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ABSTRACT

Molecular simulations of enzymes can provide a wealth of knowledge to explain and

characterize these uniquely complex and beautiful molecular machines. However, the vast

majority of the most interesting properties of enzymes depend on what are called “rare

events” – statistically rare molecular transformations such as reactions – that cannot be

observed using entirely unbiased simulations. Conversely, injection of too much bias into

a simulation can mask the real mechanics of the system and lead to incorrect results. In

this annotated compilation of manuscripts – one describing the rationalization of a known

mechanism; the next a discovery of an unknown mechanism; and the last describing a

novel software tool for automated enhanced sampling – we explore enzymatic mechanisms

through simulations, relying on the minimum possible bias while capturing as complete

a transition pathway perspective as possible. We also discuss the appropriate role of

researcher “intuition” or general chemical knowledge in studying such complex mechanisms

as are present in enzymes. Special attention is given to glycoactive enzymes, as well

as to strategies for generalizing the lessons learned from studying especially unusual

mechanisms or events.
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CHAPTER I

Introduction

1.1 Enzymes and Intricacy

In the most general terms, “life” as it exists on Earth can be defined as the manipulation

of the timescales of chemical reactions in order to produce a system that replicates itself

faster than entropy disassembles it. This understanding of life in terms of the Second

Law of Thermodynamics – and specifically, the theory of non-equilibrium thermodynamics

pioneered by Boltzmann and Schrödinger, before eventually becoming the subject of a

1977 Nobel Prize awarded to Ilya Prigogine – is reflected in the centrality of free energy to

the study of microbiological processes.1 Enzymes, as key functional units of that timescale

manipulation, can be understood as among the most fundamental units of biology.

Enzymes are extremely powerful tools, but the same property that gives them their

strength is also the greatest barrier to harnessing them for other uses: exquisite chemical

specificity. Intimately understanding the functioning of enzymes on a molecular level will

be key to bending them more effectively towards technological needs, including but by no

means limited to the manufacture of drugs and industrial chemicals,2 the refinement of raw

biomass into renewable fuels,3 and the cleanup of environmental pollutants.4

Although the field of enzymology has existed at least since the 19th century,5 the study

of the molecular mechanisms of enzymes is a much younger field, owing to the lack of
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means to study biology at the molecular level until the mid-20th century.6 Koshland’s

famous 1958 “induced fit” proposal, whereby binding of a substrate to an enzyme induces

structural changes that are in turn necessary for the enzyme to function, represents

perhaps the earliest theory to gain traction by proposing an intimate and subtle relationship

between enzymes and substrates.7 This proposal arises naturally out of observations of

the macroscopic behavior of enzymes; Koshland used as the basis for his reasoning the

flexibility displayed by the ribosome in the formation of peptide bonds. However, viewed

with an eye towards mechanisms on the molecular level, it quickly becomes clear that

the structure-function relationships underlying enzymes operating under the induced fit

paradigm must be exquisite indeed. Somehow, into the amino acid sequence of each

enzyme must be encoded detailed physical “instructions” for the manipulation of every

atom at every stage of the desired reaction – not to mention even more fundamental

parameters such as the backbone fold, appropriate thermostability, and adjustments for

pH conditions.

1.2 Dynamics and Transition Pathways

Owing to this extraordinary intricacy, traditional experimental tools are insufficient for

answering questions regarding the detailed functioning of enzymes on the molecular scale.

Although experimental kinetics studies provide some options for gleaning mechanistic

information about enzymatic reactions without involving molecular structural data (and are

indispensable for experimentally testing mechanistic hypotheses), more detailed discov-

eries are usually predicated on the analysis of three-dimensional enzyme models, such

as those obtained by X-ray crystallography. However, even three-dimensional molecular

models leave out what Koshland identified as the key element: dynamics. Studying the

functioning of enzymes at this level motivates the field of molecular simulation.
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Simulation is the best available tool if one is interested in probing the behavior of

enzymatic processes, as opposed to merely individual slices in time. Because (as follows

naturally from Koshland’s insight) all of the most interesting features of enzymes are

dynamic, taking a simulations perspective to enzymology is essential to obtaining a

complete understanding. Simulations allow researchers to study the minutia of molecular

motions over the course of a given process of interest.

Of course, not every possible dimension of motion is crucial to every enzymatic process.

Indeed, the vast majority of the degrees of freedom in any given simulation are relatively

unimportant in describing any given transformation. One of the most essential tasks

for a molecular simulations researcher, then, is to somehow identify the key degrees of

freedom, and to extract them from the surrounding noise during analysis. To this end,

one of the key analytical concepts in molecular simulations is high-dimensional “phase

space” within which every possible configuration of the system is represented by a single

point. Molecular processes can be understood as pathways (or more exactly, ensembles

of pathways) through phase space that connect different states (or, again, ensembles

of states) of interest. Succinct descriptions of these pathways, and of the free energy

profiles associated with them, are among the most valuable sorts of information that can

be extracted from simulations.

1.3 Themes in This Work

The body of this work consists of three separate manuscripts prepared over the course

of my doctoral training. Each draws from a set of themes that reflect the key concepts of

this work as a whole:

3



(1) Explanations in terms of pathways

Rather than restricting analysis to static structures or snapshots, we will always seek

to understand processes as fundamentally dynamic, and, when appropriate, as averages

over ensembles. This is the fundamental strength of simulations, and pathway arguments

have explanatory power that individual snapshots (even snapshots of simulations) lack.

(2) Reckoning with intricacy and human intuition

One major question in the context of simulations in general, but especially simulations of

enzymes, is: what is the proper role of human intuition in guiding study? On the one hand,

totally unguided simulation is generally highly inefficient for studying specific processes,

and certain processes that are very slow compared to the timescale of a simulation are in

fact impossible to study without some form of enhanced (biased) sampling. On the other

hand, injecting too much “intuitive” bias into a simulation study may end up disguising the

real underlying mechanics of the system; that is, it runs the risk of confirmation bias. A key

theme in these works is the careful application of the minimum viable bias such that useful,

interpretable results are produced without cutting out the underlying intricacy.

(3) Study of the unusual informs understanding of the usual

Here, we define “unusual” in terms of comparison to similar enzymes (unusual across

an enzyme family), in terms of comparison to more typical behavior (unusual within a

single enzyme), or even temporally (rare events in a time). In each case, however, we

will see how study of what stands out is often the most useful tool for reaching a broader

understanding.
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CHAPTER II

Advantages of a Distant Cellulase Catalytic Base

2.1 Chapter Introduction

The first manuscript herein is also the most straightforward in concept: an unusual

mechanism in need of an explanation. Although most cellulose hydrolyzing enzymes

(or “cellulases”) work by dividing a water molecule directly between the substrate and

a catalytic base residue, the cellulase Trichoderma reesei Cel6A has no obvious basic

residue in place to do so. Previous work by Mayes et al.8 established that the mechanism

instead involves a “wire” water molecule adjacent to the hydrolyzed water molecule, with

the extra proton “conducted” through the water wire to the base. There is no obvious

explanation for why this mechanism might’ve evolved, and the requirement that the wire

water be coordinated in the transition state raises the free energy of the reaction compared

to more traditional mechanisms. This raises the question: why does Cel6A go through the

trouble?

The strategy in this work was based on noticing that nature had done something unusual,

and trying to “undo” it by applying a mutation that one might expect to be more natural: a

longer base residue that can reach the hydrolyzed water directly. We then set out to glean

the underlying evolutionary “motivation” by investigating the reasons that the intuitively

superior mutant doesn’t work as well in practice. It also features a comparison to a different
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enzyme that does follow the expected strategy. In this sense, we come at the analysis from

two complementary perspectives: (1) looking from where the enzyme really is towards the

expected model, and (2) looking from the expectation (that is, a similar enzyme that does

meet our expectations about how such an enzyme should function) towards reality.

What results is a convincing rationalization of an unusual design. Mutating Cel6A

reveals (by disrupting) an intricate set of finely tuned machinery for performing not only

the reaction itself, but also the pre-reaction step of translocating the bound substrate into

the active site, and the post-reaction step of shuttling a proton from the catalytic base to

the catalytic acid in order to “reset” the enzyme for the next catalytic cycle. Furthermore,

comparison to a more standard cellulase highlights the unexpected advantage that the

distant catalytic base presents for releasing the reaction product from the active site.

Taken in the broader context of this thesis, this work serves as an introduction to all

three of the key themes that will be recurring. First, a pathway perspective: notice while

reading that the motivating “problem” of the unusual water wire mechanism only appears

to be strange within the narrow perspective of the reaction step itself. Instead, explanatory

power is found by broadening the context to include enzymatic steps both before and after

the reaction along the full transition pathway, from before the substrate has even entered

the reaction site, to the moment of its release. Second, the limited value of intuition: we

highlight that while chemical intuition has a rightful place in guiding research into enzymatic

mechanisms, it can also be misleading, as in this case, where the intuitive mutation is in

fact deleterious. Finally, the unusual informs the usual: by comparing Cel6A’s unusual

mechanism to a more typical cellulase’s, a more nuanced understanding of what each was

“designed” to optimize is apparent. All of these themes will be formalized and developed

further in future chapters.
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Advantages of a Distant Cellulase Catalytic Base

Tucker Burgin, Jerry Ståhlberg, and Heather Mayes (2018). Reproduced with permission

from the American Society for Biochemistry & Molecular Biology from the Journal of

Biological Chemistry 293(13): 4680–4687.

2.2 Abstract

The inverting glycoside hydrolase Trichoderma reesei (Hypocrea jecorina) Cel6A is a

promising candidate for protein engineering for more economical production of biofuels.

Until recently, its catalytic mechanism had been uncertain: the best candidate residue

to serve as a catalytic base, Asp-175, is further from the glycosidic cleavage site than in

other glycoside hydrolase enzymes. Recent unbiased transition path sampling simulations

revealed the hydrolytic mechanism for this more distant base, employing a water wire;

however, it is not clear why the enzyme employs a more distant catalytic base, a highly-

conserved feature among homologs across different kingdoms. In this work, we describe

molecular dynamics simulations designed to uncover how a base with a longer side

chain, as in a D175E mutant, affects procession and active site alignment in the Michaelis

complex. We show that the hydrogen bond network is tuned to the shorter aspartate side

chain, and that a longer glutamate side chain inhibits procession as well as being less

likely to adopt a catalytically productive conformation. Furthermore, we draw comparisons

between the active site in TrCel6A and another inverting cellobiohydrolase to deduce the

contribution of the wire water to the overall enzyme function, revealing that the more distant

catalytic base enhances product release. Our results can inform efforts in the study and

design of enzymes by demonstrating how counterintuitive sacrifices in chemical reactivity

can have worthwhile benefits for other steps in the catalytic cycle.
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2.3 Background

In order to tap into the deep reservoir of renewable energy represented by fuels derived

from plant matter, an economical means of converting lignocellulose is required.9 Decom-

position of the primary component, cellulose, is catalyzed by glycoside hydrolase (GH)

enzymes, which are found ubiquitously in nature;10 therefore, improved catalytic efficiency

of cellulose decomposition enzymes would help biomass to compete with non-renewable

carbon sources. This motivates molecular-level studies into GH enzymatic mechanisms,

as such understanding has previously proven invaluable in efforts to engineer variants with

increased activities.11–13

A particularly important GH enzyme is Trichoderma reesei Cel6A (TrCel6A), which plays

a key synergistic role in industrial enzyme cocktails for cellulose digestion. This enzyme

is a cellobiohydrolase of GH family 6, which cleave β-1,4 glycosidic bonds processively

along cellulose chains, from the non-reducing towards the reducing end, to release the

glucose dimer cellobiose as the main product.14 This processive mode of action is believed

to be key to their efficiency on highly crystalline cellulose. Glycoside hydrolase family

6 (GH6) enzymes exhibit a range of activity on a continuum between cellobiohydrolase

processive activity and endoglucanase activity, characterized by cleavage of internal

bonds.15–18 Endoglucanases generally exhibit higher catalytic rate constants, only show

appreciable activity on less ordered regions of cellulose, and produce a broader range

of products.13 A crystal structure of TrCel6A was first solved in 1990,19 but only recently

has its molecular-level mechanism begun to be established. GH6 enzymes function via an

inverting mechanism wherein the stereochemistry at the carbon of the cleaved β-1,4 bond

is changed from equatorial to axial. The classical inverting mechanism (Figure 2.1, left)

by which such reactions typically take place requires a catalytic acid-base pair (a proton

8
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Figure 2.1: TrCel6A vs. classical mechanism

A comparison of the “classical” inverting cellulase hydrolase mechanism proposed by Koshland20 (left) to that used
by TrCel6A (right). The overall reaction chemistry is the same in each case, but TrCel6A requires the presence of
the additional “wire water” in the active site due to the increased distance between the attacking water molecule and
the catalytic base. The wire water does not change the overall chemistry. Atoms and bonds belonging initially to the
nucleophilic water and the wire water are depicted in cyan and red, respectively.

donor and acceptor), the latter of which activates a nucleophilic water molecule during

hydrolysis.20 The identity of the catalytic acid in TrCel6A was identified experimentally as

Asp-221; more recently, computational study confirmed the identity of the corresponding

base as Asp-175.8,21

An interesting aspect of the mechanism revealed is that the catalytic step wherein

Asp-175 accepts the excess proton requires an additional water molecule compared to

the canonical mechanism, positioned between the basic carboxylate group at the end

of Asp-175 and the nucleophilic (or “attacking”) water, as shown in Figure 2.1 at right.

This “wire” or “bridge” water molecule momentarily forms a hydronium (H3O+) ion during

hydrolysis before offloading its excess proton to Asp-175.8 The mechanism therefore

requires the stabilization of two water molecules in the active site as opposed to only

the one participating in the overall chemistry, raising the question as to why the active

site of TrCel6A includes the additional water. Previous studies indicate that there is an

additional energetic barrier on the order of 5 kcal/mol associated with each additional

water wire in a Grotthus mechanism.22 If the additional water molecule is only needed
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to conduct a proton over the required distance, a mutant base with a longer side chain

could obviate the need for the water wire. This suggests investigation of a TrCel6A D175E

mutant, since glutamate (E) is identical in structure to aspartate (D) but for an additional

CH2 group in its side chain that could project its carboxylate group further into the active

site. While no studies appear in the literature on a TrCel6A D175E mutant, mutation of

the homologous residue in the GH6 enzymes Thermobifida fusca Cel6A (Tf Cel6A, at that

time known as Thermomonospora fusca Endocellulase E2) (D79E) and Cellulomonas fimi

Cel6A (formerly CenA) (D216E) has been shown to result in a decrease in activity relative

to the wild type by approximately three orders of magnitude.23,24

In order to bridge the gap between atomistic enzymatic detail and human chemical

intuition, we constructed molecular models of both wild-type and D175E TrCel6A and

investigated the influence of the mutation on two non-reactive steps in the catalytic cycle:

(1) procession of the substrate into the active site; and (2) the transition to the reaction-

competent active site conformation following procession. We found in both cases that the

longer Glu-175 residue in the mutant was a hindrance to the catalytic cycle, highlighting

the importance and intricacy of the remarkable network of hydrogen bonding interactions

that stabilizes the active site of the wild-type enzyme.

Finally, by means of comparison of the active site to that of a related endo-processive

cellulase that functions via the classical inverting mechanism (TfCel9A), we offer an

explanation for the TrCel6A mechanism in terms of reduced association between the

product and enzyme. We propose a benefit in cellulases to activation of the nucleophilic

water via a wire water by taking into account aspects of the enzymatic cycle outside the

reaction itself, broadening the context for rationalizing enzymatic features in carbohydrate-

active enzymes.
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Figure 2.2: TrCel6A substrate procession energy

PMFs for substrate procession. Snapshots of substrate positions from the simulations with the wild-type enzyme are
shown at RMSD values of 0.25 and 10.25 Å, respectively. The substrate binding sites −2 to +3 are labeled, along with
two catalytic residues in the wild type. The RMSD compares the positions of the leading two glucose rings relative to the
“pre-slide” structure (left). The dashed lines indicate the RMSD values of the “pre-slide” and “slide” conformations.

2.4 Results

2.4.1 D175E mutant: procession of the substrate into the active site

As a non-reducing-end cellobiohydrolase, each enzymatic cycle in TrCel6A requires the

leading ring of the substrate chain advancing from the +1 site to the −2 site,13 described

as moving from the “pre-slide” to “slide” positions as shown in Figure 2.2 (at top). One

hypothesis to explain the lower activity of the TrCel6A D175E homologue is that the bulkier

side chain could protrude into the active site groove and hinder procession. To study

this, we performed umbrella sampling simulations of procession using a CV that tracks

the relative positions of the enzyme and substrate (simulation details available in the

supporting material). The resulting potential of mean force (PMF) plots for both enzyme

types are shown in Figure 2.2 (bottom), with the zero point on the free energy axis set at

around 2 Å, where we did not expect the identity of the residue at position 175 to have a
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large effect. We note that the CV used for sampling did not capture all key features that

change during the transition from the pre-slide to slide positions. Specifically, as discussed

in our previous study of TrCel6A wild-type procession, another key order parameter is

the puckering of the second-to-leading glycosyl ring as it enters the −1 binding site, near

9 Å on the x-axis of the PMF in Figure 2.2.8 Additionally, we found that the serine loop

moves from a more-open to less-open position during procession, appearing coincident to

the procession at approximately 6 Å on the x-axis of the PMF. The multidimensional CV

required to properly sample all these (and potentially more) key feature changing during

procession would be computationally prohibitive, and thus the PMF shown for the simplified

CV (RMSD only) is most appropriately analyzed in terms of comparative qualitative, not

quantitative, differences between the WT and D175E mutant (further discussion of this

point is included in the supporting text). Specifically, we note that the PMF for the wild-type

enzyme has a pronounced energy well that stabilizes the productive structure just after 10

Å, providing a driving force for spontaneous procession. In contrast, the D175E mutant

retains a fairly flat energy profile. This effect can be at least in part attributed to steric

clashes with several residues near the catalytic base, as shown in Figure 2.3. As shown,

Asp-175 in the wild-type hydrogen-bonds with Arg-174 and Asn-182. This result suggests

that one advantage of the shorter catalytic base is to enhance procession by widening the

gap between the wall of the active site tunnel and the substrate.

2.4.2 D175E mutant: reaction-competent active site conformation

During hydrolysis, the catalytic acid loses a proton while the base obtains an excess

proton. Before the next reaction, these residues likely exchange a proton when the acid

(Asp-221) bends away from the reaction site towards the base (residue 175), as shown for

the wild-type enzyme in Figure 2.4. After re-protonating, the acid must rotate along the
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Figure 2.3: TrCel6A D175E barriers to procession

Snapshot of the TrCel6A wild type and D175E mutant mid-procession, corresponding to an RMSD value of 6.5 Å from
Figure 2.2. While the wild-type base hydrogen bonds with nearby Arg-174 and Asn-182 to keep all three residues tucked
away from the processing substrate, the added length of Glu-175 disfavors this binding and leaves the residues to clash
with the leading ring.

dihedral angle indicated in the figure in order to position its proton toward the glycosidic

oxygen and realign itself for the next catalytic event.13,21

The energy landscape in Figure 2.4 shows the barriers for the wild type and D175E

mutant for this transition, with the acid and base residues further apart at the larger

dihedral angles. The PMFs are similar, with the difference in barrier heights no greater

than 1 kcal/mol. However, as shown in Figure 2.5, the wild-type and mutant conformations

corresponding to the right-hand side energy wells in Figure 2.4 have significantly different

hydrogen bonding networks. In the wild type, the hydrogen bond between the acid and

base residues is broken, and the acid instead hydrogen-bonds with the glycosidic oxygen,

in a reactive conformation for hydrolysis.8 In the mutant, the base often remains hydrogen-

bonded to the acid, rather than with the active-site “bridge” water, preventing formation

of the hydrogen-bonding network that aligns the active site waters for hydrolysis. When
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Figure 2.4: TrCel6A proton transfer dihedral

PMFs from umbrella sampling for dihedral rotation around the Asp-221 Cα-Cβ bond (dihedral angle indicated in green
in the snapshots shown from the wild-type enzyme simulations), representing the transition from the conformation for
catalytic base/acid proton transfer (at around 80◦) toward the Asp-221 position for glycosidic cleavage (near 170◦).

unbiased simulations were run with the acid initially at a dihedral angle of 175◦, the

productive hydrogen bond between the Asp-221 proton and the glycosidic oxygen was

never observed over the 1-ns trajectory in the D175E mutant, compared to roughly 5% of

the frames in the wild type.

In a separate simulation, the acid-base hydrogen bond in the conformation shown in

Figure 2.5(B) (between Asp-221 and Glu-175) remained stable during 972 ps of simulation,

at no point bonding instead with the attacking water. Efforts to obtain such a conformation

indicated that it does not occupy a local energy minimum. As shown in Figure 2.6, the

energy barrier associated with this active conformation was quantified using umbrella

sampling with restraints applied to the dihedral angle connecting the β- and γ-carbons.

This parameterization approximates the motion that the residue undergoes during unbiased

simulation initiated near the high-energy region around 40◦. As shown, the free energy

trough in this region is shallow and readily degenerates to the inactive state at −50◦, and
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Figure 2.5: TrCel6A mutated vs. WT active site

Diagram of the active site of TrCel6A for the wild type and D175E mutant. An exquisite network of hydrogen bonding
interactions stabilizes the wire water between the attacking water (hydrogen bonding with Ser-181 in both cases) and the
wild-type base, Asp-175. The longer side chain of the mutant Glu-175 residue compels it out of the active site, chasing
after the void left by the acid Asp-221 after the rotation described in Figure 2.4 and resulting in an inactive conformation.

an even lower-energy state is available at −170◦ (leftmost energy well in Figure 2.6, left).

A total free energy activation barrier of roughly 7.3 kcal/mol separates the active state from

the low-energy state at −170◦, posing significant hindrance to hydrolysis.

The simulations used to construct the PMF in Figure 2.6 began from a structure with

Asp-221 initially in a high-dihedral angle conformation from Figure 2.4, which in the wild

type aligns the Asp-221 carboxylic proton with the glycosidic oxygen. However, in the

mutant these atoms were not consistently aligned, indicating that 7.3 kcal/mol is an

underestimation of the barrier to reactive alignment. Additionally, even when the attacking

water is aligned by Glu-175, its lone pair is less-favorably oriented for nucleophilic attack

as compared to the wild type. Considering these factors and assuming that the lack of a

water wire reduces the hydrolysis barrier by 5.0 kcal/mol,22 the net effect of the mutation
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Figure 2.6: TrCel6A catalytic acid backbone dihedral

PMF for rotation of dihedral around the bond between the β- and γ-carbons in the mutant Glu-175 residue. Three
distinct minima are observed at −170◦, −50◦, and 40◦. The minimum highest in free energy corresponds to a
potentially hydrolytically active conformation, with Glu-175 hydrogen bonding with the nucleophilic water as shown in the
corresponding snapshot.

would be to increase the barrier by a conservative (low) estimate of at least 2.3 kcal/mol.

In sum, we find that although Glu-175 may adopt a conformation where it could accept a

proton directly from the nucleophilic water (and thus may act as catalytic base in a classical

inverting mechanism), activity in this mutant is lower than in the wild type because (a) the

“active” conformation of Glu-175 is disfavored, (b) the lone pair of the attacking water is

less-favorably oriented for nucleophilic attack at the anomeric carbon, and (c) the catalytic

acid Asp-221 is less able to dissociate from Glu-175 (as compared to Asp-175) to enable

protonation of the glycosidic bond.

The finding that a glutamate at position 175 disrupts the hydrogen bonding network that

catalyzes hydrolysis indicates that active site of TrCel6A is tuned for the shorter, highly-

conserved aspartate.13 Several other GH6 enzymes have been crystallized, including

Tf Cel6B (PDB ID: 4B4F25), Chaetomium thermophilum Cel6A (PDB ID: 4A0526), Humicola

insolens Cel6A (PDB ID: 1BVW27), and Tf Cel6A (PDB ID: 2BOD28). The distances between
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the glycosidic oxygens and catalytic bases, as well as the presence of two active site

waters in structures apparently primed for hydrolysis, indicate that members of this family

generally perform hydrolysis via a Grotthuss mechanism to a more distant catalytic base.

Our simulations clearly indicate why a longer catalytic base decreases activity; however,

the question remains as to why the active site is not tuned for a longer side chain, or why

the aspartate is not positioned closer to the cleavage site.

2.4.3 Active site homology

To better understand why the TrCel6A active site is tuned to require a wire water,

we compared its active site to that of another inverting glycoside hydrolase, TfCel9A,

a processive endocellulase that is believed to employ the classical mechanism based

on crystallography and site-directed mutagenesis studies.29,30 We created a TfCel9A

model based on a product-state crystal structure (PDB ID: 4TF431) to compare with a

product-state structure produced for TrCel6A in the course of our previous work,8 as shown

in Figure 2.7. Panels A and B highlight differences in the hydrogen-bonding network in

the product states. In both cases, hydrogen bonding interactions that helped stabilize the

nucleophilic water in the appropriate position for catalysis pre-reaction become hydrogen

bonds to the product monomer in the −1 position post-reaction. Specifically, the product

hydrogen bonds with Ser-181 and the “bridge” water (in turn hydrogen-bound to Asp-175)

in TrCel6A, and to Asp-55 as well as directly to Asp-58 in TfCel9A. TrCel6A Asp-175 and

Tf Cel9A Asp-58 are the base residues while TrCel6A Ser-181 and Tf Cel9A Asp-58 serve

to stabilize the nucleophilic water in the reactant state.

Viewed from the reducing end of the substrate, an interesting geometric distinction

between the two active sites becomes apparent as depicted in panels C and D. Although

TfCel9A employs a glutamate residue instead of an aspartate as its catalytic acid, the
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Figure 2.7: TrCel6A comparison to homologous active site

Comparison of the product-state active sites of TrCel6A (A and C) and Tf Cel9A (B and D). In A and B, the dashed lines
highlight specific hydrogen bonds further discussed in the text. Panels C and D show the same conformation from a
different orientation, to highlight the differences in relative positions of the product and acid/base residues.

acid/base pairs in these enzymes are in similar relative positions to one another (with 5.3

Å of separation between the carbon atoms in their carboxylate head groups in the relaxed

product state), and the relative positions of the acid and base to the axis of the substrate in

each enzyme are the same (making about a 90◦ angle in each case). However, the whole

of the catalytic machinery of TrCel6A is rotated roughly 45◦ about the substrate. Because

of the oblong cross-sectional shape of the substrate, the TrCel6A base is further from the

−1 anomeric carbon than in TfCel9A (6.0 versus 4.1 Å in the product state, respectively),

requiring the addition of the wire water molecule to connect the base with the attacking

water. While this discussion focuses on the product state, for which a crystal structure of

TfCel9A is available, the same conclusions should hold in the transition state structures

based on the positions of the acid residue α-carbons.

One advantageous function of the water wire could be to destabilize the newly formed

product in the −1 position after hydrolysis. We quantified this effect by measuring the

contribution to the overall free energy of binding from the base residue in each enzyme. To
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focus on the effect of the mediating water wire alone, not obscured by other differences

in the enzymes, we calculated the total change in binding free energy associated with

mutating the bases to alanine, as detailed in the supporting text. The base-to-alanine

mutations remove all of the polar interactions with the catalytic bases, so the difference

between the total binding energy in the mutant and wild type can be interpreted as the

contribution only from the bases. As expected, the TfCel9A base (which binds directly to

the substrate) has a larger contribution to the binding energy (~7.8 kcal/mol) compared

to that of the base in TrCel6A (~2.1 kcal/mol). This result indicates that the GH6 enzyme

greatly enhances product release by using the wire water as a buffer between the base

and product.

Interestingly, the hydrogen-bonding network in the TrCel6A active site stabilizes the 2SO

pucker of the −1 ring for the product conformation. In TfCel9A this ring is relaxed to the

low-energy 4C1 chair, and its C1 hydroxyl group hydrogen bonds directly with the catalytic

base Asp-58. This conformation is further stabilized by hydrogen-bonding between the C1

α-hydroxyl and the nucleophilic water-stabilizing Asp-55 in Tf Cel9A, while the homologous

residue in TrCel6A, Ser-181, stabilizes a puckered product because the latter pulls down

the −1 ring oxygen. This pucker is known to promote reactivity in TrCel6A and occurs

spontaneously as the second-to-leading glycosyl ring enters the −1 binding site.8 QM

calculations of monosaccharides have shown that the energetic cost for puckering an

α-glucose (as in the product) in the 2SO orientation is approximately 4 kcal/mol greater than

puckering a β-glucose (as in the reactant) in the 2SO orientation.32 Holding the product

in a puckered state may further promote product release by stabilizing an unfavorable

conformation while bound.

In our aforementioned simulation of the TrCel6A base mutated to alanine, the −1 sugar

became free to transition between skew puckers 2SO and 1S3. Because the product is in
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the α-glucose configuration, this transition stabilizes the bound product by 3 kcal/mol.32

This result points to an additional role of the base (indirectly, through the wire water) in

stabilizing the unfavorable 2SO pucker in the product state and promoting product release.

2.5 Discussion

The catalytic mechanism of TrCel6A involves a counterintuitive wire water molecule that

is not strictly necessary to the overall chemistry of the enzyme’s reaction. Motivated by a

desire to rationalize this exception to the classical mechanism for an inverting glycoside

hydrolase, we disrupted the active site with a D175E mutation that we hypothesized

would supplant the wire water. We found that the active site is stabilized by a series of

interconnected hydrogen bonds for which the wild-type base Asp-175 is perfectly suited,

whereas the mutant Glu-175 was less favorably aligned for either substrate procession

and hydrolysis. During procession, only the wild-type base promoted hydrogen bonding

that kept Arg-174 and Asn-182 out of the tunnel, contributing to an energetically favorable,

spontaneous forward motion for the wild-type enzyme, which was not manifest in the

mutant. In aligning for hydrolysis, hydrogen bonding in the mutant active site favors

positioning the mutant carboxylate group even further from the nucleophilic water than

in the wild type, which, compared to it, both makes accepting a proton more difficult and

prevents it from helping align the nucleophilic water for attack. Calculations of low-energy

conformations of the system in the hydrolysis-ready position with the −2 and −1 positions

occupied by the cellulose chain indicate that the overall reaction barrier in the D175E

mutant would be increased by at minimum 2.3 kcal/mol, which is approximately consistent

with the activity reductions observed for the TrCel6A D175E-homologous mutants Tf Cel6A

D79E and CfCel6A D216E.23,24

To further understand the role of the more distant base in TrCel6A, we compared its
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active site to that of an inverting cellulase, Tf Cel9A, which does not require a water wire to

shuttle a proton to the base during catalysis. While the active site residues align similarly

in the two enzymes, the substrate is rotated approximately 45◦ about its axis, creating the

additional distance occupied by the “bridge” water in TrCel6A. We propose that the wire

water buffers the post-reaction hydrogen bonding between the protonated base and the

cellobiose product, easing product release. Consistent with this theory, we calculated an

approximately 6 kcal/mol reduction in product binding energy due to differences in catalytic

base alignment strategy.

Our results advance cellobiohydrolase enzyme engineering efforts by broadening the

focus of the role of active site residues beyond the hydrolysis step. Family GH6 enzymes

(and the conservation of their mechanism across different branches of life) expand our

understanding of how enzymes can make small sacrifices in reactivity to enhance other

aspects of the larger catalytic cycle.

2.6 Experimental Procedures

2.6.1 Molecular dynamics simulations

The approach of our investigation using molecular dynamics (MD) simulations is briefly

described here, with further detail in the supplemental material. All models were based

on crystal structure deposited in the Protein Data Bank (PDB).33 The initial structure for

the procession study was constructed by combining features from two crystal structures.

First, the crystal structure PDB ID: 1QK234 (wild-type TrCel6A with a non-hydrolysable

cellotetraose) was stripped of its non-protein components. Then, the cellohexaose sub-

strate from PDB ID: 4AVO35 was manually aligned with its leading non-reducing-end ring

in the +1 position as in our previous work.8 For the active site conformation studies, we

started with the PDB ID: 1QJW34 crystal structure (TrCel6A Y169F mutant complexed
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with cellotetraose) reverted to the wild type, and again replaced its substrate with that of

PDB ID: 4AVO,35 this time in the active position with the leading ring in the −2 site. The

crystal structures in PDB format were converted into topology and coordinate files using

the CHARMM36 package and the CHARMM36 forcefield.37–40 The models were solvated

in a periodic box using the TIP3 water model41 and converted into Amber format using the

CHAMBER program in ParmEd.42

All simulations were performed using the Amber14 package.43 Unless otherwise stated,

the SHAKE algorithm44,45 was used to constrain the lengths of all hydrogen bonds and

the cutoff distance for non-bonded interactions was set to at least 8.0 Å. First, structures

were minimized without SHAKE over 2500 steps (1250 steepest-descent method followed

by 1250 conjugate gradient method). The systems were then heated in a periodic box in

the NVT ensemble, using the Andersen thermostat46 to take the temperature from 100

K to 300 K over 10,000 2-fs time steps followed by 1000 steps of constant-temperature

simulation. Velocities were randomized every 1000 steps. MD production simulations were

performed under the same conditions as the heating simulations at a constant temperature

of 300 K.

Simulations of TrCel6A included positional restraints on the α-carbons of residues

Ser-106, Ala-150, Asp-200, Asn-247, Ala-280, Ile-330, and Gln-437, as in our previous

work.8 These atoms have been shown to have a low root mean square fluctuation,47 and

restraining them prevents bulk motion of the protein.

Models were visualized using VMD.48 The PMF plots were produced using the umbrella

integration method introduced by Kästner and Thiel49,50 and implemented by Stroet and

Deplazes.51
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CHAPTER III

Mechanism of Oligosaccharide Synthesis via a Mutant GH29
Fucosidase

3.1 Chapter Introduction

In contrast to the previous paper, which sought to rationalize a known mechanism, this

work centers on an enzyme whose reaction mechanism was not known in advance. The

enzyme in question this time is a mutant of the fucose hydrolyzing enzyme Thermotoga

maritima α-L-fucosidase, or TmAfc. Unlike most mutations, which either have no identifiable

effect or simply modulate the efficiency of the enzyme’s native reaction, the mutation in

question – D224G – has the highly unusual property of changing the dominant reaction

altogether. TmAfc D224G is a member of a class of enzymes called “glycosynthases”:

engineered glycoside hydrolases that have been mutated to disable their native hydrolytic

activity in favor of new glycosyltransferase activity involving a native leaving group on the

substrate.

Although many aspects of glycosynthases are poorly understood in general, TmAfc

D224G is unusual even among glycosynthases. Whereas most functioning glycosynthases

that have been identified to date use a flourine atom as the reaction’s leaving group, the

reactions best catalyzed by TmAfc D224G involve a departing azide (N3) moiety instead.

Furthermore, fucosynthases such as this one are rare; most glycosynthases discovered to
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date are specific for other types of sugars. As there is significant bioengineering interest in

developing tools for specific oligosaccharide synthesis, characterizing and understanding

the full scope of glycosynthase reactions is a necessary precursor to developing more

(and more efficient) enzymes for this purpose.

The central contribution of this work is a full, unbiased transition path sampling study

into the mutant reaction mechanism. As in the previous chapter, all three recurring themes

play a role here: (1) a full view of the transition pathway plays a central role; (2) the reaction

mechanism is obtained with the minimum possible human bias by specifying in advance

nothing except definitions of the reactants and products; and (3) the key result of the work

is a study into exactly how something so unusual as a complete change in the dominant

reaction scheme of the enzyme can arise by repurposing its existing machinery. The

minimum bias workflow used to obtain the results in this paper is highly generalizable, and

automating it will be the topic of the following chapter.

This version contains corrections not reflected in the published manuscript, regarding the

pathway free energy method used to obtain the reaction energy profile. The original work

used a method called equilibrium path sampling (EPS), which is a highly general (but highly

inefficient) method of measuring energy along an arbitrary molecular pathway. Although

our analysis at the time led us to believe that the EPS data was properly converged around

the equilibrium distribution, later analysis after publication revealed that key processes on

a much longer timescale are in fact dominant. The version that appears here replaces

the EPS results with updated results using umbrella sampling, which is dramatically more

efficient, but had not been developed for use with complex reaction coordinates such as the

one that appears herein until after the original publication. The result is much stronger and

in better agreement with available experimental data than what appears in the published

version.
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Mechanism of Oligosaccharide Synthesis via a Mutant GH29 Fucosidase

Tucker Burgin and Heather Mayes (2019). Reproduced with permission from The Royal

Society of Chemistry from Reaction Chemistry & Engineering 4: 402–409. Contains

unpublished corrections.

3.2 Abstract

Techniques for synthesis of bespoke oligosaccharides currently lag behind those for

other biopolymers such as polypeptides and polynucleotides, in part because of the paucity

of satisfactory enzymatic tools to perform the synthetic reactions. One promising avenue

of development for this problem is glycoside hydrolase enzymes with mutated nucleophile

residues (called glycosynthases), which retain some elements of their native specificity

and work with cheaply available substrates. However, the mechanistic underpinnings of

this class of enzymes are not yet well-understood, and what few atomistic studies have

been conducted have found different reaction pathways. In this paper, we describe the

first unbiased computational study of the mechanism of a GH29 glycosynthase enzyme,

Thermotoga maritima α-L-fucosidase (TmAfc) D224G. We find a single-step endothermic

reaction step with an oxocarbenium-like transition state, demonstrating how stabilization of

this transition state structure (which is common to many retaining glycoside hydrolases) can

be repurposed in mutant enzymes to perform synthesis instead of hydrolysis. Our results

are consistent with experimental observations and help both to clarify the mechanism of

the existing single-mutant and to provide directions for further engineering of this and other

glycosynthases.
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3.3 Introduction

Oligosaccharides have long been known to play a wide variety of important roles in biol-

ogy,52 from structural support to signaling cascades and mediation of cell-cell interactions

— as one 1993 review paper put it: “all of the theories are correct.”53 Futher understanding

of the properties and roles of particular oligosaccharides requires synthesis of homoge-

neous samples in sufficient quantities for research studies. Unfortunately, techniques for

synthesizing oligosaccharides have lagged significantly behind those for other biological

polymers, owing in part to the complexities of regio- and stereochemistry.54,55 Though

significant progress has been made since the 1990s, the variety of methods that have been

developed are narrow in their applicability, usually taking place over many successive steps

with a loss of conversion at each step, and require meticulous control over the reaction

conditions to minimize competing off-pathway reactions.56–58

The natural alternative to arduous organic synthesis routes is the use of enzymes to

catalyze highly specific glycosynthetic reactions. Enzymes remove the need for careful

protection and deprotection steps or the tuning of highly sensitive reaction parameters.

Unfortunately, the enzymes evolved in nature to perform these reactions, glycotransferases,

are largely not amenable to biotechnological applications because of their low stability

outside the cell and reliance upon expensive nucleotide-sugar substrates.59 Although

strategies to circumvent these issues are in development, such as the recycling of re-

acted nucleotides or directed evolution of the enzymes to accept more readily available

precursors, this has proven to be a non-trivial problem.60,61

Other enzymatic alternatives are mutant glycosidases, dubbed “glycosynthases.”55,62 To

modify a two-step retaining bond cleavage mechanism, the nucleophilic residue responsible

for forming the stable intermediate is mutated into a non-reactive residue in order to
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preclude the forward reaction, leaving the catalytic base (Glu-266) intact and able to aid

synthesis of a glycosidic bond between suitable glycosyl donor and acceptor molecules.

Such enzymes provide a powerful framework for building oligosaccharides from readily

available substrates (employing much simpler leaving groups than nucleotides, such as

azide groups or fluorine atoms).63 Glycoside hydrolases are more stable and soluable than

glycosyltransferases and thus more amenable to in vitro and industral conditions. However,

because they are evolved for a different reaction pathway, they lack the high specificity and

efficiency characteristic of most wild-type enzymes. Furthermore, much of the work to date

on the discovery of new glycosynthases has been a series of shots in the dark: it is not

well-understood which nucleophile mutations applied to which glycoside hydrolases will

produce an active glycosynthase or why, and the most successful work for obtaining new

or improved glycosynthases has relied on random, semi-random, or otherwise exploratory

approaches.64–66

These shortcomings motivate attempts to rationally engineer glycosynthases to produce

a given oligosaccharide with high specificity and efficiency. This endeavor will require a

clear understanding of the reaction mechanism at the atomic level. However, although

glycosynthases have been present in the literature for over 20 years,62 investigations

into the atomistic underpinnings of these mutants’ reactions have been scant. One

2013 study by Zhang et al. described a metadynamics study on the Humicola insolens

Cel7B cellulase E197S mutant in its glycosylation reaction between α-lactosyl fluoride

and the flavonoid luteolin.67 In that same year, Wang et al. performed partitioned-rational

function optimization calculations to find energy minima and maxima in the cellulose

synthase reaction of rice BGlu1 β-glucosidase mutants E386G, -S and -A.68 Although both

papers help to clarify the mechanisms of their respective reactions, taken together they

underscore how individual studies do not capture the complete picture of how this class of
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α-1,4 linkage (55%)

α-1,3 linkage (45%)

4-Nitrophenyl 
β-D-xylopyranoside (4NX)

1-Azido-β-L-Fucose (1AF)

Figure 3.1: TmAfc reaction schematic

The TmAfc D224G reaction of interest in this work. This reaction was experimentally studied by Cobucci-Ponzano et
al. in 2009.66 As reported there, this reaction produces α-1,4 and α-1,3 products in nearly equal amounts, and has an
overall specificity of 91% for transfer of the donor (4NX) to the shown acceptor (1AF) versus water.

enzyme functions. For example, although the transition state search algorithm employed

by Wang et al. identified only a single step in the BGlu1 mutant reaction mechanisms,

Zhang et al. describe a three-step reaction with stable intermediates in HiCel7B E197S.

Furthermore, although in Zhang et al. the mutant serine participates in the reaction by

stabilizing the leaving fluorine, the corresponding interaction in BGlu1 E386S was shown

to be less favorable compared to the lack of interaction of E386G. Because of these stark

disagreements, it is clear that further study is required in order to gain further understanding

of these promising enzymes.

Herein we present a validated reaction mechanism for the transglycosylation reaction

between 1-azido-β-L-fucose (1AF) and 4-nitrophenyl β-D-xylopyranoside (4NX) catalyzed

by Thermotoga maritima α-L-fucosidase (TmAfc) D224G, as diagrammed in Figure 3.1.66

Significantly, we present the first study of the complete reaction pathway of a glycosynthase

performed strictly using methods that do not bias the Hamiltonian by introducing non-

physical energy terms into the model. Because the only decision made in our study that
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biases the discovered reaction pathway is the choice of reactant and product definitions (as

discussed in the Computational Methods section), this result represents the most rigorous

computational study of a glycosynthase reaction to date.

TmAfc D224G has been shown to retain the overall protein fold of the wild-type enzyme,

indicating that its glycosynthetic activity arises directly as a result of the change to the active

site.66 This enzyme differs from those in previous computational studies (and most studies

of glycosynthases in general) in that it uses α-fucosyl donors (compared to the α-lactosyl

and α-glucosyl donors of Zhang et al. and Wang et al., respectively) with azide leaving

groups instead of fluorine atoms. Despite the underrepresentation of fucosylsynthases in

the literature, fucosyl oligosaccharides are of particular interest in biomedical applications,

including as anti-cancer and anti-inflammatory drugs.69 They are also major constituents

in human milk oligosaccharides present in natural breast milk and implicated in healthy gut

microbiota development, but typically not included in infant formula.70–72

The results of our molecular models are in good agreement with the experimental

observations in Cobucci-Ponzano et al. with respect to the relative abundances of the two

isomeric products shown in Figure 3.1.66 They reveal a one-step, endothermic reaction

mechanism, wherein the dissociation of the leaving azide from the electron donor occurs in

concert with the transfer of the hydrogen from the acceptor to the catalytic residue, as well

as with the bond formation between the donor and acceptor, through an oxocarbenium-like

transition state. Our results explain the experimental observation that, unlike in the D224G

mutant, fucosidase activity in the TmD224S mutant cannot be rescued by the addition of

free azide,66 and also provide clues for rational engineering of this and similar enzymes in

the future.
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3.4 Computational Methods

3.4.1 Model building

The TmAfc model was based on the crystal structure PDB ID: 2ZXD,73 chosen over

the two earlier-published crystal structures (PDB IDs: 1ODU74 and 2WSP,66 respectively)

because they both contain incomplete loops near the active site, and because the resolution

of 2ZXD is considerably better than the next most recent (2.15 Å vs. 2.65 Å). Although

the 2ZXD structure is complexed with an inhibitor molecule, the protein backbone overlays

very closely with that of 1ODU and 2WSP (complexed with fucose and α-L-Fucose-(1-2)-β-

L-Fucosyl-Azide, respectively), indicating that complexing with the inhibitor does not result

in any major conformational changes.

The substrate models had to be custom-built for this study, as parameters for neither 1AF

nor 4NX were available. In both cases, parameterization began with the Generalized Amber

Force Field (GAFF),75 to which appropriate GLYCAM06 parameters76 and other custom

parameters were added as needed to obtain qualitatively reasonable agreement between

minimized structures obtained using the custom force field and quantum mechanical

SCC-DFTB calculations.77,78 For 1AF, the additional parameters required were those

for the azide group and its connection to the sugar, and were taken from Carvalho et

al.79 and Weiner et al.,80 respectively. For 4NX, one parameter was calculated directly

using Gaussian 16 Rev. A.03,81 using the B3LYP quantum mechanics model82–85 with the

6-311+G(d,p) basis set, which has been well validated for systems similar to this one.86–89

Comparisons between the parameterized molecular mechanics models and the quantum

mechanical models, as well as documentation of all the parameters added to GAFF to

build the custom force fields, are available in Appendex B.

To insert the substrates into the active site of the enzyme, first the donor 1AF was

overlaid atop the inhibitor present in the crystal structure using the RMSD Visualizer tool in
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VMD,48 taking advantage of the six-membered ring structure shared between the two. The

acceptor 4NX was inserted manually into the open cleft nearby the donor in such a way

as to place its sugar’s O4 close to the donor’s C1 atom (in anticipation of the bond that

forms between them). This structure was solvated in a box of TIP3P water molecules41

such that there was everywhere at least 10 Å between the solute and the edge of the box,

and one sodium counterion was added to neutralize the charge of the overall system. The

model was minimized with Amber 1690 over 2500 steps and then heated from 100 K to

300 K over 10,000 steps (followed by 1000 additional steps at 300 K) using the Andersen

thermostat46 to randomize velocities every 1000 steps in an NVT ensemble. Finally, the

structure was equilibrated with molecular mechanics (MM) for 10,000 steps with isotropic

pressure scaling turned on (NPT ensemble) and velocity randomization every 100 steps.

A step size of 2 fs and a cutoff distance of 8.0 Å were used throughout, and the SHAKE

algorithm44 was applied to restrict the covalent bond lengths of hydrogen atoms during

heating and equilibration.

3.4.2 Transition path sampling

Our transition path sampling (TPS) methodology is divided into several steps: transition

state hypothesizing, aimless shooting,91 likelihood maximization,92 committor analysis,93

and umbrella sampling.94 Taken together, they represent a method of sampling the transi-

tion state ensemble without biasing the Hamiltonian, obtaining a reaction coordinate from

that sample, verifying the transition state described by the resulting reaction coordinate,

and then measuring the free energy surface along that reaction coordinate.

In the remainder of this section, we will detail our methodology for building the models

and performing the aimless shooting step, which is responsible for producing the data that

the following steps (likelihood maximization, committor analysis, and umbrella sampling)
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were used to analyze. The methodologies for those analysis steps can be found in

Appendex B.

Transition state hypothesizing

Aimless shooting requires at least one (and preferably more) initial structure(s) close

to the separatrix (the surface in phase space along which any trajectory with randomly

selected velocities for all atoms will have an equal chance of collapsing to the product state

or to the reactant state.) Because we don’t have an a priori definition of the separatrix,

hypothesized transition states are created by changing the distances between the atoms

involved in either formation or cleavage of bonds during the reaction of interest, to a range

of distances between those observed in the reactants and products. In the case of the

reaction at hand, these bond lengths (and in brackets the corresponding distances tested

in Å) were those between: (1) the 4NX O4 hydrogen and closest oxygen of Glu-266 (the

catalytic base) [1.1, 1.2, 1.3, 1.4]; (2) that same hydrogen and the 4NX O4 itself [1.1, 1.2,

1.3, 1.4]; (3) the 4NX O4 and the 1AF C1 atoms [2.1, 2.2, 2.3, 2.4]; and (4) the 1AF C1

atom and the primary nitrogen of the azide group [2.5, 2.6, 2.7, 2.8]. Structures with each

combination of the given bond distances were built using restraints in combined quantum

mechanics and molecular mechanics (QM/MM) simulations with SCC-DFTB.77,78 This

semi-empirical quantum mechanical model was selected for its good compromise between

speed and accuracy.95,96 Further details of these simulations are available in Appendex B.

Combinations with more than one extreme value (defined as either the largest or smallest

allowable value for a given bond length) were omitted to reduce computational expense,

resulting in a total of 80 starting conformations.
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E266

4NX

1AF

Figure 3.2: TmAfc comparison of reactant states

Snapshots from the ensemble of reactant state structures for the α-1,4 (gold) and α-1,3 (silver) reactions. The key
features – namely, the positioning of the acceptor’s active oxygen and hydrogen relative to the catalytic residue and the
donor – are conserved with the acceptor rotated 180◦ in place, motivating the hypothesis that the reaction mechanisms
(and reaction coordinates) are homologous. The protein structures are fitted onto one another, though for clarity only that
of the α-1,3 product is shown here. Non-reactive hydrogens are also omitted for clarity.

Aimless shooting

Each of the 80 initial conformations were used to seed two “threads” of aimless shooting

using the flexible length shooting algorithm of Mullen et al.91 and the SCC-DFTB quantum

mechanical model,77,78 and threads were canceled if they were rejected 10 times in a row

to prevent excessive sampling of regions far from the transition state. This procedure was

followed to yield 2305 unbiased shooting moves, of which 2069 committed to either the

reactant or product basin from the “forward” trajectory. Of those, 275 showed the “backward”

trajectory committed to the opposite basin than from the “forward” trajectory, and thus were

“accepted” as points along the ensemble of pathways connecting the reactant and product

basins. New shooting points were generated after an accepted shooting move by randomly

choosing (with equal probability) the configuration from the first 50 1-fs frames of either
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the forward or reverse trajectory, also chosen randomly with equal probability. The basin

definitions were: for the products, the 4NX O4 and the 1AF C1 atoms closer than 1.60

Å and the 1AF C1 atom and the primary nitrogen of the azide group further than 2.75 Å;

and for the reactants, the former distance further than 2.75 Å and the latter closer than

2.00 Å. These conservative basin definitions were chosen to avoid errors due to potential

recrossing. The full set of collective variables that were included in each observation are

listed in Appendex B.

3.4.3 Free energy of reaction

We calculated the overall free energy of each reaction using Gaussian 16, Rev. B.0197

using the B3LYP quantum mechanics model82–85 with the 6-311+G(d,p) basis set.86,87,98

These calculations were performed on the donor, acceptor, azide, and α-1,3 and α-1,4

product structures solvated in implicit water using the polarizable continuum model.99–101

The overall reaction energy was calculated from the Gibbs free energies of the constituent

molecules as:

(3.1) ∆Grxn = Gproduct +Gazide −Gdonor −Gacceptor.

3.5 Results and Discussion

3.5.1 Results

Analysis of how 4NX binds in the active site revealed two clear modes, shown in Figure

3.2. In the mode shown in gold in the figure, the C4 of the 4NX fucosyl group is closest to

the donor C1, which we hypothesized leads to the α-1,4 product, while the mode shown

in silver has the C3 of the 4NX fucosyl group closest to the donor C1, corresponding to

a α-1,3 product. Binding energy measurements for the α-1,3 and -1,4 reactant states
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μ = 0.423
σ = 0.296
N = 143

Figure 3.3: TmAfc committor distribution

Committor distribution for the α-1,4 reaction, using the reaction coordinate definition in Equation 3.2. Each of the 143
shooting points had an RC value with absolute value less than 0.1 and was simulated 10 times in order to obtain a pB
value. Although the committor distribution is not of the ideal, sharply peaked shape, its average is appropriate and its
standard deviation is reasonable, suggesting a decent fit between the reaction coordinate and the underlying committor
surface.

showed no significant differences in the protein’s affinity for binding either mode. For this

reason, and based on the highly similar reactant state binding modes hypothesized to

account for the two products, we studied only the reaction coordinate for the formation

of the α-1,4 product. We propose that the reaction coordinate for the α-1,3 would be

analogous to that for the α-1,4 reaction, with the identities of the donor O4 and its hydrogen

changed to the O3 and its hydrogen in the definitions of the relevant CVs.

Likelihood maximization was performed for the α-1,4 reaction on a set of 54 candidate

CVs. The top three CVs whose values and rates of change were most predictive of

commitment to the product and reactant basins were: the distance between the acceptor

O4 and the donor C1 (CV3); the distance between the donor C1 and the primary azide

nitrogen (CV4); and the difference of the distances between the transferred hydrogen and

the glycosidic and Glu-266 carboxyl oxygens, respectively (CV21). See Appendex B for a
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complete list of CVs. The reaction coordinate constructed only from the configurational

parts of these CVs was:

(3.2) RC = – 1.35− 3.66 Å
−1

CV3 + 3.83 Å
−1

CV4 − 1.69 Å
−1

CV21

where RC = 0 represents the transition state and the RC is dimensionless. Because all

three of these CVs represent a different bond breaking and/or forming, their importance in

describing the progress of this reaction is unsurprising. Validation of the reaction coordinate

was performed using committor analysis, and the results are shown in Figure 3.3.

The energy profile along this RC was obtained via umbrella sampling and is shown in

Figure 3.4. The free energy profile for the α-1,4 reaction is in very close agreement with

the experimental activation and overall free energy energy reported by Agrawal et al.,102

which strongly suggests that this is the rate-determining step.

In addition to the energy of activation and ∆G value for the α-1,4 for the reaction step,

we calculated the overall reaction ∆G using Gaussian97 as described in the Computational

Methods section. The overall reaction energy (the difference in energy between the free

product and free reactant states) was slightly exothermic at -1.27 kcal/mol for α-1,4 and

−1.24 kcal/mol for α-1,3. This difference in overall ∆G values are consistent with the ratios

of products reported by Cobucci-Ponzano et al.66 of 55:45 (α-1,4 : α-1,3), giving a ratio of

51:49.

The experimentally observed equilibrium constants (Keq) were very low (6.6E-3 and

5.4E-3 for the α-1,4 and -1,3 reactions, respectively; personal communication, see ESI

for details†). Based on the conditions reported in that study, if thermodynamics of the

chemical reaction step dominated, a Keq approximately two orders of magnitude higher

would be expected. It is possible that the reactant binding and/or product unbinding steps

have significant barriers and limited the rate of conversion. Studying these steps would
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Figure 3.4: TmAfc reaction energy profile

Energy profile for the α-1,4 reaction obtained via umbrella sampling along the unitless reaction coordinate (RC). The
negative RC values represent the side of the separatrix including the reactant basin while positive values represent the
side including the product basin. The orange line represents the experimentally observed activation energy from Agrawal
et al.,102 and is in exceptionally close agreement with our results.

thus be of interest for future work.

3.5.2 Discussion

Snapshots corresponding to the reactants, products, and transition state of the α-

1,4 reaction are shown in Figure 3.5. The reaction was observed to proceed via an

oxocarbenium-like transition state; unsurprising, given that this is the same transition state

structure typical of wild-type glycoside hydrolases,103 although in this case a nitrogen atom

is substituted for the more typical oxygen atom. The reaction mechanism takes place in a

concerted manner, with none of the relevant bond lengths changing significantly earlier

than the others in either the forward or reverse directions, and a single energy barrier is

observed.

One potential explanation for the poor reaction efficiency observed for this enzyme is
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Figure 3.5: TmAfc full reaction diagram

Snapshots and schematics of a representative transition path for the α-1,4 reaction. For this figure, a transition pathway
from late in the aimless shooting procedure and with a relatively high acceptance ratio preceding it was chosen to ensure
maximum decorrelation from the initial configuration. Red dashes in the schematic representations indicate hydrogen
bonding interactions. Dashed lines in the reactant state snapshot (at top-left) indicate the CVs constituting the reaction
coordinate obtained with likelihood maximization. Dashed lines in the transition state snapshot (top-center) help delineate
the oxocarbenium-like transition state structure, where the catalytic hydrogen is caught between the two oxygen atoms
and the resulting partial charge on the donor O4 is compensated by an elongated bond between the anomeric carbon
and the azide group. These intermediate bonds are represented with blue dashes in the corresponding schematic.
Finally, in the product state (at right) the azide is completely dissociated from the fucose and the new glycosidic bond is
formed as the donor O4 bonds fully with the catalytic Glu-266 residue. Residues Met-225 and Gly-224 are also shown in
the snapshots to illustrate the molecular context around the azide group, whereas various hydrogen bonding residues
are shown in the schematics to depict the stabilization of the donor and the catalytic residue.

that there are no nearby residues or water molecules to stabilize the departure of the

azide group. Instead, the product state azide ion is left unbound in the active site cleft,

presumably until it is able to diffuse into the bulk solvent (although this was not observed

during our simulations, which had limited sampling time and a limited QM region that could

prevent such an observation). In this light, it is not surprising that the rescue of fucosidase

activity with the addition of free azide was not observed in the TmAfc D224S mutant,66 as

there is already limited space for the azide ion with a glycine at position 224; the relatively
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bulky serine side chain would restrict the azide group’s access to the substrate. Based on

this reasoning, a possible target for engineering this enzyme is via mutation of Met-225.

This bulky, hydrophobic side chain sits in prime position for interacting with the azides, so

its mutation to a positively-charged side chain could potentially stabilize the departure of

the leaving group.

3.6 Conclusions

We investigated the mechanism of oligosaccharide synthesis in the reaction between 1-

azido-β-L-Fucose (1AF) and 4-nitrophenyl β-D-xylopyranoside (4NX) via the glycosynthase

T. maritima α-L-fucosidase (TmAfc) D224G. We propose that the reaction proceeds in a

single endothermic step via a oxocarbenium-like transition state, wherein the role of the

mutant residue Gly-224 is solely to provide room for the leaving azide group. Experimental

results indicated that the α-1,3 product is produced in a slightly lower quantity compared

to the α-1,4 product, and that fucosidase activity in the D224S mutant could not be

rescued with the addition of free azide. Our results explain both of these observations, and

provide new information for use in designing and engineering TmAfc and other glycoside

hydrolases for improved glycosynthetic activity.
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CHAPTER IV

ATESA: an Automated Aimless Shooting Workflow

4.1 Chapter Introduction

As we have seen in the previous chapter, transition path sampling (TPS) is an extremely

useful, flexible, and powerful approach for analyzing rare events in molecular simulations

without specifying in advance how they should proceed. This latter advantage – that the

mechanism of the rare event is discovered rather than specified – sets TPS apart from

most other rare event sampling methods, making it among the most rigorous methods

available for identifying the precise molecular mechanisms of rare events. Put another way,

TPS injects the minimum possible bias into the system while still managing to study rare

events that otherwise would never be observable in statistically meaningful quantities with

a totally unbiased simulation.

Aimless shooting was the TPS method used to produce the key results in the previous

chapter. As alluded to in the chapter introduction, the workflow in that chapter was in

no way specific to the molecular system in question, and despite its apparent complexity,

should in theory be highly automatable. Wanting to do so – both for the personal benefit

of spending less time painstakingly curating and analyzing thousands of simulations, and

for the community benefit of making it more available to other researchers interested in

using TPS – was the original motivation behind what would eventually become ATESA:
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Automated Transition Ensemble Sampling and Analysis.

In no small part thanks to guidance from software scientists at the Molecular Sciences

Software Institute, ATESA is now a mature Python package featuring continuous test

integration, support for installation and dependency management via the popular Python

Package Index “pip” installer, and extensibility to different simulations engines, cluster

computing batch systems, simulations methodologies, and more written into the structure

of the code. The final package will not only save time and effort for researchers already

familiar with TPS, but also at make TPS available at all to researchers not specialized in

advanced sampling methods. It requires only the most basic competency in setting up

molecular simulations from its users, and is supported by thorough documentation and

tutorials to guide non-specialists from the contemplation stage (that is, deciding whether

TPS is even the appropriate tool for their application) all the way to the analysis of final

results. Furthermore, unlike other tools such as OpenPathSampling, ATESA is designed

as a standalone software tool – not a Python API – and as such, does not require users to

read or write any Python code.

ATESA represents the natural conclusion of the research trajectory of the preceding

chapters: a tool to facilitate the analysis of rare events (that is, the temporally “unusual”

steps in molecular processes that generally define the macroscopic behavior of a chemical

system) from a minimum bias transition pathway perspective, incorporating as much of the

knowledge obtained in that research as possible in such a way as to make it available to

others without requiring them to undergo the same extent of specialized training. Ideally,

tools such as ATESA should expand the scientific toolkit of molecular researchers who

are not themselves specialists in enhanced sampling, thereby maximizing the impact that

research in enhanced sampling can have on the field.
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ATESA: an Automated Aimless Shooting Workflow

Tucker Burgin, Samuel Ellis, and Heather Mayes (2021). In preparation for publication.

4.2 Abstract

Transition path sampling methods are powerful tools for studying the dynamics of

rare events in molecular simulations. However, these methods are generally restricted

to experts with the knowledge and resources to properly set up and analyze the often

hundreds of thousands of simulations that constitute a complete study. ATESA is a new

open-source software program written in Python that automates a full transition path

sampling workflow based on the aimless shooting algorithm, streamlining the process

and reducing the barrier to use for researchers new to this approach. This introduction

to ATESA includes a demonstration of a complete transition path sampling process flow

for an example reaction, including finding an initial transition state, sampling with aimless

shooting, building a reaction coordinate with inertial likelihood maximization, verifying

that coordinate with committor analysis, and measuring the reaction energy profile with

umbrella sampling. We also describe our implementation of a termination criterion for

aimless shooting based on the Godambe information calculated during model building with

likelihood maximization, as well as a novel approach to constraining simulations to the

desired rare event pathway during umbrella sampling.

4.3 Introduction

Molecular simulations are a powerful method of probing the complex chemical and

physical behavior of molecules at the atomic scale. The wide variety of tools, tutorials, and

resources now readily available simplify the incorporation of molecular simulations into

studies. However, many of the most interesting topics of study in molecular simulations
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involve so-called rare events — transformations that involve at least one transient, high-

energy state — such as chemical reactions, large conformational shifts (like protein folding),

and crystal nucleation. Because by definition rare events occur infrequently, they cannot

be readily observed by brute-forced, unbiased simulations, and certainly not with enough

frequency to measure key quantities such as rate constants in a statistically meaningful

way.104

The school of molecular simulations research dedicated to the study of rare events

is called enhanced sampling, or rare event sampling. These terms encompass a huge

variety of simulations techniques that aim to simulate rare events at a rate much higher

than would be expected from simple simulations alone, and thereby allow for statistically

relevant observations about those events.105

For a given enhanced sampling workflow, many of the steps are the same regardless of

the specific nature of the rare event under investigation. When these steps are automated

in an easy-to-use workflow, these studies require less researcher time to complete and

become more reproducible, and it becomes easier for researchers new to the field to more

quickly produce results. To this end, several software packages have been created to

facilitate or automate rare event sampling simulations.

One prominent example of such a package is PLUMED, which simplifies the workflow

for a number of enhanced sampling methods, most prominently umbrella sampling, replica

exchange, and metadynamics, and has been cited in more than one thousand studies.106

Other examples include OpenPathSampling,107 PyRETIS,108 WESTPA,109 SSAGES,110

and Colvars,111 in addition to numerous tools built directly into molecular simulations

packages like Amber112 or CHARMM.36

Despite the success of these tools, there remain relatively few options for automating

transition path sampling techniques, which are a subset of enhanced sampling where
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the focus is on analyzing ensembles of pathways connecting stable states.113 One major

advantage of transition path sampling compared to more popular methods, like metady-

namics and umbrella sampling, is that the dimensions of phase space along which the

enhanced sampling is performed (called “collective variables,” or CVs) do not need to

be specified in advance; instead, the key dimensions are discovered over the course of

the sampling.114 This is of critical importance, as sampling along incorrect CVs can yield

misleading results.115 Furthermore, the best choice of CVs is not always obvious, espe-

cially in highly complex systems such as enzymes, but also even in ostensibly simple rare

events, such as the dissolution of crystalline salts in water.116 Given this major advantage,

we propose that the relative unpopularity of transition path sampling compared to other

methods can be at least partially ascribed to the relative lack of accessible tools in this

space.

If there are few tools for automating transition path sampling, there are still fewer for

aimless shooting in particular, in spite of evidence that aimless shooting is an especially

efficient and accurate transition path sampling method.91 To our knowledge, only two pro-

grams have been published for this purpose, and neither has been the subject of a journal

publication: one unnamed program from Baron Peters’ group at the University of Illinois

at Urbana-Champaign (referred to by Beckham and Peters93), and another from Sharon

Glotzer’s group at the University of Michigan named LibTPS (github.com/askeys/libtps).

The program from Peters also features a script for performing likelihood maximization to

obtain a reaction coordinate from the aimless shooting data, but neither program facili-

ties setup of the appropriate initial structure for aimless shooting, verification of putative

reaction coordinates, or measurement of energy profiles.

Aimless Transition Ensemble Sampling and Analysis (ATESA) is a new, open-source

Python program that addresses this outstanding need. It implements a particularly pow-
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erful rare event sampling method called flexible length aimless shooting,91 as well as

an accompanying suite of setup, verification, and analysis tools. The full workflow of a

complete enhanced sampling study is automated by ATESA, beginning with a molecular

model representing either stable state separated by the rare event in question, and end-

ing with a verified reaction coordinate that describes the event and a free energy profile

along that coordinate — all handled by the software and without any need of special-

ized programming or enhanced sampling expertise on the part of the user. At time of

publication, ATESA supports only the Amber molecular simulations package,112 but is

written to be extensible to other software. We also introduce a statistically meaningful

criterion for aimless shooting termination, and a novel method for leveraging aimless

shooting data to improve free energy profile analysis with umbrella sampling. This paper

is not intended to serve as documentation of ATESA (documentation can be found at

https://atesa.readthedocs.io/en/latest/), but instead provides an overview of the approach.

4.4 When Should We Use Aimless Shooting?

Aimless shooting (like all transition path sampling methods) is predicated on the un-

derstanding that rare events can be described as transitions between two stable (that

is, relatively long-lived) states separated by a short-lived higher energy state, called the

“transition state.” More specifically, the transition state can be thought of as the lowest-

energy state along the transition “separatrix,” which is the subset of state space where

unbiased, aimless simulations are equally as likely to proceed towards one stable state as

towards the other. If free energy is thought of as analogous to elevation on a map, then

the transition state represents the highest-elevation point along a “mountain pass” — the

easiest path to traverse in the journey from one state to another.114

Because even very small molecular models can contain huge numbers of degrees of
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freedom, many of which have only a very small influence on the energy of the transition

state, it is more accurate to think in terms of an “ensemble” of transition states, weighted by

their relative likelihoods (that is, their relative free energies.) And for a given ensemble of

transition states, there must also be an ensemble of transition paths connecting the stable

states through them. The extent to which this ensemble can be accurately observed is the

primary parameter that distinguishes a strong transition path sampling study from a poor

one. This is the origin of the term “transition ensemble” in the acronym “ATESA.”

Of course, aimless shooting is not always the best tool for the job. Efficiency aside, the

primary advantage of aimless shooting compared to other path sampling tools is that it is

completely unbiased; the only thing you need to get started is a way to distinguish one

state from the other, and a guess about what lies in between (which ATESA can help you

find). A more general review of rare event sampling methods with a focus on transition

path sampling is available from Dellago and Bolhuis.117 If you’re unsure whether aimless

shooting is the best option for your application, consider the following:

• Aimless shooting is designed to focus sampling around transition states, rather than at

the stable states that they connect. If you are more interested in comparing properties

of stable states than in understanding how one transitions to another, aimless shooting

is not the right tool.

• Aimless shooting is best used to discover or describe a mechanism when one is

unknown or only hypothesized. If you have a known reaction coordinate or collective

variable that describes the transformation already in mind and just want to characterize

it, you may look to a pathway free energy method like umbrella sampling or equilibrium

path sampling (both implemented in ATESA), or a path sampling method that makes

use of a known collective variable like transition interface sampling. Aimless shooting

can also be a suitable alternative when other methods produce results that have
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hysteresis (in this context meaning different results going in one direction along a

pathway compared to the other direction) or that fail mechanistic hypothesis tests.118

• Like all transition path sampling methods, aimless shooting is at its best where the

energy barrier is high (and therefore transitions are rare). If your transition occurs

quickly enough to reasonably observe many times over the course of an unbiased

molecular dynamics or quantum mechanics simulation, aimless shooting may be

overkill.

• Aimless shooting is best applied when you are interested in efficiently arriving at an

accurate description of the transition state of a potentially complex rare event without

specifying a mechanism a priori.

4.5 Usage and an Example Study

ATESA consists of one main script, atesa.py, and a few auxiliary scripts. The main

script can be called through the command line along with a user-defined configuration

file that defines the behavior of the program. The complete workflow of an ATESA study

is depicted as a flowchart in Figure 4.1. Thorough documentation of each job type and

auxiliary script is available online at https://atesa.readthedocs.io/en/latest/, but here we will

simply provide brief descriptions of key configuration options as they become relevant, to

help illustrate how ATESA is used. This section can help serve as an introduction to the

particular transition path sampling workflow automated by ATESA.

The use of a configuration file is intended to combine the flexibility and consistency of

workflows that are written as computer scripts directly, like in the case of OpenPathSam-

pling107 or OpenMM,119 with the accessibility of selecting options without requiring any

programming ability. The basic usage of the configuration file is to simply set each desired

option based on the documentation using an option = value syntax. However, ATESA
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Equilibrated model in one 
or the other stable state

Hypothesized transition
state modelOR

find_ts
(transition state building)

Provided by the user
Automated through the primary ATESA executable with the given job_type
Automated through an ATESA auxiliary script with the given name

aimless_shooting lmax.py
(likelihood maximization)

committor_analysis

rc_eval.py
(reaction coordinate evaluation)

umbrella_sampling

equilibrium_path_sampling

OR
boltzmann_weight.py

(energy profile evaluation)

mbar.py
(energy profile evaluation)

Figure 4.1: ATESA workflow

The standard workflow for a study with ATESA. Dark blue boxes indicate steps performed by specifying the given job_type
in the configuration file provided to atesa.py, whereas light blue boxes indicate steps performed with other ATESA scripts.
After providing the initial model, the entirety of the remaining workflow is automated through ATESA.

executes the configuration file as if it were Python code, which means that advanced users

can write arbitrarily complex scripts to determine how each option should be set.

The only prerequisite to using ATESA is that the user has a working molecular model of

the system that they want to study, including an equilibrated coordinate file that occupies

one of the two stable states of interest, or a transition state model obtained through some

other means if preferred. If appropriate, such as if the rare event of interest is a chemical

reaction, the system must be set up to perform quantum mechanics (QM) or combined

quantum mechanics/molecular mechanics (QM/MM) simulations, and ideally should be

equilibrated at the desired level of quantum mechanical theory. An introduction to QM/MM

simulations is available from Groenhof,120 and a tutorial on setting up QM/MM simulations
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Figure 4.2: ATESA example reaction pathway

Reaction pathway for the example reaction, SN i decomposition of ethyl chlorosulfite in the gas phase. Schreiner et
al.121 demonstrated that this “frontside” attack (where the chlorine bonds to the same side of the carbon as the oxygen
departs from) is energetically favorable compared to attacking from the opposite side. Teal: carbon; white: hydrogen; red:
oxygen; yellow: sulfur; green: chlorine.

in Amber112 is available on their website at:

https://ambermd.org/tutorials/advanced/tutorial2/index.htm.

In this section, we will go through each step in a complete aimless shooting transition path

sampling study in order, and provide a step-by-step example of each step’s application

to the study of a simple example reaction: the SN i decomposition of ethyl chlorosulfite in

the gas phase, which has previously been studied by Schreiner et al.121 The best reaction

pathway found therein is depicted in Figure 4.2. Further simulation details are provided in

the supplementary information. Although a small and simple reaction was chosen here for

demonstration purposes, the same workflow has been successfully applied to simulations

of much larger systems, including entire enzymes.

4.5.1 Building initial transition states

The first step in preparing a molecular model for aimless shooting is obtaining a putative

transition state structure. This structure does not have to be representative of the “true”

transition state; the only requirement is that random (“aimless”) trajectories beginning from

those initial coordinates have a reasonably high probability of proceeding towards either
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stable state (typically in the range of 10-30%).

ATESA automates one potential approach to building initial transition states for aimless

shooting by gently forcing the system to cross the separatrix with steadily increasing

energetic restraints. To use this feature, the user provides a configuration file with jobtype

= find_ts and defines the two stable states that the simulation should connect. Then, the

user provides an initial coordinate file that occupies one of those stable states, and the

software automatically applies appropriate restraints to push the model into the other stable

state (which must necessarily bring it through the separatrix). After this biased simulation,

ATESA identifies likely transition state candidates from the resultant trajectory and tests

them with a small amount of aimless shooting (by default, 10 steps) to verify that they

are suitable transition states. These structures provide the initial coordinates for aimless

shooting in the next step.

It is best to define the stable basins in a mutually exclusive way to ensure that any

given configuration either occupies one or neither state, but not both. Figure 4.3 shows

the stable basin definitions used to find the initial transition state for the example ethyl

chlorosulfite reaction, as well as the initial coordinates (constructed using Open Babel122)

and a resulting putative transition state. Although no path was specified by these basin

definitions (that is, they specify the end points, not the means of getting from one to the

other), the gentle restraints resulted in an initial transition state structure in close agreement

with the optimized structure for this reaction presented by Schreiner et al.121

4.5.2 Aimless shooting

The key insight that drives aimless shooting is that unbiased sampling can be focused

around the transition state (even though it is a relatively high-energy state by definition)

by chaining together short simulations starting from a member of the transition state
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Figure 4.3: ATESA example transition state

Definitions of stable states and initial and final structures from the example find_ts job. The stable state definitions are
read by inner index; for example, the first element of the definition of the “bwd” state is read as “the distance between
atom 3 and atom 5 is less than (‘lt’) 1.5 Å”. Based on these definitions, the initial coordinates (at left) occupy the “bwd”
state, and restraints are automatically constructed to build a transition state (at right) that has roughly equal probabilities
of relaxing to either state. The narrow, transparent bonds in the transition state structure show the original topology of
the model, for comparison.

ensemble, as described in the publications that introduced this approach123,124 and the

recent extension of the method, flexible length aimless shooting.91 Briefly, starting from a

putative member of the transition state ensemble (called a “shooting point”), an unbiased

simulation with random atomic velocities is initiated, at the same time as another simulation

starting from the same initial coordinates but with exactly opposite velocities. If one of

these simulations proceeds towards one stable state, and the other towards the other

stable state, then the shooting move is “accepted,” and a new shooting point is picked from

an early time step of one of the previous simulations to continue the procedure. These

trajectories can be quite short (on the order of femtoseconds to picoseconds depending on

the simulation parameters) as the system quickly relaxes to a lower energy conformation,

rendering it feasible to sample thousands of transition pathways in a short time. As new

shooting points are selected, the system relaxes along all dimensions orthogonal to the
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underlying reaction coordinate.

ATESA automates aimless shooting using an arbitrary number of independent “threads,”

each of which represents its own unique chain of shooting points. Multiple threads can

start from the same initial coordinates, and they will rapidly diverge (depending on the

steepness of the local energy landscape) due to the pseudo-random velocity initialization

and choices of starting points from previous trajectories. For the example ethyl chlorosulfite

reaction, we initialized 50 unique threads from the putative transition state produced by the

find_ts job, using the default settings to automatically identify the CV measurements to

make for each shooting move in preparation for the next step, as well as for the termination

criterion (see the Information Error Termination Criterion section).

4.5.3 Likelihood maximization and reaction coordinate evaluation

Likelihood maximization123,124 is a robust numerical method of selecting a model from

a set of observations about a system that is maximally predictive of a given outcome.

In the case of aimless shooting, the outcomes are the energy basins at the endpoints

of simulations starting from a shooting point, and observations are measurements of

collective variables characterizing that shooting point, such as distances, angles, dihedrals,

or any other descriptor such as contact angle or number of hydrogen bonds. Likelihood

maximization can be used to discern the combination of parameters that is maximally

predictive of the outcome.

Likelihood maximization produces a model reaction coordinate (though the event need

not be a chemical reaction), a unitless scalar value describing the progress of the rare

event from one stable state to another through the transition state, customarily located

at zero. The accuracy of the coordinate is limited by whether the tested set of collective

variables includes appropriate system descriptors and how many variable combinations
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are tested, which are typically modeled as linear combinations. Although the reaction

coordinate produced by likelihood maximization will always be an oversimplification of the

true dynamics, it can be an extremely valuable tool in describing the key features of the

system as it proceeds through the rare event.

Other model selection schemes such as the Bayesian125 or Akaike126 information criteria

may also be reasonable choices, although these are not currently included in ATESA.

ATESA implements an improved “inertial” version of likelihood maximization that takes into

account both the values and rates of change of collective variables.92 For the example

reaction, we performed inertial likelihood maximization over hundreds of automatically

chosen CVs using ATESA’s built-in “two_line_test” option to produce a highly predictive

model without specifying the number of terms in the reaction coordinate a priori. This

algorithm iteratively adds further collective variables onto the model until the marginal

rate of improvement from each additional dimension compared to the average rate of

improvement from the addition of earlier dimensions falls below some threshold (in this

case, 0.5), resulting in the reaction coordinate shown in Figure 4.4. In this case, ATESA

has produced a non-trivial reaction coordinate: one term describes the relative proximity of

the reactive carbon to either of the other atoms it may bond to, while the two angle terms

describe the orientation of the partially charged face of the carbon atom, using the sulfur

atom as a reference point.

After obtaining the reaction coordinate, the auxiliary script rc_eval.py can be used to

measure the value of that reaction coordinate at each shooting point. This facilitates the

selection of an appropriate set of initial coordinates for the next step, committor analysis.
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Figure 4.4: ATESA example likelihood maximization

Likelihood maximization results for the example reaction. (a) Visualization of the reaction coordinate model chosen
automatically using ATESA’s “two_line_test” option. See documentation at atesa.readthedocs.io/ for details. In this case,
a three-dimensional reaction coordinate model was chosen including three CVs as shown. (b) Comparison between the
modeled and ideal probabilities of commitment to the “products” state for the selected reaction coordinate.).

4.5.4 Committor analysis

In transition path sampling, one of the best tools for validating a reaction coordinate

is committor analysis.118 This method is implemented by first collecting a diverse set of

initial coordinates close to the predicted transition state (hundreds of maximum likelihood

reaction coordinate values near zero (say, to within 0.05% of the distance from the nearest

stable state to zero)) and initiating multiple simulations from each point, recording the

energy basin to which each trajectory led. If the model reaction coordinate is a good

description of the “actual” reaction coordinate, then the observed probability that any

given simulation will proceed towards one stable state should be roughly equal to the

probability of proceeding towards the other stable state. Poor reaction coordinates will

instead produce simulations that are heavily biased towards one or the other stable state.

Figure 4.5 shows the committor analysis distribution for the example model reaction

coordinate. The distribution is peaked towards the middle and lower on either extreme, as
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Figure 4.5: ATESA example committor analysis

Committor analysis result for the example reaction model. This histogram conveys the ratio of the number of simulations
that proceeded to the products (“fwd”) state over the total number of simulations. This plot represents n = 200 sets of
initial coordinates with 20 simulations each. µ is the mean value and σ is the standard deviation of the distribution.

expected.

4.5.5 Free energy analysis

Once a reaction coordinate has been validated with committor analysis, the final step is

to evaluate the free energy profile along it. The free energy profile provides the predicted

activation energy for the rare event, and these energies can be used to calculate rate

coefficients, e.g. by using transition state theory, and the equilibrium distribution of

stable states according to the Boltzmann distribution. ATESA automates two methods for

calculating the free energy profile: umbrella sampling and equilibrium path sampling.
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Figure 4.6: ATESA example umbrella sampling

Results from analysis of the umbrella sampling data using ATESA’s mbar.py. (a) The histograms of samples from
each window plotted together show that there are no gaps in the data, which is a prerequisite for a continuous free
energy profile. (b) The free energy profile produced using MBAR. The activation energy is in very close agreement with
calculations from Schreiner et al.121 The error on this calculation is smaller than the width of the line itself.

Umbrella sampling

One of the most efficient methods of pathway free energy analysis is umbrella sam-

pling.127 Harmonic restraints are applied to an array of initial structures representing several

discrete states along the reaction coordinate, and the contribution of those restraints to

the resulting distribution of samples can be removed post hoc in order to produce the

underlying free energy profile. Applying these restraints is trivial for very simple coordi-

nates, such as one-dimensional distance or torsion coordinates, but such functionality is

not always build-in or available in plugins such as PLUMED for more complex restraints for

collective variables that are included in the reaction coordinate. Fortunately, a development

version of the Amber simulation package has been created which supports restraints along

linear combinations of distances, angles, dihedrals, and/or differences of distances.128

These are the types of collective variables used by ATESA in creating putative reaction

coordinates, and thus this version of Amber was used to apply umbrella sampling along

the aforementioned reaction coordinate (Figure 4.4) using 109 windows of width 0.5 and
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restraint weight 5 kcal/mol. The sampling histograms and resulting free energy profile

obtained with mbar.py (a wrapper script that relies on Shirts’ PyMBAR package129,130) are

shown in Figure 4.6. This method also produces estimates of the uncertainty, but in this

case, they are too small to make out on the plot.

Pathway-restrained umbrella sampling

Although committor analysis can be used to confirm that the chosen reaction coordinate

contains all of the key CVs to describe the transition state ensemble, one of the weaknesses

of this analysis is that there is no guarantee that the appropriate set of CVs to describe the

transition pathway ensemble remains the same along the full path from one stable state to

the other. This can pose a problem when attempting to apply umbrella sampling along the

reaction coordinate: if there exist any dimensions along which the transition pathway ought

to be restrained for some portion of it, but those dimensions ought not to be restrained

at the transition state (where the reaction coordinate was defined), then relaxation along

those dimensions will result in misjudging the shape of the free energy profile along those

portions during umbrella sampling.

Fortunately, sampling data from aimless shooting can be leveraged to address this

issue. To the extent that aimless shooting explored the ensemble of transition pathways,

the regions of state space represented among its accepted trajectories describe the

boundaries of the transition pathway in every dimension (not just those that contribute

to the reaction coordinate). Our approach, which we call “pathway-restrained” umbrella

sampling, is to apply additional restraints during umbrella sampling simulations to every

dimension that was recorded during aimless shooting. The restraints have flat (zero)

weight in the range of values observed during frames of accepted aimless shooting

trajectories with reaction coordinate values closest to the umbrella sampling window in
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Figure 4.7: ATESA pathway restrained umbrella sampling

(Top) Schema depicting a simple free energy surface on which umbrella sampling is being performed with and without
pathway restraints derived from aimless shooting data. Likelihood maximization optimizes the reaction coordinate only at
the separatrix, where the orange and green lines intersect. The lack of pathway restraints in the scheme at left leaves the
depicted simulation trajectory free to relax into the off-pathway free energy basin, which would cause errors in measuring
the free energy along the pathway. At right, pathway restraints are added to prevent this. Note that in practice umbrella
sampling restraints are harmonic, not rigid walls as depicted here for clarity. (Bottom) The difference between the mean
reaction coordinate value of the samples collected in each umbrella sampling window and the reaction coordinate value
of the corresponding harmonic restraint for that window, plotted against the reaction coordinate value, with and without
pathway restraints. These plots represent real data collected with a reaction coordinate for the ethyl chlorosulfite system
that produced a strong committor analysis result (albeit not the same reaction coordinate as shown in Figure 4.4). Each
point represents a single umbrella sampling simulation (five at each reaction coordinate value). Unsmoothness in the plot
without pathway restraints (at left) arises from sampling of two or more energetically distinct states with similar reaction
coordinate values, caused by off-pathway local minima such as shown in the scheme above. Theoretical activation
energy is from Schreiner et al.121
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question, and steeply increasing weight outside that range. As a result, each umbrella

sampling simulation is only able to explore the same regions of state space that were

already explored along the corresponding point along the transition pathway during aimless

shooting. Figure 4.7 helps visualize the sort of transition pathway and free energy surface

where this could be necessary, as well as the impact this has on umbrella sampling data.

As illustrated, umbrella sampling restraints are applied along the reaction coordinate,

which may not match the shape of the true reaction pathway far from the transition

state. Although this does not pose a problem for analyzing the free energy along the

transition path when there are no accessible off-pathway free energy minima in the

vicinity (like near State “B” in the schema), if there are off-pathway minima accessible by

relaxation along dimensions orthogonal to the reaction coordinate (like near State “A”), then

traditional umbrella sampling simulations can fall into them in error. Application of pathway

restraints, which can be handled automatically by ATESA’s “us_pathway_restraints_file”

option, prevents this.

The bottom half of Figure 4.7 depicts real data collected during umbrella sampling

simulations with and without pathway restraints for a specific reaction coordinate describing

the ethyl chlorosulfite reaction. Although this reaction coordinate is not the same one

shown in Figure 4.4 (this coordinate was chosen specifically to illustrate pathway restraints),

it was a strong model with a comparable log likelihood score, and with a similarly strong

committor analysis result, indicating good agreement with the shape of the transition

pathway ensemble at the transition state. However, off-pathway umbrella sampling along

dimensions crucial to describing the shape of the transition path elsewhere resulted in

serious error in measuring the activation energy (∼27% error). Application of pathway

restraints successfully prevented this error, resulting in an extremely strong estimate of the

activation energy (∼1.5% error).
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Usage of pathway-restrained sampling does have the potential to impart an additional

source of error in umbrella sampling data and should only be used when necessary due

to the presence of significant off-pathway sampling in otherwise-unrestrained umbrella

sampling simulations. Some off-pathway regions of state space may still exist within the

confines of the restraints, especially when the excursion is not along one of the restrained

dimensions. Furthermore, although this approach can help remedy errant relaxation along

dimensions that should be restrained, it cannot help when a dimension is restrained at the

transition state and should not be elsewhere.

Equilibrium path sampling

Equilibrium path sampling is also included in ATESA, as it is a method that can be used

with any reaction coordinate, including ones that would be difficult to impose as umbrella

sampling restraints. Like in umbrella sampling, equilibrium path sampling uses “windows”

along the reaction coordinate, but instead of imposing restraints on the simulations, equilib-

rium path sampling chains together short simulations (on the order of femtoseconds) to

allow sampling of higher-energy conformations along the reaction coordinate, similar to the

aimless shooting algorithm.93 While this difference obviates the need for a molecular dy-

namics package that can impose constraints on the chosen collective variables, equilibrium

path sampling explores the degrees of freedom orthogonal to the reaction coordinate very

slowly compared to umbrella sampling, which can make it difficult to reach equilibration

and obtain an accurate free energy profile. Equilibrium path sampling was not used in the

example study.

4.6 The Information Error Termination Criterion

As researchers continue to increase molecular dynamics system sizes enabled by

increasing access to computational resources, the challenge of adequately exploring the
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relevant state space becomes more difficult, as does identifying when sufficient sampling

has been achieved. To address the question of when a sufficient number of shooting points

have been collected during aimless shooting, ATESA introduces a new method based on

an assessment of the error in the likelihood maximization procedure. ATESA measures

the mean value of the parametric standard errors from the Godambe information matrix131

(a generalization of the related Fisher information matrix with more lax assumptions

regarding the distribution of samples) for a given reaction coordinate model as a function

of the amount of data collected, and by default uses a threshold on this parameter as

its termination criterion during aimless shooting. This “information error” is a property of

likelihood maximization derived from the first and second derivatives of the log likelihood

function evaluated at the model optimization solution (the “maximum likelihood estimator”).

It is a measure of the “information” about the optimization parameters that is stored in the

dataset, as described by the sensitivity of the optimization result to changes in the values

of the parameters. As the information error decreases, the confidence that the optimized

model is the “best” possible one for the given sets of data/observations and included

CVs increases. A more formal treatment of the theory is available in the Supplementary

Information.

The information error in the model can be interpreted as a metric of the statistical

convergence of sampling within the explored regions of state space and for a given

reaction coordinate. It is specific to a given reaction coordinate because, insofar as

each CV is independent, the precision with which the aimless shooting samples collected

represent the underlying distribution for that CV is also independent. This is, a CV with a

narrow and/or rapidly explored distribution of values within the transition state ensemble

requires less sampling to achieve a given precision, compared to one with a broader and/or

more slowly explored distribution of values.
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Figure 4.8: ATESA information error

Relationship between information error and committor analysis result as aimless shooting sample size increases for an
engineered enzyme reaction from our previous work.132 Each point on the blue line represents the mean value (with
standard error of the mean) of the distribution from a separate committor analysis result for each maximum-likelihood
three-CV model obtained with the corresponding number of aimless shooting samples (on the horizontal axis), with
four of the distributions plotted as histograms in insets to show their shape. The yellow points indicate the information
error evaluated for the maximum likelihood three-CV model at each point. When the default information error tolerance
threshold of 0.1 is reached after 6250 samples, the committor analysis result at that point is roughly beyond improvement
for the given set of observations and sampled regions of state space.

Put another way, the information error indicates the extent to which further sampling

from the same distribution is likely to change the maximum likelihood estimate for the

chosen set of CVs making up the reaction coordinate. Since information error is derived

from likelihood maximization, no additional molecular dynamics simulations are needed,

allowing the test to be be efficiently and repeatedly applied during the course of aimless

shooting.

Information error should not supplant committor analysis in verifying a reaction coor-

dinate, but should augment it. While the information error measures the precision of the

maximum likelihood estimate, a mechanistic hypothesis test such as committor analysis

is required to assess the accuracy of the reaction coordinate as a description of the
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transition state ensemble. That is, information error determines whether additional aimless

shooting simulation is needed in order to optimize the reaction coordinate to within the

desired precision, while committor analysis determines whether the reaction coordinate is

composed of an appropriate set of CVs.

A comparison between the information error and the committor analysis result for a

three-CV reaction coordinate as more aimless shooting data is gathered for an example

reaction is shown in Figure 4.8. As the information error decreases, the committor analysis

result improves towards an average close to 0.5 (the ideal value) with a decreasing

standard error. That the committor analysis mean levels out at a value other than exactly

0.5 is a function of the likelihood maximization procedure used to build the models at each

point (specifically, of leaving out less-important dimensions in order to keep the reaction

coordinate model simple).

4.7 Conclusion

Once a scientific tool has been established as important and useful, it becomes im-

portant to make it as widely available as possible. ATESA was created to enable more

researchers to efficiently use transition path sampling, a powerful approach to determine

complex reaction and other transition pathways. Furthermore, automation of nearly ev-

ery step in the transition path sampling workflow and the introduction of a statistically

meaningful sampling termination criterion facilitates consistency between different studies,

even when conducted by different researchers. This open-source, Python-based software

is publicly available at github.com/team-mayes/atesa, with documentation provided at

atesa.readthedocs.io. ATESA has been written with extensibility in mind, and researchers

are encouraged to consult the GitHub repository to find information about the latest updates

to the software and to report any suggestions, feature requests, or bugs.
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CHAPTER V

Conclusion

The previous three chapters represent the first-author manuscripts completed over the

course of my doctoral training. Two have been published,132,133 while the last is currently in

preparation. The first was an explanation of a known mechanism; the second a discovery

of an unknown mechanism; and the third, a generalization and expansion of the tools

used to complete the second. Each is an escalation in terms of ambition and generality,

especially with regards to the three themes that I highlighted: (1) analysis from a transition

pathway perspective; (2) a careful modulation of the use of human intuition or bias; and (3)

the use of the unusual or rare to help explain or understand the usual or common.

5.1 Further Works

In addition to the three preceding manuscripts, I have contributed to two other published

projects during this time, which I will briefly describe here.

Click-chemistry enabled directed evolution of glycosynthases for bespoke glycans synthesis.102

A related project to the work presented here in Chapter III, this work by our experi-

mental collaborators at Rutgers University (led by Assistant Professor Shishir Chundawat)

describes a directed evolution study performed on the same enzyme, the glycosynthase
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TmAfc. Having discovered a quadruple mutant with marginally improved glycosynthetic

activity compared to the single mutant whose mechanism we discovered in that paper,

our collaborators asked us to build a model to explain their findings. Our contribution to

this paper includes a free energy profile obtained by reanalyzing the reaction pathway

within the context of the quadruple mutant, which matches with their experimental results

exceptionally well, as well as a simple study of the changes to the flexibility of the enzyme’s

backbone caused by the mutations that helps explain the observed improvements.

Biochemical and genetic analysis identify CSLD3 as a β-1,4-glucan synthase that functions during
plant cell wall synthesis.134

This work involved the study of a series of simulations on family-2 transglycosidase

(GT2) enzymes responsible for cell wall synthesis. An open question in the field of

plant cell biology is the substrate specificity of the key transglycosidase CSLD3, with

conflicting evidence present in the literature for a potential role in both glucan and mannan

synthesis pathways. Here, by analogy to three similar transglycosidases (two known

glucan synthases and one known mannan synthase), we presented structural arguments

supporting our collaborator’s hypothesis that CSLD3 is in fact a glucan synthase. Our

arguments were largely predicated on a trio of aromatic residues that we identified as

being responsible for coordinating mannose substrates in the mannan synthase. Though

these aromatic residues are highly conserved across other members of that family, they

are totally absent in all of the observed glucan synthases; nevertheless, they were key to

informing our understanding of how GT2 enzymes coordinate their substrates in general,

exemplifying how unusual features can shed light on more typical ones.
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5.2 Generalization and Future Directions

Taken as a whole, the work presented in this thesis contributes to the study of enzymatic

processes in the specific (that is, within the contexts of the particular enzymes being

studied), but also more broadly in terms of methods and tools. The techniques described

here are applicable to solving a huge range of scientific problems within the context of rare

event sampling in molecular simulations, and with regard to enzymes especially. However,

the direct engineering applicability of the work in these manuscripts is mostly constrained

to their applicability as guides for experimental engineering efforts.

To address this, future directions for my research include a software project currently

in development, entitled in silico Enzyme Engineering, or “isEE”. Architecturally similar

to ATESA, this program automates the full-ensemble analysis of the binding free energy

between an enzyme and a transition state (not an analogue) discovered by ATESA, as

well as strategic mutations to the enzyme in order to automate the discovery of promising

candidates for verification by experiment. Early results on the TmAfc D224G model are

highly promising.

Even further down the line, ATESA and isEE should prove useful tools for training

machine learning algorithms aimed at engineering enzymes, with an eye towards training

artificial intelligence to “compose” desired enzymes. Because the extraordinary intricacy

of enzymes that bestows upon them their greatest strengths is also responsible for making

them more-or-less impenetrable to human intuition, machine learning will certainly prove

essential to delivering on the promises of the field of enzymology. Computational tools

such as those described here – that incorporate the themes laid out in this work – will be

essential tools in developing artificial intelligences that can accomplish these tasks, by

putting them directly in dialogue with key simulations results for unsupervised training.
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APPENDIX A

Supplementary Information for: Advantages of a Distant Cellulase
Catalytic Base

A.1 Simulation Details

A.1.1 Procession study

Our procession simulations were performed using umbrella sampling simulations with

Amber’s Targeted MD function. The ring atoms of the leading two β-glucose residues of the

substrate (C1 through C5 plus the ring oxygen atoms) were targeted with a force constant

of 10 kcal/mol-Å2 (Amber calculates Targeted MD restraint energy as V = kN(x − x0)2

where k is the force constant and N is the number of atoms in the restraint mask, here

12) to reach a given RMSD value between 0.25 and 12 Å in increments of 0.25 Å relative

to the initial position (where the leading ring occupied the −1 site, as it does just after

product release), resulting in 48 “windows” for sampling. Steric effects from the enzyme’s

active site groove constrain this targeted motion to approximate translation along the axis

of the groove. In order to ensure that the build steps did not encounter forces so high as

to potentially disrupt covalent bonds in the active site, the simulations were performed in

blocks of 1 Å with the last step of each block serving as the initial structure for the next block

(while the reference structure for targeted MD remained the 0 Å structure). Furthermore,
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to minimize the possibility of the targeted motion forcing the enzyme into a conformation

outside its natural phase space, the entire protein structure was restrained with a force of

200 kcal/mol-Å2 while building the windows and the simulation timestep was reduced to 0.5

fs. The first half of the procession (from 0.25 to 5.75 Å) was initiated using the “pre-slide”

structure as described in our previous work, while the second half (6 to 12 Å) began with

the “slide” structure (see Figure 2.2 in the main text).

After each of the windows was built, the general protein restraint was removed and

Targeted MD on the substrate remained turned on with a force constant of 5 kcal/mol-Å2

to act as the controlled transformation on the energy landscape that defines umbrella

sampling. For each of the windows in both the wild-type and mutant protein, at least 500

ps of sampling MD was produced, of which at least the first 150 ps were discarded to allow

the protein structure to relax around the new substrate position. Conversion of these data

into the PMFs shown in the main text was performed using umbrella integration at 300 K

over 2000 bins, with the integration error reference at the left-most side of the plot.49,50

While umbrella integration does not strictly require histogram overlap (in contrast to WHAM;

here, it affects the calculated error), we plotted histograms of sampling in each bin to verify

that all regions of the CV were sampled (Figure A.1).

As mentioned above, the PMFs presented were constructed from windows that used

two separate initial structures: “pre-slide” for the windows with RMSD values less than 6 Å,

and “slide” for the others. The key difference between these structures, apart from relative

substrate position, are the conformations of the serine (active-site) loop. We examined

our simulations for potential hysteresis due to this deviation. Adding a bias only along the

RMSD used for the umbrella sampling did not lead to freely sampling this loop site motion.

As shown in Figure A.2, two conformations that both correspond to an RMSD of 6 Å each

still reflected the loop position of the initial structure. In the “pre-slide” structure and Figure
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Figure A.1: TrCel6A umbrella sampling histograms: procession

Histograms of processivity sampling data for each of the 48 sampling windows, for both enzyme types, used in creating
the PMFs shown in Figure 2.2 in the main text.

A.2A, Ser-181 is hydrogen bonded to Asp-175 and Asn-182 is projected into the active site

tunnel, whereas in the “slide” structure and Figure A.2B, Asn-182 is hydrogen bonded to

Asp-175 instead (see also the main text Figure 2.3).

The present approach to creating the wild-type PMF and that in our previous work8

differs only for the windows with centers with RMSD less than 6 Å: in the previous work,

all windows were created from initial “slide” conformations, in contrast to the current work
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Figure A.2: TrCel6A slide vs. pre-slide structures

Snapshots of two conformations of wild-type enzyme which both have an RMSD of approximately 6 Å on the CV used
to create the PMF in Figure 2.2 of the main text. (A) The serine (active-site) loop (backbone shown as yellow cartoon)
in the position from the “pre-slide” conformation. (B) The serine loop in the “slide” conformation, which is closer to the
hydrolytically active position.

using the “pre-slide” conformation to seed the windows with centers less than 6 Å. Despite

this difference, the PMFs are similiar (within expected differences due to finite sampling).

This indicates that the PMF is insensitive to the loop orientation at RMSD values less than

6 Å. This region of the PMF, closer to and including the pre-slide conformation, has the −2

binding site unoccupied. However, at higher values (greater than 6 Å) interactions between

the substrate and residues on the serine loop (including Asn-182) were unfavorable when

sampled using structures produced entirely from initial configurations in the “pre-slide”

conformation (data not shown). The window centered at 6 Å was the first window where
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the substrate approaches close enough to the relevant residues for the energy to be

affected, and thus was chosen as the dividing point. At the timescales accessible to our

simulations, we were not able to sample this loop repositioning. This deficiency, as well as

the previously found deficiency in sampling ring puckering of the second-to-leading glycosyl

ring as it enters the −1 binding site, indicates that at least two features of the processive

mechanism are not properly captured by the CV that we chose here for computational

efficiency. Thus, barrier heights for processivity are likely underestimated, and absolute

values from the PMF are not expected to be accurate. However, in this study we are

focused on the comparison of the wild-type PMF to that from the D175E mutant. Since

the catalytic base residue is not on the serine loop and is not involved in puckering, the

difference should not affect the portion of the potential energy surface not sampled. It is

likely that we properly sampled the portions of the PMF that are affected by this difference,

which allows us to discuss the qualitative differences in procession for these enzymes.

A.1.2 Active site conformation study

The Asp-221 and Glu-175 umbrella sampling simulations corresponding to Figures 4

and 6 in the main text, respectively, were performed using windows with dihedral angle

center values from 55 to 200 degrees for the Asp-221 study and −190 to 85 degrees for

the Glu-175 study, in steps of 5 degrees. The Glu-175 dihedral was applied to the angle

defined by the sequence of atoms: HB2, CB, CG, HG1. In each window, the restraint

was harmonic with weight 250 kcal/mol-rad2. Separate “build” simulations to produce the

starting structure for each window were performed before sampling using 10,000 1-fs

steps, while sampling was performed over 500,000 2-fs steps. The raw data from these

simulations is shown in Figure A.3 and Figure A.4, respectively. Conversion of these data

into the PMFs shown in the main text was performed using umbrella integration at 300 K
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Figure A.3: TrCel6A umbrella sampling histograms: Asp-221

Histograms of Asp-221 umbrella sampling data for each of the sampling windows for both enzyme types. These are the
raw data constituting the results of our Asp-221 dihedral rotation study, Figure 2.4 in the main text. These data were fed
into the umbrella integration method.

over 2000 bins, with the integration error reference at the left-most side of the plot.49,50

A.1.3 Homology study

Simulation-ready structures were built as described above from the TfCel9A crystal

structure described in the main text, and from the product structure obtained in our previous

work.8 In addition, copies of each enzyme with the catalytic base (TrCel6A Asp-175 or

TfCel9A D58) mutated to alanine (via manual edits to the .pdb structure files) were

prepared. 300-ps trajectories of both wild-type and both mutant systems were produced
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Figure A.4: TrCel6A umbrella sampling histograms: Glu-175

Histograms of Glu-175 umbrella sampling data for each of the sampling windows for the mutant enzyme. These are the
raw data constituting the results of our Glu-175 dihedral rotation study, Figure 2.6 in the main text. These data were fed
into the umbrella integration method.

for analysis.

The free energy of ligand binding for each system was approximated using Amber’s

MMPBSA.py program to perform a generalized Born implicit solvation analysis of the

system.135–137 This program requires separate topology files for the ligand and protein,

which were produced using the “strip” command in another Amber program, cpptraj.138

Because in the product state the ligand has been broken into two molecules and because

we are uninterested in the interaction potential between the base residue and the portion

of the substrate not subject to hydrolytic attack during catalysis, this section of the ligand

was included in the “protein” mask for the purposes of generalized Born analysis, leaving

the measured effects wholly attributable to the binding energy of the substrate in product

binding site (−2 and −1 binding sites).

Although the term “free energy” is used here to refer to the energy terms measured in

this analysis, no measurement was made of the entropic contribution to the free energy
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that is associated with ligand binding; i.e., no attempt was made to calculate the entropy of

the unbound states of the ligands. Therefore, the reported energy value is not a complete

description of the relative free energies of binding, but the error attributable to this effect is

expected to be quite small because the bound and unbound states in each case are not

expected to be significantly different in terms of conformational dynamics. See Srinivasan

et al. for a more detailed discussion of this type of error.139
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APPENDIX B

Supplementary Information for: Mechanism of Oligosaccharide
Synthesis via a Mutant GH29 Fucosidase

B.1 Transition Path Sampling Analysis Methods

Here we will detail the methodology for analyzing the data produced during aimless

shooting in order to obtain and evaluate the reaction coordinate, as well as to produce the

energy profile along it.

B.1.1 Likelihood maximization.

We used the inertial likelihood maximization algorithm of Peters.92 This is a method

for obtaining a model reaction coordinate (RC) in the form of a linear combination of

configurational variables (that is, variables based only on atomic coordinates). The iner-

tial implementation of the algorithm is demonstrably superior to older versions in that it

optimizes for collective variables (CVs) whose value and rate of change are predictive

of commitment to products or reactants (rather than only taking into account the values),

and as such produces a model with less error due to recrossing of the separatrix. This is

implemented by including an additional CV signifying the rate of change of each configura-

tional CV during the first optimization step to select the most important CVs to include in
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the RC, and then performing another optimization step on only those configurational CVs

chosen during the previous step to produce the final RC. An RC consisting of few CVs

is important for both computational tractability and intuitive interpretation, so we limited

our RC to three terms (plus a constant) and required that each additional term up to that

maximum increase the Bayesian Information Criterion score of the model by at least 10.125

B.1.2 Committor analysis.

After an RC has been produced by likelihood maximization, it must be validated by

committor analysis.93 This is a procedure wherein a large number of shooting points with

RC values close to the transition state value (that is, along the separatrix) are tested

several times in order to approximate their relative likelihood of committing to the reactant

state (A) versus the product state (B), measured as the ratio pB = NB/(NA +NB), where

NA is the number of simulations for a given shooting point that commit to the A basin, and

similarly for NB. A successful committor analysis result is one that produces a histogram

of pB values centered on 0.5 and as narrow as possible, although in practice sampling

error may be significant. We performed our committor analysis on 143 shooting points with

RC values within 0.1 of the transition state value, with 10 trials per point in order to obtain

a reasonable approximation of the underlying committor distribution.140

B.2 Custom Molecular Mechanics Force Fields

As described in the main text, the force field for the substrate molecules was constructed

by manually modifying the Generalized Amber Force Field (GAFF). First, all of the GLY-

CAM06 parameters appropriate for fucose and xylose were included.76 The additional

parameters that we added are shown in Table B.1, along with their sources. The atom types

tabulated therein correspond to the substrate structures as follows: the azide nitrogens are

ni, ne, and nd, respectively, with ni bonded to the fucose; the fucose ring carbons are c3,
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Table B.1: TmAfc substrate force field parameters

Parameters combined with those from GAFF and GLYCAM06 to build the custom force field. Units for equilibrium values
are Å for bond distances and degrees for angles and dihedrals. Units for weights are kcal/mol-Å2, kcal/mol-rad2, and
kcal/mol for bonds, angles, and dihedrals, respectively. Further details are available at the citations.

Parameter Weight Equilibrium
Value

Source

c3-ni 277.5 1.49 79

ni-nd 710.0 1.34 79

nd-ne 1312.0 1.14 79

c3-c3-ni 74.8 113.36 79

h1-c3-ni 68.3 108.87 79

c3-ni-nd 64.0 115.60 79

ni-nd-ne 42.4 173.54 79

ni-c3-os 70.04 111.230 Analogy to n2-c3-os
from GAFF

c3-ni-nd-ne 0.25 180.00 79

c3-c3-ni-nd 11.11 0.00 79

h1-c3-ni-nd 11.11 0.00 79

os-c3-ni-nd 11.11 0.00 Analogy to
c3-c3-ni-nd

ca-ca-os-CT 1.410 198.800 Calculated to
recreate Gaussian
dihedral scan

and the hydrogens bonded to them are h1; the sugar ring oxygens as well as the oxygen

that articulates the xylose to the nitrophenyl group are all os; the xylose ring carbons are

CT; and the nitrophenyl ring carbons are ca.

The resulting molecular mechanics (MM) force field was accepted only after comparison

between the MM minimized structure and the same structure minimized using the DFTB

quantum mechanics (QM) model. The minimizations were allowed to run until the gradient

in energy between steps converged to 0.1 kcal/mol-Å. The structure comparisons are

shown in Figure B.1.
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Figure B.1: TmAfc substrate: QM vs MM

Comparisons between the reactant substrate molecules minimized using the DFTB QM model (gold) and the custom
MM force field using the parameters shown in Table B.1 (silver). The structures are fitted atop one another to minimize
the RMSD between like atoms, not including hydrogens.

B.3 Transition State Hypothesis Simulations

Simulations to build the 80 initial transition state hypotheses to seed aimless shooting

for the α-1,4 reaction were performed as follows. We built a unique set of simulation files

for each combination of the four values for each of the four bond lengths described in the

main text, excluding any combination with more than one “extreme” value (that is, either the

largest or smallest allowable value for a given bond length). Restraints were applied to pull

the bond lengths towards the desired values using restraint weights of 80 kcal/mol-Å2, or

160 kcal/mol-Å2 for the bond between the acceptor O4 and its hydrogen atom, to minimize

oscillations associated with the motion of the very light hydrogen atom. The simulations

were run in Amber 1690 using the DFTB QM/MM model with the QM region set to contain

both substrate molecules, the side chains of every protein residue in the first “shell” of

residues around the active site, the entirety of the G224 residue, and the first shell of water

molecules near the entrance to the active site cleft, as visualized in Figure B.2. This QM

region was chosen to minimize any errors associated with the QM/MM transition region

(by keeping it far away from any of the reactive atoms), and was the same mask used

throughout the QM/MM simulations in this work. There was no observed exchange of
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Figure B.2: TmAfc QM region

Visualization of the QM region used for the QM/MM simulations. As shown, the full shell of residues and water molecules
around the substrates was included. Notably, there are no water molecules in the active site, though the first layer of
water molecules bordering the active site cleft was included for completeness. Hydrogens on protein residues and on the
substrates were included in the QM region, but are omitted here for clarity. This snapshot shows a candidate transition
state structure, but the same QM region was used for the reactant and product states. The substrates and two key
residues are labeled.

water molecules in and out of the QM region, likely owing to the short timescale of the

simulations compared to the timescale of water exchange. The simulation settings were

the same as those in the QM/MM equilibration described in the main text, and each ran for

100 1-fs steps.

We did not enforce a requirement that the targeted bond lengths were reached in the

structures resulting from these simulations, as the goal was not these exact lengths but a

variety of structures to test if they could seed pathways connecting reactants to products. To

successfully start an aimless shooting search for an ensemble of transition state structures,

all that is needed is one or more structures with the potential to proceed to both reactants

and products when supplied with randomly chosen (Boltzmann-distributed) momenta in
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one simulation, and opposite momenta in another. We made the a priori assumption

that the reaction barrier was much less than 80 kcal/mol, such that the bond stretching

restraints would be able to pull the substrates toward the transition state (wherever it

may lie). The reasonable aimless shooting acceptance ratios (average 15.91% in those

threads that were ever accepted) that we achieved serve as an a posteriori validation

of the acceptability of our transition state guessing procedure. Specifically, among the

threads that were accepted at least once, the average acceptance ratio was 15.91%, the

smallest was 6.25%, and the largest (with at least 5 moves) was 31.03%. These values

are a measure of the efficiency of the simulations, and do not impact the final results.

B.4 Collective Variables Included in Likelihood Maximization

Likelihood maximization provides an unbiased means of harvesting a suitable reaction

coordinate (RC) from collective variables (CVs) observed during the aimless shooting

simulations. Only those CVs that are explicitly included by the researcher are candidates

for inclusion in the RC. In order to obtain the best possible RC for a given rare event

it is necessary to include every CV that might reasonably contribute to prediction of

commitment to the products or reactants. To that end, we included 54 CVs in our likelihood

maximization. These are listed in Tables B.2 and B.3. These tables refer to the α-1,4

reaction; in the α-1,3 reaction, the same CV and RC definitions were used, but with the

4NX O4 and H4O atoms replaced with O3 and H3O, respectively.

B.5 Umbrella Sampling

Umbrella sampling is a means of measuring the free energy along a given coordinate

using a series of restrained simulations where the restraint is defined along that coordi-

nate. The distribution of samples collected in each window can be deconvolved from the
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Table B.2: TmAfc likelihood maximization dimensions

Complete list of CVs included in likelihood maximization. CVs with entries in only the first two columns are distances;
those with three entries are angles; and those with four are dihedrals. CVs 9 and 21 are special cases: the former
is the distance between the average positions of atoms 4272 and 4273, and 4272 and 4075, respectively; while the
latter is the difference between the two indicated distances. Atom indices correspond to those in Table B.3. The
CVs that were selected by inertial likelihood maximization to appear in the final RC are marked with an asterisk (*).

CV Name Mask 1 Mask 2 Mask 3 Mask 4 CV Name Mask 1 Mask 2 Mask 3 Mask 4
CV1 4272 7175 CV28 7186 7188 7191
CV2 7175 7174 CV29 7188 7186 7165
CV3* 7174 7185 CV30 7197 7195 7196 7185
CV4* 7185 7186 CV31 7197 7195 7193 7190
CV5 7172 7174 CV32 7195 7196 7185 7187
CV6 7186 3584 CV33 7195 7193 7190 7187
CV7 7191 3584 CV34 7196 7185 7187 7190
CV8 7186 3582 CV35 7193 7190 7187 7185
CV9 4272, 4273 4072, 4075 CV36 7196 7185 7186 7188
CV10 7186 2704 CV37 7185 7186 7188 7191
CV11 4071 7191 CV38 7196 7185 7174 7172
CV12 7172 7185 CV39 7196 7185 7174 7175
CV13 958 4273 CV40 7185 7174 7172 7169
CV14 2044 7208 CV41 7174 7172 7169 7168
CV15 7194 496 CV42 7174 7172 7176 7180
CV16 7204 987 CV43 7172 7169 7168 7166
CV17 7186 7188 CV44 7172 7176 7180 7166
CV18 7191 7188 CV45 7176 7180 7166 7165
CV19 7186 7191 CV46 7169 7168 7166 7165
CV20 7174 4273 CV47 7168 7166 7165 7154
CV21* 4273 7175 – 7175 7174 CV48 7166 7165 7154 7163
CV22 7200 7185 7186 CV49 7174 7175 4273 4271
CV23 7200 7185 7174 CV50 7175 4273 4271 4268
CV24 4265 4268 4271 CV51 4273 4271 4268 4265
CV25 4272 7173 7184 CV52 4271 4268 4265 4263
CV26 7185 7174 7172 CV53 4268 4265 4263 4274
CV27 7174 7175 4273 CV54 4265 4263 4274 4275
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Table B.3: TmAfc CV atom identities

Definitions of atom indices corresponding to those in Table B.2. Atom names correspond to those in the standard residue
definitions in the Amber force field90 for protein atoms, and standard notation for sugars. 4NX CG and CD2 refer to the
nitrophenyl carbon bonded to the oxygen and another bonded to that one, respectively.

Atom Index Identity

4272 E266 OE1
4273 E266 OE2
7175 4NX H4O
7174 4NX O4
7185 1AF C1
7186 1AF ni
7188 1AF nd
7191 1AF ne
7172 4NX C4
7200 1AF H1
3584 G244 O
3582 G224 H1
4071 R254 CZ
4072 R254 NH1
4075 R254 NH2
2704 Y171 OH
958 Y64 HH
2044 H129 NE2
7208 1AF HO2
7194 1AF O4
496 H34 HE2
7204 1AF HO3
987 E66 OE2
4265 E266 CB
4268 E266 CG
4271 E266 CD
7173 4NX H4
7184 4NX ON2
7165 4NX O1
7197 1AF C6
7195 1AF C5
7196 1AF O5
7193 1AF C4
7190 1AF C3
7187 1AF C2
7169 4NX C5
7168 4NX O5
7176 4NX C3
7180 4NX C2
7166 4NX C1
7154 4NX CG
7163 4NX CD2
4263 E266 CA
4274 E266 C
4275 E266 O
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applied restraint in order to measure the underlying free energy profile using a number

of algorithms. Specifically, we used the Multistate Bennett Acceptance Ratio, or “MBAR”,

implemented in Python as pymbar.129 Our umbrella sampling simulations were performed

using four redundant simulations in each window, with windows spaced in steps of 0.5 from

-9 to 10 along the unitless reaction coordinate. The restraint weight was 20 kcal/mol, the

step size was 0.5 fs, and a DFTB electronic temperature of 100 K was applied to smooth

out inconsistencies associated with non-convergent QM calculations. The data was equili-

brated and decorrelated automatically using the “pymbar.timeseries.detectEquilibration”

method.130 The equilibrated and decorrelated samples used to calculate the free energy

profile in Figure 3.4 in the main text are shown graphically in Figure B.3.

B.6 Equilibrium Constant from Cobucci-Ponzano et al.

The equilibrium constant provided in the main text for the reactions performed by

Cobucci-Ponzano et al.66 were calculated based on the reaction conditions described

in that paper, as well as with the additional information that the total concentration of

transferred fucose (donor) at equilibrium was 3 mM (based on personal communication

with the authors). The calculation was performed as follows:

(B.1) Keq,α1,4 =
[α1, 4 product]eq[free azide]eq

[acceptor]eq[donor]eq

where:

(B.2) [α1, 4 product] = fα1,4η([donor]0 − [donor]eq)

(B.3) [free azide] = [donor]0 − [donor]eq
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Figure B.3: TmAfc umbrella sampling histograms

Histograms of umbrella sampling data after decorrelation and equilibration. The overlap of each histogram with its
neighbors demonstrates that there are no unsampled regions of the free energy profile.

(B.4) [acceptor]eq = [acceptor]0 − η([donor]0 − [donor]eq)

where fα1,4 represents the fraction of the product forming an α-1,4 bond (55%), and η

represents the specificity of the reaction for transferring the fucose to the acceptor molecule

rather than to water (91%). The values of the initial concentrations were [donor]0 = 10

mM and [acceptor]0 = 100 mM, and the reaction was performed at 70◦C.66 An analogous

calculation was performed for the α-1,3 reaction.
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APPENDIX C

Supplementary Information for: ATESA: an Automated Aimless
Shooting Workflow

C.1 Example Study Simulation Details

Here we detail the settings used in the ethyl chlorosulfite decomposition simulations.

All simulations were performed using Amber 18,112 except for umbrella sampling, which

was based on the custom version of Amber 12 described in the main text. The simulation

timestep in all cases was 1 femtosecond. The simulations were performed in non-periodic

vacuum at a temperature of 300 Kelvin using the Andersen thermostat with a randomization

frequency of 100 steps.141 The entire molecule except for the methyl group was treated

using the semi-empirical PM3 quantum mechanical (“QM”) model142 during the find_ts,

aimless_shooting, and committor_analysis simulations, and the QM method was changed

to RM1143 for umbrella_sampling in order to obtain a higher degree of energetic accuracy.

The methyl group was treated using the generalized Amber force field (“gaff”).75 This

partial QM treatment was chosen to preclude an off-pathway reaction involving a bond

between the methyl group and the leaving group. Within the non-QM region, SHAKE was

used to fix the carbon-hydrogen bond lengths.45
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C.2 A More Formal Treatment of Information Error

In the main text, we introduce the concept of Godambe information as a convergence

criterion for aimless shooting. Here, we provide an overview of the Godambe information

method and describes its application to aimless shooting.

The Godambe information is a more general form of the more familiar Fisher information,

which is a property of maximum likelihood estimators (MLEs).144 Under certain assump-

tions about the distribution of the underlying data, the inverse of the Fisher Information

Matrix for a given MLE provides an estimate of the covariance matrix, and can therefore

be used to evaluate the parameter error.

The Fisher Information Matrix can be evaluated empirically during likelihood maximiza-

tion as the Hessian of the likelihood function evaluated at the calculated MLE:

(C.1) Iij =
∂2L

∂θi∂θj
|θMLE

where θ = {θ1, θ2, ...} is the vector of model parameters being optimized, L is the log

likelihood function, and θMLE is the vector of model parameter values that maximizes L.

For this relationship to hold true requires that the data being used for likelihood maximiza-

tion be, among other assumptions, independently sampled from the underlying distribution.

However, data obtained through aimless shooting is not independently sampled: each

sample is, by definition, chosen to be very nearby to a previous sample, as a means of

ensuring that it remains nearby the rare event separatrix. For this reason, an MLE built

using aimless shooting data is called “misspecified.” Contrary to the name, misspecified

MLEs can still produce valid models, particularly when we are more interested in obtaining

a useful model than a mathematically ideal one; however, it requires that we employ a

more generalized version of the information error:
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Figure C.1: ATESA information error coin flip model

Relationship between real error (orange) and Fisher information error (blue) for the coin-flipping “experiment”. Inset are
four examples of individual trials of 300 coin flips each, while the larger plot is the mean across 100 such trials.

(C.2) G(θ) = H(θ)J(θ)−1H(θ)

where H(θ) is the Hessian of θ, J(θ) is the Jacobian, and G(θ) is the Godambe informa-

tion matrix (sometimes also called the “Sandwich Estimator” due to the structure of its

relationship to the Hessian and Jacobian).145

In general, misspecified models retain the standard n1/2 asymptotic behavior for mea-

sures of parameter error. However, in practice and in particular for smaller numbers of

samples, the asymptotic behavior is not always well-behaved, owing to phenomena such

as sample autocorrelation. For this reason, our proposed implementation of Godambe

information as a termination criterion in aimless shooting is to evaluate the mean value of

the parameter errors for the best available model every so often during sampling and to
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place a threshold on this value, without making any assumptions about the shape of the

relationship between the mean parametric error (the “information error”) and the number of

samples.

As an example to graphically demonstrate the applicability of information error for

models obtained through MLE, we present a simple “experiment” involving the flipping of

a weighted coin (Figure C.1). For simplicity, the samples here are indeed independently

distributed. A one-dimensional model of the coin’s weight is maximized via log-likelihood

maximization based on successive trials. The weight of the coin is 0.5564 (chosen such

that the exact correct value cannot be arrived at with a small number of samples by

coincidence) and the initial guess for the model is 0.1. As expected, the information error

(square root of the first (and only) term in the Fisher information matrix) is an excellent

estimator of the actual difference between the model estimate and the real weight.
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