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Abstract 

Preterm birth affects 1 out of every 10 pregnancies in the United States and is one of the leading 

causes of infant death. Other negative birth outcomes, including preeclampsia and gestational 

diabetes, are associated with comorbidities for the mother and fetus later in life. Widespread 

exposures to environmental contaminants, such as phthalates, have been hypothesized as 

playing a casual role in the risk for adverse birth outcomes. Phthalates are endocrine disrupting 

chemicals, which interfere with hormone levels and regulation inside the body. Regulation of 

numerous endocrine pathways is essential for maintaining a healthy pregnancy. Exposures to 

phthalate chemicals may elicit an endocrine response deleterious to the pregnancy, resulting in 

elevated risk for adverse birth outcomes. This dissertation sought to investigate whether 

phthalate exposures were associated with disruption of various classes of hormone 

concentrations including thyroid and reproductive hormones, and whether hormone disruption 

mediated the association between exposure to mixtures of phthalate metabolites and adverse 

birth outcomes.  

 

Aim 1 of this dissertation assessed associations between repeated measures of urinary phthalate 

metabolites and serum hormones in the PROTECT pregnancy cohort. In aim 1, we observed 

numerous significant associations between phthalate metabolites and hormones that were 

consistent based on molecular weight of the phthalate. Of note, low molecular weight 

metabolites were positively associated with testosterone while high molecular weight 

metabolites were inversely associated with testosterone, pointing to possible mechanistic 

differences. Aim 1 also revealed effect modification by timing of study visit and fetal sex across 

many observed associations, which showed phthalate exposure resulting in decreased hormone 

concentrations among pregnancies with a female fetus and increased hormone concentrations 

among pregnancies with a male fetus. Aim 2 investigated associations between repeated 
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measures of hormone concentrations and adverse birth outcomes. Various associations were 

observed which highlighted the importance of progesterone, estriol, and thyroxine (T4). 

Progesterone was inversely associated with gestational age at birth, and thyroid hormones were 

positively associated with risk of spontaneous preterm birth. Few differences were observed by 

timing of study visit, but many differences were present between fetal sexes which suggested 

elevated risk of birth outcomes among male pregnancies with increases in most hormone 

concentrations. Finally, aim 3 explored the mediating effects of hormone concentrations on the 

associations between mixtures of phthalate metabolites and adverse birth outcomes. Among 

pregnancies with a male fetus, an interquartile range increase in the mixture of low molecular 

weight (LMW) metabolites was associated with increased odds of preterm birth at visit 2 (OR: 

1.82, 95% CI: 1.01, 3.31) and with spontaneous preterm birth at visit 3 (OR: 2.74, 95% CI: 1.23, 

6.13). We observed 17.3% of the association between LMW phthalate exposure at visit 3 and 

preterm birth was mediated by TSH. CRH, progesterone, and testosterone also mediated 28%, 

18%, and 29% of the association between LMW phthalate exposure at visit 1 and spontaneous 

preterm birth. 

 

Overall, this dissertation advances our understanding of the relationship between environmental 

phthalate exposure and risk of adverse birth outcomes. We have explored the possible 

mechanisms by which phthalates may elicit deleterious effects on pregnancy in an endocrine 

framework. Our findings may be useful in early detection of pregnancies at elevated risk for 

delivering preterm. Future work should seek to utilize higher case numbers of adverse pregnancy 

outcomes to substantiate these findings and to broaden our understanding of environmental 

endocrine disruption during pregnancy. 
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Chapter I. Introduction 

Adverse birth outcomes pose a significant public health threat 

Preterm birth is the leading cause of infant mortality in most high- and middle-income countries, 

including the United States. Of 7.6 million children that died before the age of 5 in 2010 globally, 

14% died from complications of preterm birth. Neonatal mortality accounted for 48% of all 

childhood deaths in the Americas at that time, and 17% of those were attributable to preterm 

birth1. The United States experiences a preterm birth rate higher than most other developed 

countries2. Following a steady decline from 2007 to 2014, the preterm birth rate increased over 

two consecutive years to 9.85% from 2014 to 2016. This increase was primarily driven by late 

preterm births, which are those occurring between 34 and 36 weeks gestation3. Being born 

preterm increases the risk of future morbidities including developmental disability, neurological 

impairments, vision and hearing loss, cerebral palsy, asthma, and attention deficit disorder4–7.  

 

The causal mechanisms surrounding preterm birth are largely unknown. Infection, inflammation, 

placental hemorrhage, and stress are all thought to play critical roles, and so environmental 

contaminants associated with these risk factors may also play a causal role8. Preterm birth rates 

are typically around 10% higher among Black women compared to white women9,10. Groups of 

low socioeconomic status, low educational status and young/old maternal ages are also at an 

elevated risk for delivering preterm11–13. A previous study indicated that an interval of less than 

6 months between pregnancies was associated with more than a two-fold increased risk of 

preterm birth14. Obesity is associated with preeclampsia, gestational diabetes and development 

of congenital abnormalities, all of which are positively associated with preterm birth15. Women 

experiencing extreme external stressors such as housing instability and economic hardship are 

also at a higher risk for delivering preterm16. Understanding the roles that different risk factors 
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may have in the causal pathway of preterm birth will help in the development of targeted 

intervention and prevention strategies. 

 

Other rare birth outcomes, about which much less is known, are also important public health 

concerns. The etiology of preterm birth is complex and some have suggested that subcategorizing 

preterm deliveries based on obstetric presentation is more informative than assessing all 

preterm births together. Spontaneous preterm births are those occurring from spontaneous 

premature initiation of labor or rupture of membranes, in contrast to medically indicated 

preterm deliveries. McElrath and colleagues have shown that the spontaneous subtype of 

preterm delivery is generally marked by a state of intrauterine inflammation that is not present 

in the non-spontaneous type17. Thus, the upstream causative factors and biological pathways 

implicated may be distinct between these two types. Preeclampsia, another rare birth outcome, 

is implicated in the non-spontaneous subtype of preterm birth. Characterized by new-onset 

hypertension and proteinuria during pregnancy18, preeclampsia affects about 6% of pregnancies 

worldwide19 and is the leading cause of maternal mortality, cesarean sections, and preterm 

delivery in the United States20,21. The mechanisms of abnormal placentation observed in early 

stages of preeclampsia are poorly understood, but environmental factors could play a role. 

Gestational diabetes mellitus (GDM) is diabetes associated specifically with pregnancy that was 

not present prior to pregnancy. High maternal glucose levels easily cross the placenta and elicit 

a response from the fetal pancreas. Infants born to mothers with GDM are at elevated risk for 

macrosomia and metabolic dysfunctions, and mothers become more likely to develop diabetes 

later in life22. Established risk factors for GDM include family history, obesity, advanced maternal 

age, and cigarette smoking, but epidemiology studies assessing interventions of diet and lifestyle 

factors report inconsistent results23. Understanding the implications of environmental toxicant 

exposures for risk of developing these negative pregnancy outcomes is important for future 

environmental policy and protection of this uniquely susceptible population. 

 

Widespread exposure to phthalate compounds 
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Phthalates are a class of synthetic plasticizers commonly used in the manufacturing of consumer 

products24,25 and have been implicated in numerous adverse health effects in animal and human 

studies, including reproductive and pregnancy outcomes. High-molecular weight (HMW) 

phthalates, including DEHP, are most commonly used in flexible plastic contained in flooring, 

medical equipment and food storage containers. Alternatively, low-molecular weight (LMW) 

phthalates, including DBP and DiBP, are used in personal care products such as shampoos, lotions 

and fragrances, and lacquers and varnishes. Phthalates are not covalently bound to the products 

they are used in and can easily leach into the environment; thus their widespread use results in 

ubiquitous human exposure26. Exposure to HMW phthalates usually occurs via ingestion because 

of their uses in food packaging, while LMW phthalate exposure occurs mostly via dermal 

absorption and inhalation from personal care product use27.  

 

Once inside the body, phthalates are rapidly metabolized into their bioactive forms. LMW 

phthalates typically undergo hydrolysis via phase I biotransformation into their respective 

monoesters, which are then excreted in urine. HMW phthalates additionally undergo several 

conjugation steps via phase II biotransformation. The conjugated products are much more 

hydrophilic than the original diester and are easily excreted in urine28,29. While most LWM 

phthalates are metabolized into only one major hydrolytic monoester, HMW phthalates 

additionally possess multiple secondary oxidized metabolites and thus can be more difficult to 

measure.  

 

A study utilizing NHANES to analyze temporal trends in phthalate exposures in the general United 

States population suggested that since 2001, exposures to DiBP and DiNP have profoundly 

increased, while exposures to DEP, DnBP, BBzP and DEHP have decreased30. The ban on use of 

DnBP, BBzP and DEHP in the production of children’s toys and medical devices may help to 

explain the decreasing exposure to these chemicals, however significant gaps in available data 

make it difficult to fully explain trends for other phthalates. Rises in exposures to high molecular 

weight phthalates like DiBP, in addition to emergent phthalate replacement chemicals, could be 

a result of their use in place of DEHP. 
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Di-2-ethyl hexyl terephthalate (DEHTP) and diisononyl 1,2-cyclohexanedicarboxylic acid (DINCH) 

are commonly considered “safe” alternatives to DEHP and have replaced it in the production of 

many consumer products, including flexible PVC and children’s toys31,32. Phthalate replacement 

chemical metabolites can be widely detected in urine and may be increasing33–35. However, 

limited animal studies have been conducted to rigorously test the potential health effects of 

terephthalate exposure, and human studies are almost non-existent. Animal studies have 

indicated general toxicity36 and changes in liver weight37 with exposure to DEHTP. Another study 

exposed male and female rats to DEHTP over 4 weeks and found no effect on any outcomes 

assessed, including reproductive measures38. These studies exposed adult animals to dietary 

DEHTP, while most animal research on DEHP has indicated that gestational exposure is 

particularly important in determining reproductive toxicity. Developmental animal studies have 

found no significant effects of exposures to DEHTP39, but altered reproductive organ function and 

decreased circulating testosterone levels were found with developmental DINCH exposure40.  

 

Human studies assessing adverse health effects associated with exposure to phthalate 

replacements have increased in number over the past several years, but most studies are plagued 

by low sample sizes and/or detection rates of metabolites. Metabolites of DINCH have been 

shown to be associated with an increase in oxidative stress metabolites41 and differential sperm 

DNA methylation42. Other studies have shown increases in blood pressure among adolescents43 

and increased risk of croup among infants44 with greater DEHTP exposure. As the use of phthalate 

replacement chemicals becomes more common, it will be increasingly important to understand 

the new health threats they pose.  

 

Challenges in phthalate exposure assessment 

Phthalates have been studied extensively in relation to many human health endpoints, but 

comparisons between studies can be difficult due to differences in exposure assessment 

methods. These differences have contributed to inconsistent findings between studies, and can 
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also prevent researchers from combining results to draw aggregate conclusions about the true 

health risks that phthalates pose. 

 

The biological media utilized to measure phthalate concentrations can have a significant impact 

on the reliability and utility of measurements. The most common types of media are urine and 

serum, but other types include hair, saliva, umbilical cord blood, sweat, semen, amniotic fluid, 

and breast milk. Urine is used for most epidemiology studies and confers advantages over other 

types of media because it is easy to collect in large volumes and usually contains higher 

concentrations of phthalate metabolites than other media. Serum is used in a small number of 

epidemiology studies, but the half-life of phthalate metabolites is very short in blood and thus 

provides a small window of opportunity to obtain accurate sample measurements45. 

Discrepancies between phthalate measurements in different media make it challenging to 

compare exposure distributions or associations observed across cohorts. 

 

Studies utilizing repeated measures of phthalate metabolites have shown high intra-individual 

variability between measurements taken at different times46, suggesting that individual 

phthalate measurements are better indicators of recent exposure rather than long-term 

exposure. Most metabolites are excreted from the body within 24 hours of initial exposure29, 

likely contributing to this variability. However, phthalate exposures typically result from habitual 

product use, that is, product use that may vary day by day but not substantially over time. Thus, 

assuming stable microenvironmental phthalate concentrations, studies that utilize more than 

one phthalate measurement over time gain a much more meaningful understanding of an 

individual’s phthalate exposures when compared to studies utilizing only one phthalate 

measurement46.  

 

Particularly for birth outcome studies, measurement of phthalates during developmental 

windows of susceptibility could be important for uncovering true associations. Previous studies 

assessing phthalate exposures and risk of preterm birth have shown strong associations late in 

the second trimester47 and early in the third trimester48, relative to other points during gestation. 
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It is possible that phthalate exposures occurring during specific windows of fetal growth, 

placental remodeling, or endocrine changes result in a cascade of events which increase the risk 

for adverse birth outcomes, and that measuring phthalates outside of these windows returns 

misleading null findings. This is of particular concern because of significant heterogeneity in the 

timing of exposure measurements between phthalate epidemiology studies. 

 

Socioeconomic status (SES) and lifestyle factors play a significant role in determining one’s 

exposure level to phthalates, limiting the generalizability of results from one study to another. 

One study found that higher concentrations of DBP and DEP metabolites were associated with 

higher SES in a Mexico City birth cohort35. In contrast, higher SES and education level was 

associated with higher concentrations of MCOP, MCNP, and DEHTP metabolites in the PROTECT 

pregnancy cohort in Puerto Rico49, and lower SES was associated with elevated phthalate 

metabolites in pregnant women living in Charleston, South Carolina50. Because phthalate 

exposures predominantly result from consumer product use, inconsistencies in product usage 

patterns across cohorts could drive significant differences in exposure distributions between 

populations. Further, if complex (i.e. nonlinear) associations are present, studying populations 

with exposure levels at different points along the distribution may return inconsistent results. 

Education and financial instability are also likely to influence product usage. Consumers who are 

educated on the potential adverse health risks of phthalate exposures, and who have the 

financial means to make healthier, and often times more expensive, choices, are more likely to 

avoid products with high levels of phthalates, while other consumers may not have that option. 

 

Phthalate effects on pregnancy outcomes 

Historically, the majority of animal studies assessing the health effects of phthalate exposures 

have focused on DEHP. According to systematic reviews published within the last 2 years, there 

have been a total of 19 animal toxicology studies assessing impacts of DiBP exposures on various 

broad health outcome categories51, while that same number of studies have been published 

assessing DEHP effects on anogenital distance alone52. As human exposure levels to metabolites 

of DEHP continue to fall, it becomes increasingly important to broaden our understanding of the 
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health threats posed by the phthalate compounds that have replaced it. Further, animal and 

human studies assessing the health effects of any HMW phthalate, including DEHP, are 

challenged by the fact that oxidized secondary metabolites make up the majority of total urinary 

metabolites being excreted, and so studying only the hydrolytic monoester (MEHP, for example) 

does not provide adequate data on the true health impacts of the parent compound27,53.  

 

Human studies aimed at determining the reproductive health threats posed by phthalate 

exposures have returned inconsistent results and thus have not contributed to a solid 

understanding of true relationships or biological mechanisms. Findings from a recent systematic 

review of phthalate effects on male reproductive outcomes highlight the potential for true 

biological associations, but also an incongruency between classes of phthalates and outcomes54. 

Even when robust associations were observed in studies with which the review authors placed 

high confidence, results were not consistent across studies and so general conclusions about 

phthalate toxicity could not be drawn. A similar obstacle was encountered by Yaghjyan and 

colleagues while reviewing the literature on effects of DEHP on adverse pregnancy outcomes55. 

Even when the scope of study is narrowed to one parent phthalate and one class of health 

outcomes such as this, significant differences between study protocols persist which impeded 

the ability to draw solid conclusions.  

 

The challenges present when assessing adverse effects of phthalates on pregnancy outcomes is 

well illustrated when comparing studies that reported significant associations between phthalate 

exposure and timing of delivery. One study conducted among women in the PROTECT birth 

cohort observed positive associations between concentrations of DBP and DiBP metabolites and 

odds of preterm and spontaneous preterm birth. Results of that study also suggested that 

phthalate exposures late in the second trimester were most important for determining risk of 

preterm birth47, supporting the idea that timing of exposure assessment is important for 

uncovering biological relationships. A study by Watkins et al similarly found a significant 

reduction in gestational age at birth with increased concentrations of the sum of DBP 

metabolites, but this relationship was only significant among female pregnancies when phthalate 
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concentrations were averaged between measurements at the first trimester and at delivery56. 

While the previous studies did not show significant findings for metabolites of DEHP, a study in 

Mexico City showed a positive association between risk of preterm delivery and MECPP (a 

secondary oxidized metabolite of DEHP), as well as MBP and MCPP, in the third trimester57. 

Weinberger and colleagues also found an association between increased concentrations of 

another secondary DEHP metabolite, MEHHP, and reduced gestational age at birth. However, in 

that study, MEHHP was measured late in pregnancy and stratification by fetal sex revealed that 

the association was only significant among male pregnancies58. Adibi and colleagues also 

assessed metabolites of DEHP for associations with timing of delivery in a multicenter pregnancy 

cohort, but conversely showed that increasing DEHP metabolites were associated with reduced 

odds of preterm delivery and increased risk of delivering after 41 weeks gestation59, contradicting 

findings from the previously mentioned studies. To add even more discrepancies, a pregnancy 

outcome study in China found null relationships between odds of preterm delivery and all 

aforementioned phthalate metabolites measured throughout pregnancy, and instead found a 

significant positive association between MMP and preterm birth60. Clearly, the current state of 

the literature is inconsistent and suggests that study heterogeneity may be driving some 

differences in results, but also that inherent differences between phthalate metabolites may 

result in differential associations with adverse birth outcomes. Further, the current literature 

suggests that different phthalate metabolites may exert their effects on birth outcomes uniquely 

between fetal sexes and at varying time points through gestation.  

 

Phthalate endocrine disruption during pregnancy 

Phthalates may elicit their biological activity by interfering with the body’s endocrine system. 

Previous animal studies have indicated numerous endocrine-related health effects from 

phthalate exposures. Among male rodents, gestational and/or lactational exposure to phthalates 

has been shown to result in reproductive malformations, reduced anogenital distance, reduction 

of testosterone production, reduced testis weight and lower sperm counts61–66. Animal studies 

have also demonstrated potential endocrine disrupting effects of phthalate exposures including 

altered concentrations of serum reproductive62,67–69 and thyroid hormones70,71 and reduced 
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fertility72–74. Given the importance of numerous hormones during pregnancy, understanding the 

endocrine disrupting potential of phthalates during this sensitive time frame is paramount. 

Various classes of hormones are potential targets for phthalate disruption and could 

subsequently have negative effects on pregnancy, including: 

 

Thyroid hormones: Thyroid hormones are critical early in pregnancy for proper brain and 

skeletal development of the fetus75. The maternal supply of thyroxine (T4) is particularly 

important in the first half of pregnancy, before the fetal thyroid gland has matured enough 

to produce adequate hormones76. At that time, the fetus relies solely on maternal T4, which 

crosses the placenta via thyroid hormone transporters77. Sufficient maternal iodine intake is 

especially important during the first half of pregnancy to facilitate the increased demand for 

thyroid hormones by the fetus, and to maintain proper thyroid hormone concentrations 

within maternal circulation. Throughout gestation, thyroid hormones are important for fetal 

growth and have been shown to be correlated with infant weight and length at birth. Low 

thyroid hormones have also been observed in cases of intrauterine growth restriction and 

small for gestational age (SGA) infants77. 

 

A number of previous studies have demonstrated altered thyroid hormone concentrations 

with increases in phthalate exposures during gestation. Results from a pregnancy cohort in 

Boston suggested that concentrations of free T4 were positively associated with MCPP, a 

metabolite originating from multiple HMW parent compounds. They also found total T4 to 

be positively associated with MEHP78. Romano and colleagues observed an inverse 

association between MEP and T4 at 16 weeks gestation79, in contrast to the Boston study 

which observed a positive association between total triiodothyronine (T3) and MEP. Various 

studies in Taiwan have observed inverse associations between MBP and fT4, but the 

significance was dependent on gestational age at the timing of biomarker measurements80,81. 

Differences in timing of exposure and outcome assessment, low sample sizes, and varying 

geographical locations all contribute to the lack of consistency between studies. 
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Testosterone: Roles of androgens during pregnancy are not well understood. Elevated 

testosterone concentrations have been observed in women with polycystic ovary syndrome 

(PCOS). Women with recurrent miscarriages have also demonstrated higher circulating 

testosterone concentrations, regardless of PCOS status. Androgens may elicit their effects via 

a decrease in the production of various proteins which result in detrimental effects on the 

pregnancy. Androgens could also affect the endometrium via antagonistic action against 

estrogens82. 

 

Assessments of the effects of phthalate exposures on testosterone concentrations have been 

heavily studied among males and occupationally exposed groups, but this relationship has 

not been well established among pregnant women. A multicenter pregnancy study found 

increased testosterone concentrations with higher MEP among male pregnancies, but lower 

testosterone concentrations with higher MBP among female pregnancies. They also observed 

an inverse association between testosterone and DEHP metabolites regardless of fetal sex83. 

The same research group later found similar inverse associations with testosterone and 

MCNP and DEHP metabolites in the TIDES cohort84. Further research is clearly warranted to 

substantiate these findings. 

 

Progesterone and estriol: Concentrations of both progesterone and estriol rise steadily 

throughout pregnancy, and the coordination between them is critical for the timing of labor. 

Through gestation, progesterone functions to attenuate the maternal immune system and 

promote quiescence of the uterine wall85,86. Conversely, estriol acts to ready the uterus for 

labor by increasing expression of prostaglandin and oxytocin receptors, gap junctions, and 

enzymes responsible for muscle contractions87. Over time, estriol concentrations act as a kind 

of “gas pedal” for the progression of pregnancy and eventual onset of labor. Progesterone 

concentrations simultaneously act as the “brake pedal” to keep the pro-labor functions of 

estriol in check. As labor approaches, the maternal response to progesterone is dampened 

and estriol actions begin to dominate88, allowing the onset of labor. Because of the 

coordination of these two hormones, some have hypothesized that studying the ratio of 
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progesterone to estriol is more meaningful for pregnancy outcomes. However, because the 

weakened maternal response to progesterone at labor is not due to a change in progesterone 

concentrations, but rather likely a change in receptor expression levels89, studying the ratio 

still may not uncover true biological mechanisms. 

 

Despite the obvious importance of progesterone and estriol during gestation, very little 

epidemiologic work has been done to understand the effects of environmental toxicants on 

their concentrations during pregnancy. One pilot study in the PROTECT cohort found that 

progesterone was inversely associated with MEP consistently across three study visits90, but 

this study was very limited with a sample size of only 106 women. Another study among Czech 

women found a positive association between MBP and estriol during the 37th week of 

pregnancy91. However, this study was also limited by very small sample size (N=18) and the 

fact that they measured phthalates in maternal plasma rather than urine. 

 

Corticotropin releasing hormone: CRH is normally involved in stress responses, but during 

pregnancy it’s production from the maternal hypothalamus and placenta combine in 

circulation92 to perform a unique role. CRH concentrations remain low during early pregnancy 

and then begin to exponentially rise starting around 20 weeks, peaking at birth93. Women 

who deliver preterm experience a more rapid increase of CRH that can be detected early in 

the second trimester94, leading researchers to believe that CRH is involved in a sort of 

placental clock to determine the timing of labor from a relatively early point during gestation. 

CRH receptors are present in the myometrium to promote contractile and relaxatory 

responses of myometrial cells95. The fetal zone of the fetal adrenal gland possesses CRH 

receptors and also produces DHEA-S, which is a precursor for placental estrogen production. 

CRH entering fetal circulation from the placenta could target these receptors and stimulate 

placental steroidogenesis96.   

 

Despite the clear importance of CRH during pregnancy, no epidemiologic work has been done 

to investigate the potential of phthalates to disrupt CRH concentrations in humans. One 



 12 

previous in vitro study did find that treatment of term human placental cells with MEHP 

increased levels of CRH protein and mRNA97. An animal study in zebra fish also observed 

increased CRH mRNA expression with DEHP treatment in a dose-dependent manner98. 

Disruption of CRH by environmental toxicants presents a critical gap in the pregnancy 

outcomes literature and needs to be further assessed. 

 

Studying phthalate mixtures instead of individual metabolites 

The vast majority of epidemiology studies on phthalate exposures tend to focus on single 

metabolites or parent compounds. Humans are rarely exposed to individual phthalates, but 

rather complex mixtures that vary depending on the sources of exposure. A study conducted in 

NHANES assessed the percent contribution of six different parent phthalate compounds among 

a sample of individuals with a median level of total phthalate exposure. They observed that most 

individuals were exposed to modest concentrations of metabolites from all six parent 

compounds99. This finding suggests that studying associations between individual phthalate 

metabolites and health effects may not provide an accurate understanding of true biological 

relationships. Additionally, studying mixtures allows one to investigate the possibility of additive 

or antagonistic interactions between metabolites and the effects they may have on health 

outcomes. Despite the fact that human phthalate exposure always occurs in complex mixtures, 

very few epidemiology studies have investigated the effects of phthalate mixtures on adverse 

health outcomes, particularly pregnancy outcomes. 

 

Studying environmental toxicants as individual biomarkers can present exposure assessment 

issues when mixtures methods would be better suited for observed human exposure profiles. 

Phthalate metabolites originating from the same parent compound or the same exposure 

sources pose problems of multicollinearity which can contribute to biased effect estimates. 

Previous research has shown that multiple metabolites from a single parent compound can be 

highly correlated with one another, particularly those of DEHP, which have shown a correlation 

coefficient upward of 0.9. Metabolites which likely arise from similar exposure sources, such as 

those from DBP and DiBP (both LMW phthalates likely originating from personal care products) 
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also show moderate correlations with one another (R up to 0.7). Further, modest correlations 

can also be present between metabolites which neither come from the same parent phthalate 

nor originate from the same exposure sources, such as MEP and DEHP metabolites (R up to 0.3)46.  

 

Multicollinearity of phthalate metabolites also poses a problem for regression analyses. If one 

sets out to explore an association between MBP and a particular health outcome, but MiBP 

actually has a causal relationship with the outcome that MBP does not, MiBP will confound the 

results because of its high degree of correlation with MBP. Issues of multicollinearity do not exist 

exclusively within phthalate metabolites, but possibly between other classes of environmental 

contaminants as well. Other chemicals that are used in the same consumer products as 

phthalates including bisphenol A, heavy metals, parabens, and polychlorinated biphenyls can also 

confound associations if they are not accounted for. 

 

One possible way to account for confounding is to adjust statistical models for phthalate 

metabolites aside from the target metabolite of interest. For example, one could include a whole 

panel of phthalate metabolites as covariates in a regression model, and then assess each 

metabolite’s association with the outcome while controlling for the rest of the panel. However, 

this method would mask any additive or multiplicative interactions present between metabolites 

and would not allow the investigator to determine how the overall mixture of phthalates effects 

their outcome of interest. Preferred mixtures methods allow the investigator to control for 

correlation between exposure measures while assessing effects of each metabolite, interactions 

between metabolites, and effects of the mixture as a whole. A small number of studies utilizing 

such methods to assess phthalate mixture associations with birth outcomes have been 

conducted100,101, but a more in-depth exploration into this emerging area of environmental 

epidemiology is necessary to understand true biological relationships.   

 

In conclusion, exposures to complex mixtures of phthalates pose significant public health risks, 

particularly during pregnancy. Many epidemiology studies have found significant associations 

between phthalate exposures and adverse pregnancy outcomes, but findings are mixed and 
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warrant further exploration. Further, there is no clear understanding of the mechanism(s) by 

which phthalates may exert their effects on pregnancy. The maternal, placental, and fetal 

endocrine milieu are critically important throughout gestation and may be targets for disruption 

by phthalate metabolites. We currently have significant evidence that phthalates possess 

endocrine disrupting capabilities, but further research is needed within the context of human 

pregnancy.  Investigating how phthalates may interfere with hormone concentrations through 

gestation, and the subsequent effects that endocrine dysregulation may have on the pregnancy, 

is paramount for understanding the biological mechanisms associated with environmental 

exposures to phthalates. 

 

Specific Aims 

This dissertation deepens our understanding of the etiology of adverse pregnancy outcomes by 

investigating how mixtures of phthalate metabolites are related to changes in hormone 

concentrations and downstream pregnancy outcomes. Data from the Puerto Rico Testsite for 

Exploring Contamination Threats (PROTECT) cohort will be utilized. PROTECT is a longitudinal 

prospective birth cohort which was initiated to explore the effects of environmental 

contamination on the high rates of preterm birth observed on the island. The study site is situated 

amongst many Superfund waste sites atop a karst aquifer system, which allows contaminated 

drinking water to move freely over long distances, exacerbating an already-present 

environmental pollution problem. The following specific aims address critical gaps in the 

epidemiology literature regarding phthalate effects on hormones important during pregnancy, 

effects of phthalate mixtures, and mediation by hormones on the relationships between 

phthalate mixture exposures and adverse birth outcomes. 

 

Specific Aim 1: To evaluate the associations between concentrations of 16 urinary 

phthalate/phthalate replacement metabolites and 9 serum hormones measured at two time 

points through pregnancy (16-20 weeks and 24-28 weeks). I will utilize linear mixed models to 

estimate associations between repeated measures of biomarkers. I will also conduct sensitivity 

analyses to investigate differences in associations between time points and between fetal sexes. 
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Hypothesis 1: Exposures to phthalate metabolites will result in varying and significant 

changes in maternal hormone concentrations. Varying androgen- and estrogen-like 

activity will contribute to observed associations. Differential actions during windows of 

susceptibility, as well as influence by fetal physiology, will result in unique associations at 

each study visit and between fetal sexes. 

 

Specific Aim 2: To investigate the associations between serum hormone concentrations and 

measures of preterm birth and adverse birth outcomes including gestational age at birth, birth 

weight z-score, preterm and spontaneous preterm birth, preeclampsia, gestational diabetes, 

small for gestational age, and large for gestational age over two time points during pregnancy 

(16-20 weeks and 24-28 weeks). I will utilize multivariate linear and logistic regression analyses 

with visit-specific measures of hormone concentrations among all mothers and between male 

and female pregnancies.  

Hypothesis 2: Established functions of various classes of hormones in maintaining 

pregnancy suggest that many significant associations will be observed. Differential risk of 

adverse birth outcomes between male and female pregnancies will contribute to 

differences between fetal sexes, and gestational age-specific changes in hormone 

concentrations will contribute to differences in associations between study visits.  

 

Specific Aim 3: To investigate the mediating effect of hormone concentrations on the 

relationships between exposure to phthalate mixtures and adverse birth outcomes. I will utilize 

ridge regression to determine the relative importance of phthalate metabolites for prediction of 

adverse birth outcomes, and then create environmental risk scores (ERS) as weighted sums of 

each individual’s total phthalate exposure. I will then use ERS as exposure variables in causal 

mediation analyses. 

Hypothesis 3: Varying properties of phthalate metabolites, including molecular weight 

and sources of exposure, will result in differential importance between birth outcomes. 

These differences will also manifest in varying endocrine pathways being implicated as 

mediators on the causal pathway from phthalate mixtures exposure to adverse birth 
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outcomes. Given the established importance of CRH, progesterone, and estriol on the 

timing of labor, we expect these hormones to significantly mediate the association 

between phthalate mixtures and preterm and spontaneous preterm birth. 
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Chapter II. Associations of Phthalates and Phthalate Replacements with CRH 

and Other Hormones Among Pregnant Women in Puerto Rico 

Abstract  

Background: Phthalates are endocrine disrupting chemicals that may be associated with adverse 

birth outcomes. Dysregulation of maternal endocrine homeostasis could be a possible biological 

pathway between phthalates and birth outcomes.  

Objective: Examine associations between 19 maternal urinary phthalate or phthalate 

replacement metabolites and 9 serum hormones measured over two time points during 

pregnancy. 

Methods: In the PROTECT longitudinal pregnancy cohort, we conducted linear mixed effects 

models among 879 women to determine associations between urinary phthalates and serum 

hormones measured at 16-20 weeks and 24-28 weeks gestation. We also conducted analyses 

specific to study visit (16-20 week N=734; 24-28 week N=509) and fetal sex (male N=454; female 

N=414). 

Results: CRH was positively associated with MHiBP (%Δ: 15.4, 95% CI: 2.12, 30.4), MCNP (%Δ: 

6.82, 95% CI: -0.02, 14.1), MCOP (%Δ: 14.7, 95% CI: 7.28, 22.7), and MEP (%Δ: 10.5, 95% CI: 1.96, 

19.8). Positive associations were found between fT4 and MCNP (%Δ: 1.37, 95% CI: 0.21, 2.52), 

MCOP (%Δ: 1.51, 95% CI: 0.34, 2.67), and MCPP (%Δ: 2.02, 95% CI: 0.74, 3.31). Testosterone was 

positively associated with MHBP (%Δ: 17.0, 95% CI: 3.68, 32.1) and inversely associated with 

MCNP (%Δ: -7.72, 95% CI: -13.5, -1.57), MCOP (%Δ: -9.52, 95% CI: -15.4, -3.21), and MCPP (%Δ: -

10.6, 95% CI: -17.0, -3.66). Notably, directions of associations tended to follow trends based on 

molecular weight of the phthalate metabolite. Various positive associations were observed with 

thyroid hormones at 16-20 weeks only. Finally, increases in phthalate concentrations tended to 

result in decreases in hormone concentrations among female pregnancies and increases in 

hormone concentrations among male pregnancies.  
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Introduction 

Maternal hormonal homeostasis during gestation is critical to maintaining a healthy pregnancy 

and ensuring proper development of the fetus102–104. Human studies have shown that abnormal 

thyroid hormone levels, including hyper-and hypothyroidism, are associated with preterm 

birth105–111 and low birth weight112–114. Corticotropin releasing hormone (CRH) is thought to play 

a major role in the timing of labor and has been shown to be associated with preterm birth in 

human studies94,115–120. Women who have hyperandrogenic conditions such as polycystic ovarian 

syndrome have higher circulating levels of testosterone, and these types of conditions have been 

shown to be associated with preterm birth121. Additionally, elevated testosterone levels are 

associated with in utero growth restriction, development of gestational diabetes, and 

preeclampsia122–125. 

 

Phthalates are a class of synthetic plasticizers commonly found in consumer products that have 

been shown to be associated with numerous human health effects24,25. Because phthalates are 

not chemically bound to the products in which they are used, they commonly leach into foods 

and beverages, dust, and air, creating multiple routes of potential human exposure26. 

Consequently, phthalates are ubiquitous in the environment and can be widely detected in 

humans, specifically pregnant women57,126–129. Because pregnant women represent a uniquely 

susceptible population, it is important to understand the potential effects of phthalate exposures 

on maternal and fetal physiology during pregnancy. 

 

Animal studies have shown phthalate exposure to be associated with altered concentrations of 

serum reproductive62,67–69 and thyroid hormones70,71 and reduced fertility72–74. Numerous human 

pregnancy studies have suggested that phthalates may play integral roles in determining birth 

weight, birth length, head circumference, gestational age, and risk of spontaneous abortion and 

preterm birth56,57,130–138. Because of the growing body of evidence suggesting adverse effects of 

phthalate exposure on hormonal homeostasis and birth outcomes, we aimed to assess the 

relationships of maternal urinary phthalate and phthalate replacement metabolites with serum 

hormone concentrations over two time points during pregnancy in PROTECT (Puerto Rico Testsite 
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for Exploring Contamination Threats), our ongoing pregnancy cohort in Puerto Rico. Phthalate 

replacement chemical metabolites can be widely detected in urine among the United States 

population and may be increasing33, yet few previous epidemiology studies have considered 

them. Additionally, to our knowledge no epidemiology studies have assessed the relationship 

between phthalate exposure and serum CRH concentrations, broadening the novelty and 

importance of the present study.  

 

Methods 

Study Participants 

The present analysis builds upon a previous pilot study90 and includes more participants and 

broader coverage of phthalate metabolites and hormone biomarkers, notably terephthalate 

metabolites and CRH. Participants were part of the PROTECT ongoing prospective birth cohort. 

Details on the study recruitment protocol are described elsewhere129,139. Briefly, pregnant 

women living in the Northern karst region of Puerto Rico were recruited from 2012 to 2017 from 

seven hospitals and prenatal clinics at 142 weeks gestation. Eligible participants were 18-40 

years old, had their first clinic visit before 20 weeks gestation, did not use oral contraceptives 

within 3 months of getting pregnant, did not use in vitro fertilization to get pregnant, and did not 

have any known medical or obstetric conditions. Participating women provided blood and spot 

urine samples for analysis at two time points during pregnancy coinciding with periods of rapid 

fetal growth: 16-20 weeks and 24-28 weeks gestation. Demographics information was collected 

from all participants at the first study visit. The present analysis included 879 women who had 

complete data on at least 1 phthalate-hormone concentration pair for at least one of the two 

study visits. This study was approved by the research and ethics committees of the University of 

Michigan School of Public Health, University of Puerto Rico, Northeastern University, and 

participating hospitals and clinics. All study participants provided full informed consent prior to 

participation. 

 

Urinary Phthalate Measurement 
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All spot urine samples were frozen at -80oC and shipped over night on dry ice to the CDC for 

analysis. All samples were initially analyzed for 15 phthalate metabolites: mono-2-ethylhexyl 

phthalate (MEHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-oxohexyl 

phthalate (MEOHP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP), monoethyl phthalate 

(MEP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), mono-isobutyl phthalate 

(MiBP), mono-hydroxyisobutyl phthalate (MHiBP), mono-3-carboxypropyl phthalate (MCPP), 

mono carboxyisononyl phthalate (MCNP), mono carboxyisooctyl phthalate (MCOP), mono-

hydroxybutyl phthalate (MHBP), mono isononyl phthalate (MNP), and mono oxononyl phthalate 

(MONP). Four additional phthalate replacement metabolites were later added to the analytical 

panel: cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH), cyclohexane-

1,2-dicarboxylic acid monocarboxy isooctyl ester (MCOCH), mono-2-ethyl-5-carboxypentyl 

terephthalate (MECPTP), and mono-2-ethyl-5-hydrohexyl terephthalate (MEHHTP). Urine 

samples were analyzed using solid phase extraction high-performance liquid chromatography-

isotope dilution tandem mass spectrometry, the details of which are described elsewhere140. 

Values detected below the limit of detection (LOD) were assigned a value of the LOD divided by 

the square root of two141. Differences in urinary dilution between samples was accounted for 

using specific gravity, which was measured using a digital handheld refractometer (AtagoCo., 

Ltd., Tokyo, Japan). Specific gravity correction for all urinary biomarkers was carried out using the 

formula PC = P [(SGm – 1) / (SGi – 1)], where Pc is the specific gravity-corrected biomarker 

concentration (ng/mL), P is the measured biomarker concentration, SGm is the median specific 

gravity value of the study population (1.019), and SGi is the specific gravity value for each 

individual57.  

 

Serum Hormone Measurement 

All serum samples collected were analyzed at the Central Ligand Assay Satellite Services (CLASS) 

laboratory in the department of Epidemiology at the University of Michigan School of Public 

Health. Progesterone, sex hormone-binding globulin (SHBG), testosterone, total triiodothyronine 

(T3), total thyroxine (T4), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) were 

measured using a chemiluminescence immunoassay. Estriol and corticotropin-releasing 
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hormone (CRH) were measured using an enzyme immunoassay. Some hormone concentrations 

were not available for all participants due to volume limitations. The ratios of progesterone to 

estriol (Prog/E3) and T3 to T4 (T3/T4) were assessed in addition to measured hormones. Previous 

research has indicated that these ratios may be a better indication of adverse pregnancy 

outcomes than single hormone measurements142–144. Two samples had TSH values of zero and 

were thus dropped from the analysis due to biological implausibility. Five samples had 

testosterone levels below the LOD and were thus replaced by the LOD divided by the square root 

of two.  

 

Statistical Analyses 

Summary demographic characteristics of the population over the entire study period and at each 

visit were assessed including maternal age, maternal education, current job status, marital status, 

number of children, smoking status, environmental tobacco smoke exposure, alcohol use, 

number of previous pregnancies, and maternal pre-pregnancy BMI.  

 

Distributions of all phthalate metabolites were heavily right-skewed and thus were natural log 

transformed for all analyses. Distributions of CRH, estriol, progesterone, TSH, testosterone, and 

SHBG were also right skewed and natural log transformed for all analyses. Distributions of fT4, 

T3 and T4 were approximately normal and thus were not transformed. Descriptive statistics for 

all phthalate metabolite and hormone distributions were calculated using specific gravity-

adjusted values for all urinary biomarkers among the total study sample and for each study visit. 

Significant differences in concentrations of biomarkers between study visits were assessed using 

paired t-tests with natural log transformation to achieve normality where appropriate.  

 

Relationships between exposure and outcome variables and potential confounders were 

assessed using ANOVA to test for differences between categories of covariates, and then using 

linear regression to test for linear trends across categories of covariates. Final repeated measures 

analysis utilized linear mixed models (LMMs) to regress hormones/hormone ratios on phthalate 

metabolites and included random intercepts for each study participant to account for intra-
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individual correlation of exposure and outcome measures. Significance level of the univariate 

relationship between exposures and outcomes, a priori knowledge, and changes in the main 

effect estimate by at least 10% were criteria used when determining which potential covariates 

to include in final models. In addition to specific gravity, maternal age and maternal education 

were selected as covariates to include in final models. Beta estimates for categories of maternal 

age did not change linearly in final models and thus maternal age was treated as a categorical 

variable for all analyses. Conversely, beta estimates for categories of maternal education did 

change linearly and thus maternal education was treated as an ordinal variable for subsequent 

analyses. To investigate potential windows of susceptibility, additional analyses were run which 

added an interaction term between study visit number and urinary phthalate biomarkers to the 

previously described LMM in order to obtain effects estimates specific to each study visit. The 

same method was utilized to assess effects specific to fetal sexes. 

 

For ease of interpretability, all results were transformed to indicate percent changes and 95% 

confidence intervals in hormone concentrations associated with an interquartile range (IQR) 

increase in urinary phthalate metabolite concentration. We calculated q-values using the 

Benjamini and Hochberg method145 to address the issue of potential false-positive results from 

running many statistical tests. Each hormone biomarker was treated as a family of tests (total of 

16 tests with phthalate metabolite biomarkers per hormone). High q-values were seen as having 

a greater risk of being false-positives, while q-values below 0.1 were interpreted with higher 

confidence. An alpha level of 0.05 was used to indicate statistical significance. All statistical 

analyses were run using R version 3.4.4. 

 

Results 

Demographics and Confounders 

A total of 879 pregnant women were included in the present analysis. Of those, 734 and 509 

women at visits 1 and 3, respectively, contributed blood and urine samples. Most women were 

younger than 30 years (67%), either married or cohabitating (79.8%), lived in a home earning less 

than $30,000 per year (54.8%), were non-smokers (85.3%), did not consume alcohol during their 
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pregnancy (92.7%), had a BMI less than 30 (78.3%), had less than 2 previous children (73%) and 

reported no exposure to environmental tobacco smoke (83.3%). About 47% of pregnancies were 

female and 52% were male. Distributions of education level and employment status were 

relatively even between categories. Distributions of all demographic characteristics stratified by 

study visit were similar. 

 

Distributions, geometric means (GM) and geometric standard deviations (GSD) of all urinary 

phthalate metabolite and serum hormone biomarkers are shown in Table II.1. Concentrations of 

E3, progesterone, testosterone, and SHBG were all generally higher at visit 3 than at visit 1 

(p<0.001). Most phthalate metabolite biomarkers were detected in at least 80% of samples. 

MCOCH, MNP and MHiNCH were detected in less than 35% of samples and were dropped from 

further analyses. Biomarker concentrations of all phthalate metabolites did not differ 

significantly between study visits.  

 

Over the duration of the study, number of children, smoking status and alcohol use did not show 

significant associations with most phthalate metabolites and hormones assessed. Categorical 

maternal age and ordinal maternal education were significantly associated with the largest 

number of phthalate metabolites and hormones and thus were retained in final models. 

Employment status and annual household income were both significantly associated with most 

hormones but were highly correlated with maternal education (R=0.560, p<0.001 and R=0.571, 

p<0.001, respectively; data not shown) and thus were not considered in further analyses. Self-

reported environmental tobacco smoke exposure was also associated with many phthalate 

metabolites but was not associated with the majority of hormones and was not considered in 

further analyses.  

 

CRH and Reproductive Hormones 

Results from linear mixed models indicating associations between phthalate metabolite 

biomarkers and serum hormones over the study period are shown in Table II.2. Results from 

sensitivity analyses showing significant differences by study visit and by fetal sex are shown in 
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Figures II.1 and II.2, respectively. An increase in CRH concentration was associated with IQR 

increases in MHiBP (%Δ: 15.4, 95%CI: 2.12, 30.4), MCNP (%Δ: 6.82, 95%CI: -0.02, 14.1), MCOP 

(%Δ: 14.7, 95%CI: 7.28, 22.7), and MEP (%Δ: 10.5, 95%CI: 1.96, 19.8) over the study period. While 

the association between MiBP and CRH was not significant in repeated measures analysis, the 

association became significant when assessing only male pregnancies (%Δ: 12.4, 95%CI: 0.87, 

25.3). 

 

An increase in serum testosterone was observed with an IQR increase in MHBP (%Δ: 17.0, 95% 

CI: 3.68, 32.1), but decreases in testosterone were observed with IQR increases in MCNP (%Δ: -

7.72, 95% CI: -13.5, -1.57), MCOP (%Δ: -9.52, 95% CI: -15.4, -3.21), and MCPP (%Δ: -10.6, 95% CI: 

-17.0, -3.66) over the study period. There were no significant differences observed for 

testosterone between study visits or fetal sexes. Reductions in SHBG concentrations were 

observed with IQR increases in MEHHP (%Δ: -4.50, 95% CI: -6.85, -2.10), MEOHP (%Δ: -3.83, 95% 

CI: -6.26, -1.33), MECPP (%Δ: -3.71, 95% CI: -6.26, -1.09), MBP (%Δ: -3.31, 95% CI: -5.83, -0.72), 

and MEHHTP (%Δ: -3.49, 95% CI: -6.34, -0.56). Most of these associations were significant at both 

study visits and only among male fetuses, but differences between visits and fetal sexes were not 

statistically significant. The association between SHBG and MEHP was significantly different 

between male and female pregnancies and became significant when assessing only male 

pregnancies (%Δ: -5.99, 95% CI: -9.26, -2.61). 

 

There were no significant associations between estriol and any phthalate metabolites across the 

study period, but some associations became significant at specific study visits (MBzP V3 %Δ: -

6.32, 95% CI: -11.7, -0.63; MHBP V3 %Δ: -7.51, 95% CI: -14.1, -0.48; MCNP V1 %Δ: 7.40, 95% CI: 

2.76, 12.3; MCOP V1 %Δ: 4.83, 95% CI: 0.33, 9.53). An IQR increase in MEHHTP was associated 

with a 7.25% (95% CI: -13.2, -0.91) decrease in progesterone across the study, which was 

significant only among male pregnancies (%Δ: -8.75, 95%CI: -16.7, -0.11). The association 

between progesterone and MHBP also became significant when assessing only male pregnancies 

(%Δ: -11.9, 95% CI: -19.5, -3.53). No phthalates were associated with the ratio of progesterone 

to estriol across the study, but inverse associations were observed with MECPP (%Δ: -5.69, 95%CI: 
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-10.4, -0.70) and MCPP (%Δ: -5.62, 95%CI: -10.2, -0.81) at study visit 1 only. The effects of MECPP 

on the ratio of progesterone to estriol were significantly different between study visits, but 

neither association was significant on its own.  

 

Thyroid Hormones 

TSH was positively associated with MEHHP (%Δ: 5.21, 95%CI: 0.12, 10.6), MEOHP (%Δ: 5.45, 

95%CI: 0.22, 11.0), MECPP (%Δ: 6.69, 95%CI: 1.19, 12.5), MHiBP (%Δ: 10.5, 95%CI: 2.29, 19.4), 

and MCPP (%Δ: 5.05, 95%CI: 0.03, 10.3). Though no differences between study visits were 

statistically significant, positive associations with DEHP metabolites were significant only at visit 

3, while the positive association with MHiBP was significant only at visit 1. A significant positive 

association was also present with MCOP at visit 1 only (%Δ: 6.29, 95%CI: 0.81, 12.1). 

 

IQR increases in MCNP, MCOP and MCPP were significantly associated with 1.37% (95% CI: 0.21, 

2.52), 1.51% (95% CI: 0.34, 2.67) and 2.02% (95% CI: 0.74, 3.31) increases in fT4 concentrations 

over the study period, respectively. Conversely, MEOHP was associated with a 1.43% (95% CI: 

2.77, 0.08) decrease in fT4. Associations with MCOP, MCPP, and MEP were significantly different 

between study visits, with positive effects estimates observed at the first study visit only.  

 

A reduction in total T4 was observed with an IQR increase in MEHHP (%Δ: -1.24, 95%CI: -2.42, -

0.06), while an increase in total T4 was observed with an IQR increase in MCPP (%Δ: 1.57, 95%CI: 

0.41, 2.74). The resulting decrease in T4 with exposure to MEHHP was significant only among 

female pregnancies. Associations with MCOP and MONP at each study visit were not significant, 

but they were significantly different from one another, with positive associations at visit 1 and 

inverse associations at visit 3.  

 

Changes in T3 were significantly associated with IQR increases in MHBP (%Δ: -5.85, 95%CI: -10.3, 

-1.41), MCNP (%Δ: 3.33, 95%CI: 0.77, 5.88), MCOP (%Δ: 4.41, 95%CI: 1.80, 7.03), and MCPP (%Δ: 

4.25, 95%CI: 1.34, 7.15). Assessments by study visit revealed that the inverse association with 

MHBP persisted only at visit 3 (%Δ: -7.21, 95%CI: -12.7, -1.75), while positive associations with 
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MCNP (%Δ: 4.62, 95%CI: 1.53, 7.71), MCOP (%Δ: 6.34, 95%CI: 3.21, 9.48), and MCPP (%Δ: 4.92, 

95%CI: 1.39, 8.45) persisted only at visit 1. The inverse association with MHBP was also significant 

among female pregnancies only (%Δ: -11.1, 95%CI: -17.1, -5.00), and a marginal inverse 

association was observed with MBP (%Δ: -4.02, 95%CI: -8.09, 0.04) among female pregnancies 

only. Male pregnancies showed unique positive associations with MHiBP (%Δ: 7.57, 95%CI: 1.96, 

13.2), MCNP (%Δ: 5.08, 95%CI: 1.54, 8.61), and MCPP (%Δ: 6.34, 95%CI: 2.34, 10.4). 

 

The ratio of T3/T4 increased by 3.67% (95% CI: 0.99, 6.36) and 4.22% (95% CI: 1.48, 6.96) with 

IQR increases in MCNP and MCOP over the study period, respectively. Conversely, the ratio 

decreased by 6.33% (95% CI: -10.9, -1.73) with an IQR increase in MHBP. No significant difference 

between study visits were observed, however positive associations with MCNP (%Δ: 4.57, 95%CI: 

1.33, 7.81) and MCOP (%Δ: 5.48, 95%CI: 2.21, 8.76) were present only at visit 1, and an inverse 

association with MHBP (%Δ: -8.63, 95%CI: -14.3, -2.94) was present only at visit 3. Significant 

differences were, however, observed by fetal sex which showed an inverse association with 

MHBP among female pregnancies (%Δ: -10.8, 95%CI: -17.1, -4.49) and a positive association with 

MHiBP among male pregnancies (%Δ: 7.87, 95%CI: 2.06, 13.7). Other significant associations 

were observed by fetal sex, but differences between sexes did not reach statistical significance: 

positive associations with MCNP (%Δ: 5.71, 95%CI: 2.01, 9.41), MCOP (%Δ: 5.31, 95%CI: 1.62, 

9.00), and MCPP (%Δ: 4.97, 95%CI: 0.79, 9.14) among male pregnancies, and an inverse 

association with MONP among female pregnancies (%Δ: -6.28, 95%CI: -11.8, -0.80). 

 

Discussion 

Here we investigated the longitudinal associations between gestational phthalate biomarker 

concentrations and maternal serum hormones measured at two time points during pregnancy. 

Four phthalate metabolites were significantly associated with increased concentrations of CRH 

across pregnancy, with most effects being stronger at visit 1 and among male pregnancies. 

Findings for thyroid hormones were mostly positive, but significance levels between study visits 

and fetal sexes were highly variable. Generally, increased phthalate exposure resulted in 

decreased thyroid hormones among female pregnancies, but increased thyroid hormones among 
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male pregnancies. Associations with progesterone and estriol were largely null, but sensitivity 

analyses by study visit and fetal sex did reveal some significant associations. Interestingly, 

findings for most reproductive and thyroid hormones displayed patterns by molecular weight of 

phthalate metabolites, pointing to potential differences in target biological pathways by 

phthalate side chain length. 

 

Thyroid Hormone Discussion 

We previously conducted a case-control study at Brigham and Women’s Hospital in Boston 

among 439 women recruited between 2006 and 2008 to assess longitudinal associations 

between urinary phthalate concentrations through pregnancy and maternal serum thyroid 

hormones146. That study is consistent with our finding that fT4 concentrations were higher when 

measured at earlier points in gestation, as well as finding a positive association between MCPP 

and fT4. While the present study suggested mostly positive associations between phthalates and 

T3, the former study found T3 to be positively associated with only mEP, a relationship that was 

not significant in the present study. In contrast to our current results, the earlier study indicated 

inverse associations between TSH and several phthalate metabolites, as well as a significant 

positive relationship between MEHP and T4. While some aspects of the two studies were similar, 

they were conducted on distinct populations and at differing recruitment times (2006-2008 vs. 

2012-2017) and thus may reflect distinct phthalate usage and exposure patterns. 

 

Romano et al. conducted a prospective birth cohort analysis looking at maternal phthalate 

metabolites and their relationships with thyroid hormones among 202 women in Cincinnati, 

Ohio79. They utilized urinary phthalate metabolite and maternal serum thyroid hormone 

measurements at 16 weeks gestation and found that decreasing T4 concentrations were 

associated with a 10-fold increase in MEP. This result is not supported by our finding that MEP 

was not associated with T4 and that several other phthalate metabolites were positively 

associated with T4 early in pregnancy only. Exposure levels were generally lower than those in 

the present study which may be contributing to differing results. Additionally, although the 

median gestational ages were similar in both studies, measurements ranged from 16 to 20 weeks 
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in our study and 10 to 23 weeks in the study by Romano et al, further suggesting that gestational 

age may play a critical role in the association between phthalate exposure and maternal thyroid 

hormones. 

 

We previously conducted a pilot study to analyze thyroid and sex hormones (estradiol, 

progesterone, SHBG) in relation to phthalate exposure among a distinct group of 106 pregnant 

women recruited into PROTECT90. The current expanded study is more robust due to a much 

larger sample size and thus provides more reliable results. We previously observed inverse 

associations between several phthalates and progesterone, SHBG and fT4. Many of the 

associations with SHBG remained significant in the present analysis, however many associations 

with progesterone and fT4 remained inverse but lost statistical significance.  

 

Several previous studies have been conducted in Taiwan looking at gestational phthalate 

exposure and maternal thyroid hormones. Among 76 Taiwanese women in their second 

trimester, it was found that MBP was inversely associated with fT4 and T480, which conflicts with 

our finding that MBP was associated with neither fT4 nor T4. That same group later conducted a 

similar analysis measuring phthalates and hormones in the first trimester of pregnancy (N=97) 

and found that MBP was again inversely associated with T4, but the relationship between MBP 

and fT4 was no longer significant81. Median concentrations of MBP in the earlier study were 

almost 5 times higher than in our study, while MBP concentrations were similar between the 

later study and ours. Between the two Taiwanese studies in 2011, deliberate contamination with 

DEHP and DBP as replacements of emulsifiers in many foods and beverages occurred in 

Taiwan147. Stricter regulations put into place following the scandal may be responsible for 

decreased concentrations of DEHP and DBP metabolite biomarkers found in studies occurring 

after the scandal. Inverse associations between MBP and fT4 may have been driven by unusually 

high concentrations of MBP in the earlier Taiwanese population. Each of the Taiwanese studies 

enrolled less than 100 women, limiting their power to detect true associations.  
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Another study conducted in Taiwan assessed third trimester phthalate metabolites and maternal 

serum thyroid hormones148. While they found an inverse association between MBzP and TSH in 

fetal cord blood, they did not find any associations between phthalates and maternal serum 

hormones. A pilot study conducted in China reported significant positive associations between 

MBP and fT4 early in pregnancy (5-12 weeks gestation), but that relationship was null at 13-20 

weeks149. Conversely, a prospective study in China found that first trimester phthalates measured 

around 10 weeks gestation were generally inversely associated with fT4 and T4 but positively 

associated with TSH150. Taken together, these studies suggest differential effects of phthalate 

exposure on maternal thyroid hormones and indicate the importance of gestational age in 

predicting resulting changes in associations between phthalates and maternal thyroid hormones.  

 

Several studies have sought to determine the mechanism by which phthalates interfere with 

normal thyroid physiology, but results are inconsistent. Phthalates may exert thyroid-disrupting 

effects by altering transcription levels of thyroid hormones151,152 or by exerting thyroid receptor 

antagonistic activity153,154. It has also been suggested that phthalates interfere with biosynthesis 

of thyroid hormones70,71,155, possibly by interfering with deiodinase activity that is required for 

peripheral tissues to convert T4 into T3, the more bioactive hormone. Here, we observed both 

T3 and the ratio of T3 to T4 to be positively associated with MCNP and MCOP, and T3 was 

additionally positively associated with MCPP. Our results support the possibility that these DEHP 

metabolites may interfere with normal levels of conversion of T4 to T3 by peripheral tissues, 

resulting in loss of negative feedback on the thyroid and increased secretion of T3 into maternal 

circulation. More research including measurement of deiodinase activity needs to be conducted 

to better understand these relationships. Thyroid hormones play critical roles during pregnancy 

including direct action on the placenta to promote growth and proliferation156, promotion of 

proper fetal growth and neurodevelopment157, and placental transfer of maternal thyroid 

hormones upon which the fetus is totally dependent in the first trimester158. It has previously 

been shown that elevated levels of T3 are significantly associated with risk of preterm birth159, 

suggesting that exposure to phthalates may increase risk for preterm birth via elevation of 

maternal T3. 
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CRH and Reproductive Hormone Discussion 

Human studies of reproductive hormones have been more limited. Two previous studies have 

been conducted, both by the same group, looking at the relationship between urinary phthalate 

metabolite concentrations and maternal serum testosterone during pregnancy83,160. The first 

study took biomarker measurements late in pregnancy (98% of women were further than 20 

weeks gestation), while the second study took biomarker measurements early in pregnancy 

(99.5% of women were less than 20 weeks gestation). Inverse associations with MBP and the sum 

of DEHP metabolites, and positive associations with MEP, were found with testosterone during 

late pregnancy but not early pregnancy. Those results are not consistent with our finding that 

MBP was not significantly associated with testosterone at either visit during pregnancy, or that 

MEP was not associated with testosterone at any point during pregnancy. Distributions of 

phthalate metabolite concentrations differed between the three studies, which may be driving 

differences in results. Additionally, the range of gestational ages used in the two previous studies 

may be too wide to detect the true effects of phthalates on testosterone at different points 

during pregnancy.   

 

To our knowledge, no previous epidemiological studies have been conducted to evaluate the 

association between phthalate exposure and CRH. An in vitro study utilizing primary 

cytotrophoblast cells from term human placentas exposed cells to MEHP and quantified the 

subsequent protein and mRNA expression levels of CRH. They found that MEHP treatment 

significantly increased both CRH protein and mRNA levels. They also found that MEHP treatment 

significantly increased cytoplasmic-to-nuclear translocation of the RelB/p52 heterodimer, a 

process in the non-canonical NF-kB pathway which causes upregulation of CRH expression in the 

human placenta. Additionally, knockdown of NIK, a critical component of the non-canonical NF-

kB pathway which induces processing of p100 into active p52 so it can heterodimerize with RelB, 

was found to diminish the effect of MEHP treatment on upregulation of CRH, suggesting that the 

effects of MEHP exposure on CRH expression is dependent on NIK activity97. The NF-kB signaling 

pathway has been implicated as a strong regulator in the process of initiating labor and thus 
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provides clues as to how phthalate exposure may influence CRH concentrations to affect timing 

of labor161. While we did not observe significant associations between CRH and MEHP, these 

results are supported by our findings that MHiBP, MCNP, MCOP, and MEP were significantly 

positively associated with maternal serum CRH concentrations through pregnancy. CRH 

concentrations are relatively low late in the second trimester and begin to exponentially increase 

around 20 weeks and peak at the onset of labor. Responses to higher phthalate exposures may 

have differential impacts on CRH concentrations beyond 26 weeks gestation as more pro-labor 

events begin to occur, indicating the importance of studying the associations between phthalates 

and CRH at both early and late stages of pregnancy. It is also important to note that 

concentrations of CRH binding proteins are particularly high during pregnancy162, and our assay 

measured total (both bound and unbound forms) of CRH, thus reported concentrations are not 

necessarily indicative of bioactive concentrations. 

 

Progesterone plays critical roles throughout pregnancy including suppression of the maternal 

immune system so that the fetus is not rejected, promotion of various inflammatory events at 

the end of pregnancy to induce labor, and helping to hold off contractions and inflammatory 

events until the end of the pregnancy163. Our results showed that exposure to MEHHTP, a 

metabolite of the terephthalate DEHTP, was associated with a significant decrease in maternal 

progesterone concentrations among the entire study population and male pregnancies 

specifically. Levels of terephthalate metabolites we present here are higher than those found 

among a convenience sample of US women prior to 2016 (median 1.1 vs. 3.65 ng/mL) in a recent 

study published by the CDC33. As phthalate replacement chemicals are used more frequently in 

the manufacturing of consumer products it will be increasingly important to understand the 

potential health threats they pose, particularly among at-risk populations such as pregnant 

women. To our knowledge this is the first epidemiological study to date to look at metabolites of 

terephthalates, and our results further indicate the need to consider these chemicals in future 

human health studies. 
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Our study has several limitations. We did not have data on maternal serum concentrations of 

iodine or thyroid peroxidase antibodies, both of which can impact measured concentrations of 

serum thyroid hormones80,106. Not measuring these factors limits our ability to hypothesize 

mechanisms of phthalate action on thyroid hormones and could have introduced bias to our 

study. Measuring phthalates and hormones at two time points during pregnancy that align with 

periods of rapid fetal growth rather than trimesters is an improvement on most published 

research on this topic, however two time points may not be sufficient to detect different effects 

of phthalates on hormones at different times through gestation. Phthalates have also been 

shown to have high variability within individuals, suggesting that single phthalate measurements 

are not typically indicative of long term exposure. However, exposure to certain phthalates may 

come from sources that are consumed habitually, making some of our measurements more 

reliable. Finally, we carried out many comparisons and thus some of our significant results may 

have been found by chance. Our study also has numerous strengths. Despite the risk of excess 

type I error from carrying out many comparisons, we were able to explore relationships that have 

not been well studied, particularly those between reproductive hormones and emerging 

phthalate replacement chemical metabolites. We present one of few studies to longitudinally 

assess phthalate associations with maternal hormones during pregnancy, and our sample size 

was greater than that of most other studies. We are the first to explore relationships between 

phthalates and CRH in an epidemiological study. We are also the first to explore metabolites of 

DEHTP, a terephthalate currently being used as a replacement for DEHP, for associations with 

human health measures. Our repeated measures analysis also allows us to control for intra-

individual variability of measured biomarkers, enhancing our statistical power. Lastly, biomarker 

measurements at two different points during gestation allows for examination of possible 

windows of susceptibility to phthalate exposure during pregnancy. 

 

Overall, our results suggest that gestational phthalate exposures are associated with maternal 

serum concentrations of CRH, testosterone and thyroid hormones through pregnancy, and that 

the directions of these relationships are not consistent. Sensitivity analyses indicate that timing 

of exposure during pregnancy and fetal sex both have significant impacts on associations with 
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maternal hormone levels. These results also suggest that phthalate replacement chemicals may 

disrupt maternal reproductive hormones during pregnancy. Future studies utilizing more 

frequent measurements through pregnancy and larger sample sizes for phthalate substitutes are 

needed to support our findings. People are rarely exposed to individual phthalate chemicals, thus 

studying exposures to mixtures of phthalates will be an important future step to gain a potentially 

fuller understanding of associations between environmental exposures and hormone levels. 

Future studies should also aim to assess how the impact of phthalate exposure on maternal 

hormones may mediate birth outcomes and child development.  
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Table II.1. Distributions of hormones and phthalate metabolites (raw concentrations) in the study population, through gestations 
and by study visits. 

  N N<LOD Min 25th 50th 75th 90th 95th Max 
Geo. 
Mean 

Geo. 
SD 

P-value 

CRH (pg/mL) 
Total 1239  3.50 14.4 35.1 86.4 126 159 254 33.2 2.94 0.193 
V1 731 0 3.50 14.3 34.2 83.2 123 155 254 32.5 2.95  
V3 508 0 3.50 14.8 37.9 88.9 131 163 249 34.4 2.94  

Estriol 
(ng/mL) 

Total 1233  0.74 13.7 23.0 37.2 52.2 62.4 265 22.4 1.97 <0.001 
V1 726 0 0.74 11.3 14.9 21.6 30.2 38.3 91.9 15.3 1.73  
V3 507 0 6.90 29.3 38.0 50.4 64.0 73.9 265 38.5 1.55  

Progesterone 
(ng/mL) 

Total 1237  10.1 34.3 49.3 73.4 108 138 1037 50.8 1.79 <0.001 
V1 729 0 10.1 28.3 38.7 53.2 68.6 81.3 301 39.2 1.59  
V3 508 0 19.4 51.0 72.5 103 142 169 1037 73.6 1.70  

Testosterone 
(ng/dL) 

Total 1237  2.80 54.6 152 603 876 1041 3291 179 3.66 <0.001 
V1 729 0 2.80 51.9 159 569 809 974 2500 171 3.65  
V3 508 0 9.20 60.3 131 652 958 1093 3291 190 3.68  

SHBG 
(nmol/L) 

Total 1243  47.6 398 529 665 819 917 1461 512 1.47 <0.001 
V1 734 0 47.6 379 513 628 783 852 1461 486 1.48  
V3 509 0 123 429 554 723 896 977 1381 552 1.45  

TSH (uIU/mL) 
Total 1233  0.02 0.68 1.07 1.66 2.39 2.94 40.9 1.04 2.02 0.504 
V1 726 0 0.02 0.66 1.02 1.63 2.32 2.85 40.9 1.00 2.07  
V3 507 0 0.14 0.72 1.13 1.73 2.41 3.20 25.7 1.11 1.95  

T3 (ng/mL) 
Total 1239  0.11 1.03 1.54 2.00 2.30 2.48 8.35 1.33 1.82 0.702 
V1 731 0 0.11 0.98 1.50 1.98 2.29 2.47 8.35 1.29 1.87  
V3 508 0 0.11 1.08 1.59 2.03 2.32 2.49 4.68 1.37 1.76  

fT4 (mg/dL) 
Total 1241  0.35 0.86 0.98 1.1 1.2 1.27 1.72 0.97 1.20 <0.001 
V1 732 0 0.35 0.89 1.00 1.12 1.21 1.28 1.72 0.99 1.19  
V3 509 0 0.44 0.83 0.96 1.07 1.18 1.24 1.42 0.94 1.21  

T4 (ug/dL) 
Total 1233  5.30 10.4 11.8 13.1 14.3 15.2 19.0 11.6 1.19 0.005 
V1 726 0 6.80 10.6 11.9 13.2 14.4 15.3 19.0 11.8 1.19  
V3 507 0 5.30 10.2 11.6 13.0 14.2 14.8 18.6 11.4 1.19  

MEHP 
Total 1243  0.35 1.10 2.30 4.50 8.68 12.0 563 2.31 2.76 0.249 
V1 734 111 0.35 1.10 2.40 4.70 9.40 13.27 563 2.40 2.80  
V3 509 91 0.35 1.00 2.20 4.40 8.3 10.86 64.8 2.18 2.70  

MEHHP 
Total 1243  0.28 3.80 7.30 14.00 24.6 34.7 1040 6.99 2.86 0.043 
V1 734 3 0.28 3.95 7.60 14.7 26.0 38.2 1040 7.36 2.88  
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V3 509 1 0.28 3.50 7.00 13.4 21.7 30.7 274 6.50 2.84  

MEOHP 
Total 1243  0.14 3.25 6.60 11.9 21.4 28.1 690 6.14 2.83 0.387 
V1 734 2 0.14 3.33 6.70 12.1 21.8 29.3 690 6.27 2.85  
V3 509 0 0.30 3.20 6.50 11.9 20.2 27.2 231 5.95 2.80  

MECPP 
Total 1243  0.60 7.05 13.2 24.2 37.8 52.2 1020 12.8 2.58 0.054 
V1 734 0 0.60 7.23 13.4 24.5 38.0 53.1 1020 13.2 2.57  
V3 509 0 0.80 6.70 12.8 23.6 37.5 51.2 493 12.1 2.60  

MBP 
Total 1243  0.28 7.20 15.3 31.4 62.7 92.0 478 14.4 3.22 0.463 
V1 734 5 0.28 7.73 15.5 31.4 63.6 91.5 285 14.9 3.13  
V3 509 3 0.28 6.50 15.2 31.2 60.3 90.2 478 13.8 3.35  

MBzP 
Total 1243  0.21 1.10 2.60 6.30 13.7 25.6 612 2.65 3.75 0.677 
V1 734 28 0.21 1.13 2.80 6.60 14.9 25.1 612 2.79 3.75  
V3 509 29 0.21 1.00 2.50 5.80 12.6 25.6 298 2.45 3.74  

MiBP 
Total 1243  0.40 4.65 9.60 19.2 36.2 55.8 964 9.39 2.94 0.684 
V1 734 4 0.40 4.90 9.60 20.0 35.2 50.7 202 9.48 2.89  
V3 509 7 0.57 4.30 9.70 18.2 38.6 56.3 964 9.27 3.01  

MHBP 
Total 895  0.28 0.60 1.40 2.90 6.06 9.10 63.2 1.38 3.00 0.408 
V1 542 67 0.28 0.60 1.40 2.90 5.59 8.40 45.1 1.45 2.91  
V3 353 68 0.28 0.50 1.30 2.70 6.30 9.24 63.2 1.28 3.12  

MHiBP 
Total 895  0.28 1.90 3.90 8.40 15.6 23.1 68.2 3.91 2.95 0.134 
V1 542 6 0.28 2.10 4.10 8.78 16.0 23.6 65.4 4.15 2.88  
V3 353 11 0.28 1.60 3.80 7.60 15.0 20.6 68.2 3.56 3.03  

MCNP 
Total 1243  0.14 0.90 1.60 2.80 5.40 8.49 146 1.65 2.57 0.237 
V1 734 6 0.14 1.00 1.70 2.90 5.77 8.44 59.8 1.73 2.55  
V3 509 6 0.14 0.80 1.50 2.60 4.90 8.34 146 1.53 2.57  

MCOP 
Total 1243  0.30 4.10 8.20 18.5 45.9 88.2 1230 9.25 3.48 0.135 
V1 734 0 0.30 4.30 8.75 19.0 47.2 97.4 1230 9.84 3.50  
V3 509 0 0.30 3.80 7.20 16.8 41.6 77.2 890 8.46 3.42  

MONP 
Total 590  0.28 0.90 1.70 3.88 7.81 14.5 512 1.94 3.22 0.671 
V1 359 22 0.28 0.90 1.70 4.00 7.72 13.7 512 1.95 3.07  
V3 231 19 0.28 0.90 1.70 3.45 8.00 20.1 452 1.93 3.46  

MECPTP 
Total 590  0.90 9.75 20.3 44.6 141 395 4960 24.4 3.98 0.910 
V1 359 0 1.40 10.4 21.3 47.3 162 592 4960 26.7 4.26  
V3 231 0 0.90 9.45 18.2 39.8 92.6 217 2420 21.2 3.51  

MEHHTP 
Total 590  0.28 1.60 3.65 9.28 23.1 55.9 1690 4.22 3.99 0.571 
V1 359 2 0.28 1.70 4.00 9.65 31.6 82.0 1690 4.77 4.16  
V3 231 7 0.28 1.45 3.10 8.30 16.3 35.05 227 3.48 3.65  
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MEP 
Total 1243  0.85 12.3 33.6 150 545 1207 20900 45.6 5.69 0.707 
V1 734 2 0.85 12.6 34.3 134 524 973 20900 45.7 5.35  
V3 509 3 0.85 11.6 31.1 195 712 1392 8930 45.6 6.21  

MCPP 
Total 1243  0.14 0.60 1.30 2.50 5.00 8.39 151 1.34 3.00 0.235 
V1 734 77 0.14 0.70 1.30 2.60 5.40 8.87 120 1.41 2.95  
V3 509 85 0.14 0.50 1.20 2.40 4.32 7.10 151 1.25 3.06  

P values were calculated using a paired t-test between biomarker concentrations at visit 1 and visit 3. Skewed biomarkers were ln-transformed. 
Phthalate concentrations are in ng/mL. 
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Table II.2. Results from linear mixed models showing the percent change in serum hormone concentrations corresponding to an IQR 
increase in urinary phthalate metabolite concentrations. 

  CRH^   Estriol^   Prog^  
 N % (95% CI) P N % (95% CI) P N % (95% CI) P 

MEHP 1225 0.38 (-7.67, 9.13) 0.929 1219 -0.37 (-6.17, 5.78) 0.903 1223 0.72 (-4.36, 6.07) 0.785 

MEHHP 1225 -1.07 (-8.25, 6.68) 0.781 1219 -0.68 (-6.10, 5.04) 0.811 1223 -1.23 (-5.88, 3.65) 0.616 

MEOHP 1225 -3.57 (-10.75, 4.18) 0.357 1219 3.60 (-2.20, 9.73) 0.230 1223 -0.02 (-4.85, 5.06) 0.994 

MECPP 1225 -0.82 (-8.50, 7.52) 0.842 1219 1.85 (-3.96, 8.01) 0.541 1223 -2.15 (-6.99, 2.94) 0.402 

MBP 1225 -5.22 (-12.46, 2.62) 0.187 1219 0.36 (-5.38, 6.46) 0.904 1223 -1.22 (-6.11, 3.92) 0.635 

MBzP 1225 2.63 (-5.49, 11.45) 0.538 1219 -3.45 (-8.88, 2.30) 0.235 1223 -1.48 (-6.29, 3.58) 0.560 

MiBP 1225 4.86 (-3.70, 14.18) 0.275 1219 0.36 (-5.42, 6.49) 0.907 1223 2.23 (-2.87, 7.60) 0.399 

MHBP 886 -5.95 (-16.39, 5.80) 0.308 883 -2.87 (-10.18, 5.03) 0.466 886 -5.44 (-11.49, 1.02) 0.099 

MHiBP 886 15.38 (2.12, 30.37) 0.023** 883 -1.02 (-8.31, 6.84) 0.792 886 -0.57 (-6.84, 6.13) 0.864 

MCNP 1225 6.82 (-0.02, 14.12) 0.051* 1219 4.52 (-0.62, 9.93) 0.086 1223 2.59 (-1.78, 7.15) 0.251 

MCOP 1225 14.73 (7.28, 22.69) 0.000** 1219 2.42 (-2.49, 7.58) 0.341 1223 0.58 (-3.61, 4.95) 0.789 

MONP 583 5.42 (-4.86, 16.81) 0.315 582 4.48 (-3.02, 12.57) 0.251 582 0.10 (-6.12, 6.73) 0.976 

MECPTP 583 -7.91 (-15.96, 0.90) 0.079 582 -2.85 (-8.77, 3.45) 0.369 582 -4.13 (-9.23, 1.25) 0.132 

MEHHTP 583 -8.15 (-17.77, 2.60) 0.134 582 -5.32 (-12.27, 2.19) 0.162 582 -7.25 (-13.18, -0.91) 0.027 

MEP 1225 10.54 (1.96, 19.84) 0.016** 1219 2.78 (-2.87, 8.76) 0.343 1223 1.66 (-3.20, 6.76) 0.510 

MCPP 1225 6.86 (-0.81, 15.14) 0.082 1219 1.00 (-4.33, 6.63) 0.719 1223 -2.41 (-6.89, 2.28) 0.309 

  Prog/Estriol^   Testosterone^   SHBG^  

 N % (95% CI) P N % (95% CI) P N % (95% CI) P 

MEHP 1214 0.94 (-3.70, 5.81) 0.697 1223 -1.60 (-9.50, 6.99) 0.705 1229 -2.14 (-4.84, 0.63) 0.130 

MEHHP 1214 -0.33 (-4.57, 4.09) 0.880 1223 -2.71 (-9.68, 4.79) 0.469 1229 -4.50 (-6.85, -2.10) 0.000** 

MEOHP 1214 -3.32 (-7.53, 1.08) 0.138 1223 1.11 (-6.31, 9.10) 0.777 1229 -3.83 (-6.26, -1.33) 0.003** 

MECPP 1214 -3.76 (-8.07, 0.76) 0.102 1223 -4.16 (-11.56, 3.86) 0.300 1229 -3.71 (-6.26, -1.09) 0.006** 

MBP 1214 -1.24 (-5.65, 3.38) 0.593 1223 6.78 (-1.26, 15.48) 0.101 1229 -3.31 (-5.83, -0.72) 0.013** 

MBzP 1214 1.97 (-2.57, 6.73) 0.402 1223 0.71 (-7.37, 9.50) 0.868 1229 -2.20 (-4.88, 0.55) 0.117 
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MiBP 1214 1.75 (-2.91, 6.62) 0.469 1223 -1.17 (-9.36, 7.77) 0.791 1229 -2.24 (-5.00, 0.61) 0.123 

MHBP 883 -2.35 (-8.15, 3.81) 0.446 886 17.03 (3.68, 32.09) 0.012** 887 -2.76 (-6.16, 0.76) 0.124 

MHiBP 883 0.53 (-5.41, 6.84) 0.866 886 -10.73 (-21.70, 1.77) 0.091 887 -0.98 (-4.75, 2.93) 0.618 

MCNP 1214 -2.00 (-5.74, 1.89) 0.311 1223 -7.72 (-13.48, -1.57) 0.015** 1229 -1.24 (-3.38, 0.94) 0.263 

MCOP 1214 -1.75 (-5.46, 2.11) 0.370 1223 -9.52 (-15.43, -3.21) 0.004** 1229 -1.81 (-3.99, 0.42) 0.112 

MONP 582 -4.62 (-10.24, 1.35) 0.129 582 7.32 (-3.26, 19.04) 0.184 583 -0.18 (-2.73, 2.43) 0.892 

MECPTP 582 -1.32 (-6.32, 3.94) 0.617 582 9.36 (-0.64, 20.36) 0.069 583 -1.54 (-3.97, 0.95) 0.225 

MEHHTP 582 -1.76 (-7.77, 4.63) 0.581 582 9.06 (-2.87, 22.46) 0.144 583 -3.49 (-6.34, -0.56) 0.021** 

MEP 1214 -1.21 (-5.53, 3.31) 0.595 1223 -7.26 (-14.57, 0.69) 0.073 1229 0.20 (-2.50, 2.97) 0.888 

MCPP 1214 -3.12 (-7.15, 1.09) 0.145 1223 -10.56 (-16.98, -3.66) 0.003** 1229 -1.85 (-4.27, 0.63) 0.143 

  TSH^   T3   fT4  

 N % (95% CI) P N % (95% CI) P N % (95% CI) P 

MEHP 1219 2.00 (-3.45, 7.76) 0.481 1225 -0.19 (-3.45, 3.07) 0.911 1227 -0.84 (-2.28, 0.61) 0.257 

MEHHP 1219 5.21 (0.12, 10.56) 0.045* 1225 0.65 (-2.28, 3.59) 0.663 1227 -1.05 (-2.37, 0.26) 0.116 

MEOHP 1219 5.45 (0.22, 10.95) 0.042* 1225 0.42 (-2.59, 3.42) 0.787 1227 -1.43 (-2.77, -0.08) 0.038* 

MECPP 1219 6.69 (1.19, 12.49) 0.017* 1225 1.58 (-1.56, 4.73) 0.325 1227 -1.20 (-2.60, 0.20) 0.093 

MBP 1219 -0.28 (-5.36, 5.08) 0.917 1225 -2.29 (-5.37, 0.80) 0.147 1227 -0.58 (-1.96, 0.80) 0.411 

MBzP 1219 2.49 (-2.91, 8.19) 0.373 1225 1.38 (-1.84, 4.61) 0.401 1227 0.34 (-1.08, 1.75) 0.639 

MiBP 1219 3.46 (-2.17, 9.41) 0.235 1225 2.00 (-1.33, 5.34) 0.240 1227 0.10 (-1.36, 1.56) 0.895 

MHBP 883 -0.98 (-8.10, 6.69) 0.796 886 -5.85 (-10.29, -1.41) 0.010 886 -0.70 (-2.53, 1.12) 0.449 

MHiBP 883 10.52 (2.29, 19.42) 0.012* 886 3.09 (-1.59, 7.77) 0.198 886 1.16 (-0.69, 3.01) 0.221 

MCNP 1219 2.62 (-1.74, 7.18) 0.243 1225 3.33 (0.77, 5.88) 0.011* 1227 1.37 (0.21, 2.52) 0.021** 

MCOP 1219 4.27 (-0.24, 8.99) 0.065 1225 4.41 (1.80, 7.03) 0.001* 1227 1.51 (0.34, 2.67) 0.012** 

MONP 582 3.63 (-2.91, 10.61) 0.286 583 -3.05 (-7.09, 0.98) 0.140 583 -0.81 (-2.41, 0.79) 0.320 

MECPTP 582 -1.00 (-6.73, 5.08) 0.741 583 -2.23 (-5.93, 1.48) 0.240 583 -0.53 (-1.91, 0.86) 0.459 

MEHHTP 582 0.97 (-6.05, 8.52) 0.794 583 -1.60 (-6.08, 2.88) 0.485 583 -0.80 (-2.48, 0.88) 0.351 

MEP 1219 -0.66 (-5.82, 4.77) 0.807 1225 1.03 (-2.14, 4.21) 0.525 1227 -0.04 (-1.43, 1.35) 0.957 

MCPP 1219 5.05 (0.03, 10.32) 0.050* 1225 4.25 (1.34, 7.15) 0.004* 1227 2.02 (0.74, 3.31) 0.002** 

  T4   T3/T4     
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 N % (95% CI) P N % (95% CI) P    

MEHP 1219 -0.94 (-2.25, 0.37) 0.160 1219 0.82 (-2.58, 4.22) 0.637    

MEHHP 1219 -1.24 (-2.42, -0.06) 0.040 1219 1.97 (-1.11, 5.04) 0.211    

MEOHP 1219 -0.98 (-2.19, 0.23) 0.114 1219 1.41 (-1.74, 4.56) 0.381    

MECPP 1219 -0.73 (-2.00, 0.53) 0.256 1219 2.49 (-0.79, 5.77) 0.138    

MBP 1219 0.10 (-1.15, 1.35) 0.877 1219 -2.47 (-5.71, 0.76) 0.134    

MBzP 1219 -0.04 (-1.34, 1.25) 0.950 1219 1.20 (-2.15, 4.55) 0.483    

MiBP 1219 -0.68 (-2.02, 0.66) 0.319 1219 2.74 (-0.73, 6.20) 0.123    

MHBP 883 0.41 (-1.34, 2.16) 0.646 883 -6.33 (-10.92, -1.73) 0.007    

MHiBP 883 -0.24 (-2.07, 1.58) 0.793 883 3.61 (-1.22, 8.45) 0.144    

MCNP 1219 -0.18 (-1.21, 0.85) 0.733 1219 3.67 (0.99, 6.36) 0.008**    

MCOP 1219 0.51 (-0.54, 1.57) 0.342 1219 4.22 (1.48, 6.96) 0.003**    

MONP 582 0.52 (-0.89, 1.94) 0.469 582 -3.58 (-7.63, 0.48) 0.086    

MECPTP 582 0.48 (-0.82, 1.78) 0.466 582 -2.24 (-5.95, 1.48) 0.239    

MEHHTP 582 0.62 (-0.95, 2.19) 0.439 582 -1.88 (-6.37, 2.60) 0.412    

MEP 1219 -0.86 (-2.13, 0.42) 0.188 1219 2.00 (-1.30, 5.30) 0.235    

MCPP 1219 1.57 (0.41, 2.74) 0.009* 1219 2.73 (-0.31, 5.77) 0.079    

**q<0.1, *q<0.2 
^Hormone concentrations were ln-transformed for analyses. 
All models adjusted for categorical maternal age and education, and specific gravity. 
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Figure II.1. Percent changes in hormone concentrations with an IQR increase in phthalate 
concentrations that were significantly different between study visits.  

 
Green squares represent effect estimates for study visit 1, purple diamonds indicate effect estimates for study visit 3, black bars 
represent 95% confidence intervals, and the vertical red line represents the null value. 
**q-value<0.1 
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Figure II.2. Percent changes in hormone concentrations with an IQR increase in phthalate 
concentrations that were significantly different between fetal sexes. 

 
Pink squares represent effect estimates for female fetuses, teal diamonds indicate effect estimates for male fetuses, black bars 
represent 95% confidence intervals, and the vertical red line represents the null value. 
**q<0.1 
*q<0.2 
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Chapter III. Fetal Sex-Dependent Associations Between Gestational Hormone 

Concentrations and Adverse Birth Outcomes 

Abstract 

Background: Adverse birth outcomes remain significant public health problems that can have 

long-lasting impacts on mother and child. Understanding biological mechanisms underlying these 

outcomes, including altered endocrine function, can inform prevention efforts.  

Objective: Evaluate associations between hormones at two times points during mid-gestation 

and adverse birth outcomes, and explore effect modification by fetal sex. 

Methods: We explored associations between repeated gestational hormone measurements (at 

18 and 26 weeks) and birth outcomes among 976 women in PROTECT, a longitudinal prospective 

birth cohort in northern Puerto Rico, from 2011 to 2018. Birth outcomes assessed included 

preterm and spontaneous preterm birth (PTB), preeclampsia, gestational diabetes mellitus 

(GDM), small/large for gestational age (SGA, LGA), birthweight z-score, and gestational age at 

birth. Multivariate logistic and linear regressions were fit using visit-specific concentrations of 

hormones. We also conducted sensitivity analyses assessing impacts of fetal sex on observed 

associations. All models were adjusted for maternal age and education, and other confounders 

were assessed separately between birth outcomes based on a priori knowledge and observed 

associations with exposure and outcome measures. 

Results: Increased odds of spontaneous PTB were observed with IQR increases in progesterone 

(OR: 2.12, 95% CI: 1.29, 3.47), fT4 (OR: 1.73, 95% CI: 1.04, 2.86), and the ratio of progesterone to 

estriol (OR: 1.63, 95% CI: 1.05, 2.54) at 26 weeks. Elevated estriol was protective against 

preeclampsia at 26 weeks (OR: 0.42, 95% CI: 0.17, 0.99). Increases in TSH and T3 conferred 

greater risk of GDM at 18 weeks. Many associations were modified by fetal sex, with hormone 

alterations during male pregnancies conferring greater risk of PTB, spontaneous PTB, and GDM. 
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Conclusions: Associations between hormones and birth outcomes vary based on timing of 

hormone measurement and fetal sex. Future studies are needed to understand mechanisms 

involved in adverse birth outcomes and fetal sex difference.  

 

Background  

Preterm birth (PTB) affects approximately 11% of live births164 and is the leading cause of 

neonatal mortality worldwide165. Infants born preterm are at increased risk for adverse health 

outcomes later in life including reduced renal function166, neurodevelopmental impairments167, 

cerebral palsy168, and reduced myocardial function169. Despite being a common public health 

problem, the causes of PTB are largely unknown. Other rare birth outcomes are also of significant 

concern and present safety issues for the mother and the fetus. The spontaneous subtype of 

preterm birth is characterized by an inflammatory uterine environment and may arise via 

different mechanisms than indicated PTB17. Preeclampsia, a hypertensive disorder of 

pregnancy18, affects 6% of pregnancies globally19 and is the leading cause of maternal mortality 

in the United States20,21. Gestational diabetes mellitus (GDM) is a disease of reduced insulin 

sensitivity and elevated glucose levels during gestation. High maternal glucose levels easily cross 

the placenta and illicit a response from the fetal pancreas. Infants born to mothers with GDM are 

at elevated risk for macrosomia and metabolic dysfunctions, and mothers become more likely to 

develop diabetes later in life22. Very little epidemiologic work has been done to investigate these 

rare adverse pregnancy outcomes and so our knowledge of the mechanisms by which they occur 

is limited. 

 

The maternal and fetal endocrine milieus change and interact in unique ways at different points 

throughout gestation. The roles of progesterone are complex, reflected by the mixed efficacy of 

progesterone therapy as a preventative measure for preterm birth170. Estrogens are responsible 

for uterine maintenance and increased expression of oxytocin receptors and gap junctions that 

are necessary for uterine contractions to occur171. Through pregnancy, progesterone maintains 

uterine quiescence and keeps contractile effects of estrogens in check170. Thyroid hormones are 

critical early in pregnancy for proper brain and skeletal development of the fetus75. The maternal 
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supply of thyroxine (T4) is particularly important in the first half of pregnancy, before the fetal 

thyroid gland has matured enough to produce adequate hormones76. Previous studies have 

demonstrated associations between clinical hyper- and hypothyroidism and adverse birth 

outcomes172–175, but much less is known about subclinical thyroid disruption and pregnancy 

outcomes.  

 

Few large epidemiological studies exist that assess a wide array of hormone concentrations and 

pregnancy outcomes. The majority of existing research focuses on one hormone/class of 

hormones, which makes it challenging to gain a broad understanding of the endocrine pathways 

implicated in the onset of adverse birth outcomes143,176,177. Specifically, the spontaneous subtype 

of PTB has not been well studied, and current research on the rare outcomes of preeclampsia 

and GDM is sparse178–180. Importantly, few previous studies have investigated hormone 

concentrations at more than one time point during gestation, nor have they assessed the impact 

of fetal sex on these associations. Because of these gaps in the literature, the aim of this study 

was to investigate associations between various hormone concentrations, measured at two time 

points during gestation, and adverse birth outcomes, as well as effect modification by fetal sex. 

Based on previous literature, we have hypothesized that increases in CRH and estriol will be 

associated with increased risk of early delivery, while increases in progesterone will be associated 

with later delivery. Further, we expect lower thyroid hormone concentrations to be associated 

with smaller infant size at birth. Finally, we expect to observe more significant adverse 

associations among male pregnancies, given previous evidence suggesting that male pregnancies 

are more risky than female pregnancies181–183. 

 

Methods 

Study Population 

Pregnant women were recruited into the PROTECT birth cohort between 2011 and 2018 at 142 

weeks’ gestation from seven hospitals and prenatal clinics in northern Puerto Rico. Study design 

and recruitment protocols have been described elsewhere139. Demographic and self-reported 

health information was provided at the first clinic visit. This study was approved by the research 
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and ethics committees of the University of Michigan School of Public Health, University of Puerto 

Rico, Northeastern University, and participating hospitals and clinics. All study participants 

provided full informed consent prior to participation. 

 

Hormone Measurements 

All women provided serum samples at their first and third clinic visits, aligning with median 18 

(range 16-20) and 26 (range 24-28) weeks’ gestation. Serum samples were analyzed at the Central 

Ligand Assay Satellite Services (CLASS) laboratory in the Department of Epidemiology at the 

University of Michigan School of Public Health. Progesterone, sex hormone-binding globulin 

(SHBG), testosterone, total triiodothyronine (T3), total thyroxine (T4), free thyroxine (fT4), and 

thyroid-stimulating hormone (TSH) were measured using a chemiluminescence immunoassay. 

Estriol and corticotropin releasing hormone (CRH) were measured using an enzyme 

immunoassay. Some hormone concentrations were not available for all participants due to 

sample volume limitations. The ratios of progesterone to estriol (Prog/E3) and T3 to T4 (T3/T4) 

were assessed in addition to measured hormones because of previous research indicating that 

the ratios may be better indices of adverse pregnancy outcomes than single hormone 

measurements142–144. All hormone concentrations below the limit of detection (LOD) were 

replaced by the LOD divided by the square root of two.  

 

Birth Outcome Assessment 

Based on recommendations from the American College of Obstetricians and Gynecologists, self-

reported date of the last menstrual period was collected at the first study visit and used in 

combination with early ultrasound measurements to determine gestational age at birth184. PTB 

was defined as delivery before 37 weeks’ gestation. We also assessed spontaneous PTB, defined 

as PTB presenting with premature rupture of membranes, spontaneous preterm labor, or both17. 

Preeclampsia and GDM cases were determined based on diagnosis in the medical record by an 

attending physician. We calculated birthweight z-scores based on fetal sex and gestational age 

using widely accepted international standards185. Those born with a birthweight <10th percentile 
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and >90th percentile were considered small and large for gestational age (SGA and LGA), 

respectively.  

 

Statistical Methods 

Distributions of demographic, health, and pregnancy characteristics were calculated. Summary 

measures of gestational hormone concentrations were assessed using arithmetic means of all 

available concentrations for each study participant, or geometric means for log-normally 

distributed hormones. Distributions of hormone concentrations were also assessed individually 

at each study visit. Univariate linear models were used to test for significant differences between 

hormone concentrations at each study visit. Intraclass correlation coefficients (ICCs) were also 

used to assess between- and within-individual variability of hormone concentrations across study 

visits.  

 

We utilized indicator variables for study visit and included interaction terms between each 

indicator and hormone concentration in final models to achieve effect estimates specific to each 

study visit. Sandwich estimators were used in these models to correct for biased standard errors 

due to the non-repeating nature of outcome variables. Gestational average hormone 

concentrations were not used in final statistical models because of the marked changes in some 

hormones that occur throughout gestation. We also conducted sensitivity analyses to assess 

effect modification by fetal sex. An additional interaction term was included between hormone 

concentration and a fetal sex indicator variable to achieve effect estimates specific to fetal sex 

within study visits.   

 

Confounders were explored by evaluating their associations with exposure and outcome 

variables. All models adjusted for categorical forms of maternal age and maternal education. 

Further covariate adjustment differed between birth outcomes based on a priori knowledge, 

significant association with the outcome measure, and inclusion of the covariate impacting the 

hormone effect estimate by at least 10%. A list of covariates that were assessed and the outcome 
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models in which they were included, if any, is shown in Table III.1. All models assessing 

testosterone also included SHBG to adjust for bound testosterone. 

 

Results 

Demographics of the study population are shown in Table III.2. The majority of mothers were 

under the age of 30 (67.1%), had at least some college education (79%), were employed (63%), 

had an annual household income under $30,000 (63.1%), were married (53.1%), had never 

smoked (86%) or been exposed to environmental tobacco smoke (88.7%), did not drink alcohol 

during pregnancy (93.6%), had given birth to less than 2 previous children (86.9%), and had a pre-

pregnancy BMI of less than 25 (56.1%). 

 

Distributions of hormone concentrations are shown in Table III.3. Most hormone concentrations 

were significantly different at 18 and 26 weeks’ gestation, with notable increases occurring with 

estriol (median 15.1 and 38.2 ng/mL at 18 and 26 weeks, respectively) and progesterone (median 

39.3 and 73.5 ng/mL at 18 and 26 weeks, respectively). ICCs for all other hormones ranged from 

0.647 (T4) to 0.856 (testosterone). 

 

Distributions of birth outcomes are shown in Table III.4. PTB and spontaneous PTB occurred in 

9.9% and 5.8% of the study population, respectively. Preeclampsia and GDM were less prevalent 

(2.9% and 1.9%, respectively). Occurrences of SGA and LGA births were similar (8.9% and 9.6%, 

respectively). Median gestational age of the study population was 39.1 weeks (IQR: 38.1-40). 

 

Figure III.1 shows the associations between hormone concentrations and birth outcomes at each 

study visit (all effect estimates and p-values are shown in Table III.5). There were greater odds of 

spontaneous PTB with increasing progesterone concentrations at 26 weeks (OR: 2.12, 95% CI: 

1.29, 3.47) and fT4 concentrations at both study visits (18wk OR: 1.60, 95% CI: 1.07, 2.39; 26wk 

OR: 1.73, 95% CI: 1.04, 2.86). The risk of spontaneous PTB was significantly different between 

study visits with an IQR increase in Prog/E3 (interaction p=0.026), a null association observed at 

18 weeks and increased odds observed at 26 weeks (OR: 1.63, 95% CI: 1.05, 2.54). Reductions in 
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gestational age at birth were observed with increased concentrations of progesterone (: -3.56 

days, 95% CI: -6.02, -1.10), fT4 (: -2.22 days, 95% CI: -3.84, -0.61), and T4 (: -1.87 days, 95% CI: 

-3.62, -0.11) around 18 weeks, and with prog/e3 at both study visits (18wk : -1.77 days, 95% CI: 

-3.36, -0.19; 26wk : -1.98 days, 95% CI: -3.58, -0.37). Notably, the effect of progesterone was 

significantly different between study visits (interaction p=0.044). 

 

Results at 18 weeks suggested that elevated progesterone and reduced estriol are associated 

with increased risk of having an SGA infant (E3 OR: 0.66, 95% CI: 0.45, 0.97; progesterone OR: 

1.53, 95% CI: 1.09, 2.17; prog/E3 OR: 1.77, 95% CI: 1.29, 2.44). This trend remained at 26 weeks 

for only prog/E3 (OR: 1.53, 95% CI: 1.07, 2.17). Similarly, prog/E3 at 18 weeks was inversely 

associated with birthweight z-score (: -0.12, 95% CI: -0.23, -0.02) and estriol at 26 weeks was 

positively associated with birthweight z-score (: 0.21, 95% CI: 0.01, 0.41). 

 

A protective effect against preeclampsia was observed with increases in SHBG at 18 weeks (OR: 

0.55, 95% CI: 0.30, 0.99) and estriol (OR: 0.42, 95% CI: 0.17, 0.99) and SHBG (OR: 0.46, 95% CI: 

0.25, 0.83) at 26 weeks. Conversely, elevated risk of preeclampsia was observed with an increase 

in TSH at 26 weeks (OR: 2.18, 95% CI: 1.19, 3.99). The odds of GDM increased with an IQR increase 

in TSH (OR: 1.67, 95% CI: 1.02, 2.72), T3 (OR: 2.83, 95% CI: 1.04, 7.68), and T3/T4 (OR: 2.97, 95% 

CI: 1.20, 7.35) at 18 weeks, and increased with higher estriol at 18 weeks (OR: 5.95, 95% CI: 1.27, 

27.8). None of the associations with preeclampsia or GDM were significantly different between 

study visits.  

 

Sensitivity analyses revealed that many associations were significantly different between male 

and female pregnancies (Figure III.2; all effect estimates and p-values are shown in Table III.6). 

The most compelling effect modification by fetal sex was observed for preterm birth; the 

interaction term between hormone concentration and fetal sex indicator was significant among 

7 out of 11 hormones and hormone ratios assessed. SHBG was protective against PTB at 26 weeks 

among female (OR: 0.60, 95% CI: 0.37, 0.96), but not male, pregnancies (interaction p=0.032). 

Higher testosterone at both study visits was associated with increased odds of PTB among female 
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pregnancies and reduced odds of PTB among male pregnancies (interaction p<0.001). Notably, 

increased odds of PTB were observed among only male pregnancies with elevated concentrations 

of CRH (OR: 1.82, 95% CI: 1.09, 3.05; interaction p=0.002), estriol (OR: 1.81, 95% CI: 1.07, 3.06; 

interaction p=0.022), progesterone (OR: 1.88, 95% CI: 1.16, 3.04; interaction p=0.011), and fT4 

(OR: 1.63, 95% CI: 1.06, 2.51; interaction p=0.115) at 18 weeks. Assessment of gestational age as 

a continuous variable did not provide such compelling results, but it did provide additional 

evidence of fetal sex modifying the association with progesterone at 18 weeks (male pregnancy 

: -4.9 days, 95% CI: -2.73, -7.07 days; interaction p=0.015). 

 

The spontaneous subtype of PTB also showed several cases of effect modification by fetal sex. 

An IQR increase in CRH at 18 weeks was associated with greater odds of spontaneous PTB among 

only male pregnancies (OR: 2.73, 95% CI: 1.38, 5.43; interaction p=0.003). Increases in 

testosterone at both visits were protective against spontaneous PTB among only male 

pregnancies (interaction p=0.001). Increases in T3 and fT4 at both study visits were associated 

with increased odds of spontaneous PTB among only male pregnancies, but effect modification 

was significant only for T3 (interaction p=0.013). Finally, higher progesterone at 26 weeks was 

associated with increased odds of spontaneous PTB among only male pregnancies (OR: 2.34, 95% 

CI: 1.36, 4.03). 

 

Fetal sex modified the association between SGA and only the ratio prog/E3 (interaction p=0.022), 

which was positive among only male pregnancies at both 18 weeks (OR: 2.39, 95% CI: 1.59, 3.60) 

and 26 weeks (OR: 1.98, 95% CI: 1.29, 3.05). Accordingly, increased estriol resulted in increases 

in birthweight z-score at both 18 weeks (: 0.19, 95% CI: 0.02, 0.36) and 26 weeks (: 0.31, 95% 

CI: 0.08, 0.53) among only male pregnancies (interaction p=0.030). Fetal sex did not modify any 

associations between hormones and odds of LGA. 

 

Though there was no evidence of effect modification by fetal sex on associations between 

hormones and preeclampsia, significant effects were observed only among female pregnancies 

with increases in SHBG (OR: 0.34, 95% CI: 0.14, 0.81), TSH (OR: 2.41, 95% CI: 1.11, 5.23), and fT4 
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(OR: 0.40, 95% CI: 0.17, 0.92) at 26 weeks. Conversely, there was significant evidence of effect 

modification by fetal sex on the association between various hormones and odds of GDM. 

Elevated thyroid hormones were observed to be protective against GDM among female 

pregnancies [(fT4 at 18wks OR: 0.29, 95% CI: 0.10, 0.85; interaction p=0.001), (T4 at 18wks OR: 

0.32, 95% CI: 0.11, 0.90; interaction p=0.002)], but positively associated with GDM among male 

pregnancies [(T3 at 18wks OR: 6.04, 95% CI: 1.72, 21.3; interaction p=0.028), (fT4 at 26wks OR: 

4.87, 95% CI: 1.53, 15.5), (T4 at 26wks OR: 3.05, 95% CI: 1.02, 9.13)]. A similar trend was observed 

for the ratio of prog/E3; there was a protective effect at 18 weeks among female pregnancies 

(OR: 0.25, 95% CI: 0.09, 0.71) and a positive association at 26 weeks among male pregnancies 

(OR: 2.93, 95% CI: 0.99, 8.69; interaction p=0.004). 

 

Discussion 

We observed a range of significant associations between gestational hormone concentrations 

and adverse birth outcomes in a Puerto Rican birth cohort. Alterations of progesterone, estriol, 

and thyroid hormones were implicated in the occurrence of most birth outcomes assessed. 

Though most interaction terms were not significant, we observed many associations that were 

unique to hormone measurements at either 18 weeks’ or 26 weeks’ gestation. Fetal sex 

differences were also observed for many associations, with most significant results observed only 

when the fetus was male. 

 

PTB and Gestational Age 

We observed greater odds of PTB and spontaneous PTB with increasing progesterone 

concentrations (when fetal sex was male), but other studies demonstrating similar significant 

associations are lacking. One study observed progesterone concentrations measured between 

28 and 32 weeks’ gestation to be higher among women who delivered preterm compared to full 

term176. We observed higher progesterone concentrations among PTB cases when fetal sex was 

male, but only around 18 weeks’ gestation. We also observed higher progesterone 

concentrations around 26 weeks among women who spontaneously delivered preterm 

compared to women who carried to term.  
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Previous work has shown that a ratio favoring estriol in mid-pregnancy143 and at delivery186 is 

associated with earlier time of labor. Progesterone concentrations rise steadily during pregnancy, 

contributing to uterine quiescence, downregulation of prostaglandin production, and immune 

tolerance of the fetus85,86. At the onset of human labor, progesterone concentrations do not 

notably decrease; rather, the body’s response to progesterone is dampened. It is not clear exactly 

how this occurs, but possibilities include reduction in progesterone receptor expression, changes 

in receptor isoforms, and local progesterone metabolism89. As term approaches, the ratio of 

progesterone to estriol shifts to favor estrogens, with the functional decrease in progesterone 

driving initiation of labor88. The new dominance of estrogens promotes an increase in 

prostaglandin and oxytocin receptors and enzymes responsible for muscle contractions, which 

work together to help promote labor87. We observed a positive association between odds of PTB 

and estriol concentrations (when fetal sex was male), but we also unexpectedly observed later 

gestational age at birth with higher concentrations of estriol at 26 weeks’ gestation when the 

fetus was female. In contrast with previous studies, we observed that higher prog/E3 was 

associated with reduced gestational age and increased odds of SGA. Interestingly, among women 

who delivered preterm, a previous study observed lower prog/E3 among only those without 

premature rupture of membranes187, possibly implicating different endocrine pathways in the 

occurrence of PTB with and without premature rupture of membranes. 

 

Decreased odds of PTB have been shown with increased concentrations of fT4 in the second177 

and third159 trimesters, which contradicts our finding that fT4 was inversely associated with 

gestational age at birth (among the whole study population and when the fetus was male), and 

increased odds of PTB (when the fetus was male) and spontaneous PTB. One prior study also 

found increased odds of PTB with greater T3 concentrations at 10 and 26 weeks gestation159. 

Similarly, we found that T3 was associated with spontaneous PTB when the fetus was male. 

Mechanisms of the association between thyroid hormones and PTB are poorly understood, but 

previous research has suggested that altered thyroid hormone concentrations may be involved 
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in other disease states or exposures for which we have evidence of associations with PTB such as 

oxidative stress and inflammation188–190, or environmental exposures such as phthalates47,78,191. 

 

Several previous studies have observed that male fetal sex is associated with a greater risk of 

delivering preterm. Proposed biological explanations for this observation include a pro-

inflammatory environment generated by a male fetus181 and larger size at birth for males relative 

to females182. Increased risk of PTB when the fetus was male among only Caucasian women has 

also been observed, suggesting a potential interaction between race and fetal sex183. We 

observed significant associations with PTB unique to women carrying a male fetus for CRH, 

estriol, progesterone, and fT4, providing further evidence that the effect of fetal sex on the 

occurrence of PTB is complex, possibly involving diverse endocrine pathways. 

 

Preeclampsia 

Among all pregnancies, we observed reduced odds of preeclampsia with an increase in estriol at 

26 weeks. In accordance with our findings, another study showed that estriol concentrations in 

the second trimester192 were lower among women with preeclampsia than women with normal 

pregnancies. Previous studies have also found increased odds of preeclampsia with higher 

second trimester fT4 concentrations177,193, and lower third trimester fT4 concentrations194. All 

associations we observed between fT4 and preeclampsia were inverse, and the inverse 

association at 26 weeks among female pregnancies was significant. The association between fT4 

and preeclampsia has been shown to be modified by human chorionic gonadotropin (hCG) 

concentrations, with high fT4 positively associated with preeclampsia only when hCG is low195. 

This effect modification may be due to the known angiogenic role of hCG during early 

pregnancy196. 

 

Hormonal involvement in the etiology of preeclampsia is complex due to the angiogenic 

dysfunction of the affected uterus. In preeclampsia cases, proper remodeling and infiltration of 

blood vessels by placental extravillous trophoblasts does not occur, and this can be observed 

before the onset of clinical symptoms197,198. It is unclear whether endocrine disruption plays a 
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causal role in initiation of uterine dysfunction, or if uterine dysfunction triggers a maternal 

endocrine response in an attempt to adapt to the hypoxic state199. 

 

Gestational Diabetes Mellitus 

A previous epidemiology study has demonstrated associations between high second trimester 

estriol concentrations and greater odds of GDM179. We also observed increased odds of GDM 

with estriol at 26 weeks. Testosterone concentrations were inversely associated with odds of 

GDM among male pregnancies in our study, which differs from previous research that showed 

higher testosterone concentrations among women with GDM180 and with greater insulin 

resistance200 compared to women with normal pregnancies.  

 

Previous work has suggested that fT4 concentrations early in pregnancy are inversely associated 

with odds of GDM194,201. In accordance with those findings, the ratio of fT3 to fT4 has been 

observed to be positively associated with odds of GDM202, suggesting that increased conversion 

of T4 to biologically active T3 may play a role in the onset of GDM. In alignment with those 

findings, we observed greater odds of GDM among all pregnancies with increased T3 

concentrations at 18 weeks, and greater odds of GDM among male pregnancies with increased 

T3 at both study visits. We also observed an inverse association between fT4 and odds of GDM 

at 18 weeks among female pregnancies, while that association was positive among male 

pregnancies at 26 weeks. Previous work has shown that women with GDM have higher circulating 

concentrations of inflammatory cytokines such as IL-6 and TNF-alpha203, which have been 

observed to be inversely associated with T3 concentrations204. These inflammatory markers may 

increase insulin resistance during pregnancy and, mediated by alterations in thyroid hormone 

concentrations, contribute to higher circulating glucose levels and increased odds of GDM. 

Several previous studies have observed greater risks for GDM among women carrying a male 

fetus205–207, possibly due to poorer beta-cell function among male fetuses208. 

 

Birth Size 
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We observed that decreased birthweight among females was marginally associated with 

elevated T4 at 26 weeks. Previous work found similar inverse associations, but with fT4 instead 

of total T4209,210. Thyroid hormones are critical for fetal growth, possibly via their influences on 

fetal insulin-like growth factor, leptin, or the placenta’s abilities to transfer nutrients211. Even in 

the case of nearly identical patterns of thyroid hormone concentrations throughout gestation 

between mothers, differences in expression of hormone transporters in the placenta and 

intracellular receptors in fetal tissues can result in different thyroid hormone exposure profiles 

for the fetus and, consequently, varying effects on fetal growth and development77. Assessment 

of thyroid hormone effects on birth outcomes in the second half of gestation is even more 

complex as the fetal thyroid gland begins to produce hormones and the fetus relies less on 

maternal supply of T477. Conflicting results on the relationship between thyroid hormones and 

birthweight between studies may be due in part to unmeasured differences in fetal thyroid 

function. 

 

Strengths and Limitations 

The present study was subject to several limitations. We were not able to measure hCG or assess 

thyroid autoantibody status. Thus some of our results could be biased due to unmeasured 

confounding variables. Some critical changes in the maternal endocrine environment occur later 

in gestation than we were able to measure, such as the exponential increase in CRH right before 

the onset of labor. Although the goal of this study was to determine whether mid-pregnancy 

hormone levels were indicative of increased risk of adverse pregnancy outcomes, measurements 

at later time points could shed additional light on the various endocrine pathways implicated in 

adverse birth outcomes. We observed low rates of preeclampsia and GDM, which reduces the 

reliability of effect estimates. However, these lower rates were observed because we excluded 

women with preexisting conditions from our cohort to allow more precise examination of 

associations between hormone concentrations and birth outcomes, since preexisting conditions 

can influence hormone concentrations and susceptibility to adverse birth outcomes. 

Furthermore, excluding women with preexisting conditions may limit the generalizability of our 

findings. Finally, some results assessing preeclampsia and GDM may be subject to reverse 
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causation bias if the disease state, before clinical observation, resulted in the hormonal changes 

that we observed.  

 

Despite the aforementioned limitations, this study was also strong in various ways. This is one of 

few studies to assess a broad panel of hormone concentrations at more than one time point 

during gestation to investigate relationships with various birth outcomes and different windows 

of susceptibility. Many epidemiological studies limit their analytical panel to either thyroid or 

steroid hormones, or do not assess the spontaneous subtype of PTB. We are also one of few 

groups to assess interactions between gestational hormone concentrations and fetal sex. Finally, 

our study was strengthened by a higher sample size of mothers than was seen in most previously 

published cohorts, which is particularly important when studying rare outcomes occurring in less 

than 5% of the population. 

 

Conclusions 

In conclusion, we observed a range of associations between hormones and adverse birth 

outcomes. We found differences based on the timing of hormone assessment, and many 

significant findings were unique to mothers carrying a male fetus. Future work will attempt to 

place these findings in the context of relevant environmental contaminants on the island of 

Puerto Rico by exploring possibilities of endocrine disruption as a mediator between chemical 

exposures and pregnancy outcomes. Additional studies are needed to more fully elucidate the 

role of altered hormone concentrations in the etiology of adverse birth outcomes. 
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Table III.1. Inclusion of covariates between different outcome models. 

 PTB 
Spontaneous 

PTB 
Gestational 

Age 
Birthweight 

Z-Score 
SGA LGA Preeclampsia GDM 

Maternal Age X X X X X X X X 
Maternal Education X X X X X X X X 
Employment Status         
Annual Household 
Income 

        

Marital Status X X X      

Smoking Status     X X   
Environmental 
Tobacco Smoke 
Exposure 

X X X     X 

Alcohol Usage   X     X 

Parity         
Pre-Pregnancy BMI   X X   X  
Infant Sex         
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Table III.2. Maternal demographic characteristics of 976 Puerto Rican mothers. 

 N (%) 

Maternal Age (years)  

18-24 354 (36.3%) 

25-29 301 (30.8%) 

30-34 206 (21.1%) 

35-41 115 (11.8%) 

Maternal Education  

GED or less 203 (21%) 

Some College 331 (34.2%) 

Bachelors or Higher 433 (44.8%) 

Employment Status  

No 357 (37%) 

Yes 608 (63%) 

Annual Household 
Income 

 

<10k 269 (31.6%) 

10k-<30k 268 (31.5%) 

30k-<50k 203 (23.8%) 

>=50k 112 (13.1%) 

Marital Status  

Single 197 (20.4%) 

Married 521 (53.9%) 

Cohabitating 249 (25.7%) 

Smoking Status  

Never 833 (86%) 

Ever 121 (12.5%) 

Current 15 (1.55%) 

Daily Environmental 
Tobacco Smoke Exposure 

 

Never 808 (88.7%) 

1 Hour or less 40 (4.39%) 

>1 Hour 63 (6.92%) 

Alcohol Use  

Never 504 (52.2%) 

Yes, before Pregnancy 400 (41.4%) 

Yes, currently 62 (6.42%) 

Number of Previous 
Children 

 

0 355 (42.7%) 
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1 367 (44.2%) 

2 to 5 109 (13.1%) 

Pre-Pregnancy BMI  

[0,25] 520 (56.1%) 

(25, 30] 240 (25.9%) 

Above 30 167 (18%) 

Fetal Sex  

Female 464 (48%) 

Male 502 (52%) 



 59 

Table III.3. Distributions of gestational average (GA)a and visit-specific hormone concentrations among 976 Puerto Rican mothers. 

  N min 25th 50th 75th 90th 95th Max 
Geometric 

Mean 
Geometric 

SD 
IQR 

Visit P 
valueb ICC (95% CI) 

CRH 
(pg/mL) 

GA 976 3.50 15.4 43.2 86.3 118 148 243 35.7 2.77 70.9 0.914 0.71 (0.66, 0.74) 

V1 818 3.50 15.1 37.6 84.3 121 156 254 34.4 2.89 69.2    

V2 602 3.50 14.7 39.3 88.2 130 159 249 34.2 2.95 73.4     

Estriol 
(mg/mL) 

GA 971 0.74 15.6 23.1 33.0 44.7 57.5 265 22.7 1.80 17.4 0.000 -0.22 (-0.35, -0.11) 

V1 812 0.74 11.3 15.1 22.2 31.8 41.5 108 15.8 1.75 10.9    

V2 600 6.90 29.3 38.2 50.5 64.4 74.6 265 38.7 1.55 21.2     

SHBG 
(pg/mL) 

GA 976 47.6 413 538 668 818 895 1404 522 1.45 254 0.000 0.76 (0.72, 0.79) 

V1 820 47.6 389 516 630 775 850 1461 491 1.47 241    

V2 602 123 434 566 723 898 979 1428 558 1.45 289     

Prog. 
(ng/mL) 

GA 973 10.1 36.6 50.4 71.0 99.4 124 1037 51.8 1.68 34.5 0.000 0.07 (-0.04, 0.17) 

V1 815 10.1 29.2 39.3 54.5 71.9 85.0 301 40.1 1.59 25.3    

V2 601 19.4 51.2 73.5 104 146 179 1037 74.4 1.70 53.2     

TSH 
(uIU/mL) 

GA 971 0.03 0.71 1.10 1.72 2.38 2.99 32.4 1.08 1.96 1.02 0.031 0.72 (0.67, 0.75) 

V1 812 0.02 0.67 1.05 1.66 2.38 2.88 40.9 1.03 2.06 0.99    

V2 600 0.11 0.72 1.15 1.75 2.43 3.23 25.7 1.12 1.96 1.03     

fT4 
(ng/dL) 

GA 976 0.11 1.09 1.62 2.02 2.32 2.50 8.35 1.41 1.68 0.93 0.452 0.75 (0.71, 0.79) 

V1 818 0.11 1.03 1.57 2.01 2.30 2.48 8.35 1.34 1.84 0.98    

V2 602 0.11 1.10 1.61 2.03 2.33 2.49 4.68 1.39 1.75 0.93     

T4 
(ug/dL) 

GA 975 0.35 0.89 1.00 1.10 1.21 1.28 1.72 0.99 1.19 0.21 0.000 0.65 (0.59, 0.69) 

V1 818 0.35 0.90 1.01 1.12 1.21 1.28 1.72 1.00 1.19 0.22    

V2 602 0.44 0.83 0.96 1.08 1.19 1.23 1.43 0.94 1.21 0.25     

T3 
(mg/mL) 

GA 971 6.20 10.5 11.8 13.2 14.4 15.2 19.0 11.7 1.18 2.70 0.008 0.72 (0.67, 0.75) 

V1 812 6.80 10.6 11.9 13.3 14.4 15.3 19.0 11.8 1.19 2.70    

V2 600 5.30 10.3 11.6 13.0 14.2 14.9 20.6 11.5 1.19 2.75     

GA 973 2.80 53.0 107 557 819 992 2868 160 3.55 504 0.012 0.86 (0.83, 0.88) 
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Test. 
(pg/mL) 

V1 815 1.10 50.1 105 544 789 952 2500 156 3.66 493    

V2 601 9.20 59.3 121 650 933 1092 3291 185 3.64 591     
aGestational average values were calculated as arithmetic means for normally distributed hormones and geometric means for log-normally distributed 
hormones.  

bP-value from a univariate linear model for association between hormone concentrations and study visit. Boldface p-values are <0.05. 
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Table III.4. Distributions of continuous and binary birth outcomes among 976 Puerto Rican 
mothers. 

 Min 10th 25th 50th 75th 90th Max 

Gestational Age 
(weeks) 

20.3 36.7 38.1 39.1 40 40.7 42.7 

Birth Weight Z-
Score (ounces) 

-5.34 
(19.0) 

-1.19 
(91.0) 

-0.571 
(102) 

-0.00005 
(113) 

0.707 
(123) 

1.25 
(133) 

9.70 
(224) 

        
 N (%)       

Preterm Birth        

No 867 (90.1%)       

Yes 95 (9.88%)       

Spontaneous 
Preterm Birth 

 
      

No 883 (94.2%)       

Yes 54 (5.76%)       

Preeclampsia        

No 947 (97.1%)       

Yes 28 (2.87%)       

Gestational 
Diabetes 

       

No 900 (98.1%)       

Yes 17 (1.85%)       

Small for 
Gestational Age 

 
      

No 842 (91.1%)       

Yes 82 (8.87%)       

Large for 
Gestational Age 

       

No 835 (90.4%)       

Yes 89 (9.63%)       
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Figure III.1. Differential associations between hormones and birth outcomes measured at 18 and 26 weeks’ gestation. 

 
Dark green boxes represent effect estimates for hormones measured around 18 weeks, light green circles represent effect estimates for hormones measured around 26 weeks, 
black bars represent 95% confidence intervals, and vertical red lines represent the null value. IQR: Interquartile range. 
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Figure III.2. Differential associations between hormones and birth outcomes at 18 and 26 weeks based on fetal 
sex. 

 
Pink boxes represent the effect estimates for hormones measured at 18 weeks among female pregnancies, red 
circles represent the effect estimates for hormones measured at 26 weeks among female pregnancies, light blue 
boxes represent the effect estimates for hormones measured at 18 weeks among male pregnancies, dark blue 
circles represent the effect estimates for hormones measured at 26 weeks among male pregnancies, and black 
bars represent the 95% confidence interval. The vertical red line represents the null value. IQR: Interquartile range.  
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Table III.5. Associations between birth outcomes and hormones measured at 18 and 26 weeks’ gestation. 

 Preterm Birth Spontaneous Preterm Birth 
 18 weeks 

Int P 
26 weeks 18 weeks 

Int P 
26 weeks 

 OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

CRH 1.16 (0.79, 1.72) 0.800 1.08 (0.69, 1.69) 1.50 (0.91, 2.49) 0.443 1.10 (0.59, 2.04) 
Estriol 1.28 (0.85, 1.93) 0.241 0.81 (0.42, 1.56) 1.48 (0.89, 2.46) 0.804 1.67 (0.74, 3.75) 
SHBG 0.98 (0.72, 1.34) 0.561 0.85 (0.59, 1.23) 1.16 (0.77, 1.74) 0.970 1.15 (0.68, 1.92) 
Progesterone 1.36 (0.88, 2.11) 0.689 1.20 (0.81, 1.79) 1.40 (0.81, 2.41) 0.269 2.12 (1.29, 3.47) 
TSH 1.03 (0.71, 1.48) 0.250 1.40 (0.97, 2.02) 0.86 (0.55, 1.34) 0.437 1.14 (0.66, 1.96) 
T3 1.00 (0.68, 1.47) 0.519 1.21 (0.79, 1.85) 1.30 (0.80, 2.11) 0.679 1.51 (0.91, 2.49) 
fT4 1.36 (0.98, 1.89) 0.855 1.30 (0.88, 1.92) 1.60 (1.07, 2.39) 0.810 1.73 (1.04, 2.86) 
T4 1.31 (0.91, 1.87) 0.964 1.29 (0.86, 1.93) 1.26 (0.80, 2.00) 1.000 1.26 (0.76, 2.11) 
Testosterone 0.92 (0.57, 1.49) 0.872 0.98 (0.54, 1.78) 0.59 (0.32, 1.10) 0.772 0.68 (0.30, 1.54) 
T3/T4 0.91 (0.64, 1.31) 0.711 1.01 (0.70, 1.45) 1.17 (0.75, 1.83) 0.780 1.28 (0.83, 1.97) 
Prog/E3 0.99 (0.75, 1.31) 0.243 1.32 (0.89, 1.97) 0.86 (0.60, 1.23) 0.026 1.63 (1.05, 2.54) 

 Gestational Age at Birth (weeks) Birthweight Z-Score 
 18 weeks 

Int P 
26 weeks 18 weeks 

Int P 
26 weeks 

  (95% CI)  (95% CI)  (95% CI)  (95% CI) 
CRH -0.26 (-0.56, 0.03) 0.702 -0.19 (-0.44, 0.06) -0.02 (-0.15, 0.11) 0.783 0.00 (-0.14, 0.14) 
Estriol -0.06 (-0.37, 0.25) 0.113 0.42 (-0.09, 0.93) 0.08 (-0.05, 0.21) 0.292 0.21 (0.01, 0.41) 
SHBG 0.00 (-0.26, 0.25) 0.512 -0.12 (-0.37, 0.13) 0.04 (-0.06, 0.14) 0.341 -0.04 (-0.16, 0.08) 
Progesterone -0.51 (-0.86,-0.16) 0.044 -0.08 (-0.31, 0.15) -0.12 (-0.24, 0.01) 0.201 0.00 (-0.13, 0.12) 
TSH 0.10 (-0.22, 0.41) 0.323 -0.10 (-0.35, 0.14) 0.00 (-0.12, 0.12) 0.939 -0.01 (-0.14, 0.13) 
T3 -0.22 (-0.54, 0.09) 0.302 0.00 (-0.28, 0.28) -0.01 (-0.12, 0.10) 0.641 0.03 (-0.10, 0.16) 
fT4 -0.32 (-0.55 -0.09) 0.278 -0.13 (-0.37, 0.11) -0.07 (-0.18, 0.03) 0.638 -0.04 (-0.15, 0.08) 
T4 -0.27 (-0.52 -0.02) 0.577 -0.17 (-0.39, 0.04) -0.08 (-0.19, 0.04) 0.744 -0.10 (-0.22, 0.01) 
Testosterone 0.05 (-0.30, 0.40) 0.895 0.08 (-0.31, 0.47) 0.08 (-0.08, 0.24) 0.306 -0.04 (-0.22, 0.14) 
T3/T4 -0.10 (-0.40, 0.19) 0.269 0.11 (-0.12, 0.34) 0.00 (-0.11, 0.11) 0.448 0.07 (-0.06, 0.19) 
Prog/E3 -0.25 (-0.48,-0.03) 0.856 -0.28 (-0.51,-0.05) -0.12 (-0.23,-0.02) 0.985 -0.12 (-0.25, 0.00) 

 Small for Gestational Age Large for Gestational Age 
 18 weeks 

Int P 
26 weeks 18 weeks 

Int P 
26 weeks 

 OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 
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CRH 0.87 (0.57, 1.32) 0.232 1.23 (0.83, 1.83) 0.82 (0.55, 1.23) 0.602 0.97 (0.60, 1.55) 
Estriol 0.66 (0.45, 0.97) 0.940 0.64 (0.33, 1.24) 0.99 (0.65, 1.49) 0.662 1.17 (0.61, 2.25) 
SHBG 1.02 (0.73, 1.42) 0.798 1.08 (0.76, 1.54) 1.11 (0.84, 1.47) 0.274 0.85 (0.57, 1.27) 
Progesterone 1.53 (1.09, 2.17) 0.295 1.19 (0.86, 1.65) 0.90 (0.61, 1.32) 0.715 0.99 (0.66, 1.49) 
TSH 1.16 (0.85, 1.61) 0.706 1.27 (0.92, 1.75) 0.93 (0.60, 1.43) 0.756 1.03 (0.63, 1.70) 
T3 0.89 (0.62, 1.27) 0.794 0.83 (0.56, 1.23) 0.82 (0.56, 1.20) 0.844 0.87 (0.54, 1.39) 
fT4 1.05 (0.73, 1.52) 0.727 0.96 (0.70, 1.33) 0.82 (0.58, 1.15) 0.951 0.80 (0.55, 1.18) 
T4 1.32 (0.94, 1.86) 0.643 1.18 (0.83, 1.68) 1.03 (0.74, 1.43) 0.568 0.88 (0.59, 1.32) 
Testosterone 1.20 (0.73, 1.97) 0.944 1.23 (0.72, 2.11) 1.15 (0.66, 1.99) 0.880 1.08 (0.58, 2.02) 
T3/T4 0.85 (0.58, 1.23) 0.886 0.81 (0.55, 1.20) 0.84 (0.59, 1.18) 0.597 0.98 (0.61, 1.56) 
Prog/E3 1.77 (1.29, 2.44) 0.537 1.53 (1.07, 2.17) 0.97 (0.72, 1.32) 0.772 0.91 (0.62, 1.33) 

 Preeclampsia Gestational Diabetes 
 18 weeks 

Int P 
26 weeks 18 weeks 

Int P 
26 weeks 

 OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) 

CRH 0.75 (0.38, 1.48) 0.871 0.69 (0.29, 1.63) 1.96 (0.75, 5.09) 0.953 2.04 (0.62, 6.72) 
Estriol 0.57 (0.25, 1.31) 0.604 0.42 (0.17, 0.99) 1.81 (0.73, 4.45) 0.184 5.95 (1.27, 27.8) 
SHBG 0.55 (0.30, 0.99) 0.638 0.46 (0.25, 0.83) 0.79 (0.45, 1.38) 0.137 1.96 (0.67, 5.72) 
Progesterone 0.83 (0.28, 2.47) 0.593 1.20 (0.54, 2.66) 1.28 (0.50, 3.29) 0.324 2.71 (0.80, 9.12) 
TSH 1.38 (0.70, 2.74) 0.335 2.18 (1.19, 3.99) 1.67 (1.02, 2.72) 0.697 1.33 (0.47, 3.78) 
T3 0.72 (0.34, 1.50) 0.807 0.83 (0.34, 2.04) 2.83 (1.04, 7.68) 0.335 1.61 (0.84, 3.09) 
fT4 0.88 (0.39, 1.99) 0.372 0.52 (0.22, 1.18) 0.90 (0.34, 2.35) 0.486 1.64 (0.38, 7.20) 
T4 0.77 (0.32, 1.85) 0.875 0.86 (0.29, 2.55) 0.81 (0.32, 2.04) 0.697 1.06 (0.37, 3.02) 
Testosterone 1.26 (0.52, 3.07) 0.839 1.47 (0.43, 5.00) 0.53 (0.18, 1.57) 0.500 0.29 (0.06, 1.41) 
T3/T4 0.91 (0.43, 1.93) 0.917 0.97 (0.42, 2.22) 2.97 (1.20, 7.35) 0.352 1.74 (0.82, 3.67) 
Prog/E3 1.32 (0.69, 2.54) 0.514 1.78 (0.97, 3.28) 0.77 (0.39, 1.54) 0.566 1.08 (0.42, 2.75) 
CRH, estriol, SHBG, progesterone, TSH, testosterone, and prog/E3 were natural log transformed for analyses.  
Effect estimates refer to an interquartile range increase in hormone concentration. 
Int P indicates significance of effect modification by study visit – i.e. the p-value for the interaction term between 
hormone concentration and study visit. 
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Table III.6. Differential associations between birth outcomes and hormones measured at 18 and 26 weeks by fetal sex. 

 Preterm Birth 
 Female pregnancies  Male pregnancies 

 18 weeks 26 weeks  18 weeks 26 weeks 
 OR (95% CI) OR (95% CI) Int P OR (95% CI) OR (95% CI) 
CRH 0.68 (0.40, 1.15) 0.64 (0.37, 1.13) 0.002 1.82 (1.09, 3.05) 1.73 (0.98, 3.05) 
Estriol 0.92 (0.56, 1.51) 0.52 (0.25, 1.11) 0.022 1.81 (1.07, 3.06) 1.03 (0.53, 2.01) 
SHBG 0.72 (0.49, 1.07) 0.60 (0.37, 0.96) 0.032 1.22 (0.82, 1.83) 1.01 (0.66, 1.55) 
Progesterone 0.95 (0.60, 1.52) 0.74 (0.42, 1.30) 0.011 1.88 (1.16, 3.04) 1.46 (0.96, 2.23) 
TSH 0.90 (0.61, 1.32) 1.24 (0.78, 1.97) 0.397 1.10 (0.75, 1.60) 1.52 (0.98, 2.36) 
T3 0.66 (0.41, 1.06) 0.74 (0.42, 1.30) 0.013 1.35 (0.86, 2.13) 1.53 (0.95, 2.46) 
fT4 1.08 (0.71, 1.66) 0.97 (0.59, 1.58) 0.115 1.63 (1.06, 2.51) 1.46 (0.93, 2.30) 
T4 1.13 (0.74, 1.71) 1.06 (0.67, 1.67) 0.397 1.39 (0.93, 2.08) 1.31 (0.83, 2.08) 
Testosterone 2.21 (1.16, 4.23) 2.15 (1.08, 4.27) 0.000 0.52 (0.30, 0.89) 0.50 (0.26, 0.96) 
T3/T4 0.66 (0.41, 1.04) 0.71 (0.42, 1.19) 0.032 1.18 (0.77, 1.81) 1.27 (0.81, 1.99) 
Prog/E3 1.00 (0.67, 1.48) 1.36 (0.85, 2.17) 0.880 0.96 (0.67, 1.39) 1.31 (0.84, 2.04) 
 Spontaneous Preterm Birth 
 Female pregnancies  Male pregnancies 
 18 weeks 26 weeks  18 weeks 26 weeks 
 OR (95% CI) OR (95% CI) Int P OR (95% CI) OR (95% CI) 
CRH 0.75 (0.38, 1.49) 0.57 (0.27, 1.20) 0.003 2.73 (1.38, 5.43) 2.10 (0.96, 4.58) 
Estriol 1.22 (0.64, 2.33) 1.35 (0.51, 3.57) 0.340 1.73 (0.92, 3.25) 1.92 (0.79, 4.64) 
SHBG 0.99 (0.58, 1.69) 0.98 (0.51, 1.90) 0.418 1.29 (0.78, 2.16) 1.28 (0.71, 2.32) 
Progesterone 1.16 (0.65, 2.07) 1.70 (0.85, 3.38) 0.303 1.60 (0.89, 2.86) 2.34 (1.36, 4.03) 
TSH 0.71 (0.46, 1.12) 0.93 (0.50, 1.75) 0.265 0.99 (0.63, 1.58) 1.30 (0.73, 2.30) 
T3 0.78 (0.42, 1.43) 0.79 (0.37, 1.69) 0.013 2.01 (1.10, 3.65) 2.05 (1.10, 3.84) 
fT4 1.48 (0.88, 2.52) 1.55 (0.79, 3.03) 0.577 1.79 (1.05, 3.07) 1.87 (1.02, 3.42) 
T4 1.08 (0.63, 1.86) 1.10 (0.60, 2.03) 0.386 1.44 (0.87, 2.36) 1.46 (0.79, 2.69) 
Testosterone 1.58 (0.69, 3.62) 1.61 (0.64, 4.02) 0.001 0.31 (0.15, 0.64) 0.31 (0.13, 0.79) 
T3/T4 0.80 (0.45, 1.44) 0.83 (0.41, 1.69) 0.063 1.57 (0.91, 2.71) 1.62 (0.90, 2.92) 
Prog/E3 0.85 (0.51, 1.41) 1.65 (0.88, 3.09) 0.979 0.86 (0.54, 1.36) 1.67 (0.93, 3.00) 
 Gestational Age at Birth 
 Female pregnancies  Male pregnancies 
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 18 weeks 26 weeks  18 weeks 26 weeks 
 OR (95% CI) OR (95% CI) Int P OR (95% CI) OR (95% CI) 
CRH -0.18 (-0.53, 0.16) -0.10 (-0.46, 0.27) 0.319 -0.39 (-0.71, -0.06) -0.30 (-0.66, 0.06) 
Estriol 0.01 (-0.32, 0.33) 0.56 (0.11, 1.01) 0.125 -0.28 (-0.63, 0.07) 0.28 (-0.17, 0.74) 
SHBG -0.12 (-0.39, 0.15) -0.16 (-0.47, 0.15) 0.510 -0.01 (-0.28, 0.25) -0.05 (-0.35, 0.24) 
Progesterone -0.30 (-0.61, 0.02) 0.16 (-0.17, 0.49) 0.015 -0.70 (-1.01, -0.39) -0.24 (-0.54, 0.06) 
TSH 0.07 (-0.18, 0.33) -0.08 (-0.38, 0.21) 0.914 0.06 (-0.20, 0.31) -0.10 (-0.40, 0.19) 
T3 -0.06 (-0.37, 0.26) 0.12 (-0.24, 0.48) 0.281 -0.26 (-0.56, 0.04) -0.08 (-0.41, 0.24) 
fT4 -0.19 (-0.46, 0.08) -0.01 (-0.33, 0.30) 0.245 -0.39 (-0.68, -0.10) -0.21 (-0.51, 0.09) 
T4 -0.15 (-0.42, 0.13) -0.13 (-0.42, 0.17) 0.653 -0.22 (-0.50, 0.06) -0.20 (-0.51, 0.11) 
Testosterone -0.07 (-0.47, 0.33) -0.11 (-0.55, 0.32) 0.121 0.29 (-0.09, 0.66) 0.24 (-0.18, 0.66) 
T3/T4 0.01 (-0.29, 0.32) 0.22 (-0.12, 0.56) 0.260 -0.19 (-0.48, 0.10) 0.02 (-0.29, 0.33) 
Prog/E3 -0.16 (-0.40, 0.09) -0.23 (-0.53, 0.07) 0.542 -0.25 (-0.50, -0.01) -0.32 (-0.61, -0.04) 
 Birthweight Z-Score 
 Female pregnancies  Male pregnancies 
 18 weeks 26 weeks  18 weeks 26 weeks 
 OR (95% CI) OR (95% CI) Int P OR (95% CI) OR (95% CI) 
CRH -0.01 (-0.17, 0.16) 0.02 (-0.16, 0.19) 0.763 -0.04 (-0.20, 0.12) -0.01 (-0.19, 0.16) 
Estriol 0.00 (-0.17, 0.16) 0.11 (-0.11, 0.34) 0.030 0.19 (0.02, 0.36) 0.31 (0.08, 0.53) 
SHBG 0.05 (-0.08, 0.19) -0.02 (-0.17, 0.13) 0.646 0.02 (-0.11, 0.15) -0.05 (-0.20, 0.09) 
Progesterone -0.14 (-0.30, 0.02) -0.03 (-0.20, 0.13) 0.505 -0.09 (-0.24, 0.07) 0.02 (-0.13, 0.17) 
TSH -0.03 (-0.16, 0.10) -0.04 (-0.18, 0.11) 0.495 0.02 (-0.10, 0.15) 0.02 (-0.13, 0.16) 
T3 -0.04 (-0.20, 0.11) -0.01 (-0.18, 0.17) 0.527 0.01 (-0.12, 0.15) 0.05 (-0.11, 0.21) 
fT4 -0.10 (-0.23, 0.04) -0.06 (-0.22, 0.09) 0.545 -0.05 (-0.19, 0.10) -0.01 (-0.16, 0.13) 
T4 -0.12 (-0.26, 0.01) -0.15 (-0.29, 0.00) 0.279 -0.03 (-0.17, 0.10) -0.06 (-0.21, 0.09) 
Testosterone 0.14 (-0.05, 0.34) 0.02 (-0.19, 0.24) 0.299 0.02 (-0.16, 0.21) -0.09 (-0.30, 0.11) 
T3/T4 0.00 (-0.14, 0.15) 0.06 (-0.10, 0.23) 0.993 0.00 (-0.13, 0.13) 0.06 (-0.08, 0.21) 
Prog/E3 -0.06 (-0.18, 0.06) -0.05 (-0.20, 0.10) 0.086 -0.19 (-0.31, -0.07) -0.18 (-0.33, -0.04) 
 Small for Gestational Age 
 Female pregnancies  Male pregnancies 
 18 weeks 26 weeks  18 weeks 26 weeks 
 OR (95% CI) OR (95% CI) Int P OR (95% CI) OR (95% CI) 
CRH 0.90 (0.53, 1.55) 1.28 (0.75, 2.19) 0.821 0.84 (0.51, 1.40) 1.19 (0.70, 2.02) 
Estriol 0.76 (0.45, 1.30) 0.76 (0.40, 1.45) 0.216 0.55 (0.32, 0.94) 0.54 (0.28, 1.05) 
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SHBG 1.17 (0.76, 1.80) 1.25 (0.81, 1.93) 0.287 0.90 (0.60, 1.35) 0.96 (0.64, 1.45) 
Progesterone 1.42 (0.87, 2.32) 1.09 (0.67, 1.77) 0.564 1.64 (1.00, 2.68) 1.26 (0.83, 1.92) 
TSH 1.01 (0.66, 1.54) 1.10 (0.71, 1.71) 0.265 1.33 (0.88, 2.03) 1.46 (0.95, 2.24) 
T3 1.03 (0.63, 1.70) 0.98 (0.58, 1.66) 0.344 0.79 (0.50, 1.25) 0.75 (0.47, 1.18) 
fT4 1.17 (0.76, 1.80) 1.10 (0.69, 1.76) 0.383 0.93 (0.59, 1.48) 0.87 (0.57, 1.34) 
T4 1.32 (0.85, 2.04) 1.17 (0.76, 1.81) 0.964 1.34 (0.87, 2.05) 1.19 (0.76, 1.84) 
Testosterone 1.11 (0.59, 2.10) 1.14 (0.60, 2.18) 0.696 1.28 (0.70, 2.32) 1.31 (0.71, 2.41) 
T3/T4 0.93 (0.57, 1.51) 0.90 (0.55, 1.48) 0.541 0.78 (0.50, 1.22) 0.76 (0.49, 1.19) 
Prog/E3 1.39 (0.94, 2.06) 1.15 (0.75, 1.76) 0.022 2.39 (1.59, 3.60) 1.98 (1.29, 3.05) 
 Large for Gestational Age 
 Female pregnancies  Male pregnancies 
 18 weeks 26 weeks  18 weeks 26 weeks 
 OR (95% CI) OR (95% CI) Int P OR (95% CI) OR (95% CI) 
CRH 0.81 (0.49, 1.34) 0.96 (0.54, 1.69) 0.936 0.83 (0.51, 1.36) 0.98 (0.55, 1.74) 
Estriol 0.94 (0.58, 1.54) 1.11 (0.53, 2.33) 0.707 1.05 (0.62, 1.76) 1.23 (0.59, 2.58) 
SHBG 1.22 (0.80, 1.84) 0.94 (0.58, 1.52) 0.488 1.02 (0.68, 1.52) 0.79 (0.50, 1.24) 
Progesterone 0.91 (0.56, 1.48) 1.01 (0.59, 1.73) 0.898 0.88 (0.54, 1.42) 0.98 (0.60, 1.61) 
TSH 0.80 (0.54, 1.20) 0.89 (0.55, 1.44) 0.265 1.06 (0.72, 1.58) 1.18 (0.74, 1.89) 
T3 0.78 (0.49, 1.25) 0.83 (0.47, 1.46) 0.772 0.85 (0.55, 1.31) 0.90 (0.54, 1.51) 
fT4 0.81 (0.53, 1.23) 0.80 (0.48, 1.32) 0.944 0.83 (0.53, 1.29) 0.81 (0.50, 1.32) 
T4 0.97 (0.63, 1.47) 0.83 (0.52, 1.34) 0.635 1.09 (0.72, 1.65) 0.94 (0.58, 1.53) 
Testosterone 1.40 (0.76, 2.59) 1.32 (0.65, 2.65) 0.306 0.97 (0.54, 1.72) 0.91 (0.46, 1.79) 
T3/T4 0.78 (0.50, 1.24) 0.92 (0.54, 1.55) 0.682 0.88 (0.58, 1.33) 1.03 (0.63, 1.66) 
Prog/E3 1.03 (0.71, 1.50) 0.96 (0.59, 1.58) 0.638 0.92 (0.63, 1.35) 0.86 (0.53, 1.39) 
 Preeclampsia 
 Female pregnancies  Male pregnancies 
 18 weeks 26 weeks  18 weeks 26 weeks 
 OR (95% CI) OR (95% CI) Int P OR (95% CI) OR (95% CI) 
CRH 0.77 (0.30, 1.97) 0.65 (0.25, 1.73) 0.808 0.67 (0.24, 1.85) 0.56 (0.19, 1.66) 
Estriol 0.68 (0.27, 1.70) 0.38 (0.11, 1.31) 0.669 0.87 (0.28, 2.66) 0.48 (0.13, 1.71) 
SHBG 0.53 (0.27, 1.03) 0.34 (0.14, 0.81) 0.360 0.83 (0.35, 1.93) 0.52 (0.21, 1.28) 
Progesterone 0.75 (0.32, 1.77) 0.62 (0.23, 1.70) 0.136 1.57 (0.61, 4.05) 1.30 (0.59, 2.85) 
TSH 1.69 (0.82, 3.48) 2.41 (1.11, 5.23) 0.760 1.46 (0.62, 3.42) 2.08 (0.82, 5.27) 
T3 0.67 (0.28, 1.62) 0.75 (0.29, 1.95) 0.742 0.80 (0.32, 2.01) 0.90 (0.33, 2.43) 
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fT4 0.71 (0.33, 1.54) 0.40 (0.17, 0.92) 0.730 0.84 (0.35, 2.04) 0.47 (0.19, 1.16) 
T4 0.72 (0.32, 1.60) 0.69 (0.30, 1.61) 0.537 0.99 (0.41, 2.37) 0.95 (0.36, 2.48) 
Testosterone 1.90 (0.58, 6.29) 2.49 (0.72, 8.67) 0.472 1.15 (0.35, 3.76) 1.50 (0.39, 5.85) 
T3/T4 0.91 (0.39, 2.12) 1.01 (0.41, 2.50) 0.971 0.90 (0.38, 2.12) 0.99 (0.40, 2.47) 
Prog/E3 1.02 (0.52, 2.02) 1.25 (0.61, 2.53) 0.232 1.74 (0.79, 3.84) 2.12 (0.95, 4.71) 
 Gestational Diabetes 
 Female pregnancies  Male pregnancies 
 18 weeks 26 weeks  18 weeks 26 weeks 
 OR (95% CI) OR (95% CI) Int P OR (95% CI) OR (95% CI) 
CRH 0.92 (0.28, 3.01) 1.15 (0.28, 4.67) 0.122 3.08 (0.86, 11.10) 3.86 (0.86, 17.27) 
Estriol 1.76 (0.54, 5.77) 6.29 (1.41, 28.00) 0.970 1.80 (0.58, 5.59) 6.43 (1.26, 32.78) 
SHBG 0.62 (0.29, 1.34) 1.51 (0.45, 5.07) 0.429 0.95 (0.37, 2.46) 2.32 (0.76, 7.12) 
Progesterone 0.74 (0.28, 1.96) 1.51 (0.46, 4.92) 0.081 1.89 (0.66, 5.42) 3.83 (1.54, 9.57) 
TSH 1.18 (0.47, 2.94) 0.84 (0.29, 2.43) 0.179 2.58 (0.98, 6.81) 1.84 (0.72, 4.69) 
T3 1.22 (0.36, 4.20) 0.57 (0.16, 2.02) 0.028 6.04 (1.72, 21.26) 2.80 (0.98, 7.98) 
fT4 0.29 (0.10, 0.85) 0.54 (0.17, 1.71) 0.001 2.62 (0.96, 7.15) 4.87 (1.53, 15.52) 
T4 0.32 (0.11, 0.90) 0.40 (0.14, 1.18) 0.002 2.42 (0.89, 6.57) 3.05 (1.02, 9.13) 
Testosterone 1.74 (0.41, 7.32) 0.81 (0.16, 4.18) 0.025 0.26 (0.08, 0.90) 0.12 (0.02, 0.61) 
T3/T4 2.63 (0.79, 8.76) 1.69 (0.45, 6.36) 0.972 2.70 (0.88, 8.24) 1.73 (0.61, 4.92) 
Prog/E3 0.25 (0.09, 0.71) 0.48 (0.16, 1.44) 0.004 1.53 (0.65, 3.58) 2.93 (0.99, 8.69) 
CRH, estriol, SHBG, progesterone, TSH, testosterone, and prog/E3 were natural log transformed for analyses.  
Effect estimates refer to an interquartile range increase in hormone concentration. 
Int P indicates significance of effect modification by fetal sex – i.e. the p-value for the interaction term between 
hormone concentration and fetal sex indicator. 
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Chapter IV. Longitudinal Mediation by Hormone Concentrations on the 

Associations Between Exposure to Phthalate Mixtures and Adverse Birth 

Outcomes Among Male Pregnancies 

ABSTRACT 

Background: Phthalates are used in the manufacturing of a myriad of consumer products, 

resulting in ubiquitous human exposure to a mixture of phthalate compounds. Previous work has 

suggested that phthalates display endocrine disrupting capabilities, and associations with 

adverse birth outcomes including preterm birth. 

Objectives: Given the importance of hormone regulation during pregnancy, we hypothesized 

that phthalates may affect pregnancy outcomes via disruption of hormone concentrations. This 

work therefore aimed to assess the mediating effects of hormone concentrations on the 

associations between phthalate mixtures and adverse birth outcomes. 

Methods: Repeated urinary phthalate metabolite (N=13) and serum hormone (N=9) 

measurements were taken at 16-20, 20-24 (urine only), and 24-28 weeks gestation among 1011 

women in the PROTECT (Puerto Rico Testsite for Exploring Contamination Threats) longitudinal 

birth cohort. We utilized ridge regression to create phthalate environmental risk scores (ERS) at 

each study visit and specific to phthalates of high versus low molecular weight (LMW, HMW), 

which represent a weighted sum of each individual’s exposure to the mixture of metabolites. 

Causal mediation analyses were then conducted on a subset of 705 women for whom hormone 

data was available. All analyses were conducted separately by study visit and fetal sex. 

Results: Though total effects did not reach statistical significance, various hormones including 

CRH, progesterone, testosterone, and TSH showed suggestive evidence of mediating the 

association between exposure to LMW phthalates and risk of early delivery. Changes in TSH were 

important at 24-28 weeks, while changes on the other hormones were important earlier in 
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pregnancy at 16-20 weeks. Interestingly, there was no evidence of mediation by hormones on 

the associations between exposure to HMW phthalates and risk of early delivery among 

pregnancies with a male fetus, nor was there evidence of mediation by hormones with exposure 

to any phthalates among pregnancies with a female fetus.  

Discussion: These results provide introductory evidence of hormone disruption on the causal 

pathway between phthalate exposure and preterm birth. Larger overlap of phthalate exposure 

and hormone mediator measurements, as well as higher case number, are necessary to validate 

these findings.  

 

Introduction 

Humans are exposed to a myriad of environmental contaminants from diverse sources on a daily 

basis. The result is a consistent body burden of a mixture of many different toxicants which have 

unknown effects on human physiology. Many epidemiology and toxicology studies have explored 

health effects of single pollutants, but very few have attempted to understand the biological 

effects of complex mixtures. Pregnant women are especially susceptible to adverse health 

outcomes resulting from environmental exposures, particularly those with endocrine disrupting 

capabilities. Hormone concentrations through pregnancy are important for proper fetal 

development, maintenance of the uterine wall, and initiation of pro-labor events170–175. 

Understanding how exposures to environmental chemical mixtures may interfere with hormone 

regulation in pregnant women is critically important for protection of this vulnerable population. 

 

Phthalates are synthetic plasticizers used in production of many consumer products such as vinyl 

flooring, plastic food packaging, and personal care products212. Humans are never exposed to 

single phthalate compounds; exposure rather occurs in complex mixtures which differ based on 

an individual’s use of consumer products, socioeconomic status, and diet49. Each parent 

phthalate compound is metabolized into a bioactive form within the body, and sometimes 

several different metabolites result from one parent compound213, furthering the need to study 

mixtures of phthalates rather than individual metabolites. Phthalate metabolites are often highly 



 72 

correlated with one another, and so methods which accommodate issues of multicollinearity are 

preferred over those which assess associations with many individual metabolites.  

 

Previous research has shown phthalate metabolites to be associated with preterm and 

spontaneous preterm birth, as well as earlier gestational age at delivery47,57–60,101,136,214. 

Phthalates are also known endocrine disruptors, and greater exposures to phthalates have been 

associated with altered concentrations of various hormones that are important for pregnancy 

such as corticotropin releasing hormone (CRH), estriol, progesterone, thyroid hormones, and 

testosterone78,79,83,160,191. Given the hormonal activity of phthalates and their association with 

early delivery, we have hypothesized that phthalate exposure may lead to adverse pregnancy 

outcomes via disruption of hormone concentrations throughout pregnancy.  

 

To test this hypothesis, we utilize a novel analysis pipeline which incorporates repeated measures 

of phthalate mixture exposure and hormone concentrations, in addition to causal mediation 

analyses. We use ridge regression to construct environmental risk scores (ERS), which are 

weighted sums of one’s overall exposure to a mixture of phthalate metabolites, to assess  

exposure to high and low molecular weight phthalate mixtures at an individual level over multiple 

time points during gestation. ERS were then used in causal mediation analysis to determine the 

mediating effect of hormone concentrations on the associations between phthalate mixtures and 

adverse birth outcomes. 

 

Methods 

Study Population 

Data for the present study was obtained from the PROTECT (Puerto Rico Testsite for Exploring 

Contamination Threats) cohort, a longitudinal birth cohort in the northern karst region of Puerto 

Rico designed to investigate environmental contaminants in relation to adverse pregnancy 

outcomes. Details of the study design and recruitment protocols have been previously 

described139. Briefly, women were recruited at 142 weeks gestation and were eligible to 

participate if they were between the ages of 18 and 40 years, participated in their first clinic visit 
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before their 20th week of pregnancy, had not taken oral contraceptives within 3 months of getting 

pregnant, had not used in vitro fertilization to get pregnant, and had no known preexisting 

medical or obstetric conditions. This study was approved by the research and ethics committees 

of the University of Michigan School of Public Health, University of Puerto Rico, Northeastern 

University, and participating hospitals and clinics. All study participants provided full informed 

consent prior to participation. 

 

Phthalate Exposure Assessment 

All spot urine samples were frozen at -80oC and shipped over night on dry ice to the CDC for 

analysis. All samples were analyzed for 13 phthalate metabolites: mono-2-ethylhexyl phthalate 

(MEHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-oxohexyl phthalate 

(MEOHP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP), monoethyl phthalate (MEP), 

mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), 

mono-hydroxyisobutyl phthalate (MHiBP), mono-3-carboxypropyl phthalate (MCPP), mono 

carboxyisononyl phthalate (MCNP), mono carboxyisooctyl phthalate (MCOP), and mono-

hydroxybutyl phthalate (MHBP). Urine samples were analyzed using solid phase extraction high-

performance liquid chromatography-isotope dilution tandem mass spectrometry, the details of 

which are described elsewhere140. Values detected below the limit of detection (LOD) were 

assigned a value of the LOD divided by the square root of two141.  

 

Hormone Measurement 

All women provided serum samples at their first and third clinic visits, aligning with median 18 

(16-20) and 26 (24-28) weeks’ gestation. Serum samples were analyzed at the Central Ligand 

Assay Satellite Services (CLASS) laboratory in the Department of Epidemiology at the University 

of Michigan School of Public Health. Progesterone, sex hormone-binding globulin (SHBG), 

testosterone, total triiodothyronine (T3), total thyroxine (T4), free thyroxine (fT4) and thyroid-

stimulating hormone (TSH) were measured using a chemiluminescence immunoassay. Estriol (E3) 

and corticotropin releasing hormone (CRH) were measured using an enzyme immunoassay. Some 

hormone concentrations were not available for all participants due to sample volume limitations. 
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The ratios of progesterone to estriol (Prog/E3) and T3 to T4 (T3/T4) were assessed in addition to 

measured hormones because of previous research indicating that the ratios may be better 

indices of adverse pregnancy outcomes than single hormone measurements142–144. All hormone 

concentrations below the limit of detection (LOD) were replaced by the LOD divided by the 

square root of two. 

 

Birth Outcome Assessment 

Self-reported date of the last menstrual period was collected at the first study visit and used in 

combination with early ultrasound measurements to determine gestational age at birth, based 

on recommendations from the American College of Obstetricians and Gynecologists184. PTB was 

defined as delivery before 37 weeks gestation. We also assessed spontaneous PTB, defined as 

PTB presenting with premature rupture of membranes, spontaneous preterm labor, or both17.  

 

Statistical Analyses 

Distributions of demographic characteristics and other relevant health information were 

tabulated. Environmental risk scores were calculated for all women in the study sample for whom 

we had full exposure data and data on at least one birth outcome (N=1011). Mediation analyses 

were conducted on a subset of those women for whom we also had mediator data (N=705).  

 

Calculation of Phthalate ERS 

Study participant’s exposures to mixtures of phthalates were estimated utilizing ridge regression 

to calculate environmental risk scores (ERS), which represent a weighted sum of each individual’s 

overall phthalate exposure profile. Ridge employs two tuning parameters, lambda and alpha, 

which shrink the coefficients of unimportant predictors towards zero (but never to zero) and 

stabilize selection in the presence of highly correlated predictors. Five-fold cross validation and 

optimization of prediction errors were used to estimate lambda. Ridge returns a vector of 

coefficients which represent the relative importance of each predictor for the outcome of 

interest. These coefficients were then multiplied by each study participant’s measured phthalate 

metabolite concentrations, giving weighted concentrations of each metabolite. Weighted 
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concentrations were then summed to arrive at the ERS. Effects of high versus low molecular 

weight phthalates were assessed by running ridge analysis on metabolite mixtures separated into 

high versus low molecular weight groups, and then constructing a high molecular weight (HMW) 

ERS and a low molecular weight (LMW) ERS. 

 

Ridge analysis and ERS calculation were conducted utilizing a cumulative average approach over 

up to 3 study visits. ERS at visit 1 were derived from only phthalate concentrations measured at 

study visit 1. ERS at visit 2 were derived using the geometric mean of phthalate concentrations 

at the first and second study visits, and ERS at visit 3 were derived using the geometric mean of 

phthalate concentrations measured at all 3 study visits. Analyses were conducted for each birth 

outcome, and separately for women carrying male versus female fetuses. All analyses included 

maternal age and maternal education as unpenalized covariates. All phthalate concentrations 

were adjusted for specific gravity to account for differences in urinary dilution between study 

subjects. Ridge regression was conducted utilizing the glmnet package in R (version 3.5.1). 

 

Causal Mediation Analyses  

In the causal mediation framework, the relationship between exposures and outcomes can be 

framed in several ways. The mediated effect, also known as the natural indirect effect (NIE), is 

the change in outcome when the exposure is held constant and the mediator is changed to the 

level it would have been with an increase in exposure. The natural direct effect (NDE) 

corresponds to the change in the outcome in association with a change in exposure while keeping 

the mediator at the level it would have been at the original exposure level. Finally, the total effect 

(TE) corresponds to a change in the outcome associated with a change in exposure without any 

consideration or adjustment for the mediator. The TE is also equal to the sum of the NDE and 

NIE. We can then calculate the proportion of mediation by dividing the NIE by the TE. 

 

These effects can be estimated using this method only if the following assumptions hold true: 1) 

there is no unmeasured confounding for the relationship between the exposure and outcome, 2) 

there is no unmeasured confounding for the relationship between the mediator and outcome, 
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after controlling for the exposure, 3) there is no unmeasured confounding on the relationship 

between the exposure and the mediator, and 4) there is no downstream effect of the exposure 

which confounds the relationship between the mediator and the outcome. The temporal 

ordering assumption must also be met, such that the exposure precedes the mediator, which 

precedes the outcome. A causal diagram depicting these relationships is shown in Figure IV.1. If 

all of these assumptions are met, the following statistical models can be used to estimate 

mediating effects: 

𝑀𝑜𝑑𝑒𝑙 1: 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1|𝑎, 𝑚, 𝑐)] = 𝛽𝑦0 + 𝛽𝑦𝑎𝑎�̅� + 𝛽𝑦𝑚𝑚𝑡 + 𝛽𝑦𝑐
𝑇 𝑐 

𝑀𝑜𝑑𝑒𝑙 2: 𝐸[𝑀|𝑎, 𝑐] = 𝛽𝑚0 + 𝛽𝑚𝑎𝑎�̅� + 𝛽𝑚𝑐
𝑇 𝑐 

where 𝑎�̅� represents the phthalate ERS calculated from the cumulative average approach at study 

visit t, corrected for specific gravity; 𝑚𝑡 represents the observed hormone concentrations at 

study visit t; c represents observed values of covariates which are constant over time; and Y 

represents the outcome. 

 

Mediation methods applied in the present analysis were adapted from those described in Aung 

et al215. Visit-specific phthalate ERS were used as exposure variables, and visit-specific hormone 

concentrations were used as mediators, in causal mediation analyses. Using ERS provides an 

advantage over individual phthalate metabolites because it reduces the potential for bias due to 

correlation between metabolites, and it allows for risk assessment and ascertainment of the 

biological pathways implicated with exposure to a whole class of environmental contaminants. 

All models adjusted for continuous maternal age and categorical maternal education. All 

mediation analyses were conducted using the mediation package in R (version 3.5.1). 

 

Results 

Characteristics of the study population are shown in Table IV.1. Preterm and spontaneous 

preterm birth occurred in about 9% and 5% of the cohort, respectively. Pregnancies were about 

53% male and 46% female. Most women were under the age of 30, had at least some college 

education, were employed, lived in a home earning less than $30k per year, were either married 

or cohabitating, did not smoke and reported never being exposed to environmental tobacco 
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smoke, did not consume alcohol during pregnancy, had given less than two previous live births, 

and had a pre-pregnancy BMI below 30 kg/m2. Pregnancy and demographic characteristics did 

not differ appreciably between the full population and the mediation subset. 

 

Weights derived from ridge regression for each birth outcome are shown in Figure IV.2. For PTB, 

the strongest weights were assigned to metabolites of DBP and DiBP, and weights were 

particularly strong at visit 2 among pregnancies with a male fetus. Interestingly, for both DBP and 

DiBP, the weight for one metabolite was positive (MBP and MHiBP) while the other was inverse 

(MHBP and MiBP). Weights were similar for spontaneous PTB, except that DBP and DiBP 

metabolite weights were also very strong at visit 3 among pregnancies with a male fetus. Weights 

for gestational age at birth were generally weaker than those for PTB and spontaneous PTB, but 

DBP and DiBP metabolites still had the strongest weights. Finally, weights for SGA, LGA and birth 

weight z-score were very weak and are not displayed. 

 

Associations between phthalate ERS and birth outcomes across the study period, subset to 

mothers with mediator data, are shown in Table IV.2. Among pregnancies with a female fetus, all 

3 study visits showed a positive association between odds of PTB and LMW phthalate ERS (v1 OR: 

1.87, 95% CI: 1.01, 3.46; v2 OR: 2.96, 95% CI: 1.35, 6.52; v3 OR: 2.78, 95% CI: 1.25, 6.18), while 

HMW phthalate ERS was associated with odds of PTB only at the first (OR: 2.02, 95% CI: 1.14, 

3.58) and second study visits (OR: 2.46, 95% CI: 1.29, 4.66). Increased risk of spontaneous PTB 

was observed at visit 1 with increases in both LMW phthalate ERS (OR: 2.23, 95% CI: 1.02, 4.90) 

and HMW phthalate ERS (OR: 1.98, 95% CI: 1.07, 3.65). Increased LMW phthalate ERS was 

associated with reduced gestational age at birth at the second (: -0.45 weeks, 95% CI: -0.85, -

0.06) and third study visits (: -0.52 weeks, 95% CI: -0.91, -0.13), while the HMW phthalate ERS 

was associated with reduced gestational age at birth at all three study visits (v1 : -0.64 weeks, 

95% CI: -1.01, -0.27; v2 : -0.42 weeks, 95% CI: -0.77, -0.08; v3 : -0.39 weeks, 95% CI: -0.74, -

0.05). 
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Among pregnancies with a male fetus, risk of PTB was associated with HMW phthalate ERS at the 

first study visit (OR: 2.30, 95% CI: 1.19, 4.42) and LMW phthalate ERS at the second study visit 

(OR: 1.82, 95% CI: 1.01, 3.31). Odds of spontaneous PTB were associated with LMW phthalate 

ERS at the second (OR: 4.40, 95% CI: 1.50, 12.9) and third study visit (OR: 2.74, 95% CI: 1.23, 6.13), 

and with HMW phthalate ERS at the first study visit (OR: 2.48, 95% CI: 1.14, 5.40). Finally, 

reductions in gestational age at birth were observed at the first study visit with increasing HMW 

phthalate ERS (: -0.39 weeks, 95% CI: -0.75, -0.03) and at the second study visit with increasing 

LMW phthalate ERS (: -0.43 weeks, 95% CI: -0.69, -0.16).  

 

Estimations of natural indirect effects and percent mediated across the study for PTB, 

spontaneous PTB, and gestational age at birth among male pregnancies are shown in Tables IV.3 

(LMW phthalate ERS) and IV.4 (HMW phthalate ERS). Corresponding p-values for natural indirect 

effects are depicted in Figure IV.3. The mediating effect of TSH on the association between visit 

3 LMW phthalate ERS and PTB was marginally significant, resulting in a 0.008 increase (95% CI: -

0.001, 0.020) in probability of PTB. Testosterone and the ratio of testosterone to SHBG had 

significant mediating effects on the association between visit 1 LMW phthalate ERS and 

spontaneous PTB, resulting in a 0.010 increase (95% CI: 0.002, 0.023) and 0.011 increase (95% CI: 

0.002, 0.024) in probability of spontaneous PTB, respectively, and mediated about 29% of the 

total association. CRH and progesterone also had marginally significant mediating effects on the 

association between visit 1 LMW phthalate ERS and spontaneous PTB, resulting in a 0.010 

increase (95% CI: -0.001, 0.025) and 0.006 increase (95% CI: -0.001, 0.016) in probability of 

spontaneous PTB, respectively. The mediating effect of testosterone on the association between 

visit 1 LMW phthalate ERS and gestational age at birth was marginally significant, resulting in a 

0.049 week reduction in gestational age at birth (95% CI: -0.129, 0.003). Numerous mediating 

effects on the associations between HMW phthalate ERS and birth outcomes were significant, 

but most were in the opposite directions as the corresponding total effects. There was one 

exception; the mediating effect of CRH on the association between visit 3 HMW phthalate ERS 

and gestational age at birth was significant, resulting in a 0.098 week reduction in gestational age 

at birth (95% CI: -0.226, -0.007) and mediating about 35% of the total association. 
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Estimations of natural indirect effects and percent mediated across the study for PTB, 

spontaneous PTB, and gestational age at birth among female pregnancies are shown in Tables 

IV.5 (LMW phthalate ERS) and IV.6 (HMW phthalate ERS). Corresponding p-values for natural 

indirect effects are depicted in Figure IV.4. There were no significant mediating effects observed 

on the associations between LMW phthalate ERS and birth outcomes. Though numerous 

significant mediating effects were observed on the associations between HMW phthalate ERS 

and birth outcomes, all mediating effects were in the opposite direction as their corresponding 

total effects, and so these results do not present evidence of mediation. 

 

Discussion 

In this novel analysis, we explored the mediating effects of hormone concentrations on the 

associations between gestational exposure to a mixture of phthalates and adverse birth 

outcomes. This work builds upon previously published research by combining novel mixtures 

methods215 with repeated measures analyses to provide the first causal mediation analysis using 

repeated biomarker data within an exposure mixtures framework. We provide evidence that 

significant associations exist between gestational exposure to a mixture of phthalates and 

increased odds of PTB and spontaneous PTB, and gestational age at birth, and that these 

associations differ by molecular weights of phthalates, fetal sex, and gestational age at exposure 

assessment. We also provide introductory evidence of mediation by various hormones on the 

associations between phthalate mixtures and these adverse birth outcomes.  

 

We observed suggestive evidence of mediation by TSH, CRH, progesterone, and testosterone on 

the associations between exposure to LMW phthalate metabolites and metrics of early delivery 

among pregnancies with a male fetus. Previous work has shown some of these hormones to be 

important for regulation of the timing of labor. Concentrations of CRH exponentially increase at 

the end of gestation, possibly acting as a major influence on the timing of labor94. This 

physiological role, coupled with past observations of significant positive associations with 

phthalate exposure191, suggests that CRH could in fact mediate the association between 
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phthalates and preterm delivery. Additionally, it has been postulated that CRH may signal to the 

fetal zone of the fetal adrenal gland to stimulate production of DHEA-S, a precursor of androgens 

and estrogens, to activate pro-labor events96.  

 

Mediation by progesterone on the association between phthalate exposures and early delivery 

is also biologically plausible. During the first 9 weeks of pregnancy, the corpus luteum is 

responsible for secreting the necessary progesterone for maintenance of the fetus. After that, 

the placenta becomes the main source of progesterone. A previous in silico study found strong 

binding affinity between phthalate metabolites and the progesterone receptor216. Accordingly, 

another in vitro study found that treatment of human placental cells with phthalate metabolites 

resulted in an inhibition of the progesterone receptor gene via negative feedback from an 

increase in progesterone concentrations217. Thus, phthalate exposure at this time could stimulate 

progesterone production by the placenta via interaction with the progesterone receptor. 

Elevated circulating progesterone could then inhibit the progesterone receptor gene, which 

could result in reduced expression of the progesterone receptor gene and thus reduced 

progesterone function. Taking all of this information together, maternal exposure to mixtures of 

phthalates during mid gestation could result in increased production of progesterone by the 

placenta, which then participates in a negative feedback loop with the progesterone receptor, 

resulting in a reduction of the anti-labor effects of progesterone on the pregnancy, possibly 

contributing to increased risk of preterm birth. 

 

Finally, there is a biological basis for the proposed mediating effect of testosterone on the 

association between phthalate exposures and preterm delivery. Despite existing evidence that 

phthalates possess anti-androgenic biological effects, previous work has shown a positive 

association between testosterone concentrations during pregnancy and exposure to LMW 

phthalates191. Higher circulating concentrations of testosterone may act on the endometrium to 

produce lower levels of PP14, an endometrial secretory protein which has been shown to be 

inversely associated with risk of preterm birth as early as 6-18 weeks’ gestation218. Decreased 

production of PP14 is associated with abnormal development of the endometrium and greater 
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likelihood of downstream pregnancy complications82,219,220. Therefore, gestational exposure to 

LMW phthalates may result in elevated testosterone production, which could then adversely 

affect the endometrium to produce less PP14 and cause endometrial dysfunction leading to 

elevated risk of preterm delivery. 

 

This study was subject to several limitations. Some phthalate metabolite weights from ridge 

analysis were strongest at the second study visit, at which time we did not have access to 

hormone measurements, and so we may have missed important associations at that time point. 

We also detected some significant mediating effects which did not correspond to significant total 

effects.  Detection of significant mediation signals could have been an artifact of strong 

associations between our exposure and mediator measures, to which the total effect would be 

robust. However, despite our large sample size, the small number of PTB and spontaneous PTB 

cases could also be interfering with our ability to detect truly significant total effects. We did not 

have access to measurements for thyroid autoantibody status, which could confound 

associations with thyroid hormones. Some critical changes in the maternal endocrine 

environment occur earlier or later in gestation than we were able to measure, which could shed 

additional light on the various endocrine pathways implicated in adverse birth outcomes. Women 

with preexisting conditions were excluded from the analysis, which may limit the generalizability 

of our findings. It is likely that all models with ERS are overfit because we did not use separate 

training and testing data sets for creating the ERS and running subsequent mediation analyses. 

Finally, the mediation analyses implemented here cannot accommodate situations where 

mediators confound one another, so it is possible that our results are biased if multiple mediators 

are operating on the same causal pathway. Future work will attempt to better understand the 

endocrine pathways implicated with phthalate exposures in order to create mediator risk scores 

that are reflective of entire pathways. 

 

Despite these limitations, this study was also strong in many ways. This is the first study to utilize 

this analysis pipeline with repeated exposure and mediator data, and our sample size was higher 

than many other epidemiology studies which assessed only single pollutant associations. We 



 82 

included a wide panel of hormone measurements to test a variety of endocrine pathways, and 

we add to a very limited body of epidemiology literature supporting a role for CRH in adverse 

birth outcomes. Exclusion of women with preexisting conditions, though it limited our 

generalizability as stated previously, allowed us to better understand biological effects related 

only to environmental exposures and not confounded by other health conditions. We assessed 

the more rare and homogenous spontaneous subtype of preterm birth, which may help in 

understanding the physiological pathways that make this subtype unique. We also provide novel 

evidence of differential toxicity pathways of high versus low molecular weight phthalate 

compounds, and that molecular weight may influence the gestational age at which exposure 

confers the greatest toxicity. Lastly, we added to a growing body of evidence suggesting 

differential biological pathways and risks associated with adverse birth outcomes between male 

and female pregnancies. 

 

In conclusion, we provide novel suggestive evidence of various hormone concentrations 

mediating the association between gestational exposure to a mixture of phthalates and elevated 

risk for preterm delivery among male pregnancies. Importantly, we add to a limited body of 

evidence suggesting that environmental exposures and subsequent risk for adverse pregnancy 

outcomes are not equitable between male and female pregnancies. Future work will aim to 

increase statistical power with more cases of adverse pregnancy outcomes, and to better 

understand the true physiological implications of altered hormone concentrations during 

pregnancy. 
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Table IV.1. Maternal demographic and birth characteristics of 1011 Puerto Rican mothers. 

 Median (IQR) 

 ERS Population Mediation Population* 

Gestational Age at Delivery (weeks) 39.3 (1.79) 39.3 (1.86) 

 N (%) 

 ERS Population Mediation Population* 

Preterm Birth   

Yes 89 (8.8%) 65 (9.2%) 

No 911 (90.1%) 632 (89.6%) 

Missing 11 (1.1%) 8 (1.1%) 

Spontaneous PTB   

Yes 52 (5.1%) 39 (5.5%) 

No 921 (91.1%) 640 (90.8%) 

Missing 38 (3.8%) 26 (3.7%) 

Maternal Age (years)   

18-24 357 (35.3%) 247 (35.0%) 

25-29 309 (30.6%) 215 (30.5%) 

30-34 214 (21.2%) 150 (21.3%) 

35-41 131 (13.0%) 93 (13.2%) 

Missing 0 (0.0%) 0 (0.0%) 

Maternal Education   

GED or less 195 (19.3%) 147 (20.9%) 

Some College 337 (33.3%) 236 (33.5%) 

Bachelors or Higher 479 (47.4%) 322 (45.7%) 

Missing 0 (0.0%) 0 (0.0%) 

Employment Status   

No 344 (34.0%) 243 (34.5%) 

Yes 662 (65.5%) 458 (65.0%) 

Missing 5 (0.5%) 4 (0.6%) 

Annual Household Income   

<10k 255 (25.2%) 195 (27.7%) 

10k-<30k 293 (29.0%) 196 (27.8%) 

30k-<50k 223 (22.1%) 157 (22.3%) 

>=50k 126 (12.5%) 77 (10.9%) 

Missing 114 (11.3%) 80 (11.3%) 

Marital Status   

Single 168 (16.6%) 128 (18.2%) 

Married 553 (54.7%) 371 (52.6%) 
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Cohabitating 286 (28.3%) 202 (28.7%) 

Missing 4 (0.4%) 4 (0.6%) 

Smoking Status   

Never 873 (86.4%) 611 (86.7%) 

Ever 118 (11.7%) 80 (11.3%) 

Current 17 (1.7%) 12 (1.7%) 

Missing 3 (0.3%) 2 (0.3%) 

Daily Environmental Tobacco 
Smoke Exposure 

  

Never 848 (83.9%) 590 (83.7%) 

1 Hour or less 37 (3.7%) 21 (3.0%) 

>1 Hour 42 (4.2%) 35 (5.0%) 

Missing 84 (8.3%) 59 (8.4%) 

Alcohol Use   

Never 520 (51.4%) 358 (50.8%) 

Yes, before Pregnancy 429 (42.4%) 303 (43.0%) 

Yes, currently 58 (5.7%) 42 (6.0%) 

Missing 4 (0.4%) 2 (0.3%) 

Number of Previous Children   

0 327 (32.3%) 233 (33.0%) 

1 375 (37.1%) 260 (36.9%) 

2 to 5 117 (11.6%) 73 (10.4%) 

Missing 192 (19.0%) 139 (19.7%) 

Pre-Pregnancy BMI   

[0,25] 515 (50.9%) 360 (51.1%) 

(25, 30] 269 (26.6%) 177 (25.1%) 

Above 30 178 (17.6%) 128 (18.2%) 

Missing 49 (4.8%) 40 (5.7%) 

Fetal Sex   

Female 462 (45.7%) 331 (47.0%) 

Male 540 (53.4%) 369 (52.3%) 

Missing 9 (0.9%) 5 (0.7%) 

*Subset includes all women with mediator data (N=705). 
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Figure IV.1. Causal diagrams for mediation analyses in the counterfactual framework with a) 
exposures at visit 1 (A1) and mediators at visit 1 (M1), b) the average of exposures at visits 1 
and 2 (A2

̅̅ ̅) and mediators at visit 3 (M3), and c) the average of exposures at all 3 visits (A3
̅̅ ̅) and 

mediators at visit 3 (M3), with confounders (C) and outcomes (Y) that do not vary with time. 
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Figure IV.2. Weights assigned from ridge regression depicting the relative importance of each phthalate metabolites for predicting 
birth outcomes. 
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Table IV.2. Associations between phthalate ERS and birth outcomes across the study period between male and female fetuses, among women with 
mediator data. 

Female Fetuses 

 Visit 1 Visit 2 Visit 3 

 LMW HMW LMW HMW LMW HMW 

 N Est (95% CI) N Est (95% CI) N Est (95% CI) N Est (95% CI) N Est (95% CI) N Est (95% CI) 

Preterm 
Birth 

244 1.87 (1.01, 3.46) 244 2.02 (1.14, 3.58) 195 2.96 (1.35, 6.52) 195 2.46 (1.29, 4.66) 206 2.78 (1.25, 6.18) 206 1.42 (0.72, 2.77) 

Spont. 
Preterm 
Birth 

237 2.23 (1.02, 4.90) 237 1.98 (1.07, 3.65) 189 3.16 (0.95, 10.54) 189 2.20 (0.80, 6.03) 200 2.05 (0.62, 6.83) 200 1.35 (0.47, 3.90) 

Gest. Age 
(weeks) 

245 -0.30 (-0.67, 0.07) 245 
-0.64 (-1.01, -

0.27) 
195 

-0.45 (-0.85, -
0.06) 

195 
-0.42 (-0.77, -

0.08) 
206 

-0.52 (-0.91, -
0.13) 

206 
-0.39 (-0.74, -

0.05) 

Male Fetuses 

Preterm 
Birth 

282 1.36 (0.78, 2.38) 282 2.30 (1.19, 4.42) 210 1.82 (1.01, 3.31) 210 1.30 (0.70, 2.43) 218 1.11 (0.64, 1.95) 218 1.40 (0.80, 2.42) 

Spont. 
Preterm 
Birth 

274 1.67 (0.89, 3.11) 274 2.48 (1.14, 5.40) 203 4.40 (1.50, 12.9) 203 0.81 (0.27, 2.48) 211 2.74 (1.23, 6.13) 211 1.00 (0.41, 2.41) 

Gest. Age 
(weeks) 

286 -0.20 (-0.56, 0.16) 286 
-0.39 (-0.75, -

0.03) 
210 

-0.43 (-0.69, -
0.16) 

210 -0.02 (-0.33, 0.29) 218 -0.29 (-0.62, 0.04) 218 -0.10 (-0.45, 0.25) 

Effect estimates refer to the odds of binary birth outcomes, or unit changes in continuous outcomes, with an interquartile range increase in phthalate ERS. ERS were calculated 
using a cumulative average approach; visit 2 was comprised of the geometric means of phthalate concentrations at visits 1 and 2, and visit 3 was comprised of the geometric 
means of phthalate concentrations from all 3 visits. All models adjust for continuous maternal age and categorical maternal education, and birth weight models further 
adjusted for categorical maternal pre-pregnancy BMI. 

Boldface text denotes significant findings with p0.05. LMW: low molecular weight; HMW: high molecular weight. 
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Table IV.3. Natural indirect effect estimates and percent mediated with an interquartile range increase in low molecular weight phthalate ERS over 
the study period, among mothers carrying a male fetus. 

  ERSv1 → Hormonesv1 ERSv2 →  Hormonesv3 ERSv3 →  Hormonesv3 

Outcome Mediator NIE (95% CI) 
Percent 

Mediateda 
NIE (95% CI) 

Percent 
Mediateda 

NIE (95% CI) 
Percent 

Mediateda 

PTB CRH 0.000 (-0.006, 0.007) 0.81% 0.005 (-0.002, 0.016) 8.64% 0.006 (-0.002, 0.017) 10.5% 

 Estriol 0.003 (-0.008, 0.014) 7.84% -0.001 (-0.008, 0.003) NA -0.003 (-0.015, 0.006) NA 

 Prog. 0.006 (-0.005, 0.019) 16.2% 0.002 (-0.004, 0.010) 2.35% 0.003 (-0.003, 0.011) 2.12% 

 Prog/E3 0.000 (-0.004, 0.003) NA 0.003 (-0.002, 0.012) 4.89% -0.002 (-0.011, 0.005) NA 

 Test. 0.000 (-0.008, 0.007) 0.33% 0.002 (-0.004, 0.011) 3.48% 0.005 (-0.003, 0.016) 8.03% 

 Test./SHBG 0.001 (-0.005, 0.009) 2.57% 0.002 (-0.005, 0.011) 2.61% 0.004 (-0.005, 0.015) 5.43% 

 SHBG 0.003 (-0.002, 0.012) 6.95% 0.000 (-0.006, 0.005) NA -0.001 (-0.008, 0.005) NA 

 TSH -0.002 (-0.010, 0.003) NA 0.007 (-0.002, 0.019) 10.8% 0.008 (-0.001, 0.020) 17.3% 

 T3 0.000 (-0.005, 0.004) NA 0.000 (-0.003, 0.005) 0.20% 0.002 (-0.008, 0.013) 2.59% 

 fT4 0.001 (-0.005, 0.008) 2.35% 0.004 (-0.002, 0.013) 5.42% 0.005 (-0.002, 0.016) 7.39% 

 T4 0.001 (-0.004, 0.007) 1.16% 0.000 (-0.005, 0.004) NA 0.001 (-0.004, 0.007) 0.51% 

 T3/T4 0.000 (-0.005, 0.003) NA 0.000 (-0.004, 0.004) 0.02% 0.000 (-0.009, 0.009) 0.32% 

Spont. PTB CRH 0.010 (-0.001, 0.025) 28.18% 0.006 (-0.002, 0.017) 9.64% 0.007 (-0.003, 0.018) 11.80% 

 Estriol -0.002 (-0.012, 0.005) NA -0.001 (-0.005, 0.002) NA -0.001 (-0.007, 0.003) NA 

 Prog. 0.006 (-0.001, 0.016) 18.17% 0.002 (-0.002, 0.008) 2.63% 0.003 (-0.001, 0.010) 5.06% 

 Prog/E3 -0.001 (-0.008, 0.004) NA 0.003 (-0.002, 0.012) 4.96% 0.002 (-0.004, 0.011) 3.72% 

 Test. 0.010 (0.002, 0.023) 28.53% 0.005 (-0.004, 0.016) 7.65% 0.008 (-0.005, 0.023) 15.68% 

 Test./SHBG 0.011 (0.002, 0.024) 29.58% 0.005 (-0.004, 0.015) 7.60% 0.007 (-0.004, 0.021) 13.66% 

 SHBG 0.003 (-0.003, 0.011) 6.76% 0.002 (-0.003, 0.008) 2.02% 0.001 (-0.003, 0.006) 0.64% 

 TSH 0.003 (-0.002, 0.010) 6.33% 0.003 (-0.006, 0.014) 6.31% 0.005 (-0.005, 0.018) 10.26% 

 T3 0.003 (-0.001, 0.009) 7.75% 0.002 (-0.004, 0.009) 2.92% 0.003 (-0.007, 0.014) 5.79% 

 fT4 0.002 (-0.003, 0.009) 5.17% 0.003 (-0.002, 0.011) 5.02% 0.004 (-0.006, 0.015) 6.72% 

 T4 0.000 (-0.003, 0.003) NA 0.000 (-0.004, 0.003) NA 0.000 (-0.004, 0.004) NA 

 T3/T4 0.003 (-0.002, 0.010) 7.71% 0.002 (-0.004, 0.008) 2.22% 0.002 (-0.006, 0.012) 4.07% 

Gest. Age CRH -0.032 (-0.107, 0.015) 9.32% -0.030 (-0.094, 0.009) 6.01% -0.020 (-0.089, 0.032) 4.89% 

 Estriol 0.035 (-0.027, 0.113) NA 0.000 (-0.027, 0.026) 0.00% -0.002 (-0.063, 0.058) 0.25% 

 Prog. -0.010 (-0.108, 0.083) 4.96% -0.027 (-0.086, 0.010) 5.20% -0.032 (-0.107, 0.017) 8.90% 
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 Prog/E3 -0.016 (-0.071, 0.017) 3.59% -0.027 (-0.090, 0.014) 5.46% 0.012 (-0.051, 0.084) NA 

 Test. -0.049 (-0.129, 0.003) 16.07% -0.012 (-0.056, 0.018) 1.88% -0.011 (-0.063, 0.023) 2.38% 

 Test./SHBG -0.040 (-0.112, 0.005) 12.41% -0.011 (-0.056, 0.019) 1.81% -0.013 (-0.062, 0.019) 2.70% 

 SHBG -0.001 (-0.029, 0.023) 0.05% -0.003 (-0.033, 0.020) 0.21% -0.002 (-0.041, 0.030) 0.25% 

 TSH -0.021 (-0.083, 0.017) 5.49% -0.025 (-0.092, 0.028) 4.95% -0.036 (-0.114, 0.012) 9.18% 

 T3 -0.004 (-0.048, 0.031) 0.39% 0.001 (-0.022, 0.028) NA 0.005 (-0.040, 0.050) NA 

 fT4 -0.033 (-0.110, 0.023) 10.54% -0.012 (-0.057, 0.016) 1.85% -0.017 (-0.077, 0.018) 3.72% 

 T4 -0.002 (-0.053, 0.046) 0.47% 0.002 (-0.020, 0.032) NA -0.005 (-0.048, 0.028) 0.54% 

 T3/T4 0.002 (-0.038, 0.042) NA 0.001 (-0.023, 0.030) NA 0.006 (-0.025, 0.048) NA 
aIndication is NA when the TE and NIE are in different directions, rendering the percent mediated uninterpretable. Estimates refer to the increase 
in probability of experiencing binary outcomes, or the unit change in continuous outcomes, due to the resulting change in the mediator with an 
interquartile range increase in exposure, while holding the exposure constant. Boldface text indicates a p-value < 0.1.  
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Table IV.4. Natural indirect effect estimates and percent mediated with an interquartile range increase in high molecular weight phthalate ERS over 
the study period, among mothers carrying a male fetus. 

  ERSv1 → Hormonesv1 ERSv2 →  Hormonesv3 ERSv3 → Hormonesv3 

Outcome Mediator NIE (95% CI) 
Percent 

Mediateda 
NIE (95% CI) 

Percent 
Mediateda 

NIE (95% CI) 
Percent 

Mediateda 

PTB CRH -0.005 (-0.016, 0.001) NA 0.005 (-0.002, 0.017) 9.80% 0.008 (-0.003, 0.023) 19.46% 

 Estriol 0.003 (-0.009, 0.015) 3.29% -0.003 (-0.013, 0.005) NA -0.003 (-0.015, 0.006) NA 

 Prog. -0.001 (-0.014, 0.013) NA 0.000 (-0.006, 0.005) NA 0.002 (-0.003, 0.010) 2.85% 

 Prog/E3 0.000 (-0.005, 0.004) -0.02% -0.005 (-0.017, 0.002) NA -0.004 (-0.014, 0.003) NA 

 Test. -0.009 (-0.023, 0.000) NA 0.001 (-0.004, 0.009) 1.06% 0.004 (-0.004, 0.015) 7.86% 

 Test./SHBG -0.006 (-0.019, 0.002) NA 0.001 (-0.004, 0.009) 0.69% 0.003 (-0.005, 0.014) 6.80% 

 SHBG 0.003 (-0.003, 0.012) 3.14% 0.000 (-0.008, 0.006) NA -0.002 (-0.012, 0.008) NA 

 TSH -0.006 (-0.018, 0.002) NA 0.003 (-0.004, 0.012) 5.06% 0.003 (-0.004, 0.013) 6.05% 

 T3 -0.005 (-0.015, 0.001) NA 0.000 (-0.004, 0.005) 0.04% 0.000 (-0.004, 0.005) 0.23% 

 fT4 -0.002 (-0.011, 0.005) NA -0.002 (-0.013, 0.006) NA 0.000 (-0.007, 0.008) 0.60% 

 T4 -0.003 (-0.012, 0.003) NA 0.000 (-0.005, 0.005) 0.03% 0.000 (-0.005, 0.005) 0.03% 

 T3/T4 -0.003 (-0.012, 0.002) NA 0.000 (-0.005, 0.004) NA 0.000 (-0.005, 0.004) 0.01% 

Spont. PTB CRH -0.003 (-0.012, 0.004) NA 0.014 (0.000, 0.035) NA 0.015 (-0.002, 0.037) NA 

 Estriol 0.001 (-0.008, 0.011) 2.19% 0.001 (-0.012, 0.014) NA 0.001 (-0.011, 0.014) NA 

 Prog. -0.001 (-0.011, 0.008) NA 0.005 (-0.001, 0.017) NA 0.005 (-0.001, 0.015) 1.57% 

 Prog/E3 0.000 (-0.003, 0.004) 0.05% -0.002 (-0.013, 0.008) 4.12% -0.005 (-0.017, 0.004) 5.32% 

 Test. -0.006 (-0.018, 0.003) NA 0.009 (-0.001, 0.025) NA 0.014 (0.001, 0.032) NA 

 Test./SHBG -0.003 (-0.013, 0.005) NA 0.009 (-0.001, 0.026) NA 0.013 (0.000, 0.032) NA 

 SHBG 0.002 (-0.003, 0.011) 3.08% 0.004 (-0.004, 0.016) NA 0.003 (-0.006, 0.014) NA 

 TSH -0.003 (-0.012, 0.002) NA 0.006 (-0.002, 0.019) NA 0.006 (-0.001, 0.018) NA 

 T3 -0.003 (-0.011, 0.001) NA 0.004 (-0.004, 0.015) NA 0.006 (-0.003, 0.018) NA 

 fT4 -0.001 (-0.006, 0.003) NA 0.001 (-0.006, 0.009) NA 0.004 (-0.002, 0.014) NA 

 T4 -0.002 (-0.009, 0.003) NA 0.000 (-0.007, 0.005) 0.16% 0.000 (-0.004, 0.005) 0.04% 

 T3/T4 -0.002 (-0.009, 0.002) NA 0.004 (-0.005, 0.015) NA 0.005 (-0.003, 0.016) NA 

Gest. Age CRH 0.008 (-0.033, 0.058) NA -0.020 (-0.088, 0.034) 3.12% -0.098 (-0.226, -0.007) 34.64% 

 Estriol 0.002 (-0.068, 0.073) NA 0.001 (-0.027, 0.031) 0.10% -0.007 (-0.076, 0.057) 1.32% 

 Prog. -0.004 (-0.104, 0.092) 0.95% 0.039 (-0.008, 0.117) NA -0.013 (-0.085, 0.047) 3.74% 
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 Prog/E3 -0.001 (-0.041, 0.037) 0.03% 0.045 (-0.007, 0.127) NA 0.048 (-0.013, 0.138) NA 

 Test. 0.022 (-0.025, 0.084) NA 0.000 (-0.037, 0.035) 0.46% -0.047 (-0.134, 0.018) 15.20% 

 Test./SHBG 0.013 (-0.032, 0.066) NA 0.002 (-0.031, 0.038) 0.27% -0.044 (-0.133, 0.024) 13.04% 

 SHBG -0.002 (-0.037, 0.028) 0.12% 0.003 (-0.026, 0.037) 0.03% -0.006 (-0.065, 0.048) 1.20% 

 TSH 0.001 (-0.038, 0.041) NA -0.028 (-0.097, 0.013) 0.39% -0.040 (-0.122, 0.009) 9.67% 

 T3 0.008 (-0.028, 0.055) NA 0.000 (-0.027, 0.027) 0.10% 0.003 (-0.049, 0.054) NA 

 fT4 -0.011 (-0.082, 0.053) 2.10% 0.007 (-0.033, 0.055) 0.14% -0.016 (-0.076, 0.022) 2.90% 

 T4 0.024 (-0.021, 0.090) NA 0.005 (-0.028, 0.046) 0.02% 0.002 (-0.029, 0.036) NA 

 T3/T4 0.001 (-0.034, 0.038) NA 0.006 (-0.022, 0.045) NA 0.011 (-0.039, 0.071) NA 
aIndication is NA when the TE and NIE are in different directions, rendering the percent mediated uninterpretable. Estimates refer to the increase 
in probability of experiencing binary outcomes, or the unit change in continuous outcomes, due to the resulting change in the mediator with an 
interquartile range increase in exposure, while holding the exposure constant. Boldface text indicates a p-value < 0.1.  
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Figure IV.3. Estimated -log10(p-values) of mediating effects by hormone concentrations on the associations between phthalate ERS and birth 
outcomes, among mothers carrying a male fetus. 

 
From left to right within each panel, the vertical dashed lines represent p-values of 0.1, 0.05, and 0.01. All models were adjusted for continuous maternal age 
and categorical education. 
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Table IV.5. Natural indirect effect estimates and percent mediated with an interquartile range increase in low molecular weight phthalate ERS over 
the study period, among mothers carrying a female fetus. 

  ERSv1 → Hormonesv1 ERSv2 → Hormonesv3 ERSv3 →  Hormonesv3 

Outcome Mediator NIE (95% CI) 
Percent 

Mediateda 
NIE (95% CI) 

Percent 
Mediateda 

NIE (95% CI) 
Percent 

Mediateda 

PTB CRH 0.000 (-0.005, 0.005) 0.04% -0.001 (-0.010, 0.007) NA 0.001 (-0.006, 0.010) 1.03% 

 Estriol 0.000 (-0.003, 0.004) 0.12% -0.003 (-0.015, 0.003) NA 0.001 (-0.007, 0.009) 0.50% 

 Prog. 0.002 (-0.003, 0.009) 2.06% 0.000 (-0.007, 0.004) NA 0.000 (-0.004, 0.006) 0.09% 

 Prog/E3 0.000 (-0.004, 0.005) 0.09% -0.001 (-0.009, 0.004) NA 0.000 (-0.007, 0.006) NA 

 Test. 0.000 (-0.006, 0.006) 0.20% 0.000 (-0.010, 0.011) 0.35% 0.005 (-0.005, 0.018) 6.04% 

 Test./SHBG 0.000 (-0.006, 0.006) NA -0.002 (-0.015, 0.009) NA 0.003 (-0.007, 0.016) 4.35% 

 SHBG -0.001 (-0.005, 0.003) NA -0.007 (-0.022, 0.002) NA -0.003 (-0.015, 0.005) NA 

 TSH 0.000 (-0.005, 0.003) NA 0.000 (-0.004, 0.004) 0.00% 0.000 (-0.006, 0.005) NA 

 T3 0.000 (-0.004, 0.006) 0.41% 0.000 (-0.005, 0.004) NA -0.001 (-0.008, 0.004) NA 

 fT4 0.001 (-0.004, 0.007) 0.86% 0.000 (-0.006, 0.005) NA 0.000 (-0.005, 0.004) 0.01% 

 T4 0.001 (-0.005, 0.008) 1.26% 0.000 (-0.007, 0.006) NA -0.002 (-0.010, 0.005) NA 

 T3/T4 0.000 (-0.005, 0.007) 0.51% 0.000 (-0.005, 0.004) 0.00% 0.000 (-0.005, 0.006) 0.10% 

Spont. PTB CRH 0.000 (-0.004, 0.003) NA -0.001 (-0.010, 0.004) NA 0.000 (-0.007, 0.007) 0.46% 

 Estriol 0.000 (-0.004, 0.003) NA 0.002 (-0.003, 0.008) 3.80% 0.000 (-0.004, 0.005) 0.21% 

 Prog. 0.000 (-0.003, 0.004) 0.12% 0.001 (-0.002, 0.007) 2.57% 0.000 (-0.004, 0.005) 0.17% 

 Prog/E3 0.000 (-0.004, 0.003) NA 0.000 (-0.004, 0.003) NA 0.000 (-0.004, 0.003) 0.02% 

 Test. 0.000 (-0.004, 0.003) NA -0.001 (-0.008, 0.004) NA 0.001 (-0.005, 0.007) 1.06% 

 Test./SHBG 0.000 (-0.004, 0.004) NA -0.002 (-0.010, 0.002) NA 0.000 (-0.007, 0.005) NA 

 SHBG 0.000 (-0.004, 0.005) 0.20% -0.003 (-0.014, 0.005) NA -0.001 (-0.009, 0.004) NA 

 TSH -0.001 (-0.008, 0.002) NA -0.001 (-0.009, 0.004) NA -0.002 (-0.012, 0.003) NA 

 T3 0.000 (-0.005, 0.003) NA 0.000 (-0.003, 0.004) 0.24% 0.000 (-0.004, 0.003) NA 

 fT4 0.003 (-0.002, 0.010) 5.24% 0.001 (-0.004, 0.006) 0.84% 0.000 (-0.004, 0.004) 0.11% 

 T4 0.001 (-0.003, 0.007) 1.39% 0.000 (-0.003, 0.005) 0.33% -0.001 (-0.006, 0.003) NA 

 T3/T4 -0.001 (-0.006, 0.004) NA 0.000 (-0.005, 0.003) NA 0.000 (-0.004, 0.004) 0.01% 

Gest. Age CRH 0.002 (-0.028, 0.038) NA -0.001 (-0.042, 0.038) 0.09% -0.009 (-0.062, 0.025) 0.93% 

 Estriol 0.000 (-0.027, 0.028) 0.00% 0.029 (-0.056, 0.126) NA -0.014 (-0.106, 0.066) 2.16% 

 Prog. 0.002 (-0.046, 0.052) NA -0.001 (-0.040, 0.035) 0.05% -0.006 (-0.053, 0.027) 0.44% 
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 Prog/E3 -0.002 (-0.038, 0.033) 0.17% 0.028 (-0.039, 0.116) NA 0.011 (-0.056, 0.087) NA 

 Test. 0.000 (-0.027, 0.030) 0.00% -0.009 (-0.078, 0.047) 1.07% -0.029 (-0.112, 0.020) 4.28% 

 Test./SHBG 0.001 (-0.027, 0.030) NA -0.002 (-0.065, 0.060) 0.12% -0.023 (-0.099, 0.028) 3.06% 

 SHBG 0.000 (-0.031, 0.032) 0.01% 0.012 (-0.027, 0.074) NA 0.006 (-0.031, 0.060) NA 

 TSH 0.003 (-0.027, 0.042) NA 0.000 (-0.034, 0.032) 0.02% 0.002 (-0.036, 0.040) NA 

 T3 0.004 (-0.025, 0.044) NA -0.001 (-0.034, 0.030) 0.07% -0.004 (-0.052, 0.039) 0.18% 

 fT4 0.000 (-0.042, 0.043) 0.01% 0.002 (-0.033, 0.042) NA -0.003 (-0.045, 0.031) 0.19% 

 T4 -0.006 (-0.052, 0.030) 0.68% 0.002 (-0.051, 0.058) NA 0.010 (-0.039, 0.072) NA 

 T3/T4 0.000 (-0.028, 0.030) 0.01% -0.006 (-0.052, 0.032) 0.52% -0.014 (-0.074, 0.023) 1.53% 
aIndication is NA when the TE and NIE are in different directions, rendering the percent mediated uninterpretable. Estimates refer to the increase 
in probability of experiencing binary outcomes, or the unit change in continuous outcomes, due to the resulting change in the mediator with an 
interquartile range increase in exposure, while holding the exposure constant. Boldface text indicates a p-value < 0.1.  
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Table IV.6. Natural indirect effect estimates and percent mediated with an interquartile range increase in high molecular weight phthalate ERS over 
the study period, among mothers carrying a female fetus. 

  ERSv1 → Hormonesv1 ERSv2 → Hormonesv3 ERSv3 → Hormonesv3 

Outcome Mediator NIE (95% CI) 
Percent 

Mediateda 
NIE (95% CI) 

Percent 
Mediateda 

NIE (95% CI) 
Percent 

Mediateda 

PTB CRH -0.008 (-0.023, 0.002) NA -0.002 (-0.012, 0.005) NA -0.010 (-0.027, 0.001) NA 

 Estriol -0.001 (-0.008, 0.003) NA -0.003 (-0.014, 0.003) NA -0.007 (-0.020, 0.001) NA 

 Prog. 0.000 (-0.005, 0.006) 0.09% 0.000 (-0.005, 0.006) 0.12% -0.001 (-0.009, 0.004) NA 

 Prog/E3 0.000 (-0.006, 0.006) 0.10% -0.003 (-0.013, 0.002) NA -0.002 (-0.011, 0.003) NA 

 Test. -0.006 (-0.017, 0.001) NA -0.003 (-0.015, 0.007) NA -0.017 (-0.037, -0.003) NA 

 Test./SHBG -0.007 (-0.019, 0.001) NA -0.005 (-0.018, 0.005) NA -0.020 (-0.042, -0.005) NA 

 SHBG -0.004 (-0.014, 0.003) NA -0.008 (-0.023, 0.002) NA -0.012 (-0.030, 0.000) NA 

 TSH -0.002 (-0.011, 0.004) NA 0.000 (-0.006, 0.005) 0.00% 0.000 (-0.009, 0.007) NA 

 T3 -0.005 (-0.018, 0.002) NA 0.000 (-0.004, 0.005) 0.05% 0.001 (-0.009, 0.010) 1.16% 

 fT4 0.004 (-0.004, 0.014) 6.06% 0.000 (-0.006, 0.004) NA -0.002 (-0.013, 0.007) NA 

 T4 0.002 (-0.004, 0.009) 2.05% 0.001 (-0.004, 0.008) 0.78% -0.001 (-0.008, 0.005) NA 

 T3/T4 -0.006 (-0.018, 0.001) NA 0.000 (-0.005, 0.004) 0.00% -0.002 (-0.013, 0.006) NA 

Spont. PTB CRH -0.003 (-0.014, 0.006) NA -0.013 (-0.036, -0.001) NA -0.010 (-0.029, 0.000) NA 

 Estriol 0.000 (-0.004, 0.004) 0.19% 0.003 (-0.005, 0.014) 7.66% 0.003 (-0.005, 0.014) 6.68% 

 Prog. 0.000 (-0.003, 0.003) NA 0.002 (-0.004, 0.010) 4.63% 0.002 (-0.003, 0.008) 2.19% 

 Prog/E3 0.000 (-0.003, 0.005) 0.52% 0.000 (-0.004, 0.003) NA -0.001 (-0.006, 0.003) NA 

 Test. -0.002 (-0.011, 0.006) NA -0.010 (-0.028, 0.001) NA -0.011 (-0.030, 0.002) NA 

 Test./SHBG -0.001 (-0.010, 0.006) NA -0.011 (-0.029, 0.000) NA -0.011 (-0.030, 0.002) NA 

 SHBG 0.000 (-0.005, 0.006) 0.40% -0.004 (-0.016, 0.005) NA -0.003 (-0.013, 0.006) NA 

 TSH -0.005 (-0.015, 0.000) NA -0.005 (-0.018, 0.002) NA -0.004 (-0.015, 0.002) NA 

 T3 -0.006 (-0.018, 0.001) NA 0.000 (-0.010, 0.010) 1.51% 0.001 (-0.009, 0.010) 1.86% 

 fT4 0.005 (-0.001, 0.015) 16.10% 0.000 (-0.008, 0.009) 0.59% 0.001 (-0.008, 0.010) 1.74% 

 T4 0.002 (-0.002, 0.008) 4.52% 0.001 (-0.003, 0.006) 0.82% 0.000 (-0.004, 0.004) 0.12% 

 T3/T4 -0.006 (-0.018, 0.000) NA -0.001 (-0.011, 0.006) NA -0.001 (-0.011, 0.007) NA 

Gest. Age CRH -0.001 (-0.080, 0.071) 0.13% 0.016 (-0.022, 0.075) NA 0.033 (-0.016, 0.108) NA 

 Estriol -0.001 (-0.034, 0.031) 0.00% 0.052 (-0.023, 0.148) NA 0.049 (-0.027, 0.143) NA 

 Prog. 0.003 (-0.037, 0.049) NA 0.003 (-0.028, 0.045) NA 0.002 (-0.032, 0.040) NA 
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 Prog/E3 0.002 (-0.045, 0.053) NA 0.026 (-0.032, 0.103) NA 0.030 (-0.024, 0.107) NA 

 Test. 0.004 (-0.045, 0.060) NA 0.028 (-0.021, 0.104) NA 0.051 (-0.005, 0.141) NA 

 Test./SHBG 0.001 (-0.051, 0.052) NA 0.035 (-0.013, 0.116) NA 0.060 (0.000, 0.157) NA 

 SHBG -0.003 (-0.043, 0.026) 0.14% 0.022 (-0.025, 0.095) NA 0.034 (-0.023, 0.117) NA 

 TSH 0.026 (-0.021, 0.095) NA 0.004 (-0.038, 0.049) NA 0.006 (-0.040, 0.058) NA 

 T3 -0.004 (-0.076, 0.060) 0.32% 0.004 (-0.031, 0.044) NA 0.011 (-0.033, 0.065) NA 

 fT4 -0.022 (-0.125, 0.071) 3.10% 0.014 (-0.029, 0.071) NA 0.025 (-0.026, 0.094) NA 

 T4 -0.017 (-0.086, 0.034) 1.84% -0.008 (-0.062, 0.030) 0.97% 0.004 (-0.041, 0.054) NA 

 T3/T4 0.004 (-0.045, 0.056) NA 0.005 (-0.029, 0.050) NA 0.022 (-0.017, 0.085) NA 
aIndication is NA when the TE and NIE are in different directions, rendering the percent mediated uninterpretable. Estimates refer to the increase 
in probability of experiencing binary outcomes, or the unit change in continuous outcomes, due to the resulting change in the mediator with an 
interquartile range increase in exposure, while holding the exposure constant. Boldface text indicates a p-value < 0.10. 
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Figure IV.4. Estimated -log10(p-values) of mediating effects by hormone concentrations on the associations between phthalate ERS and birth 
outcomes, among mothers carrying a female fetus. 

 
From left to right within each panel, the vertical dashed lines represent p-values of 0.1, 0.05, and 0.01. All models were adjusted for continuous maternal age 
and categorical education. 
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Chapter V. Conclusions 

Environmental contamination is extensive on the island of Puerto Rico and the karst aquifer 

system on the island, which distributes drinking water throughout Puerto Rico, allows 

contaminated water to travel large distances with ease. Preterm birth rates are also 

disproportionately high in Puerto Rico, so researchers suspect the high levels of environmental 

pollution may be playing a causal role in the elevated risk of early delivery. Environmental 

exposures, particularly phthalates, have the potential to disrupt the maternal endocrine system, 

regulation of which is essential for maintenance of a healthy pregnancy. Many studies have 

established the endocrine disrupting capacity of phthalates and the critical roles of hormones 

during pregnancy, but few studies have investigated phthalate endocrine disruption in the 

context of human pregnancy, nor have many studies assessed the possible endocrine 

mechanisms by which phthalates may illicit their effects on adverse birth outcomes. This 

dissertation adds significant knowledge to the pregnancy health literature by advancing our 

understanding of how exposures to phthalate mixtures affect hormone concentrations and 

downstream risk of adverse birth outcomes. 

 

Summary of findings 

This dissertation combined three aims which evaluated the endocrine disrupting effects of 

phthalate metabolites during pregnancy and the resulting impacts on risk of adverse birth 

outcomes. Aim 1 tested for associations between repeated measures of urinary phthalate 

metabolites and serum hormones over two time points during pregnancy in the PROTECT 

prospective birth cohort. We observed diverse phthalate metabolite associations with CRH, 

thyroid, and reproductive hormones. In alignment with our hypothesis, many observed 

associations were specific to certain fetal sexes or developmental windows. Additionally, the 
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direction of many associations within classes of hormones tended to depend on the molecular 

weight of the phthalate metabolite. CRH positive associations were observed with both HMW 

and LMW metabolites, most of which were stronger at study visit 1 and among male pregnancies. 

Most significant findings with HMW phthalates involved metabolites of DNP (MCNP and MCOP) 

with which positive associations were observed for thyroid hormones and inverse associations 

were observed with testosterone and SHBG. Conversely, most significant findings with LMW 

phthalates involved metabolites of DBP (MHBP) and DiBP (MHiBP) with which positive 

associations were observed for testosterone and inverse associations were observed for thyroid 

hormones. Given the anti-androgenic effects of phthalates previously reported in the 

epidemiology and toxicology literature, the inverse associations we observed with HMW 

phthalates were in line with our hypothesis. We did not expect to observe positive associations 

with any phthalates and testosterone, which was in fact observed with MHBP. We were also 

surprised to find minimal significant associations between phthalate metabolites and 

concentrations of progesterone and estriol in repeated measures analyses. However, sensitivity 

analyses did uncover additional significant relationships. MBzP and MHBP were inversely 

associated with estriol later in pregnancy, while MCNP and MCOP were positively associated with 

estriol earlier in pregnancy. Progesterone concentrations significantly decreased with increasing 

MHBP exposure among female pregnancies only, and inverse associations with MEHHTP were 

present among male pregnancies and in repeated measures analyses.  

 

Various previous studies investigating phthalate associations with thyroid hormones during 

pregnancy report results that do not align with ours. One study reporting various inverse 

associations with T3146 that we did not observe was conducted in a different time frame and 

among a population which has been shown to have distinct consumer product usage patterns to 

those seen in Puerto Rico, likely contributing to differing results. Another study which reported 

a positive association between MEP and T479, which we did not observe here, showed lower 

exposure levels than those in our study. Finally, studies from Taiwan and China likely found 

associations distinct from ours due to significant differences in exposure distributions80 and 

gestational age at exposure and outcome assessment148–150. Similarly, previous studies assessing 
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testosterone associations with phthalate metabolites reported different exposure distributions 

than those in our study, and wide ranges of gestational ages at exposure assessment were used, 

likely driving inconsistencies between previous results and ours83,160. We have added new 

evidence of associations between phthalate metabolites and CRH and progesterone that have 

not been previously explored and thus need to be substantiated by more extensive research.  

 

In aim 2 we evaluated associations between hormone concentrations over two time points 

during pregnancy and adverse birth outcomes in the PROTECT cohort. We observed significant 

increases in the risk of various adverse birth outcomes with changes in progesterone, estriol, and 

thyroid hormone concentrations. Upon fetal sex specific analyses, a large number of observed 

associations remained significant only among male pregnancies. Significant increases in the odds 

of spontaneous preterm birth among male pregnancies were observed with increases in CRH, 

progesterone, T3, and fT4, and with a decrease in testosterone, while all of those associations 

were null among female pregnancies. Very similar results were found for gestational age at birth. 

Progesterone and the ratio of progesterone to estriol were positively associated with odds of 

having a small for gestational age infant among all pregnancies and also among male pregnancies 

specifically. The progesterone to estriol ratio was also marginally associated with increased odds 

of preeclampsia, however case numbers for preeclampsia, as well as gestational diabetes, were 

low (less than 5% of study participants) and so confidence in those findings is relatively weak.  

 

Our observed associations between timing of delivery and progesterone are somewhat 

supported by the literature, but also surprising. Previous work has shown higher concentrations 

of progesterone around 30 weeks among women who delivered preterm compared to term176. 

However, given the anti-labor functions of progesterone during pregnancy, we also expected to 

observe inverse associations between preterm birth and progesterone concentrations, 

particularly at later time points in pregnancy. Our observations of the ratio of progesterone to 

estriol being associated with reduced gestational age and risk of having a small for gestational 

age infant have not been substantiated in the previous literature. The existing research on thyroid 

hormone associations with preterm birth is heavily mixed; our findings for fT4 do not align with 
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any previously reported results, but our findings for T3 do align with previous results showing 

increased odds of preterm birth with elevated T3 concentrations at 10 weeks and 26 weeks 

gestation159. Our findings largely suggest that hormonal influences on birth outcomes differ 

between fetal sexes, an observation that has not been well studied in the past. Previous research 

does support the notion that male fetuses confer more risky pregnancies than female fetuses181–

183, further suggesting the need to study environmental exposures during pregnancy within a 

fetal sex-dependent framework. 

 

Aim 3 provided a novel analysis which combined emerging statistical methods for evaluating 

environmental mixtures and causal mediation pathways. Specifically, we assessed the total 

effects of exposure to a mixture of phthalate metabolites, quantified as a phthalate 

environmental risk score (ERS), on adverse birth outcomes, and the mediating effects of hormone 

concentrations on those relationships. In alignment with our hypothesis, we observed significant 

mediation by progesterone on the association between phthalate ERS and odds of preterm birth 

among male pregnancies. We also hypothesized that we would observe significant mediation by 

CRH and estriol. While we did observe suggestive evidence of mediation by CRH and estriol on 

the association between phthalate ERS and spontaneous preterm birth, these findings were not 

robust and must be validated in future studies. Previous work led us to expect a larger number 

of significant results among male pregnancies relative to female pregnancies. However, we did 

not expect to observe entirely null mediating effects among female pregnancies. This aim 

provided novel results which lay the ground work for future epidemiology studies targeted at 

determining biological mechanisms of environmental contaminants within a mixtures 

framework. 

 

No previous studies have assessed the mediating effects of hormone concentrations on 

associations between phthalate mixtures exposure and adverse birth outcomes. Previous studies 

do, however, provide evidence of the biological basis for progesterone mediating the association 

between phthalates and preterm birth. Those studies have shown disruption of the progesterone 

receptor by phthalate metabolites216,217, which could result in elevated circulating progesterone 
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concentrations, which then participate in a negative feedback loop with the progesterone 

receptor gene to cause a reduction in expression of the progesterone receptor and thus reduced 

progesterone function. 

 

Integration of findings 

Findings across three aims have shown significant evidence of associations between phthalate 

metabolites and hormones which are critical for progression of a healthy pregnancy. Many 

observed associations between phthalates, hormones, and birth outcomes are supported by 

results from previous studies, but some findings are contradictory or novel. We provide 

introductory evidence of significant mediating effects of hormones, and it is critical that future 

studies work to substantiate our findings. Taken together, the three aims of this dissertation 

provided several insights: 

 

Importance of phthalate metabolites for predicting changes in hormone concentrations 

and risk of adverse birth outcomes follows trends based on molecular weight. 

The tendency of many previous studies to focus on a small number of phthalate metabolites, 

or even metabolites from only one parent phthalate compound, have impeded our abilities 

to understand differential threats posed by each phthalate. Here we have depicted that 

phthalate metabolites coming from high versus low molecular weight metabolites show 

differing associations with hormones and have differential predictive capacities for adverse 

birth outcomes. In aim 1, we showed that LMW phthalates were associated with increases in 

testosterone and decreases in thyroid hormones, while associations in the opposite 

directions were observed with HMW phthalates. Further, aim 3 showed that phthalate 

metabolites contributing most significantly to risk scores for preterm and spontaneous 

preterm birth were largely LMW metabolites, with one exception of MCNP. LMW 

metabolites, particularly those of DBP and DiBP, have been previously shown to be important 

for prediction of preterm birth in the PROTECT cohort47, and these findings together call 

attention to the need for epidemiological and toxicological assessments beyond HMW 

phthalates, particularly DEHP, that are so commonly reported in the current literature. 
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Fetal sex is important for determination of true associations. 

Findings from all three aims strongly suggest that any future epidemiology studies during 

pregnancy should assess differences by fetal sex. We have provided evidence that hormone 

concentrations during pregnancy are heavily influenced by fetal sex, manifested in 

differential associations between phthalates and hormones, between hormones and birth 

outcomes, and differential mediating effects of hormone concentrations on associations 

between phthalate mixtures and birth outcomes. In aim 1, increasing phthalate exposures 

were associated with significant decreases in progesterone, T3 and T4 among female 

pregnancies, while increasing phthalate exposures were associated with increasing CRH and 

T3 among male fetuses. In aim 2, results among female pregnancies were mostly null, while 

results among male pregnancies showed increased odds of multiple birth outcomes with 

changing hormone concentrations. Finally in aim 3, despite established associations between 

phthalate exposure and hormone alterations among both fetal sexes in aim 1, we showed 

that significant mediation by hormone concentrations on associations between phthalate ERS 

and adverse birth outcomes could only be observed among male pregnancies. These findings 

do not discount the importance of phthalate endocrine disruption during female pregnancies, 

but rather they point to a mechanism of phthalate action on pregnancy via endocrine 

disruption that is particularly significant during male pregnancy. 

 

On the pathway from phthalate exposure to adverse birth outcomes, CHR and reproductive 

hormones may be more important than thyroid hormones. 

While significant findings for thyroid hormones were observed, and previous research clearly 

indicate the importance of thyroid hormones during pregnancy, our aggregate results do not 

suggest that phthalate disruption of thyroid hormones plays a significant role in the risk of 

experiencing adverse birth outcomes. As previously mentioned, LMW phthalates appear to 

be largely responsible for predicting adverse birth outcomes relative to HMW phthalates. The 

majority of significant associations observed between phthalates and thyroid hormones in 

aim 1 involved HMW metabolites, particularly when study visit and fetal sex effects were 
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being assessed. Further, fetal sex-specific assessments of hormones in aim 2 revealed the 

most compelling results for CRH, estriol, and progesterone conferring differential risk of 

preterm and spontaneous preterm birth, while thyroid hormones showed largely null results 

for those outcomes. Finally, not even suggestive evidence of mediation by thyroid hormones 

on relationships between phthalate ERS and birth outcomes was observed, while both 

significant and suggestive evidence of mediation by CRH and reproductive hormones was 

observed. All together, these results indicate that CRH and reproductive hormones should be 

interrogated in future research as potentially playing a role in the causal pathway between 

phthalate exposures and adverse birth outcomes.   

 

Directions of future research 

Despite the novel and significant findings of this dissertation, future work should still seek to 

substantiate and improve upon results reported here. First and foremost, as the PROTECT cohort 

grows and we obtain larger numbers of cases of these adverse pregnancy outcomes, it is critical 

to continuously reevaluate observed associations. This is particularly important for rare birth 

outcomes such as preeclampsia and gestational diabetes which occur in less than 5% of the 

PROTECT population. Additionally, testing for associations with phthalate concentrations 

presents a unique set of challenges due to the rapid clearance of metabolites from the body. 

While we were able to assess urinary phthalate concentrations at more than one time point 

during pregnancy, a larger number of measurements during mid-pregnancy and in earlier and 

later stages of pregnancy will help to educate us on phthalate effects during different 

developmental windows of susceptibility. Further to this point, the PROTECT cohort has urinary 

phthalate data at one time point in addition to those assessed in this dissertation, however we 

do not have serum hormone data at that additional time point, preventing us from assessing 

relationships at that time. Future phthalate epidemiology studies should also strive to include 

assessments of phthalate replacement chemicals and both high and low molecular weight 

phthalate metabolites, given the heavy emphasis on DEHP metabolites in the present literature 

and the importance of LMW metabolites evidenced in this dissertation.  
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Assessing hormone concentrations during pregnancy also presents challenges to investigators 

that must be considered. Some hormones are present at differing concentrations depending on 

the stage of pregnancy and so it is important to understand how environmental toxicants may 

impact hormone concentrations differently during each of these gestational stages. Some 

hormones should also be assessed with the status of other health conditions in mind. For 

example, individuals with thyroid autoimmunity disorders possess antibodies against their own 

thyroid hormones and so knowledge of thyroid autoimmunity status is necessary to truly 

understand associations. We did not have access to thyroid autoantibody measurements for 

these analyses, but future work should seek to include those measures. Hormone concentrations 

in maternal circulation may not indicate actual physiological changes that occur in response to 

endocrine disruption. As previously discussed in regards to progesterone, increasing 

concentrations may result from reduced expression of hormone receptors, and so the body’s 

response to progesterone is lowered, despite elevated hormone concentrations. Future 

epidemiologic work should seek to evaluate other measures of endocrine disruption in addition 

to circulating serum concentrations of hormones. Finally, and very importantly, the current 

pregnancy literature does not consistently assess differences in associations between fetal sexes. 

Some previous findings, in addition to those reported in this dissertation, point to significant 

differences between male and female fetal sexes in the risk for experiencing adverse birth 

outcomes and for the endocrine disrupting abilities of gestational phthalate exposures. 

Particularly when trying to determine mechanisms by which these phthalates act, it is important 

that studies attempt to disentangle relationships that are different between fetal sexes. 

 

Overall conclusions 

In conclusion, this dissertation provides significant and novel information regarding the 

endocrine disrupting capabilities of gestational phthalate exposures and the resulting 

implications for the health of human pregnancy. The results reported here add to an existing 

body of literature demonstrating the hormone disrupting capacity of phthalates and add new 

evidence of differential associations based on molecular weight of the phthalate and sex of the 

fetus. We also add evidence to existing literature that changes in hormone concentrations have 
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significant impacts on the risk of experiencing adverse birth outcomes, and that this risk is 

significantly different between male and female pregnancies. Finally, we add novel  mechanistic 

information to the reproductive epidemiology literature suggesting that mixtures of phthalate 

metabolites interfere with progesterone concentrations to confer greater risk of preterm delivery 

among only male pregnancies. Results from this dissertation further our efforts to understand 

increased rates of preterm birth observed on the island of Puerto Rico, and provide additional 

tools that can be used to predict at-risk pregnancies and better protect this highly vulnerable 

population. 
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