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ABSTRACT

In this thesis we will extend the study of Teichmüller spaces in two relatively

unexplored new directions. First, beginning with the Teichmüller space of the flat 2-

torus, rather than increasing the genus, we will explore higher dimensional tori. This

yields Riemannian symmetric spaces with very different, yet analogous, behavior to

classically studied Teichmüller spaces of hyperbolic surfaces. Second, in the setting

of hyperbolic surfaces, we study a certain kind of rigidity for maps between differ-

ent Teichmüller spaces. We will classify most of the possible cases of holomorphic

isometric submersions between Teichmüller spaces of finite-type hyperbolic surfaces

and begin exploration in the case of infinite-type.
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CHAPTER I

Introduction

Since the 19th century, and in many ways much earlier, classifying all possible

surfaces and exploring the resulting collections has been a central theme across math-

ematics. The most well-known approach to this problem is the study of the moduli

spaces of Riemann surfaces, initiated by Riemann in the mid-19th century.

Building up the foundations of complex analysis, Riemann surfaces were first de-

fined in order to give domains on which certain complex functions could be univalent,

such as f(z) =
√
z. Riemann built his moduli space to better understand analytic

functions, but it turned out to be a fundamental object across mathematics [37].

Fixing a topological type of the underlying surface (numbers of handles, punctures,

and boundary components), Riemann first gave a count of the number of parameters

(deemed “moduli”) needed to specify a surface, which we now see as the dimension

of the moduli space as a complex manifold.

It turned out that the moduli spaces contain singularities which prevent it from

being realized as a smooth manifold. Indeed, even in the case of the moduli space

of the flat torus, there are cone points. In the 1930s, Teichmüller was motivated to

precisely understand Riemann’s moduli space as a smooth manifold, and recognized

that the presence of singularities prevented this. He realized that the singularities
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arose due to nontrivial automorphisms of Riemann surfaces (e.g. if a Riemann surface

is equivalent to itself flipped over), and that a way around these singularities was to

“unfold” the moduli space by tracking both the structure of the Riemann surface and

a privileged homotopy class. This is most clearly defined by using equivalence classes

of marked Riemann surfaces. The resulting collections are known as Teichmüller

spaces. Studying the (complex, Riemannian, etc.) geometry of Teichmüller space

has occupied generations of mathematicians, and this thesis continues that story.

In a thesis focused on Teichmüller theory, it seems appropriate to mention that

the personal views and political activities of Oswald Teichmüller himself were unac-

ceptable (see [49], pages 442 – 451 for a brief but illuminating biography by Sanford

Segal). Segal claims that “Teichmüller’s dedication to the Nazi cause and ideology

seems complete. . . .” He further rejects the view that Teichmüller’s dedication to

Nazism was due to näıveté. Teichmüller’s activities include leading the November

2nd, 1933 boycott of Edmund Landau’s calculus class, which led to Landau’s early

retirement. The associated letter he wrote to Landau is rife with anti-Semitism and

xenophobia. Beyond being complicit, he was an active proponent of the Nazi ideals

which continue to have damaging impacts on the world. Perhaps the most poignant

perspective on Teichmüller’s role in mathematics and modern history comes from

Lipman Bers’ 1960 article [7], quoting Plutarch (Life of Pericles, 2.2): “It does not

of necessity follow that, if the work delights you with its grace, the one who wrought

it is worthy of your esteem.”

The Teichmüller space of a closed oriented surface Sg of genus g, denoted T (Sg)

(or T (Sg,n) for a surface of genus g with n punctures), is the moduli space of marked

complex structures on the surface. By the uniformization theorem, each such marked

complex structure possesses a canonical Riemannian metric of constant curvature.
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An important consequence is that one can equivalently view the Teichmüller spaces

as classifying marked surfaces with a (constant-curvature) Riemannian metric. The

structures on the underlying surfaces enable one to define different kinds of structures

on the Teichmüller space itself.

Several different metrics have been defined for T (Sg), some of which are built

directly from structures on the underlying surfaces. The earliest such construction is

the classical Teichmüller metric dTeich, defined in terms of extremal quasiconformal

distortion between two marked complex structures. Another well-known metric on

T (Sg) is the Weil-Petersson metric, introduced by Weil [55], which is an incomplete

Riemannian metric. In [53], Thurston defined an asymmetric metric on T (Sg), g ≥ 2,

using the extremal Lipschitz constant for marking-preserving maps between hyper-

bolic surfaces. This metric is natural for Teichmüller spaces of hyperbolic surfaces as

it uses only the canonical Riemannian metric associated to each complex structure.

In Chapter II we will review the necessary background on Teichmüller theory.

Symmetric spaces are another class of spaces that are very well-studied. Sym-

metric spaces are (Riemannian) manifolds which admit an inversion symmetry at

every point, and further all such spaces admit the isometric action of a Lie group.

We will review some basics of symmetric spaces in Chapter III. The action of the

mapping class group (which changes markings on marked Riemann surfaces) on Te-

ichmüller space has been compared to the action of a Lie group on an associated

symmetric space. This has helped motivate a great deal of work studying analogies

between Teichmüller spaces and symmetric spaces throughout their long histories.

Usually, questions, results, and properties about the latter motivate those about the

former; for example, one might ask if Teichmüller spaces admit inversion symmetries

(famously, they do not: see [46]). Our first new direction in Teichmüller theory
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will reverse this pattern and study certain symmetric spaces through the lens of

Teichmüller theory.

The moduli space and the Teichmüller space of the flat 2-dimensional torus are

well-understood as the locally symmetric space SL(2,Z)\ SL(2,R)/ SO(2) and the

symmetric space SL(2,R)/ SO(2), respectively. The Teichmüller spaces of higher-

genus 2-dimensional surfaces have been studied extensively (including in the final

chapter of this thesis). In Chapter IV, we will instead focus on higher-dimensional

flat tori, where we will leverage the modular interpretation of the symmetric spaces

SL(n,R)/ SO(n) to define and interpret new and old metrics and compactifications

on them.

While there are similarities between the action of mapping class groups on Te-

ichmüller spaces and the action of arithmetic subgroups of Lie groups on associated

symmetric spaces, Teichmüller spaces are very different from symmetric spaces. For

example, a corollary of Royden’s theorem [46] shows that there are no symmet-

ric points of Teichmüller spaces of hyperbolic surfaces, and Royden’s theorem itself

shows that the automorphism groups of finite-dimensional Teichmüller spaces are

discrete. Despite important departures from symmetric space behavior for the case

of hyperbolic surfaces, in the case of flat n-tori of unit volume, the Teichmüller

spaces are precisely symmetric spaces. After defining the Teichmüller spaces of unit

volume flat n-tori, denoted by T (n), we will define analogs of the three metrics for

T (n) described earlier. The natural bijection T (n) ↔ SL(n,R)/ SO(n) (reviewed

in Section 4.1) is utilized throughout. The first of our main results is the following

characterization of these metrics:

Theorem I.1. For T (2), the Thurston metric, Teichmüller metric, Weil-Petersson

metric, and hyperbolic metric all coincide. For T (n) with n ≥ 3, we have:
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1. The Thurston metric is an asymmetric polyhedral Finsler metric which can be

computed explicitly (Theorem IV.14, Proposition IV.37).

2. The Teichmüller metric is the symmetrization of the Thurston metric by maxi-

mum (Theorem IV.29).

3. The Weil-Petersson metric is equal to the natural Riemannian metric on the

symmetric space SL(n,R)/ SO(n) (Proposition IV.35).

In addition, the Teichmüller metric on T (n) has been studied in a very different

context before: in [40], the same metric on SL(n,R)/ SO(n) was found to be a general-

ization of the Hilbert projective metric. The Teichmüller metric on SL(n,R)/ SO(n)

has also been studied in the context of conformal structures on vector spaces (see

[42] Appendix A.1).

Our main tool for understanding the Thurston metric is Proposition IV.6, where

we show that the minimal Lipschitz constant is realized by the unique affine map

between two marked tori. Recall that the extremal quasiconformal map realizing

the Teichmüller distance is unique (see Theorem 11.9 of [20], originally in [51]).

Interestingly, this is not the case for extremal Lipschitz maps. We give a construction

for an infinite family of extremal Lipschitz maps in Proposition IV.8.

Beyond metric structures, compactifications of symmetric spaces and Teichmüller

spaces have been studied from many perspectives. A compactification of a topological

space is in some sense a way to affix a boundary in order to, among other things,

understand the ways in which sequences in the space can diverge. We make this

more precise in Chapter III. For example, to compactify the real number line R,

one could add two “endpoints” and obtain the space [−∞,∞] and study the real

numbers using tools intended for closed intervals. Another compactification of R

is the one-point compactification, where we “glue” both infinite ends together “at
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infinity” and obtain the circle S1. Understanding different compactifications and

their relationships to other structures can give new insights into various spaces. In

the latter part of Chapter IV, we continue our study of Teichmüller spaces of flat

tori by introducing and studying several compactifications.

One of the most important compactifications for symmetric spaces is the Satake

compactification associated to a representation of the isometry group, first studied

in [48]. For the broader class of Finsler manifolds, one has the horofunction com-

pactification with respect to the Finsler metric, first defined by Gromov in [28]. For

Teichmüller spaces, Thurston’s compactification and its geometric interpretation us-

ing projective measured foliations (see [22]) is the most well-known. We briefly review

this idea in Chapter IV. In [54], Walsh showed that the horofunction compactification

with respect to the Thurston metric is equivalent to Thurston’s compactification.

Haettel in [30] defined and studied a Thurston-type compactification of the space

of marked lattices in Rn via an embedding in the projective space P(RZn

+ ). This

mimics the original construction of Thurston. Theorem 3.1 in [30] shows that this

compactification is SL(n,R)-equivariantly isomorphic to the minimal Satake com-

pactification induced by the standard representation of SL(n,R).

In Section 4.8, we introduce a related compactification of T (n), analogous to the

geometric description of Thurston’s compactification. In particular, we define an

analog of projective measured foliations on n-tori to construct a Thurston boundary

of T (n).

Theorem I.2. For the Teichmüller space T (n) = SL(n,R)/ SO(n) of unit volume

flat n-tori, the following compactifications are SL(n,R)-equivariantly isomorphic:

1. Thurston compactification via measured foliations on n-tori

2. Horofunction compactification with respect to the Thurston metric
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3. Minimal Satake compactification associated to the standard representation of

SL(n,R)

Corollary I.3. The Thurston boundary for T (n) is a topological sphere.

The equivalence (1)↔(2) is analogous to the case of hyperbolic surfaces, while

(1)↔(3) is related to Theorem 3.1 in [30], and gives a geometric interpretation of

the boundary points of the compactification in [30]. Theorem I.2 is the combination

of Proposition IV.37 and Theorem IV.49. Corollary I.3 again mimics the case of

Teichmüller spaces of hyperbolic surfaces, and follows immediately from Theorem I.2

in light of some past work on Satake compactifications. We also show the following

for the Teichmüller metric:

Theorem I.4. The horofunction compactification of T (n) with the Teichmüller met-

ric is SL(n,R)-equivariantly isomorphic to the generalized Satake compactification

associated to the sum of the standard and dual representations of SL(n,R).

Finally, as an immediate corollary to Theorem I.1(3) and well-known facts about

compactifications of nonpositively-curved Riemannian symmetric spaces, we have:

Corollary I.5. The horofunction compactification of T (n) with respect to the Weil-

Petersson metric is the visual compactification of SL(n,R)/ SO(n).

A further avenue of study would be to explore the Teichmüller theory of the Siegel

upper-half space consisting of symmetric complex matrices whose imaginary part is

positive definite. This is the moduli space of marked abelian varieties. The Siegel

upper-half space is an alternative way to generalize the hyperbolic upper-half plane,

which is the 1×1 matrix case. This direction may allow for an analog of the complex

structure of Teichmüller spaces, which is lacking in the case of real tori.
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Another interesting result comparing Teichmüller spaces and symmetric spaces is

contained in the thesis of S. Antonakoudis [4]. He proved that there is no holomorphic

and Kobayshi-isometric submersion between a finite-dimensional Teichmüller space

and a bounded symmetric domain, provided each is of complex dimension at least

two. It is also an especially interesting connection to the last part of this thesis:

in Chapter V we study holomorphic isometric submersions between two Teichmüller

spaces, instead of between a Teichmüller space and a bounded symmetric domain.

The work of Chapter IV began by considering the Thurston metric on Teichmüller

spaces of 2-tori, following [6]. By defining a new analog of Thurston’s metric and

extending to higher dimensions, this work (especially Theorem IV.14) gives an answer

to Problem 5.3 in W. Su’s list of problems on the Thurston metric [50] from the AIM

workshop “Lipschitz metric on Teichmüller space” in 2012.

Comparisons to symmetric spaces provide an interesting perspective from which

one can discover structural properties of Teichmüller space. Another direction in

Teichmüller theory is to see when various properties of Teichmüller spaces reflect the

surfaces they classify. A central theme here is the interplay between the analytic

structure of T (Sg,n) and the topology and geometry of the underlying finite-type

surface Sg,n.

This theme is exemplified by the result of Royden [46] asserting that every bi-

holomorphism of T (Sg) with g ≥ 2 arises from the action of a mapping class of Sg.

The fascinating idea is that the intrinsic structure of T (Sg) as a complex manifold

reflects the underlying topology of the surfaces it classifies. To prove this, Royden

first established that the Teichmüller metric is an invariant of the complex struc-

ture on T (Sg) – it coincides with the intrinsically defined Kobayashi metric. Thus,

any biholomorphism of T (Sg) is an isometry for the Teichmüller metric. Then,
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by analyzing the infinitesimal properties of the Teichmüller norm, Royden showed

that any holomorphic isometry is induced by a mapping class. Earle and Kra [16]

later extended Royden’s result to the finite-dimensional Teichmüller spaces T (Sg,n).

Finally, Markovic [41] generalized to the infinite-dimensional case, proving for any

Teichmüller space of complex dimension ≥ 2, that the biholomorphisms are induced

by quasiconformal self-maps of the underlying Riemann surface.

Royden, Earle-Kra, and Markovic characterized holomorphic isometries between

Teichmüller spaces - except in a few low-complexity cases, these are induced by

identifications of the underlying surfaces. While these results do not require a priori

the Teichmüller spaces to be classifying the same surfaces, they conclude that way.

Maps between distinct Teichmüller spaces are not very well-studied. Our second new

direction in Teichmüller theory is to study rigidity properties for maps which may

be between distinct Teichmüller spaces. Weakening the assumption of maps being

biholomorphic, we will generalize the celebrated result of Royden.

In Chapter V, we first detail joint work of the author with Dmitri Gekhtman on

this topic [25]. In particular, we characterize a broader class of maps between finite-

type Teichmüller spaces - the holomorphic and isometric submersions. Recall that a

C1 map between Finsler manifolds is an isometric submersion if the derivative maps

the unit ball of each tangent space onto the unit ball of the target tangent space.

Consider the forgetful maps. These are maps T (Sg,n) → T (Sg,m) with m < n

which simply “forget” the punctures. That is, given an inclusion map Sg,n ↩→ Sg,m

between the underlying smooth surfaces, one can define a map between Teichmüller

spaces by inducing a map between marked surfaces. It turns out that these are

a motivating example of a class of holomorphic isometric submersions between Te-

ichmüller spaces; we will quickly verify this in Chapter V:
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Proposition I.6. Forgetful maps between Teichmüller spaces are holomorphic iso-

metric submersions.

Our main result in Chapter V is that the holomorphic isometric submersions be-

tween Teichmüller spaces are all of geometric origin - with some low genus exceptions,

these submersions are precisely the forgetful maps T (Sg,n) → T (Sg,m).

Theorem I.7 (Theorem 1.1 from [25]). Let F : T (Sg,n) → T (Sk,m) be a holomorphic

map which is an isometric submersion with respect to the Teichmüller metrics on the

domain and range. Assume (k,m) satisfies the following conditions:

The type (k,m) is non-exceptional: 2k +m ≥ 5.(1.1)

The genus k is positive: k ≥ 1.(1.2)

Then g = k, n ≥ m, and up to pre-composition by a mapping class, F : T (Sg,n) →

T (Sg,m) is the forgetful map induced by filling in the last n−m punctures of Sg,n.

Remark I.8. Recall that we have isomorphisms T (S2,0) ∼= T (S0,6) and T (S1,2) ∼=

T (S0,5) induced by hyperelliptic quotients. Thus, our hypothesis on the type (k,m)

can be rephrased as follows: T (Sk,m) is of complex dimension at least 2 and is not

biholomorphic to a genus zero Teichmüller space T (S0,m). We expect that it is

possible to remove the genus condition:

Conjecture I.9. Any holomorphic and isometric submersion between finite-dimensional

Teichmüller spaces of complex dimension at least 2 is a composition of

1. Forgetful maps T (Sg,n) → T (Sg,m) with m < n.

2. Mapping classes T (Sg,n) → T (Sg,n).

3. The isomorphisms T (S2,0) ∼= T (S0,6) and T (S1,2) ∼= T (S0,5).
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Remark I.10. The complex dimension 1 Teichmüller spaces T (S0,4), T (S1,0), and

T (S1,1) are all biholomorphic to the unit disk D. There are many isometric submer-

sions T (Sg) → D; the diagonal entries of the canonical period matrix are examples.

Theorem 5.2 and its corollaries in [42] show that for each diagonal element of the

period matrix, one can define a GL+
2 (R)-invariant foliation of T (Sg), the leaves of

which are determined by the value of that diagonal element of the period matrix at

that point in T (Sg). One can then define the map T (Sg) → D sending each point

to the value associated to that leaf, and the GL+
2 (R)-invariance implies that these

maps are holomorphic isometric submersions.

Theorem I.7 generalizes Royden’s theorem on isometries by studying isometric

submersions between Teichmüller spaces. Dually, one can attempt to generalize

Royden’s theorem by classifying the holomorphic and isometric embeddings between

Teichmüller spaces. A claimed result of S. Antonakoudis states that the isometric

embeddings all arise from covering constructions. This is another example of studying

maps between distinct Teichmüller spaces.

Our result on holomorphic isometric submersions in the finite-type setting com-

plements a classic theorem of Hubbard [34] asserting that there are no holomorphic

sections of the forgetful map T (Sg,1) → T (Sg), except for the six sections in genus

2 obtained by marking fixed points of the hyperelliptic involution. Earle and Kra

[16] later extended the result to the setting of forgetful maps between finite-type

Teichmüller spaces T (Sg,n) → T (Sg,m). Combined, Theorem I.7 and the theorem of

Hubbard-Earle-Kra have the following interpretation:

1. Holomorphic and isometric submersions between finite-dimensional Teichmüller

spaces are of geometric origin. (They are forgetful maps.)

2. These submersions do not admit holomorphic sections, unless there is a geo-
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metric reason (fixed points of elliptic involutions in genus 1 and hyperelliptic

involutions in genus 2).

We mention also a result of Antonakoudis-Aramayona-Souto [5] stating that any

holomorphic map Mg,n → Mk,m between moduli spaces is forgetful, as long as g ≥ 6

and k ≤ 2g − 2. One can see this is as a parallel of our result, with our metric con-

straint (isometric submersion) replaced by an equivariance condition (preservation

by the mapping class group action).

Markovic resolved a longstanding conjecture in [41] by generalizing Royden’s theo-

rem to all infinite-type surfaces, and the tools developed therein form the foundation

of our approach to Theorem I.7. This motivates the extension of Theorem I.7 to

infinite-type surfaces. In Section 5.4, we will consider the special case of infinite

punctures but finite genus, and we will give a few steps towards generalizing Theo-

rem I.7. In particular, we will show the following partial results:

Theorem I.11. Let X and Y be Riemann surfaces of non-exceptional type with pos-

itive (finite) genus, possibly with (infinitely many) punctures. Let F : T (X) → T (Y )

be a holomorphic isometric submersion with respect to the Teichmüller metric, and

assume that the derivative maps dFτ for τ ∈ T (X) are weak∗-sequentially continuous.

Then:

1. X and Y have the same genus

2. If Y has finitely many punctures, then at each point τ ∈ T (Y ), there exists a

holomorphic inclusion map h on the underlying surfaces which induces dFτ .

Remark I.12. In the case of finite punctures for both domain and range spaces,

Theorem I.7 is a stronger version of the above (fully concluding that the maps are

forgetful) without the assumption of weak∗-sequential continuity.
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This is a new result beyond those contained in [25]. We utilize tools of Earle-

Gardiner in [15] which allow us to obtain a map between spaces of quadratic dif-

ferentials even in this infinite-dimensional case where simply taking the dual of the

derivative is not sufficient. The added assumption of weak∗-sequential continuity is

used in order to generalize the Earle-Gardiner Adjointness Theorem for isometric

submersions. It may be the case that this assumption is not necessary. Further,

proving Theorem I.11 does not require all of the machinery in [41], which enabled

Markovic to generalize Royden’s theorem to surfaces even of infinite genus. Perhaps

by utilizing the full thrust of Markovic’s methods, further results about surfaces of

infinite type will be achievable in future work.

Remark I.13. While many of the tools in [41] are likely to generalize to the case of

isometric submersions, the main tools used there to reduce the problem of isometries

of Teichmüller spaces to a problem about maps between spaces of quadratic differen-

tials are less likely to work without substantial modifications. One of the main tools

used is the Uniqueness Theorem from Earle-Gardiner [15], which essentially states

that a holomorphic automorphism of Teichmüller space is determined by the image

and derivative at a single point. The proof involves inverse maps and the Cartan

Uniqueness Theorem, neither of which immediately work for isometric submersions.



CHAPTER II

Teichmüller Theory

In this chapter, we will review some background on Teichmüller spaces and the

surfaces they classify, as well as higher-dimensional tori which will be the objects of

study in Chapter IV. Some additional references for this material include [13] for

Riemann surfaces; for Teichmüller theory, [34], [20], and [35]; and for flat tori, see

e.g. [11].

2.1 Riemann Surfaces and Tools to Study Them

2.1.1 Riemann Surfaces

A Riemann surface is a 2-dimensional topological surface with an atlas of charts

mapping to the complex plane whose transition maps are biholomorphisms. In other

words, Riemann surfaces are 1-dimensional complex manifolds. The atlas of complex-

valued charts is called the surface’s complex structure. There are many ways to

specify or construct a Riemann surface. One particularly enlightening viewpoint is

seen via the holomorphic universal cover.

The universal cover of a Riemann surface S is a simply-connected Riemann surface

S̃ of which S is a quotient by the action of a discrete subgroup G of the automor-

phism group Aut(S̃) of S̃. The celebrated Uniformization Theorem has the following

immediate corollary (statement from [13]):

14
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Theorem II.1 (Uniformization). Any connected Riemann surface is biholomorphic

to one of the following:

• the Riemann sphere Ĉ

• C, C/Z, or C/Λ, where Λ is a lattice in C

• a quotient H/Γ where Γ ≤ PSL(2,R) is a discrete subgroup acting freely on H

The idea is that the groups Λ or Γ in the above statement are representations

of the fundamental group π1(S) of the Riemann surface in the automorphism group

of the holomorphic universal cover (respectively, C for tori and H for higher-genus

surfaces). That is to say, the gluing data for a fundamental domain in C or H,

determined in particular by a generating set for the (properly discontinuous and

free) action of π1(S) on H or C uniquely determines a Riemann surface, and any

Riemann surface can be described in this manner.

Recall that the Euler characteristic of a surface S with genus g and n punctures

is given by χ(S) = 2 − 2g − n. By the Gauss-Bonnet theorem (see e.g. [12] §4-5),

a torus with no punctures may be endowed with a flat metric, and a torus with

one or more punctures or any surface of genus at least two may be endowed with

a hyperbolic metric. A Riemann surface with negative Euler characteristic will be

called hyperbolic. See [35] §1 for a discussion on the beautiful relationship between

conformal, complex, and metric structures.

Particularly in Chapter V, we will be interested in punctured surfaces. We oc-

casionally refer to punctures as marked points. If X is a Riemann surface with

punctures, we write X̂ for the Riemann surface obtained from X by filling in the

punctures. In particular, any local coordinate at the puncture of X can be given by

a map to D − {0}; in defining the complex structure of X̂ we just extend this map

by defining a point of X̂ at the corresponding puncture and sending it to 0 in each
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such coordinate chart.

2.1.2 Quasiconformal Maps

Let φ be an orientation-preserving almost-everywhere real differentiable map φ :

D1 → D2 between domains in C. We say the quasiconformal dilatation of φ is given

by:

(2.1) Kφ = sup
|φz|+ |φz̄|
|φz|− |φz̄|

,

where the supremum is over all points where φ is real-differentiable. If Kφ ≤ K < ∞,

we say φ is a K-quasiconformal map. This relaxes the condition of holomorphicity

by allowing φz̄ to be nonzero, provided it remains smaller than φz.

Several basic facts about quasiconformal maps will be important for our discus-

sion. The following is a summary of several statements from [20] §11.1.

Lemma II.2 (Basic properties of quasiconformal maps). Let φ : D1 → D2 and

ψ : D2 → D3 be quasiconformal maps between domains in C.

• The map φ is 1-quasiconformal if and only if it is holomorphic.

• Kψ◦φ ≤ KψKφ

• If φ has an inverse, then Kφ−1 = Kφ.

• If ψ is conformal, then Kψ◦φ = Kφ; if φ is conformal, then Kψ◦φ = Kψ.

Because the definition is local and conformal maps do not alter the dilatation, one

can see that the definition of quasiconformal maps extends to maps between Riemann

surfaces and the dilatation is independent of the choice of coordinates. Quasiconfor-

mal homeomorphisms between Riemann surfaces are central in Teichmüller theory

because they enable one to directly compare non-equivalent complex structures on

the same underlying topological surface.



17

2.1.3 Quadratic Differentials

Spaces of quadratic differentials on Riemann surfaces encode a great deal of infor-

mation about the underlying surfaces, and as it turns out, are central to understand-

ing the infinitesimal structure of Teichmüller space. Let X be a hyperbolic Riemann

surface. Good references for this part are [20] §11.3 and [34] §5.3.

Formally, a holomorphic quadratic differential q on X is a holomorphic section of

the symmetric square of the cotangent bundle of X. We occasionally leave off the

word holomorphic, and we occasionally allow for meromorphic quadratic differentials,

generalizing the holomorphic case. We provide an alternative description, perhaps

more intuitively palatable, as follows.

If q is a holomorphic quadratic differential on X and z is a local coordinate defined

on a neighborhood U ⊆ X, then where z is defined we may write q as qU(z)dz
2 where

qU : U → C is holomorphic in the coordinate z. If w is another local coordinate

defined in a neighborhood V , then on U ∩ V :

qU(z(w))

!
dz

dw

"2

= qV (w)

where z = z(w) defines the holomorphic change of coordinates. The fact that we

change coordinate systems by multiplying by a conformal map gives quadratic dif-

ferentials several interesting properties.

Notice that the location and order of zeros (or poles in the meromorphic case)

is independent of the coordinate system, so we may speak of the zeros or poles of

a quadratic differential without ambiguity. Given quadratic differentials q1 and q2

on X, one can define the ratio q1/q2. This object is then simply a meromorphic

function X → Ĉ, with poles at the zeros of q2 or poles of q1 (depending on where

the zeros and poles match up, in the obvious way). To see why, first notice that if
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we pick a coordinate system in which to express q1 and q2, locally the ratio is a ratio

of holomorphic (meromorphic) functions. To change coordinates, we must apply the

change-of-coordinate transformation
#
dz
dw

$2
to both the numerator and denominator,

so the meromorphic function is independent of the choice of coordinates.

Another property of quadratic differentials is that one can integrate them across

the surface. If q is a quadratic differential on X, then we define a norm as follows:

||q|| :=
%

X

|q|.

This is known as the 1-norm on the collection of quadratic differentials. If ||q|| < ∞,

we say q is an integrable quadratic differential. We have the following characteriza-

tion:

Lemma II.3. Let q be a holomorphic quadratic differential on a punctured surface.

Then q is integrable if and only if all all poles at the punctures are simple.

Because the integrals are defined locally, Lemma II.3 follows from the basic theory

of integration in C, since closed surfaces (of finite genus) are compact, and meromor-

phic functions are locally integrable in norm only when the poles are simple.

We will primarily be interested in the structure of the set of all integrable holomor-

phic quadratic differentials on a surface X, denoted by Q(X). Quadratic differentials

can be added together and multiplied by scalars in C in an obvious way, thus en-

dowing Q(X) with a C-vector space structure.

If X is a surface with punctures, the space of integrable quadratic differentials

Q(X̂) on X̂, the filled-in surface, is related to Q(X) in a straightforward way. We

have:

Q(X) = Q(X̂)∪{quadratic differentials on X with simple poles at some of the punctures}.
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Notice also that if ρ : X → Y is a holomorphic covering map of Riemann surfaces

and q ∈ Q(Y ), then we can define the pullback differential ρ∗q ∈ Q(X). Given a

neighborhood U ⊆ X of x ∈ X, we may (by restricting) assume ρ is univalent on

U , so the restriction of ρ to U is biholomorphic. Thus ρ∗q on U may be defined

by simply looking at q on ρ(U). This also provides a way to define an embedding

Q(Y ) ↩→ Q(X).

We will also need the dimension of Q(X). Let X ∼= Sg,k be finite type. It is a

consequence of the Riemann-Roch theorem that the complex dimension of Q(X) is

given by dimC Q(X) = 3g − 3 + k (see e.g. Proposition III.5.2 of [21] for a proof).

If X is of infinite type, then the dimension of Q(X) is infinite. To see why, if X

has infinite genus, then it can be written as a cover of arbitrarily high-genus finite

surfaces, and so Q(X) contains arbitrarily high-dimensional subspaces. If X has

infinite punctures, for each puncture p there is some qp ∈ Q(X) with a simple pole at

p and no poles at any other puncture. This gives infinitely many linearly independent

quadratic differentials.

2.2 Teichmüller Spaces

2.2.1 Defining the Space

Fixing the underlying topological type of a surface (that is, the genus, number of

punctures, and boundary components), one can consider the collection of all possible

complex structures on the surface. This is called the moduli space and has been well-

studied since the 19th century.

Denote by Sg,k a surface of genus g with k punctures. We also write Sg for a

closed surface of genus g, and we will sometimes suppress the subscripts to mean any

surface (possibly infinite-type).
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Definition II.4. The Teichmüller space T (Sg,k) of Sg,k is defined as the set of

equivalence classes of Riemann surfaces of genus g with k punctures, marked via

orientation-preserving homeomorphisms:

T (Sg,k) = {[X, f ] : X a Riemann surface, f : Sg,k → X o.p. homeomorphism}/ ∼

where [X, f ] ∼ [X ′, f ′] if and only if there exists a biholomorphism h such that the

following diagram commutes up to homotopy:

X

Sg,k

X ′

h

f

f ′

The equivalence relation is sometimes called Teichmüller equivalence of marked

Riemann surfaces.

Remark II.5. By forgetting the maps f and f ′, we forget the markings and the con-

dition reduces to conformal equivalence. The resulting collection defines the moduli

space Mg,k of complex structures on Sg,k. More formally, the moduli space is realized

as the quotient M(Sg,k) = Modg,k\T (Sg,k), where Modg,k = Diff+(Sg,k)/Diff0(Sg,k)

is the mapping class group of Sg,k, and the action is given by

ϕ · [S, f ] = [S, f ◦ ϕ−1].

One can think of Modg,k as a “change-of-marking” group acting on T (Sg,k).

Remark II.6. Occasionally we will reverse the direction of the arrows in the definition,

namely we will consider points of Teichmüller space as equivalence classes of maps

f : S → Sg,k. The mapping class group action then becomes ϕ · [S, f ] = [S,ϕ ◦ f ].

This is less common in the literature, but especially for the purposes of Chapter IV

it results in more transparent notation. Fortunately, either definition yields the same

space.
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Remark II.7. Another way to specify a Teichmüller space is by using a Riemann

surface X as the “reference surface” rather than a topological surface Sg,k. In this

case we simply write T (X), and the rest of the definition is the same. For surfaces

of finite topological type, the definition only depends on the topological type (i.e.

g and k). For surfaces of infinite type, Definition II.4 will not yield a manifold.

To remedy this, we must specify both the topological type and a quasiconformal

class (i.e. a collection of marked surfaces related by quasiconformal maps of finite

dilatation). If X is infinite type, this is done by stipulating that representatives

f : X → S of the elements [S, f ]/ ∼ must not only be homeomorphisms, but must

also be quasiconformal. See [34] §6.4 for a more complete treatment of the definition

in the case of infinite-type surfaces.

Recall next the correspondence between complex structures and constant-curvature

metrics via the uniformization theorem, mentioned in Section 2.1.

Proposition II.8. For each g ≥ 2, there is a canonical bijection

T (Sg) ∼= Met−1
g /Diff0(Sg)

where Met−1
g is the collection of hyperbolic metrics on Sg, and Diff0(Sg) is the col-

lection of diffeomorphisms of Sg isotopic to the identity.

This is a special case of Theorem 1.8 in [35]. We can thus also view elements of

Teichmüller space as equivalence classes of marked hyperbolic surfaces.

We will next define the Teichmüller metric. Let [S, f ], [S ′, f ′] ∈ T (Sg). Then the

map f ′ ◦ f−1 is an orientation-preserving homeomorphism from S to S ′. Recall the

quasiconformal dilatation Kφ of φ. The Teichmüller metric on T (Sg) is defined as:

(2.2) dTeich([S, f ], [S
′, f ′]) =

1

2
log inf

φ∈[f ′◦f−1]
(Kφ)
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where the infimum is taken over all homeomorphisms φ in the homotopy class [f ′◦f−1]

which are almost-everywhere real-differentiable. As a consequence of Lemma II.2,

this defines a metric on T (Sg) (see also §5.1 of [35]).

For g = 1, the Teichmüller metric was determined by Teichmüller in [51] (see also

the translation and commentary in [2]):

Proposition II.9. Under the identification H2 ∼−→ T (S1) defined by τ 0→ C/(Z+τZ),

the Teichmüller metric is equal to the hyperbolic metric.

Thurston’s (asymmetric) metric [53] utilizes the hyperbolic structure on surfaces.

If [S, f ], [S ′, f ′] ∈ T (Sg), then the Thurston distance between them is defined:

dTh([S, f ], [S
′, f ′]) =

1

2
inf

φ∈[f ′◦f−1]
log(L(φ))

where the infimum is over all Lipschitz maps φ : S → S ′ in the homotopy class

[f ′ ◦ f−1], and

L(φ) = sup
x ∕=y

dS′(φ(x),φ(y))

dS(x, y)

is the Lipschitz constant for φ, and dS′ , dS are the induced hyperbolic metrics.

2.2.2 Teichmüller Space as a Complex Manifold

One of the central topics in Teichmüller theory is the study of T (Sg,n) as a complex

manifold. Many have contributed to this study, especially Ahlfors and Bers starting

in the 1960s. There are several different ways to construct a complex manifold

structure, and the details get quite involved. Here, we will briefly state some of the

main ideas in the approach outlined in [34] §6.5 (as well as tools from §4.8 and §6.4).

Another good source is [35], §6.1.

First, we will need the language of Beltrami forms. A Beltrami form on a Riemann
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surface X is a measurable C-antilinear bundle map µ : TX → TX with

||µ||∞ := ess sup
x∈X

||µ(x)|| < 1

where µ(x) denotes the C-antilinear map µ(x) : TxX → TxX for x ∈ X, and the

norm on µ(x) is the usual operator norm for (anti)linear maps.

Following [34] Definition 4.8.11, the space of Beltrami forms on X is denoted

Bel(X). This is the unit ball in the infinite-dimensional Banach space given by

the collection of such forms without the norm restriction, and so Bel(X) inherits the

structure of an analytic Banach manifold. In other words, it is an infinite-dimensional

complex manifold.

One can intuitively think of each µ ∈ Bel(X) as a field of infinitesimal ellipses on

X, the idea being that each ellipse represents a local (quasiconformal) deformation

of X, and the essential boundedness means that, apart from a measure zero subset,

the ellipses have bounded eccentricity. In local coordinates, Beltrami forms may be

written as µ(z)dz̄
dz
, with a transformation rule similar to that for quadratic differen-

tials. Let µ1(z1)
dz̄1
dz1

and µ(z)dz̄
dz

be two (overlapping) local realizations of µ ∈ Bel(X).

If z1 = g(z) is a change-of-coordinates function, then:

µ1(z1) = µ(z)
g′(z)

g′(z)
.

Remark II.10. Given µ ∈ Bel(X) and q ∈ Q(X), it is possible to integrate the pair

against each other over X, that is, one can compute
&
X
µq. The notation already

suggests as much: in local coordinates, we can think of µq as

µ(z)
dz̄

dz
· q(z)dz2 = µ(z)q(z)|dz|2.

This defines a bilinear pairing between Bel(X) and Q(X) which we will return to

later.
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Now, we will explain the statement of Proposition and Definition 4.8.12 in [34], in

which a Beltrami form µ onX is used to build a new Riemann surfaceXµ. Intuitively,

this is the surface obtained by performing the deformations specified by the field of

ellipses.

Let (ϕi : Ui → Vi)i∈I be an atlas of charts for X, with the Ui’s an open cover

of X, ϕi’s biholomorphic maps, and Vi’s domains in C. Then there are functions

µi : Vi → C such that

µ|Ui
= ϕ∗

i

#
µi
dz̄

dz

$

found by essentially looking at what µ does on X and transporting that to C. By the

Measurable Riemann Mapping Theorem (see e.g. [20] Theorem 11.16), there exist

mappings ψi : Vi → C which are solutions of the Beltrami equation

∂ψi

∂z̄
= µi

∂ψi

∂z
,

which are homeomorphisms onto their images. Finally, we claim that the composite

maps (ψi ◦ ϕi : Ui → C)i∈I form an atlas of charts defining a complex structure on

the topological surface underlying X, which defines a new Riemann surface Xµ.

This construction allows us to consider families of Riemann surfaces built from

a basepoint surface X, by considering the surfaces Xµ as we let µ vary across the

space of Beltrami forms.

Given a Riemann surface X of topological type Sg,n, fix a point in T (Sg,n) repre-

sented by ϕ : Sg,n → X. We can define a map Φ : Bel(X) → T (Sg,n):

µ 0→ [Idµ ◦ ϕ : Sg,n → Xµ].

where Idµ is the canonical (quasiconformal) map X → Xµ given by the identity on

the underlying set of points.
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Combining Propositions 6.1.4 and 6.4.11 in [34], the map Φ is surjective (and in

fact is a split submersion), and further we can characterize the lack of injectivity. In

particular, Φ(µ1) = Φ(µ2) if and only if there exists a homeomorphism f : Sg,n → Sg,n

isotopic to the identity map such that

Idµ1 ◦ ϕ ◦ f = Idµ2 ◦ ϕ.

We observe that this is Teichmüller equivalence.

It follows that Teichmüller space may be viewed as a quotient of Bel(X). By

Theorem 6.5.1 in [34], there is a unique complex manifold structure on T (Sg,n) such

that the map Φ is analytic, and this structure is independent of the choices of ϕ

and X. This completes the search for a complex structure on Teichmüller space.

While several methods for defining a complex structure are known, they lead to the

same structure. The method described above also generalizes to infinite-dimensional

Teichmüller spaces.

Remark II.11. The Kobayashi metric, first studied in 1967 in [38], is an intrinsic

metric one can define on complex manifolds. In the case of the upper half-plane,

it coincides with the usual hyperbolic metric. One way to define it for a complex

manifold M is given as follows. Denote by dH the hyperbolic metric on D. Then the

Kobayashi pseudometric d is defined to be the maximal pseudometric on M with

d(f(x), f(y)) ≤ dH(x, y) for every holomorphic map f : H → M . This depends only

on the complex structure of M and in this sense is intrinsic. Royden [46] showed

that the Kobayashi metric is equal to the Teichmüller metric. This is a remarkable

because the Kobayashi metric depends only on the complex structure of T (Sg),

while the Teichmüller metric is defined explicitly in terms of the marked surfaces

parametrized by T (Sg).
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2.2.3 Infinitesimal Geometry of Teichmüller Spaces

In Chapter V, we will study the local structure of Teichmüller space to prove

Theorem I.7. We briefly review the main elements at play and state the main results.

See §6.5–6.6 of [34] for the full details and proofs, especially Proposition 6.6.2.

Beltrami forms play a very central role in the geometry of Teichmüller spaces. A

detailed understanding of the map Φ : Bel(X) → T (S) defined in Section 2.2.2, and

in particular the derivative and its kernel, enables one to define a pairing between

the tangent spaces to Teichmüller space and the spaces of quadratic differentials on

the surfaces represented. Recall that if τ ∈ T (S) is represented by ϕ : S → X, then

there is a pairing Bel(X)×Q(X) → C defined by (µ, q) 0→
&
X
µq.

In order for this pairing to descend from Bel(X) to T (S) via Φ, we must have

that (µ, q) = 0 for all q whenever µ ∈ ker(DΦ); that is, deformations of the surface

X which yield Teichmüller-equivalent surfaces should yield zero upon pairing with

any quadratic differential. This is indeed the case, and there is an isomorphism

TτT (S) → (Q(X))⊥.

It follows that the cotangent space T ∗
τ T (S) may be identified with Q(X) (notably,

by considering the pre-dual in order to work in the infinite-dimensional case). This

is a central feature in the infinitesimal geometry of Teichmüller spaces. Because

dimC Q(X) = 3g− 3+n for X ∼= Sg,n a finite-type hyperbolic surface, it follows that

dimC T (Sg,n) = 3g − 3 + n as well. The cotangent spaces of T (S) also inherit the

L1-norm from Q(X) as well; by duality a Finsler norm is induced on the tangent

spaces TτT (S), and it is a remarkable result (Theorem 6.6.5 of [34]) that this Finsler

metric induces the Teichmüller metric (up to a choice of scaling).

With the geometry of the cotangent space in hand, we are in a position to recall

next the Weil-Petersson metric [55]. See also [35] Chapter 7 or [34] §7.7. Let [S, f ] ∈
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Tg, and let Q(S) be the vector space of holomorphic quadratic differentials on S,

identified with the cotangent space of T (Sg). For q1, q2 ∈ Q(S) define a Hermitian

metric on Q(S) by

〈q1, q2〉WP =

%

S

q̄1q2(ds
2)−1,

where ds2 is the hyperbolic metric on the Riemann surface. This induces an inner

product on the tangent space T[S,f ]T (Sg) by taking the real part, known as the

Weil-Petersson metric.

2.2.4 Royden’s Theorem and Generalizations

Two of the most important results in Teichmüller theory are an understanding

of the isometry group of Teichmüller space and the equivalence of the Kobayashi

metric and the Teichmüller metric. In Royden’s celebrated paper [46], both of these

are established, thereby solidifying the connections between the complex geometry

of Teichmüller space, the Teichmüller metric, and as we will see, the mapping class

group. Proofs of both results in more recent language for the case of finite-type

surfaces can be found in [34] §7.4. We will focus on the former result, but the latter is

of independent interest. By the latter result, the isometry group of Teichmüller space

with the Teichmüller metric is the same as the automorphism group of Teichmüller

space as a complex manifold.

Royden’s theorem states that the isometry group of T (Sg) is exactly the mapping

class group Modg (with the action described in Section 2.2) for g > 2, and quotient

Modg/(Z/2Z) for g = 2 (where the quotient is generated by the hyperelliptic invo-

lution, or informally, “turning the surface over”). This is a type of rigidity result,

where we consider the space of maps T (Sg) → T (Sg) with some condition (isometric,

or equivalently, biholomorphic) and see what must result.
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Royden’s theorem has been generalized several times. One interesting general-

ization in Earle-Kra [19], shows that if there exists a biholomorphic map between

arbitrary Teichmüller spaces, they must be the same Teichmüller space, and that

the map must be induced by the action of an element of the mapping class group.

Most importantly for us is the generalization by Markovic in [41] to all surfaces of

non-exceptional type, that is, with 2g + n ≥ 5. Markovic developed new methods

to handle the case of infinite-type surfaces. It turned out that a simplified version

of these methods provided a new proof in the finite-type case, which is explained in

[17].

One of our main results, Theorem I.7, is a generalization of Royden’s theorem in

a new direction: rigidity of non-biholomorphic maps between different Teichmüller

spaces. We will study holomorphic isometric submersions and prove Theorem I.7 in

Chapter V.

The proofs of Royden’s theorem and its generalizations (including ours) hinge on

the analysis of the infinitesimal geometry of the Teichmüller norm.

Let F : Tg,n → Tk,m be a holomorphic isometry. Then by taking the coderivative,

F induces for each X ∈ Tg,n a bijective, C-linear isometry of quadratic differential

spaces Q (F (X)) → Q(X). The core step in the proof of Royden’s theorem is showing

that, up to scale by a constant eiθ, any such isometry is pullback by a biholomor-

phism X → F (X). We will continue this theme in Chapter V, where the proof of

Theorem I.7 similarly begins by taking coderivatives and analyzing the rigidity of

maps between spaces of quadratic differentials.



CHAPTER III

Symmetric Spaces

We briefly review some relevant classical ideas about symmetric spaces and com-

pactifications. The main references are [32], [10], [9], [29], and [31]. Helgason’s text

[33] covers much more material on the relationship between symmetric spaces and

Lie groups in much more depth.

For brevity, we do not go into many details on the motivations and proofs of what

follows, which can be found in the references. Fortunately, the theory is very well-

developed and the cases we need are very well-behaved, so we can quickly hone in on

the tools we need. We will utilize them in Chapter IV to more deeply understand the

symmetric spaces SL(n,R)/ SO(n). In the following, fix n ≥ 2 and let G = SL(n,R),

K = SO(n), and X = G/K.

Proposition III.1. There is a natural bijective correspondence between the quotient

SL(n,R)/ SO(n) and the space Pn consisting of n×n real symmetric positive-definite

matrices of determinant 1.

Proof. Let X ∈ Pn. SL(n,R) acts on Pn by g ·X = gXgT , where gT is the transpose.

This is transitive with the stabilizer of the identity matrix precisely SO(n). Hence

SL(n,R)/ SO(n) is identified with Pn as homogeneous spaces of SL(n,R) by the map

gK 0→ ggT .

29
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A quick dimension count gives that dimPn = (n2 + n)/2− 1.

3.1 Lie Theory and Symmetric Spaces

Recall that the Lie algebra of a Lie group may be viewed as the tangent space to

the identity. The Lie algebra of G is g = sl(n,R) consisting of traceless matrices,

which decomposes as

g = k⊕ p

where k is the Lie algebra of K, consisting of traceless anti-symmetric matrices, and

p consists of traceless symmetric matrices. This is the Cartan decomposition of g,

with respect to the involution of taking the negative of the matrix transpose. The

subspace p has the property that the Killing form B(X, Y ) = 2nTr(XY ) is positive-

definite on p.

Fix a Cartan subalgebra a ⊆ p consisting of traceless diagonal matrices; this is a

maximal abelian subalgebra. The dimension of a is the rank of G and of X. Here,

the rank is r = n− 1. Utilizing the exponential map from the tangent space at the

identity to the Lie group itself, which in the case of G and g is simply the matrix

exponential, denote A = exp(a), the subgroup of G corresponding to the subalgebra

a. This defines a totally geodesic submanifold which turns out to be isometric to

Rr. A totally geodesic copy of Rr embedded in the symmetric space X is called a

maximal flat when r is the rank of the Lie group.

We next recall a few important examples of representations of G and g.

Example III.2. The standard representation of G is the inclusion

Π : SL(n,R) ↩→ GL(n,C).
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This is a faithful representation. The standard representation of g is the inclusion

π : sl(n,R) ↩→ Mn(C).

Composing Π with the quotient map GL(n,C) → PGL(n,C) defines a projective

faithful representation

ΠP : SL(n,R) → PGL(n,C).

Example III.3. The adjoint representation of the Lie algebra g is defined by

Ad : g → End(g), A 0→ [A, ·] for A ∈ g

The adjoint representation expresses the action of the Lie algebra’s bracket operation

as a linear operator on g.

The dual of a representation Π of G is the representation Π∗ defined by

Π∗(g) = Π(g−1)T

where AT is the transpose of A. The dual of a representation π of a Lie algebra is

defined by

π∗(A) = −π(A)T .

The direct sum of two representations τ1 : G → GL(n,C) and τ2 : G → GL(m,C)

is the representation τ1 ⊕ τ2 : G → GL(n + m,C) with the diagonal action. A

representation is said to be irreducible if there are no nontrivial invariant subspaces

of the space on which the Lie algebra acts.

We next recall weights and roots associated to a. A natural inner product on a is

given by

〈A,B〉 = tr(A
T
B)
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where A is the complex conjugate matrix. This inner product identifies a with the

dual space a∗. Let π be a nonzero representation of g acting on Rm. We say µ ∈ a

is a weight for π if there exists a nonzero v ∈ Rm such that

(3.1) π(H) · v = 〈µ,H〉v

for all H ∈ a. In particular, a weight allows us to use elements of a itself to express

the behavior of the representation (restricted to a) as scalar multiplication. The

weight space of µ, denoted Vµ, is the subspace of all v ∈ Rm for which Equation 3.1

holds. Each representation of a Lie group has an associated representation of its Lie

algebra. The weights of a Lie group representation are defined to be the weights of

the associated Lie algebra representation.

Example III.4. Let π be the standard representation for sl(n,R). Then the weights

are given by the standard basis ei, so 〈ei, ·〉 returns the ith diagonal element of a

matrix, and the weight space for ei is the line {λei : λ ∈ R}.

Let π∗ be the dual of the standard representation. Then the weights are −ei with

corresponding weight spaces generated by ei after identifying Rn with its dual.

Let Π1 ⊕ Π2 be a direct sum of two representations acting on V ⊕W , and let

W1 = {µi : i = 1, . . . , n} and W2 = {νj : j = 1, . . . ,m}

be the weights of Π1 and Π2 respectively, with corresponding weight spaces Vi ⊆ V

and Wj ⊆ W . Then the weights of Π1⊕Π2 are W1∪W2 with weight spaces Vi⊕{0}

and {0} ⊕ Wj when µi /∈ W2 and νj /∈ W1. If some µi = νj, then its (common)

weight space is Vi ⊕Wj.

The set of roots of g relative to a, denoted Σ, are the weights of the adjoint

representation. A set ∆ of simple roots is a basis of a made up of roots such that
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any root for a can be expressed as an integer linear combination of elements of ∆

where all coefficients are non-positive or non-negative.

Example III.5. A set of simple roots for sl(n,R) with the Cartan subalgebra a

defined above is given by

α1 = (1,−1, 0, . . . , 0), α2 = (0, 1,−1, 0, . . . , 0), . . . , αn−1 = (0, . . . , 0, 1,−1).

The root space for αj is spanned by the matrix Ej,j+1 which has a 1 in the (j, j +1)

spot and 0 elsewhere.

Given a representation of g, a choice of simple roots endows the set of weights

with a partial ordering (§8.8 in [32]). If {α1, . . . ,αn} is the set of simple roots of g

and λ1,λ2 are weights of a representation, we say λ2 ≽ λ1 if there exist non-negative

real numbers c1, . . . , cn such that

λ2 − λ1 = c1α1 + · · ·+ cnαn.

It is a fundamental result (Theorems 9.4 and 9.5 in [32]) that irreducible, finite-

dimensional representations of semisimple Lie algebras (including sl(n,R)) are clas-

sified by their highest weights (which always exist).

To each root α of g is associated a hyperplane Pα = ker(〈α, ·〉). The complement of

these hyperplanes, a\∪α∈ΣPα, is a set of open polytopes, each connected component

of which is called a Weyl chamber. A choice of a set of simple roots corresponds to

distinguishing a positive Weyl chamber. TheWeyl group W is the group of reflections

across the hyperplanes Pα, and acts simply transitively on the set of Weyl chambers.

In the case of g = sl(n,R), the Weyl group is the permutation group on n elements.

Now, we define a special type of Finsler metric built from Minkowski norms which

plays a major role in the theory of compactifications of symmetric spaces.
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Definition III.6. A polyhedral Finsler metric on a symmetric space is a Finsler

metric such that for each tangent space, the induced unit ball is a polytope.

The following theorem of Planche [45] shows how polyhedral Finsler metrics relate

to several fundamental structures in symmetric spaces. This result applies more

broadly to real semisimple Lie groups with finite center, but we will only need it in

the special case of SL(n,R)/ SO(n).

Theorem III.7 ([45], Theorem 6.2.1). The following are in natural bijection:

1. the W -invariant convex closed balls in a

2. the Ad(K)-invariant convex closed balls of p

3. the G-invariant Finsler metrics on X = G/K

The idea of this theorem is that, given a Finsler metric on a maximal flat F of

G/K, if it is invariant under the Weyl group action, it can be extended to all of G/K

by enforcing G-invariance. This defines a G-invariant Finsler metric.

3.2 Compactifications

Let X be a locally compact space. A compactification of X is a pair (X, i) where

X is a compact space and i : X → X is a dense topological embedding. If (X1, i1)

and (X2, i2) are compactifications of X, we say they are isomorphic if there exists a

homeomorphism φ : X1 → X2 such that φ ◦ i1 = i2. If φ is only continuous, then it

is necessarily surjective, and (X1, i1) is said to dominate (X2, i2). Domination puts

a partial order on the set of compactifications of a space.

In the case of symmetric spaces X = G/K, we are also interested in compact-

ifications that admit a continuous G-action. The relations of G-isomorphism and

G-compactification are extensions of the above definitions with the added condition

of equivariance under the G action.
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Horofunction compactifications are a special type of compactification defined for

certain metric spaces. They were introduced by Gromov in the setting of geometric

group theory [28] and has seen applications in various areas of mathematics. Walsh

[54] has studied horofunction compactifications of Teichmüller spaces, to which we

will return later.

Let (X, d) be a (possibly asymmetric) proper metric space with C(X) the set

of continuous real-valued functions on X endowed with the compact-open topology.

Denote by C̃(X) the quotient of C(X) by constant functions (additively). We embed

X into C̃(X) as follows:

ψ : X → C̃(X), z 0→ [ψz] where ψz(x) = d(x, z).

Definition III.8. The horofunction compactification X ∪ ∂horX of X is the topo-

logical closure of the image of ψ:

X
hor

:= cl{[ψz]|z ∈ X} ⊆ C̃(X)

Another type of compactification for nonpositively-curved Riemannian manifolds

is known as the visual compactification. Briefly, this is obtained by affixing a vi-

sual boundary consisting of equivalence classes of geodesic rays, where two rays are

equivalent if for some parametrization they remain within a bounded distance of each

other. This definition can also be generalized to CAT(0) spaces. See §II.8 in [10] for

details.

It is known that the horofunction compactification of a non-positively curved,

complete, simply-connected Riemannian symmetric space G/K with its G-invariant

metric is naturally isomorphic to its visual compactification. This holds more gen-

erally for CAT(0) spaces (Theorem 8.13, §II.8 in [10]).
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Next, we briefly review Satake compactifications of symmetric spaces, first defined

in [48]. See also Chapter IV of [29] and Chapter I.4 of [9], and [31] §5.1 for generalized

Satake compactifications.

Let X = G/K be a symmetric space associated to a semisimple Lie group G with

maximal compact subgroup K. Let τ : G → PSL(m,C) be an irreducible projective

faithful representation such that τ(K) ⊆ PSU(m). This induces a map

τX : X → P(Hn)

where P(Hn) is the projective space of Hermitian matrices, defined by

τX(gK) = τ(g)τ(g)
T
.

This is a topological embedding (Lemma 4.36 in [29]).

Definition III.9. The Satake compactification of X associated to τ is the closure of

τX(X) in P(Hn) and is denoted by X
S

τ .

Two Satake compactifications are G-isomorphic if and only if the highest weights

of their representations lie in the same Weyl chamber face, so there are only finitely

many different G-isomorphism types (Chapter IV, [29]).

Definition III.10. The maximal Satake compactification of a symmetric space is

a Satake compactification whose highest weight lies in the interior of the positive

Weyl chamber. A minimal Satake compactification of a symmetric space is a Satake

compactification whose highest weight lies in an edge of the Weyl chamber.

It is known that there is a unique (up to G-isomorphism) maximal Satake com-

pactification which dominates all other Satake compactifications, and many minimal

Satake compactifications. For SL(n,R), it is known that the standard representation

induces a minimal Satake compactification [9, Proposition I.4.35].
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We will also need generalized Satake compactifications, the definition of which

differs only in that the assumption that τ is irreducible is dropped.

In [31], Haettel, Schilling, Walsh, and Wienhard related generalized Satake com-

pactifications of a symmetric space to horofunction compactifications of polyhedral

Finsler metrics.

Theorem III.11 ([31] Theorem 5.5). Let τ : G → PSL(n,C) be a projective faithful

representation, and X = G/K be the associated symmetric space, where X is of

non-compact type. Let µ1, . . . , µk be the weights of τ . Let d be the polyhedral Finsler

metric whose unit ball in a Cartan subalgebra is

B = −D◦ = −conv(µ1, . . . , µk)

where conv is the convex hull. Then X
S

τ is G-isomorphic to X
hor

d .

Example III.12. The horofunction compactification of X = SL(n,R)/ SO(n) with

respect to the standard SL(n,R)-invariant Riemannian metric is not isomorphic to

a generalized Satake compactification because the unit ball in a flat is a Euclidean

ball, which is not the convex hull of finitely many points.

Finally, we recall the following very special case of a result of L. Ji [36, Theorem

2.4]. This topological result will allow us to compare the topology of compacti-

fied Teichmüller spaces of flat n-tori with that of compatified Teichmüller spaces of

hyperbolic surfaces.

Proposition III.13. Every Satake compactification X
S

τ of SL(n,R)/ SO(n) is home-

omorphic to a closed topological ball.



CHAPTER IV

Teichmüller Spaces of Flat n-Tori

4.1 The Teichmüller Spaces of Flat n-Tori

In this chapter, we describe and prove the results of the author and Lizhen Ji

[27]. We will start by introducing the Teichmüller spaces of unit volume flat n-tori,

denoted T (n), where n ≥ 2. Let Tn = Rn/Zn be the square torus of dimension n.

Definition IV.1. The Teichmüller space T (n) is defined as the set of equivalence

classes of marked flat tori of dimension n and unit volume:

T (n) = {[S, f ] : S a flat n-torus of volume 1, f : S → Tn orientation-preserving homeo}/ ∼

where [S, f ] ∼ [S ′, f ′] if and only if there exists an isometry h : S → S ′ such that the

following diagram commutes up to homotopy:

S

Tn

S′

h

f

f ′

As mentioned in Chapter II, this convention where the arrows in the marking are

reversed defines the same Teichmüller space, but for our present purposes several

aspects of the notation simplify considerably. We now recall a few classical facts.

Proposition IV.2. There is a natural bijective correspondence: T (n) ↔ SL(n,R)/ SO(n).

38
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Proof. We use methods similar to §10.2 of [20]. Given a marked unit volume torus

f : S → Tn, write S = Rn/Λ for a lattice Λ of unit covolume. Lift the map f to

f̃ : Rn → Rn, and let ζi = f̃−1(ei) for i = 1, . . . , n, where the ei are the standard

basis vectors of Rn. These form an ordered generating set (i.e. a marking) for the

lattice Λ, the coordinates of which form the columns of a matrix in SL(n,R). The

original choice of Λ was unique up to the action of SO(n) on Rn, and so this specifies

an element of SL(n,R)/ SO(n). Homotopic markings give the same lattice by Lemma

IV.5 below.

Conversely, given a matrix in SL(n,R), the columns form an ordered generating

set for a unit covolume lattice Λ. Now, there exists a linear map φ̃ : Rn → Rn

which sends the ordered generating set for Λ to the standard basis of Rn. This map

descends to a map φ : Rn/Λ → Tn which defines a marked flat torus. Two matrices

will give the same marked flat torus if and only if they represent the same coset in

SL(n,R)/ SO(n).

Remark IV.3. The symmetric space SL(n,R)/ SO(n) is a complete, simply-connected

manifold of non-positive curvature, and hence is diffeomorphic to the Euclidean

space of the same dimension R(n2+n)/2−1 by the Cartan-Hadamard theorem. The

Teichmüller spaces of hyperbolic surfaces are also diffeomorphic to Euclidean spaces

(see e.g. [1] §3.2).

Corollary IV.4. There is a natural bijective correspondence

T (2) ↔ H2.

Proof. We need only the identification SL(2,R)/ SO(2) ↔ H2, which follows from

the fact that SL(2,R) acts transitively on H2 by fractional linear transformations

with point stabilizers isomorphic to SO(2).
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The following properties will enable us to more easily translate between elements

of Pn and marked flat n-tori. See [39, Lemma V.6.2, Theorem IV.3.5] for the dimen-

sion 2 case of Lemma IV.5, whose proofs generalize immediately.

Lemma IV.5. 1. The group of isometries of a flat n-torus acts transitively.

2. If two homeomorphisms ϕi : S → S ′, i = 0, 1, between flat n-tori are homotopic,

then they induce the same isomorphism of deck transformation groups acting on

Rn.

Henceforth we will interchangeably refer to points of T (n) as either marked flat

n-tori, coset (representatives) gK ∈ SL(n,R)/ SO(n), or as elements of Pn. Next,

we consider the metric perspective on T (n).

While the columns of a matrix representative of a point gK determine a marked

lattice Λ which descends to a marked flat torus Rn/Λ, the corresponding point ggT ∈

Pn also has a concrete interpretation in the language of flat tori. The matrix ggT

is an explicit realization of the metric tensor for Rn/Λ. To see this, use Euclidean

coordinates on the standard torus Tn = Rn/Zn. The inner product between two

vectors v1, v2 ∈ Rn ∼= TpX for any p ∈ Rn/Λ is given by:

〈v1, v2〉p = 〈v1g, v2g〉Rn = 〈v1ggT , v2〉Rn .

This defines a Riemannian metric on the standard torus Rn/Zn which is isometric

to Rn/Λ. If γ : [0, 1] → Rn/Zn is a smooth closed curve and X ∈ Pn is the metric

tensor, then the length ℓX(γ) is computed as follows:

ℓX(γ) =

% 1

0

'
〈γ′(t)X, γ′(t)〉dt

This formula behaves nicely with the action g · γ = γg for g ∈ SL(n,R):

ℓX(g · γ) =
% 1

0

'
〈(γ′(t)g)X, γ′(t)g〉dt =

% 1

0

'
〈γ′(t)(gXgT ), γ′(t)〉dt = ℓg·X(γ).
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4.2 Extremal Lipschitz Maps Between Tori

Let [S, f ], [S ′, f ′] ∈ T (n), with S = Rn/Λ and S ′ = Rn/Λ′. Our main result in

this section is the following:

Proposition IV.6. The map ψ : S → S ′ which lifts to the unique affine map

ψ̃ : Rn → Rn realizes the minimal Lipschitz constant in [f ′−1 ◦ f ].

Proof. Let S = Rn/Λ and S ′ = Rn/Λ′ be tori of volume 1 with markings f and f ′.

Because affine self-maps on flat tori are isometric and transitive we may assume lifts

of maps ϕ : S → S ′ to Rn have the property that ϕ̃(0) = 0. Let F denote the class

of all such lifts whose quotients are homotopic to f ′−1 ◦ f . For g ∈ F , let ḡ denote

the induced map S → S ′.

Let q and q′ be the quotient maps for S and S ′, respectively. Then for all g ∈ F ,

the following diagram commutes:

Rn Rn

S S′

g

q q′

ḡ

Let {ω1, . . . ,ωn} be a basis of Λ. For any g1, g2 ∈ F , it follows that g1(ωi) =

g2(ωi) + λi for some λi ∈ Λ for each of i = 1, . . . , n. By Lemma IV.5, it follows that

λi = 0 for i = 1, . . . , n since g1 and g2 are homotopic. One then obtains a basis

{ζ1, . . . , ζn} of Λ′ such that F is the class of homeomorphisms g : Rn → Rn with

(4.1) g(0) = 0, g(x+
n(

i

miωi) = g(x) +
n(

i

miζi

for all x ∈ Rn. Notice that any homeomorphism Rn → Rn satisfying Equation 4.1

descends to a map S → S ′ homotopic to f ′−1 ◦ f . The condition of being affine

uniquely determines such a map inside a fundamental domain of Λ, and hence on all

of Rn. This proves uniqueness of the affine map; let w ∈ F be the affine map.
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Now we show w has the least Lipschitz constant. Let g ∈ F be a K-Lipschitz

map, i.e.

(4.2) K ≥ sup
x ∕=y

|g(x)− g(y)|
|x− y| .

Define gk(x) = g(kx)/k for k = 1, 2, . . .. These maps are all K-Lipschitz and satisfy

Equation 4.1, so gk ∈ F for all k. By Lemma IV.7 below, gk
k→∞−−−→ w uniformly on

Rn. It is a standard fact from real analysis that the pointwise limit of a sequence of

K-Lipschitz functions is also K-Lipschitz. Hence w is K-Lipschitz. In other words,

K ≥ L(w). Because this holds for any Lipschitz map g ∈ F , it follows that w has

minimal Lipschitz constant.

Lemma IV.7. In the proof of Proposition IV.6, the sequence gk → w uniformly.

Proof. Pick ε > 0 and let x0 ∈ Rn. Since ω1, . . . ,ωn are linearly independent, x0 may

be written as

x0 =
n(

i=1

riωi

for some ri ∈ R, i = 1, . . . , n. Let

M = sup
(a1,...,an)∈[0,1]n

))))g(
n(

i=1

aiωi)

))))+
n(

i

|ζi|.

This is finite since g is continuous and this domain is compact. Then for any integer

k > M/ε, we have:

(4.3)
))gk(x0)− w(x0)

)) = 1

k

))g(k
n(

i=1

riωi)− (k
n(

i=1

riζi)
))

since w is affine. Write kri = mi + ti, where ti ∈ [0, 1) and mi ∈ Z, for i = 1, . . . , n.

In Equation 4.3, the integer part mi of each term kri factors through g. We then

compute:

))gk(x0)− w(x0)
)) = 1

k
|g(

n(

i=1

tiωi)−
n(

i=1

tiζi| ≤
1

k
M < ε.
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It is also known that the extremal quasiconformal map for the Teichmüller dis-

tance is unique (see [39], Theorem 6.3). Interestingly, in the case of T (n), there are

many extremal Lipschitz maps, at least in some cases.

Proposition IV.8. There exists a pair of marked flat 2-tori with an infinite family

of distinct homeomorphisms respecting the markings, all of which realize the extremal

Lipschitz constant.

Proof. Let S be the square [0, 1]× [0, 1] ⊂ R2 and T be the rectangle [0, r]× [0, 1/r].

These regions S and T represent fundamental domains for two flat tori. An extremal

Lipschitz map is given by (x, y) 0→ (rx, y/r) with Lipschitz constant r. Fix r > 1.

Choose ε ∈ (−1/2, 1/2) and δ such that

max{0, 1
r
− r

2
+ εr} < δ < min{1

r
,
r

2
+ εr}.

Define the map F : S → T by:

F (x, y) =

*
+++,

+++-

#
rx, 1/r−δ

1/2−ε
y
$

y ≤ 1/2− ε

#
rx,

#
1
r
− δ

$
+ y−(1/2−ε)

1/2+ε
δ y ≥ 1/2− ε

See the figure for an explanation of these values.

Figure 4.1: The map F sends the two portions of the square linearly to the two similarly-shaded
portions of the rectangle.

This map is linear in the x-direction (the direction of maximum stretch), but

only piecewise linear in the y-direction. The affine map occurs at ε = 0 and δ =
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(2r)−1. This map projects onto a homeomorphism of the corresponding tori since

it respects the boundaries. The map F is differentiable almost everywhere, and the

total derivatives on the top and bottom halves of the domain are respectively given

by:

Dbottom =

.

/0
r 0

0 1/r−δ
1/2−ε

1

23 , Dtop =

.

/0
r 0

0 δ
1/2+ε

1

23

With the above constraints on ε and δ, one can see from Dtop and Dbottom that the

Lipschitz constant for F is r, as desired.

In contrast to the case of the affine map, the inverses of the maps constructed

in Proposition IV.8 are not Lipschitz-extremal. The above construction generalizes

easily to the case of higher dimensions.

Corollary IV.9. There exists a pair of flat tori in any dimension n ≥ 2 with in-

finitely many homotopic homeomorphisms respecting the markings which all realize

the extremal Lipschitz constant.

Proof. Let S and T be the two marked flat 2-tori from Proposition IV.8 and let

S ′ = S × (S1)n−2 and T ′ = T × (S1)n−2 with the product metrics, where each new

copy of S1 is isometric to a unit circle. An infinite extremal family is given by using

the family from Proposition IV.8 on the S and T components, and the identity on

the remaining components.

Remark IV.10. It is straightforward to generalize the above construction for any

two rectangular tori, but it is unclear whether all pairs of tori admit many distinct

Lipschitz-extremal maps, and if not, under what conditions they are unique.
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4.3 Thurston’s Metric for n-Dimensional Flat Tori

Definition IV.11. Thurston’s metric dTh on T (n) is defined as follows:

dTh([S, f ], [S
′, f ′]) =

1

2
log inf

φ∈[f ′−1◦f ]
L(φ)

L(φ) = sup
x,y∈S, x ∕=y

dS′(φ(x),φ(y))

dS(x, y)

where the infimum is over all Lipschitz homeomorphisms homotopic to f ′−1 ◦ f .

This is identical to the definition for hyperbolic surfaces. Proposition 2.1 in [53]

gives a geometric proof that the Thurston metric is positive-definite for T (Sg), which

works similarly for our case.

Proposition IV.12. For all points [S, f ], [S ′f ′] ∈ T (n), we have

dTh([S, f ], [S
′, f ′]) ≥ 0,

with equality only if [S, f ] = [S ′, f ′].

Proof. Suppose we have [S, f ], [S ′, f ′] such that dTh([S, f ], [S
′, f ′]) ≤ 0. Then by

compactness there exists a homeomorphism φ : S → S ′ in the appropriate homotopy

class with realizing the extremal Lipschitz constant L ≤ 1.

Under φ every sufficiently small ball of radius r in the domain space is mapped to

a subset of a ball of radius ≤ r in the target. However, both tori have unit volume.

If we cover the domain space by a disjoint union of balls of full measure, one sees

that each ball must map surjectively onto a ball of the same size. This procedure

works for arbitrarily small balls, and so φ is an isometry.

Because composing Lipschitz maps with constants L1 and L2 gives a Lipschitz

map with constant at most L1L2, the triangle inequality for dTh follows. Together
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with Proposition IV.12, we have that dTh is a (possibly asymmetric) metric. We will

need a quick classical fact before we can state a formula for dTh.

Lemma IV.13. The Lipschitz constant of a linear map M : Rn → Rn is given by

max{
'

|λ| : λ is an eigenvalue of MTM}.

Proof. First, recall L(M) = ||M ||op, the operator norm of M :

L(M) = sup
x ∕=y

||Mx−My||
||x− y|| = sup

x ∕=0

||Mx||
||x|| = ||M ||op.

Since the operator norm of a diagonalizable matrix is the absolute value of the largest

eigenvalue, using ||MTM ||op = ||M ||2op the result follows.

Next, we will derive a formula for easy computation using the structure of the

symmetric space SL(n,R)/ SO(n).

Theorem IV.14. Let Y,X be positive-definite symmetric matrices corresponding to

points of T (n). Thurston’s metric dTh on T (n) = SL(n,R)/ SO(n) is given by the

following formula:

(4.4) dTh(Y,X) =
1

2
max{log |λ| : λ is an eigenvalue of XY −1}

Proof. Let h SO(n) and g SO(n) be points in SL(n,R)/ SO(n) corresponding to Y

and X. The linear map between them is given by gh−1, which by Proposition IV.6

is an extremal Lipschitz map. By Lemma IV.13, the Lipschitz constant is given by

λ0 := max{|λ| : λ is an eigenvalue of (h−1)
T
gT gh−1}

Because

XY −1 = gT gh−1(hT )
−1 ∼ (h−1)

T
gT gh−1

are similar matrices, they have the same eigenvalues, and the result follows.
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Note that if Y = I, the absolute values in Equation 4.4 are redundant since X is

positive-definite.

Corollary IV.15. The Thurston metric is SL(n,R) invariant for the action on

SL(n,R)/ SO(n) ∼= T (n).

Proof. This is immediate from the formula and the definition of the action g ·X =

gXgT .

Corollary IV.16. The Thurston metric on T (2) is equal to the Riemannian sym-

metric metric on SL(2,R)/ SO(2), and hence matches the Teichmüller metric and

hyperbolic metric up to scaling.

Proof. The distance formula for the Riemannian symmetric metric on

SL(n,R)/ SO(n) ∼= Pn

is given by (see e.g. [52], Theorem 1.1.1):

d(Y,X) =

4(

i

(log λi)2

where the sum is over the eigenvalues of Y X−1. In the case of 2× 2 positive-definite

matrices of determinant one, there are precisely two eigenvalues whose product is 1.

Write the eigenvalue with absolute value at least 1 as λ. Then the formula becomes:

d(Y,X) =
'

(log λ)2 + (log 1/λ)2 =
'

2 log(λ)2 =
√
2| log λ|.

But λ is also the maximum eigenvalue of Y X−1, and XY −1 has the same eigenvalues,

so up to a choice of scaling, these are the same metrics.

Remark IV.17. A proof of Corollary IV.16 is obtained in the unpublished work [26]

by the author and L. Ji using an explicit computation of the Lipschitz distortion in

a realization of the fundamental domains as parallelograms in C.
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Remark IV.18. Another proof of Corollary IV.16 is possible using work of Belkhirat-

Papadopoulos-Troyanov [6], where the Thurston metric is defined on T (2), but T (2)

is defined using a different normalization. A fixed curve is set to length 1 via the

marking, as opposed to here, where we choose volume 1. Using the usual identifica-

tion of T (2) ↔ H2, it is shown that the resulting Thurston metric, denoted here by

κ̂, can be computed by the following formula ([6], Theorem 3):

κ̂(ζ, ζ ′) = log sup
α∈S

!
ℓζ′(α)/ℓζ′(ε)

ℓζ(α)/ℓζ(ε)

"
= log

!
|ζ ′ − ζ|+ |ζ ′ − ζ|

|ζ − ζ|

"

where the supremum is over homotopy classes of closed curves, ℓζ(α) is the length

of α in the metric associated to ζ ∈ H2, and ε is the normalizing curve. In order

to recover our dTh, we normalize using
√
Imζ, the volume. Using the identification

T (2) ↔ H2 for dTh, we obtain:

dTh(ζ, ζ
′) = κ̂(ζ, ζ ′) + log

!√
Imζ√
Imζ ′

"
= log

!
|ζ ′ − ζ|+ |ζ ′ − ζ|5

|ζ − ζ||ζ ′ − ζ ′|

"

=
1

2
log

!
|ζ ′ − ζ|+ |ζ ′ − ζ|
|ζ ′ − ζ|− |ζ ′ − ζ|

"

where the last equality follows from Lemma 2 (an identity for complex numbers)

from [6]. This is exactly the Poincaré metric.

Next, as in [53], we define another asymmetric metric, κ, on T (n). Let S(Tn)

denote the set of homotopy classes of essential closed curves on the n-torus. For

α ∈ S(Tn) and h a metric on Tn, denote by ℓh(α) the shortest length of any curve in

the homotopy class α. For the flat torus, while the curve realizing this length is not

unique, the shortest length is well-defined and positive. As above, let [S, f ], [S ′, f ′] ∈

T (n) with h and h′ the corresponding unit-volume flat metrics on Tn. Now, κ is

defined as:

(4.5) κ([S, f ], [S ′, f ′]) = log sup
α∈S(Tn)

!
lh′(α)

lh(α)

"
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That is, κ is a measure of the maximum stretch along a geodesic. As in [53], we

show:

Proposition IV.19. The two metrics κ and dTh are equal on T (n).

Proof. It is immediate that

κ([S, f ], [S ′, f ′]) ≤ dTh([S, f ], [S
′, f ′])

for all [S, f ], [S ′, f ′] ∈ T (n), since the latter involves a supremum over all geodesic

segments rather than only closed geodesics. For the opposite inequality, we will utilize

a geometric argument. Let ϕ : Rn → Rn be the (lift of the) affine marking-preserving

map between S and S ′.

There exists a line L containing the origin along which the maximal stretch of ϕ

is realized. If there are two lattice points on L, then the segment connecting them

descends to a geodesic whose length is stretched by the Lipschitz constant, yielding

κ ≥ dTh, and we are done.

Suppose now 0 is the only lattice point on L. One can find a sequence of lat-

tice points pn ∈ Λ, n = 1, 2, . . . which approach L. By continuity, under ϕ the

corresponding sequence of closed geodesics will have stretch factors approaching the

Lipschitz constant of the map ϕ. After taking the supremum of the stretches, we

conclude κ ≥ dTh, as required.

4.3.1 The Finsler Structure of the Thurston Metric

Finsler metrics are important in classical Teichmüller theory since both the Te-

ichmüller metric and Thurston metric are Finsler but not Riemannian. Here, we will

give a formula for the Finsler metric on T (n) associated to the Thurston metric dTh.

Definition IV.20. A Finsler metric on a manifold M is a continuous function

F : TM → [0,∞)
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on the tangent bundle such that for each p ∈ M , the restriction F |TpM : TpM →

[0,∞) is a norm (i.e. positive-definite, subadditive, linear under scaling by positive

scalars).

Our formula for the Finsler metric for dTh is very similar to the Finsler metric

discussed in [40] Theorem 3 (see also Section 4.5 of this paper). Recall first that

the tangent space of T (n) = SL(n,R)/ SO(n) at the identity is identified with the

space of traceless symmetric matrices. One obtains any other tangent space by left

translation via elements of SL(n,R).

Proposition IV.21. The Finsler structure on the tangent space at Z ∈ T (n) for

the Thurston metric dTh is given by

|X|Th(Z) =
1

2
max{λ : λ is an eigenvalue of XZ−1}

where X ∈ TZT (n) ∼= sl(n,R).

Proof. It suffices to show the case of Z = I. First, note that this is always non-

negative since the trace of X is zero. Let γ : [0, 1] → SL(n,R)/ SO(n) be a smooth

path from I to A. Since A is symmetric, its operator norm coincides with the

maximum eigenvalue, and so

dTh(I, A) =
1

2
sup

0 ∕=v∈Rn

log
〈γ(1)v, v〉
〈v, v〉

comes from the maximum eigenvalue. We then compute:

dTh(I, A) =
1

2
sup

0 ∕=v∈Rn

% 1

0

d

dt
log〈γ(t)v, v〉dt = 1

2
sup

0 ∕=v∈Rn

% 1

0

〈γ′(t)v, v〉
〈γ(t)v, v〉 dt

≤ 1

2

% 1

0

sup
0 ∕=v∈Rn

〈γ′(t)v, v〉
〈γ(t)v, v〉 dt =

1

2

% 1

0

|γ′(t)|Th(γ(t))dt

where the final equality follows because the supremum on the left-hand side yields

the operator norm, which matches the Finsler norm inside the integral on the right-
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hand side. This is the Finsler length of γ. Thus dTh is bounded above by the Finsler

distance of any path.

Next, choose X such that eX = A, which exists because A ∈ Pn. The Finsler

length of the path γ(t) = etX for t ∈ [0, 1] is computed as follows:

ℓ(γ) =
1

2

% 1

0

sup
0 ∕=v∈Rn

〈XetXv, v〉
〈etXv, v〉 dt =

1

2

% 1

0

sup
0 ∕=v∈Rn

d

dt
log〈etXv, v〉dt

=
1

2
sup

0 ∕=v∈Rn

〈Av, v〉
〈v, v〉 = dTh(I, A)

Thus the Thurston distance is realized by the Finsler length of a path, as desired.

Corollary IV.22. For U, V ∈ SL(n,R)/ SO(n), if eX = UV −1, the path given by

t 0→ etXV for t ∈ [0, 1] is a geodesic path from V to U with respect to dTh.

4.4 Teichmüller Metric for Higher-Dimensional Tori

Here, we utilize the definition of quasiconformal maps in higher dimensions from

[24] to define the Teichmüller metric on T (n) for n ≥ 2 and explore its properties.

The Teichmüller metric on SL(n,R)/ SO(n) has been studied for SL(n,R)/ SO(n)

as a Finsler metric on the space of conformal structures on vector spaces; see [42]

Appendix A.1. Here, we review this metric in the context of quasiconformal maps

between n-tori and compare it to our other metrics on T (n).

4.4.1 Definitions and Useful Facts on Quasiconformal Maps

We will first state as concisely as possible the definition of K-quasiconformal

maps between domains D and D′ in Rn under the assumption that they are also

diffeomorphisms, from Chapter 4 of [24].

For a linear map T : Rn → Rm, define the following:

L(T ) = max
|x|=1

|T (x)|, ℓ(T ) = min
|x|=1

|T (x)|.
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These are the maximal and minimal stretching of T , respectively.

Definition IV.23. Let f : D → D′ be a diffeomorphism of domains in Rn. Define

the inner, outer, and maximal dilatations respectively as follows:

KI(f) = sup
x∈D

|Jf (x)|
ℓ(f ′(x))n

KO(f) = sup
x∈D

L(f ′(x))n

|Jf (x)|

K(f) = max(KI(f), KO(f))

where f ′(x) is the total derivative of f at x ∈ D and Jf is the Jacobian. The map f

is said to be K-quasiconformal if K(f) ≤ K < ∞.

The above definition is local, so it applies immediately to flat tori by lifting any

map to its universal cover.

Next, we list a few basic properties of quasiconformal maps which will be es-

sential to the definition of the Teichmüller metric. They are direct analogs of the

2-dimensional case (compare to Lemma II.2). These come from Lemma 6.1.1 and

Theorem 6.8.4 of [24]:

Proposition IV.24. Let f : D → D′ and g : D′ → D′′ be quasiconformal homeo-

morphisms of domains in Rn. Then the following hold:

1. K(g ◦ f) ≤ K(g)K(f)

2. K(f) ≥ 1 with equality if and only if f is a Möbius transformation

3. K(f−1) = K(f)

We will need one more property of quasiconformal maps in order to prove that

the extremal quasiconformal constant is realized by the affine map. This is a very

special case of Theorem 6.6.18 in [24].
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Proposition IV.25. Let (fk)k∈N : Rn → Rn be a sequence of K-quasiconformal

homeomorphisms. Suppose fk → f locally uniformly. Then f : Rn → Rn is a

K-quasiconformal homeomorphism as well.

We now prove the quasiconformal analog of Proposition IV.6.

Proposition IV.26. The extremal quasiconformal constant for a homeomorphism

between two flat n-tori in a specified homotopy class is given by the unique affine

map.

Proof. Recall the proof of Proposition IV.6; in particular, recall the collection F of

homeomorphisms g : Rn → Rn such that

g(0) = 0, g(x+
n(

i

miωi) = g(x) +
n(

i

miζi

for all x ∈ Rn. This is precisely the collection of lifts of marking-preserving home-

omorphisms. Let g ∈ F be K-quasiconformal, and define gk(x) = g(kx)/k for

k = 1, 2, . . .. The maps gk are also K-quasiconformal since they are built from g

by pre- and post-composition with dilations. Further gk ∈ F , and the sequence

of maps uniformly converges to the affine map (by Lemma IV.7). By Proposition

IV.25, the affine map has dilatation at most K. This holds for all g ∈ F , so the

result follows.

We are now ready to define the Teichmüller metric. The scaling factor of 1/2n in

the definition is a choice similar to a factor of 1/2 which appears in some definitions

of the Teichmüller metric for hyperbolic surfaces, and enables several analogous

properties to work out more nicely.

Definition IV.27. Let [S, f ], [S ′, f ′] ∈ T (n). The Teichmüller metric on T (n) is
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defined as:

dTeich([S, f ], [S
′, f ′]) =

1

2n
log inf

g∈[f ′−1◦f ]
K(g)

where the infimum is taken over quasiconformal maps homotopic to f ′−1 ◦ f .

Proposition IV.28. The function dTeich above is a metric.

Proof. Proposition IV.24 (1) and (3) give symmetry and the triangle inequality, and

(2) shows dTeich ≥ 0. Now suppose dTeich([S, f ], [S
′, f ′]) = 0. Then there exists a

1-quasiconformal map g : S → S ′ preserving the marking. By Proposition IV.24

(2), it must be a Möbius transformation. Since it preserves the marking, it must

be orientation-preserving and not include inversions in spheres. Thus it is generated

by an even number of reflections over hyperplanes, so it is (the quotient of) an

orientation-preserving isometry of Rn. We conclude [S, f ] = [S ′, f ′].

Next, we exhibit a significant departure from Teichmüller spaces of hyperbolic

surfaces.

Theorem IV.29. For all [S, f ], [S ′, f ′] ∈ T (n), we have:

dTeich([S, f ], [S
′, f ′]) = max(dTh([S, f ], [S

′, f ′]), dTh([S
′, f ′], [S, f ]))

Proof. Recall from Corollary IV.26 that the extremal quasiconformal constant be-

tween two marked flat n-tori is realized by the unique affine map. The Jacobian of an

affine map is equal to its determinant, which must be 1, since it is volume-preserving.

Definition IV.23 then gives

K(g) = max

!
sup
x∈Rn

L(g′(x))n, sup
x∈Rn

1

ℓ(g′(x))n

"
,

but g is affine, so L(g′(x)) is the Lipschitz constant of g, and ℓ(g′(x))−1 is the Lipschitz

constant of the inverse map.
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Corollary IV.30. The Teichmüller metric on T (n) is given by:

dTeich(X, Y ) =
1

2
max{

)) log |λ|
)) : λ is an eigenvalue of XY −1}

Proof. This is precisely the symmetrization of the formula from Theorem IV.14 by

maximum, since the eigenvalues of Y X−1 are the reciprocals of the eigenvalues of

XY −1.

4.5 The Hilbert Metric on SL(n,R)/ SO(n)

Liverani and Wojtkowski [40] defined a generalization of Hilbert’s projective met-

ric for the symmetric space X = SL(n,R)/ SO(n). Their metric s arises naturally

during the study of the symplectic geometry of Rn ×Rn, and measures the distance

between pairs of Lagrangian subspaces. An explicit formula for the Finsler metric

on the tangent space TZX at a point Z ∈ X associated to their Hilbert metric is

also computed, along with examples of geodesics.

Consider the standard symplectic vector space Rn × Rn, where the symplectic

form is given by:

ω((x, y), (w, z)) = 〈x, z〉Rn − 〈w, y〉Rn

A subpsace V of (Rn × Rn,ω) is called Lagrangian if it is a maximal subspace such

that ω|V ≡ 0. These subspaces must be n-dimensional. A Lagrangian subspace is

positive if it is the graph of a positive-definite symmetric linear map U : Rn → Rn.

The collection of positive Lagrangian subspaces is parametrized by the space Pn.

The metric s is defined as the supremum of the symplectic angle between vectors

in two positive Lagrangian subspaces. A useful result is the following formula.

Proposition IV.31 (Proposition 5, Theorem 3, [40]). For two positive Lagrangian
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subspaces defined by U,W : Rn → Rn, s is given by

(4.6) s(U,W ) = max

6)) log |λ|
))

2
: λ is an eigenvalue of UW−1

7
.

The Finsler norm |A|Z for A ∈ TZX is given by

(4.7) |A|Z =
1

2
max{|λ| : λ is an eigenvalue of AZ−1}.

and the paths t 0→ etX for t ∈ [0, 1] and X of trace zero are geodesic paths.

Notice that Equation 4.6 matches the formula in Corollary IV.30, so we conclude:

Proposition IV.32. By the identification T (n) ↔ SL(n,R)/ SO(n), dTeich is equal

to the Hilbert projective metric, and dTeich is a Finsler metric with norm defined by

Equation 4.7. The paths t 0→ etX for t ∈ [0, 1] and X of trace zero are geodesics.

The significance of Proposition IV.32 is that the same metric dTeich on T (n) arises

in a natural way in a very different context. This provides further evidence of the

usefulness and richness of the study of this Finsler metric on SL(n,R)/ SO(n).

Remark IV.33. The Hilbert metric, defined on open convex subsets C ⊆ Rn not

containing a line, is based on the cross-ratio of two points a, b and the points where

the line ab meets the boundary ∂C. When C is the positive orthant of Rn, one

obtains a Finsler metric with many properties similar to the metric s.

4.6 The Weil-Petersson Metric

In this section, we will define the Weil-Petersson metric on T (n). Fischer-Tromba

[23] show the classical Weil-Petersson metric is recovered using a L2-pairing between

metrics on hyperbolic surfaces. In [56], Yamada gives an exposition of this approach,

including a definition of the Weil-Petersson metric for the Teichmüller space of the

flat 2-torus. We will follow Yamada’s presentation and explain how this quickly

generalizes to the case of flat tori in all dimensions.
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Write K = SO(n), G = SL(n,R). Recall first the tangent space of G/K at

the basepoint eK is the vector space of n × n symmetric matrices of trace 0. The

SL(n,R)-invariant metric at this point is defined by:

〈X, Y 〉eK = tr(XY ).

By translation, at other points gK ∈ G/K for g ∈ SL(n,R) the metric is given by

(4.8) 〈X, Y 〉gK = tr(g−1Xg−1Y ).

Now, recall that T (n) ∼= Pn is also the space of unit-volume flat metrics on Tn.

The tangent space to the set of Riemannian metrics on a manifold is naturally

the space of smooth symmetric (0, 2)-tensors ([56], §3). There is a natural L2 pairing

〈〈, 〉〉L2(g) at a metric g defined by:

(4.9) 〈〈h1, h2〉〉L2(g) =

%

M

〈h1(x), h2(x)〉g(x)dµg(x)

using the volume form dµg of g. Using local coordinates gij for g and (hk)lm for hk,

k = 1, 2, we can rewrite the integrand as:

〈h1(x), h2(x)〉g(x) =
(

1≤i,j,k,l≤2

gijgkl(h1)ik(h2)jl = Tr(g−1h1g
−1h2).

In §3.2 of [56], two conditions are imposed on the deformations of a metric in order

to ensure that each tensor h is tangent to the Teichmüller space and not merely the

space of all possible metrics: (1) the deformations must be L2-perpendicular to the

action of the identity component of the diffeomorphism group Diff0(M), and (2) the

deformations must preserve curvature. It is shown there that these conditions are

equivalent to being divergence-free and trace-free.

Finally, we arrive at the definition of the Weil-Petersson metric on Teichmüller

space with the viewpoint of deformations of Riemannian metrics.



58

Definition IV.34 ([23], Theorem 0.8). The L2-pairing in Equation 4.9 restricted to

the trace-free, divergence-free tensors is called the Weil-Petersson metric.

We apply the above definitions to T (n). Deformations of flat metrics which remain

in the Teichmüller space define a subspace of all (0, 2)-tensors. Maintaining unit

volume restricts to traceless tensors, while the restriction to flat metrics implies

the tensors have constant Rn-coordinates. These are trace-free and divergence-free

tensors. Thus the integrand in Equation 4.9 is constant and given globally by the

local coordinates. The volume of each metric is 1, so the L2-pairing simplifies to:

〈〈h1, h2〉〉L2(g) = Tr(g−1h1g
−1h2).

This matches precisely the usual symmetric metric for SL(n,R)/ SO(n) given in

Equation 4.8. We now have for all n ≥ 2:

Proposition IV.35. The Teichmüller space T (n) with the Weil-Petersson metric

is isometric to SL(n,R)/ SO(n) with the SL(n,R)-invariant Riemannian metric.

Remark IV.36. The Weil-Petersson metric for Teichmüller spaces of hyperbolic sur-

faces is also a Riemannian metric, but it is not complete. This leads to an interesting

theory of bordifications and nodal surfaces. Here, we see another interesting depar-

ture from the hyperbolic surface setting in that the Weil-Petersson metric on T (n)

is complete.

4.7 Horofunction and Satake Compactifications

In this section, we will describe horofunction compactifications of T (n) with the

Thurston and Teichmüller metrics defined in Sections 4.3 and 4.4.



59

4.7.1 The Thurston Metric

Recall that the standard representation of SL(n,R) induces a minimal Satake

compactification of T (n). It has the following metric realization.

Proposition IV.37. The following compactifications are G-isomorphic:

T (n)
hor

dTh

∼=G T (n)
S

Π

where Π is the standard representation of G = SL(n,R).

Proof. The weights of the standard representation are simply the standard basis ei,

i = 1, . . . , n, for Rn. Projecting them onto the hyperplane in Rn corresponding to a,

the set of weights is given by:

µi := ei −
n(

j=1

1

n
ej, i = 1, . . . , n.

Following [31], consider the convex hull D := conv(µ1, . . . , µn). This lies within the

codimension 1 hyperplane
8

i xi = 0 in Rn. In order to utilize Theorem III.11, we

now compute the negative of the dual polytope of D. If {a1, . . . , ak} ⊆ Rn are the

vertices of a convex polytope, then the dual polytope is given by:

{y ∈ Rn : 〈ai, y〉 ≥ −1 ∀i}.

The extremal points are those where equality holds. By symmetry, the µi’s are

extremal points for the convex hull D, and the dual must live in the same hyperplane,

so this becomes:

B0 := −D◦ = −{(y1, . . . , yn) ∈ Rn : y1 + · · ·+ yn = 0, yi −
1

n

(

j

yj ≥ −1 ∀i}

= {(y1, . . . , yn) ∈ Rn : y1 + · · ·+ yn = 0, yi ≤ 1 ∀i}

By Theorem III.11, this is a unit ball for a polyhedral Finsler metric whose horofunc-

tion compactification is the Satake compactification of the standard representation.
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To complete the proof, we compute the unit ball of the Finsler metric dTh in

the Cartan subalgebra. Using the formula in Proposition IV.21, this is relatively

straightforward:

B = {(y1, . . . , yn) ∈ Rn : y1 + · · ·+ yn = 0, yi ≤ 2 ∀i}

Because B0 = B up to scaling, we are done.

By Proposition III.13, it follows that the boundary of the compactification T (n)
S

π

is homeomorphic to the sphere S(n2+n)/2−2.

4.7.2 The Teichmüller Metric

We have a similar result for dTeich.

Proposition IV.38. Let Π be the standard representation of G = SL(n,R). Then

the following compactifications are G-isomorphic:

T (n)
hor

dTeich

∼=G T (n)
S

Π⊕Π∗

Proof. Consider the faithful representation

Π⊕ Π∗ : SL(n,R) ↩→ SL(2n,C),

using the standard and dual representations as a block diagonal acting on the direct

sum of the vector spaces.

The collection of weights, viewed as elements of Rn, is the union of the weights

for the standard and dual representations. We project them onto the hyperplane

P ⊆ Rn defined by
8

i yi = 0 to obtain the weights in a. After projection, two of the

weights are given by

a1 :=

!
n− 1

n
,− 1

n
, . . . ,− 1

n

"
, b1 =

!
− n− 1

n
,
1

n
, . . . ,

1

n

"
,
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and the others are similar, with ±(1 − 1/n) in the ith component and ∓1/n in the

remaining components. We consider the convex hull D of these points. This defines

a polyhedron in Rn, of which we compute the negative of the dual.

Lemma IV.39. The negative of the dual to the polyhedron D = conv(a1, . . . , an, b1, . . . , bn)

is given by:

−D◦ = {(y1, . . . , yn) ∈ Rn :
(

i

yi = 0, |yi| ≤ 1 ∀i = 1, . . . , n}

We prove this lemma below. Now, using Equation 4.7 for the Finsler metric

associated of dTeich, we see that the ball −D◦ is, up to a choice of scaling, the same

as the unit ball for the Teichmüller metric. Theorem III.11 completes the proof.

Proof of Lemma IV.39. Since all points a1, . . . , bn lie in the hyperplane
8

i yi = 0,

the dual polyhedron must as well. Now, choose some i ∈ {1, . . . , n} and consider the

condition 〈(y1, . . . , yn)|ai〉 ≥ −1. Expanding, this becomes:

− 1

n
(y1 + · · ·+ yn) + yi ≥ −1

But since
8

i yi = 0, this simplifies to yi ≥ −1. For bi, we obtain 1 ≥ yi.

4.8 The Thurston Compactification of T (n)

Inspired by Thurston’s compactification for Teichmüller spaces of hyperbolic sur-

faces using projective measured laminations on the underlying surfaces, we define a

natural Thurston-type compactification of T (n). It is closely related to T. Haettel’s

compactification of SL(n,R)/ SO(n) built from the closure of a projective embed-

ding into P(RZn

+ ) in [30], but we provide a new construction utilizing a geometric

interpretation of quadratic forms.

Recall the Satake compactification of SL(n,R)/ SO(n) with respect to the stan-

dard representation of SL(n,R), whose boundary points correspond to projective
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classes of positive-semidefinite matrices. After relating this compactification to the

Thurston compactification, we have a geometric interpretation of the Satake com-

pactification T (n)
S

π .

Recall (see [22]) that a measured foliation on a surface is a (singular) foliation with

an arc measure in the transverse direction that is invariant under holonomy (trans-

lations along leaves). Our goal is to develop an analogous Thurston-type boundary

for T (n). With that in mind, we start with the following definition.

Definition IV.40. A measured flat foliation on Rn/Zn is a non-singular measured

foliation (F, µ) with the following requirements:

• The leaves of F are given by parallel hyperplanes.

• The measure µ is invariant under isometries of the torus.

• In the lift to Rn, if V0 is the leaf containing the origin, then there exists an

orthogonal decomposition

V ⊥
0 = V1 ⊕ · · ·⊕ Vk

and positive constants λi, i = 1, . . . , k, such that the lift of an arc γ contained

in subspace Vi has measure µ(γ) = λiℓI(γ), where ℓI is the Euclidean length.

This is a simple higher-dimensional analog of measured foliations for surfaces

where the leaves are totally geodesic submanifolds. Invariance under isometries im-

plies that we may assume any arc to be measured has a lift that begins at the origin

in Rn. There is an obvious action by R+ on the set of measured flat foliations by

scaling the measure. Denote the set of projective classes of measured flat foliations

by PMFF . In addition to building a Thurston boundary, we will relate it to the

compactifications studied in Section 4.7.
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Lemma IV.41. The collection PMFF is in a natural one-to-one correspondence

with the boundary of the minimal Satake compactification associated to the standard

representation.

Proof. Let Q be a matrix representative of the class [Q] ∈ ∂T (n)
S

π . Define the

leaves of a foliation of Rn by all parallel translations of ker(Q). This descends to the

quotient Rn/Zn. Arc length with respect to Q defines a transverse measure, which

for an arc γ : [0, 1] → Rn/Zn is given by

ℓQ(γ) =

% 1

0

'
〈γ′(t)Q, γ′(t)〉dt.

Because the quadratic form Q is constant across Rn/Zn and diagonalizable, the

measure satisfies the conditions in Definition IV.40.

In this way, Q endows Rn/Zn with a measured foliation. Taking the projective

class gives us the projective measured flat foliation associated to [Q].

Conversely, given (F, [µ]) ∈ PMFF , we can obtain the associated [Q] ∈ ∂T (n)
S

π

as follows. Take any representative (F, µ) of the projective class. Then:

1. Lift the measured foliation to Rn

2. Let v1, . . . , vm be an orthonormal basis of the subspace V0 spanned by the leaf

through the origin

3. For each subspace Vj in the direct sum V ⊥
0 = V1 ⊕ · · · ⊕ Vk from Definition

IV.40, choose an orthonormal basis. Label these vectors vm+1, . . . , vn

4. Let λi be the measure of a straight line segment of Euclidean length 1 extending

from the origin in the direction of vi for i = 1, . . . , n

5. Let P be the matrix whose columns are vi for i = 1, . . . , n and let D be the

diagonal matrix whose diagonal entries are λi for i = 1, . . . , n.



64

6. Let Q = P−1DP . This is a positive-semidefinite symmetric matrix which in-

duces the same measured foliation we began with.

Taking the projective class of the matrix gives us the associated element of the

Satake compactification. This establishes maps in both directions which are inverses,

as required.

The viewpoint of Lemma IV.41 gives a geometric way to interpret quadratic forms

as measured foliations. Next, we will give the collection T (n)∪PMFF a topology.

We do so by defining a notion of convergence to points of PMFF by sequences of

points in T (n) = SL(n,R)/ SO(n). Let (F, [µ]) ∈ PMFF , where F is the foliation

of Tn and [µ] is the projective class of the transverse measure. Let (Xi)i∈N be a

sequence of elements of T (n).

Definition IV.42. We say the sequence (Xi)i∈N converges to (F, µ) if for

(4.10) ri = 1/max{λ : λ is an eigenvalue of Xi}

the following holds: there exists a representative µ0 ∈ [µ] such that for all simple

closed curves γ ⊆ T n, we have

ℓriXi
(γ)

i→∞−−−→ µ0(γ)

where ℓQ(γ) denotes the length of the curve γ with the metric Q.

Remark IV.43. Convergence to points of PMFF may also be viewed geometrically:

we can also define convergence to PMFF by requiring that the Hausdorff distance

between unit balls goes to 0. This is essentially convergence of metrics while allowing

some directions to degenerate.

Lemma IV.44. The collection T (n) ∪ PMFF is compact.
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Proof. We show that every sequence has a convergent subsequence. First, suppose

(Xi)i∈N consists only of elements of T (n), but no subsequence converges to a point of

T (n). Consider then the sequence of matrices riXi, where ri is defined in Equation

4.10. Now, the set of positive-definite symmetric matrices with eigenvalues bounded

above by 1 is compact, so we may assume riXi converges to a positive-semidefinite

matrix M . By Lemma IV.41 and by construction, M corresponds to an element of

PMFF which satisfies the conditions of Definition IV.42.

Now suppose that some Xk ∈ PMFF for some (perhaps infinitely many) k ∈ N.

Pick a sequence (Y k
j )j∈N ∈ T (n) which converges to Xk. Then replace Xk with Y k

k

in the sequence (Xi)i∈N, and use the first case to find a limit for the new sequence.

The original sequence also must converge to this same limit.

We are now prepared to make the following definition.

Definition IV.45. The Thurston compactification of T (n) is

T (n)
Th

:= T (n) ∪ PMFF .

By Lemmas IV.41 and IV.44, we see that the Thurston compactification T (n)
Th

is a compactification of T (n) built from measured foliations on the underlying struc-

tures, as in Thurston’s compactification for Teichmüller spaces of hyperbolic surfaces.

Lemma IV.46. Let (F, [µ]) ∈ PMFF , and let [Q] ∈ ∂T (n)
Th

be the quadratic

form associated to (F, [µ]). For a sequence (Xi)i∈N ∈ T (n), we have

(Xi)i∈N
i→∞−−−→ (F, [µ]) if and only if (Xi)i∈N

i→∞−−−→ [Q]

where on the right-hand side the convergence is with respect to the topology on the

Satake compactification.
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Proof. Notice that convergence on the right-hand side is equivalent to the following:

if 1/ri is the maximal eigenvalue of Xi for each i, then

riXi
i→∞−−−→ Q

for some representative Q ∈ [Q] as matrices. Let µ0 be the representative of [µ]

associated to the semidefinite form Q. Then ℓQ(γ) = µ0(γ) for all simple closed

curves γ, and so from Lemma IV.41 we have

Xi
i→∞−−−→ (F, [µ]).

The reverse implication is nearly identical.

Immediately following from Lemmas IV.41 and IV.46 is the following:

Corollary IV.47. The identity map on T (n) extends to a homeomorphism

T (n)
Th ∼= T (n)

S

π .

Proof. Lemma IV.46 shows that the bijection from Lemma IV.41 preserves conver-

gence in both directions.

Next, we endow PMFF with a SL(n,R)-action. For g ∈ SL(n,R), define:

g · (F, [µ]) = (Fg, [g−1 ∗ µ]).

One can verify that this defines a SL(n,R)-action on PMFF .

Lemma IV.48. This SL(n,R)-action is equivariant with respect to the bijection of

Lemma IV.41.

Proof. Recall from Lemma IV.41 that for any smooth arc γ, if (F, µ0) is a represen-

tative of the projective class of (F, [µ]) associated to Q ∈ [Q], then

ℓQ(γ) = µ0(γ).
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Now, for g ∈ SL(n,R) we have

ℓg·Q(γ) = ℓQ(g · γ) = µ0(g · γ) = g−1 ∗ µ0(γ).

Finally, if γ is a curve contained in a single leaf, then g · γ = γg is then contained in

a leaf of g · F = Fg.

Combining Lemma IV.48 and Corollary IV.47, we arrive at:

Theorem IV.49. The Thurston compactification T (n)
Th

is SL(n,R)-isomorphic to

the Satake compactification with respect to the standard representation T (n)
S

π .

Theorem I.2 is then the combined results of Theorem IV.49 and Proposition IV.37,

and Corollary I.3 is immediate.



CHAPTER V

Holomorphic Isometric Submersions Between Teichmüller
Spaces

This chapter is devoted first to the proofs of Theorems I.7 and V.1, which orig-

inally occurred in joint work of the author with Dmitri Gekhtman [25], and second

to an introduction to the case of infinite punctures, which is new. Theorem I.11

is a summary of the progress on the infinite-type surfaces. Broadly speaking, this

work generalizes Royden’s theorem, which states that automorphisms of Teichmüller

spaces must be induced by the mapping class group, to the case of holomorphic iso-

metric submersions between Teichmüller spaces, which in the finite-dimensional case

we will show must be forgetful maps (possibly excepting a small number of cases

conjectured to have the same property).

Our study of isometric submersions between Teichmüller spaces follows a similar

theme to many classical results about maps between Teichmüller spaces. In particu-

lar, we find the restriction to forgetful maps by considering the induced map between

cotangent spaces. The key observation is that an isometric submersion induces iso-

metric embeddings of cotangent spaces (see Section 5.2.1). While we will follow this

approach in both the finite-type and infinite-type surface cases, we will need to bring

in some new tools for the case of infinite punctures, and several of the methods break

down.

68
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We will begin with the case of finite-type surfaces. Sections 5.1 through 5.3 contain

the results from [25], and Section 5.4 contains the initial exploration of the case of

infinite punctures.

5.1 Embeddings of Spaces of Quadratic Differentials

Beginning with a holomorphic isometric submersion F : T (Y ) → T (X), the

coderivative at the basepoint is a map T : Q(X) → Q(Y ). The majority of the proof

of Theorem I.7 comes from analysis of the resulting map T . We prove the following

classification result, which is of independent interest.

Theorem V.1. Let X and Y be finite-type Riemann surfaces. Let 9X and 9Y be the

compact surfaces obtained by filling the punctures of X and Y . Assume the type

(k,m) of X is non-exceptional: 2k +m ≥ 5. Let T : Q(X) ↩→ Q(Y ) be a C-linear

isometric embedding. Then there is a holomorphic map h : 9Y → 9X and a constant

c ∈ C of magnitude deg(h)−1 so that T = c · h∗.

Remark V.2. Suppose X is of exceptional type (k,m), so 2k +m ≤ 4. Then one of

the following holds:

1. dimC Q(X) ≤ 1

2. (k,m) is (2, 0) or (1, 2), in which caseQ(X) identifies naturally with the quadratic

differential space of a surface of non-exceptional type (0, 6) or (0, 5), respectively.

Thus, Theorem V.1 amounts to a complete classification of C-linear isometric em-

beddings Q(X) → Q(Y ) for X and Y of finite type.

To prove Theorem V.1, we use methods developed by V. Markovic [41] in his

proof of the infinite-dimensional generalization of Royden’s theorem. (See also the

paper of Earle-Markovic [17] and the thesis of S. Antonakoudis [4].) Recall the bi-

canonical map 9X → PQ(X)∗ sending each x ∈ 9X to the hyperplane in Q(X) of
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quadratic differentials vanishing at x. The idea is to relate the bi-canonical images

of X and Y using a result of Rudin [47] on isometries of Lp spaces. The fact that

T : Q(X) → Q(Y ) is an isometric embedding implies via Rudin’s theorem that

T ∗ : PQ(Y )∗ → PQ(X)∗ carries the bi-canonical image of 9Y onto the bi-canonical

image of 9X. So, there is a unique h : 9Y → 9X making the following diagram commute:

PQ(Y )∗ PQ(X)∗

9Y 9X

T ∗

h

In fact, Rudin’s result gives us more: for any φ ∈ Q(X), the map h pushes the |Tφ|-

measure on 9Y to the |φ|-measure on 9X. Thus, we obtain the following intermediate

result:

Proposition V.3. Let X and Y be finite-type Riemann surfaces, with X of non-

exceptional type. Suppose T : Q(X) ↩→ Q(Y ) is a C-linear isometric embedding.

Then there is a holomorphic map h : 9Y → 9X with the following property: For any

φ ∈ Q(X) and any measurable K ⊂ 9X,

%

K

|φ| =
%

h−1(K)

|Tφ| .

We then use Proposition V.3 to derive the classification result Theorem V.1.

5.1.1 Infinitesimal to Global

The last step is to obtain the global result, Theorem I.7, from the infinitesimal

Theorem V.1. We are given a holomorphic and isometric submersion F : T (Sg,n) →

T (Sk,m), with (k,m) satisfying hypotheses (1.1) and (1.2). Since (k,m) is assumed

non-exceptional, Theorem V.1 gives for each Y ∈ T (Sg,n) a holomorphic branched

cover hY : 9Y → !F (Y ). By a dimension count, it is not the case that every Riemann

surface of genus g is a branched cover of a surface of genus k with 1 ≤ k < g. We
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then obtain that g = k. Finally, an argument involving the universal families over

T (Sg,n) and T (Sg,m) shows that the map hY : Y → F (Y ) varies continuously in

Y ∈ T (Sg,n). Thus, the topological type of hY is constant in Y . We conclude that

the map F is induced by a (fixed) mapping class composed with the inclusion map

on the underlying surfaces, filling in punctures.

Section 5.2 focuses on the infinitesimal geometry of isometric submersions between

Teichmüller spaces. In 5.2.1, we recall basic facts on isometric submersions between

Finsler manifolds. We first establish that forgetful maps between Teichmüller spaces

are holomorphic and isometric submersions. Next, we review a theorem of Rudin

concerning isometries between Lp spaces and discuss the bi-canonical embedding

X ↩→ PQ(X)∗ of a Riemann surface. Then, we follow the argument of [41] to

obtain Proposition V.3. Finally, we obtain the classification Theorem V.1 of isometric

embeddings between quadratic differential spaces.

Section 5.3 focuses on the global geometry of isometric submersions F : T (Sg,n) →

T (Sk,m) and the proof of the main result on holomorphic isometric submersions

between finite-type Teichmüller spaces, Theorem I.7. To complete the proof, we first

use Theorem V.1 to obtain for each Y ∈ T (Sg,n) a non-constant holomorphic map

hY : 9Y → !F (Y ). Then we use a dimension-counting argument to show that g = k.

We next use properties of the universal family to show that the collection of maps

hY : Y → X varies continuously in the parameter Y ∈ T (Sg,n), after which we finish

the proof.

To conclude, in Section 5.4 we introduce the problem of classifying holomorphic

isometric submersions between Teichmüller spaces of finite-genus surfaces with infi-

nite punctures. While we do not achieve a proof of the full generalization, we have

several partial results, including that with an additional technical assumption, such
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a map can only exist when the Teichmüller spaces classify surfaces of the same genus.

5.2 Infinitesimal Geometry

5.2.1 Isometric Submersions of Finsler Manifolds

We review basic properties of isometric submersions, following [3]. First, we recall

the relevant notion from linear algebra. An isometric submersion between normed

vector spaces V and W is a linear map V → W so that the image of the closed

unit ball in V is the closed unit ball in W . Isometric submersions and isometric

embeddings of normed vector spaces are dual in the following sense.

Lemma V.4. Let T : V → W be a linear map between normed vector spaces.

1. If T is an isometric submersion, then the dual map T ∗ : W ∗ → V ∗ is an

isometric embedding.

2. If T is an isometric embedding, then T ∗ : W ∗ → V ∗ is an isometric submersion.

The proof of the first assertion of the Lemma is elementary. The second assertion

is a restatement of the Hahn-Banach theorem.

An isometric submersion between Finsler manifolds M,N is a C1 submersion F :

M → N such that the derivative dFm : TmM → TF (m)N is an isometric submersion

between tangent spaces with respect to the Finsler norms, for each m ∈ M . We will

use the characterization of isometric submersions in terms of isometric embeddings

of cotangent spaces.

Corollary V.5. Let F : M → N be a C1 map of Finsler manifolds. Then F is an

isometric submersion if and only if for each m ∈ M , the coderivative

dF ∗
m : T ∗

F (m)N → T ∗
mM

is an isometric embedding of cotangent spaces with respect to the dual Finsler norms.
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5.2.2 Forgetful Maps Between Teichmüller Spaces

We recall basic properties of forgetful maps between Teichmüller spaces, and in

particular observe that these maps are holomorphic and isometric submersions. Let

F : Tg,1 → T (Sg) be the forgetful map; for each X ∈ T (Sg,1), F (X) is the marked

Riemann surface obtained by filling in the puncture of X. The cotangent space

T ∗
XT (Sg,1) = Q(X) consists of holomorphic quadratic differentials on X with at

worst a simple pole at the puncture, while T ∗
F (X)T (Sg) = Q (F (X)) = Q(X̂) consists

of those quadratic differentials onX which extend holomorphically over the puncture.

The co-derivative dF ∗
X is the inclusion Q (F (X)) ↩→ Q (X), which is clearly isometric

and complex-differentiable. Thus, F is a holomorphic and isometric submersion.

The same reasoning shows that any forgetful map T (Sg,n) → T (Sg,m) is an isometric

submersion. We have just shown:

Lemma V.6. Forgetful maps between finite-dimensional Teichmüller spaces are holo-

morphic isometric submersions.

5.2.3 Rudin’s Equimeasurability Theorem

We will need a general result of Rudin concerning isometries between subspaces

of Lp spaces. Markovic [41] used this result in the p = 1 case to extend Royden’s

theorem to Teichmüller spaces of infinite dimension, and Earle-Markovic [17] used

the result to give a new and illuminating proof of Royden’s theorem in the finite-

dimensional case.

Proposition V.7 (Rudin [47], Theorem 1). Let p be a positive real number which

is not an even integer. Let X and Y be sets with finite positive measures µ and ν

respectively. Let l be a positive integer. Suppose f1, . . . , fl in Lp(µ,C), and g1, . . . , gl
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in Lp(ν,C) satisfy the following condition:

(5.1)

%

X

))))1 +
l(

j=1

λjfj

))))
p

dµ =

%

Y

))))1 +
l(

j=1

λjgj

))))
p

dν, for all (λ1, . . . ,λl) ∈ Cl.

If F = (f1, . . . , fl) and G = (g1, . . . , gl), then the maps F : X → Cl and G : Y → Cl

satisfy the following equimeasurability condition:

(5.2) µ(F−1(E)) = ν(G−1(E)) for each Borel set E ⊆ Cl.

Equation (5.1) is an assumption on the moments of the Cl-valued random variables

F and G. The conclusion (5.2) is that F and G have the same distribution. In other

words, the pushforward measures F∗(µ) and G∗(ν) on Cl are equal.

5.2.4 Projective Embeddings of Riemann Surfaces

In this section, we establish the setting for our application of Rudin’s theorem.

Let L be a holomorphic line bundle over a compact Riemann surface 9X, and let

O(L) denote the space of holomorphic sections of L. There is a holomorphic map

9X → PO (L)∗ sending x ∈ 9X to the hyperplane in O(L) consisting of sections which

vanish at x. An argument using the Riemman-Roch theorem (see [44] p. 55) shows

that if the degree of L is at least 2g+1, then the map 9X → PO (L)∗ is an embedding.

Now, let X be a Riemann surface of type (g, n). Denote by 9X the compact,

genus g Riemann surface obtained by filling in the punctures of X. The space Q(X)

consists of quadratic differentials which are holomorphic on X and have at most

simple poles at the punctures 9X \X. Thus, elements of Q(X) correspond to sections

of a line bundle on 9X of degree 4g−4+n. By the preceding discussion, the associated

bi-canonical map 9X → PQ(X)∗ is an embedding provided 4g − 4 + n ≥ 2g + 1, or

2g + n ≥ 5. Thus, the surfaces X of non-exceptional type are precisely those for

which 9X → PQ(X)∗ is an embedding.
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5.2.5 Applying the Equimeasurability Theorem

In this section, we apply the methods of [41] to prove Proposition V.3. We ac-

knowledge some overlap with [4] Section 5, particularly in the proof of the fact

that the surface 9Y covers the surface 9X if there is a C-linear isometric embedding

Q(X) ↩→ Q(Y ).

Proof of Proposition V.3. Let X and Y be Riemann surfaces of finite type. Assume

X is of non-exceptional type, and denote by Φ : 9X ↩→ PQ(X)∗ the bi-canonical em-

bedding associated to X. Let T : Q(X) → Q(Y ) be a C-linear isometric embedding.

Denote by Ψ the composition 9Y → PQ(Y )∗ → PQ(X)∗ of the bi-canonical map of

Y with the dual of T . To describe the maps Φ and Ψ more concretely, fix a basis

φ0, . . . ,φk for Q(X) and let ψi = Tφi denote the images in Q(Y ). In terms of local

coordinates z, w for 9X and 9Y , respectively, the maps Φ : 9X → Pl and Ψ : 9Y → Pl

are given by

Φ(z) = [φ0(z) : . . . : φl(z)], Ψ(w) = [ψ0(w) : . . . : ψl(w)].

Now, consider the rational functions fi = φi

φ0
on 9X and gi = ψi

ψ0
on 9Y , with

i = 1, . . . , l. Form the Cl-valued maps F = (f1, . . . , fl) and G = (g1, . . . , gl). The

maps F and G are just Φ and Ψ viewed as rational maps to Cl.

Let µ denote the |φ0|-measure on 9X; that is,

µ(K) =

%

K

|φ0|

for any measurable K ⊂ 9X. Similarly, let ν denote the |ψ0|-measure on 9Y . Then fi

and gi are L
1 functions with with respect to the measures µ and ν. The assumption

that T is isometric and C-linear translates precisely to the hypothesis (5.2) of Rudin’s

theorem:
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%

!X

)))))1 +
l(

i=1

λifi

))))) dµ =

%

!X

)))))φ0 +
l(

i=1

λiφi

)))))

=

%

!Y

)))))ψ0 +
l(

i=1

λiψi

))))) =
%

!Y

)))))1 +
l(

i=1

λigi

))))) dν.

Note that we used C-linearity of T in the second equality. We conclude that the

measures F∗(µ) and G∗(ν) on Cl are equal. What amounts to the same thing, the

measures Φ∗(µ) and Ψ∗(ν) on Pk are equal.

We now show that Φ and Ψ have the same image. To this end, note that the

measure Ψ∗(ν) = Φ∗(µ) has as its support the compact set Φ( 9X). Since Ψ is con-

tinuous and since ν assigns nonzero measure to each open set of 9Y , we conclude

Ψ(9Y ) ⊂ Φ( 9X). Thus, there is a unique holomorphic map h : 9Y → 9X so that

Ψ = Φ ◦ h. Obviously, Ψ is not constant and so neither is h. In particular, h is a

branched cover and Ψ(9Y ) = Φ( 9X).

In terms of the map h, the equimeasurability condition Ψ∗(ν) = Φ∗(µ) becomes

simply h∗(ν) = µ. Thus, for any measurable K ⊂ 9X we have

%

K

|φ0| = µ(K) = ν
#
h−1(K)

$
=

%

h−1(K)

|Tφ0| .

Since φ0 was chosen arbitrarily, we have the desired equality

%

K

|φ| =
%

h−1(K)

|Tφ|

for any φ ∈ Q(X) and any measurable K ⊂ 9X. This completes the proof of Propo-

sition V.3.
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5.2.6 Completing the Classification of Isometric Embeddings

Let φ ∈ Q(X) and write ψ = Tφ. Proposition V.3 says

(5.3)

%

h−1(K)

|ψ| =
%

K

|φ|

for any measurable K ⊂ 9X. To complete the proof of Theorem V.1, we must show

that ψ is a scalar multiple of the pullback h∗φ. By working over an appropriate

coordinate chart in X, we will reduce the proof to the following elementary lemma.

Lemma V.8. Let g be a real-valued function defined on a domain in C. If both g

and eg are harmonic, then g is constant.

Proof. Compute

0 = (eg)zz = eg (gzgz + gzz) = eggzgz.

Thus, g is either holomorphic or anti-holomorphic. Since g is real-valued, it follows

that it is constant.

Returning to the proof of Theorem V.1, fix a coordinate chart (U, z) in X on

which φ = (dz)2. (Recall that one achieves this by integrating a local square root

of φ.) Shrinking U if necessary, assume U is evenly covered by h and that ψ has

no zeros or poles in h−1(U). Write h−1(U) as a disjoint union of coordinate charts

(Ui, zi), with coordinate functions chosen so that h : (Ui, zi) → (U, z) is the identity

function:

z(h(y)) = zi(y)

Let ψi(zi)(dzi)
2 denote the local expression for ψ in Ui. Let K ⊂ U be measurable.

Then equation (5.3) yields

%

K

.

0
deg(h)(

i=1

|ψi(z)|

1

3 |dz| =
%

K

|dz| .
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Since K was arbitrary, we have

deg(h)(

i=1

|ψi(z)| = 1,

identically on U . Recall that the absolute value of a holomorphic function of one

variable is subharmonic. So the function

|ψ1(z)| = 1−
deg(h)(

i=2

|ψi(z)|

is both subharmonic and superharmonic. That is, |ψ1(z)| is harmonic. But, since

ψ1(z) is holomorphic and non-vanishing, log |ψ1(z)| is also harmonic. By Lemma

V.8, ψ1(z) is identically equal to some constant c. In other words,

ψ = c · h∗φ

on the open set U1 and thus on all of X. Since φ ∈ Q(X) was arbitrary and

T : Q(X) → Q(Y ) is linear, we have

Tφ = c · h∗φ

for all φ ∈ Q(X), with c independent of φ. Since T is an isometric embedding, we

have

|c| = ‖φ‖
‖h∗φ‖ = deg(h)−1.

This completes the proof of Theorem V.1.

5.3 Using Theorem V.1 to Prove Theorem I.7

5.3.1 The Setup

With the tools and results established in the previous section, we begin the proof of

Theorem I.7. Let F : T (Sg,n) → T (Sk,m) be a holomorphic and isometric submersion

of Teichmüller spaces. Assume 2k+m ≥ 5 and k ≥ 1. By Corollary V.5, we have for
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each Y ∈ T (Sg,n) that the induced map of cotangent spaces Q (F (Y )) → Q(Y ) is an

isometric embedding. Since 2k+m ≥ 5, Theorem V.1 tell us that the embedding is,

up to scale, pull-back by a holomorphic branched cover of compact surfaces

hY : 9Y → !F (Y ).

We conclude in particular that every Riemann surface of genus g admits a holomor-

phic branched cover of a surface of genus h. We now use our assumption that k ≥ 1.

The following elementary lemma implies that g = k.

Lemma V.9. Suppose g ≥ 2. It is not the case that every X ∈ T (Sg) admits a

holomorphic cover of a surface of genus k with 1 ≤ k < g.

Proof. The proof is by a dimension comparison. Suppose 1 ≤ k < g and let f : Sg →

Sk be a degree d branched cover. Recall the Riemann-Hurwitz formula:

2− 2g = d · (2− 2k)− b,

where b is the total branch order of the cover.

We distinguish the cases k = 1 and k ≥ 2. If k ≥ 2, we have dim Tg = 3g − 3 and

dim Tk = 3k − 3, so we get

dim Tg = d · dim Tk +
3

2
b.

On the other hand, for a fixed topological type of branched cover, the space of surfaces

in Y ∈ Tg which admit a holomorphic cover Y → X of that type has dimension at

most

dim Tk + b,

which is less than dim T (Sg) since g > k and thus d > 1.
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If k = 1, then dim T (Sg) =
3
2
b and the dimension of the locus of X ∈ Tg which

admit a holomorphic cover of the given type is at most b. Since g > k = 1, the cover

must have b > 0 and so b < 3
2
b = dim T (Sg).

Thus, the locus of X ∈ Tg covering a surface of genus less than g and greater than

0 is a countable union of lower-dimensional subvarieties. The lemma follows.

Remark V.10. The locus of X ∈ T (Sg) which cover the square torus (i.e. the

collection of square-tiled surfaces) is dense. This follows from the fact that the

locus of abelian differentials with rational period coordinates is dense in the Hodge

bundle over T (Sg) [57].

We conclude that g = k, so our submersion F maps from T (Sg,n) to T (Sg,m)

with m ≤ n. We are almost done: If g ≥ 2, the covering maps hY : 9Y → !F (Y )

must be biholomorphisms. If g = 1, we know a priori only that hY are (unbranched)

holomorphic covers. Since the pullback h∗
Y sends Q (F (Y )) into Q(Y ), each preimage

of a puncture p in F (Y ) must be a puncture of Y . (Otherwise, hY pulls a differential

with a pole at p back to a differential which is not in Q(Y ).) Thus, hY restricts to a

map between the (potentially punctured) surfaces Y and X. The map hY : Y → X

and the markings Sg,n → Y , Sg,m → X fit into a diagram

Sg,n Sg,m

Y X
hY

.

It remains to establish two facts.

1. The maps hY are biholomorphisms in the g = 1 case.

2. The isotopy class of Sg,n → Sg,m, is independent of Y ∈ T (Sg,n).

The key to establishing both is showing that the family hY : 9Y → !F (Y ) varies

continuously in the variable Y . To make this precise, we observe that the maps
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hY : 9Y → !F (Y ) fit together into a map of universal curves H : Cg,n → Cg,m covering

the map F : T (Sg,m) → T (Sg,m) of Teichmüller spaces:

Cg,n Cg,m

T (Sg,n) T (Sg,m)

H

F

We will show in the next section that H is continuous. Recall hY was constructed

using the maps X → PQ(X)∗ and Y → PQ(Y )∗. We will leverage properties of the

bundle of quadratic differentials over Teichmüller space to prove that H is in fact

holomorphic.

5.3.2 The Universal Curve and the Cotangent Bundle

We start by recalling the properties of the universal curve π : Cg,n → T (Sg,n). A

good reference for this material is [43].

The map π : Cg,n → T (Sg,n) is a holomorphic submersion whose fiber over X ∈

T (Sg,n) is exactly the compact Riemann surface 9X. The locations of the punctures

are encoded by canonical holomorphic sections

si : T (Sg,n) → Cg,n i = 1, . . . , n.

The point si(X) ∈ 9X is the ith puncture of X. Moreover, there is a canonical

topological trivialization

Fg,n : T (Sg,n)× Sg,n → Cg,n \
n:

i=1

si(T (Sg,n)),

unique up to fiberwise isotopy, so that the induced marking of each fiber

Sg,n → {X}× Sg,n
Fg,n→ X

agrees with the marking definingX as a point of T (Sg,n). The family (π, {si}ni=1,Fg,n)

is universal among n-pointed marked holomorphic families of genus g Riemann sur-

faces (see [43]).
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Now, let Qg,n → T (Sg,n) denote the bundle of integrable holomorphic quadratic

differentials over Teichmüller space. Let PQ∗
g,n → T (Sg,n) denote the associated holo-

morphic bundle of projectivized dual spaces. The bi-canonical maps 9X → PQ(X)∗

fit into a map

Ψ : Cg,n → PQ∗
g,n

covering the projections to Teichmüller space. We need to show that this map of

bundles is holomorphic.

Proposition V.11. The fiberwise bi-canonical map Ψ : Cg,n → PQ∗
g,n is holomor-

phic. If the type (g, n) is non-exceptional, then the map is a biholomorphism onto its

image.

Proof. Since π is a holomorphic submersion, Cg,n is covered by product neighborhoods

U×V , with U open in T (Sg,n) and V open in C. Each U×V maps biholomorphically

to an open neighborhood of Cg,n by a map commuting with the projections:

U × V Cg,n

U T (Sg,n)

Given X ∈ U , the slice {X}× V is a holomorphic coordinate chart for the Riemann

surface 9X. For this reason, the product neighborhoods U × V are called relative

coordinate charts for the family Cg,n.

Recall Qg,n → T (Sg,n), the bundle of integrable holomorphic quadratic differen-

tials over Teichmüller space. A section q : T (Sg,n) → Qg,n can be thought of as a

fiberwise quadratic differential on Cg,n. In a relative coordinate chart U ×V , the dif-

ferential q takes the form q(X, z)(dz)2. It follows by a result of Bers [8] that a section

q : T (Sg,n) → Qg,n is holomorphic if and only if (X, z) 0→ q(X, z) is meromorphic in

each relative chart U × V .
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Now, let U ×V be a relative coordinate chart for Cg,n and let q0, . . . , qk be a holo-

morphic frame for Qg,n → T (Sg,n) over U . With respect to the choice of coordinates

and frame, the fiberwise bi-canonical map Cg,n → PQ∗
g,n is expressed as the map

U × V → Pk given by

(5.4) (X, z) 0→ [q0(X, z) : q1(X, z) : · · · : qk(X, z)],

which is holomorphic since the qi(X, z) are meromorphic.

We conclude that Ψ : Cg,n → PQ∗
g,n is holomorphic, as claimed. If (g, n) is non-

exceptional, then Ψ restricts to an embedding on the fibers of Cg,n → T (Sg,n). Since

the fibers are compact, Ψ is a biholomorphism onto its image.

We now prove the main result of this subsection.

Proposition V.12. The map H : Cg,n → Cg,m defined in the last section is holomor-

phic.

Proof. Consider the following diagram.

Cg,n PQ∗
g,n PQ∗

g,m Cg,m

T (Sg,n) T (Sg,m)

Ψ F∗ Φ

F

Here, Ψ and Φ denote the fiberwise bi-canonical maps, which are holomorphic by

Proposition V.11. The map F∗ can be viewed in two ways.

1. F∗ is the projectivization of the derivative of the holomorphic map F .

2. On the fiber over Y ∈ T (Sg,n), F∗ is the dual of the isometric embedding

dF ∗
Y : Q (F (Y )) ↩→ Q(Y ).

The first interpretation shows that F∗ is holomorphic. The second interpretation,

combined with the results of Section 5.2.5, shows that F∗ ◦Ψ has the same image as
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Φ. Moreover, H : Cg,n → Cg,m is the unique map so that

F∗ ◦Ψ = Φ ◦H.

But since (g,m) is non-exceptional, Φ is a biholomorphism onto its image. Thus, H

can be expressed as the composition of holomorphic maps

Cg,n
F∗◦Ψ→ Φ (Cg,m)

Φ−1

→ Cg,m.

5.3.3 Completing the Proof of Theorem I.7

As discussed at the end of Section 5.3.1, each map hY : 9Y → 9X sends Y to X.

Thus, there is a unique map G : T (Sg,n) × Sg,n → T (Sg,m) × Sg,m fitting into the

diagram

T (Sg,n)× Sg,n T (Sg,m)× Sg,m

Cg,n Cg,m,

Fg,n

G

Fg,m

H

where the vertical maps are the canonical trivializations discussed in the last section.

Since H is continuous, the maps Sg,n → Sg,m obtained by restricting G to fibers are

all isotopic. Restricting the above commutative square to fibers, we conclude that

there is a fixed f : Sg,n → Sg,m so that

Sg,n Sg,m

Y F (Y )

f

hY

commutes up to isotopy for all Y ∈ T (Sg,n). By construction, the vertical arrows

are the markings defining Y and F (Y ) as points of Teichmüller space. If g ≥ 2, we

already know that f : Sg,n → Sg,m is one-to-one. Thus, up to pre-composition by a

mapping class, Y 0→ F (Y ) is the forgetful map filling in the last n −m punctures.

This completes the proof when g ≥ 2.



85

To finish the proof in the case g = 1, it suffices to establish that f : S1,n → S1,m

is one-to-one. We prove this by another dimension argument. The point is that, if

the degree of f is greater than 1, then not every X ∈ T (S1,n) admits a non-constant

holomorphic map to a Y ∈ T (S1,m).

In more detail: Let d denote the degree of the cover S1 → S1 obtained by extending

f over the punctures. Then f factors through a degree d (unbranched) cover S1,dm →

S1,m.

S1,n S1,m

S1,dm

f

The covering S1,dm → S1,m induces an isometric embedding of Teichmüller spaces

T (S1,m) ↩→ T (S1,dm), while the injective map S1,n → S1,dm induces a forgetful map

T (S1,n) ↠ T (S1,dm). These fit into the diagram

T (S1,n) T (S1,m)

T (S1,dm)

F

Thus, T (S1,m) ↩→ T (S1,dm) is surjective, which implies d = 1.

5.4 Infinitely Punctured Surfaces

In this section, we take the first few steps towards generalizing Theorem I.7 to

infinitely-punctured surfaces of finite genus. We will start by introducing a few tools

which allow us to recycle methods from the proof of Theorem I.7 in the new case of

infinite-dimensional Teichmüller spaces. Then, we will prove our main results of this

section, stated as Theorem I.11.
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5.4.1 Tools for Infinite-Dimensional Teichmüller Spaces

Let F : T (X) → T (Y ) be a Teichmüller-metric holomorphic isometric submersion

whose derivative maps are weak∗-sequentially continuous. Then dFτ : TτT (X) →

TF (τ)T (Y ) is a linear isometric submersion between the tangent spaces for τ ∈ T (X).

In this section, we will need the following technical assumption: all derivative maps

dFτ for τ ∈ T (X) are weak∗-sequentially continuous.

In the finite-type case, the first step is to take the coderivative and observe that

by Lemma V.4 it must be an isometric embedding of spaces of quadratic differentials.

For infinite-type surfaces, we cannot simply take a coderivative of an isometric sub-

mersion to obtain an embedding of quadratic differential spaces, since the dual of the

tangent space to infinite-dimensional Teichmüller spaces is not Q(X) (in fact, Q(X)

is the pre-dual). However, tools of Earle-Gardiner [15] generalize for our purposes.

Recall that convergence in the weak∗ topology on Q∗(X) is equivalent to pointwise

convergence of functionals in Q∗(X) viewed as functions Q(X) → C. Recall also that

the norm || · || on Q∗(X) is given by

||v|| = sup{|v(ϕ)| : ϕ ∈ Q(X) and ||ϕ|| = 1}

with the 1-norm on Q(X). First, we will need the following fact from [14] and [18].

The statement is based on the presentation in §6 of [15].

Lemma V.13. Let X be any Riemann surface. There exists a subspace Q∗(X)0 ⊆

Q∗(X) such that (Q∗(X)0)
∗ is isometrically isomorphic to Q(X). Further, Q∗(X)0

is weak∗-dense in Q∗(X); that is, for all v ∈ Q∗(X), there exists a sequence (vn) ∈

Q∗(X)0 such that vn → v in the weak∗ sense.

We adopt the notation and description of the result as described in [15] which

includes a characterization of the subspace Q∗(X)0. We will utilize our assumption



87

of weak∗ sequential continuity in the following.

Proposition V.14 (Earle-Gardiner Adjointness Theorem generalized to isometric

submersions). If S : Q∗(X) → Q∗(Y ) is a weak∗-sequentially continuous C-linear

isometric submersion, then there is a C-linear isometric embedding T : Q(Y ) →

Q(X) such that T ∗ = S.

Proof. Consider the map (S|Q∗(X)0)
∗ defined as the restriction of the adjoint of

S to Q∗(X)0. By Lemma V.13, this is a map Q(Y )∗∗ → Q(X). Define T =

(S|Q∗(X)0)
∗|Q(Y ). Being (a restriction of) the adjoint of an isometric submersion,

this is a C-linear isometric embedding T : Q(Y ) → Q(X). We have that

(5.5) v(Tϕ) = (Sv)(ϕ)

for all ϕ ∈ Q(Y ) and v ∈ Q∗(X)0. What remains is to show that S = T ∗. To show

this, we must show that Equation 5.5 holds not just for all v ∈ Q∗(X)0 but for all of

Q∗(X).

Choose any ϕ ∈ Q(Y ) and v ∈ Q∗(X). Let (vn) ∈ Q∗(X)0 be a sequence with

vn → v (weak∗). By assumption, Svn → Sv (weak∗). And so

v(Tϕ) = lim
n→∞

vn(Tϕ) = lim
n→∞

(Svn)(ϕ) = (Sv)(ϕ),

with the middle equality coming from Equation 5.5 and the outer ones by weak∗-

sequential continuity.

Remark V.15. Proposition V.14 allows us to recover an associated embedding of

spaces of quadratic differentials even in the infinite-dimensional case. For the finite-

dimensional case, we simply take the dual of the derivative since pre- and post-duals

are equivalent in that case. In a sense, this is allowing us to find what amounts to a

canonical pre-dual of the derivative map.
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Next, we verify that forgetful maps are indeed isometric submersions with the

required sequential continuity, strengthening Lemma V.6.

Lemma V.16. Let X be a Riemann surface (possibly with punctures) and let S ⊂

T ⊂ X be countable sets of points. Let F : T (X − T ) → T (X − S) be the forgetful

map filling in the punctures in T − S. Then F is an isometric submersion whose

derivative maps are weak∗ sequentially continuous.

Proof. The forgetful map F is induced by the inclusion map X−T ↩→ X−S. On the

level of quadratic differentials, this induces the inclusion i : Q(X −S) ↩→ Q(X − T ),

which is an isometric embedding. The dual of this map i∗ : Q(X−T )∗ → Q(X−S)∗

is thus an isometric submersion with respect to the dual norm, which is known to

coincide with the infinitesimal Teichmüller metric.

Now, we show i∗ is weak∗-sequentially continuous. Let (vn) ∈ Q∗(X − T ) be a

sequence which weak∗-converges to v ∈ Q∗(X−T ). We show that i∗vn → i∗v (weak∗)

in Q∗(X − S). Let ϕ ∈ Q(X − S). Then

(5.6) i∗vn(ϕ) = vn(iϕ) → v(iϕ) = i∗v(ϕ)

by weak∗ convergence of (vn). The map i∗ is a (linear) projection map. Consider the

derivative of F at the basepoint:

dFX−T : TX−TT (X − T ) → TX−ST (X − S).

Because F is forgetful, the map dFX−T must be dual to the embedding Q(X−S) ↩→

Q(X − T ). Thus dFX−T = i∗, and so F satisfies the conclusion at the basepoint,

and similarly it will be the case at all other points.

Remark V.17. Here, showing weak∗-sequential continuity of i∗ is straightforward

since we already have a pre-dual, namely the map i itself, allowing us in Equation
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5.6 to simply look at the quadratic differential i(ϕ) and immediately use weak∗-

convergence of the sequence (vn). Our technical assumption is useful in the proof

of Lemma V.14 since we do not a priori know if the map S : Q∗(X) → Q∗(Y )

comes from the dual of a map Q(Y ) → Q(X) on the underlying space of quadratic

differentials.

Now, Proposition I.6 is simply part of Lemma V.16. Looking ahead, we will only

need the case of Lemma V.16 where the surfaces are finite genus and the set S is

empty (i.e. the forgetful map is filling in all the punctures). Proving Theorem I.11

will require further study of isometric embeddings of spaces of quadratic differentials

– in particular, we start by generalizing Theorem V.1.

5.4.2 Finding Maps Between Underlying Surfaces

We first prove part 2 of Theorem I.11. To begin, we will study embeddings of

spaces of quadratic differentials.

Lemma V.18. Let X be a finite genus Riemann surface of non-exceptional type,

possibly with infinitely many punctures, and Y be a non-exceptional-type Riemann

surface of finite type. Let T : Q(Y ) → Q(X) be a C-linear isometric embedding.

Then there exists a holomorphic map h : X → Y and some c ∈ C with |c| = deg(h)−1

so that T = c · h∗.

This generalizes Theorem V.1, which was our main intermediate step along the

way to Theorem I.7. Recall that X̂ is the filled-in surface obtained by forgetting the

punctures of X.

Proof. We will give an outline of the main steps, since the proof is nearly identical

to that of Theorem V.1. Let q0, q1, . . . , ql be a basis of Q(Y ), which is assumed to
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be finite. Write ri = T (qi) for each i. While the dimension of Q(X) is infinite, as in

the finite case, we need only consider the subspace consisting of the image of T .

By the machinery of Section 5.2.4, the map Ψ := (r1/r0, . . . , rl/r0) : X → Ĉl

is a holomorphic map, while Φ := (q1/q0, . . . , ql/q0) : Y → Ĉl is a holomorphic

embedding. Let λ1, . . . ,λl ∈ C. The following integrals are equal by linearity of T

and the same change-of-variables approach as in the proof of Proposition V.3:

%

X̂

))))r0 +
l(

i=1

λiri

)))) =
%

Ŷ

))))q0 +
l(

i=1

λiqi

))))

This is the key step in reaching the hypotheses of the Rudin result about the measures

µ and ν on Y and X coming from the integrals of q0 and r0 respectively.

By Proposition V.7, the induced measures Φ∗(µ) and Ψ∗(ν) are equal, and the

support is the compact set Φ(Ŷ ), since Ŷ is finite-type and Φ is continuous. By the

same argument as in Section 5.2.5, we find that Ψ(X̂) ⊆ Φ(Ŷ ). Thus we obtain the

desired map

X̂ → Ψ(X̂) → Φ(Ŷ ) → Ŷ ,

which we will denote by h : X̂ → Ŷ . It is not (necessarily) bijective but it is

holomorphic.

Because we assumed X̂ is finite-type (i.e. the filled-in surface has finite genus),

the rest of the proof that this map h is an inclusion map which induces T (and that

X and Y have the same genus) is identical to the case of X having at most finitely

many punctures proven in Theorem V.1. It is also identical to before to show that

h restricts to a map on the punctured surfaces, h : X → Y .

Now to prove the second assertion of Theorem I.11, let F : T (X) → T (Y ) be a

holomorphic isometric submersion whose derivatives are weak∗-sequentially contin-

uous. Let τ ∈ T (X) be represented by ϕ : X → X ′, and let F (τ) be represented
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by ψ : Y → Y ′. By Proposition V.14, there exists an isometric embedding of the

cotangent spaces T : Q(Y ′) → Q(X ′) which satisfies the conditions of Lemma V.18.

Thus there exists a map hτ : X → Y between the underlying surfaces which induces

T , and by construction the dual map matches the derivative: T ∗ = dFτ as desired.

5.4.3 Infinite Punctures in the Codomain

Now, we complete the proof of Theorem I.11 by studying the case of Y having

infinitely many punctures. Let T ⊆ X and S ⊆ Y be countable subsets of closed,

hyperbolic surfaces X and Y of finite genus, with X−T and Y −S of non-exceptional

type. Let F : T (X − T ) → T (Y − S) be an isometric submersion whose derivative

maps are weak∗-sequentially continuous.

We may post-compose with a forgetful map G : T (Y − S) → T (Y ) to obtain

G ◦ F : T (X − T ) → T (Y ), which by the work of Section 5.4.2 and Lemma V.16

must satisfy the conclusion of Theorem I.11(2). This means that at each point,

G ◦ F is induced by a holomorphic inclusion map on underlying Riemann surfaces.

It follows that for each representative ϕ : X − T → Z of a point τ ∈ T (X − T ), we

must have that the marked surface G ◦ F (τ) is biholomorphic to Ẑ. In particular,

G ◦ F cannot change the conformal type of the underlying filled-in surface. Because

G is a forgetful map, it must be the case that F also cannot change the conformal

type of the underlying filled-in surface. We conclude that X and Y have the same

genus.

We end with the following lemma, which shows that generalizing Theorem I.7

to the case of infinite punctures in both the domain and codomain hinges on only

showing it for the case of infinite punctures in the domain space. For clarity, below

we use the notation (X,S) where S ⊆ X for a surface X with S the set of marked

points.
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Lemma V.19. Let F : T (X, T ) → T (X,S) be a map. For each finite subset A ⊆ T ,

denote by GA the forgetful map GA : T (X,S) → T (X,A). Suppose we have that for

all such A, GA ◦ F : T (X, T ) → T (X,A) is forgetful. Then F is also a forgetful

map.

Proof. Let f : (X,S) → (X ′, SX′) represent a point in T (X,S), and consider the

fiber

F−1(f) ⊆ T (X, T ).

It must be contained in the fiber (GA ◦F )−1GA(f) obtained by sending f to T (X,A)

and then pulling back to T (X, T ). We have

F−1(f) ⊆ (GA ◦ F )−1(GA(f)).

In particular, since GA ◦ F is forgetful, the fiber of F over f only contains marked

surfaces of the same conformal type (for the filled-in surface) and the punctures of

A are all in the same place. Next, if A′ ⊆ A, then

(GA ◦ F )−1(GA(f)) ⊆ (GA′ ◦ F )−1(GA′(f))

because the left-hand side corresponds to a fiber where all points in A are specified.

We further have that

F−1(f) ⊆
;

A⊆S

(GA ◦ F )−1(GA(f))

with the intersection over all finite subsets of S. It follows all g ∈ F−1(f) correspond

to surfaces with the same conformal type and all punctures of S are in the same

place, which means the fibers over f in T (X, T ) are equal to the fibers of a forgetful

map. This holds for all f ∈ T (Y, S), and so we conclude that F is itself a forgetful

map.
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