are revealed by the transaction-price difference

series. First, the average price rise caused by spoofing the market with 28 back-

ground traders is higher than for N = 65. This indicates that a market with fewer

background traders can be more susceptible to spoofing, due to the limited pricing

information a thin market could aggregate. Second, for markets populated with more

HBLs than ZIs in the equilibrium mixture, the transaction price differences tend to

increase throughout the trading period. This amplification can be explained by HBLs

consistently submitting orders at higher prices and confirming each other’s spoofed

belief. However, for markets with more ZIs, the spoofing effect diminishes as ZIs

who do not change their limit-order pricing can partly correct the HBLs’ illusions.

Third, we notice that differences in transaction prices first increase, and then tend

to stabilize or decrease over time. As time approaches the end of the trading period,

spoofing wears off in the face of accumulated observations and mean reversion.

28

0 2000 4000 6000 8000 10000
Time

0

10

20

30

40

Tr
an

sa
ct

io
n

Pr
ic

e
D

iff
er

en
ce

s

A11
A12
A21
A31
B11
B21
B22
B31
C31

(a) N = 28 (b) N = 65

Figure 2.4: Transaction price differences throughout the trading horizon with and
without a spoofer against each HBL-and-ZI equilibrium found in non-spoofing games
(Section 2.5.2). Multiple curves for the same environment represent different equilib-
ria. The designed spoofing tactic clearly raises market prices when HBL are present.
The effect attenuates over time, generally more quickly in the thicker market envi-
ronments.

We further compare background-trader payoffs attained in environments with and

without spoofing. We find a redistribution of surplus between HBL and ZI agents:

HBL aggregated surplus decreases, while that for ZI increases compared to the non-

spoofing baselines. Specifically, across 28-trader market environments, HBL traders

suffer an average surplus decrease of 184 across all equilibrium profiles, whereas the

ZI traders have an average surplus gain of 19. For the 65-trader markets, the average

surplus decrease for HBL traders is 238, and the average increase for ZI is 40. This

suggests that the ZI agents benefit from the HBL agents’ spoofed beliefs. Since the

decreases in HBL surplus are consistently larger than the increases for ZI, the overall

market surplus decreases. We leave further discussion of spoofing’s impact on market

surplus to Section 2.5.3.2, where background traders can choose other strategies to

adjust to the presence of spoofing.

To examine the potential to profit from a successful price manipulation, we extend

the spoofing agent with an exploitation strategy : buying, (optionally) spoofing to raise

the price, and then selling. The exploiting spoofer starts by buying when there is a

limit sell order with price less than the fundamental mean in the market. It then

optionally runs the spoofing trick, or alternatively waits, for 1000 time steps. Finally,

the agent sells the previously bought unit (if any) when it finds a limit buy order with

price more than fundamental mean. Note that even without spoofing, this single-unit

exploitation strategy is profitable in expectation due to the mean reversion captured

by the fundamental process, and the reliable arrivals of background traders with

private preferences.

29

In controlled experiments, we find that exploitation profits are consistently in-

creased when the spoof action is also deployed. Across 28-trader market environ-

ments, the exploiter makes an average profit of 206.1 and 201.8 with and without

spoofing, and the increases in profit range from 1.2 to 11.5. For the 65-trader mar-

ket, the average profits of this exploitation strategy with and without spoofing are

50.5 and 46.3 respectively, with the increases in profit varying from 1.7 to 9.4 across

environments.3

2.5.3.2 Re-Equilibrating Games with Spoofing

To understand how spoofing changes background-trading behavior, we conduct

EGTA again to identify Nash equilibria, allowing background traders to choose any

strategy in Table 2.1, in games with spoofing. As indicated in Figure 2.5 (orange

triangles), after re-equilibrating games with spoofing, HBL is generally adopted by

a smaller fraction of traders, but still persists in equilibrium in most market envi-

ronments. HBL’s existence after re-equilibration indicates a consistently spoofable

market: the designed spoofing tactic fails to eliminate HBL agents and in turn, the

persistence of HBL may incentivize a spoofer to continue effectively manipulating the

market.

We characterize the effect of spoofing on market surplus. Figure 2.6 compares the

total surplus achieved by background traders in equilibrium with and without spoof-

ing. Given the presence of HBL traders, spoofing generally decreases total surplus (as

in Figure 2.6, most filled orange triangles are below the filled blue circles). However,

spoofing has ambiguous effect in the thicker market with large observation variance

(environments LSHN and HSHN with 65 background agents). This may be because

noise and spoofing simultaneously hurt the prediction accuracy of the HBL agents and

therefore shift agents to other competitive ZI strategies with higher payoffs. Finally,

we find the welfare effects of HBL strategies persist regardless of spoofing’s presence:

markets populated with HBL agents in equilibrium achieve higher total surplus than

those markets without HBL (as in Figure 2.6, the hollow markers are below the filled

markers).

3Statistical tests show all increases in profit are significantly larger than zero. Regardless of
spoofing, the exploitation strategy profits more in the thinner market due to the greater variance in
transaction prices.

30

0.0

0.2

0.4

0.6

0.8

1.0

HB
L

Ad
op

tio
n

Ra
te

No spoofing Spoofing

LN MN HN LN MN HN LN MN HN
LS MS HS

(a) N = 28

0.0

0.2

0.4

0.6

0.8

1.0

HB
L

Ad
op

tio
n

Ra
te

No spoofing Spoofing

LN MN HN LN MN HN LN MN HN
LS MS HS

LN MN HN LN MN HN LN MN HN
LS MS HS

(b) N = 65

Figure 2.5: HBL adoption rates at equilibria in games with and without spoofing.
Each blue (orange) marker specifies the HBL proportion at one equilibrium found in
a specific game environment without (with) spoofing.

16500

17000

17500

18000

18500

Su
rp

lu
s

No spoofing with HBL Spoofing with HBL
No spoofing without HBL Spoofing without HBL

LN MN HN LN MN HN LN MN HN
LS MS HS

(a) N = 28

39500

40500

41500

42500

43500

Su
rp

lu
s

No spoofing with HBL Spoofing with HBL
Spoofing without HBL

LN MN HN LN MN HN LN MN HN
LS MS HS

(b) N = 65

Figure 2.6: Background-trader surplus achieved at equilibria in games with and with-
out spoofing. Each blue (orange) marker specifies the surplus at one equilibrium
found in a specific game environment without (with) spoofing. Surplus achieved at
equilibria combining HBL and ZI and equilibria with pure ZI are indicated by markers
with and without fills respectively.

2.5.4 Discussion

Our agent-based model of spoofing aims to capture the essential logic of manipu-

lation through influencing belief about market demand. In our model, the order book

reflects aggregate information about the market fundamental, and learning traders

can use this to advantage in their bidding strategies. The presence of such learning

traders benefits price discovery and social welfare, but also renders the market vulner-

able to manipulation. As we demonstrate, simple spoofing strategies can effectively

mislead learning traders, thereby distorting prices and reducing surplus compared

31

to the non-spoofing baseline. Moreover, the persistence of learning traders in equi-

librium with manipulation suggests that the elimination of spoofing requires active

measures.

We acknowledge several factors that can limit the accuracy of our equilibrium

analysis in individual game instances; these include sampling error, reduced-game

approximation, and restricted strategy coverage. Despite such limitations (inherent

in any complex modeling effort), we believe the model offers a constructive basis to

evaluate manipulation practices and any preventive or deterrent proposals to mitigate

manipulation under strategic settings. In the rest of the chapter, we build on this

model and conduct comprehensive analysis to investigate the following questions:

• Are there more robust ways for exchanges to disclose order book information

(Section 2.6)?

• Are there strategies by which individual traders can adopt to exploit market

information but in less vulnerable ways (Section 2.7)?

2.6 A Cloaking Mechanism to Mitigate Spoofing

Despite regulatory enforcement and detection efforts, an individual spoofing episode

is hard to catch in high-volume, high-velocity data streams. Legal definitions cannot

be easily translated to computer programs to direct detection, and the lack of datasets

with labeled manipulation cases makes training a reliable detector infeasible with su-

pervised machine learning techniques. Based on its definition, to determine that a

pattern of activity constitutes spoofing requires establishing the manipulation intent

behind submission and cancellation of placed orders. However, this is not easy, as

order cancellation is in itself common and legitimate: according to one study, 95% of

NASDAQ limit orders are canceled, with a median order lifetime less than one second

(Hautsch and Huang 2012). Given difficulties in robustly detecting manipulation, we

study systematic approaches to deter spoofing, by rendering manipulative practices

difficult or uneconomical.

Along these lines, Prewit (2012) and Biais and Woolley (2012) advocated the

imposition of cancellation fees to disincentivize manipulative strategies that rely on

frequent cancellations of orders. Others argue that cancellation fees could discourage

the beneficial activity of liquidity providers, and in the event of a market crash, such

a policy may lengthen the recovery process (Leal and Napoletano 2019).

32

We propose here a cloaking mechanism to deter spoofing via the selective disclo-

sure of order book information. The mechanism extends the traditional CDA market

with a cloaking parameter K, which specifies the number of price levels to hide sym-

metrically from inside of the limit order book. The idea is to make it more difficult

for the spoofer who relies on the instant order book information to post misleading

bids, while not unduly degrading the general usefulness of market information. We

focus on deterministic cloaking (i.e., a constant K throughout the trading period),

as a stochastic mechanism may raise issues regarding verification of faithful market

operations.

We extend our agent-based model of spoofing to support order book cloaking,

and conduct simulations to evaluate and find the optimal cloaking parameter under

strategic settings, where both the learning traders and the spoofer adapts to the new

mechanism. Section 2.6.1 formally defines the cloaking mechanism, and describes

how we modify the background trading and spoofing strategies accordingly. In Sec-

tion 2.6.2, we present an EGTA study conducted to understand agents’ strategic

responses to the proposed mechanism. Section 2.6.3 reports results from performing

empirical mechanism design (Vorobeychik, Kiekintveld, and Wellman 2006) to set

cloaking parameters that maximize efficiency. Finally, in Section 2.6.4, we explore

and evaluate sophisticated spoofing strategies that use probing to reveal cloaked in-

formation. Details of all found equilibria in markets with and without cloaking and

games with and without spoofing are provided in Appendix A.2.

2.6.1 A Cloaking Market Mechanism

The cloaking mechanism maintains a full limit order book just as the regular

CDA market, but discloses only a selective part of the book to traders. Let BIDk
t

denote the kth-highest buy price in the book at time t, and ASKk
t the kth-lowest

sell price. In a standard order book, at any given time t, the buy side of the book

starts with the best bid, BID1
t , and extends to lower values; the sell side starts with

the best ask, ASK1
t , and extends to higher ones. The cloaking mechanism works by

symmetrically hiding a deterministic number of price levels K from inside of the order

book. Thus, the disclosed order book in a K-level cloaking mechanism starts with

BIDK+1
t and ASKK+1

t , and extends to lower and higher values respectively. Upon

order submissions, cancellations, and transactions, the market updates the full order

book and then cloaks the K inside levels. Therefore, an order hidden in the past can

be revealed later due to the arrival of new orders at more competitive prices, or it

can be hidden throughout its lifetime due to a cancellation. The market discloses all

33

the transaction information at zero delay.

Example 2.1 (A K-level Cloaking Mechanism). When K = 0, the market acts as

a standard CDA, disclosing the full limit order book with zero delay. When K = 1,

the mechanism conceals orders at the best quotes, that is BID1
t and ASK1

t . When

K =∞, the market does not reveal any part of the book, and thus disallows learning

from order book information.

Cloaking operates to deter spoofing in two ways. First, it mitigates the effect of

spoof orders, pushing them further from the inside of the book. Second, it increases

the spoofer’s transaction risks, as it cannot as easily monitor the quantity of orders

ahead of the spoof. On the other hand, the information hiding also affects the non-

manipulative traders, for instance in our model it may degrade the HBL traders’

learning capability. To quantify this tradeoff, we start by exploring a range of cloaking

parameters, K ∈ {0, 1, 2, 4}, which control the amount of information being concealed

at any given time. We compare trading behavior and outcomes in markets with

cloaking to that of a standard CDA. Among the nine market environments defined

in Section 2.5.1, we consider three representatives that are increasingly challenging

for the learning traders: LSHN with {σ2
s = 105, σ2

n = 109}, MSMN with {σ2
s =

5 × 105, σ2
n = 106}, and HSLN with {σ2

s = 106, σ2
n = 103}. Together with the four

cloaking parameters, this gives us a total of 12 market settings, or 24 games with and

without spoofing.

The market is populated with 64 background traders and one exploitation agent.

Therefore, when adopting DPR to approximate this many-player game, we use sim-

ulation data from the (64, 1)-agent environments to estimate reduced (4, 1)-player

games, where four players are used to aggregate and represent the background traders.

In each game, we consider background trading strategies and spoofing practice similar

to those of Section 2.3, but slightly modified to adapt to order book cloaking. Below,

we describe changes made to each strategy.

2.6.1.1 Zero Intelligence

Recall that our ZI strategy uses a threshold parameter η ∈ [0, 1] to immediately

transact with an existing order to grasp a portion of desired surplus. That is, if the

agent could achieve a fraction η of its requested surplus at the market best quotes, it

would simply take that quote rather than posting a limit order for a future transaction.

Under a cloaking mechanism, however, ZI may take into account only the current

visible best quotes that are less competitive compared to the hidden quotes. To

34

adjust to cloaking, we explore a range of more aggressive (smaller) η values to ensure

that ZI traders may still transact with incumbent orders to lock a certain fraction

of surplus. Besides the seven ZI strategies in Table 2.1, we further include three ZI

strategies with η = 0.4 (Table 2.2), which are competitive enough to appear in at

least one equilibrium of our explored environments.

2.6.1.2 Heuristic Belief Learning

We modify HBL to consider only the revealed order book information under the

corresponding cloaking markets. Orders at competitive price levels will be missed

in the belief function (Eq. 2.4) if they are hidden throughout order lifetime; or they

may be considered with delay if later exposed at visible levels. This reduction in bid

information would naturally be expected to degrade HBL’s learning effectiveness and

thus its trading performance.

2.6.1.3 Spoofing Strategy

We extend the original spoofing strategy (Section 2.3.4) to cloaking markets. The

strategy includes three stages. At the beginning of a trading period [0, Tspoof], the

agent buys by accepting any sell order at price lower than the fundamental mean r̄.

In a cloaking market, this can be achieved by placing a one-unit limit buy order at

price r̄ and immediately withdrawing it if does not transact with an existing order.

During the second stage [Tspoof, Tsell], the agent submits spoof buy orders at a tick

behind the first visible bid BIDK+1
Tspoof

− 1 with volume Qsp � 1. Whenever there is

an update on the first visible bid, the spoofer replaces its original spoof with new

orders at price BIDK+1
t − 1. This spoofing strategy aims to boost price, in the hope

that the units purchased in stage one can be later sold at higher prices. In controlled

experiments, when the agent is not manipulating, it waits until the selling stage.

During the last stage [Tsell, T], the agent starts to sell the units it previously bought

by accepting any buy orders at a price higher than r̄. Inverse to the first stage,

this operates by placing one-unit limit sell orders at price r̄, followed by immediate

cancellation if not filled. The agent who also manipulates continues to spoof until all

the bought units are sold or the trading period ends. The pure exploitation strategy

can be considered as a baseline for the spoofing strategy, allowing us to quantify how

much more the agent may profit from spoofing the market.

We refer to the agent who employs the above strategy, whether places spoof orders

or not, as an exploitation agent or exploiter. An exploiter who also spoofs is referred

35

Strategy ZI8 ZI9 ZI10

Rmin 0 0 250
Rmax 1000 2000 500
η 0.4 0.4 0.4

Table 2.2: Additional background trading strategies included in EGTA for cloaking
mechanisms.

to as a spoofing agent or spoofer. Note that the spoofing strategy considered here

does not face any execution risk on its spoof orders, under the assumption it can

immediately respond to quote changes. A more sophisticated strategy could probe

the market to reveal the cloaked bids, and then spoof at a visible price higher than

BIDK+1
t − 1. We leave discussion of such probing strategies to Section 2.6.4.

2.6.2 Tradeoff Faced by Cloaking Mechanisms

We start by separately investigating the impact of cloaking on background traders

and on the spoofer. Our first set of games cover the range of cloaking environ-

ments without spoofing (i.e., markets populated with background traders and the

non-manipulative exploiter).

Figure 2.7 displays the HBL adoption rate (i.e., total probability over HBL strate-

gies) at equilibrium across cloaking mechanisms, K ∈ {0, 1, 2, 4}. We find that the

competitiveness of HBL generally persists when the mechanism hides one or two price

levels, but at higher cloaking levels the HBL fraction can drastically decrease. The

information loss caused by cloaking weakens HBL’s ability to make predictions. The

effect is strongest in environments with high fundamental shocks (e.g., HSLN), as pre-

vious hidden orders can become uninformative or even misleading by the time they

are revealed. Given the decreasing HBL prevalence and effectiveness, background-

trader surplus achieved at equilibrium also decreases, as we see in Figure 2.9(b) (blue

diamonds).

Next, we examine whether cloaking can effectively mitigate manipulation. We

perform controlled experiments by letting the exploitation agent also execute the

spoofing strategy against each found equilibrium, and compare the impact of spoofing

under the cloaking mechanism to the standard fully revealed order book (K = 0).

For every equilibrium, we simulate at least 10,000 paired instances, and evaluate their

differences on transaction price and agents’ payoffs.

From these controlled experiments, we find that cloaking can considerably dimin-

36

0

0.2

0.4

0.6

0.8

1

HB
L

Ad
op

tio
n

Ra
te

K0 K1 K2 K4
LSHN MSMN HSLN

K0 K1 K2 K4 K0 K1 K2 K4

Figure 2.7: HBL adoption rate in equilibrium across different cloaking markets with-
out spoofing.

0 2000 4000 6000 8000 10000
Time

-1

0

1

2

3

4

5

6

7

8

9

Tr
an

sa
cti

on
 P

ric
e

Di
ffe

re
nc

es

Spoofing Effects on MSMN with Hidden Price Levels

K0
K1
K2
K4

(a) Cloaking mitigates price rise.

-350

-250

-150

-50

50

Di
ffe

re
nc

e
in

 S
ur

pl
us

Exploiter payoff Background trader payoff

K0 K1 K2 K4
LSHN MSMN HSLN

K0 K1 K2 K4 K0 K1 K2 K4

(b) Cloaking reduces spoofing profits.

Figure 2.8: The impact of cloaking on spoofing effectiveness. Cloaking mitigates price
rise and the decrease in background surplus caused by spoofing.

ish price distortion caused by spoofing across environments. Recall that we measure

price distortion as the transaction price series in a market with spoofing minus that of

its paired market without spoofing. Figure 2.8(a) demonstrates the case in a specific

environment MSMN : without cloaking (K = 0), transaction prices significantly rise

subsequent to the execution of spoofing at Tsp = 1000, as HBL traders are tricked

by the spoof buy orders; in cloaked markets, this price rise is effectively mitigated.

Figure 2.8(b) further illustrates the surplus change in background traders and the

exploiter when it also spoofs. We find the exploiter can robustly profit from manip-

ulating the learning agents in the no-cloaking case. In contrast, partially hiding the

order book can significantly reduce spoofing profits, and prevent background traders

from losing much. These findings indicate the cloaking mechanism may deter or even

eliminate the exploiter’s incentive to spoof.

37

0

0.2

0.4

0.6

0.8

1

Ad
op

tio
n

ra
te

 a
t E

q

HBL% Exploitation with spoofing%

K0 K1 K2 K4
HSLNLSHN MSMN

K0 K1 K2 K4 K0 K1 K2 K4

(a) HBL and spoofing adoption rates in
equilibrium.

41000

41200

41400

41600

41800

42000

42200

42400

Ba
ck

gr
ou

n
su

rp
lu

s

Markets w/o spoofing Markets w/ spoofing

K0 K1 K2 K4
LSHN MSMN HSLN

K0 K1 K2 K4* K0 K1 K2* K4*

(b) Background-trader surplus in equilib-
rium.

Figure 2.9: Equilibrium outcomes in games with and without cloaking. Each marker
represents one equilibrium of the environment.

2.6.3 Finding the Optimal Cloaking

Given the tradeoff between preserving order book informativeness and mitigating

manipulation, the question becomes: under what circumstances do the deterrence

benefits of cloaking exceed its efficiency costs? To answer this, we re-equilibrate

games allowing the exploiter to strategically choose whether to spoof, with back-

ground traders able to execute any strategy in Tables 2.1 or 2.2. This allows back-

ground traders and the exploitation agent to strategically respond to each other under

a certain level of information cloaking.

Our findings are presented in Figure 2.9.4 We compare market outcomes with and

without cloaking on two metrics: the probability of spoofing and total background-

trader surplus in equilibrium. As shown in Figure 2.9(a), the cloaking mechanism

effectively decreases the probability of spoofing under most environment settings—

completely eliminating spoofing in some cases. Moreover, we find moderate cloaking

can preserve the prevalence of HBL at equilibrium, which otherwise would be de-

creased by spoofing as we saw in Section 2.5.

This weakened spoofing effect is further confirmed by Figure 2.9(b), which com-

pares the total background-trader surplus achieved in equilibrium under mechanisms

with and without cloaking. Without cloaking (i.e., K0 columns), background surplus

achieved in equilibrium where the exploiter strategically chooses to spoof (orange

triangles) is much lower than the surplus attained when the exploiter is prohibited

from spoofing (blue diamonds). We find the decrease in surplus due to spoofing can

4Due to the welfare benefits of HBL, equilibria with pure ZIs usually achieve much lower surplus
than those with HBLs. For presentation simplicity, we omit all-ZI equilibria from Figure 2.9(b).
Environments with such cases are marked with asterisks.

38

be considerably mitigated by order book cloaking. As shown in Figure 2.9(b), the

vertical distances between the blue diamonds and orange triangles get smaller with

K > 0. Moreover, we find the benefit of this improved robustness to spoofing can

outweigh its associated efficiency costs in markets with moderate fundamental shocks

(e.g., LSHN and MSMN). In those environments, background traders in mechanisms

that cloak one or two price levels achieve higher surplus than those without cloak-

ing. However, in a market with high shocks (e.g., HSLN), hiding or delaying even

a little market information degrades learning to such a degree as to render cloaking

counter-productive.

2.6.4 Probing the Cloaking Mechanism to Spoof

To this point, we have considered only spoofers who are unwilling to risk execution

of their spoof orders. A more sophisticated manipulator could probe the market,

submitting a series of orders at slightly higher prices, in an attempt to reveal the

cloaked bids and spoof at a visible price higher than BIDK+1
t − 1. In this section, we

study the feasibility of such probing to the spoofing agent.

We design and evaluate parameterized versions of the spoofing strategy combined

with probing. The strategy is governed by two parameters: the step size δ, which

controls probing aggressiveness, and the maximum attempts allowed per time step l,

which limits the probing effort.

The spoofer probes by submitting a unit buy order at BIDK+1
t +δ, a price inside the

visible quotes, in the hopes of exposing BIDK
t . If the probe succeeds, it immediately

cancels the probe order, and places a new spoof order at BIDK
t − 1, right behind the

lowest hidden bid level. If probing fails because the price is too conservative, the

spoofer re-probes by raising the price at a decreasing rate (as a function of δ and the

attempt number), until a higher price is revealed or the number of probing attempts

reaches l. If probing causes a transaction, the spoofer halves the price increment and

re-probes. Algorithm 1 describes the detailed probing procedure.

Table 2.3 reports, for cloaking-beneficial environments, the minimum l required for

step sizes δ ∈ {1, 2, 4, 8} to achieve higher payoffs than the equilibrium performance

we found for the exploiter in Section 2.6.3. Multiple rows for the same cloaking

parameter correspond to the multiple equilibria found in that market setting. Dashes

in the table indicate that an exploiter cannot beat the equilibrium performance with

the corresponding δ. We find in order to achieve higher payoffs, the spoofer has

to probe with multiple attempts per time step, and conservative probing strategy

with smaller δ usually requires more effort. In practice, such frequent cancellation

39

Algorithm 1 Spoofing with probing in a cloaking market with K > 0.

Input: The probing step size δ and the attempt limit l.
The spoofer’s time to place spoof orders Tspoof, and its current holding H.

1: while t ≥ Tspoof and H > 0 do
2: if no active spoof orders then
3: c← 1, ∆← δ . track probing attempts and the price increment

4: submit a single-unit probe buy order at price BIDK+1
t + ∆

5: while the visible BIDK+1
t remains unchanged and c < l do

6: c← c+ 1
7: if the probe buy order gets transacted then
8: ∆← ∆/2
9: submit a single-unit probe buy order at price BIDK+1

t + ∆
10: else
11: ∆← ∆ + max{0.9c−1δ, 1}
12: substitute the probe order with a new one at price BIDK+1

t + ∆

13: submit spoof orders at price BIDK+1
t − 1

14: cancel the probe order
15: else
16: if spoof orders become hidden then
17: substitute spoof orders with new ones at price BIDK+1

t − 1
18: else if spoof orders are no longer one tick behind BIDK+1

t then
19: withdraw spoof orders

and placement of orders may not be feasible, and can largely increase the risk of

associated probing and spoofing intent being identified.

Figure 2.10 further quantifies the change in exploitation payoff and transaction

risk (measured as the number of transactions caused by probing), as we vary the

probing step δ and the attempt limit l. As we see from Figure 2.10(a), relaxing the

maximum number of probing attempts steadily increases the transaction risk, but

does not necessarily improve payoff. Moreover, the spikiness of the exploiter’s payoff

indicates optimizing (δ, l) to maximize profit is a challenging task. Figure 2.10(b)

further demonstrates that an exploiter can probe aggressively with larger step sizes

to reduce effort, but usually at the cost of a higher transaction risk, and consequently

a lower payoff. In highly dynamic markets with frequently updated quotes, finding an

appropriate δ to successfully probe a cloaking mechanism within a reasonable number

of attempts would be challenging.

We have explored other more aggressive probing strategies, where the spoofer

probes to expose multiple hidden levels and spoofs at even higher prices. To accom-

plish that, the spoofer is forced to keep at least one order in the cloaked levels to

40

Env (δ, l)

LSHN

K1 (1, 16) (2, 9) – –
K2 (1, 8) (2, 5) (4, 3) (8, 3)
K4 (1, 19) (2, 3) – –
K4 (1, 10) (2, 5) (4, 3) –

MSMN

K1 (1, 7) (2, 5) (4, 4) (8, 3)
K1 (1, 7) (2, 4) (4, 2) (8, 1)
K1 (1, 5) (2, 3) (4, 2) –
K1 (1, 9) (2, 4) (4, 2) –
K2 (1, 11) (2, 3) (4, 4) (8, 3)
K4 (1, 5) (2, 3) (4, 3) (8, 3)

Table 2.3: Least number of probing attempts required to beat equilibrium perfor-
mance.

0

0.1

0.2

0.3

0.4

0.5

380

390

400

410

1 3 5 7 9 11 13 15

Tr

an
sa

ct
io

ns

Pa
yo

ff

Probing Attempts Limit ℓ

Probing payoff Eq payoff #Transactions

(a) Fix δ = 2.

0

4

8

12

-150

50

250

450

1 2 3 4 5 6 7

Ta

ns
ac

tio
ns

Pa
yo

ff

Log(ẟ)

Probing payoff Eq payoff #Transactions

(b) Fix l = 2.

Figure 2.10: Exploitation payoff and transaction risk as we vary price increment δ
and probing limit l.

guarantee that its spoof orders are visible. However, according to our experiments,

such aggressive probing strategies fail to beat the equilibrium performance, as orders

kept in hidden levels are often accepted by background traders due to adverse selec-

tion. Those transactions tend to accumulate the spoofer’s position, and consequently

impose losses at the end of the trading period.

2.7 Learning-Based Trading Strategies under the Presence

of Market Manipulation

We next consider how individual traders may construct strategies that are more

robust to manipulation. In realistic market scenarios, traders are aware of potential

manipulation, but unable to reliably detect spoofing behavior in real time. In the

41

absence of manipulation, traders submit orders that reflect their private observations

and preferences, and so learning from others’ actions enables more informed decisions.

Indeed as shown above, learning as implemented by HBL agents is effective in a

realistic market model, and provides benefits to the learning agent as well as to market

efficiency. HBL is vulnerable to spoofing, however, and agents adopting such learning

are harmed by spoofing compared to non-learning strategies that are oblivious to

spoofers and thus non-manipulable. The question we investigate in this section is

whether learning-based strategies can be designed to be similarly robust to spoofing.

We seek strategies by which individual traders can learn from market information,

but in less vulnerable ways.

We treat the original HBL described in Section 2.3.3.3 as a baseline strategy,

and propose two variations that aim to reasonably trade off learning effectiveness in

non-manipulated markets for robustness against manipulation. The first variation

works by selectively ignoring orders at certain price levels, particularly where spoof

orders are likely to be placed. The second variation considers the full order book,

but has the flexibility to adjust the offer price by a stochastic offset. The adjustment

serves to correct biases in learned price beliefs either caused by manipulation or the

intrinsic limitation built in the belief function. We formally define the two variations

in Section 2.7.1, and then evaluate the proposed strategies in terms of the effectiveness

in non-manipulated markets and robustness against manipulation in Section 2.7.2.

We adopt the standard CDA market mechanism as described in Section 2.3.1.

The market is populated with 64 background traders and one profitable exploiter.

Background traders can choose from a select set of strategies that covers ZI, original

HBL, and the two proposed variations of HBL. The exploiter follows the three-stage

exploitation strategy specified in Section 2.6.1, and executes spoofing in selected

treatments. As in our study of cloaking mechanisms, we consider three representative

market settings for our experiments, namely LSHN, MSMN, and HSLN. Details of

all found equilibria in this section are provided in Appendix A.3.

2.7.1 Two Variations of HBL

2.7.1.1 HBL with Selective Price Level Blocking

Our first HBL variation is inspired by the success of our cloaking mechanism. It

takes advantage of the common placement of spoof orders closely behind the market

best quotes. Instead of including all observed trading activities in its memory to con-

struct the belief function just as the standard HBL, the idea is to neglect limit orders

42

at a specified price level when assembling the dataset D to learn from. We extend

standard HBL with a blocking parameter χ, which specifies the index of a single price

level to ignore symmetrically from inside of the limit order book. For example, when

χ = 1, the trading agent constructs a dataset, D \ Oχ=1, by considering only orders

strictly outside the best bid and ask. The goal of this additional strategic parameter

is to exclude price levels where spoof orders are likely to appear. However, ignoring

orders may come at the cost of less effective learning, especially when information

that conveys true insight is blocked from the belief function.

2.7.1.2 HBL with Price Offsets

Our second HBL variation considers all orders in its memory, but translates the

target price P∗i (t) derived by surplus maximization in Eq. (2.5) with an offset uni-

formly drawn from [Rmin, Rmax]. Specifically, a background trader i who arrives the

market at time t with the optimized price P∗i (t), submits a limit order for a single

unit of the security at price

pi(t) ∼

U [P∗i (t)−Rmax,P
∗
i (t)−Rmin] if buying,

U [P∗i (t) +Rmin,P
∗
i (t) +Rmax] if selling.

(2.6)

A positive offset can be viewed as a hedge against misleading information, ef-

fectively shading the bid to compensate for manipulation risk. A negative offset

increases the probability of near-term transaction, which may have benefits in re-

ducing exposure to future spoofing. Offsets (positive or negative) may also serve a

useful correction function even when manipulation is absent. In particular, negative

offsets may compensate for the myopic nature of HBL optimization Eq. (2.5), which

considers only the current bid, ignoring subsequent market arrivals and opportunities

to trade additional units. Our design here is in line with prior literature (Tesauro and

Bredin 2002; Tesauro and Das 2001) that refines the original HBL to become more

competitive.

2.7.2 Empirical Evaluation

2.7.2.1 Standard HBL

We start with our baseline market environments where background traders are

restricted to choose from the standard HBL strategies and five parametrically dif-

ferent ZI strategies in Table 2.4(a). Figure 2.15 (dark grey columns) verifies what

43

Strategy ZI1 ZI2 ZI3 ZI4 ZI5 HBL1 HBL2

L - - - - - 2 5
Rmin 0 0 0 0 0 - -
Rmax 1000 1000 1000 500 250 - -
η 0.4 0.8 1 0.8 0.8 - -

(a) A set of basic background trading strategies.

Strategy HBL3 HBL4 HBL5 HBL6

L 2 2 5 5
χ 1 2 1 2

(b) A set of first HBL variations with price level blocking.

Strategy HBL7 HBL8 HBL9 HBL10 HBL11 HBL12 HBL13 HBL14

L 2 2 2 2 5 5 5 5
Rmin -10 -20 -40 -80 -10 -20 -40 -80
Rmax 0 0 0 0 0 0 0 0

(c) A set of second HBL variations with price offsets.

Table 2.4: Background trading strategies included to evaluate the two HBL variations.

we observed in Section 2.5 within this restrictive set of background-trading strate-

gies: (1) the learning-based trading strategy is more widely preferred in environments

where fundamental shock is low and observation noise is high (e.g., LSHN is the

most learning-friendly environment); (2) the presence of spoofing generally hurts the

learning-based strategy and reduces background-trader surplus. We next evaluate the

two HBL variations.

2.7.2.2 HBL with Selective Price Level Blocking

Learning traders who choose to ignore certain orders face a natural tradeoff be-

tween losing useful information and correctly blocking spoof orders to avoid manip-

ulation. We first examine, under non-spoofing environments, how learning effective-

ness may be compromised by excluding orders at each price level. Starting with the

equilibrium strategy profile of each non-spoofing market environment found in Sec-

tion 2.7.2.1,5 we perform controlled experiments by letting background traders who

adopt the standard HBL strategy ignore orders from a selected price level throughout

the trading period. Table 2.5 compares the payoffs obtained by HBL in its standard

form and variations that respectively block orders at the first, second, and third price

5We arbitrarily select one if there are multiple equilibria found in a certain environment.

44

Env HBL HBLχ=1 HBLχ=2 HBLχ=3 SPψ=1 SPψ=2 SPψ=3 EXP

LSHN 658 650∗ 658 658 525 494∗,∗∗ 488∗ 483∗

MSMN 655 645∗ 655 655 356 312∗ 299∗ 295∗

HSLN 649 641∗ 649 649 295 264∗ 268∗,∗∗ 253∗

Table 2.5: Average payoffs of learning-based background traders and the exploiter,
as they deviate from the equilibrium strategy profiles found in Section 2.7.2.1. We
deviate either background traders or the exploiter to its corresponding strategy vari-
ation. We refer to the exploiter who spoofs as SP, and the one who only executes
trades as EXP. Asterisks denote statistical significance at the 1% level for the paired
t-test in payoffs compared to the standard HBL(∗), SPK=1(∗), and EXP(∗∗).

0 2000 4000 6000 8000 10000
Time

0
2
4
6
8

10
12

Tr
an

sa
ct

io
n

Pr
ice

 D
iff

er
en

ce SP = 1
SP = 1, HBL = 2
SP = 2
SP = 3

Figure 2.11: Price deviations caused by
spoof orders placed behind different price
levels in the order book.

LSHN100

0

100

200

300

400

500

Su
rp

lu
s D

iff
er

en
ce

(B
lo

ck
 -

St
an

da
rd

)

MSMN HSLN

HBLs
Exploiter

Figure 2.12: Correctly blocking spoof or-
ders increases background-trader surplus
and decreases manipulation profits.

level in the order book. We find that consistently across market settings, HBL agents

benefit the most by learning from market best bids and asks, and can achieve fairly

similar performance even when orders at a selected level beyond the market best

quotes are ignored.

In response to the HBL variation that ignores price levels, we extend the exploiter

to be able to place spoof orders behind a chosen price level, denoted by ψ. For

example, when ψ = 2, the exploiter injects spoof orders at one tick behind the

second-best bid. We start with the same set of equilibrium strategy profiles, and

conduct controlled experiments to evaluate how injecting spoof orders at different

levels can change the manipulation effect, even when learning traders are considering

the full order book (i.e., adopting standard HBL). We measure the effectiveness of

each spoofing strategy by profits from trade as well as the price deviation caused by

spoof orders. Experimental results (Table 2.5) show that the exploiter benefits the

45

most by placing spoof orders behind the best bid (i.e., ψ = 1), and moving spoof

orders to less competitive levels reduces exploitation profit. We further confirm this

weakened manipulation effect in Figure 2.11, which showcases market price deviations

caused by different spoofing strategies in the MSMN environment. We find the price

rise diminishes as spoof orders are placed further away from the best bid.

Though our exploration of possible spoofing strategies here is limited, the results

suggest that spoof orders near the market quotes tend to maximize manipulation

effect. In response, HBL traders who adapt to the presence of spoofing may naturally

block orders around such levels. Figure 2.12 shows that when blocking the correct

level, HBL traders can significantly increase their payoffs, and reduce the amount the

exploiter could profit via manipulation. This mitigated manipulation effect is verified

by the dashed blue line in Figure 2.11, which shows price deviations close to zero.6

Given these beneficial payoff deviations, in the final set of experiments, we conduct

EGTA to find approximate Nash equilibria in games where background traders may

choose trading strategies from the ZI family and HBLs that block a selected price

level (any strategy from Table 2.4(a) or 2.4(b)). As shown in Figure 2.15 (light grey

columns), we find that (1) adding the blocking strategic parameter does not affect the

competitiveness of learning-based strategies with respect to ZI (HBL adoption rates

in equilibrium remain in similar ranges as those of markets where only the standard

HBL strategy is provided); and (2) the extended order blocking ability improves

the learning robustness of HBL traders (compared to surplus decreases caused by

manipulation in markets where background agents are restricted to the standard

HBL, background-trader surpluses are no longer significantly reduced when agents can

strategically block orders in the face of manipulation). In other words, background

traders who learn from market information but also strategically ignore orders can

achieve robustness against manipulation and retain comparable effectiveness in non-

manipulated markets.

2.7.2.3 HBL with Price Offsets

Our second HBL variation relies on a price adjustment rather than information

selection to adapt to different market conditions. We start by exploring a set of

price offset intervals [Rmin, Rmax], ranging from positive values that understate the

learned offer prices (e.g., similar to price shading) to negative values that adjust

prices to become more competitive. As in Section 2.7.2.2, we conduct controlled

6Price differences are not strictly zero before spoofing (time 1000), as traders who adopt HBLχ=2

consistently block orders throughout the trading period.

46

[-80, 0] [-40, 0] [-20, 0] [-10, 0] [0, 0] [0, 10] [0, 20] [0, 40] [0, 80]
Price Offset

400

200

0

200

400

HB
L

Su
rp

lu
s D

iff
er

en
ce

(O
ffs

et
 -

St
an

da
rd

)

0

50

100

150

200

250

Nu
m

be
r o

f T
ra

ns
ac

tio
ns

Figure 2.13: Average HBL surplus differ-
ences and total number of transactions in non-
spoofing markets where HBL traders use differ-
ent price offsets.

0 2000 4000 6000 8000 10000
Time

0

5

10

15

Tr
an

sa
ct

io
n

Pr
ice

 D
iff

er
en

ce Standard HBL
HBL Offset [-10, 0]
HBL Offset [-20, 0]
HBL Offset [-40, 0]
HBL Offset [-80, 0]

Figure 2.14: Market price devia-
tions caused by spoofing in mar-
kets where HBL traders use differ-
ent price offsets.

experiments starting from equilibrium profiles found in Section 2.7.2.1, then deviating

from standard HBL to allow price offsets. Figure 2.13 shows for the MSMN non-

spoofing environment how HBL surplus and number of transactions vary in markets

where HBL traders adopt different offset intervals.7 We find adjusting learned prices

with a range of negative offsets can be generally beneficial in our setting where agents

have reentry opportunities. It increases HBL payoff and facilitates transactions, thus

improving overall price convergence in markets.

To test the effectiveness of spoofing against the new HBL variation, we further have

the SPψ=1 spoof in markets where the learning background traders respectively adopt

the standard HBL, HBL[−10,0], HBL[−20,0], HBL[−40,0]. Figure 2.14 compares market

price deviations caused by spoof orders in those markets. We find that though all

markets experience initial price rise as a result of misled pricing beliefs, the spoofing

effect tends to wear off faster in markets where HBL traders adopt negative price

offsets. This may be because negative offsets promote near-term transaction: as more

transactions happen, HBL traders can glean true information from the transaction

prices to construct more accurate belief functions, and the SPψ=1 places spoof orders

at lower prices due to the widened bid-ask spreads. Indeed, we find that markets

populated with the standard HBL, HBL[−10,0], HBL[−20,0], and HBL[−40,0] respectively

have average spoof-order prices of 99972, 99951, 99945, and 99950.

Finally, we conduct EGTA in games with and without spoofing to find Nash equi-

libria where background traders can choose from ZI strategies and HBL variations

that adjust learned prices with certain offsets (Table 2.4(a) and 2.4(c)). Equilib-

7HBL with positive offset usually generates much lower payoff. For presentation simplicity, we
cropped the surplus decrease at –400 in Figure 2.13.

47

0.0

0.2

0.4

0.6

0.8

1.0

HB
L

Ad
op

tio
n

Ra
te

LSHN MSMN HSLN

(a) HBL (and its variations) adoption rates in equilibrium.

40800

41200

41600

42000

42400

42800

Ba
ck

gr
ou

nd
 S

ur
pl

us

LSHN MSMN HSLN

HBL Offset +
Block
HBL Offset
HBL Block
Standard HBL

HBL Offset +
Block
HBL Offset
HBL Block
Standard HBL

No Spoofing, No Blocking
Spoofing, No Blocking

No Spoofing, Blocking
Spoofing, Blocking

(b) Background-trader surpluses achieved in equilibrium.

Figure 2.15: Total background-trader surpluses and HBL strategy adoption rates
achieved at equilibria across different market settings. For each market environment,
we compare four settings where background traders are respectively provided with the
standard HBL strategy (dark grey), HBL with selective price blocking (light grey),
HBL with price offsets (white), and HBL that combines the two variations (striped).
Each marker specifies one equilibrium outcome in markets with spoofing (orange)
and without spoofing (blue). Filled markers represent that some proportion of HBL
with price blocking exists in the equilibrium strategy profiles, whereas hollow ones
represent equilibrium strategy profiles without HBL price blocking.

rium results (Figure 2.15 white columns) show that the extended price offsets tend to

largely improve HBL’s profitability and background-trader surpluses, in both markets

with and without manipulation. Such price adjustments can especially help learning

traders to better adapt to high shock environments where prices are less predictable

48

from past observations. However, the extended offsets may not directly address ma-

nipulation and improve learning robustness against spoofing.

2.7.3 Combine Order Blocking and Price Offsets

We observe that HBL with price offsets is overall competitive across different

market settings, but its performance still degrades in markets with spoofing (refer to

Figure 2.15 white columns). Since the second HBL variation demonstrates a general

improvement in both settings with and without manipulation, we augment this vari-

ation with price level blocking to reduce vulnerability to spoofing. Specifically, we

extend the background trading strategy set in Table 2.4 with six strategies: HBLχ=2
[−10,0],

HBLχ=2
[−20,0], and HBLχ=2

[−40,0] for the respective two memory lengths L = 2 and L = 5.

We conduct EGTA in a similar manner across market environments with and

without spoofing. Equilibrium outcomes (Figure 2.15 striped columns) show that

(1) compared to markets where only the standard and the price-blocking HBL are

provided, HBL that combines the two variations is more widely preferred and can

help to increase overall background-trader surplus in equilibrium; and (2) across all

environments, background-trader surpluses in markets with and without spoofing fall

roughly into the same ranges. These suggest that by combining the two proposed

variations, HBL traders can enjoy both improved competitiveness and robustness

against manipulation.

2.8 Conclusions

In this chapter, we construct a computational model of spoofing: the tactic of

manipulating market prices by targeting the order book. To do so, we designed an

HBL strategy that uses order book information to make pricing decisions. Since HBL

traders use the order book, they are potentially spoofable, which we confirmed in

simulation analysis. We demonstrate that in the absence of spoofing, HBL is gener-

ally adopted in equilibrium and benefits price discovery and social welfare. Though

the presence of spoofing decreases the HBL proportion in background traders, HBL’s

persistence in equilibrium indicates a robustly spoofable market. By comparing equi-

librium outcomes with and without spoofing, we find spoofing tends to decrease mar-

ket surplus. Comparisons across parametrically different environments reveal factors

that may influence the adoption of HBL and the impact of spoofing.

We further propose a cloaking mechanism to deter spoofing. The mechanism

discloses a partially cloaked order book by symmetrically concealing a deterministic

49

number of price levels from the inside. Our results demonstrate the proposed cloak-

ing mechanism can significantly diminish the efficacy of spoofing, but at the cost of

a reduced HBL proportion and surplus in equilibrium. With the goal of maximizing

background-trader surplus, we perform EGTA across parametrically different mech-

anisms and environments, and find in markets with moderate shocks, the benefit of

cloaking in mitigating spoofing outweighs its efficiency cost. By further exploring

sophisticated spoofing strategies that probe to reveal cloaked information, we demon-

strate the associated effort and risk exceed the gains, and verified that the proposed

cloaking mechanism cannot be circumvented.

Two strategy variations based on the standard HBL strategy are explored. The

first variation considers common characteristics of spoofing activities, and works by

offering agents the flexibility to neglect limit orders at a specified price level when

assembling a dataset to learn from. The second variation learns from full order book

information, and later adjusts the target price derived from surplus maximization

with a random offset to correct any biases in the learning process. Our analysis show

that the first HBL variation offers learning traders a way to strategically block or-

ders to improve robustness against spoofing, while achieving similar competitiveness

in non-manipulated markets. Our second HBL variation exhibits a general improve-

ment over baseline HBL, in both markets with and without manipulation. Further

explorations suggest that traders can enjoy both improved profitability and robust-

ness by combining the two HBL variations.

50

CHAPTER 3

Modeling the Evasion of Manipulation Detection:

An Adversarial Learning Framework

This chapter proposes an adversarial learning framework to capture the evolving

game between a regulator who develops tools to detect market manipulation and a

manipulator who obfuscates actions to evade detection. The model includes three

main parts: (1) a generator that learns to adapt original manipulation order streams

to resemble trading patterns of a normal trader while preserving the manipulation

intent; (2) a discriminator that differentiates the adversarially adapted manipula-

tion order streams from normal trading activities; and (3) the agent-based model of

spoofing described in Chapter 2 that evaluates the manipulation effect of adapted

outputs.

Experiments are conducted on simulated order streams associated with a manip-

ulator and a market-making agent respectively. The specific goal is to adapt ma-

nipulation order streams to resemble market-making, a legitimate trading role with

generally positive influence on market efficiency. We show examples of adapted ma-

nipulation order streams that mimic a specified market maker’s quoting patterns and

appear qualitatively different from the original manipulation strategy implemented in

the simulator. These results demonstrate the possibility of automatically generating

a diverse set of (unseen) manipulation strategies that can serve as a training course

for more robust detection algorithms.

3.1 Introduction

The work in Chapter 2 has proposed several deterrent mechanisms and trading

strategies that aim to render manipulation strategies uneconomical. A more direct

approach is to detect any manipulation activity. Rule-based methods that look for

51

certain trading activities known as manipulation signatures (e.g., frequent order can-

cellations and modifications), however, may not be enough. They often result in

high false positive rates, as these activities can also be legitimate actions for many

non-manipulative participants, such as market makers and other liquidity providers

(Foucault, Röell, and Sand̊as 2003; Hautsch and Huang 2012). Therefore, develop-

ing a reliable detector requires identifying or learning the manipulation intent from

series of observed actions associated with individual trading agents across time, as

they reveal agents’ interactions with different market states and subsequent market

outcomes.

Along this line of efforts, Nasdaq launched an AI-based surveillance system trained

with historical trading data and existing patterns of market-abuse techniques to de-

tect suspect equities trading practices (Rundle 2019). Despite promising advances,

developing high-fidelity systems to detect manipulation even ex post faces two ma-

jor challenges. First, the amount of labeled data identifying manipulation is quite

small and may not be diverse enough to reflect all manipulation strategies. Second,

given any launched detector, agents who seek to manipulate the market may obfus-

cate their strategies adversarially to evade detection (e.g., manipulating in a way that

appears as normal trading activity). This causes regulators to play a costly game of

cat-and-mouse with manipulators who constantly innovate to escape.

This chapter proposes using an adversarial learning framework to address these

challenges; it reasons about how a manipulator might mask its behavior to evade

the detection of a given discriminative model. Traders interact with the market

by submitting orders to buy or sell, and throughout this chapter, we refer to the

sequence of such actions taken by an individual trader over a period of time as the

trader’s order stream. It is a realization of its associated strategy, which reflects an

agent’s trading intent. The idea is to let a generative model learn to adapt existing

manipulation strategies (represented as order streams) to resemble characteristics of

normal trading, while preserving a comparable manipulation effect. A history of

adapted order streams that effectively manipulate are further used to improve the

robustness of the detector. We apply such adversarial reasoning recursively, updating

the generator and the discriminator level-by-level, and characterize the evolution of

adapted manipulation strategies.

The generative model adopts a sequence-to-sequence paradigm (Sutskever, Vinyals,

and Le 2014), and takes a manipulation order stream as source and a paired benign

trader’s order stream as target. It learns to adapt the source by minimizing the

combination of an adversarial loss and a self-regularization loss. The adversarial

52

loss is calculated by a discriminator that classifies an order stream as adapted from

manipulation or target, minimized as the output becomes indistinguishable from a

benign trader’s order stream. The self-regularization loss is a feature-wise distance

between the source and the adapted stream, penalizing large changes between the

two to preserve the manipulation effect.

We conduct experiments and evaluate the proposed approach using order streams

generated by the agent-based market simulator described in Chapter 2.1 The simula-

tor models simple manipulation strategies (i.e., spoofing), and can practically produce

a large set of order streams associated with each agent across a variety of market con-

ditions (e.g., different market shock and observation noise parameters). Controlled

simulations are conducted to acquire (1) source order streams (SP) associated with

a manipulation agent who deploys a variant of the spoofing strategy and (2) tar-

get order streams (MM) that a market-making agent would have placed under the

corresponding market conditions. To help quantify the manipulation effect, we de-

compose the SP behavior into manipulation and exploitation components, and define

baseline order streams (EXP) as those that only include a series of transacted ex-

ploitation orders. The goal here is to adapt manipulation order streams to resemble

market-making, a legitimate trading role with generally positive influence on market

efficiency (Schwartz and Peng 2013; Wah, Wright, and Wellman 2017). Figure 3.1

gives an overview of the approach.

Experimental results show that the proposed framework can generate adapted

manipulation order streams that resemble quoting patterns of a market maker and

appear qualitatively different from the original spoofing strategy prescribed in the

simulator. This adaptation evades detection, but at the cost of compromising effec-

tiveness in manipulation. After a few iterations of evolving and evading the detector,

the strategy has sacrificed almost all of its manipulation capability. Though it is

likely impossible to develop a detector immune from adversarial attacks, modeling

the evasion can be a useful step toward more robust detection of market manipula-

tion.

The rest of this chapter is structured as follows. Section 3.2 provides background

and discuss related work. We describe the trading strategies, data representations,

and adversarial learning model in Section 3.3. Section 3.4 evaluates the proposed

method and presents experiment findings. Section 3.5 concludes with discussions.

1Learning from real market data is infeasible, as actual order streams identified as manipulation
do not exist in any substantial quantity.

53

(a) Update the generator and the discriminator level-by-level.

(b) Given a fixed detector Dl−1, train Gl to generate SPl.

Figure 3.1: Overview of the proposed adversarial learning framework that reasons
about evading a manipulation detector. The process starts with a classifier D0 that
discriminates between SP and MM order streams. In response, a generator G1 learns
to adapt SP order streams, producing SP1 that can evade detection by D0. SP1 order
streams are then incorporated to train the next-level discriminator D1. Such adver-
sarial reasoning is applied recursively, producing a sequence of adapted manipulators
and corresponding increasingly robust detectors.

3.2 Related Work

3.2.1 Agent-Based Modeling of Trading Roles

To study the effects of particular trading practices, researchers classify market

participants into different roles based on their trading intent and activity patterns

(e.g., trading volume, frequency, position). An agent-based market model designs

agents around such roles, and reproduces “stylized facts” observed in real financial

markets through simulating the strategic interactions of these agents (Kirilenko, Kyle,

Samadi, and Tuzun 2017; Lebaron 2006).

This chapter builds on the developed agent-based model of spoofing, in which a

manipulation agent can effectively deceive approximately rational background traders.

Specifically, in markets populated with background learning traders who bid based

54

on beliefs induced from market observations including the malicious activities, the

manipulator is able to push prices significantly higher than they would be otherwise,

and profit from this manipulation. Since background trading agents react to different

market conditions according to their codified strategies, the model can be used to ver-

ify manipulation intent and quantify its impact by conducting controlled experiments

of markets with and without a spoofing agent.

3.2.2 Learning via Adversarial Training

There is a substantial body of work on adversarial training (Goodfellow, Shlens,

and Szegedy 2015; Sinha, Namkoong, and Duchi 2018; Tzeng, Hoffman, Saenko,

and Darrell 2017; Volpi et al. 2018), investigating a variety of training procedures

designed to learn models robust to (adversarial) perturbations in the input. Many

of these approaches involve augmenting training dataset with examples from a target

domain that is considered “hard” under the current model. A key issue addressed in

some but not all of this work is to preserve specified properties of the source domain

while generating adversarial examples to improve robustness.

Our proposed approach draws particular inspiration from Shrivastava et al. (2017),

who proposed Simulated + Unsupervised (S+U) learning. The idea is to train a gen-

erative model to improve the realism of simulated images using unlabeled real ones,

while preserving the annotation information from the simulator. A pixel-level loss

is further imposed between the simulated input and the generated image to enforce

annotation. Experimental results show that S+U learning enables the generation of

highly realistic images with reliable labels and helps to improve learning models’ per-

formance on classification tasks, including gaze estimation and hand pose estimation.

A similar idea was also employed by Bousmalis et al. (2018) for a robotics grasping

problem. They extended pixel-level domain adaptation to improve the realism of

synthetic data generated by the off-the-shelf grasp simulators. This chapter extends

the approach to adapt simulated order streams while preserving the intent behind the

original sequence of actions.

3.3 Problem Formulation

3.3.1 Trading Strategies and Representations

We follow prior work (Wah, Wright, and Wellman 2017; Wang and Wellman 2017)

in the design of manipulation and market-making strategies, extending each with a

55

bit of flexibility to reduce overfitting to artifacts. We describe the trading strategies

and their representations as order streams below. Since an order stream is a sequence

of actions incurred by a strategy, in this chapter, we refer to a strategy and order

streams associated with that strategy interchangeably.

Manipulation Strategy (SP) During each simulation run, the manipulator ma-

neuvers prices either up or down as instructed by the system with equal probability.

We elaborate the case of manipulating prices up, and the other applies vice versa. The

strategy includes three stages, similar to the one described in Section 2.6.1.3. During

the first execution stage, the agent buys by accepting any sell order at price lower

than the fundamental mean r̄ (as formulated in Eq. 2.1). In the next manipulation

stage, it stops buying and instead maintains large manipulation buy limit orders at

price one tick below the best bid. The goal is to falsely signal demand to push price

up so that the units bought earlier can be sold at higher prices later. During the last

stage, the manipulator starts to sell the units by accepting any buy orders at a price

higher than r̄. The agent continues to manipulate until the trading period ends or

all the bought units are sold.

Market-making Strategy (MM) Upon each arrival, the market maker submits

a quote ladder centered around an estimate of the terminal fundamental value of the

underlying security, denoted by r̂t. Specifically, the quote ladder is decided by three

strategic parameters ω,K, ζ that respectively control the quote spread, number of

price levels, and the number of ticks between two adjacent prices:[Bt −Kζ, . . . , Bt − (K − β)ζ] for buy orders

[St + (K − α)ζ, . . . , St +Kζ] for sell orders,
(3.1)

where Bt = r̂t − ω/2, St = r̂t + ω/2, and α and β truncate the price ladder such

that limit orders do not immediately transact with the market’s current best bid and

ask. To mitigate certain artifacts (e.g., prices separated by an equal distance), we

add Gaussian noise around each price in Eq. (3.1) and its associated quantity. Since

quote ladders are symmetrically centered around unbiased estimations of the terminal

fundamental value, the MM orders in expectation do not distort learning traders’

pricing beliefs. The MM agent follows the same arrival schedule as the manipulator

to produce a paired target order stream, which records orders that would have placed

under market conditions encountered by the manipulator.

56

Exploitation Strategy (EXP) The exploitation order streams serve as the control

group to measure the effect of manipulation orders. The strategy executes the same

buy and sell scheme as the SP strategy during the first and last stage without placing

any manipulation order.

Order Stream Representation An order stream records a sequence of (hypo-

thetical) actions associated with an agent. It is represented by a variable-length

sequence with an element corresponding to each time an agent arrives and submits a

bid schedule. A bid schedule comprises a set of limit orders, each specifying a price

(expressed by distance to the market best bid or ask) and a quantity. Figure 3.2 shows

order streams respectively associated with EXP, SP, and MM in a set of controlled

simulations where we set r̄ = 105.

3.3.2 An Adversarial Learning Framework

We use the market simulator to generate a dataset of labeled order streams D =

{(wi,EXP), (xi, SP), (yi,MM)}Ni=1, where wi, xi, and yi denote order streams incurred

by their respective strategies under one set of controlled simulations (like those in

Figure 3.2). The goal here is to adapt the simulated SP order streams to become

indistinguishable from the MM ones while preserving some manipulation effect.

The generator adopts the sequence-to-sequence paradigm (Sutskever, Vinyals, and

Le 2014), which considers the interconnection between bid schedules within a sequence

(e.g., a manipulator who buys first is more likely to manipulate price up and later sell).

It has an encoder-decoder structure Gθ = (Genc, Gdec), where θ denotes the function

parameters. This encoder-decoder model has been widely used in tasks that require

sequence-to-sequence learning, such as the statistical machine translation (Cho et al.

2014; Sutskever, Vinyals, and Le 2014) and sentence generation (Logeswaran, Lee, and

Bengio 2018). The encoder adopts a recurrent neural network (RNN) that takes an

order stream x as input and produces a fixed-length latent representation vector zx :=

Genc(x). The vector contains compressed information of the input (e.g., manipulate

prices up or down), and is decoded by Gdec, a second RNN that generates x′ ∼
pGdec(·|zx) to resemble characteristics of the target domain y. The discriminator Dφ

also uses an RNN component followed by a linear layer, and outputs the probability

of an input being an adapted order stream.

We propose a recursive training procedure of the generator and the detector (de-

picted in Figure 3.1(a)), designed to mimic the adversarial reasoning between a ma-

nipulator and a regulator. The manipulator starts by playing the SP strategy that is

57

0 1000 2000 3000 4000 5000
Time

99000

99400

99800

100200

100600

101000

Pr
ice

(a) EXP (baseline).

0 1000 2000 3000 4000 5000
Time

99000

99400

99800

100200

100600

101000

Pr
ice

(b) SP (source).

0 1000 2000 3000 4000 5000
Time

99000

99400

99800

100200

100600

101000
Pr
ice

(c) MM (target).

Figure 3.2: Order streams associated with EXP, SP, and MM in a set of controlled
simulations. During the execution stage (time before 1000), both EXP and SP bought
one share of the security at price r̄−92. Then, SP maintained manipulation buy orders
at a tick behind the best bid to push the price up. As a result, SP managed to sell
the share at price r̄ + 102, whereas EXP sold the share at r̄ + 44.

codified in the market simulator, and the regulator develops detector D0 to distinguish

manipulation order streams from MM streams. The manipulator then constructs its

next-level strategy SP1 by learning a generator G1 to adapt SP, such that the adapted

order streams can evade the detection of D0 and preserve a comparable manipulation

effect. To achieve both aims, the generator is trained to minimize a combination of

adversarial loss and regularization loss (depicted in Figure 3.1(b)), which we describe

in detail below. In response, a new detector D1 is trained to identify both the original

manipulation strategy SP and the evolved one SP1. We apply such reasoning recur-

sively to generate adversarial manipulation activities, so as to improve the robustness

of a detector.

58

Adversarial Loss The generator works to bridge the gap between the source (i.e.,

SP) and the target (i.e., MM) by minimizing the adversarial loss. We follow the GAN

setup (Goodfellow et al. 2014) which models the generator and the discriminator as

a two-player minimax game. During training, the level-l discriminator network Dl

updates its parameters φl to minimize the following loss:

LD(φl) = −
∑
i

log(D(x′i;φl))−
∑
i

log(1−D(yi;φl)), (3.2)

where x′i represents some learned (or identity) transformation of xi, and D(·) denotes

the probability of the input order stream either associated with or adapted from SP.

We fix the discriminator Dl−1 and train the level-l generator Gl to maximize the

probability of Dl−1 making a mistake. Specifically, it learns θl by minimizing the

adversarial loss:

Ladv
G (θl) = −

∑
i

log(1−Dl−1(G(xi; θl))). (3.3)

Self-Regularization Loss To preserve the manipulation effect, we combine the

adversarial loss with a self-regularization loss that penalizes any difference between

the adapted and original order stream. This can be interpreted as a manipulator

preference to adapt its original manipulation strategy as little as possible to evade

detection. We define regularization loss as the mean squared error between the input

and the adapted order stream:

Lreg
G (θl) =

1

N

∑
i

‖G(xi; θl)− xi‖2
2 , (3.4)

where ‖·‖2 is the L2 norm. The overall loss for G is LG = Ladv
G + λLreg

G , where λ is a

hyperparameter.

Measuring Manipulation Effects We evaluate the manipulation effects of the

adapted order stream x′i := Gl(xi) by feeding it back to the market simulator under

the same set of experimental controls. That is, we compare the effects under scenarios

where background traders are guaranteed to arrive at the same time, receive identi-

cal private values, and observe the same fundamental values as in simulations that

generate wi, xi, and yi. Any change in background bidding behavior can therefore be

attributed to the adapted order stream.

We compare market outcomes incurred by the adapted order stream to those of

markets with SP and EXP, and measure the manipulation intensity and transaction

59

risk. The manipulation intensity of x′i, denoted by δx′i , is defined as the fraction of

the price deviation realized by x′i in that of the SP order stream:

δx′i =


min

{
max

{Px′
i
−Pwi

Pxi−Pwi
, 0
}
, 1
}

if Pxi > Pwi

min
{

max
{Pwi−Px′i
Pwi−Pxi

, 0
}
, 1
}

otherwise,

(3.5)

where Pwi , Pxi , and Px′i
denote the average transaction price in respective markets

since the start of the manipulation stage. The higher the manipulation intensity

is, the better x′i preserves the manipulation effect. Transaction risk is defined as

the ratio between the number of transactions and the number of arrivals during the

manipulation phase. By definition, SP and EXP have manipulation intensity one and

zero, respectively, and both exhibit transaction risk zero. Algorithm 2 describes the

detailed procedure of training G and D in one specific level.

3.4 Experimental Results

We follow the proposed framework and generate adversarial order streams by

adapting the simulated SP order streams to look like quoting patterns of a market

maker. We visualize examples of adapted manipulation activities, and demonstrate

the competing improvement between the adapted manipulation strategies and the

detectors.

3.4.1 Dataset and Implementation Details

We conduct simulations using the agent-based market simulator, and generate

10,944 groups of labeled order streams {(wi,EXP), (xi, SP), (yi,MM)}.2 The order

streams respectively record (hypothetical) trading activities of a manipulator, a mar-

ket maker, and an exploitation agent. Each trading session lasts 5000 time steps, and

the generated order streams have lengths varying from 4 to 91. The first execution

stage is from time 200 to 1000, after which the manipulation agent starts to spoof. At

time 2000, it begins to liquidate previously accumulated positions. The underlying

security has a fundamental mean r̄ = 105. Based on estimations of the final funda-

2We first conducted 30,000 controlled simulation runs, yielding 30,000 groups of labeled order
streams. We kept those groups in which the manipulator successfully trades during the first stage
(so that there is an incentive to spoof later), and pushes prices to its desired direction by at least ten
ticks. This gives us 10,944 groups of labeled order streams, which meet the described filter standard.

60

Algorithm 2 Adversarial Training Procedure of Gl
θ and Dl

φ

Input: D{(xi, SP), (yi,MM), (wi,EXP), si}Ni=1. Data buffer B{x∗i }Ni=1 with a mix-
ture of x, x1, ..., xl−1. Dl−1

φ .

Output: Gl
θ and Dl

φ.

1: for t = 1, ..., epoch do
2: for j = 1, ..., batch do
3: Generate x′j = Gθ(xj)
4: Update θ on the batch loss LG(θ)

5: Get optimal Gl
θ

6: for i = 1, ..., N do
7: Feed x′i := Gl

θ(xi) back to simulator with seed si
8: Replace x∗i with x′i with probability 0.9 if Px′i ≥ δPxi

9: for t = 1, ..., epoch do
10: for j = 1, ..., batch do
11: Sample x∗j ∈ B and yj ∈ D
12: Update φ on the batch loss LD(φ)

13: Get optimal Dl
φ

mental value, the MM submits a quote ladder with ω = 256, K = 8, ζ ∼ N(128, 10),

and quantity q ∼ N(5, 2). We use 8896 groups of order streams for training (with a

80/20 train-validation split) and the rest 2048 groups for testing.

We use a bi-directional Gated Recurrent Unit (GRU) RNN (Cho et al. 2014)

with a hidden state size of 64, followed by a linear layer for both Genc, Gdec, and

D in the experiments. Since order streams are of variable lengths, we pad them to

the maximum length for forward passes, and cut them back to original lengths for

loss calculations and evaluations. Model parameters are initialized with the uniform

distribution between –0.08 and 0.08. We use batches of 64 order streams to train the

discriminator and the generator, and pick weight of the self-regularization loss λ = 1

based on the validation performance.

3.4.2 Generating Adapted Manipulation Examples

We evaluate the adversarially adapted order streams from three main aspects:

(1) similarity to the MM quoting patterns, (2) preservation of manipulation effect,

and (3) effectiveness in evading the detection of an existing discriminator. Table 3.1

presents summary statistics of order streams associated with their corresponding trad-

ing strategies (or generative models). Each aspect is discussed in detail below.

61

Payoff Manipulation
Effect

Transaction
Risk

Dl−1 (%) Dl (%)

SP 411∗,∗∗ 1 0 - 100

SP1 362∗,∗∗ 0.50 0.14 0.59 100

SP2 310∗ 0.30 0.26 0 100

SP3 303∗ 0.22 0.59 0 100

MM 121 0.15 0.85 100 100

EXP 324∗ 0 0 - -

Table 3.1: Summary statistics of the respective trading strategy on test dataset.
Asterisks denote statistical significance at 5% level of the paired t-test for payoffs
compared to MM(∗) and EXP(∗∗).

Comparing to MM We follow prior work (Li et al. 2020) in using price and

quantity distributions to measure how well the generated order streams resemble

the target MM streams. We further propose a domain-specific measure, the order

imbalance distribution, defined as the ratio between the numbers of buy and sell

orders submitted over a trading period (whichever value is larger on the numerator).

This captures a trader’s imbalance in preference between long and short positions.

Figure 3.3 presents comparisons of the respective distributions. Results show that

the adapted manipulation order streams produce distributions similar to that of the

MM, and are able to overcome certain artifacts codified in the SP strategy (e.g., large-

quantity orders always at one tick behind the best quotes and severe order imbalance

to deceive the market). Specifically, orders are gradually adapted to cover a wider

range of prices with relative small quantities, and order balance is roughly maintained

throughout the trading period.

Preserving Manipulation Effect In the final step, we feed adapted order streams

back to the market simulator under the same set of experimental controls, and mea-

sure their manipulation effect by the manipulation intensity and transaction risk.

Figure 3.4 shows the two-dimensional cumulative density over the 2,048 adapted out-

puts with respect to the two proposed metrics. We find that SP1 can preserve a

comparable manipulation intensity under a reasonable transaction risk; however, as

the generator adapts in response to a more robust discriminator, the adapted streams

begin to suffer a large degradation in manipulation intensity and an increase in trans-

action risk (e.g., SP3 has a similar performance to MM). This weakened manipulation

effect is further confirmed in Table 3.1.

62

−2 −1 0 1 2
Distance to Best Quotes (x1000)

0.000

0.001

0.002

0.003

De
ns

ity

SP
SP1
SP2
SP3
MM

(a) Price distribution.

0 50 100 150 200
Order Quantity

0.00

0.05

0.10

0.15

0.20

De
ns

ity

SP
SP1
SP2
SP3
MM

(b) Quantity distribution.

0 5 10 15 20 25 30
Order Imbalance Ratio

0.0
0.2
0.4
0.6
0.8
1.0
1.2

De
ns

ity

SP
SP1
SP2
SP3
MM

(c) Order imbalance distri-
bution.

Figure 3.3: Comparisons of the respective statistics on the SP order streams, adapted
outputs, and MM order streams.

0.0 0.2 0.4 0.6 0.8 1.0
Manipulation Intensity

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
n

Ri
sk

0.0

0.2

0.4

0.6

0.8

1.0

(a) SP1.

0.0 0.2 0.4 0.6 0.8 1.0
Manipulation Intensity

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
n

Ri
sk

0.0

0.2

0.4

0.6

0.8

1.0

(b) SP2.

0.0 0.2 0.4 0.6 0.8 1.0
Manipulation Intensity

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
n

Ri
sk

0.0

0.2

0.4

0.6

0.8

1.0

(c) SP3.

0.0 0.2 0.4 0.6 0.8 1.0
Manipulation Intensity

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sa
ct

io
n

Ri
sk

0.0

0.2

0.4

0.6

0.8

1.0

(d) MM.

Figure 3.4: The manipulation effect of order streams associated with the correspond-
ing level of SP strategy. Each color of a cell encodes the cumulative density of order
streams that achieve a certain manipulation intensity and transaction risk. The closer
dark blue is to the bottom right, the better adapted order streams are able to preserve
higher manipulation intensity with lower transaction risk.

63

Se
ll

Bu
y0 40 80 12

0

16
0

20
0

408012
0

16
0

20
0

Li
m

it
Se

ll O
rd

er
Li

m
it

Bu
y

O
rd

er
Tr

an
sa

ct
ed

 S
el

l
Tr

an
sa

ct
ed

 B
uy

F
ig

u
re

3.
5:

E
x
am

p
le

s
of

ad
ap

te
d

m
an

ip
u
la

ti
on

or
d
er

st
re

am
s.

D
as

h
ed

b
la

ck
li
n
es

re
p
re

se
n
t

th
e

la
te

st
tr

an
sa

ct
io

n
p
ri

ce
s,

w
h
er

ea
s

d
as

h
ed

gr
ey

li
n
es

th
e

tr
an

sa
ct

io
n

p
ri

ce
s

if
n
o

m
an

ip
u
la

ti
on

ex
is

ts
.

64

Evading the Detection Table 3.1 shows that a generator can easily fool an existing

detector with adversarially generated order streams. By learning from a history of

adapted order streams, the discriminator is able to detect manipulation streams from

all previous levels, and in the meantime ensures the training stability of the next-level

generator.

Qualitative Evaluation Figure 3.5 demonstrates examples of the original and its

corresponding adapted manipulation order streams. These examples demonstrate

that the adapted streams become qualitatively similar to the trading patterns of

a MM, and such simultaneous quoting behavior on both sides of the market has

indeed been suggested as a good strategy for high frequency traders to mask their

manipulative intent (Levens 2015). We note several other findings from the evolution

of adapted manipulation strategies. First, SP1 remains to place large orders close

to the market best quote, whereas SP2 and SP3 choose to either largely decrease

the order quantity or place large orders behind smaller ones to avoid being detected.

Second, SP2 and SP3 tend to submit orders at more aggressive prices across market

quotes, and this may cause unintended transactions during the manipulation phase.

3.5 Conclusions

This chapter employs an adversarial learning framework to model the evolving

game between a regulator and a manipulator, in which the regulator deploys algo-

rithms to detect manipulation and the manipulator masks actions to evade detection.

Evasion is represented by a generative model, trained by augmenting manipulation

order streams with examples of market making activity traces. The intent is to pro-

duce adapted streams that are hard to distinguish from a market maker’s behavior.

We visualize examples of adapted manipulation order streams, and show they resem-

ble quoting patterns of a market maker and appear qualitatively different from the

original manipulation strategy we implemented in the simulator. This adaptation

evades detection, but only at the cost of compromising effectiveness in market ma-

nipulation. After a few iterations of evolving and evading the detector, the strategy

has sacrificed almost all of its manipulation capability.

Results presented here reflect the specific simulation choices adopted, and thus

it remains to be seen whether a more clever form of adaptation can evade detection

while retaining more effectiveness in manipulation. Whether or not it is possible

to ultimately craft successful adversarial attacks, the generation and evasion process

65

modeled here provides a way to anticipate the evolution of evasive adversaries. Such

anticipation capacity provides a way to develop more robust detection methods, for

market manipulation as well as other fraudulent behaviors.

66

CHAPTER 4

Designing a Combinatorial Financial Options

Market

This chapter studies expressive mechanisms for financial options market. Options

are contracts that specify the right to buy or sell an underlying asset at a strike price

by an expiration date. Standard exchanges offer options of predetermined strike val-

ues and trade options of different strikes independently, even for those written on

the same underlying asset. Such independent market design can introduce arbitrage

opportunities, and lead to the thin market problem. This chapter proposes a mech-

anism that consolidates and matches orders on standard options related to the same

underlying asset, while providing the flexibility of specifying any custom strike value.

The mechanism runs in time polynomial to the number of orders, and poses no risk to

the exchange, regardless of the value of the underlying asset at expiration. Empirical

analysis on real-market options data shows that the mechanism can find new matches

for options of different strike prices and reduce bid-ask spreads.

Extending standard options written on a single asset, this chapter proposes com-

binatorial financial options that offer contract holders the right to buy or sell any

linear combination of multiple underlying assets. We generalize the proposed mech-

anism to match options written on different combinations of assets, and prove that

optimal clearing of combinatorial financial options is coNP-hard. To facilitate mar-

ket operations, we propose a heuristic algorithm that finds the exact optimal match

through iterative constraint generation, and evaluate its performance on synthetically

generated combinatorial options markets of different scales. As option prices reveal

the market’s collective belief of an underlying asset’s future value, a combinatorial

options market enables the expression of aggregate belief about future correlations

among assets.

67

4.1 Introduction

Financial options are securities that provide the holder with rights to conduct

specific trades in the future. For example, a S&P 500 call option with strike price

3500 and expiration date December 31, 2020 provides the right to buy one share of

S&P 500 at $3500 on that day.1 A standard financial option is a derivative instrument

of a single underlying asset or index, and its payoff is a function of the underlying

variable. The example contract pays max{S − 3500, 0}, where S is the value of the

S&P 500 index on the expiration date.2 Investors trade options to hedge risks and

achieve certain return patterns, or to speculate about the movement of the underlying

asset price, buying an option when its price falls below their estimate of its expected

value. Thus, option prices reveal the collective risk-neutral belief distribution of the

underlying asset’s future value.

Despite the significant volume of trade and interest in financial options, the stan-

dard options market has two limitations that compromise its expressiveness and effi-

ciency. First, markets for options of a specific underlying asset only feature a selective

set of predetermined strike prices and expiration dates, thus limiting the ability to

elicit and recover a full and continuous distribution of the underlying variable. As of

this writing, the Chicago Board Options Exchange (CBOE) offers 276 distinct strike

prices, ranging from 700 to 5000, for S&P 500 options expiring by the end of 2020.

Second, each market independently aggregates and matches orders in regard to a

single contract with a specified option type, strike price, and expiration date, despite

its interconnectedness to other options and their common dependency on the under-

lying asset. Such independent market design fails to match options with different

strike prices, and may introduce arbitrage opportunities. Moreover, investments get

diluted across independent markets even when participants are interested in the same

underlying asset, and this can lead to the problem of thin markets, where few trades

happen and bid-ask spreads become wide. Even for some of the most actively traded

option families, empirical evidence has shown that liquidity can vary much across

option types and strikes. Cao and Wei (2010) studied eight years of options trading

data and find consistently lower liquidity in puts and deep in-the-money options.

1Throughout this study, I restrict to European options which can be exercised only at expiration.
For simplicity, examples are given without the typical 100x contract multiplier.

2The settlement value is calculated as the opening value of the index on the expiration date or
the last business day (usually a Friday) before the expiration date. In cash-settled markets, instead
of actual physical delivery of the underlying asset, the option holder gets a cash payment that is
equivalent to the value of the asset.

68

We propose a linear program that computationally efficiently matches orders

across markets that are logically related to the same underlying asset, while en-

abling traders to specify any custom option contract (e.g., a S&P call option with

a strike price of 3502 that expires a week from today). It runs in time polynomial

to the number of orders and poses no risk to the exchange regardless of the value of

the underlying security at expiration. Empirical analysis conducted on real-market

options data shows that our mechanism, by consolidating independently-traded op-

tions markets, can indeed find arbitrage and substantially reduce bid-ask spreads.

The improved efficiency and expressiveness may help to aggregate more fine-grained

information and recover a complete and fully general probability distribution of the

underlying asset’s future value.

In the second part of this chapter, we further generalize standard financial options

to design a combinatorial financial options market in which agents can bid or offer

options written on any linear combination of underlying assets, thus enabling the

elicitation and recovery of future correlations among assets—in general, their full

joint distribution. For example, a call option written on “1AAPL +1MSFT” with strike

price 300 specifies the right to buy one share of Apple and one share of Microsoft at

$300 total price on the expiration date, whereas a call on “1AAPL −1MSFT” with strike

price 50 confers the ability to buy one share of Apple and sell one share of Microsoft

at expiration for a net cost of $50.

Combinatorial options offer traders to conveniently and precisely hedge their exact

portfolio, replicating any payoff functions that standard options can achieve. Stan-

dard options on mutual funds and stock indices like the S&P 500 and Dow Jones

Industrial Average (DJI) operate on one specific predefined portfolio. The CBOE

has recently launched options on eleven Select Sector Indices,3 each of which can be

considered as a pre-specified linear combination of stocks. The goal of this work is to

support products like these and generalizes to any custom combinations.

As traders are offered the expressiveness to specify shares (or weights) for each un-

derlying asset, new challenges arise and the thin market problem exacerbates. Open-

ing a separate exchange for each combination of stocks and weights would rapidly

grow intractable. Naively matching only buy and sell orders for the exact same port-

folio may yield few or no trades at all, despite plenty of acceptable trades among

orders.

Extending the model that consolidates standard options on a single underlying se-

3https://markets.cboe.com/tradable_products/sp_500/cboe_select_sectors_index_

options/

69

https://markets.cboe.com/tradable_products/sp_500/cboe_select_sectors_index_options/
https://markets.cboe.com/tradable_products/sp_500/cboe_select_sectors_index_options/

curity, we propose an optimization formulation that can match combinatorial options

written on different linear combinations of underlying assets. It works by maximizing

net profit subject to no risk to the exchange, regardless of the values of all assets

at expiration. We show that the proposed mechanism with increased expressiveness,

however, comes at the cost of a higher computational complexity: determining the

optimal clearing of a combinatorial options market is coNP-hard.

We demonstrate that the proposed mechanism can be equivalently formulated as a

bilevel mixed-integer linear program; it finds the exact optimal-matching solution by

satisfying an increasing set of constraints generated from different future values of the

underlying assets. In experiments on synthetic combinatorial orders generated from

real-market standard options prices, we show that in practice the bilevel optimization

terminates quickly, with its running time growing linearly with the number of orders

and the size of underlying assets.

4.2 Related Work

4.2.1 Rational Option Pricing

The proposed matching mechanisms are closely related to and built on arbitrage

conditions that have been studied extensively in financial economics (Modigliani

and Miller 1958; Varian 1987). In short, an arbitrage describes the scenario of “free

lunches”—configurations of prices such that an individual can get something for noth-

ing. The matching operation of the exchange (i.e., the auctioneer function) can be

considered as arbitrage elimination: matching orders in effect works by identifying

combinations of orders that reflect a risk-free surplus (i.e., gains from trade).

Merton (1973a) first investigated the no-arbitrage pricing for options, stating the

necessity of convexity in option prices. Other relevant works examine no-arbitrage

conditions for options under different scenarios, such as modeling the stochastic be-

havior of the underlying asset (e.g., the Black-Scholes model), and considering the

presence of other types of securities (e.g., bonds and futures). The most relevant

work to our proposed approach is by Herzel (2005), who makes little assumption on

the underlying process and other financial instruments. The paper proposes a lin-

ear program to check the convexity between every strike-price pair; it finds arbitrage

opportunities that yield positive cash flows now and no liabilities in the future on

European options written on the same underlying security. Our contribution on con-

solidating standard options generalizes Herzel’s, by also allowing a temporary deficit

(i.e., a negative cash flow) now, if it is guaranteed to earn it back at the time of op-

70

tion expiration. To our knowledge, no prior work has defined general combinatorial

options or investigated the matching mechanism design and complexity for such a

market.

4.2.2 Combinatorial Market Design

Much prior work examines the design of combinatorial markets, both exchanges

and market makers (Chen et al. 2008; Hanson 2003), for different applications in-

cluding prediction markets with Boolean combinations (Fortnow, Kilian, Pennock,

and Wellman 2005), permutations (Chen, Fortnow, Nikolova, and Pennock 2007),

hierarchical structures (Guo and Pennock 2009), tournaments (Chen, Goel, and Pen-

nock 2008), and electronic sourcing (Sandholm 2007). Dud́ık, Lahaie, Pennock, and

Rothschild (2013) show how to employ constraint generation in linear programming

to keep complex related prices consistent. Kroer, Dud́ık, Lahaie, and Balakrishnan

(2016) generalize this approach using integer programming. Designing combinato-

rial markets faces the tradeoff between expressiveness and computational complexity:

giving participants greater flexibility to express preferences can help to elicit better

information and increase economic efficiency, but leads to a more intricate mechanism

that is computationally harder. Several works have formally described and quanti-

fied such tradeoff (Benisch, Sadeh, and Sandholm 2008; Golovin 2007), and studied

how to balance it by exploiting the outcome space structure and limiting expressivity

(Chen et al. 2008; Dud́ık, Wang, Pennock, and Rothschild 2020; Laskey et al. 2018;

Xia and Pennock 2011). This chapter contributes to the rich literature by extending

to the popular financial options market and designing mechanisms to operate such

markets.

4.3 Background and Notations

There are two types of options, referred to as call and put options. We denote a

call option as C(S,K, T) and a put option as P (S,K, T), which respectively gives the

option buyer the right to buy and sell an underlying asset S at a specified strike price

K on the expiration date T . In the rest of this chapter, we omit T from the tuples

for simplicity, as the mechanism aggregates options within the same expiration.

The option buyer decides whether to exercise an option. Suppose that a buyer

spends $8 and purchases a call option, C(S&P 500, 3500, 20201231). If the S&P 500

index is $3700 at expiration, the buyer will pay the agreed strike $3500, receive the

index, and get a payoff of $200 and a net profit of $192 (assuming no time value). If

71

the S&P 500 price is $3200, the buyer will walk away without exercising the option.

Therefore, the payoff of a purchased option is

Ψ := max{χ(S −K), 0},

where S is the value of underlying asset at expiration and χ ∈ {−1, 1} equals 1 for

calls and −1 for puts. As the payoff for a buyer is always non-negative, the seller

receives a premium now (e.g., $8) to compensate for future obligations.

Option contracts written on the same underlying asset, type, strike, and expiration

are referred to as an option series. Consider options of a single security offering both

calls and puts, ten expiration dates and fifty strike prices. All option series render a

total of a thousand markets, with each maintaining a separate limit order book. In

such a market, deciding the existence of a transaction takes O(1) time by comparing

the best bid and ask prices, and matching an incoming order can take up to O(N)

time depending on its quantity, where N is the number of orders on the opposite side

of the order book.

4.4 Consolidating Standard Financial Options

A linear program is proposed to consolidate and match options written on the

same underlying asset across different types and strike prices. The model is simple

without making any assumptions on the option’s pricing model or the stochastic

behavior of the underlying security.

4.4.1 Match Orders on Standard Options

Let us consider an options market in regard to a single underlying asset S with

an expiration date T . It has a set of buy orders indexed m ∈ {1, 2, ...,M} and a set

of sell orders indexed n ∈ {1, 2, ..., N}. Buy orders are represented by a type vector

φ ∈ {−1, 1}M , a strike price vector p ∈ RM
+ , and bid prices b ∈ RM

+ . Sell orders are

denoted by a separate type vector ψ ∈ {−1, 1}N , a strike vector q ∈ RN
+ , and ask

prices a ∈ RN
+ .

The exchange aims to match buy and sell orders submitted by traders. Specifically,

it decides the fraction γ ∈ [0, 1]M to sell to buy orders and the fraction δ ∈ [0, 1]N to

buy from sell orders. The objective is to maximize the net profit, taking into account

72

the potential deficit or gain in the future, denoted by a decision variable L ∈ R:

max
γ,δ,L

b>γ − a>δ − L (M.1)

s.t.
∑
m

γm max{φm(S − pm), 0}︸ ︷︷ ︸
ΨΓ

−
∑
n

δn max{ψn(S − qn), 0}︸ ︷︷ ︸
Ψ∆

≤ L, ∀S ∈ [0,∞)

(4.1)

Here, the first term
∑

m γm max{φm(S− pm), 0} in the constraint (4.1) calculates the

total payoff of sold options as a function of S, which is the obligation or liability of the

exchange at the time of option expiration. The second term
∑

n δn max{ψn(S−qn), 0}
computes the total payoff of bought options, by which the exchange has the right to

exercise. The constraint guarantees that the difference between the liability and

the payoff of the exchange will be bounded by L, regardless of the value of S on

the expiration date. We denote options bought by the exchange as Portfolio ∆ and

options sold as Portfolio Γ, and describe their relationship below.

Definition 4.1 (Payoff Dominance. Adapted from Merton (1973b)). Portfolio ∆

(weakly) dominates Portfolio Γ with an offset L, if the payoff of portfolio ∆ plus a

constant L is greater than or equal to that of Portfolio Γ for all possible states of the

underlying variable at expiration. Portfolio Γ is said to be (weakly) dominated by

portfolio ∆ with an offset L.

We analyze the complexity of running Mechanism M.1. The left-hand side of

constraint (4.1) is a linear combination of max functions, and thus is a piecewise

linear function of S. Therefore, it suffices to solve M.1 by satisfying constraints

defined by S at each breakpoint. In our case, breakpoints of the constraint (4.1) are

the defined strike values in the market, plus two endpoints: p ∪ q ∪ {0,∞}. Let nK

denotes the number of distinct strike values in the market, which is bounded above

by norders = M + N , the total number of orders in the market. Therefore, M.1 is

a linear program that has nK + 2 payoff constraints, and requires time polynomial

in the size of the problem instance to solve. Complete proofs from this chapter are

deferred to Appendix B.

Theorem 4.1. Mechanism M.1 matches options written on the same underlying asset

and expiration date across all types and strike prices in time polynomial in the number

of orders.

We give two motivating examples based on real-market options data below to

illustrate the economic meaning and the usefulness of a flexible L. In short, the

73

decision variable L allows the exchange to take a (worst-case) deficit at the future

time of option expiration if it is preemptively covered by a surplus (i.e., revenue) at

the time of contract transaction (Example 4.1) or to take a temporary deficit (i.e.,

expense) at the time of contract transaction if it is guaranteed to earn it back later at

the time of option expiration (Example 4.2). Therefore, the mechanism guarantees

no loss (as L is incorporated in the objective) for each match, and has an extra degree

of freedom to match orders.

Example 4.1 (A match with a positive L). We use the proposed Mechanism M.1

to consolidate options of Walt Disney Co. (DIS) that are priced on January 23, 2019

and expire on June 21, 2019. We find the following match, where each order would

not transact in its corresponding independent market. The exchange can

• sell to the buy order on C(DIS, 110) at bid $7.2,

• sell to the buy order on P (DIS, 150) at bid $38.75,

• buy from the sell order on C(DIS, 150) at ask $0.05,

• buy from the sell order on P (DIS, 110) at ask $5.1,

and get an immediate gain of $40.8 (7.2 + 38.75− 5.1− 0.05). Figure 4.1(a) plots the

payoffs of bought and sold options as a function of DIS, showing that the exchange

will have a net liability of $40 (i.e., L = 40) regardless of the DIS value at expiration.

The exchange makes a net profit of $0.80 from the match at no risk.

Example 4.2 (A match with a negative L). We consolidate options of Apple Inc.

(AAPL) that are priced on January 23, 2019 and expire on January 17, 2020. We find

the following match, where the exchange can

• sell to the buy order on C(AAPL, 160) at bid $14.1,

• sell to the buy order on P (AAPL, 80) at bid $0.62,

• buy from the sell order on C(AAPL, 80) at ask $74.2,

• buy from the sell order on P (AAPL, 160) at ask $19.1.

The match incurs an expense of $78.58 (14.1 + 0.62 − 74.2 − 19.1) and yields a

guaranteed payoff of $80 (i.e., L = −80) at expiration. Figure 4.1(b) depicts the

respective payoffs of bought and sold options. From the match, we can infer an

interest rate of 1.82%, calculated by 78.58er∆t = 80.

74

0 40 80 120 160 200
DIS

0

50

100

150

Pa
yo

ff

buy portfolio
sell portfolio

(a) Payoffs of options bought and sold in
Example 4.1 as a function of DIS value.

0 50 100 150 200 250 300
AAPL

0

50

100

150

200

Pa
yo

ff

buy portfolio
sell portfolio

(b) Payoffs of options bought and sold in
Example 4.2 as a function of AAPL value.

Figure 4.1: Payoffs of the matched options as a function of the value of the underlying
asset at expiration. Fig. 4.1(a) shows the case of L > 0, and Fig. 4.1(b) the case of
L < 0.

Remarks. Several extensions can be directly applied to the mechanism:

(1) The time value of investments can be incorporated by multiplying L by a (dis-

count) rate in the objective of Mechanism M.1.

(2) We can adapt constraints on decision variables γ and δ to reflect different quan-

tities specified in orders.

(3) By restricting L equal to 0, Mechanism M.1 matches orders by finding a common

form of arbitrage where the exchange may profit at the time of order transaction

subject to zero loss in the future.

4.4.2 Quote Prices for Standard Options

A standard exchange maintains the best quotes (i.e., the highest bid and lowest

ask) for each independent options market. This section extends Mechanism M.1 to

quote the most competitive prices for a custom option of any type and strike by

considering other options related to the same underlying security. We describe the

price quote procedure in an arbitrage-free market (φ,p, b,ψ, q,a) below, and defer

the proof of correctness to the Appendix B.1.2.

(1) The best bid b∗ for a custom option (χ, S,K, T) is the maximum gain of selling

a portfolio of options that is weakly dominated by (χ, S,K, T) for some L.

We derive b∗ by adding (χ, S,K, T) to the sell side of the market indexed N+1 (as

the exchange buys from sell orders), initializing its price aN+1 to 0, and solving

for M.1. The best bid b∗ is then the returned objective.

75

(2) The best ask a∗ for a custom option (χ, S,K, T) is the minimum cost of buying

a portfolio of options that weakly dominates (χ, S,K, T) for some L.

We derive a∗ by adding (χ, S,K, T) to the buy side of the market indexed M + 1,

initializing its price bM+1 to a large number (i.e., 106), and solving for M.1. The

best ask a∗ is then bM+1 minus the returned objective.

In the case of matching orders with multiple units, it is necessary to consider all orders

in the market. For quoting prices and deciding the existence of a match, however,

we only need to consider a set of orders that have the most competitive prices. We

define these orders as a frontier set F .

Definition 4.2 (A Frontier Set of Options Orders). An option order is in the frontier

set F if its bid or ask cannot be improved by any other orders in the market. That

is, the bid price of a buy order is no less than the maximum gain of selling a weakly

dominated portfolio of options for some offset L; the ask price of a sell order is no

larger than the minimum cost of buying a weakly dominant portfolio of options for

some offset L.

Corollary 4.1.1. Mechanism M.1 determines price quotes and the existence of a

match in time polynomial in |F|.

The complete proof for Corollary 4.1.1 is deferred to Appendix B.1.3, which shows

that in order to quote the most competitive prices (i.e., the highest bid and the lowest

ask) for any target option (χ, S,K, T), it suffices to consider options orders in F . The

runtime complexity follows immediately from Theorem 4.1.

4.5 Combinatorial Financial Options

This section proposes combinatorial financial options, which extend standard fi-

nancial options to more general derivative contracts that can be written on any linear

combination of U underlying assets. We formally define a combinatorial option and

its specifications.

Definition 4.3 (Combinatorial Financial Options). Combinatorial financial options

are contracts that specify the right to buy or sell a linear combination of underlying

assets at a strike price by an expiration date. Each contract specifies a call or put

type χ ∈ {1,−1}, a weight vector ω ∈ RU , a strike price K ≥ 0, and an expiration

date T . It has a payoff of max{χ(ω>S − K), 0}, where S ∈ RU
≥0 is a vector of the

underlying assets’ values at T .

76

Consider a combinatorial option C(MSFT − AAPL, 0) that has weight 1 for MSFT,

weight−1 for AAPL, and a strike price of zero. An investor who buys the option bets on

the event that Microsoft outperforms Apple Inc., and will exercise it if SMSFT > SAAPL.

Thus, unlike standard options that will pay off due to price changes of a single security,

combinatorial options bet on relative movements between assets or groups of assets,

thus enabling the expression of future correlations among different underlying assets.

We note that the distinction between a call and a put for combinatorial options

depends on the strike price and coefficients that one specifies a contract. For instance,

in the above example, C(MSFT−AAPL, 0) is identical to P (AAPL−MSFT, 0), as they have

the same payoff function max{SMSFT − SAAPL, 0}. Despite the different interpretations

and expressions, we follow the convention of standard options and have the strike

price always be non-negative.

The increased expressiveness in combinatorial options brings new challenges in

market design: only matching buy and sell orders on options related to the same assets

and weights may yield few or no trades, despite plenty of profitable trades among

options written on different portfolios. We start by giving the following motivating

examples to illustrate such scenarios.

Example 4.3 (Matching combinatorial option orders). Consider a combinatorial

options market with four orders

• o1: buy one C(1AAPL + 2MSFT, 300) at bid $110;

• o2: buy one C(1AAPL + 1MSFT, 300) at bid $70;

• o3: sell one C(1AAPL + 3MSFT, 300) at ask $160;

• o4: sell one C(1AAPL, 250) at ask $5.

The exchange returns no match if it only considers options related to the same com-

bination of assets. However, a profitable match does exist. The exchange can sell to

o1 and o2 and simultaneously buy from o3 and o4 to get an immediate gain of $15

(110+70-160-5). Figure 4.2 plots the overall payoff

Ψ := max{SAAPL + 3SMSFT − 300, 0}+ max{SAAPL − 250, 0}−

max{SAAPL + 2SMSFT − 300, 0} −max{SAAPL + SMSFT − 300, 0},

as a function of SAAPL and SMSFT. The trade cannot subtract from the $15 immediate

gain, but could add to it, depending on the future prices of the two stocks.

77

AAPL

0 100200300 400 500 MSFT0100
200300

400500

Pa
yo

ff

0
50
100
150
200
250
300

Figure 4.2: Payoff of combinatorial options matched in Example 4.3 as a function of
SAAPL and SMSFT. The example demonstrates the case of L = 0.

In the above example, the exchange can consider matching each individual buy

order (selling to o1 and buying 2
3
o3 and 1

3
o4; selling to o2 and buying 1

3
o3 and 2

3
o4).

Both are profitable trades, leading to the same match as in the example. The next

example shows that matching individual buy order to multiple sell orders may fail to

find valid trades.

Example 4.4 (Matching combinatorial option orders). Consider the following four

combinatorial options orders

• o1: buy one C(A + B, 10) at bid $6;

• o2: buy one C(B + C, 7) at bid $6;

• o3: sell one C(A + B + C, 7) at ask $10;

• o4: sell one C(B, 3) at ask $2.

No match will be found if we consider each buy order individually: covering a sold o1

or o2 requires buying the same fraction of o3, which is at a higher price and will incur

a net loss. However, a valid match does exist by selling to o1 and o2 and buying from

o3 and o4. It costs the exchange $0, and can yield a positive payoff in the future: the

exchange has

max{SA + SB − 10, 0}+ max{SB + SC − 7, 0}

≤ max{SA + SB + SC − 7, 0}+ max{SB − 3, 0},

meaning the liability will always be no larger than the payoffs of bought options, for

all non-negative SA, SB, SC .

78

We extend the proposed matching mechanism M.1 for standard options to facili-

tate matching combinatorial options written on different combinations of underlying

assets.

4.5.1 Match Orders on Combinatorial Options.

A combinatorial financial options market is a two-sided market with a set of

buy orders indexed by m ∈ {1, 2, ...,M} and a set of sell orders indexed by n ∈
{1, 2, ..., N}. Buy orders are represented by a type vector φ ∈ {1,−1}M , a weight

matrix α ∈ RU×M , a strike vector p ∈ RM
≥0, and a bid price vector b ∈ RM

+ . Sell orders

are defined by a separate type vector ψ ∈ {1,−1}N , a weight matrix β ∈ RU×N , a

strike vector q ∈ RN
≥0, and an ask price vector a ∈ RN

+ . Similar to a standard options

market, the exchange decides the fraction γ ∈ [0, 1]M to sell to buy orders and the

fraction δ ∈ [0, 1]N to buy from sell orders to maximize net profit.

max
γ,δ,L

b>γ − a>δ − L (M.2)

s.t.
∑
m

γm max{φm(α>mS − pm), 0} −
∑
n

δn max{ψn(β>nS − qn), 0} ≤ L ∀S ∈ RU
≥0

(4.2)

However, unlike M.1, due to the combinatorial nature, it is no longer feasible to solve

the optimization problem M.2 by iterating every combination of breakpoint values,

and the number of constraints can grow exponentially as O(2M+N). We analyze the

complexity of finding the optimal match in a combinatorial options market, showing

that given a market instance, it is NP-complete to decide if a certain matching as-

signment, γ and δ, violates the constraint (4.2) for a fixed L. We defer the detailed

proof to the Appendix B.2.1, which shows a reduction from the Vertex Cover prob-

lem. Using a slightly stronger version of Theorem 4.2, we show that optimal clearing

of a combinatorial options market is coNP-hard.

Theorem 4.2. Consider all combinatorial options in the market (φ,α,p,ψ,β, q).

For any fixed L, it is NP-complete to decide

• Yes: γ = δ = 1 violates the constraint in M.2 for some S,

• No: γ = δ = 1 satisfies the constraint in M.2 for all S,

even assuming that each combinatorial option is written on at most two underlying

assets.

79

Theorem 4.3. Optimal clearing of a combinatorial options market (φ,α,p, b,ψ,β, q,a)

is coNP-hard, even assuming that each combinatorial option is written on at most two

underlying assets.

Since it is no longer practical to solve M.2 by identifying all constraints defined

by different combinations of underlying asset values, we propose Algorithm 3 that

finds the exact optimal match through iterative constraint generation. At the core

of Algorithm 3 is a bilevel optimation formulation: the upper level M.3U is a linear

program that computes the optimal solution that satisfies all generated constraints

(i.e., realized payoffs w.r.t. different S), and the lower level M.3L is a mixed-integer

linear program which in each iteration, generates an S that violates the upper-level

constraint (i.e., constraint 4.2) the most. The generated S is then included in the

constraint set.

The exact optimal match is returned when the lower level M.3L gives an objective

value of zero, meaning there exists no S that violates the upper-level constraint. The

algorithm trivially terminates finitely, but similar to the simplex method, it has no

guarantee on the rate of convergence. We later demonstrate in experiments that

Algorithm 3 converges quickly and the number of iterations grows linearly in the size

of a problem instance for synthetic options data.

We prove that Algorithm 3 returns the same optimal clearing as M.2, by first

claiming in the following Lemma that M.3L finds the S which violates the constraint

(4.2) of M.2 the most.

Lemma 4.4. Given fixed γ, δ, and L for a combinatorial options market (φ,α,p, b,ψ,β, q,a),

M.3L returns the value of underlying assets S that violates the constraint of M.2 the

most.

Proof. First, it is easy to see that the formulation below returns the S that vio-

lates constraint (4.2) the most, since we will have the largest feasible f and the

smallest feasible g at the optimum. That is, fm = max{φm(α>mS − pm), 0} and

gn = max{ψn(β>nS − qn), 0}.

max
S,f ,g

γ>f − δ>g − L

s.t. fm ≤ max{φm(α>mS − pm), 0} ∀m ∈ {1, ...,M}

gn ≥ ψn(β>n S − qn)

gn ≥ 0 ∀n ∈ {1, ..., N}

80

Algorithm 3 Match orders in a combinatorial options market.

Input: A combinatorial options market defined by
(φ,α,p, b,ψ,β, q,a).

Output: An optimal clearing that matches γ∗ buy orders to δ∗

sell orders.

1: Initialize z ←∞, S ← 0, f ← max{φ(α>S − p),0},
g ← max{ψ(β>S − q),0}, C ← {(f , g)}.

2: while z > 0 do
3: Solve the following upper level optimization problem and

get an optimal solution (γ∗, δ∗, L∗)

max
γ,δ,L

b>γ − a>δ − L (M.3U)

s.t. γ>f − δ>g ≤ L ∀(f , g) ∈ C

4: Given (γ∗, δ∗, L∗), solve the following lower level MILP
and get an optimal solution (S∗,f ∗, g∗, z∗)

max
S,f ,g,I

z := γ>f − δ>g − L (M.3L)

s.t. φm(α>mS − pm) ≥M(Im − 1)

φm(α>mS − pm) ≤MIm
fm ≤ φm(α>mS − pm)−M(Im − 1)

fm ≤MIm
Im ∈ {0, 1} ∀m ∈ {1, ...,M}
gn ≥ ψn(β>nS − qn)

gn ≥ 0 ∀n ∈ {1, ..., N}

5: C ← C ∪ (f ∗, g∗), z ← z∗

6: return γ∗ and δ∗

It remains to show the set of constraints related to any buy order m in M.3L is

equivalent to fm ≤ max{φm(α>mS − pm), 0}. This set of constraints implements the

big-M trick (where M is a large constant, say 106) on a binary decision variable

Im to linearize the max function. Consider each case of Im ∈ {0, 1}. We have

φm(α>mS − pm) ≥ 0 ⇐⇒ Im = 1 and fm = φm(α>mS − pm) ⇐⇒ Im = 1.

Therefore, when M.3L returns an objective value of zero, the constraint 4.2 is

satisfied for all S, and Algorithm 3 returns a valid match that optimizes for overall

profit.

Theorem 4.5. Given a combinatorial options market instance (φ,α,p, b,ψ,β, q,a),

Algorithm 3 returns the optimal clearing defined in M.2.

81

4.6 Experiments: OptionMetrics Data

We first show on real options data that our mechanism finds matches that the

current independent-market design cannot and provides more competitive bid and

ask prices.

We conduct empirical analyses on the OptionMetrics dataset provided by the

Wharton Research Data Services (WRDS), which contains real-market option prices

(i.e., the best bid and ask) for each options market defined by an underlying asset,

an option type, a strike price, and an expiration date.4 We choose options data on 30

stocks that compose the DJI, as these stocks have actively traded options that cover

a wide range of strike values. There are a total of 25,502 distinct options markets for

stocks in DJI on January 23, 2019, yielding an average of 850 separate markets for

each security. The offered options cover around 12 expiration dates for each stock, and

thus about 70 markets that have different combinations of types and strikes within

the same security and expiration date.

We use the proposed mechanism M.1 to consolidate options markets, reducing the

original 25,502 markets to a total of 366 markets, each associated with one underlying

security and expiration. We are interested in matching orders (i.e., finding arbitrage

opportunities) that fail to transact under the independent market design, computing

new option quotes implied by our consolidated arbitrage-free markets, and comparing

the case of restricting L to 0 to the case of having L as a decision variable. Detailed

statistics for options of each stock are available in the Appendix B.3.

Out of the 366 consolidated options markets, we spot arbitrage opportunities

in 150 markets, among which 94 cases make profits at contract transaction (e.g.,

Example 4.1) and the remaining 56 incur expenses for higher payoffs upon option

expiration (e.g., Example 4.2). Matches with non-negative L make an average profit

of $1.03, with a maximum of $9.64, and matches with negative L imply an average

interest rate of 0.7%, with a maximum at 2.02%. When restrict L to 0, we are able

to find arbitrage in 74 markets.

The remaining 216 markets are arbitrage-free (for the flexible L case), which

capture a total of 16,088 option series and 32,176 orders. We find that approximately

49% of the orders belong to the frontier set. Using these orders to derive the most

competitive bids and asks, we find that the bid-ask spreads can be reduced by 73%,

from an average of 80 cents for each option series in the independent markets to 21

4Our data includes American options that allow exercise before expiration. In practice, American
options are almost always more profitable to sell than to exercise early (Singh 2019). In experiments,
we ignore early exercise and treat them as European options.

82

cents in consolidated options markets. For the case of L set to 0, the bid-ask spreads

can be reduced by 52%. These results show that aggregating independently-traded

options leads to a more efficient market, with tightened bid-ask spreads and matches

of options across types and strikes.

4.7 Experiments: Synthetic Combinatorial Options Market

Since there is no combinatorial option traded in financial markets, we evaluate the

proposed algorithm on synthetic combinatorial options, with prices calibrated using

real-market standard options written on each related underlying security.5 We are

interested in quantifying the performance of Algorithm 3 in parametrically different

markets that vary in the likelihood of matching, the number of orders, and the number

of underlying assets.

4.7.1 Generate Synthetic Orders

We generate combinatorial options markets of U underlying assets. Each combina-

torial option is written on a combination of two stocks, Si and Sj, randomly selected

from the U underlying assets. This gives a total number of
(
U
2

)
asset pairs. Weights for

the selected assets, wi and wj, are picked uniformly randomly from {±1,±2, . . . ,±9}
and are processed to be relatively prime.

We generate strikes and premium prices using real-market standard options data

related to each individual asset to realistically capture the value of the synthetic

portfolio. Let Ki and Kj respectively denote the set of strike prices offered by standard

options on each selected asset. We generate the strike K by first sampling two strike

values, ki ∼ Ki and kj ∼ Kj, and scaling them by the associated weights to get

K = wiki + wjkj. If K is positive, we have a call option. Instead, if K is negative,

we generate a put option and update the strike to −K and weights to −wi and −wj
to comply with the representation and facilitate payoff computations.

We randomly assign each option to the buy or sell side of the market, and generate

a bid or an ask price accordingly. Similar to the price quote procedure in Section 4.4,

we derive the bid b by calculating the maximum gain of selling a set of standard

options whose payoff is dominated by the combinatorial option of interest and the ask

a by calculating the minimum cost of buying a set of standard options whose payoff

dominates the generated option. We add noises to the derived prices to control the

5We adopt the same dataset as Section 4.6, and use standard options that expire on Febuary 1,
2019, to calibrate order prices for generated combinatorial options.

83

−7 −6 −5 −4 −3
Noise Level (log2(η))

0

100

200

300

#I
te

ra
tio

ns

iterations
profit

0

50

100

150

200

250

Ne
t P

ro
fit

(a) Vary noise η added to order prices in
markets with U = 4 and norders = 150.

100 200 300 400
#Orders

0

100

200

300

#I
te

ra
tio

ns

iterations
profit

0

80

160

240

320

Ne
t P

ro
fit

(b) Vary number of orders norders in
markets with U = 4 and η = 2−4.

0 4 8 12 16 20
#Stocks (U)

0

500

1000

1500

#I
te

ra
tio

ns

iterations
profit

0

50

100

150

200

Ne
t P

ro
fit

(c) Vary size of underlying assets U in
markets with norders = 150 and η = 2−4.

Figure 4.3: Results of using Mechanism M.2 to match orders in synthetic combinato-
rial options markets. The number of generated constraints (solid lines) and the net
profits (dashed line), as the markets vary in price noise, the number of orders, and
the size of underlying assets. Red lines represent markets that offer a restrictive set
of asset pairs, which covers all U underlying assets.

likelihood of matching in a market, and set final prices to b(1 + ζ) or a(1− ζ), where

ζ ∼ [0, η] and η is a noise parameter.

4.7.2 Evaluation

We explore a range of markets that vary in price noise, the number of orders,

and the number of underlying assets. For each market, we measure the number of

iterations (i.e., the number of constraints generated) that Algorithm 3 runs to find an

exact optimal clearing and the net profit made from the trade. For all experiments,

84

we show results averaged over 40 simulated markets, with the error bars denoted one

standard error around the means.

We first validate that as noises added to the derived bids and asks increase, the

likelihood of matching in our simulated combinatorial options market becomes higher.

We generate markets with four underlying assets (arbitrarily selected from the 30

stocks in DJI) and 150 synthetic combinatorial options orders, and vary the noise

η ∈ {2−7, 2−6, 2−5, 2−4, 2−3}. Figure 4.3(a) plots the averaged results. As expected,

the net profit made from the optimal match increases, as η increases. Moreover,

we find that as the matching probability increases, the number of iterations that

Algorithm 3 takes to find the optimal solution consistently decreases. This makes

sense as intuitively, in thin markets where few trades are likely to occur, the lower-

level MILP will keep coming up with S values to refute a large number of matching

proposals until convergence.

Figure 4.3(b) further quantifies the change in iteration numbers and net profits,

as we vary the number of combinatorial options orders. We fix these markets to

have four underlying assets with a price noise of 2−4. As we see from Figure 4.3(b),

as a market aggregates more orders, transactions are more likely to happen, leading

to larger net profits. We also find that the number of generated constraints grows

(sub)linear in the number of orders. Since different S values are generated to define

payoffs of distinct options and the number of distinct options increases sublinear in

the number of total orders, the rate of increase in the number of iterations tends to

decrease as a market aggregates more orders.

Finally, we evaluate how Algorithm 3 scales to markets with increasingly larger

numbers of underlying assets. In this case, as the dimension of S becomes large, the

number of asset-value combinations grows exponentially. Figure 4.3(c) (black lines)

demonstrates a much faster increase in the number of iterations and a steady decrease

in the net profit.6 It suggests that as the market provides a large set of underlying as-

sets (e.g., all 30 stocks in DJI), the thin market problem may still arise even when the

mechanism facilitates matching options written on different combinations of underly-

ing assets. Here, we make the assumption that every asset pair in the
(
U
2

)
is equally

likely to be traded. In real markets, investors may be more interested in certain asset

pairs, trading them more frequently than the others. Based on such observations, a

market can specify a prescriptive set of asset pairs, P , which covers the U assets, for

6We report average runtimes to quantify the impact of increasing constraints. The average times
(in seconds) that Algorithm 3 computes the optimal match are 20, 153, 233, 297, 344, and 358 for
the respective markets with U ∈ {2, 4, 8, 12, 16, 20}.

85

traders to choose from and specify custom weights. For the experiments, we choose

|P| = U . Figure 4.3(c) (red lines) shows that such prescriptive design may indeed

attenuate the thin market problem.

4.8 Discussion

When related financial markets run independently, traders remove arbitrage and

close bid-ask spreads themselves. Our OptionMetrics experiments show that they

do so suboptimally. Profits can flow to agents with computational power and no

information. Our design instead rewards informed agents only and reduces the arms

race among traders, by putting computational power into the exchange.

This chapter has examined a fully expressive combinatorial options market that

allows all linear combinations of assets. One next step is to explore naturally struc-

tured markets where combinations are limited to components in a graph of underlying

assets. One special case is a hierarchical graph (Guo and Pennock 2009), for example,

the S&P 500, sectors like travel and technology, subsectors like airlines and internet

within those, etc.

86

CHAPTER 5

Log-time Prediction Markets for Interval

Securities

This chapter studies the design of a prediction market to recover a complete

and fully general probability distribution over a random variable. Traders bet on

outcomes by buying and selling interval securities that pay $1 if the outcome falls

into an interval and $0 otherwise. The market takes the form of a central automated

market maker and allows traders to express interval endpoints of arbitrary precision.

This chapter presents two designs in both of which market operations take time

logarithmic in the number of intervals (that traders distinguish), providing the first

computationally efficient market for a continuous variable. The first design repli-

cates the popular logarithmic market scoring rule (LMSR), but operates exponentially

faster than a standard LMSR by exploiting its modularity properties to construct a

balanced binary tree and decompose computations along the tree nodes. The second

design features two or more parallel LMSR market makers that mediate submarkets

of increasingly fine-grained outcome partitions. This design remains computationally

efficient for all operations, including arbitrage removal across submarkets. It adds

two additional benefits for the market designer : (1) the ability to express utility for

information at various resolutions by assigning different liquidity values, and (2) the

ability to guarantee a true constant bounded loss by geometrically decreasing the

liquidity in each submarket.

5.1 Introduction

Consider a one-dimensional random variable, such as the opening value of the

S&P 500 index on December 17, 2021. We design a market for trading interval se-

curities corresponding to predictions that the outcome will fall into some specified

87

interval, say between 2957.60 and 3804.59, implemented as binary contracts that pay

out $1 if the outcome falls in the interval and $0 otherwise. We are interested in

designing automated market makers to facilitate a fully expressive market computa-

tionally efficiently. Traders can select custom interval endpoints of arbitrary precision

corresponding to a continuous outcome space, whereas the market maker will always

offer to buy or sell any interval security at some price.

A form of interval security called the condor spread is common in financial options

markets, with significant volume of trade. Each condor spread involves trading four

different options,1 and financial options offered by the market may only support a

limited subset of approximate intervals. For example, as of this writing, S&P 500

options expiring on December 17, 2021, distinguish 56 strike prices, allowing the pur-

chase of around 1500 distinct intervals of minimum width 25. Moreover, as discussed

in Chapter 4, each strike price trades independently despite the logical constraints

on their relative values, and thus it will require time linear in the number of offered

strike prices to remove arbitrage.

Outside traditional financial markets, the logarithmic market scoring rule (LMSR)

market maker (Hanson 2003, 2007) has been used to elicit information through the

trade of interval securities. The Gates Hillman Prediction Market at Carnegie Mellon

University operated LMSR on 365 outcomes, representing 365 days of one year, to

forecast the opening time of the new computer science building (Othman and Sand-

holm 2010). Traders could bet on different intervals by choosing a start and an end

date. A similar market2 was later launched at the University of Texas at Austin, us-

ing a liquidity-sensitive variation of LMSR (Othman, Pennock, Reeves, and Sandholm

2013). Moreover, LMSR has been deployed to predict product-sales levels (Plott and

Chen 2002), instructor ratings (Chakraborty et al. 2013), and political events (Hanson

1999).

LMSR has two limitations that prevent its scaling to markets with a continuous

outcome space. First, LMSR’s worst-case loss can grow unbounded if traders select

intervals with prior probability approaching zero (Gao, Chen, and Pennock 2009).

Second, standard implementations of LMSR operations run in time linear in the

number of outcomes or distinct future values traders define—in our case, arbitrarily

many. The constant-log-utility and other barrier-function-based market makers (Chen

and Pennock 2007; Othman and Sandholm 2012) feature constant bounded loss,

1A call option written on an underlying stock with strike price K and expiration date T pays
max{S −K, 0}, where S is the opening value of the stock on T . For example, 25 shares of “$1 iff
[2650,2775]” ≈ max{S − 2650, 0} −max{S − 2675, 0} −max{S − 2750, 0}+ max{S − 2775, 0}.

2www.cs.utexas.edu/news/2012/research-corner-gates-building-prediction-market

88

www.cs.utexas.edu/news/2012/research-corner-gates-building-prediction-market

but still suffer the second limitation regarding computational intractability. Thus,

previous markets feature a relatively small set of predetermined intervals and run in

time linear in the number of supported outcomes, limiting the ability to aggregate

high-precision trades and elicit the full distribution of a continuous random variable.

In this chapter, we propose two automated market makers that perform exponen-

tially faster than the standard LMSR and previous designs. Market operations (i.e.,

price, cost, and buy) can be executed in time logarithmic in the number of distinct

intervals traded, or linear in the number of bits describing the outcome space. The

first market maker calculates LMSR exactly, but employs a balanced binary tree to

implement interval queries and trades. We show that the normalization constant of

LMSR—a key quantity in its price and cost function—can be calculated recursively

via local computations on the balanced tree. The work here contributes to the rich lit-

erature that aims to overcome the worst-case #P-hardness of LMSR pricing (Chen et

al. 2008) by exploiting the outcome space structure and limiting expressivity (Chen,

Fortnow, Nikolova, and Pennock 2007; Chen, Goel, and Pennock 2008; Guo and

Pennock 2009; Laskey et al. 2018; Xia and Pennock 2011).

The second market maker works by maintaining parallel LMSR submarkets that

adopt different liquidity parameters and offer interval securities at various resolutions.

We show that liquidity parameters can be chosen to guarantee a constant bounded

loss independent of market precision, and prices can be kept coherent efficiently by

removing arbitrages across submarkets. We demonstrate through agent-based simu-

lation that our second design enjoys more flexible liquidity choices to facilitate the

information-gathering objective: it can get close to the “best of both worlds” displayed

by coarse and fine LMSR markets, with prices converging fast at both resolutions re-

gardless of the traders’ information structure.

The two proposed designs, to our knowledge, are the first to simultaneously achieve

expressiveness and computational efficiency. As both market makers facilitate trading

intervals at arbitrary precision, they can elicit any probability distribution over a con-

tinuous random variable that can be practically encoded by a machine. Throughout

this chapter, we use the S&P 500 index value as a running example, but the frame-

work is generic and can handle any one-dimensional discrete or continuous variable,

for example, the number of coronavirus infections by the end of the year, the date

when a vaccine will be released, the landfall point of a hurricane along a coastline, or

the number of tickets sold in the first week of a new movie release.

89

5.2 Formal Setting

This section first reviews cost-function-based market making (Abernethy, Chen,

and Vaughan 2011; Chen and Pennock 2007), and then introduces interval markets.

5.2.1 Cost-Function-Based Market Making

Let Ω denote a finite set of outcomes, corresponding to mutually exclusive and

exhaustive states of the world. We are interested in eliciting expectations of binary

random variables φi : Ω → {0, 1}, indexed by i ∈ I, which model the occurrence of

various events, such as “S&P 500 will open between 2957.60 and 3804.59 on December

17, 2021 ”. Each variable φi is associated with a security that pays out φi(ω) when

the outcome ω ∈ Ω occurs, and thus φi is also called the payoff function. Binary

securities pay out $1 if the specified event occurs and $0 otherwise. The vector

(φi)i∈I is denoted φ. Traders trade bundles δ ∈ R|I| of security with a central market

maker, where positive entries in δ correspond to purchases and negative entries short

sales. A trader holding a bundle δ receives a payoff of δ · φ(ω), when ω occurs.

Following Abernethy, Chen, and Vaughan (2011) and Chen and Pennock (2007),

we assume that the market maker determines security prices using a convex and

differentiable potential function C : R|I| → R, called a cost function. The state of the

market is specified by a vector θ ∈ R|I|, listing the number of shares of each security

sold by the market maker so far. A trader who wants to buy a bundle δ in the market

state θ must pay C(θ + δ) − C(θ) to the market maker, after which the new state

becomes θ + δ.

The vector of instantaneous prices in the corresponding state θ is p(θ) := ∇C(θ).

Its entries can be interpreted as the market’s collective estimates of E[φi]: a trader

can make an expected profit by buying (at least a small amount of) the security i

if she believes that E[φi] is larger than the instantaneous price pi(θ) = ∂C(θ)/∂θi,

and by selling if she believes the opposite. Therefore, risk neutral traders with suf-

ficient budgets maximize their expected profits by moving the price vector to match

their expectation of φ. Any expected payoff must lie in the convex hull of the set

{φ(ω)}ω∈Ω, which we denote M and call a coherent price space with its elements

referred to as coherent price vectors.

We assume that the cost function satisfies two standard properties: no arbitrage

and bounded loss. The no-arbitrage property requires that as long as all outcomes ω

are possible, there be no market transaction with a guaranteed profit for a trader.

In this study, we use the fact that C is arbitrage-free if and only if it yields price

90

vectors p(θ) that are always coherent (Abernethy, Chen, and Vaughan 2011). The

bounded-loss property is defined in terms of the worst-case loss of a market maker,

supθ∈R|I|
(
supω∈Ω

(
θ · φ(ω)

)
− C(θ) + C(0)

)
, meaning the largest difference, across

all possible trading sequences and outcomes, between the amount that the market

maker has to pay the traders (once the outcome is realized) and the amount that

the market maker has collected (when securities were traded). The property requires

that this worst-case loss be a priori bounded by a constant.

5.2.2 Complete Markets and LMSR

In a complete market, we have I = Ω. Securities are indicators of individual

outcomes, φi(ω) = 1{ω = i}, where 1{·} denotes the binary indicator. We denote

each market security as φω. A risk-neutral trader is incentivized to move the price of

each security φω to her estimate of E[φω] = P[ω], which is her subjective probability

of ω occurring. Thus, traders can express arbitrary probability distributions over Ω.

This chapter considers variants of LMSR (Hanson 2003) for a complete market.

It has the cost function and prices of the form

C(θ) = b log

(∑
ω∈Ω

eθω/b

)
, pω(θ) = ∂C(θ)/∂θω =

eθω/b∑
ν∈Ω e

θν/b
, (5.1)

where b is the liquidity parameter, controlling how fast the price moves in response to

trading and the worst-case loss of the market maker, which equals b log |Ω| (Hanson

2003).

The securities in a complete market can be used to express bets on any event

E. Specifically, one share of a security for the event E can be represented by the

indicator bundle 1E ∈ RΩ with entries 1E,ω = 1{ω ∈ E}. We refer to this bundle as

the bundle security for event E. The immediate price of the bundle 1E in the state

θ is

pE(θ) := 1E · p(θ) =
∑
ω∈E

pω(θ) =

∑
ω∈E e

θω/b∑
ν∈Ω e

θν/b
. (5.2)

The cost of buying the bundle s1E, or sometimes referred to as “the cost of s shares

91

of 1E”, is a function of pE(θ) and s

C(θ + s1E)− C(θ) (5.3)

= b log

(∑
ω 6∈E

eθω/b +
∑
ω∈E

e(θω+s)/b

)
− b log

(∑
ω∈Ω

eθω/b

)
= b log

(
pEc(θ) + es/bpE(θ)

)
= b log

(
1− pE(θ) + es/bpE(θ)

)
.

We write Ec for the complementary eventEc = Ω\E, and use the fact pE(θ) + pEc(θ) = 1,

which follows from Eq. (5.2).

5.2.3 Interval Securities over [0, 1)

This chapter considers betting on outcomes within an interval [0, 1). Our approach

generalizes to outcomes that are in any [α, β) ⊆ [−∞,∞) by applying any increasing

transformation F : [α, β)→ [0, 1). We assume that the outcome ω is specified with K

bits, meaning that there areN = 2K outcomes with Ω = {j/N : j ∈ {0, 1, . . . , N−1}}.
Sections 5.3 and 5.4 will discuss how the assumption of pre-specified bit precision can

be removed.

Example 5.1 (Complete market for S&P 500). Consider a complete market for the

S&P 500 opening price on December 17, 2021, by setting N = 219 = 524,288. The

resulting complete market is I = {0, 0.01, . . . , 5242.86, 5242.87}, where we cap prices

at $5242.87 (i.e., larger prices are treated as $5242.87). The transformed outcome is

then ω = ω′/N , where ω′ is the S&P 500 price in cents.

In the outcome space Ω, we would like to enable price and cost queries as well

as buying and selling of bundle securities for the interval events I = [α, β) for any

α, β ∈ Ω ∪ {1}.3 For cost-based markets, sell transactions are equivalent to buying

a negative amount of shares, so we design algorithms for three operations: price(I),

cost(I, s), and buy(I, s), where I is the interval event and s the number of shares.

A naive implementation of price and cost following Eqs. (5.2) and (5.3) would be

linear in N . In this chapter, we propose to implement these operations in time that

is logarithmic in N .

3Throughout this study, we operate in the outcome space discretized to events ω ∈ Ω specified
with K bits, but would like to indeed discuss interval events [a, b) that include reals of arbitrary
precisions. Since, in measure theory, events are subsets of the outcome space, what we mean here
are events of form [a, b) ∩ Ω.

92

5.3 A Log-time LMSR Market Maker

This section designs a data structure, referred to as an LMSR tree, which resembles

an interval tree (Cormen, Leiserson, and Rivest 1999, Section 15.3), but includes

additional annotations to support LMSR calculations. We first define the LMSR

tree, and show that it can facilitate market operations in time logarithmic in the

number of distinct intervals that traders define.

5.3.1 An LMSR Tree for [0, 1)

An LMSR tree T is represented by a full binary tree, where each node z has either

no children (when z is a leaf) or exactly two children, denoted left(z) and right(z)

(when z is an inner node).

Definition 5.1 (LMSR Tree). An LMSR tree is a full binary tree, where each node

z is annotated with an interval Iz = [αz, βz) with αz, βz ∈ Ω ∪ {1}, a height hz ≥ 0,

a quantity sz ∈ R that records the number of bundle securities sold associated with

Iz, and a partial normalization constant Sz ≥ 0. An LMSR tree satisfies

• Binary-search property : Iroot = [0, 1), and for inner node z,

αz = αleft(z) < βleft(z) = αright(z) < βright(z) = βz.

• Height balance: hz = 0 for leaves, and for inner node z,

hz = 1 + max{hleft(z), hright(z)}, |hleft(z) − hright(z)| ≤ 1.

• Partial-normalization correctness : Sz = esz/b · (βz−αz) for leaves, and for inner

node z,

Sz = esz/b ·
(
Sleft(z) + Sright(z)

)
.

The binary-search property helps to find the unique leaf that contains any ω ∈ Ω

by descending from root and choosing left or right in each node based on whether

ω < βleft(z) or ω ≥ βleft(z). The node heights serve to maintain the height-balance

property, ensuring that the path length from root to any leaf is at most O(log n) where

n is the number of leaves of the tree (Knuth 1998). We adopt an AVL tree (Adel′son-

Vel′skĭı and Landis 1962) at the basis of our LMSR tree, but other balanced binary-

search trees (e.g., red-black trees or splay trees) could also be used.

93

To facilitate LMSR computations, we maintain a scalar quantity sz ∈ R for each

node z, which records the number of bundle securities associated with Iz sold by the

market maker. Therefore, the market state and its components for each individual

outcome ω represented by the LMSR tree T are:4

θ(T) =
∑
z∈T

sz1Iz ; θω(T) =
∑
z∈T

sz1Iz ,ω =
∑
z3ω

sz. (5.4)

The normalization constant in the LMSR price (Eq. 5.2) is then∑
ω∈Ω

eθω/b =
∑
ω∈Ω

e
∑
ω∈z sz/b =

∑
ω∈Ω

∏
z3ω

esz/b. (5.5)

We decompose the computation of the above normalization constant along the nodes

of an LMSR tree, by defining a partial normalization constant Sz in each node:5

Sz :=
1

N

∑
ω∈z

∏
z′: z⊇z′3ω

esz′/b. (5.6)

It enables the following recursive relationship, which we refer to as partial-normalization

correctness—a key property that is at the core of implementing price and buy:

Sz =

esz/b · (βz − αz) if z is a leaf,

esz/b ·
(
Sleft(z) + Sright(z)

)
otherwise.

(5.7)

Based on the LMSR tree construction, we implement the following operations for

any interval I = [α, β):

• price(I, T) returns the price of bundle security for I;

• cost(I, s, T) returns the cost of s shares of bundle security for I;

• buy(I, s, T) updates T to reflect the purchase of s shares of bundle security for I.

In order to implement cost, it suffices to implement price by Eq. (5.3). Since the price

of [α, β) can be obtained from prices for [α, 1) and [β, 1), i.e., p[α,β)(θ) = p[α,1)(θ) −
p[β,1)(θ), we implement price for intervals of the form [α, 1). Similarly, buying s

shares of [α, β) is equivalent to first buying s shares of [α, 1) and then buying (−s)
shares of [β, 1), as the market ends up in the same state θ + s1[α,β). We implement

4For simplicity, we write ω ∈ z to mean ω ∈ Iz and z′ ⊆ z to mean Iz′ ⊆ Iz. Thus, z′ ⊆ z
corresponds to z′ being a descendant of z in T .

5The 1/N scale in Eq. (5.6) leads to a natural interpretation of Sz, when z is a leaf.

94

price and buy for one-sided intervals I = [α, 1), and the remaining operations will

follow.

5.3.2 Price Queries

Consider price queries for I = [α, 1). Let vals(T) = {αz : z ∈ T} denote the set of

distinct left endpoints in the tree nodes. We start by assuming that α ∈ vals(T), and

later relax this assumption. We proceed to calculate pI(θ) in two steps. First, we

construct a set of nodes Z whose associated intervals Iz are disjoint and cover I. To

achieve this, we conduct a binary search for α, putting in Z all of the right children

of the visited nodes that have αz > α, as well as the final node with αz = α. Recall

that n is the number of leaves of the LMSR tree, and the height balance implies that

Z has a cardinality of O(log n). The resulting set Z satisfies pI(θ) =
∑

z∈Z pIz(θ).

Second, we determine pIz(θ) for each node z ∈ Z. Starting from the LMSR price

in Eq. (5.2), we take advantage of the defined partial normalization constants Sz to

calculate pIz(θ):

pIz(θ) =
1

NSroot

∑
ω∈z

eθω/b =
1

Sroot

· 1

N

∑
ω∈z

∏
z′3ω

esz′/b (5.8)

=
1

Sroot

· 1

N

∑
ω∈z

[(∏
z′: z⊇z′3ω

esz′/b

)(∏
z′⊃z

esz′/b

)]
(5.9)

=
Sz
Sroot

(∏
z′⊃z

esz′/b

)
︸ ︷︷ ︸

Pz

. (5.10)

In Eq. (5.8), we expand θω using Eq. (5.4). In Eq. (5.9), we use the fact that any

node z′ with a non-empty intersection with z (i.e., Iz ∩ Iz′ 6= ∅) must be either a

descendant or an ancestor of z as a direct consequence of the binary-search property.

The product Pz in Eq. (5.10) iterates over z′ on the path from root to z, and thus

can be calculated along the binary-search path.

We now handle the case when α 6∈ vals(T). After the leaf z on the search path is

reached, we have αz < α < βz. Instead of expanding the tree, we conceptually create

two children of z: z′ and z′′ with Iz′ = [αz, α) and Iz′′ = [α, βz), and add z′′ in Z.

Since θω is constant across ω ∈ Iz, we obtain pIz′′ (θ) = βz−α
βz−αz · pIz(θ) by Eq. (5.2).

Summarizing the foregoing procedures yields Algorithm 4, which simultaneously

constructs the set Z and calculates the prices pIz(θ). Since it suffices to go down a

single path and only perform constant-time computation in each node, the resulting

95

algorithm runs in time O(log nvals), where nvals denotes the number of distinct values

appeared as endpoints of intervals in all the executed transactions. We defer complete

proofs from this chapter to Appendix C.1.

Theorem 5.1. Algorithm 4 implements price(I, T) in time O(log nvals).

Algorithm 4 Query price of an interval I = [α, 1).

Input: Interval I = [α, 1) with α ∈ Ω. LMSR tree T , with nodes z annotated

with Iz = [αz, βz), hz, sz and Sz.

Output: Price of bundle security for I.

1: Initialize z ← root, P ← 1, price← 0

2: while αz 6= α and z is not a leaf do

3: P ← Pesz/b

4: if α < αright(z) then

5: price← price + PSright(z)/Sroot

6: z ← left(z)

7: else

8: z ← right(z)

9: return price + βz−α
βz−αz · PSz/Sroot

5.3.3 Buy Transactions

We next implement buy([α, 1), s, T) while maintaining the LMSR tree proper-

ties. The main challenge here is to simultaneously maintain partial-normalization

correctness and height balance. We address this by adapting AVL-tree rebalancing.

We begin by considering the case α ∈ vals(T). Similar to price queries, we conduct

binary search for α to obtain the set of nodes Z that covers I = [α, 1). We update

the values of sz across z ∈ Z by adding s, and obtain T ′ that has the same structure

as T with the updated share quantities

s′z =

sz + s if z ∈ Z

sz otherwise.

Thus, the resulting market state is

θ(T ′) =
∑
z∈T ′

s′z1Iz =
∑
z∈T

sz1Iz +
∑
z∈Z

s1Iz = θ(T) + s1I .

96

We then rely on the recursive relationship defined in Eq. (5.7) to update the partial

normalization constants Sz. It suffices to update the ancestors of the nodes z ∈ Z,

all of which lie along the search path to α, and each update requires constant time.

When α 6∈ vals(T), we split the leaf z that contains α ∈ [αz, βz) before adding

shares to right(z). However, this may violate the height-balance property. Similar to

the AVL insertion algorithm (Knuth 1998, Section 6.2.3), we fix any imbalance by

means of rotations, as we go back along the search path. Rotations are operations that

modify small portions of the tree, and at most two rotations are needed to rebalance

the tree (Adel′son-Vel′skĭı and Landis 1962).

We next show that in each rotation, only a constant number of nodes will require

updates to preserve the partial-normalization correctness. There are two kinds of

rotations, depicted in Figure 5.1. The left rotation takes as input a node z, with

children denoted z1 and z23, and children of z23 denoted z2 and z3, and rearranges

these relationships by removing the node z23 and creating a node z12, such that z

now has children z12 and z3, and z12 has children z1 and z2. The right rotation is the

symmetric operation.

Figure 5.1: Left and right rotations with node z as an input. Depicted update
corresponds to the left rotation.

When performing rotations, we need to ensure that the node removal (i.e., removal

of z23 in left rotation and of z12 in right rotation) does not impact the market state.

We achieve this by moving the shares from the removed node into its children, so

at the time of removal it holds zero shares. The full procedure of RotateLeft is

described in Appendix Algorithm 8.

Lemma 5.2. A rotation operation preserves partial-normalization correctness.

Algorithm 5 describes the buy operation, which takes time O(log nvals) thanks to

the height balance.

Theorem 5.3. Algorithm 5 implements buy(I, s, T) in time O(log nvals).

97

Algorithm 5 Buy s shares of bundle security for an interval I = [α, 1).

Input: Quantity s ∈ R and an interval I = [α, 1) with α ∈ Ω. LMSR tree T ,
with nodes z annotated with Iz = [αz, βz), hz, sz and Sz.
Output: Tree T updated to reflect the purchase of s shares of bundle security
for I.

1: Define subroutines:
NewLeaf(α0, β0): return a new leaf node z with

Iz = [α0, β0), hz = 0, sz = 0, Sz = (β0 − α0)
ResetInnerNode(z): reset hz and Sz based on the children of z

hz ← 1 + max{hleft(z), hright(z)}, Sz ← esz/b(Sleft(z) + Sright(z))
AddShares(z, s): increase the number of shares held in z by s

sz ← sz + s, Sz ← es/bSz

2: Initialize z ← root
3: while αz 6= α and z is not a leaf do . add s shares to z ∈ Z
4: if α < αright(z) then
5: AddShares(right(z), s)
6: z ← left(z)
7: else
8: z ← right(z)

9: if αz < α then . split the leaf z
10: left(z)← NewLeaf(αz, α), right(z)← NewLeaf(α, βz)
11: z ← right(z)

12: AddShares(z, s)
13: while z is not a root do . trace the binary-search path back
14: z ← par(z)
15: if |hleft(z) − hright(z)| ≥ 2 then . restore height balance
16: Rotate z and possibly one of its children

(details in Appendix C.1.2 Algorithms 8)

17: ResetInnerNode(z) . update hz and Sz

Remarks. We have shown that price, cost and buy operations can all be imple-

mented in time O(log nvals), which is bounded above by the log of the number of buy

transactionsO(log nbuy) as well as the bit precision of the outcomeO(logN) = O(K).6

We note that none of the operations require the knowledge of K, so the market in fact

supports queries with arbitrary precision. However, the market precision does affect

the worst-case loss bound for the market maker, which is O(logN) = O(K). The

next section presents a different construction, which achieves a constant worst-case

loss independent of the market precision.

6Clearly, nvals ≤ 2nbuy with each buy transaction introducing at most two new endpoint values.
The value of nvals is also bounded above by N + 1 since the interval endpoints are always in Ω∪{1}.

98

5.4 A Multi-Resolution Linearly Constrained Market Maker

This section introduces the second design, referred to as the multi-resolution lin-

early constrained market maker (multi-resolution LCMM). The design is based on

the LMSR, but it enables more flexibility by assigning two or more parallel LMSRs

with different liquidity parameters to orchestrate submarkets that offer interval secu-

rities at different resolutions. However, running submarkets independently can create

arbitrage opportunities, as any interval expressible in a coarser market can also be

expressed in a finer one. To maintain coherent prices, we design a matrix that im-

poses linear constraints to tie market prices among different submarkets to support

the efficient removal of any arbitrage opportunity. We first define the multi-resolution

LCMM and its properties, and show that price, cost and buy can be implemented

in time O(logN).

5.4.1 A Multi-Resolution LCMM for [0, 1)

5.4.1.1 A Multi-Resolution Market

A binary search tree remains at the core construction of our multi-resolution mar-

ket. Unlike a log-time LMSR that uses a self-balancing tree, it builds upon a static

one, where each level of the tree represents a submarket of intervals, forming a finer

and finer partition of [0, 1). We start with an example of a market that offers interval

securities at two resolutions.

Example 5.2 (Two-level market for [0, 1)). Consider a market composed of two

submarkets, indexed by Z1 = {11, 12} and Z2 = {21, 22, 23, 24}, which partition

[0, 1) into interval events at two levels of coarseness:

I1 : I11 =
[
0, 1

2

)
, I12 =

[
1
2
, 1
)

;

I2 : I21 =
[
0, 1

4

)
, I22 =

[
1
4
, 1

2

)
, I23 =

[
1
2
, 3

4

)
, I24 =

[
3
4
, 1
)
.

The market provides six interval securities associated with the corresponding interval

events (i.e., I = I1

⊎
I2 and |I| = 6). We index the securities by z ∈ Z, where

Z = Z1

⊎
Z2 = {11, 12, 21, 22, 23, 24}.

We extend Example 5.2 to multiple resolutions. We represent the initial indepen-

dent submarkets with a complete binary tree T ∗ of depth K, which corresponds to

the bit precision of the outcome ω. Let Z∗ denote the set of nodes of T ∗ and Zk for

k ∈ {0, 1, . . . , K} the set of nodes at each level. Z0 contains the root associated with

99

Iroot = [0, 1), and each consecutive level contains the children of nodes from the previ-

ous level, which split their corresponding parent intervals in half. Thus, level k parti-

tions [0, 1) into 2k intervals of size 2−k and the final level ZK contains N = 2K leaves.

We index interval securities by nodes, with their payoffs defined by φz(ω) = 1{ω ∈
Iz}. We partition securities into submarkets corresponding to levels, i.e., Ik = Zk for

k ≤ K, where |Ik| = 2k and I =
⊎
k≤K Ik. For each submarket, we define the LMSR

cost function Ck with a separate liquidity parameter bk > 0:

Ck(θk) = bk log

(∑
z∈Zk

eθz/bk

)
(5.11)

5.4.1.2 A Linearly Constrained Market Maker

Following the above multi-resolution construction, the overall market has a direct-

sum cost C̃(θ) =
∑

k≤K Ck(θk), which corresponds to pricing securities in each block

Ik independently using Ck. However, as there are logical dependencies between se-

curities in different levels, independent pricing may lead to incoherent prices among

submarkets and create arbitrage opportunities.

Example 5.3 (Arbitrage in a two-level market). Continuing Example 5.2, we define

separate LMSR costs, where b1 = 1 and b2 = 1:

C1(θ1) = log
(
eθ11 + eθ12

)
; C2(θ2) = log

(
eθ21 + eθ22 + eθ23 + eθ24

)
.

The direct-sum market C̃(θ) = C1(θ1) + C2(θ2) gives rise to incoherent prices. For

example, after buying some shares of security φ21 associated with I21 =
[
0, 1

4

)
in

submarket I2, the market can have

p̃
I11=[0,

1
2

)
(θ) = 0.5; p̃

I21=[0,
1
4

)
(θ) + p̃

I22=[
1
4
,
1
2

)
(θ) = 0.6.

This violates the no-arbitrage property that requires P[I11] = P[I21] + P[I22] and

P[I12] = P[I23] + P[I24] under any probability distribution over Ω. We specify the

linear price constraints µ11 − µ21 − µ22 = 0 and µ12 − µ23 − µ24 = 0 by the following

vectors

a1 = (1, 0,−1,−1, 0, 0)> and a2 = (0, 1, 0, 0,−1,−1)>,

and refer A = (a1 a2) ∈ R|I|×|J | as the constraint matrix of the two-level market,

where J denotes the set of interval events associated with inner nodes, i.e., J = I\IK .

We extend Example 5.3 to specify price constraints in a multi-resolution market

100

to achieve no arbitrage. Recall that M denotes a coherent price space, where any

expected payoff lies in the convex hull of {φ(ω)}ω∈Ω. It is always polyhedral and

can be described by a set of linear inequalities (Dud́ık, Lahaie, and Pennock 2012).

Arbitrage opportunities arise whenever prices fall outside the set of coherent prices

M (Abernethy, Chen, and Vaughan 2011). For the multi-resolution market, we

specify a set of homogeneous linear equalities describing a superset of M. Equalities

are indexed by j ∈ J and are described by a matrix A ∈ R|I|×|J |, such that

M⊆ {µ ∈ R|I| : A>µ = 0}. (5.12)

We design the constraint matrix A to ensure that any pair of submarkets is price

coherent, meaning that any interval event I ⊆ Ω gets the same price on all levels that

can express it. Therefore, for each inner node y ∈ Zl where l < K, we have

µy =
∑

z∈Zk: z⊂y

µz for any l < k ≤ K.

To facilitate the implementation in a binary tree, we further tie the price of y to the

prices of all of y’s descendants and weight each level by its liquidity parameter bk:(∑
k>`

bk

)
︸ ︷︷ ︸

B`

µy =
∑
k>`

(
bk

∑
z∈Zk: z⊂y

µz

)
. (5.13)

This design turns out to be more algorithmically convenient to restore price consis-

tency (as we will see in Section 5.4.3).

Now we can formally define the constraint matrix A. Let Y∗ = Z∗\ZK be the

set of inner nodes of T ∗ and let level(z) denote the level of a node z. The matrix

A ∈ R|Z∗|×|Y∗| contains the constraints from Eq. (5.13) across all y ∈ Y∗:

Azy =


Blevel(z) if z = y,

−blevel(z) if z ⊂ y,

0 otherwise.

(5.14)

We refer to the linearly constrained market maker with the matrix A as the multi-

resolution LCMM. The derivation above shows that the constraints in the matrix A

are necessary to assure no arbitrage. The next theorem shows that they are also

sufficient. The proof shows that consecutive levels are coherent, which by transitivity

101

implies that the overall price vector is coherent (see Appendix C.1.3).

Theorem 5.4. A multi-resolution LCMM is arbitrage-free.

We next show that the multi-resolution LCMM also enjoys the bounded-loss prop-

erty. For a suitable choice of liquidities, such as bk = O(1/k2.01), it can achieve a con-

stant worst-case loss bound. The proof uses the fact that the overall loss is bounded

by the sum of losses of level markets, which are at most bk log |Zk| = kbk log 2.

Theorem 5.5. Let {bk}∞k=1 be a sequence of positive numbers such that
∑∞

k=1 kbk =

B∗ for some finite B∗. Then the multi-resolution LCMM with liquidity parameters

bk for k ≤ K guarantees the worst-case loss of the market maker of at most B∗ log 2,

regardless of the outcome precision K.

Arbitrage opportunities appear if the price of bundle aj differs from zero, where

aj denotes the jth column of A. Traders profit by buying a positive quantity of aj

if its price is negative, and selling otherwise. Thus, the constraint matrix A gives a

recipe on arbitrage removals. We provide some intuition via the example below.

Example 5.4 (Arbitrage removal by a two-level LCMM). Continue Example 5.3. we

have prices p̃(θ) violate the constraint matrix A, i.e., a>1 p̃(θ) = p̃11(θ) − p̃21(θ) −
p̃22(θ) = 0.5 − 0.6 6= 0. The constraint vector a1 reveals a profitable arbitrage

opportunity: buy the security φ11 (at the initial price 0.5) and simultaneously sell

securities φ21 and φ22 (at the initial price 0.6). This will increase the price of φ11 and

decrease the prices of φ21 and φ22. After a sufficiently large quantity s shares of φ11

is bought (and the same quantities of φ21 and φ22 are sold), a>1 p̃(θ̃) = 0 is achieved

in a new state θ̃ = θ + sa1 = θ + Aη, where η := (s, 0)>.

Therefore, after each update of θ, an LCMM who follows the matrix A can auto-

matically find a new state θ̃ = θ+ sa1 + ta2 = θ+ Aη where η := (s, t)>, such that

a>1 p̃(θ̃) = 0 and a>2 p̃(θ̃) = 0 hold.

We generalize Example 5.4 to the multi-resolution market. Formally, an LCMM

is described by the cost function

C(θ) = inf
η∈R|J |

C̃(θ + Aη). (5.15)

It relies on the direct-sum cost C̃, but with each trader purchase δ that causes in-

consistent prices, an LCMM automatically seeks the most advantageous cost for the

trader by buying bundles Aδarb on the trader’s behalf to remove arbitrage. Trader

102

purchases are accumulated as the state θ, and automatic purchases made by the

LCMM are accumulated as Aη.

We note that the purchase of bundle Aδarb has no effect on the trader’s pay-

off, since (Aδarb)>φ(ω) = 0 for all ω ∈ Ω thanks to Eq. (5.12) and the fact that

φ(ω) ∈ M. However, the purchase of Aδarb can lower the cost, so optimizing

over δarb benefits the traders, while maintaining the same worst-case loss guaran-

tee for the market maker as C̃ (Dud́ık, Lahaie, and Pennock 2012). Consider a

fixed θ and the corresponding η? minimizing Eq. (5.15). We calculate prices as

p(θ) = ∇C(θ) = ∇C̃(θ+Aη?). By the first order optimality, η? minimizes Eq. (5.15)

if and only if A>
(
∇C̃(θ + Aη?)

)
= 0. This means that A>p(θ) = 0, and thus ar-

bitrage opportunities expressed by A are completely removed by the LCMM cost

function C.

To implement an LCMM, we maintain the state θ̃ = θ + Aη in the direct-sum

market C̃. After updating θ to a new value θ′ = θ+ δ, we seek to find η′ = η + δarb

that removes all the arbitrage opportunities expressed by A. The resulting cost for

the trader is

C̃(θ′ + Aη′)− C̃(θ + Aη) = C̃(θ̃ + δ + Aδarb)− C̃(θ̃).

5.4.1.3 A Multi-Resolution LCMM Tree

We can now formally define the multi-resolution LCMM tree. The market state

of a multi-resolution LCMM is represented by vectors θ ∈ R|Z∗| and η ∈ R|Y∗|, whose

dimensions can be intractably large (e.g., on the order of 2K = N). However, since

each LCMM operation involves only a small set of coordinates of θ and η, we keep

track of these coordinates accessed so far by organizing an annotated subtree T of

T ∗, referred to as an LCMM tree.

Definition 5.2 (LCMM Tree). An LCMM tree T is a full binary tree, where each

node z is annotated with Iz = [αz, βz), θz ∈ R, ηz ∈ R, such that Iroot = [0, 1), and

for every inner node z:

αz = αleft(z), βleft(z) = αright(z) =
αz + βz

2
, βright(z) = βz.

The tree T contains the coordinates of θ and η accessed so far. Since θ and η

are initialized to zero, their remaining entries are zero. We write θ(T) ∈ R|Z∗| and

η(T) ∈ R|Y∗| for the vectors represented by T . To calculate prices, we maintain η(T)

103

that minimizes Eq. (5.15), or equivalently η(T) that satisfies A>p̃
(
θ(T) + Aη(T)

)
=

0. If this property holds, we say that an LCMM tree T is coherent.

5.4.2 Price Queries

There are many ways to decompose an interval I in a multi-resolution market,

but they all yield the same price thanks to coherence. The no-arbitrage property also

guarantees that the price of [α, β) can be obtained by subtracting the price of [β, 1)

from [α, 1). Therefore, we focus on pricing one-sided intervals of the form I = [α, 1).

Let T be a coherent LCMM tree and θ := θ(T) and η := η(T) the vectors

represented by T . Let θ̃ = θ + Aη be the corresponding state in C̃, so the current

security prices are µ := p̃(θ̃). As before, we identify a set of nodes Z that covers I,

and then rely on price coherence to calculate each µz along the search path.

Assume that z is not a root node and we know the price of its parent. Let sib(z)

denote the sibling of z and k = level(z). We can then relate the price of z to the price

of par(z):

µz =
µz

µpar(z)

· µpar(z) =
µz

µz + µsib(z)

· µpar(z) (5.16)

=
eθ̃z/bk

eθ̃z/bk + eθ̃sib(z)/bk
· µpar(z). (5.17)

Eq. (5.16) follows by price coherence and Eq. (5.17) follows by the price calculation

in Eq. (5.1). Thus, we descend the search path to calculate each price µz, beginning

with µroot = 1. It remains to obtain θ̃z, which we follow the construction of A in

Eq. (5.14) to compute

θ̃z = θz +
∑
y∈Y∗

Azyηy = θz +Bkηz − bk
∑
y⊃z

ηy. (5.18)

Plugging the above equation back in Eq. (5.17), we obtain7

µz =
exp
{

(θz +Bkηz)/bk
}

exp
{

(θz +Bkηz)/bk
}

+ exp
{

(θsib(z) +Bkηsib(z))/bk
} · µpar(z). (5.19)

Combining the described procedure yields Algorithm 6. The final line of the

algorithm addresses the case when the search ends in the leaf z with αz < α < βz.

7The factor exp{−
∑
y⊃z ηy} = exp{−

∑
y⊃sib(z) ηy} appears in both the numerator and the

denominator after plugging Eq. (5.18) to Eq. (5.17), so it cancels out.

104

Rather than expanding the tree to its lowest level K, we use price coherence again:

since any strict descendant z′ ⊂ z on the path from z to a leaf node u ∈ ZK has

θz′ = ηz′ = 0 by market initialization, all leaf nodes have the same price. Therefore,

the price of [α, βz) equals βz−α
βz−αz · µz.

The length of search path for α is prec(α), which denotes the bit precision of α,

defined as the smallest integer k such that α is an integer multiple of 2−k. As the

computation at each node only requires constant time, the time to price I = [α, 1) is

O(prec(α)), which is bounded above by O(K).

0 Let I = [α, 1), α ∈ Ω. Algorithm 6 implements price(I, T) in time O(prec(α)).

Algorithm 6 Query price of an interval I = [α, 1).

Input: Interval I = [α, 1) with α ∈ Ω. Coherent LCMM tree T , with nodes z

annotated with Iz = [αz, βz), θz, ηz.

Output: Price of bundle security for I.

1: Initialize z ← root, µz ← 1, price← 0

2: while αz 6= α and z is not a leaf do

3: zl ← left(z), zr ← right(z), k ← level(zl)

4: el ← exp{(θzl +Bkηzl)/bk}, er ← exp{(θzr +Bkηzr)/bk},
µzl ←

el
el+er

µz, µzr ← er
el+er

µz . calculate prices by Eq. (5.19)

5: if α < αright(z) then

6: z ← zl, price← price + µzr

7: else

8: z ← zr

9: return price + βz−α
βz−αz · µz

5.4.3 Buy and Cost Operations

Different from LMSR, the cost query for a multi-resolution LCMM cannot be di-

rectly derived from prices. We instead augment buy to implement cost by executing

buy and then reverting all the changes. We focus on buy(I, s, T) for I = [α, 1). By

buying s shares of [α, 1) and then (−s) shares of [β, 1), we obtain buying [α, β).

We summarize the procedure in Algorithm 7, which performs buy(I, s, T) and

keeps track of cost(I, s, T). Similar to price queries, we start with a set of nodes Z
that partition I, by searching for α and simultaneously calculating prices µz along

the way (lines 3–6).

105

Algorithm 7 Buy s shares of bundle security for an interval I = [α, 1).

Input: Quantity s ∈ R and an interval I = [α, 1) with α ∈ Ω. Coherent LCMM
tree T , with nodes z annotated with Iz = [αz, βz), θz, ηz.
Output: Cost of s shares bundle security for I and the updated tree T .

1: Define subroutines:
NewLeaf(α0, β0): return a new leaf node z with

Iz = [α0, β0), θz = 0, ηz = 0

RemoveArbitrage(y, µother): restore price coherence among
submarkets k ≥ level(y) following Eq. (5.20) and update cost

Let ` = level(y), y′ = sib(y), t = b`
B`−1

log
(

1−µy
µy
· µother

1−µother

)
S = µye

tB`/b` + 1− µy, Sother = µothere
−t + 1− µother

ηy ← ηy + t, µy ← µye
tB`/b`/S, µy′ ← µy′/S

cost← cost + (b` logS) + (B` logSother)

AddShares(z, s): increase shares held in z by s, update cost, and
restore price coherence among submarkets k ≥ level(z)

Let ` = level(z), z′ = sib(z), µother = µz, S = µze
s/b` + 1− µz

θz ← θz + s
cost← cost + (b` logS)
µz ← µze

s/b`/S, µz′ ← µz′/S
RemoveArbitrage(z, µother)

2: Initialize z ← root, µz ← 1, a global variable cost← 0
3: while αz 6= α do
4: if z is a leaf then
5: left(z)← NewLeaf(αz,

1
2
(αz + βz)),

right(z)← NewLeaf(1
2
(αz + βz), βz)

6: Search for α and calculate µz (same as Algorithm 6 lines 3-8)

7: AddShares(z, s)
8: while z is not a root do . remove arbitrage up the search path
9: z′ ← sib(z), y ← par(z)

10: if z′ = right(y) then
11: AddShares(z′, s) . add shares to z ∈ Z
12: RemoveArbitrage(y, µz + µz′)
13: z ← y

14: return cost

We then proceed back up the search path, adding s shares to nodes within the

cover Z (lines 7–13). Consider one of such nodes y ∈ Z at level ` := level(y).

Increasing θy by s creates price incoherence between the submarket at level ` and

submarkets at all the other levels. We design RemoveArbitrage to remove any

arbitrage opportunity appeared between level ` and all lower levels with k > `. We

106

show in Appendix C.1.6 Lemma C.2 that in order to restore coherence, it suffices to

update ηy by a closed-form amount:

t =
b`

B`−1
log

(
1− µy
µy

· µother
1− µother

)
, (5.20)

where µother = µleft(y) +µright(y) records the price of y in all the lower levels. Similar to

Example 5.4, this key algorithmic step is enabled by the arbitrage bundle ay, which

corresponds to buying φy on the level ` while selling securities associated with all

descendants of y, with their shares appropriately weighted by the respective liquidity

values as specified in the constraint matrix A.

The market remains incoherent between ` and all upper levels k < `. Since the

updates have been localized to the subtree rooted at y, we use Lemma C.2 again to

update ηpar(y) and restore coherence among all levels k ≥ `− 1 (line 12). We continue

in this manner back along the path to root to restore a coherent market.

The algorithm also tracks the total cost of the buy transaction by evaluating

Eq. (5.3) in the component submarkets. Note that costs in all submarkets with k > `

can be evaluated simultaneously thanks to the restored coherence. As the design of

the constraint matrix A enables a gradual bottom-up removal of arbitrage (and a

closed-form solution for t), Algorithm 7 runs in time O(prec(α)).

Theorem 5.6. Let I = [α, 1), α ∈ Ω. Algorithm 7 implements a simultaneous

buy(I, s, T) and cost(I, s, T) in time O(prec(α)).

Remarks. In Algorithms 6 and 7, we assume that each node z can store a scalar µz,

which can be modified during the run to support price calculations but is disposed

afterwards. The only part of the proposed algorithms that depends on K are the

cumulative liquidities B` =
∑K

k=`+1 bk.

To remove such dependence, we can use B′` =
∑∞

k=`+1 bk = B∗ −
∑`

k=1 bk, where

B∗ =
∑∞

k=1 bk. This has no impact on the correctness of our algorithms: if at a given

time the largest level in the tree T is L, we can simply view T as a multi-resolution

LCMM with K = L + 1 and liquidities b1, b2, . . . , bL, B
′
L. The last level K = L + 1

then corresponds to infinitely many mutually coherent markets {Ck}∞k=L+1. Thus,

a multi-resolution LCMM can achieve a constant loss bound regardless of K and

support market operations for I = [α, β) in time O(prec(α) + prec(β)).

107

5.5 Discussion

This chapter has proposed two cost-function-based market makers that support

trading interval securities of arbitrary precision and execute market operations expo-

nentially faster than previous designs. This section discusses when we expect each

market maker to be empirically appropriate.

In short, the log-time LMSR enjoys better storage and runtime efficiency, whereas

the multi-resolution LCMM has more flexibility in its pricing strategies. While both

market makers gradually grow the trees upon each interval trade, the LMSR tree

enables a shorter search path thanks to its height-balance property. Thus, the log-

time LMSR would be more preferable especially when the designer expects betting

interest to be concentrated on a small set of intervals (i.e., the number of distinct

intervals traded would be much smaller than the size of nodes in an LCMM tree).

Despite its advantage in storage and runtime efficiency, the log-time LMSR faces

similar challenges as a standard LMSR in making design choices, such as setting a

suitable liquidity value or choosing a proper market resolution. Correctly setting

these parameters often requires a good estimate of trader interest even before trading

in the market starts.

The multi-resolution LCMM, on the other hand, grants more pricing flexibility and

liquidity attenuation to facilitate the designer’s information-gathering objective. For

example, an LMSR that operates at precision k = 4 with liquidity b can be represented

by an LCMM with the level liquidity values b = (0, 0, 0, b, 0, 0, . . .). Moreover, if the

market expects most of the information at precision 4 but also wants to support bets

up to precision 8, one could run an LCMM with the liquidity placed at two levels as

b = (0, 0, 0, b4, 0, 0, 0, b8). By choosing different values b4 and b8, the market designer

can express utility for information at different precision levels.

We next empirically highlight such flexibility by showing how LCMM can inter-

polate between LMSRs at different resolutions, allowing the market to match the

coarseness of traders’ information.

We conduct agent-based simulation using the trader model with exponential utility

and exponential-family beliefs (Abernethy, Kutty, Lahaie, and Sami 2014). Agents

trade with a market maker (either a LMSR or a multi-resolution LCMM) to bet

on intervals within [0, 1), following the dynamics described below. We note that

while our market makers support agents with any beliefs and utility functions, the

exponential trader model is convenient, because it allows a closed-form derivation

of market-clearing price, meaning the clearing price reached when agents only trade

108

among themselves, without a market maker (Abernethy, Kutty, Lahaie, and Sami

2014; Dud́ık, Lahaie, Rogers, and Wortman Vaughan 2017). This can be viewed

as a “ground truth” for the information elicitation. We evaluate market makers in

terms of their price convergence error, calculated as the relative entropy between the

market-clearing price and the price maintained by the market maker.

Trading Dynamics We simulate a market consisting of ten traders. The outcome

space is [0, 1), discretized at the precisionK = 10. Traders, indexed as i ∈ {1, . . . , 10},
have noisy access to the underlying true signal p = 0.4. Trader i’s belief takes form of

a beta distribution Beta(ai, bi) with ai ∼ Binomial(p, ni), bi = ni − ai, and ni = 16i

representing the quality of the agent’s observation of the signal p. Each trader i has

an exponential utility ui(W) = −e−W , where W is the trader’s wealth. We consider

budget-limited cost-based market makers, whose worst-case loss may not exceed a

budget constraint B. For LMSR at precision k, this means setting the liquidity

parameter to b = B/ log(2k). In our experiments, we consider two LMSR markets

at precision levels 4 and 8, denoted as LMSRk=4 and LMSRk=8. On the other hand,

a multi-resolution LCMM has an infinite number of choices for its liquidity at each

precision level. To showcase its interpolation ability, we consider LCMM that evenly

splits its budget to precision levels 4 and 8, and denote it as LCMM50/50.

Each market starts with the uniform prior, i.e., the initial market prices for all

outcomes are equal. In each time step, a uniformly random agent is picked to trade.

The selected agent considers a set of 50 interval securities, with endpoints randomly

sampled according to the agent’s belief. The candidate intervals are rounded to the

precision of the corresponding market. The agent considers trading the expected-

utility-optimizing number of shares for each interval, and ultimately picks the best

interval and executes the trade.

Figure 5.2 shows the price convergence as a function of the number of trades,

averaged over 40 simulated markets mediated by LMSRk=4, LMSRk=8, and LCMM50/50

respectively under the budget constraint B = 1 (see Appendix C.2 for results at dif-

ferent budget levels). As one may expect, LMSRk=4 achieves a faster price convergence

at the coarser precision level k = 4 compared to LMSRk=8 (Fig. 5.2a), but fails to elicit

information at any finer granularity by design.8 The proposed LCMM50/50, by equally

splitting the budget between k = 4 and k = 8, is able to interpolate between the

8In Figure 5.2b, to facilitate comparisons, we assume that LMSRk=4 equally splits the price of a
coarse interval into finer intervals.

109

0 200 400 600 800 1000
Num of trades

0.00

0.05

0.10

0.15

0.20

P
ri

ce
 c

o
n
v
e
rg

e
n
ce

 e
rr

o
r

LMSRk= 4

LMSRk= 8

LCMM50/50

(a) k = 4.

0 200 400 600 800 1000
Num of trades

0.00

0.05

0.10

0.15

0.20

P
ri

ce
 c

o
n
v
e
rg

e
n
ce

 e
rr

o
r

LMSRk= 4

LMSRk= 8

LCMM50/50

(b) k = 8.

Figure 5.2: The price convergence error as a function of the number of trades, mea-
sured at two resolution levels.

performance of LMSRk=4 and LMSRk=8 and achieves the “best of both worlds”: it can

elicit forecasts at the finer level k = 8 similarly to LMSRk=8, but also obtain a fast

convergence at the coarser level k = 4, almost matching the convergence speed of

LMSRk=4.

Two natural questions arise from the two proposed designs. First, do our construc-

tions generalize to two- or higher-dimensional outcomes? One promising avenue is

to combine the ideas from our log-time LMSR market maker with multi-dimensional

segment trees (Mishra 2016) to obtain an efficient multi-dimensional LMSR based

on a static tree. However, it is not clear how to generalize our balanced LMSR tree

construction or the multi-resolution LCMM. Second, does our approach extend to

non-interval securities, such as call options?

110

CHAPTER 6

Conclusion

This dissertation focuses on addressing two categories of problems present in to-

day’s financial markets: the vulnerability to manipulation and the lack of expressive-

ness. The first part examines a form of market manipulation and proposes deterrent

solutions, combining techniques from agent-based modeling, game-theoretic analysis,

and adversarial learning. The second part investigates expressive designs and explores

efficient implementations for such mechanisms, using tools from optimization, data

structure design, and complexity analysis. This chapter concludes with a summary

of contributions and a discussion of limitations and future directions.

Spoofing the Limit Order Book: A Strategic Agent-Based Analysis Chap-

ter 2 models a form of order-based market manipulation, spoofing, and proposes mar-

ket mechanisms and trading strategies to mitigate such manipulation practice. Main

contributions of this chapter include:

(1) A computational agent-based model of spoofing prices in a limit-order market

(Section 2.5);

The model illustrates the strategic interactions between a manipulator and two

groups of background traders, namely heuristic belief learning (HBL) and zero

intelligence (ZI). The former uses market information to trade, whereas the later

does not. We demonstrate through empirical game-theoretic analysis (EGTA)

that in the absence of spoofing, HBL is generally adopted in equilibrium and

benefits price discovery and social welfare. Their existence, however, renders

a market vulnerable to manipulation: simple spoofing strategies can effectively

mislead traders, distort prices, and reduce market surplus. After re-equilibrating,

we show that learning traders persist even with manipulators, suggesting that

the elimination of spoofing requires active measures.

111

(2) A cloaking mechanism that systematically deters spoofing through disclosing a

partially cloaked order book (Section 2.6);

The mechanism works by symmetrically concealing a deterministic number of

price levels from the inside of an order book. The design presents a tradeoff

between preserving order book informativeness and mitigating manipulation. We

perform empirical mechanism design with the goal of maximizing background-

trader surplus, and demonstrate in markets with moderate shocks, the benefit of

cloaking in deterring spoofing outweighs its efficiency cost. We demonstrate the

robustness of cloaking mechanisms by exploring sophisticated spoofing strategies

that probe to reveal cloaked information and showing that their associated costs

exceed the gains.

(3) Two variations of HBL that intend to improve the robustness of learning-based

strategies against spoofing (Section 2.7);

The first variation offers agents the flexibility to exclude limit orders at a certain

price level from the dataset they learn from. We show that this variation can

improve robustness against spoofing, while retain a comparable competitiveness in

non-manipulated markets. The second variation considers the full order book, but

adjusts its learned order price by an offset to correct for bias. It exhibits a general

improvement over the baseline HBL, and when combined with the first proposal,

it enjoys both improved profitability and robustness against manipulation.

The proposed agent-based model aims to capture the complex essence of real-world

financial markets, and EGTA the strategic interactions among agents. However, as

discussed in Chapter 2, these studies have several limitations. First, results pre-

sented reflect the specific modeling and simulation choices we adopt. Second, several

factors can affect our equilibrium analysis, including sampling error, reduced-game

approximation, and restricted bidding strategy coverage.

Despite these limitations that are inherent in any complex modeling effort, we

believe the agent-based model and deterrent proposals can serve as a constructive

basis to study and prevent other forms of manipulation. For instance, a manipulator

who learns to spoof the market by optimizing defined objectives (e.g., profits, price

deviations) under certain constraints (e.g., order sizes, arrival frequencies). The model

can also facilitate identifying practical considerations (e.g., agent strategic responses)

that should be regarded when making regulatory decisions.

112

Modeling the Evasion of Manipulation Detection: An Adversarial Learn-

ing Framework Chapter 3 proposes an adversarial learning framework to proac-

tively reason about how a manipulator might mask its behavior to evade a manip-

ulation detector. The framework includes three main components: (1) a generative

model that is trained to adapt encoded manipulation order streams to resemble trad-

ing patterns of a normal trader, while preserving the manipulation intent; (2) a

discriminative model that differentiates the adversarially adapted manipulation order

streams from normal trading activities; and (3) an agent-based simulator that gener-

ates the source (i.e., manipulation) and target (i.e., market making) order streams,

and evaluates the manipulation effect of adapted outputs. The framework is able to

generate adapted manipulation examples that resemble the target distribution and

appear qualitatively different from the original manipulation strategy. We find that

this adaptation evades detection, but at the cost of compromising effectiveness in

market manipulation.

One limitation in the current framework is that the adversary only learns to

evade detection, but does not assess the cost of such adaptations. A smarter form of

adaptation can evade detection, and simultaneously optimizes for trading profits and

effectiveness in manipulation.

Several extensions can be made based on the current framework. First, generated

examples can be classified into two groups—those that preserve certain manipulation

effects and those do not—to support the training of detection algorithms that focus

on intent (or effect) rather than patterns. This is somewhat equivalent to training a

black-box approximator of the agent-based model we developed. Second, the target

distribution can be substituted or removed: substituting with other trading activities

as the target enables to generate a more diverse sets of synthetic manipulation order

streams; substituting with real market order streams enables to calibrate simulated

strategies to real trading practices.

Designing a Combinatorial Financial Options Market Chapter 4 examines

current design of financial options market, and proposes a new derivative contract,

combinatorial financial options. Main contributions of this chapter include:

(1) A mechanism that consolidates and matches orders on standard options related

to the same underlying asset (Section 4.4);

The mechanism uses a linear program to aggregate options markets of different

strike prices but logically related to the same underlying asset, providing traders

the flexibility to define any custom strike value. It runs in time polynomial to

113

the number of orders and poses no risk, regardless of the value of the underlying

asset at expiration. Experiments on real options data show that the proposed

mechanism finds matches that the current independent-market design cannot,

and provides more competitive bid and ask prices.

(2) A combinatorial financial option that offers the contract holder the right to buy

or sell any linear combination of multiple underlying assets (Section 4.5);

Combinatorial options markets enable the expression of aggregate belief about

future correlations among assets. This increased expressiveness comes at the cost

of a higher computational complexity: optimal clearing of a combinatorial finan-

cial options market is coNP-hard. We show that the optimal clearing problem can

be equivalently formulated as a bilevel mixed-integer linear program, which com-

putes the exact solution by satisfying an increasing set of constraints generated

from different future values of the underlying assets. Experiments on synthetic

combinatorial options orders demonstrate its practicability.

An immediate next step is to investigate the use of different clearing rules to run

a combinatorial options market and quantify the tradeoffs among them. Continu-

ous clearing facilitates instantaneous matching and information disclosing, whereas

batch clearing tends to yield efficient matches and higher market surplus, as sug-

gested in our experiments on synthetic markets. Another interesting direction is to

explore structured markets where combinations are limited to components in a graph

of underlying assets: by limiting aspects of expressivity, we may find computationally

tractable mechanisms to clear the market.

Log-time Prediction Markets for Interval Securities Chapter 5 investigates

the design of prediction markets to recover a complete and fully general probabil-

ity distribution over a random variable, through trading interval securities. Main

contributions of this chapter include:

(1) A log-time logarithmic market scoring rule (LMSR) market maker (Section 5.3);

The log-time LMSR exploits the modularity properties of LMSR to construct

a balanced binary tree data structure and decompose computations along the

tree nodes. It expedites market operations (i.e., buy operations, price and cost

queries) to time logarithmic in the number of distinct intervals that traders define.

(2) A multi-resolution linearly constrained market maker (LCMM) (Section 5.4);

114

The multi-resolution LCMM adopts a different binary tree data structure that

assigns two or more parallel LMSRs with different liquidity parameters to orches-

trate submarkets that offer interval securities at different resolutions. It uses a

constraint matrix to tie prices among submarkets, supporting the computationally

efficient removal of any arbitrage opportunity. This design remains log-time mar-

ket operations, and adds two additional benefits for the market designer: (1) the

ability to express utility for information at various resolutions, and (2) the ability

to guarantee a true constant bounded loss. It opens up the possibilities to elicit

arbitrarily fine-grained information (up to the machine precision).

Both proposals restrict to a one-dimensional continuous variable (plus any form of its

discretization). An interesting and useful future direction is to extend either binary

tree data structure to support disjoint exhaustive outcomes that correspond to some

hierarchical structure, or higher-dimensional outcomes.

115

APPENDICES

116

APPENDIX A

Detailed Equilibrium Results for Chapter 2

A.1 Spoofing the Limit Order Book

Env surplus HBL%

LSLN 18198∗ 88

LSLN 18246∗ 98

LSMN 18189∗ 100

LSHN 18265∗ 100

MSLN 17947∗ 58

MSLN 16693∗ 0

MSMN 17923∗ 62

MSMN 17927∗ 43

MSMN 16726 0

MSHN 18266∗ 100

HSLN 16565 0

HSLN 17143∗ 0

HSMN 16667 0

HSHN 18253∗ 87

(a) N = 28 without spoofing

Env surplus HBL%

LSLN 43157∗ 71

LSLN 43102∗ 73

LSLN 43010∗ 95

LSMN 43249∗ 83

LSMN 43086∗ 79

LSHN 42946 94

MSLN 42804∗ 57

MSMN 42807∗ 56

MSMN 42745∗ 56

MSHN 43265∗ 86

HSLN 42455∗ 37

HSMN 42383∗ 37

HSMN 42144∗ 32

HSHN 42981 89

(b) N = 65 without spoofing

Table A.1: Background-trader surplus and HBL proportion in equilibrium of mar-
kets without spoofing. Each row describes one Nash equilibrium found in a game
(rounded to the nearest integer). Surpluses marked with asterisks indicate statisti-
cally significantly higher surpluses than those achieved in their corresponding markets
with spoofing (see Table A.2).

117

Env surplus HBL%

LSLN 18076 78

LSMN 18040 91

LSHN 18125 87

MSLN 16774 0

MSMN 17883 34

MSMN 17517 24

MSMN 16796 0

MSHN 18108 81

HSLN 16749 0

HSMN 16667 0

HSHN 17999 97

(a) N = 28 with spoofing

Env surplus HBL%

LSLN 42868 70

LSLN 42993 70

LSMN 42961 80

LSHN 43061 80

LSHN 43103 74

MSLN 42639 41

MSLN 42698 50

MSMN 42624 52

MSHN 43038 75

MSHN 43101 76

HSLN 41815 29

HSLN 39502 0

HSMN 40091 0

HSHN 43143 71

(b) N = 65 with spoofing

Table A.2: Background-trader surplus and HBL proportion in equilibrium of markets
with spoofing. Each row describes one Nash equilibrium found in a game (rounded
to the nearest integer).

118

E
n
v

su
rp

lu
s

H
B

L
Z

I 1
Z

I 2
Z

I 3
Z

I 4
Z

I 5
Z

I 6
Z

I 7
H

B
L

1
H

B
L

2
H

B
L

3
H

B
L

4

L
S
L

N
18

19
8

0.
88

0
0.

12
0

0
0

0
0

0.
88

0
0

0
L

S
L

N
18

24
6

0.
98

0
0

0
0

0.
02

0
0

0
0.

92
0.

06
0

L
S
M

N
18

18
9

1
0

0
0

0
0

0
0

0.
82

0
0.

18
0

L
S
H

N
18

26
5

1
0

0
0

0
0

0
0

1
0

0
0

M
S
L

N
17

94
7

0.
58

0
0

0
0.

40
0.

02
0

0
0

0.
40

0.
18

0
M

S
L

N
16

69
3

0
0

0
0

0
0

0.
74

0.
26

0
0

0
0

M
S
M

N
17

92
3

0.
62

0
0

0
0

0.
38

0
0

0.
44

0.
18

0
0

M
S
M

N
17

92
7

0.
43

0
0.

04
0.

53
0

0
0

0
0.

43
0

0
0

M
S
M

N
16

72
6

0
0

0
0

0
0

0.
80

0.
20

0
0

0
0

M
S
H

N
18

26
6

1
0

0
0

0
0

0
0

0.
74

0.
24

0
0.

02
H

S
L

N
16

56
5

0
0

0
0

0
0

0.
73

0.
27

0
0

0
0

H
S
L

N
17

14
3

0
0

0
0.

53
0

0
0

0.
47

0
0

0
0

H
S
M

N
16

66
7

0
0

0
0

0
0

1
0

0
0

0
0

H
S
H

N
18

25
3

0.
87

0
0

0.
13

0
0

0
0

0.
84

0
0

0.
03

T
ab

le
A

.3
:

E
q
u
il
ib

ri
a

fo
r

ga
m

es
w

it
h
ou

t
sp

o
ofi

n
g,
N

=
28

,
ca

lc
u
la

te
d

fr
om

th
e

4-
p
la

ye
r

D
P

R
ap

p
ro

x
im

at
io

n
.

E
ac

h
ro

w
of

th
e

ta
b
le

d
es

cr
ib

es
on

e
eq

u
il
ib

ri
u
m

fo
u
n
d

w
it

h
it

s
co

rr
es

p
on

d
in

g
su

rp
lu

s,
H

B
L

ad
op

ti
on

ra
te

an
d

th
e

eq
u
il
ib

ri
u
m

m
ix

tu
re

p
ro

b
ab

il
it

ie
s

of
st

ra
te

gi
es

in
cl

u
d
ed

.

119

E
n
v

su
rp

lu
s

H
B

L
Z

I 1
Z

I 2
Z

I 3
Z

I 4
Z

I 5
Z

I 6
Z

I 7
H

B
L

1
H

B
L

2
H

B
L

3
H

B
L

4

L
S
L

N
43

15
7

0.
71

0
0.

29
0

0
0

0
0

0.
59

0
0.

12
0

L
S
L

N
43

10
2

0.
73

0
0

0.
27

0
0

0
0

0.
73

0
0

0
L

S
L

N
43

01
0

0.
95

0
0

0.
05

0
0

0
0

0.
22

0
0.

73
0

L
S
M

N
43

24
9

0.
83

0
0

0.
17

0
0

0
0

0.
57

0
0.

26
0

L
S
M

N
43

08
6

0.
79

0
0.

05
0.

16
0

0
0

0
0

0.
79

0
0

L
S
H

N
42

94
6

0.
94

0
0.

04
0.

02
0

0
0

0
0.

75
0.

19
0

0
M

S
L

N
42

80
4

0.
57

0
0

0.
43

0
0

0
0

0.
31

0.
26

0
0

M
S
M

N
42

80
7

0.
56

0
0

0.
44

0
0

0
0

0.
31

0.
25

0
0

M
S
M

N
42

74
5

0.
56

0.
01

0
0

0.
43

0
0

0
0

0.
56

0
0

M
S
H

N
43

26
5

0.
86

0
0.

06
0

0.
08

0
0

0
0.

67
0.

19
0

0
H

S
L

N
42

45
5

0.
37

0
0

0.
63

0
0

0
0

0
0.

18
0.

19
0

H
S
M

N
42

38
3

0.
37

0
0

0.
63

0
0

0
0

0.
26

0
0.

11
0

H
S
M

N
42

14
4

0.
32

0
0

0
0.

54
0.

14
0

0
0

0
0.

32
0

H
S
H

N
42

98
1

0.
89

0
0.

08
0

0
0

0.
03

0
0.

89
0

0
0

T
ab

le
A

.4
:

E
q
u
il
ib

ri
a

fo
r

ga
m

es
w

it
h
ou

t
sp

o
ofi

n
g,
N

=
65

,
ca

lc
u
la

te
d

fr
om

th
e

5-
p
la

ye
r

D
P

R
ap

p
ro

x
im

at
io

n
.

E
ac

h
ro

w
of

th
e

ta
b
le

d
es

cr
ib

es
on

e
eq

u
il
ib

ri
u
m

fo
u
n
d

w
it

h
it

s
co

rr
es

p
on

d
in

g
su

rp
lu

s,
H

B
L

ad
op

ti
on

ra
te

an
d

th
e

eq
u
il
ib

ri
u
m

m
ix

tu
re

p
ro

b
ab

il
it

ie
s

of
st

ra
te

gi
es

in
cl

u
d
ed

.

120

E
n
v

su
rp

lu
s

H
B

L
Z

I 1
Z

I 2
Z

I 3
Z

I 4
Z

I 5
Z

I 6
Z

I 7
H

B
L

1
H

B
L

2
H

B
L

3
H

B
L

4

L
S
L

N
18

07
6

0.
78

0
0

0.
22

0
0

0
0

0.
78

0
0

0
L

S
M

N
18

04
0

0.
91

0
0

0
0.

09
0

0
0

0.
91

0
0

0
L

S
H

N
18

12
5

0.
87

0
0

0.
13

0
0

0
0

0.
87

0
0

0
M

S
L

N
16

77
4

0
0

0
0

0
0

1
0

0
0

0
0

M
S
M

N
17

88
3

0.
34

0
0

0.
11

0.
55

0
0

0
0

0.
34

0
0

M
S
M

N
17

51
7

0.
24

0
0

0.
54

0
0

0
0.

21
0.

24
0

0
0

M
S
M

N
16

79
6

0
0

0
0

0
0

1
0

0
0

0
0

M
S
H

N
18

10
8

0.
81

0
0

0.
12

0.
07

0
0

0
0.

81
0

0
0

H
S
L

N
16

74
9

0
0

0
0

0
0.

04
0.

96
0

0
0

0
0

H
S
M

N
16

66
7

0
0

0
0

0
0

1
0

0
0

0
0

H
S
H

N
17

99
9

0.
97

0
0

0
0.

03
0

0
0

0.
75

0
0.

22
0

T
ab

le
A

.5
:

E
q
u
il
ib

ri
a

fo
r

ga
m

es
w

it
h

sp
o
ofi

n
g,
N

=
28

,
ca

lc
u
la

te
d

fr
om

th
e

4-
p
la

ye
r

D
P

R
ap

p
ro

x
im

at
io

n
.

E
ac

h
ro

w
of

th
e

ta
b
le

d
es

cr
ib

es
on

e
eq

u
il
ib

ri
u
m

fo
u
n
d

w
it

h
it

s
co

rr
es

p
on

d
in

g
su

rp
lu

s,
H

B
L

ad
op

ti
on

ra
te

an
d

th
e

eq
u
il
ib

ri
u
m

m
ix

tu
re

p
ro

b
ab

il
it

ie
s

of
st

ra
te

gi
es

in
cl

u
d
ed

.

121

E
n
v

su
rp

lu
s

H
B

L
Z

I 1
Z

I 2
Z

I 3
Z

I 4
Z

I 5
Z

I 6
Z

I 7
H

B
L

1
H

B
L

2
H

B
L

3
H

B
L

4

L
S
L

N
42

86
8

0.
70

0.
21

0
0.

09
0

0
0

0
0.

70
0

0
0

L
S
L

N
42

99
3

0.
70

0
0.

30
0

0
0

0
0

0.
54

0.
16

0
0

L
S
M

N
42

96
1

0.
80

0
0

0.
20

0
0

0
0

0.
51

0.
29

0
0

L
S
H

N
43

06
1

0.
80

0
0

0.
20

0
0

0
0

0.
80

0
0

0
L

S
H

N
43

10
3

0.
74

0
0.

26
0

0
0

0
0

0.
74

0
0

0
M

S
L

N
42

63
9

0.
41

0
0

0
0

.5
9

0
0

0
0

0.
41

0
0

M
S
L

N
42

69
8

0.
50

0
0

0.
50

0
0

0
0

0.
32

0
0.

18
0

M
S
M

N
42

62
4

0.
52

0
0

0.
48

0
0

0
0

0
0.

38
0.

14
0

M
S
H

N
43

03
8

0.
75

0
0.

25
0

0
0

0
0

0.
48

0.
27

0
0

M
S
H

N
43

10
1

0.
76

0
0.

24
0

0
0

0
0

0.
41

0.
35

0
0

H
S
L

N
41

81
5

0.
29

0
0

0.
50

0
0

0.
21

0
0

0.
29

0
0

H
S
L

N
39

50
2

0
0

0
0

0
0

0
1

0
0

0
0

H
S
M

N
40

09
1

0
0

0
0

0
0

0.
77

0.
23

0
0

0
0

H
S
H

N
43

14
3

0.
71

0.
10

0
0.

19
0

0
0

0
0.

71
0

0
0

T
ab

le
A

.6
:

E
q
u
il
ib

ri
a

fo
r

ga
m

es
w

it
h

sp
o
ofi

n
g,
N

=
65

,
ca

lc
u
la

te
d

fr
om

th
e

5-
p
la

ye
r

D
P

R
ap

p
ro

x
im

at
io

n
.

E
ac

h
ro

w
of

th
e

ta
b
le

d
es

cr
ib

es
on

e
eq

u
il
ib

ri
u
m

fo
u
n
d

w
it

h
it

s
co

rr
es

p
on

d
in

g
su

rp
lu

s,
H

B
L

ad
op

ti
on

ra
te

an
d

th
e

eq
u
il
ib

ri
u
m

m
ix

tu
re

p
ro

b
ab

il
it

ie
s

of
st

ra
te

gi
es

in
cl

u
d
ed

.

122

Env surplus ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7

LSLN 16929 0 0 0 0 0 0.98 0.02
LSMN 16914 0 0 0 0 0 0.89 0.11
LSHN 18213 0.22 0.78 0 0 0 0 0
MSLN 16693 0 0 0 0 0 0.74 0.26
MSMN 17192 0 0 0.42 0 0 0 0.58
MSMN 16726 0 0 0 0 0 0.80 0.20
MSHN 16746 0 0 0.09 0 0 0 0.91
MSHN 17516 0.38 0 0 0 0 0.62 0
HSLN 16565 0 0 0 0 0 0.73 0.27
HSLN 17143 0 0 0.53 0 0 0 0.47
HSMN 16667 0 0 0 0 0 1 0
HSHN 17861 0.31 0.39 0 0 0 0.30 0

Table A.7: Equilibria for games where agents are restricted to ZI strategies, N = 28,
calculated from the 4-player DPR approximation. Each row of the table describes
one equilibrium found with its corresponding surplus and the equilibrium mixture
probabilities of strategies included.

Env surplus ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7

LSLN 42938 0 1 0 0 0 0 0

LSLN 40779 0 0 0 0 0 1 0

LSMN 42972 0 0.97 0 0 0 0 0.03

LSMN 40557 0 0 0 0 0 0.83 0.17

LSHN 43327 0.44 0.56 0 0 0 0 0

LSHN 43173 0.11 0.89 0 0 0 0 0

MSLN 40444 0 0 0 0 0 1 0

MSMN 39622 0 0 0 0 0 1 0

MSHN 43140 0 0.73 0.27 0 0 0 0

HSLN 40523 0 0 0.28 0 0 0 0.72

HSLN 40038 0 0 0 0 0 0.60 0.40

HSMN 40458 0 0 0 0.08 0 0.73 0.19

HSHN 43197 0 0.88 0 0.12 0 0 0

Table A.8: Equilibria for games where agents are restricted to ZI strategies, N = 65,
calculated from the 5-player DPR approximation. Each row of the table describes
one equilibrium found with its corresponding surplus and the equilibrium mixture
probabilities of strategies included.

123

A.2 A Cloaking Mechanism to Mitigate Spoofing

Strategy ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7 ZI8 ZI9 HBL1 HBL2 HBL3 HBL4

L - - - - - - - - - 2 3 5 8

Rmin 0 0 0 0 0 0 250 250 250 250 250 250 250

Rmax 1000 1000 1000 2000 2000 2000 500 500 500 500 500 500 500

η 0.4 0.8 1 0.4 0.8 1 0.4 0.8 1 1 1 1 1

Table A.9: Background trading strategies included in EGTA for cloaking mechanisms.

Env K 95% CI background surplus 95% CI total surplus HBL fraction

LSHN K0 [42121, 42329] [42548, 42694] 1.00

LSHN K1 [41848, 42048] [42254, 42396] 0.98

LSHN K1 [41769, 41977] [42264, 42406] 0.92

LSHN K2 [41788, 42000] [42205, 42347] 0.997

LSHN K4 [41572, 41772] [42046, 42188] 0.89

MSMN K0 [41958, 42220] [42274, 42388] 0.67

MSMN K1 [41902, 42164] [42210, 42324] 0.67

MSMN K1 [41849, 42107] [42170, 42284] 0.60

MSMN K1 [41801, 42067] [42167, 42281] 0.68

MSMN K2 [41742, 42000] [42123, 42237] 0.66

MSMN K4 [41693, 41924] [42116, 42230] 0.47

MSMN K4 [38809, 39025] [39367, 39485] 0.012

HSLN K0 [41529, 41871] [41974, 42088] 0.59

HSLN K0 [41698, 42040] [42102, 42216] 0.67

HSLN K0 [41625, 41973] [42021, 42135] 0.67

HSLN K1 [41417, 41769] [41869, 41983] 0.66

HSLN K2 [41377, 41655] [41776, 41890] 0.38

HSLN K2 [39728, 39972] [40484, 40594] 0

HSLN K2 [38691, 38965] [39419, 39537] 0

HSLN K4 [39557, 39803] [40256, 40374] 0

HSLN K4 [39558, 39804] [40290, 40408] 0

Table A.10: Equilibria for games where the exploiter does not spoof. Each row of
the table describes one equilibrium found with its corresponding background surplus,
total surplus and HBL adoption rate. Results reported are based on at least 20,000
simulation runs.

124

E
n
v

K
Z

I 1
Z

I 2
Z

I 3
Z

I 4
Z

I 5
Z

I 6
Z

I 7
Z

I 8
Z

I 9
H

B
L

1
H

B
L

2
H

B
L

3
H

B
L

4

L
S

H
N

K
0

0
0

0
0

0
0

0
0

0
0.

7
0

0
0

0
.3

0

L
S

H
N

K
1

0
0

0.
02

0
0

0
0

0
0

0.
73

0
0

0
.2

5

L
S

H
N

K
1

0.
0
5

0
0.

03
0

0
0

0
0

0
0

0.
8
8

0
0
.0

4

L
S

H
N

K
2

0
0

0
0

0
0

0.
00

3
0

0
0

0.
8
5
6

0
0
.1

4
1

L
S

H
N

K
4

0
0

0.
11

0
0

0
0

0
0

0.
29

0.
6
0

0
0

M
S

M
N

K
0

0
0

0.
33

0
0

0
0

0
0

0.
51

0.
1
6

0
0

M
S

M
N

K
1

0.
1
1

0.
0
1

0.
21

0
0

0
0

0
0

0
0.

1
4

0
.5

3
0

M
S

M
N

K
1

0
0.

2
0

0.
20

0
0

0
0

0
0

0.
20

0.
1
5

0
.2

5
0

M
S

M
N

K
1

0
0

0.
32

0
0

0
0

0
0

0.
14

0.
3
9

0
.0

3
0
.1

2

M
S

M
N

K
2

0
0.

1
5

0
0.

19
0

0
0

0
0

0.
11

0.
4
0

0
.1

5
0

M
S

M
N

K
4

0.
2
0

0
0.

33
0

0
0

0
0

0
0.

4
0

0
0
.0

7
0

M
S

M
N

K
4

0
0

0
0

0
0

0.
67

4
0.

31
2

0.
00

2
0

0
0
.0

1
2

0

H
S

L
N

K
0

0
0

0.
12

0
0

0
0.

29
0

0
0.

4
9

0
.1

0
0

0

H
S

L
N

K
0

0
0

0
0.

33
0

0
0

0
0

0.
66

0
0

0
.0

1

H
S

L
N

K
0

0
0

0
0.

19
0.

14
0

0
0

0
0

0.
5
0

0
.1

7
0

H
S

L
N

K
1

0.
0
5

0
0

0.
29

0
0

0
0

0
0

0.
0
9

0
.5

7
0

H
S

L
N

K
2

0.
2
7

0.
3
5

0
0

0
0

0
0

0
0.

0
8

0
0
.3

0
0

H
S

L
N

K
2

0.
0
3

0.
2
9

0.
13

0
0

0
0

0
0.

55
0

0
0

0

H
S

L
N

K
2

0
0

0
0

0
0

0.
25

0.
34

0.
41

0
0

0
0

H
S

L
N

K
4

0
0
.3

5
0

0
0

0
0.

65
0

0
0

0
0

0

H
S

L
N

K
4

0
0
.3

6
0

0
0

0
0.

64
0

0
0

0
0

0

T
ab

le
A

.1
1:

D
et

ai
le

d
eq

u
il
ib

ri
a

fo
r

ga
m

es
w

h
er

e
th

e
ex

p
lo

it
er

d
o
es

n
ot

sp
o
of

.
E

ac
h

ro
w

of
th

e
ta

b
le

d
es

cr
ib

es
on

e
eq

u
il
ib

ri
u
m

fo
u
n
d

w
it

h
it

s
co

rr
es

p
on

d
in

g
m

ix
tu

re
of

b
ac

k
gr

ou
n
d

st
ra

te
gi

es
.

125

E
n
v

K
95

%
C

I
b
ac

k
gr

ou
n
d

su
rp

lu
s

95
%

C
I

to
ta

l
su

rp
lu

s
H

B
L

fr
ac

ti
on

S
p

o
ofi

n
g

fr
ac

ti
on

L
S
H

N
K

0
[4

16
93

,
41

89
3]

[4
22

43
,

42
38

9]
0.

95
1.

00

L
S
H

N
K

1
[4

18
48

,
42

04
8]

[4
22

54
,

42
39

6]
0.

98
0.

00

L
S
H

N
K

2
[4

17
88

,
42

00
0]

[4
22

05
,

42
34

7]
0.

99
7

0.
00

L
S
H

N
K

4
[4

15
64

,
41

76
4]

[4
20

10
,

42
15

2]
0.

90
0.

08

L
S
H

N
K

4
[4

15
72

,
41

77
2]

[4
20

46
,

42
18

8]
0.

89
0.

00

M
S
M

N
K

0
[4

16
52

,
41

90
2]

[4
21

51
,

42
26

5]
0.

65
1.

00

M
S
M

N
K

0
[4

16
22

,
41

88
4]

[4
21

06
,

42
22

0]
0.

66
1.

00

M
S
M

N
K

1
[4

19
02

,
42

16
4]

[4
22

10
,

42
32

4]
0.

67
0.

00

M
S
M

N
K

1
[4

18
49

,
42

10
7]

[4
21

70
,

42
28

4]
0.

60
0.

00

M
S
M

N
K

1
[4

18
01

,
42

06
7]

[4
21

67
,

42
28

1]
0.

68
0.

00

M
S
M

N
K

1
[4

17
49

,
42

03
1]

[4
21

46
,

42
26

0]
0.

72
0.

71

M
S
M

N
K

2
[4

17
00

,
41

94
6]

[4
21

09
,

42
22

3]
0.

54
0.

90

M
S
M

N
K

4
[4

16
55

,
41

88
3]

[4
21

11
,

42
22

5]
0.

48
0.

62

M
S
M

N
K

4
[3

88
09

,
39

02
5]

[3
93

67
,

39
48

5]
0.

01
2

0.
00

H
S
L

N
K

0
[4

15
38

,
41

88
2]

[4
20

47
,

42
16

1]
0.

69
1.

00

H
S
L

N
K

1
[4

14
17

,
41

76
9]

[4
18

69
,

41
98

3]
0.

66
0.

00

H
S
L

N
K

1
[4

10
39

,
41

34
5]

[4
15

93
,

41
70

7]
0.

48
1.

00

H
S
L

N
K

2
[4

10
80

,
41

34
2]

[4
17

19
,

41
83

3]
0.

28
1.

00

H
S
L

N
K

4
[3

95
57

,
39

80
3]

[4
02

56
,

40
37

4]
0

0.
00

H
S
L

N
K

4
[3

95
58

,
39

80
4]

[4
02

90
,

40
40

8]
0

0.
00

T
ab

le
A

.1
2:

E
q
u
il
ib

ri
a

fo
r

ga
m

es
w

h
er

e
th

e
ex

p
lo

it
er

st
ra

te
gi

ca
ll
y

ch
o
os

es
to

sp
o
of

.
E

ac
h

ro
w

of
th

e
ta

b
le

d
es

cr
ib

es
on

e
eq

u
il
ib

ri
u
m

fo
u
n
d

w
it

h
it

s
co

rr
es

p
on

d
in

g
b
ac

k
gr

ou
n
d

su
rp

lu
s,

to
ta

l
su

rp
lu

s,
H

B
L

an
d

sp
o
ofi

n
g

ad
op

ti
on

ra
te

.
R

es
u
lt

s
re

p
or

te
d

ar
e

b
as

ed
on

at
le

as
t

20
,0

00
si

m
u
la

ti
on

ru
n
s.

126

E
n
v

K
Z

I 1
Z

I 2
Z

I 3
Z

I 4
Z

I 5
Z

I 6
Z

I 7
Z

I 8
Z

I 9
H

B
L

1
H

B
L

2
H

B
L

3
H

B
L

4

L
S
H

N
K

0
0

0
0

0.
05

0
0

0
0

0
0.

95
0

0
0

L
S
H

N
K

1
0

0
0.

02
0

0
0

0
0

0
0.

73
0

0
0.

25

L
S
H

N
K

2
0

0
0

0
0

0
0.

00
3

0
0

0
0.

85
6

0
0.

14
1

L
S
H

N
K

4
0

0
0.

10
0

0
0

0
0

0
0.

38
0.

52
0

0

L
S
H

N
K

4
0

0
0.

11
0

0
0

0
0

0
0.

29
0.

60
0

0

M
S
M

N
K

0
0

0.
19

0
0.

16
0

0
0

0
0

0.
65

0
0

0

M
S
M

N
K

0
0

0.
20

0
0

0
0

0.
14

0
0

0.
61

0.
05

0
0

M
S
M

N
K

1
0.

11
0.

01
0.

21
0

0
0

0
0

0
0

0.
14

0.
53

0

M
S
M

N
K

1
0

0.
20

0.
20

0
0

0
0

0
0

0.
20

0.
15

0.
25

0

M
S
M

N
K

1
0

0
0.

32
0

0
0

0
0

0
0.

14
0.

39
0.

03
0.

12

M
S
M

N
K

1
0.

28
0

0
0

0
0

0
0

0
0

0.
51

0.
21

0

M
S
M

N
K

2
0

0
0.

46
0

0
0

0
0

0
0.

35
0

0.
19

0

M
S
M

N
K

4
0

0.
52

0
0

0
0

0
0

0
0.

46
0

0
0.

02

M
S
M

N
K

4
0

0
0

0
0

0
0.

67
4

0.
31

2
0.

00
2

0
0

0.
01

2
0

H
S
L

N
K

0
0

0
0

0.
31

0
0

0
0

0
0.

69
0

0
0

H
S
L

N
K

1
0.

05
0

0
0.

29
0

0
0

0
0

0
0.

09
0.

57
0

H
S
L

N
K

1
0

0
0

0.
33

0
0

0.
19

0
0

0.
08

0.
40

0
0

H
S
L

N
K

2
0

0.
72

0
0

0
0

0
0

0
0

0
0.

28
0

H
S
L

N
K

4
0

0.
35

0
0

0
0

0.
65

0
0

0
0

0
0

H
S
L

N
K

4
0

0.
36

0
0

0
0

0.
64

0
0

0
0

0
0

T
ab

le
A

.1
3:

D
et

ai
le

d
E

q
u
il
ib

ri
a

fo
r

ga
m

es
w

h
er

e
th

e
ex

p
lo

it
er

st
ra

te
gi

ca
ll
y

ch
o
os

es
to

sp
o
of

.
E

ac
h

ro
w

of
th

e
ta

b
le

d
es

cr
ib

es
on

e
eq

u
il
ib

ri
u
m

fo
u
n
d

w
it

h
it

s
co

rr
es

p
on

d
in

g
m

ix
tu

re
of

b
ac

k
gr

ou
n
d

st
ra

te
gi

es
.

127

A
.3

L
e
a
rn

in
g
-B

a
se

d
T

ra
d

in
g

S
tr

a
te

g
ie

s
u

n
d

e
r

th
e

P
re

se
n

ce
o
f

M
a
rk

e
t

M
a
n

ip
u

la
ti

o
n

S
tr

at
eg

y
Z

I 1
Z

I 2
Z

I 3
Z

I 4
Z

I 5
H

B
L

1
H

B
L

2
H

B
L

3
H

B
L

4
H

B
L

5
H

B
L

6
H

B
L

7
H

B
L

8
H

B
L

9
H

B
L

1
0

χ
N

A
N

A
N

A
N

A
N

A
N

A
1

2
N

A
N

A
N

A
N

A
2

2
2

R
m

in
0

0
0

0
0

0
0

0
-1

0
-2

0
-4

0
-8

0
-1

0
-2

0
-4

0

R
m

a
x

10
00

1
00

0
10

00
5
00

25
0

0
0

0
0

0
0

0
0

0
0

η
0
.4

0.
8

1
0.

8
0.

8
1

1
1

1
1

1
1

1
1

1

T
ab

le
A

.1
4:

B
ac

k
gr

ou
n
d

tr
ad

in
g

st
ra

te
gi

es
u
se

d
in

E
G

T
A

fo
r

H
B

L
va

ri
at

io
n
s.

H
B

L
n
−
L

in
ta

b
le

s
b

el
ow

m
ea

n
s

H
B

L
n

w
it

h
m

em
or

y
le

n
gt

h
of
L

.

128

E
n
v

B
a
se

li
n

e
Z

I 1
Z

I 2
Z

I 3
Z

I 4
Z

I 5
H

B
L

1
−

2
H

B
L

1
−

5
9
5
%

C
I

B
a
ck

g
ro

u
n

d
S

u
rp

lu
s

L
S

H
N

X
0

0
0

0
0

0
1.

0
0

[4
2
0
5
0
,

4
2
1
4
2
]

0
0

0
0

0
1.

00
0

[4
1
6
0
9
,

4
1
7
0
3
]

L
S

H
N

-
S

p
o
of

X
0

0
0

0
0

0
1.

0
0

[4
1
6
4
1
,

4
1
7
3
3
]

0
0

0
0

0
1.

00
0

[4
1
3
0
0
,

4
1
3
9
3
]

M
S

M
N

X
0.

0
11

6
0

0
0

0
0

0.
9
88

4
[4

1
8
2
0
,

4
1
9
7
8
]

0
0

0
0

0.
25

16
0.

74
84

0
[4

1
7
7
9
,

4
1
9
6
5
]

0
0

0.
26

52
0

0
0.

73
48

0
[4

1
6
9
3
,

4
1
8
6
6
]

M
S

M
N

-
S

p
o
o
f

X
0

0
0.

36
56

0
0

0.
63

44
0

[4
1
4
9
3
,

4
1
6
6
9
]

0
.2

2
50

0
0

0
0

0.
77

50
0

[4
1
7
0
2
,

4
1
8
7
6
]

0
0.

27
05

0
0

0
0.

72
95

0
[4

1
6
4
2
,

4
1
8
1
4
]

H
S

L
N

X
0.

2
28

0
0

0
0

0
0

0.
7
72

0
[4

1
6
5
9
,

4
1
9
0
7
]

0.
3
42

4
0

0
0

0
0.

65
76

0
[4

1
5
6
8
,

4
1
8
1
6
]

0
0

0
0.

42
88

0
0

0.
5
71

2
[4

1
3
3
9
,

4
1
5
9
9
]

0
0

0.
62

18
0

0
0

0.
3
78

2
[4

1
0
7
1
,

4
1
2
8
1
]

0
0.

50
29

0
0

0
0.

49
71

0
[4

1
2
1
8
,

4
1
4
5
2
]

0
0.

44
13

0
0

0
0

0.
5
58

7
[4

1
3
0
4
,

4
1
5
4
6
]

H
S

L
N

-
S

p
o
o
f

X
0.

3
05

4
0

0
0

0
0

0.
6
94

6
[4

1
4
2
7
,

4
1
6
7
0
]

0
0

0.
69

85
0

0
0

0.
3
01

5
[4

0
9
4
4
,

4
1
1
2
7
]

0
0.

58
51

0
0

0
0.

41
49

0
[4

1
1
2
0
,

4
1
3
3
5
]

0.
3
88

2
0

0
0

0
0.

61
18

0
[4

1
4
2
0
,

4
1
6
6
5
]

0
0

0.
67

58
0

0
0.

32
42

0
[4

1
0
1
4
,

4
1
2
0
8
]

T
ab

le
A

.1
5:

E
q
u
il
ib

ri
a

fo
r

ga
m

es
w

h
er

e
th

e
le

ar
n
in

g-
b
as

ed
tr

ad
in

g
st

ra
te

gy
se

t
is

re
st

ri
ct

ed
to

st
an

d
ar

d
H

B
L

.
E

ac
h

ro
w

d
es

cr
ib

es
an

eq
u
il
ib

ri
u
m

fo
u
n
d

fo
r

th
e

ga
m

e
d
es

cr
ib

ed
b
y

th
e

E
n

v
co

lu
m

n
,

d
et

ai
li
n
g

th
e

ad
op

ti
on

ra
te

of
ea

ch
st

ra
te

gy
co

n
si

d
er

ed
an

d
th

e
co

rr
es

p
on

d
in

g
b
ac

k
gr

ou
n
d

su
rp

lu
s.

T
h
e

eq
u
il
ib

ri
u
m

st
ra

te
gy

p
ro

fi
le

s
w

it
h

ch
ec

k
m

ar
k
s

in
th

e
“B

as
el

in
e”

co
lu

m
n

in
d
ic

at
es

th
os

e
u
se

d
as

b
as

el
in

e
st

ra
te

gy
p
ro

fi
le

s
fo

r
co

n
tr

ol
le

d
ex

p
er

im
en

ts
.

129

E
n
v

Z
I 1

Z
I 2

Z
I 3

Z
I 4

Z
I 5

H
B

L
1
−
2

H
B

L
1
−
5

H
B

L
3
−
2

H
B

L
3
−
5

9
5
%

C
I

B
a
ck

g
ro

u
n

d
S

u
rp

lu
s

L
S

H
N

0
0

0
0

0
1
.0

0
0

0
0

[4
1
6
0
9
,

4
1
7
0
3
]

0
0

0
0

0
0

1
.0

0
0

0
[4

2
0
5
0
,

4
2
1
4
2
]

0
0

0
0

0
0

0
1
.0

0
0

[4
1
6
9
0
,

4
1
7
8
4
]

L
S

H
N

-
0

0
0

0
0

1
.0

0
0

0
0

[4
1
3
0
0
,

4
1
3
9
3
]

S
p

o
of

0
0

0
0

0
0

1
.0

0
0

0
[4

1
6
4
1
,

4
1
7
3
3
]

0
0

0
0

0
0

0
1
.0

0
0

[4
1
6
9
0
,

4
1
7
8
4
]

0
0

0
0

0
0

0
0

1
.0

0
[4

2
0
9
3
,

4
2
1
3
9
]

M
S

M
N

0.
01

16
0

0
0

0
0

0
.9

8
8
4

0
0

[4
1
8
2
0
,

4
1
9
7
8
]

0
0

0
0

0
.2

5
1
6

0
.7

4
8
4

0
0

0
[4

1
7
7
9
,

4
1
9
6
5
]

0
0

0.
26

52
0

0
0
.7

3
4
8

0
0

0
[4

1
6
9
3
,

4
1
8
6
6
]

0.
23

78
0

0
0

0
0

0
0
.7

6
2
2

0
[4

1
6
5
1
,

4
1
7
4
3
]

0
0.

17
33

0
0

0
0

0
0

0
.8

26
7

[4
1
8
0
1
,

4
1
8
9
0
]

M
S

M
N

-
0

0
0.

36
56

0
0

0
.6

3
4
4

0
0

0
[4

1
4
9
3
,

4
1
6
6
9
]

S
p

o
of

0.
22

50
0

0
0

0
0
.7

7
5
0

0
0

0
[4

1
7
0
2
,

4
1
8
7
6
]

0
0

0
0

0
0

0
0

1
.0

0
[4

1
8
4
1
,

4
1
9
2
0
]

0.
25

26
0

0
0

0
0

0
.7

4
7
4

0
0

[4
1
8
0
8
,

4
1
9
8
8
]

0
0.

28
48

0
0

0
0

0
0
.7

1
5
2

0
[4

1
7
6
4
,

4
1
8
5
3
]

H
S

L
N

0.
22

80
0

0
0

0
0

0
.7

7
2
0

0
0

[4
1
6
5
9
,

4
1
9
0
7
]

0.
34

24
0

0
0

0
0
.6

5
7
6

0
0

0
[4

1
5
6
8
,

4
1
8
1
6
]

0
0

0
0
.4

2
8
8

0
0

0
.5

7
1
2

0
0

[4
1
3
3
9
,

4
1
5
9
9
]

0
0

0.
62

18
0

0
0

0
.3

7
8
2

0
0

[4
1
0
7
1
,

4
1
2
8
1
]

0.
36

0
0

0
0

0
0

0
.6

4
0

[4
1
6
0
8
,

4
1
7
3
4
]

0
0

0.
61

55
0

0
0

0
0

0
.3

84
5

[4
1
0
8
7
,

4
1
1
9
4
]

0
0

0.
61

03
0

0
0

0
0
.3

8
9
7

0
[4

1
1
2
2
,

4
1
2
3
1
]

H
S

L
N

-
0.

30
54

0
0

0
0

0
0
.6

9
4
6

0
0

[4
1
4
2
7
,

4
1
6
7
0
]

S
p

o
of

0.
38

82
0

0
0

0
0
.6

1
1
8

0
0

0
[4

1
4
2
0
,

4
1
6
6
5
]

0
0.

48
68

0
0

0
0

0
0
.5

1
3
2

0
[4

1
2
8
5
,

4
1
4
0
5
]

0.
34

28
0

0
0

0
0

0
0
.6

5
7
2

0
[4

1
6
3
2
,

4
1
7
5
9
]

0
0

0.
61

63
0

0
0

0
0
.3

8
3
7

0
[4

1
1
2
3
,

4
1
2
3
0
]

0.
28

46
0

0
0

0
0

0
0

0
.7

15
4

[4
1
7
2
0
,

4
1
8
4
8
]

T
ab

le
A

.1
6:

E
q
u
il
ib

ri
a

fo
r

ga
m

es
w

h
er

e
th

e
le

ar
n
in

g-
b
as

ed
tr

ad
in

g
st

ra
te

gy
se

t
is

co
m

p
ri

se
d

of
st

an
d
ar

d
H

B
L

an
d

H
B

L
w

it
h

p
ri

ce
le

ve
l

b
lo

ck
in

g.
E

ac
h

ro
w

d
es

cr
ib

es
an

eq
u
il
ib

ri
u
m

fo
u
n
d

fo
r

th
e

ga
m

e
d
es

cr
ib

ed
b
y

th
e

E
n

v
co

lu
m

n
,

d
et

ai
li
n
g

th
e

ad
op

ti
on

ra
te

of
ea

ch
st

ra
te

gy
co

n
si

d
er

ed
an

d
th

e
co

rr
es

p
on

d
in

g
b
ac

k
gr

ou
n
d

su
rp

lu
s.

130

E
n
v

Z
I 1

Z
I 2

Z
I 3

Z
I 4

H
B

L
4
−

2
H

B
L

5
−

2
H

B
L

6
−

2
H

B
L

4
−

5
H

B
L

5
−

5
H

B
L

6
−

5
9
5
%

C
I

B
a
ck

g
ro

u
n

d
S

u
rp

lu
s

L
S

H
N

0
0

0
0

0
0

0
0

1.
00

0
[4

1
5
1
8
,

4
2
5
6
2
]

0
0

0
0

0
0

0
1.

00
0

0
[4

1
5
1
2
,

4
2
5
5
6
]

0
0

0
0

0
0

1.
00

0
0

0
[4

2
4
2
0
,

4
2
5
0
7
]

0
0

0
0

0
1.

00
0

0
0

0
[4

2
5
5
1
,

4
2
6
4
0
]

0
0

0
0

1.
00

0
0

0
0

0
[4

2
5
5
1
,

4
2
6
3
9
]

L
S

H
N

-
0

0
0

0
0

0
0

1.
00

0
0

[4
2
4
3
0
,

4
2
4
7
4
]

S
p

o
of

0
0

0
0

0
0

1.
00

0
0

0
[4

2
4
0
6
,

4
2
4
9
2
]

0
0

0
0

0
1.

00
0

0
0

0
[4

2
5
2
7
,

4
2
6
1
4
]

0
0

0
0

1.
00

0
0

0
0

0
[4

2
5
1
6
,

4
2
6
0
3
]

M
S

M
N

0
0

0
0

0
0

1.
00

0
0

0
[4

2
0
8
5
,

4
2
2
2
9
]

0.
0
30

7
0

0
0

0
0.

96
93

0
0

0
0

[4
2
2
2
7
,

4
2
3
8
3
]

0
0

0
0

1.
00

0
0

0
0

0
[4

2
2
1
9
,

4
2
3
6
6
]

0
0

0
.2

1
27

0
0

0
0

0
0

0.
7
87

3
[4

1
7
0
2
,

4
1
7
8
7
]

0.
0
96

8
0

0
0

0
0

0
0

0.
90

32
0

[4
2
0
5
8
,

4
2
1
4
2
]

M
S

M
N

-
0

0
0

0.
0
78

1
0

0
0

0
0

0
.9

2
19

[4
1
9
1
2
,

4
1
9
9
1
]

S
p

o
of

0
0

0
0

0
0

1.
00

0
0

0
[4

2
0
5
4
,

4
2
1
9
7
]

0
0.

16
23

0
0

0
0.

83
77

0
0

0
0

[4
1
9
5
1
,

4
2
1
1
9
]

0
0.

12
76

0
0

0
0.

87
24

0
0

0
0

[4
2
0
2
1
,

4
2
1
8
5
]

H
S

L
N

0.
1
18

1
0

0
0

0
0.

88
19

0
0

0
0

[4
2
1
4
0
,

4
2
2
5
5
]

H
S

L
N

-
0.

1
60

1
0

0
0

0
0

0
0

0
0
.8

3
94

[4
1
7
8
2
,

4
1
8
9
3
]

S
p

o
of

0
0
.3

7
13

0
0

0
0

0
0

0.
62

87
0

[4
1
4
5
7
,

4
1
5
7
8
]

T
ab

le
A

.1
7:

E
q
u
il
ib

ri
a

fo
r

ga
m

es
w

h
er

e
th

e
le

ar
n
in

g-
b
as

ed
tr

ad
in

g
st

ra
te

gy
se

t
is

co
m

p
ri

se
d

of
st

an
d
ar

d
H

B
L

an
d

H
B

L
w

it
h

p
ri

ce
off

se
ts

.
E

ac
h

ro
w

d
es

cr
ib

es
an

eq
u
il
ib

ri
u
m

fo
u
n
d

fo
r

th
e

ga
m

e
d
es

cr
ib

ed
b
y

th
e

E
n

v
co

lu
m

n
,

d
et

ai
li
n
g

th
e

ad
op

ti
on

ra
te

of
ea

ch
st

ra
te

gy
co

n
si

d
er

ed
an

d
th

e
co

rr
es

p
on

d
in

g
b
ac

k
gr

ou
n
d

su
rp

lu
s.

131

E
n
v

Z
I 1

Z
I 2

Z
I 3

H
B

L
3
−

2
H

B
L

4
−

2
H

B
L

5
−

2
H

B
L

6
−

2
H

B
L

8
−

2
H

B
L

9
−

2
H

B
L

1
0
−

2
H

B
L

4
−

5
H

B
L

5
−

5
H

B
L

6
−

5
H

B
L

8
−

5
H

B
L

9
−

5
H

B
L

1
0
−

5
9
5
%

C
I

L
S

H
N

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
.0

0
0

[4
2
5
2
0
,

4
2
5
6
5
]

0
0

0
0

0
0

0
0

0
0

0
0

0
1
.0

0
0

0
[4

2
5
1
1
,

4
2
5
5
6
]

0
0

0
0

0
0

0
0

0
0

0
1
.0

0
0

0
0

0
[4

1
5
1
8
,

4
2
5
6
2
]

0
0

0
0

0
0

0
0

0
0

1
.0

0
0

0
0

0
0

[4
1
5
1
2
,

4
2
5
5
6

0
0

0
0

0
0

0
0

0
1
.0

0
0

0
0

0
0

0
[4

2
4
2
3
,

4
2
5
0
9
]

0
0

0
0

0
0

0
0

1
.0

0
0

0
0

0
0

0
0

[4
2
5
5
0
,

4
2
6
3
8
]

0
0

0
0

0
0

0
1
.0

0
0

0
0

0
0

0
0

0
[4

2
5
5
5
,

4
2
6
4
2
]

0
0

0
0

0
0

1
.0

0
0

0
0

0
0

0
0

0
0

[4
2
4
2
0
,

4
2
5
0
7
]

0
0

0
0

0
1
.0

0
0

0
0

0
0

0
0

0
0

0
[4

2
5
5
1
,

4
2
6
4
0
]

0
0

0
0

1
.0

0
0

0
0

0
0

0
0

0
0

0
0

[4
2
5
5
1
,

4
2
6
3
9
]

L
S

H
N

-
0

0
0

0
0

0
0

0
0

0
0

0
0

1
.0

0
0

0
[4

2
5
1
1
,

4
2
5
5
6
]

S
p

o
o
f

0
0

0
0

0
0

0
0

0
1
.0

0
0

0
0

0
0

0
[4

2
4
2
2
,

4
2
5
0
9
]

0
0

0
0

0
0

0
0

1
.0

0
0

0
0

0
0

0
0

[4
2
5
5
1
,

4
2
6
3
9
]

0
0

0
0

0
0

0
1
.0

0
0

0
0

0
0

0
0

0
[4

2
5
5
4
,

4
2
6
4
1
]

0
0

0
0

0
0

1
.0

0
0

0
0

0
0

0
0

0
0

[4
2
4
0
6
,

4
2
4
9
2
]

0
0

0
0

0
1
.0

0
0

0
0

0
0

0
0

0
0

0
[4

2
5
2
7
,

4
2
6
1
4
]

0
0

0
0

1
.0

0
0

0
0

0
0

0
0

0
0

0
0

[4
2
5
1
6
,

4
2
6
0
3
]

M
S

M
N

0
.2

1
8
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0
.7

8
1
8

0
[4

1
8
7
7
,

4
1
9
6
7
]

0
.1

1
1
8

0
0

0
0

0
0

0
0
.8

8
8
2

0
0

0
0

0
0

0
[4

2
1
2
3
,

4
2
2
9
1
]

0
0

0
.1

9
7
8

0
0

0
0

0
0

0
.8

0
2
2

0
0

0
0

0
0

[4
1
7
5
5
,

4
1
9
2
1
]

0
0

0
0

0
0

1
.0

0
0

0
0

0
0

0
0

0
0

[4
2
0
8
5
,

4
2
2
2
9
]

0
.0

3
0
7

0
0

0
0

0
.9

6
9
3

0
0

0
0

0
0

0
0

0
0

[4
2
2
2
7
,

4
2
3
8
3
]

0
0

0
0

1
.0

0
0

0
0

0
0

0
0

0
0

0
0

[4
2
2
1
9
,

4
2
3
6
6
]

M
S

M
N

-
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
.0

0
[4

2
0
6
0
,

4
2
1
3
3
]

S
p

o
o
f

0
0

0
0

0
0

0
0

1
.0

0
0

0
0

0
0

0
0

[4
2
2
4
6
,

4
2
3
9
5
]

0
0
.1

2
7
6

0
0

0
.8

7
2
4

0
0

0
0

0
0

0
0

0
0

0
[4

2
0
2
1
,

4
2
1
8
5
]

0
.2

5
2
6

0
0

0
.7

4
7
4

0
0

0
0

0
0

0
0

0
0

0
0

[4
1
8
0
8
,

4
1
9
8
8
]

H
S

L
N

0
.2

2
7
5

0
0

0
0

0
0

0
0
.7

7
2
5

0
0

0
0

0
0

0
[4

1
8
4
5
,

4
2
0
8
5
]

0
.2

3
7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.7

6
3
0

[4
1
7
0
5
,

4
1
8
2
4
]

H
S

L
N

-
0

0
.3

7
1
3

0
0

0
0

0
0

0
0

0
0
.6

2
8
7

0
0

0
0

[4
1
4
5
7
,

4
1
5
7
8
]

S
p

o
o
f

0
.2

8
8
4

0
0

0
0

0
0

0
.7

1
1
6

0
0

0
0

0
0

0
0

[4
1
7
5
4
,

4
1
9
9
7
]

0
0
.3

2
3
1

0
0

0
0

0
0

0
.6

7
6
9

0
0

0
0

0
0

0
[4

1
6
3
9
,

4
1
8
7
7
]

T
ab

le
A

.1
8:

E
q
u
il
ib

ri
a

fo
r

ga
m

es
w

h
er

e
th

e
le

ar
n
in

g-
b
as

ed
tr

ad
in

g
st

ra
te

gy
se

t
is

co
m

p
ri

se
d

of
st

an
d
ar

d
H

B
L

,
H

B
L

w
it

h
p
ri

ce
le

ve
l

b
lo

ck
in

g,
H

B
L

w
it

h
p
ri

ce
off

se
ts

,
an

d
H

B
L

w
it

h
b

ot
h

p
ri

ce
off

se
ts

an
d

p
ri

ce
le

ve
l

b
lo

ck
in

g
(H

B
L

1
an

d
H

B
L

2
ar

e
n
ot

sh
ow

n
b

ec
au

se
th

ey
d
o

n
ot

ap
p

ea
r

in
an

y
eq

u
il
ib

ri
u
m

).
E

ac
h

ro
w

d
es

cr
ib

es
an

eq
u
il
ib

ri
u
m

fo
u
n
d

fo
r

th
e

ga
m

e
d
es

cr
ib

ed
b
y

th
e

E
n

v
co

lu
m

n
,

d
et

ai
li
n
g

th
e

ad
op

ti
on

ra
te

of
ea

ch
st

ra
te

gy
co

n
si

d
er

ed
an

d
th

e
co

rr
es

p
on

d
in

g
b
ac

k
gr

ou
n
d

su
rp

lu
s.

132

APPENDIX B

Additional Proofs and Results for Chapter 4

B.1 Deferred Proofs from Section 4.4

B.1.1 Proof of Theorem 4.1

As the left-hand side of the constraint in M.1 is a piecewise linear function of S,

it suffices to solve M.1 by including constraints defined by S at breakpoint values. In

our case, breakpoints of the constraint are the strike values specified in the market,

and the number of distinct strikes nK grows sublinear in the number of orders norders.

Therefore, we can specify the constraint in M.1 as nK + 2 payoff constraints for

each stock value S ∈ p ∪ q ∪ {0,∞}. Moreover, there are at most norders quantity

constraints, if we consider the quantity specified in each order. Thus, M.1 is a linear

program with norders +1 decision variables and O(norders) constraints. Mechanism M.1

matches options written on the same underlying asset and expiration across all types

and strikes in time polynomial in the number of orders.

B.1.2 Proof of Price Quote Procedure

We reiterate the procedure of using mechanism M.1 to price a target options

(χ, S,K, T) with existing options orders in the market defined by (φ,p, b,ψ, q,a).

(1) The best bid b∗ for an option (χ, S,K, T) is the maximum gain of selling a portfolio

of options that is weakly dominated by (χ, S,K, T) for some constant L.

We derive b∗ by adding (χ, S,K, T) to the sell side of the market indexed N + 1,

initializing its price aN+1 to 0, and solving for M.1. The best bid b∗ is the returned

objective of M.1.

133

Proof. We show that the above procedure finds the best bid, by returning the

maximum gain of selling a weakly dominated portfolio of options. After adding

(χ, S,K, T) to the market, we have the updated M.1 as the following:

max
γ,δ,L

b>γ − a>δ − aN+1δN+1 − L

s.t.
∑
m

γm max{φm(S − pm), 0} −
∑
n

δn max{ψn(S − qn), 0}

− δN+1 max{χ(S −K), 0} ≤ L ∀S ∈ [0,∞)

Since we set aN+1 = 0, it is always optimal to buy option (χ, S,K, T) and have

δN+1 = 1. Therefore, we have the following optimization problem extended from

M.1:

max
γ,δ,L

z := b>γ − a>δ − L (M.1-bid)

s.t.
∑
m

γm max{φm(S − pm), 0} −
∑
n

δn max{ψn(S − qn), 0}︸ ︷︷ ︸
Portfolio (∗)

≤ max{χ(S −K), 0}+ L ∀S ∈ [0,∞)

Following Definition 4.1, the left-hand side of the above inequality describes the

payoff of a portfolio of existing options that is weakly dominated by the target

options (χ, S,K, T) with an offset L, and the objective z maximizes the gain of

selling such a portfolio. One is willing to buy (χ, S,K, T) at the highest price

(i.e., the best bid) b∗ = z, as one can always sell the weakly dominated Portfolio

(∗) and get z back without losing anything in the future.

(2) The best ask a∗ for an option (χ, S,K, T) is the minimum cost of buying a port-

folio of options that weakly dominates (χ, S,K, T) for some constant L.

We derive a∗ by adding (χ, S,K, T) to the buy side of the market indexed M + 1,

initializing its price bM+1 to a large number (i.e., 106), and solving for M.1. The

best ask a∗ is then bM+1 minus the returned objective.

Proof. We show that the above procedure finds the best ask, by returning the

minimum cost of buying a weakly dominant portfolio of options. After adding

134

(χ, S,K, T) to the market, we have the updated M.1 as the following:

max
γ,δ,L

b>γ + bM+1γM+1 − a>δ − L

s.t.
∑
m

γm max{φm(S − pm), 0}+ γM+1 max{χ(S −K), 0}

−
∑
n

δn max{ψn(S − qn), 0} ≤ L ∀S ∈ [0,∞)

We set bM+1 to a sufficiently large number, say bM+1 = 106, so that it is always

optimal to sell option (χ, S,K, T) and thus have γM+1 = 1. Therefore, we have

the following optimization problem:

max
γ,δ,L

z := b>γ + bM+1 − a>δ − L (M.1-ask)

s.t. max{χ(S −K), 0} ≤

−
∑
m

γm max{φm(S − pm), 0}+
∑
n

δn max{ψn(S − qn), 0}︸ ︷︷ ︸
Portfolio (∗)

+L

∀S ∈ [0,∞)

Following Definition 4.1, the right-hand side of the above inequality describes the

payoff of a portfolio of existing options that weakly dominates the target options

(χ, S,K, T) with an offset L. Since bM+1 is a fixed constant, the objective that

maximizes for z is equivalent to minimizing for −b>γ + a>δ + L, which is the

net cost of buying Portfolio (∗) plus L. One is willing to sell (χ, S,K, T) at the

lowest price (i.e., the best ask) a∗ = bM+1 − z, as one can always pay a∗ and buy

back a weakly dominant Portfolio (∗) without losing anything in the future.

B.1.3 Proof of Corollary 4.1.1

We start by showing that in order to quote the most competitive prices (i.e.,

the highest bid and the lowest ask) for any target option (χ, S,K, T), it suffices to

consider options orders in F . We prove by contradiction and consider the following

two cases:

(1) Suppose that there exists a bid order o /∈ F with γo > 0 in the Portfolio (∗),
which is the optimal portfolio constructed to derive the highest bid or lowest ask

for (χ, S,K, T).

Since o /∈ F , then by the contrapositive of Definition 4.2, the bid of o can be

135

improved by a portfolio of other orders, denoted Portfolio o∗, which is weakly

dominated by o with some constant offset L∗. We denote bo the bid price specified

in order o and Πo∗ the revenue of selling portfolio o∗. Then, we have

z∗ := Πo∗ − L∗ > bo and Ψo∗ ≤ Ψo + L∗.

This means that we can replace o with Portfolio o∗ and the L∗ without violating

the constraints in M.1-bid and M.1-ask (since γoΨo ≥ γo(Ψo∗−L∗)), and improve

the objective by γo(z
∗−bo) > 0. This contradicts our premises, and thus to derive

the most competitive prices for any option (χ, S,K, T), we have γo = 0 for all

o /∈ F .

(2) Similarly, suppose that there exists an ask order o /∈ F with δo > 0 in the Port-

folio (∗), which is the optimal portfolio constructed to derive the highest bid or

lowest ask for (χ, S,K, T).

Since o /∈ F , then by the contrapositive of Definition 4.2, the ask of o can be

improved by a portfolio of other orders, denoted Portfolio o∗, which weakly dom-

inates o with some constant offset L∗. We denote ao the ask price specified in

order o and Πo∗ the cost of buying portfolio o∗. Then, we have

z∗ := Πo∗ − L∗ < ao and Ψo ≤ Ψo∗ + L∗.

This means that we can replace o with Portfolio o∗ and the L∗ without violating

the constraints in M.1-bid and M.1-ask (since δoΨo ≤ δo(Ψo∗ +L∗)), and improve

the objective by δo(ao−z∗) > 0. This contradicts our premises, and thus to derive

the most competitive prices for any option (χ, S,K, T), we have δo = 0 for all

o /∈ F .

Therefore, to quote the most competitive prices for any target option (χ, S,K, T), it

suffices to consider options orders in F . Similar proofs hold for deciding the existence

of matching: if an order o /∈ F appears in the matched portfolio, we can always

improve the objective by substituting o with Portfolio o∗. Thus, to determine the

price quotes and the existence of a match, it suffices to consider options orders in F .

Following Theorem 4.1, our proposed mechanism M.1 determines price quotes and

the existence of a match in time polynomial in the size of the frontier set.

136

B.2 Deferred Proofs from Section 4.5

B.2.1 Proof of Theorem 4.2

The decision problem described in Theorem 4.2 is in NP. Given a certificate which

is a value vector S ∈ RU
+, we plug S into constraint in Mechanism M.2 to compute

the payoff and check whether it is less than L. This takes time O(U(M + N)). For

the NP-hardness, we prove the following stronger statement, which we will later use

directly to prove Theorem 4.3.

Theorem B.1 (Variation of Theorem 4.2). Consider all combinatorial options in the

market (φ,α,p,ψ,β, q). For any fixed L, it is NP-hard to decide

• Yes: γ = δ = 1 violates constraint (4.2) in M.2 for some S. Moreover, there exists

a function ε : Z→ R+ such that given the fixed L, for any (γ, δ) that satisfies∑
m

γm max{φm(α>mS−pm), 0}−
∑
n

δn max{ψn(β>n S−qn), 0} ≤ L+0.25 ∀S ∈ RU≥0

we have |γ|M < 1− ε(M),

• No: γ = δ = 1 satisfies constraint (4.2) for all S,

even assuming that each combinatorial option is written on at most two underlying

assets.

Proof. We prove by reducing from the Vertex Cover problem: given an undirected

graph G = (V,E) and an integer k, decide if there is a subset of vertices V ′ ⊆ V of

size k such that each edge has at least one vertex in V ′. Given a Vertex Cover instance

(G, k), we construct an instance of the combinatorial options matching problem. Let

the set of underlying assets correspond to vertices in G, i.e., U = |V |. For each vertex

indexed i, we associate four options with it (one on the buy side and three on the sell

side), which have payoff functions as follows:

fi = max{2K1Si −K1, 0}, g
(1)
i = max{K1Si, 0},

g
(2)
i = max{K2Si −K2, 0}, g

(3)
i = max{Si, 0},

where we choose K1 and K2 for some large numbers with K2 � K1. For example, we

have K1 = 10|E| and K2 = 100|E|. For each edge e = (i, j), we define two options

(one on the buy side and one on the sell side) that involve its two end-points i and j:

fe = max{Si + Sj, 0}, ge = max{Si + Sj − 1, 0}.

137

Finally, we include one sell order on an option with payoff g? = max{|E| − k − L −
0.5, 0}. Since L is fixed in advance, we assume |E| − k − L − 0.5 > 0 without loss

of generality. Thus, we have M = |V | + |E| buy orders and N = 3|V | + |E| + 1

sell orders. The construction takes time polynomial in the size of the Vertex Cover

instance.

Suppose the Vertex Cover instance is a Yes instance, and {v1, v2, ..., vk} is a vertex

cover. We show that assigning S1, S2, ..., Sk to 1 for the selected underlying assets and

0 for the rest unselected gives an S that violates the constraint (4.2). The left-hand

side of the constraint (4.2) is

z :=
∑
i∈V

(
fi − g(1)

i − g
(2)
i − g

(3)
i

)
︸ ︷︷ ︸

zv

+
∑
e∈E

(fe − ge)︸ ︷︷ ︸
ze

−g?. (B.1)

For Si ∈ {0, 1}, it is easy to see that fi − g
(1)
i − g

(2)
i = 0. Thus, we have zv =

−
∑

i∈V g
(3) = −k by our assignment. Since at least one of Si, Sj is 1 for any edge

(i, j) ∈ E, we have fe − ge = 1 and ze = |E|. Therefore, we have

z =− k + |E| − (|E| − k − L− 0.5) = L+ 0.5 > L.

To conclude the proof for the Yes instance case, we find the function ε(·) such that

for any (γ, δ) with |γ| ≥M(1− ε(M)), there exists a S that violates constraint (4.2)

even if the L on the right-hand side is changed to L+ 0.25. We keep the assignment

138

of S as before, and the left-hand side of constraint (4.2) is as the following:

z′ :=
∑
i∈V

(
γifi − δ(1)

i g
(1)
i − δ

(2)
i g

(2)
i − δ

(3)
i g

(3)
i

)
+
∑
e∈E

(γefe − δege)− δ?g?

≥
∑
i∈V

(
γifi − g(1)

i − g
(2)
i − g

(3)
i

)
+
∑
e∈E

(γefe − ge)− g?

(since δn ∈ [0, 1] and option payoffs are non-negative)

=z −
∑
i∈V

(1− γi)fi −
∑
e∈E

(1− γe)fe

≥z −M · 2K1 +
∑
i∈V

γi · 2K1 +
∑
e∈E

γe · 2K1

(since ∀m : fm ≤ 2K1 and M = |V |+ |E|)

=z −M · 2K1 + |γ| · 2K1 (|γ| =
∑

m γm)

≥z −Mε(M) · 2K1 (since |γ| ≥M(1− ε(M)))

=L+ 0.5−Mε(M) · 2K1

It suffices to choose ε such that Mε(M) ·2K1 < 0.25. Recall that K1 = 10|E| < 10M .

We can choose, say ε = 1
80M2 .

Suppose the Vertex Cover instance is a No instance. We aim to show that for the

given γ, δ, and L, there does not exist an S that violates the constraint. We prove

by maximizing z and demonstrating z ≤ L. We start by proving the following claim.

Claim 1. For an optimal z, we have Si ∈ {0, 1}.

We prove by contradiction, first assuming Sj > 1 for some j. Similarly, we have

z := fj − g(1)
j − g

(2)
j − g

(3)
j︸ ︷︷ ︸

zj

+
∑
i∈V \j

(
fi − g(1)

i − g
(2)
i − g

(3)
i

)
︸ ︷︷ ︸

zi

+
∑
e∈E

(fe − ge)︸ ︷︷ ︸
ze

−g?.

We first analyze zj and have

zj = max{2K1Sj −K1, 0} −max{K1Sj, 0} −max{K2Sj −K2, 0} −max{Sj, 0}

=2K1Sj −K1 −K1Sj − (K2Sj −K2)− Sj (by assumption of Sj > 1)

=K2 −K1 − (K2 −K1 + 1)Sj.

Recall that we choose K2 � K1, K1 = 10|E| and K2 = 100|E|. Thus, we have zj

increase with rate K2 −K1 + 1 as Sj decreases uniformly. Since ze decreases at most

139

|E| and the rest two terms, zi and g?, do not depend on Sj, decreasing Sj increases

z. It is sub-optimal to have Sj > 1 for some j.

Next, we assume 0 ≤ Sj ≤ 1, and have

zj =


−K1Sj − Sj 0 ≤ Sj ≤ 0.5,

K1(Sj − 1)− Sj 0.5 < Sj ≤ 1.

As K1 is large, by a similar argument analyzing the growth rate of each term, we

show that zj (and also z) increases by assigning Sj to 0 if 0 ≤ Sj ≤ 0.5, and by

assigning Sj to 1 if 0.5 < Sj ≤ 1.

Now, we have Si ∈ {0, 1} and aim to maximize z. Following Eq. (B.1), we have

z = −
∑
i∈V

Si +
∑
e∈E

(fe − ge)− (|E| − k) + L+ 0.5.

As Si is an integer, to show z ≤ L, it suffices to show that
∑

e∈E(fe−ge)−
∑

i∈V Si <

|E| − k. We prove by contradiction, assuming
∑

e∈E(fe − ge) −
∑

i∈V Si ≥ |E| − k.

Recall that to have fe − ge = 1 for e = (i, j), we need at least one of Si, Sj to be 1.

We consider the following two possible cases, and aim to refute them:

(a)
∑

e∈E(fe − ge) = |E| and
∑

i∈V Si ≤ k.

This means we cover all edges with at most k vertices assigned to 1.

(b)
∑

e∈E(fe − ge) < |E| and
∑

i∈V Si < k.

For any e with fe − ge = 0, we can assign 1 to one of its end-points, and have∑
e∈E(fe− ge) = |E| without changing

∑
e∈E(fe− ge)−

∑
i∈V Si. This leads back

to (a).

Both cases contradict to the fact that the Vertex Cover instance is a No instance. We

have
∑

e∈E(fe − ge)−
∑

i∈V Si < |E| − k as desired, and thus z ≤ L for all S.

B.2.2 Proof of Theorem 4.3

We reduce this decision problem from the decision problem in Theorem B.1 with

L = 0 and each combinatorial option is written on at most two underlying assets.

The reduction is as follows. The instance of the optimization problem have the

same α,β,p, q as given in the instance for the decision problem. In other words, the

reduction keeps the same for f1, . . . , fM , g1, . . . , gN . Set a1 = · · · = aN = a, and set

140

b1 = · · · = bM = b, where a > 0 is sufficiently small and b > 0 is sufficiently large.

We will decide both values later.

If the decision problem instance is a No instance, we know that the constraint (2)

holds for f1, . . . , fM , g1, . . . , gN , γ1 = · · · = γM = δ1 = · · · = δN = 1 and L = 0.

Under this feasible assignment for γ, δ and L, we have b>γ − a>δ − L = Mb−Na.

If the decision problem instance problem is a Yes instance, we aim to show that

b>γ − a>δ −L < Mb−Na for any feasible γ, δ, L. We discuss three different cases:

L > 0.25, 0 ≤ L ≤ 0.25, and L < 0.

For L > 0.25, we have b>γ−a>δ−L < b>γ−0.25. Since each entry of γ is at most

1, the maximum of b>γ is Mb. Putting together, we have b>γ−a>δ−L < Mb−0.25,

which is less than Mb − Na if a is set such that a < 1/4N . We will fix a = 1/8N

from now on.

For 0 ≤ L ≤ 0.25, Theorem B.1 ensures that there exists an ε which depends only

on M such that any feasible γ, δ satisfy |γ| < (1 − ε)M < M . Notice that L is set

to 0 in the instance we are reducing from, and L here is between 0 and 0.25. These

make the statement corresponding to the Yes case of Theorem B.1 apply. Therefore,

the objective b>γ − a>δ − L ≤ b>γ ≤ (1− ε)Mb is strictly less than Mb−Na if b

is set such that b > Na
εM

(notice that ε in Theorem B.1 does not depend on b).

For L < 0, notice that substituting γ = 0, δ = 1,S = 0 to the left-hand side

of (2) gives an upper-bound to −L. Let L∗ be this upper-bound. Notice that L∗

only depends on α,β,p, q and is computable in polynomial time. In the case the

decision problem instance is a Yes instance, we know that any feasible γ, δ satisfy

|γ| < (1−ε)M (this is already the case for L = 0, and the feasible region for (γ, δ) can

only be smaller for negative L). Therefore, we have b>γ−a>δ−L < Mb(1−ε)+L∗,

which is less than Mb − Na if b satisfies b > Na+L∗

εM
. By setting b = Na+L∗

εM
+ 1, the

theorem concludes. Notice that L∗ and ε only depend on α,β,p, q, so our definition

of b is valid.

B.3 Deferred Experimental Results

We implement Mechanism M.1 and Algorithm 3 using Gurobi and conduct exper-

iments on an AWS m5a.8xlarge instance. For consolidating standard options related

to the same underlying asset and expiration date, we compare the two cases where L

is treated as a decision variable and L is fixed to 0. We attach the detailed statistics

for options of each stock below. For Algorithm 3, we use M = 106 throughout all

experiments.

141

B.3.1 Statistics of options on each stock using M.1 with L as a decision

variable

Stock #markets #expira-

tions

#markets/

expiration

#matches

(L ≥ 0)

ave

profit

#matches

(L < 0)

ave interest

rate (%)

AAPL 1452 14 104 1 0.8 3 0.94

AXP 804 11 73 4 0.5 2 0.99

BA 1694 14 121 5 3.35 3 0.66

CAT 968 13 74 6 0.18 2 0.69

CSCO 728 12 61 1 0.02 2 0.44

CVX 742 12 62 7 1.26 2 0.41

DD 778 13 60 1 0.32 3 0.45

DIS 806 13 62 5 0.86 0 0

GS 1110 12 93 1 0.16 3 0.82

HD 908 13 70 1 0.02 2 0.17

IBM 848 12 71 4 3.45 1 0.91

INTC 662 12 55 2 0.54 1 0.86

JNJ 850 12 71 4 0.12 2 0.57

JPM 854 13 66 3 0.4 3 0.7

KO 618 13 48 4 0.2 2 0.34

MCD 692 12 58 1 0.8 3 0.44

MMM 804 12 67 5 2.23 2 0.41

MRK 766 12 64 3 0.18 2 0.42

MSFT 1194 13 92 1 0 0 0

NKE 844 12 70 0 0 2 0.6

PFE 640 12 53 6 0.84 1 0.59

PG 786 12 66 3 0.27 2 0.31

RTX 920 14 66 1 0.01 0 0

TRV 256 6 43 0 0 1 0.4

UNH 964 12 80 1 0.04 2 1.34

V 856 13 66 3 0.03 5 1.47

VZ 508 12 42 6 0.65 1 1.81

WBA 808 11 73 0 0 1 0.14

WMT 810 12 68 3 0.2 3 0.51

XOM 832 12 69 7 2.78 1 0.85

Total 25502 366 69 94 1.03 56 0.70

Table B.1: Summary statistics (matching) of options on each stock in DJI by consol-
idating options related to the same underlying asset and expiration date.

142

Stock #option

series

#orders

in F
Frontier

(%)

ave call

spread

ave put

spread

improved

call spread

improved

put spread

% spread

reduced

AAPL 1038 787 38 1.46 1.92 0.25 0.29 84

AXP 476 440 46 0.37 0.3 0.15 0.13 58

BA 734 684 47 1.18 0.56 0.34 0.26 65

CAT 482 503 52 0.73 0.41 0.22 0.18 65

CSCO 608 616 51 1.27 0.45 0.1 0.07 90

CVX 254 274 54 0.2 0.2 0.11 0.09 51

DD 564 624 55 0.28 0.17 0.13 0.1 49

DIS 518 515 50 0.91 0.79 0.13 0.12 85

GS 738 631 43 0.91 0.61 0.24 0.16 73

HD 688 675 49 1.69 1.53 0.33 0.32 80

IBM 506 429 42 1.54 0.76 0.31 0.21 77

INTC 462 523 57 1.07 0.62 0.2 0.16 79

JNJ 404 412 51 1.04 1.2 0.14 0.13 88

JPM 524 472 45 0.62 0.57 0.11 0.09 83

KO 370 350 47 0.34 0.17 0.05 0.04 82

MCD 266 285 54 0.48 0.31 0.21 0.16 53

MMM 336 379 56 0.74 0.56 0.22 0.19 68

MRK 488 507 52 0.4 0.34 0.15 0.14 62

MSFT 1120 833 37 2.2 0.96 0.33 0.27 81

NKE 720 766 53 1.78 0.63 0.13 0.08 91

PFE 284 304 54 0.58 0.44 0.05 0.05 90

PG 486 491 51 0.31 0.16 0.15 0.11 44

RTX 822 831 51 1.74 1.5 0.93 0.93 43

TRV 204 216 53 1.18 1.36 0.46 0.49 63

UNH 750 618 41 2.05 1.23 0.54 0.37 72

V 416 413 50 0.51 0.43 0.22 0.2 56

VZ 248 295 59 0.11 0.09 0.06 0.06 43

WBA 744 641 43 1.2 1.46 0.37 0.38 72

WMT 494 475 48 0.47 0.25 0.14 0.11 64

XOM 344 288 42 0.4 0.47 0.1 0.11 75

Total 16088 15277 49 0.93 0.68 0.23 0.2 73

Table B.2: Summary statistics (quoting) of options on each stock in DJI by consoli-
dating options related to the same underlying asset and expiration date.

143

B.3.2 Statistics of options on each stock using M.1 with L = 0

Stock #markets #expira-

tions

#markets/

expiration

#matches

(L = 0)

average

profit

AAPL 1452 14 104 3 2.14

AXP 804 11 73 4 1.56

BA 1694 14 121 4 3.72

CAT 968 13 74 5 0.48

CSCO 728 12 61 0 0

CVX 742 12 62 5 0.36

DD 778 13 60 2 0.03

DIS 806 13 62 5 0.58

GS 1110 12 93 3 7.3

HD 908 13 70 1 0.29

IBM 848 12 71 2 4.89

INTC 662 12 55 1 0.01

JNJ 850 12 71 2 0.08

JPM 854 13 66 2 0.28

KO 618 13 48 1 0.13

MCD 692 12 58 2 0.43

MMM 804 12 67 1 1.36

MRK 766 12 64 2 0.04

MSFT 1194 13 92 0 0

NKE 844 12 70 1 0.01

PFE 640 12 53 3 0.15

PG 786 12 66 3 0.48

RTX 920 14 66 1 0.01

TRV 256 6 43 0 0

UNH 964 12 80 2 7.54

V 856 13 66 5 3.5

VZ 508 12 42 4 0.49

WBA 808 11 73 0 0

WMT 810 12 68 4 0.18

XOM 832 12 69 6 1.16

Total 25502 366 69 74 1.54

Table B.3: Summary statistics (matching with L = 0) of options on each stock in DJI
by consolidating options related to the same underlying asset and expiration date.

144

Stock #option

series

#orders

in F
Frontier

(%)

ave call

spread

ave put

spread

improved

call spread

improved

put spread

% spread

reduced

AAPL 1120 902 40 1.61 2.05 0.69 1.1 51

AXP 616 605 49 0.31 0.26 0.17 0.15 44

BA 1208 1399 58 1.03 0.49 0.65 0.35 34

CAT 678 768 57 0.6 0.42 0.25 0.19 57

CSCO 728 783 54 1.34 0.48 0.28 0.14 77

CVX 456 537 59 0.48 0.58 0.23 0.24 56

DD 666 845 63 0.28 0.2 0.16 0.12 42

DIS 518 569 55 0.91 0.79 0.31 0.24 68

GS 826 848 51 0.92 0.65 0.54 0.3 46

HD 828 887 54 1.68 1.51 0.93 0.83 45

IBM 696 668 48 1.62 0.81 0.73 0.34 56

INTC 568 701 62 1.02 0.61 0.32 0.21 67

JNJ 672 779 58 0.99 1.16 0.39 0.38 64

JPM 724 835 58 0.73 0.75 0.26 0.25 66

KO 572 676 59 0.44 0.18 0.1 0.07 73

MCD 558 710 64 0.63 0.34 0.35 0.22 41

MMM 722 934 65 1.03 0.84 0.52 0.44 49

MRK 672 791 59 0.36 0.28 0.17 0.14 52

MSFT 1194 1003 42 2.19 0.97 1 0.47 53

NKE 788 874 55 1.78 0.63 0.34 0.14 80

PFE 480 612 64 0.51 0.32 0.11 0.09 76

PG 582 665 57 0.34 0.16 0.18 0.12 40

RTX 822 931 57 1.74 1.5 1.33 1.24 21

TRV 256 307 60 1.22 1.47 0.78 0.82 41

UNH 806 722 45 2.02 1.22 1.15 0.61 46

V 580 689 59 0.45 0.38 0.27 0.19 45

VZ 384 511 67 0.11 0.09 0.07 0.06 35

WBA 808 783 48 1.24 1.47 0.65 0.77 48

WMT 550 605 55 0.45 0.28 0.2 0.14 53

XOM 440 459 52 0.4 0.5 0.5 0.17 64

Total 20518 22398 56 0.95 0.71 0.44 0.35 52

Table B.4: Summary statistics (quoting with L = 0) of options on each stock in DJI
by consolidating options related to the same underlying asset and expiration date.

145

APPENDIX C

Deferred Proofs and Additional Experiments for

Chapter 5

C.1 Deferred Proofs

C.1.1 Proof of Theorem 5.1

The binary-search property implies that the nodes z included in the price calcu-

lation (lines 5 and 9) form the cover of I, so the algorithm correctly returns the price

of I. The running time follows thanks to height balance, which implies the depth of

the tree is O(log nvals).

C.1.2 Proof of Theorem 5.3

Algorithm 8 Buy s shares of bundle security for an interval I = [α, 1).

1: Define subroutines:
ResetInnerNode(z): reset hz and Sz based on the children of z and the value sz:

hz ← 1 + max{hleft(z), hright(z)}, Sz ← esz/b(Sleft(z) + Sright(z))
AddShares(z, s): increase the number of shares held in z by s:

sz ← sz + s, Sz ← es/bSz

2: procedure RotateLeft(z):

3: Let z1 = left(z), z23 = right(z), z2 = left(z23), z3 = right(z23)
4: AddShares(z2, sz23), AddShares(z3, sz23), delete node z23

5: Let z12 be a new node with:
left(z12) = z1, right(z12) = z2, Iz12 = Iz1 ∪ Iz2 , sz12 = 0

6: ResetInnerNode(z12)
7: Update node z:

left(z)← z12, right(z)← z3, ResetInnerNode(z)

146

Proof of Lemma 5.2. We prove that the original partial normalization value of node

z, Sz, is the same as the updated value, S ′z, after a left rotation. A right rotation

follows symetrically.

Sz = esz/b · (Sz1 + Sz23)

= esz/b ·
(
Sz1 + esz23/b · (Sz2 + Sz3)

)
= esz/b ·

(
S ′z1 + S ′z2 + S ′z3

)
= esz/b ·

(
es
′
z12

/b ·
(
S ′z1 + S ′z2

)
+ S ′z3

)
(since s′z12

= 0)

= esz/b ·
(
S ′z12

+ S ′z3
)

= S ′z

Proof of Theorem 5.3. The correctness of the buy operation follows because the

shares are added to the nodes that form the cover of I (lines 5 and 12 in Algo-

rithms 5), and the updates up the search path restore the properties of the LMSR

tree (lines 13–17 in Algorithms 5). The running time follows from height balance,

which implies that the length of the search path is O(log n) = O(log nvals).

C.1.3 Proof of Theorem 5.4

We first show that the constraints A>µ = 0 imply that all levels ` = 0, 1, . . . , K

in µ are mutually coherent. To do this, it suffices to show that all pairs of consecutive

levels ` and `+1 are coherent, i.e., µy = µyl +µy for all y ∈ Z` where we let yl = left(y)

and y = right(y).

We proceed by induction, beginning with ` = K − 1. In this base case, the

constraint a>y µ = 0, expressed in Eq. (5.13), states that bKµy = bKµyl + bKµy,

implying levels K − 1 and K are coherent.

Now assume that all the levels k > ` are mutually coherent. We aim to show

that levels l and l + 1 are coherent. Pick any y ∈ Z`. Then the constraint a>y µ = 0,

expressed in Eq. (5.13), implies that(∑
k>`

bk

)
µy =

∑
k>`

bk
∑

z∈Zk: z⊂y

µz

=
∑
k>`

bk

(∑
z∈Zk: z⊆yl

µz +
∑

z∈Zk: z⊆y

µz

)
=
∑
k>`

bk

(
µyl + µy

)
. (C.1)

147

Eq. (C.1) follows because yl and y are in level `+ 1, which is coherent with all levels

k ≥ ` + 1 by the inductive assumption. Thus, we obtain that µy = µyl + µy for all

y ∈ Z`, establishing the coherence between levels ` and ` + 1 and completing the

induction.

To finish the proof, we note that the LCMM prices at level K are determined by

CK , so they describe a probability distribution over Ω. Since A>p(θ) = 0, all the

levels in p(θ) are coherent with level K, which means that they correspond to the

expectation of φ under the probability distribution described by the prices at level

K. Thus, p(θ) is a coherent price vector and the multi-resolution LCMM is therefore

arbitrage-free.

C.1.4 Proof of Theorem 5.5

The worst-case loss of an LCMM is bounded by the sum of the worst-case losses

of the component markets Ck (Dud́ık, Lahaie, and Pennock 2012). In our case, these

are LMSR submarkets with losses bounded by bk log |Zk|, so the worst-case loss of

the resulting LCMM is at most

K∑
k=1

bk log(2k) =
K∑
k=1

bk(k log 2) ≤ B∗ log 2,

proving the theorem.

C.1.5 Proof of Theorem 5.4.2

Algorithm 6 returns the correct price of I, because prices are coherent among

submarkets and the nodes included in price calculations form a cover of I.

C.1.6 Proof of Theorem 5.6 and Additional Deferred Material from Sec-

tion 5.4.3

We begin by deriving an identity that will be useful in the following analysis. For

this derivation, let C be an LMSR with the liquidity parameter b, defined over an

outcome space Ω. We will derive a relationship between the price vector in a state

θ and the price vector in a new state θ′ = θ + δ, where δ is any bundle restricted

to securities in E, i.e., δω = 0 for ω 6∈ E. Denoting µ = p(θ), µE = pE(θ), and

148

µ′ = p(θ′), we have

µ′ω =
eθω/beδω/b∑

ν 6∈E e
θν/b +

∑
ν∈E e

θν/beδν/b

=
µωe

δω/b

1− µE +
∑

ν∈E µνe
δν/b

, (C.2)

where Eq. (C.2) follows by dividing the numerator as well as denominator by
∑

ν∈Ω e
θν/b.

We next establish correctness of the arbitrage removal procedure from Algo-

rithm 7. The following lemma provides a critical step:

Lemma C.1. Fix a level ` < K. Let θ̃ be a market state in C̃ such that the associated

prices, µ = p̃(θ̃), are coherent among all levels k > `. Then, for any t ∈ R and any

node y with level(y) ≤ `, the prices after buying t shares of ay, i.e., µ′ = p̃(θ̃ + tay),

remain coherent among all levels k > `.

To use Lemma C.1 for arbitrage removal, we start with a market state θ̃ where

all levels are coherent. When a trader buys some shares of a security φy, the level

` = level(y) loses coherence with other levels. By buying a certain number of shares

of ay, it is possible to restore coherence between ` and ` + 1, and Lemma C.1 then

implies that coherence with all further levels k > ` + 1 is also restored. The process

of restoring coherence now continues with the parent of y and the bundle apar(y) as

implemented in Algorithm 7.

Proof. Consider two arbitrary levels k and m with ` < k < m. Since prices are

coherent between levels k and m before buying t shares of ay, we have, for any

z ∈ Zk,
µz =

∑
u∈Zm: u⊂z

µu. (C.3)

Let πy denote the price of φy according to the securities in Zk and Zm, that is,

πy =
∑

z∈Zk: z⊂y µz =
∑

u∈Zm: u⊂y µu. Note that πy might differ from µy, because

level ` is not necessarily coherent with levels k and m. Let θ̃′ = θ̃ + tay. From the

definition of matrix A, the updated θ̃′z and θ̃′u for any z ∈ Zk and u ∈ Zm are

θ̃′z =

θ̃z − tbk if z ⊂ y,

θ̃z otherwise,
θ̃′u =

θ̃u − tbm if u ⊂ y,

θ̃u otherwise.

We calculate the new price µ′z of any node z ∈ Zk and show it equals to the price

149

derived from its descendants u ∈ Zm. First, if z ⊂ y, then by Eq. (C.2) and Eq. (C.3),

µ′z =
µze

−t

πye−t + 1− πy
=

∑
u∈Zm: u⊂z µue

−t

πye−t + 1− πy
=

∑
u∈Zm: u⊂z

µ′u.

If z 6⊂ y, then we similarly have

µ′z =
µz

πye−t + 1− πy
=

∑
u∈Zm: u⊂z µu

πye−t + 1− πy
=

∑
u∈Zm: u⊂z

µ′u.

Thus, prices remain coherent among all levels m > k > `.

Building upon Lemma C.1, the following lemma provides the precise trade required

to restore coherence after an update.

Lemma C.2. Fix a level ` < K and a node y ∈ Z` and let yl = left(y) and y =

right(y). Let θ̃0 and θ̃ = θ̃0 + δ be market states in C̃, with associated prices µ0 =

p̃(θ̃0) and µ = p̃(θ̃) such that:

• prices µ0 are coherent among all levels k ≥ `;

• δ is a vector, which is zero outside descendants of y, i.e., δz = 0 whenever

z 6⊆ y;

• prices µ are coherent among all levels k > `.

Let θ̃′ = θ̃ + tay where

t =
b`
B`−1

log

(
1− µy
µy

· µyl + µy

1− µyl − µy

)
.

Then the associated prices µ′ = p̃(θ̃′) are coherent among all levels k ≥ `.

Proof. By Lemma C.1, adding tay to θ̃ maintains coherence among levels k > `, so

it suffices to show that levels ` and `+ 1 are mutually coherent in µ′. Thus, we have

to show that µ′z = µ′left(z) + µ′right(z) for all z ∈ Z`.
First note that by the assumption on δ and the definition of ay, we have

θ̃0
z = θ̃z = θ̃′z for all z ∈ Z`\{y}

θ̃0
u = θ̃u = θ̃′u for all u ∈ Z`+1\{yl, y}.

150

Therefore, by Eq. (C.2), we have for all z ∈ Z`\{y}

µ′z
1− µ′y

=
µ0
z

1− µ0
y

, and
µ′left(z) + µ′right(z)

1− µ′yl − µ′y
=
µ0
left(z) + µ0

right(z)

1− µ0
yl
− µ0

y

. (C.4)

Since the vector µ0 satisfies µ0
z = µ0

left(z) +µ0
right(z) for all z ∈ Z`\{y}, Eq. (C.4) implies

that we also have µ′z = µ′left(z) + µ′right(z) for all z ∈ Z`\{y} as long as µ′y = µ′yl + µ′y.

Thus, in order to show that levels ` and ` + 1 are coherent in µ′, it suffices to show

that µ′y = µ′yl + µ′y.

We begin by explicitly calculating θ̃′z and θ̃′u for any z ∈ Z` and any u ∈ Z`+1:

θ̃′z =

θ̃z + tB` if z = y,

θ̃z otherwise,
θ̃′u =

θ̃u − tb`+1 if u ∈ {yl, y},

θ̃u otherwise.

Therefore,

µ′y =
µye

tB`/b`

µyetB`/b` + 1− µy
=

1

1 + 1−µy
µy

e−tB`/b`

and similarly,

µ′yl + µ′y =
(µyl + µy)e−t

(µyl + µy)e−t + 1− µyl − µy

=
1

1 +
1−µyl−µy

µyl+µy
et
.

Thus, it remains to show that

1−µy
µy

e−tB`/b` =
1−µyl−µy

µyl+µy
et,

or equivalently:
1−µy
µy
· µyl+µy

1−µyl−µy
= et(1+B`/b`).

But this follows from our choice of t and the fact that B`−1 = B` + b`, completing the

proof.

We finish the section with the proof of Theorem 5.6.

Proof of Theorem 5.6. Algorithm 7 correctly updates the tree (and returns the cost),

because the shares are added to the nodes that form a cover of I, and coherence is

then restored by applying Lemma C.2 up the search path. Running times of both

algorithms are proportional to the length of the search path to the first node z with

151

αz = α, whose level coincides with the precision of α.

C.2 Trading Dynamics and Additional Results

C.2.1 Detailed Trading Dynamics

We simulate a market consisting of ten traders. The outcome space is [0, 1), dis-

cretized at the precision K = 10. Traders, indexed as i ∈ {1, . . . , 10}, have noisy

access to the underlying true signal p = 0.4. Trader i’s belief takes form of a beta

distribution Beta(ai, bi) with ai ∼ Binomial(p, ni), bi = ni − ai, and ni = 16i rep-

resenting the quality of the agent’s observation of the signal p. Each trader i has

an exponential utility ui(W) = −e−W , where W is the trader’s wealth. We consider

budget-limited cost-based market makers, whose worst-case loss may not exceed a

budget constraint B. For LMSR at precision k, this means setting the liquidity pa-

rameter to b = B/ log(2k). In our experiments, we consider two LMSR markets at

precision levels 4 and 8, denoted as LMSRk=4 and LMSRk=8. On the other hand, a multi-

resolution LCMM has an infinite number of choices for its liquidity at each precision

level. To showcase its interpolation ability, we consider LCMM that evenly splits its

budget to precision levels 4 and 8, and denote it as LCMM50/50.

Each market starts with the uniform prior, i.e., the initial market prices for all

outcomes are equal. In each time step, a uniformly random agent is picked to trade.

The selected agent considers a set of 50 interval securities, with endpoints randomly

sampled according to the agent’s belief. The candidate intervals are rounded to the

precision of the corresponding market.1 The agent considers trading the expected-

utility-optimizing number of shares for each interval, and ultimately picks the best

interval and executes the trade. The market maker updates prices accordingly, until

the market equilibrium is reached (no trader in the market has the incentive to trade).

Following the described protocol, we run markets mediated by the three respective

market makers, LMSRk=4, LMSRk=8, and LCMM50/50, over a range of budget constraints.

To decrease variance, we generate 40 controlled simulation traces (described by a

sequence of agent arrivals and their draws of the candidate intervals) and run the

market makers on those same traces. Therefore, any change in agent behavior and

1As the number of available interval securities grows exponentially as the supported precision
increases, we assume agents have a computational limit and can only consider a (sub)set of available
securities.

152

price convergence is caused by the different cost functions that market makers adopt

to aggregate trades.

C.2.2 Additional Experiments

In Section 5.5, we demonstrated that by splitting the budget between submarkets

that offer interval securities at different precisions, the multi-resolution LCMM is able

to interpolate the performance of LMSR market makers. It can aggregate information

at the coarser level efficiently, while achieving accurate belief elicitation at the finer

resolution, given enough trading period. Here we provide numerical results over a

wider range of budget constraints, validating how the multi-resolution LCMM may

balance the price convergence behavior of LMSR markets.

Fig. C.1 shows the price convergence error as a function of budget constraint (thus,

the liquidity parameter) and the number of trades for the three respective market

makers. Results are averaged over forty random but controlled trading sequences.

The solid lines depict the price convergence error at precision level k = 8, and the

dashed ones for precision level k = 4. The minimum point on each curve indicates

the optimal budget, or the optimal value of the liquidity parameter to adopt, for the

particular cost function and a specific number of trades.

Intuitively, when the budget for running a market is sufficient, a market operator

can support interval securities at any fine-grained precision level, or use only a por-

tion of the budget to achieve optimal performance. However, when the budget for

running a market is limited, say B less than 8, the market designer can preferably ag-

gregate information faster at a coarser resolution by limiting the precision of interval

endpoints (e.g., adopting LMSRk=4). However, by design, it can not accurately elicit

beliefs at finer resolutions, even when the market is run for a sufficiently long period

of time. The LMSRk=8, on the other hand, benefits from a larger number of trades to

aggregate more fine-grained information. Running the two LMSR markets indepen-

dently may balance this convergence trade-off, but inevitably results in inconsistent

prices between the markets. Given the different convergence properties of separate

LMSRs, a multi-resolution LCMM can allocate its budget accordingly to achieve a

desired convergence performance, while maintaining coherent prices. For example,

a market designer, who considers information at precision levels k = 4 and k = 8

equally important, may divide the budget between the two levels to enjoy faster price

convergence at the coarser resolution, while accurately aggregating a full probability

distribution of the continuous variable as trading proceeds.

153

0 1 2 3 4 5 6
Log2 of budget B

0.0

0.1

0.2

0.3

0.4

0.5

P
ri

ce
 c

o
n
v
e
rg

e
n
ce

 e
rr

o
r Num of trades

20

50

100

200

500

1000

2000

(a) LMSRk=4.

0 1 2 3 4 5 6
Log2 of budget B

0.0

0.1

0.2

0.3

0.4

0.5

P
ri

ce
 c

o
n
v
e
rg

e
n
ce

 e
rr

o
r Num of trades

20

50

100

200

500

1000

2000

(b) LMSRk=8.

0 1 2 3 4 5 6
Log2 of budget B

0.0

0.1

0.2

0.3

0.4

0.5

P
ri

ce
 c

o
n
v
e
rg

e
n
ce

 e
rr

o
r Num of trades

20

50

100

200

500

1000

2000

(c) LCMM50/50.

Figure C.1: The price convergence error as a function of liquidity and the number
of trades (indicated by the color of the line) for the three respective market makers.
Solid lines record price convergence error at the finer precision level k = 8, and dashed
ones at the coarser level k = 4.

154

BIBLIOGRAPHY

155

BIBLIOGRAPHY

Abernethy, Jacob, Yiling Chen, and Jennifer Wortman Vaughan (2011). “An optimization-
based framework for automated market-making”. In: 12th ACM Conference on
Electronic Commerce.

Abernethy, Jacob, Sindhu Kutty, Sébastien Lahaie, and Rahul Sami (2014). “Infor-
mation aggregation in exponential family markets”. In: 15th ACM Conference on
Economics and Computation, pp. 395–412.

Adel′son-Vel′skĭı, G. M. and E. M. Landis (1962). “An algorithm for the organization
of information”. In: Soviet Mathematics—Doklady 3, pp. 1259–1263.

Aldrich, Eric M., Joseph Grundfest, and Gregory Laughlin (2017). “The Flash Crash:
A new deconstruction”. In: Available at SSRN 2721922.

Allen, Franklin and Douglas Gale (1992). “Stock price manipulation”. In: The Review
of Financial Studies 5.3, pp. 503–529.

Benisch, Michael, Norman Sadeh, and Tuomas Sandholm (2008). “A Theory of ex-
pressiveness in mechanisms”. In: Proceedings of the 23rd National Conference on
Artificial Intelligence, 17–23.

Biais, Bruno and Paul Woolley (2012). High Frequency Trading. Tech. rep. Toulouse
University.

Biggio, Battista, Giorgio Fumera, and Fabio Roli (2014). “Pattern Recognition Sys-
tems Under Attack: Design Issues and Research Challenges”. In: International
Journal of Pattern Recognition and Artificial Intelligence 28.07, p. 1460002.

Bookstaber, Richard (2012). Using agent-based models for analyzing threats to finan-
cial stability. Working Paper. Office of Financial Research.

Bousmalis, Konstantinos et al. (2018). “Using Simulation and Domain Adaptation to
Improve Efficiency of Deep Robotic Grasping”. In: IEEE International Conference
on Robotics and Automation.

Cao, Melanie and Jason Wei (2010). “Option market liquidity: Commonality and
other characteristics”. In: Journal of Financial Markets 13.1, pp. 20 –48.

156

Cassell, Ben-Alexander and Michael P. Wellman (2013). “EGTAOnline: An Experi-
ment Manager for Simulation-Based Game Studies”. In: Multi-Agent-Based Sim-
ulation XIII. Ed. by Francesca Giardini and Frédéric Amblard. Springer Berlin
Heidelberg, pp. 85–100.

Chakraborty, Mithun et al. (2013). “Instructor rating markets”. In: 27th AAAI Con-
ference on Artificial Intelligence, pp. 159–165.

Chakraborty, Tanmoy and Michael Kearns (2011). “Market making and mean rever-
sion”. In: 12th ACM Conference on Electronic Commerce, pp. 307–314.

Chen, Yiling, Lance Fortnow, Evdokia Nikolova, and David M. Pennock (2007).
“Betting on Permutations”. In: 8th ACM Conference on Electronic Commerce,
326–335.

Chen, Yiling, Sharad Goel, and David M. Pennock (2008). “Pricing combinatorial
markets for tournaments”. In: 40th Annual ACM Symposium on Theory of Com-
puting, 305–314.

Chen, Yiling and David M. Pennock (2007). “A utility framework for bounded-loss
market makers”. In: 23rd Conference on Uncertainty in Artificial Intelligence,
pp. 49–56.

Chen, Yiling et al. (2007). “Bluffing and Strategic Reticence in Prediction Markets”.
In: 3rd International Conference on Internet and Network Economics, 70–81.

Chen, Yiling et al. (2008). “Complexity of combinatorial market makers”. In: 9th
ACM Conference on Electronic Commerce, 190–199.

Cho, Kyunghyun et al. (2014). “Learning Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation”. In: Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1724–1734.

Cliff, Dave (1997). Minimal-intelligence agents for bargaining behaviors in market-
based environments. Tech. rep. Hewlett-Packard Labs.

— (2009). “ZIP60: Further explorations in the evolutionary design of trader agents
and online auction-market mechanisms”. In: IEEE Transactions on Evolutionary
Computation 13.1, pp. 3–18.

Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest (1999). Introduction
to Algorithms. The MIT Press.

Dud́ık, Miroslav, Sébastien Lahaie, and David M. Pennock (2012). “A tractable com-
binatorial market maker using constraint generation”. In: 13th ACM Conference
on Electronic Commerce.

157

Dud́ık, Miroslav, Sébastien Lahaie, David M. Pennock, and David Rothschild (2013).
“A combinatorial prediction market for the U.S. elections”. In: 14th ACM Con-
ference on Electronic Commerce.

Dud́ık, Miroslav, Sébastien Lahaie, Ryan M Rogers, and Jennifer Wortman Vaughan
(2017). “A decomposition of forecast error in prediction markets”. In: Advances
in Neural Information Processing Systems, pp. 4371–4380.

Dud́ık, Miroslav, Xintong Wang, David M. Pennock, and David M. Rothschild (2020).
“Log-time Prediction Markets for Interval Securities”. In: 20th International Con-
ference on Autonomous Agents and Multiagent Systems, to appear.

Farmer, J. Doyne, Paolo Patelli, and Ilija I. Zovko (2005). “The predictive power of
zero intelligence in financial markets”. In: Proceedings of the National Academy of
Sciences 102.6, pp. 2254–2259.

Fishman, Michael J. and Kathleen M. Hagerty (1995). “The mandatory disclosure of
trades and market liquidity”. In: The Review of Financial Studies 8.3, pp. 637–
676.

Fortnow, Lance, Joe Kilian, David M. Pennock, and Michael P. Wellman (2005).
“Betting Boolean-style: A framework for trading in securities based on logical
formulas”. In: Decision Support Systems 39.1, 87–104.

Foucault, Thierry, Ailsa Röell, and Patrik Sand̊as (2003). “Market making with costly
monitoring: An analysis of the SOES controversy”. In: The Review of Financial
Studies 16.2, pp. 345–384.

Friedman, Daniel (1993). “The double auction market institution: A survey”. In: The
Double Auction Market: Institutions, Theories, and Evidence. Addison-Wesley,
pp. 3–25.

Gao, Xi, Yiling Chen, and David M. Pennock (2009). “Betting on the Real Line”. In:
5th Workshop on Internet and Network Economics, pp. 553–560.

Gjerstad, Steven (2007). “The competitive market paradox”. In: Journal of Economic
Dynamics and Control 31, pp. 1753–1780.

Gjerstad, Steven and John Dickhaut (1998). “Price formation in double auctions”.
In: 22 (1), pp. 1–29.

Gode, Dhananjay K. and Shyam Sunder (1993). “Allocative efficiency of markets with
zero-intelligence traders: Market as a partial substitute for individual rationality”.
In: Journal of Political Economy, pp. 119–137.

Golovin, Daniel (2007). “More expressive market models and the future of combina-
torial auctions”. In: SIGecom Exchanges 7.1, 55–57.

158

Goodfellow, Ian, Jonathon Shlens, and Christian Szegedy (2015). “Explaining and
Harnessing Adversarial Examples”. In: International Conference on Learning Rep-
resentations.

Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: 27th International
Conference on Neural Information Processing Systems, pp. 2672–2680.

Guo, Mingyu and David M. Pennock (2009). “Combinatorial prediction markets for
event hierarchies”. In: Proceedings of the 8th International Conference on Au-
tonomous Agents and Multi-agent Systems, 201–208.

Hanson, Robin (2003). “Combinatorial information market design”. In: Information
Systems Frontiers 5.1, pp. 107–119.

— (2007). “Logarithmic Market Scoring Rules for Modular Combinatorial Informa-
tion Aggregation”. In: Journal of Prediction Markets 1.1, pp. 1–15.

Hanson, Robin D. (1999). “Decision markets”. In: IEEE Intelligent Systems 14.3,
pp. 16–19.

Hautsch, Nikolaus and Ruihong Huang (2012). “Limit Order Flow, Market Impact,
and Optimal Order Sizes: Evidence from NASDAQ TotalView-ITCH Data”. In:
Market Microstructure: Confronting Many Viewpoints. Ed. by Frederic Abergel
et al. Wiley.

Herzel, Stefano (2005). “Arbitrage opportunities on derivatives: A linear programming
approach”. In: Dynamics of Continuous, Discrete and Impulsive Systems Series
B: Application and Algorithms.

Hope, Bradley (2015a). “How ‘Spoofing’ traders dupe markets”. In: Wall Street Jour-
nal.

— (2015b). “Was ‘John Doe’ manipulating Treasury futures? New lawsuit says yes”.
In: Wall Street Journal.

Huang, Ling et al. (2011). “Adversarial machine learning”. In: 4th ACM Workshop
on Security and Artificial Intelligence, pp. 43–58.

Kirilenko, Andrei A., Albert S. Kyle, Mehrdad Samadi, and Tugkan Tuzun (2017).
“The Flash Crash: High frequency trading in an electronic market”. In: Journal
of Finance 72.3, pp. 967–998.

Knuth, Donald E. (1998). The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison Wesley.

Kroer, Christian, Miroslav Dud́ık, Sébastien Lahaie, and Sivaraman Balakrishnan
(2016). “Arbitrage-free combinatorial market making via integer programming”.
In: 17th ACM Conference on Electronic Commerce.

159

Laskey, Kathryn Blackmond et al. (2018). “Graphical model market maker for com-
binatorial prediction markets”. In: Journal of Artificial Intelligence Research 63,
pp. 421–460.

Leal, Sandrine Jacob and Mauro Napoletano (2019). “Market stability vs. market
resilience: Regulatory policies experiments in an agent-based model with low- and
high-frequency trading”. In: Journal of Economic Behavior and Organization 157,
pp. 15–41.

Lebaron, Blake (2006). “Agent-based computational finance”. In: Handbook of Com-
putational Economics. Ed. by Leigh Tesfatsion and Kenneth L. Judd. 1st ed. Vol. 2.
Elsevier. Chap. 24, pp. 1187–1233.

LeBaron, Blake, W. Brian Arthur, and Richard Palmer (1999). “Time series properties
of an artificial stock market”. In: Journal of Economic Dynamics and Control 23.9,
pp. 1487–1516.

Lee, Eun Jung, Kyong Shik Eom, and Kyung Suh Park (2013). “Microstructure-
based manipulation: Strategic behavior and performance of spoofing traders”. In:
Journal of Financial Markets 16.2, pp. 227–252.

Levens, Tara E. (2015). “Too Fast, Too Frequent? High-Frequency Trading and Secu-
rities Class Actions”. In: University of Chicago Law Review 82.3, pp. 1511–1557.

Lewis, Michael (2014). Flash Boys: A Wall Street Revolt. W. W. Norton & Company.

Li, Junyi et al. (2020). “Generating realistic stock market order streams”. In: 34th
AAAI Conference on Artificial Intelligence, pp. 727–734.

Lin, Tom C. W. (2015). “The new market manipulation”. In: Emory Law Journal 66,
pp. 1253–1314.

Logeswaran, Lajanugen, Honglak Lee, and Samy Bengio (2018). “Content Preserving
Text Generation with Attribute Controls”. In: 32nd International Conference on
Neural Information Processing Systems, pp. 5108–5118.

Mart́ınez-Miranda, Enrique, Peter McBurney, and Matthew Howard (2016). “Learn-
ing unfair trading: A market manipulation analysis from the reinforcement learn-
ing perspective”. In: IEEE International Conference on Evolving and Adaptive
Intelligent Systems, pp. 103–109.

Merton, Robert C. (1973a). “Theory of rational option pricing”. In: The Bell Journal
of Economics and Management Science 4.1, pp. 141–183.

— (1973b). “Theory of Rational Option Pricing”. In: The Bell Journal of Economics
and Management Science 4.1, pp. 141–183. issn: 00058556. url: http://www.
jstor.org/stable/3003143.

160

http://www.jstor.org/stable/3003143
http://www.jstor.org/stable/3003143

Mishra, Pushkar (2016). “On Updating and Querying Sub-arrays of Multidimensional
Arrays”. In: CoRR abs/1311.6093.

Modigliani, Franco and Merton H. Miller (1958). “The cost of capital, corporation
finance and the theory of investment”. In: The American Economic Review 48.3,
pp. 261–297.

Montgomery, John D. (2016). “Spoofing, market manipulation, and the limit-order
book”. In: Available at SSRN 2780579. url: http : / / ssrn . com / abstract =

2780579.

Othman, Abraham, David M. Pennock, Daniel M. Reeves, and Tuomas Sandholm
(2013). “A practical liquidity-sensitive automated market maker”. In: ACM Trans-
actions on Economics and Computation 1.3, 14:1–14:25.

Othman, Abraham and Tuomas Sandholm (2010). “Automated market-making in
the large: The Gates Hillman Prediction Market”. In: 11th ACM Conference on
Electronic Commerce, pp. 367–376.

— (2012). “Automated market makers that enable new settings: Extending constant-
utility cost functions”. In: Auctions, Market Mechanisms, and Their Applications,
pp. 19–30.

Paddrik, Mark et al. (2012). “An agent based model of the E-Mini S&P 500 applied
to Flash Crash analysis”. In: IEEE Conference on Computational Intelligence for
Financial Engineering and Economics, pp. 1–8.

Palit, Imon, Steve Phelps, and Wing Lon Ng (2012). “Can a zero-intelligence plus
model explain the stylized facts of financial time series data?” In: 11th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, pp. 653–660.

Patterson, Scott and Jamila Trindle (2013). “CFTC charges high-speed trader under
new powers”. In: Wall Street Journal.

Plott, Charles R. and Kay-Yut Chen (2002). “Information aggregation mechanisms:
Concept, design and implementation for a sales forecasting problem”. Working
paper No. 1131, California Institute of Technology.

Prewit, Matt (2012). “High-frequency trading: Should regulators do more”. In: Michi-
gan Telecommunications and Technology Law Review 19, pp. 131–161.

Rundle, James (2019). “Nasdaq deploys AI to detect stock-market abuse”. In: Wall
Street Journal.

Sandholm, Tuomas (2007). “Expressive commerce and its application to sourcing:
How we conducted $35 billion of generalized combinatorial auctions”. In: AI Mag-
azine 28.3.

161

http://ssrn.com/abstract=2780579
http://ssrn.com/abstract=2780579

Schwartz, Robert A. and Lin Peng (2013). “Market Makers”. In: Encyclopedia of
Finance. Ed. by Cheng-Few Lee and Alice C. Lee. Boston, MA: Springer US,
pp. 487–489.

Shrivastava, Ashish et al. (2017). “Learning from Simulated and Unsupervised Images
through Adversarial Training”. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2242–2251.

Singh, Charan (2019). “How often do options get exercised early?” In: url: https:
//www.optionsanimal.com/how-often-do-options-get-exercised-early.

Sinha, Aman, Hongseok Namkoong, and John Duchi (2018). “Certifiable Distribu-
tional Robustness with Principled Adversarial Training”. In: International Con-
ference on Learning Representations.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). “Sequence to Sequence Learn-
ing with Neural Networks”. In: 27th International Conference on Neural Informa-
tion Processing Systems, pp. 3104–3112.

Tao, Xuan, Andrew Day, Lan Ling, and Samuel Drapeau (2020). On Detecting Spoof-
ing Strategies in High Frequency Trading. arXiv: 2009.14818.

Tesauro, Gerald and Jonathan L. Bredin (2002). “Strategic sequential bidding in
auctions using dynamic programming”. In: First International Joint Conference
on Autonomous Agents and Multiagent Systems: Part 2, pp. 591–598.

Tesauro, Gerald and Rajarshi Das (2001). “High-performance bidding agents for the
continuous double auction”. In: 3rd ACM Conference on Electronic Commerce,
pp. 206–209.

Tzeng, Eric, Judy Hoffman, Kate Saenko, and Trevor Darrell (2017). “Adversarial
Discriminative Domain Adaptation”. In: IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2962–2971.

U.S. SEC (2017). Division of Enforcement Annual Report.

— (2018). Division of Enforcement Annual Report.

— (2019). Division of Enforcement Annual Report.

Varian, Hal R. (1987). “The arbitrage principle in financial economics”. In: The Jour-
nal of Economic Perspectives 1.2, pp. 55–72.

Volpi, Riccardo et al. (2018). “Generalizing to Unseen Domains via Adversarial Data
Augmentation”. In: 32nd International Conference on Neural Information Pro-
cessing Systems, pp. 5339–5349.

162

https://www.optionsanimal.com/how-often-do-options-get-exercised-early
https://www.optionsanimal.com/how-often-do-options-get-exercised-early
http://arxiv.org/abs/2009.14818

Vorobeychik, Yevgeniy, Christopher Kiekintveld, and Michael P. Wellman (2006).
“Empirical mechanism design: Methods, with application to a supply-chain sce-
nario”. In: 7th ACM Conference on Electronic Commerce, pp. 306–315.

Vytelingum, Perukrishnen, Dave Cliff, and Nicholas R. Jennings (2008). “Strategic
bidding in continuous double auctions”. In: Artificial Intelligence 172.14, pp. 1700–
1729.

Wah, Elaine and Michael P. Wellman (2016). “Latency arbitrage in fragmented mar-
kets: A strategic agent-based analysis”. In: Algorithmic Finance 5, pp. 69–93.

Wah, Elaine, Mason Wright, and Michael P. Wellman (2017). “Welfare Effects of Mar-
ket Making in Continuous Double Auctions”. In: Journal of Artificial Intelligence
Research 59, pp. 613–650.

Wang, Xintong, Christopher Hoang, and Michael P. Wellman (2020). “Learning-Based
Trading Strategies in the Face of Market Manipulation.” In: First ACM Interna-
tional Conference on AI in Finance.

Wang, Xintong, Yevgeniy Vorobeychik, and Michael P. Wellman (2018). “A Cloak-
ing Mechanism to Mitigate Market Manipulation”. In: 27th International Joint
Conference on Artificial Intelligence, pp. 541–547.

Wang, Xintong and Michael P. Wellman (2017). “Spoofing the limit order book: An
agent-based model”. In: 16th International Conference on Autonomous Agents
and Multiagent Systems, pp. 651–659.

— (2020). “Market Manipulation: An Adversarial Learning Framework for Detection
and Evasion”. In: 29th International Joint Conference on Artificial Intelligence.
Special Track on AI in FinTech, pp. 4626–4632.

Wang, Xintong et al. (2020). “Designing a Combinatorial Financial Options Market”.
In: Manuscript submitted.

Wang, Yun-Yi (2019). “Strategic spoofing order trading by different types of investors
in Taiwan Index futures market”. In: Journal of Financial Studies 27.1, p. 65.

Wellman, Michael P. (2006). “Methods for empirical game-theoretic analysis (Ex-
tended abstract)”. In: 21st National Conference on Artificial Intelligence, pp. 1552–
1555.

— (2011). Trading Agents. Morgan & Claypool.

— (2016). “Putting the agent in agent-based modeling”. In: Autonomous Agents and
Multi-Agent Systems 30.6, pp. 1175–1189.

Wiedenbeck, Bryce and Michael P. Wellman (2012). “Scaling simulation-based game
analysis through deviation-preserving reduction”. In: 11th International Confer-
ence on Autonomous Agents and Multiagent Systems, pp. 931–938.

163

Wright, Mason and Michael P. Wellman (2018). “Evaluating the stability of non-
adaptive trading in continuous double auctions”. In: 17th International Conference
on Autonomous Agents and Multi-Agent Systems, pp. 614–622.

Xia, Lirong and David M. Pennock (2011). “An efficient Monte-Carlo algorithm for
pricing combinatorial prediction markets for tournaments”. In: 22nd International
Joint Conference on Artificial Intelligence, pp. 452–457.

164

	Title Page
	Identifier
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Designing Manipulation-Resistant Markets
	Dynamics between a Manipulator and Investors
	Dynamics between a Manipulator and a Regulator

	Designing Expressive Markets
	Dissertation Overview

	Spoofing the Limit Order Book: A Strategic Agent-Based Analysis
	Introduction
	Related Work
	Agent-Based Modeling of Financial Markets
	Autonomous Bidding Strategies
	Spoofing in Financial Markets

	Market Model
	Market Mechanism
	Valuation Model
	Background Trading Agents
	The Spoofing Agent

	Empirical Game-Theoretic Analysis
	Profile Search
	Game Reduction

	Spoofing the Limit Order Book
	Market Environments
	Games without Spoofing
	Games with Spoofing
	Discussion

	A Cloaking Mechanism to Mitigate Spoofing
	A Cloaking Market Mechanism
	Tradeoff Faced by Cloaking Mechanisms
	Finding the Optimal Cloaking
	Probing the Cloaking Mechanism to Spoof

	Learning-Based Trading Strategies under the Presence of Market Manipulation
	Two Variations of HBL
	Empirical Evaluation
	Combine Order Blocking and Price Offsets

	Conclusions

	Modeling the Evasion of Manipulation Detection: An Adversarial Learning Framework
	Introduction
	Related Work
	Agent-Based Modeling of Trading Roles
	Learning via Adversarial Training

	Problem Formulation
	Trading Strategies and Representations
	An Adversarial Learning Framework

	Experimental Results
	Dataset and Implementation Details
	Generating Adapted Manipulation Examples

	Conclusions

	Designing a Combinatorial Financial Options Market
	Introduction
	Related Work
	Rational Option Pricing
	Combinatorial Market Design

	Background and Notations
	Consolidating Standard Financial Options
	Match Orders on Standard Options
	Quote Prices for Standard Options

	Combinatorial Financial Options
	Match Orders on Combinatorial Options.

	Experiments: OptionMetrics Data
	Experiments: Synthetic Combinatorial Options Market
	Generate Synthetic Orders
	Evaluation

	Discussion

	Log-time Prediction Markets for Interval Securities
	Introduction
	Formal Setting
	Cost-Function-Based Market Making
	Complete Markets and LMSR
	Interval Securities over [0,1)

	A Log-time LMSR Market Maker
	An LMSR Tree for [0, 1)
	Price Queries
	Buy Transactions

	A Multi-Resolution Linearly Constrained Market Maker
	A Multi-Resolution LCMM for [0,1)
	Price Queries
	Buy and Cost Operations

	Discussion

	Conclusion
	Appendicies
	Spoofing the Limit Order Book
	A Cloaking Mechanism to Mitigate Spoofing
	Learning-Based Trading Strategies under the Presence of Market Manipulation
	Deferred Proofs from Section 4.4
	Proof of Theorem 4.1
	Proof of Price Quote Procedure
	Proof of Corollary 4.1.1

	Deferred Proofs from Section 4.5
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Deferred Experimental Results
	Statistics of options on each stock using M.1 with L as a decision variable
	Statistics of options on each stock using M.1 with L=0

	Deferred Proofs
	Proof of Theorem 5.1
	Proof of Theorem 5.3
	Proof of Theorem 5.4
	Proof of Theorem 5.5
	Proof of Theorem 5.4.2
	Proof of Theorem 5.6 and Additional Deferred Material from Section 5.4.3

	Trading Dynamics and Additional Results
	Detailed Trading Dynamics
	Additional Experiments

	Bibliography

