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Abstract 
 

Striatal-level structures such as the nucleus accumbens (NAc) and central amygdala 

(CeA) are capable of generating intense incentive and aversive motivated behaviors 

(Baumgartner et al. 2020; Warlow et al. 2020).  NAc may have two modes for motivation, as 

inhibition and excitation of NAc can both produce motivated behaviors.  For example, NAc 

medial shell inhibition through AMPA receptor antagonist (DNQX) microinjections can produce 

both intense eating and defensive behaviors (Baumgartner et al., 2020).  Chapter 2 of this 

dissertation investigates the inhibition hypothesis of accumbens motivation generation by testing 

whether local pairing of optogenetic excitation can disrupt ‘desire’ and ‘dread’ behaviors 

generated by DNQX microinjections.  

Incentive and aversive motivation generated by NAc and other limbic structures are 

flexible and able to respond to external stressors.  Chapter 3 therefore investigates a previously 

untested neuronal population in NAc that expresses corticotropin-releasing factor (CRF), a 

stress-related peptide heavily implicated in aversive motivation and distressing drug-withdrawal 

states in CeA and bed nucleus of stria terminalis (BNST).  Like NAc, the CeA is also capable of 

producing intense positive and negative motivated behaviors and we investigate the flexibility of 

incentive or aversive motivation in CRF neurons using new Crh-Cre+ rats to optogenetically 

stimulate NAc, CeA, or BNST CRF-containing neurons.  This work finds that excitation of CRF-

expressing neurons is capable of biasing and amplifying motivation for sucrose rewards in both 

NAc shell and lateral CeA (Baumgartner et al. 2021).  Conversely, it also demonstrates that 

optogenetic excitation of pallidal-like bed nucleus of stria terminalis (BNST) CRF-containing 
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neurons produces only negative affect and aversive motivation, filling the traditional role that 

CRF has been hypothesized to play in aversive withdrawal and affect (Koob 2013).  

Following the demonstrated positive role of NAc and CeA CRF-containing neurons for 

sucrose rewards, Chapter 4 of this dissertation examines whether this influence on incentive 

motivation also applies to drug rewards.  CRF in CeA and BNST is posited to underlie aversive 

withdrawal states, causing negative distress that leads to addictive relapse through attempts at 

hedonic self-medication to relieve this state (Koob 2013).  Chapter 4 therefore tests whether 

optogenetic excitation of CRF neurons in NAc, CeA, and BNST are capable of biasing and 

amplifying motivation for self-administered intravenous cocaine infusions.  Understanding 

whether CRF-mediated incentive motivation also can drive drug motivation is therefore integral.  

We find that NAc and CeA CRF-expressing neurons are indeed capable of biasing motivation for 

cocaine infusions, while rats given the option between BNST CRF-containing neuron-paired 

cocaine and cocaine alone show no drug escalation or preferences between cocaine options.  

Altogether this dissertation demonstrates the limbic generation of intense motivation in 

structures such as NAc and CeA, and how both incentive and aversive motivation can be 

modulated by stress and brain CRF systems.  The neural mechanisms underlying these different 

motivational valences provide important insight into cases where motivation can become 

pathological, such as in addiction, schizophrenia, and other psychological disorders.  
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CHAPTER I. Introduction 
 

“Is emotion a magic product, or is it a physiologic process which depends on an anatomic 

mechanism?” posed James Papez as he described a circuit of emotion that formed the basis of the 

limbic system (Papez 1995).  While the specific structures and corresponding “streams” for 

feeling, thought, and top-down emotion have been refined from the original Papez circuit, the 

notion of a limbic system framework has long withstood time.  These ideas greatly influenced 

Maclean in his contributions in both structure and function to this theoretical limbic system, 

leading to a hypothesized evolutionary origin of an emotional brain (Maclean 1949).  Further, he 

made a distinction between the advanced mammalian brain and a primitive “visceral” brain, the 

latter of which proposed to be the basis of evolved emotional functioning (Maclean 1949).  This 

collection of communicating structures was named the “limbic system”, coined from “le grand 

lobe limbique” described by Broca (Broca 1978; Maclean 1949).  While the usefulness of this 

theoretical framework has since been debated (LeDoux 1993; Ledoux 1991), the existence of 

interconnected neural systems that regulate affective states and motivated behaviors is certain.  

The range of positively- and negatively-valenced motivated behaviors, from eating to 

escaping, are produced by limbic system structures largely preserved across species.  Striatal-

level structures in particular are heavily implicated in generating these motivated behaviors and 

affective states (DiFeliceantonio and Berridge 2016; DiFeliceantonio et al. 2012; Meredith et al. 
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2008; Robinson et al. 2014; Stratford and Kelley 1997; Swanson 2005; Warlow et al. 2020).  

Striatal-level structures such as the ventral striatum, central amygdala, and dorsal striatum are 

thought to have similar morphological, developmental, and neuroanatomical characteristics 

within a cortico-striatal-pallidal macrosystem framework, and may potentially play similar roles 

in motivation (Alheid and Heimer 1988; Alheid 2003; Heimer and Van Hoesen 2006; Heimer et 

al. 2007; Swanson 2005; Zahm 2006).  For example, the nucleus accumbens (NAc) and ventral 

striatum dopamine have long been seen as a key mediator of reward-related behaviors and 

incentive motivation, following original designations as a “limbic-motor interface” (Herrick 

1926; Meredith et al. 2008; Mogenson et al. 1980).  Alternatively, stress-mediated aversive 

motivation is heavily associated with the striatal-level central amygdala and its connections with 

the pallidal-level bed nucleus of the stria terminalis (Alheid and Heimer 1988; Erb et al. 2001a; 

Koob et al. 2014; Minami 2019; Pomrenze et al. 2019b; Ventura-Silva et al. 2020).  In particular, 

corticotropin releasing factor (CRF) systems in these extended amygdala nuclei are thought to 

underlie brain stress responses and associated negative affective states (Asok et al. 2018; Fadok 

et al. 2017; Koob and Schulkin 2019; Koob et al. 2014; Pomrenze et al. 2019b, 2019a; Ventura-

Silva et al. 2020).  Therefore, NAc and brain CRF systems provide powerful neural mechanisms 

for generating both positively- and negatively-valenced motivated behaviors, respectfully.   

However, the ability for an organism to adapt for different survival needs implies that the 

neural mechanisms underlying incentive and aversion motivation must interact in response to 

changing internal and external states.  This evolutionary necessity therefore raises the question of 

how limbic generators of motivated behaviors can maintain this flexibility of affective states? 

Nucleus accumbens generation of incentive motivation  
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The early evidence that supported a role for the ventral striatum and accumbens 

dopamine in the initiation of movement, additionally implicated accumbens dopamine as key 

mediators of appetitive motivation.  For example, the observation that 6-OHDA lesions of 

dopamine in NAc can block amphetamine-induced locomotion could alternatively be interpreted 

to suggest that NAc dopamine is necessary for the rewarding effects caused by amphetamine, 

thus reducing subsequent behavioral effects (Kelly 1975).  Early anatomical and behavioral 

observations caused Mogenson and colleagues to propose that NAc may act as a “limbic-motor” 

interface, particularly through inputs from ventral tegmentum (VTA) and hypothesized motor 

information outputs to the globus pallidus (Haber and Knutson 2010; Herrick 1926; Mogenson et 

al. 1980).  While original observations were interpreted through a locomotor control perspective, 

the identification of VTA to NAc projections as being integral to limbic function laid a 

foundation for future incentive motivation investigations.  Eventually, the possibility of NAc 

being integral to affective states and reward-motivated behaviors grew widespread, strongly 

supported by electrode self-stimulation work (Mogenson et al. 1979; Phillips 1984; Van Ree and 

Otte 1980; Rolls 1971).  The NAc is now understood to have a critical and comprehensive role in 

motivated behaviors and positive affective states, such as eating, reward-seeking, and pleasure 

(Berridge and Robinson 1998; Carlezon and Wise 1996; Castro and Bruchas 2019; Kalivas and 

Duffy 1990; Peciña and Berridge 2000, 2005; Wang et al. 2016).   

Attempts to delineate the mechanisms through which the accumbens can generate the 

range of affective states and motivated behaviors have had some degree of success.  For instance, 

separate components of nucleus accumbens shell and core have been linked to different aspects 

of reward cue learning, motivated behavior, and incentive salience, and can be distinguished by 

different anatomical and morphological profiles (Corbit et al. 2001; Heimer et al. 1991; Jongen-
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Rĕlo et al. 1993; Kelley and Swanson 1997; Meredith et al. 1989, 2008; Parkinson et al. 1999; 

Voorn et al. 1989; Záborszky et al. 1985).  The NAc medial shell in particular is heavily 

implicated in incentive motivation, and its wide range of connections has previously caused it to 

been called the “viscero-endocrine striatum” (Kelley 1999).  The medial shell also receives the 

densest dopaminergic inputs from the ventral tegmentum (Voorn et al. 1986; Zahm 1992), 

therefore anatomically supporting its strong role in mediating incentive motivation through 

integral dopamine signaling.  However, it is actually the heterogeneity of neuronal populations 

that has been proposed to be critical to the versatility of NAc-mediated motivated behaviors, 

relying on substantial non-dopaminergic mechanisms (Meredith et al. 2008).  Indeed many other 

neural systems have been implicated in the generation of appetitive motivation by accumbens 

medial shell, such as cortical glutamatergic inputs, GABAergic medial spiny neurons (MSNs), 

mµ opioid receptor activation, and cholinergic interneurons (Bals-Kubik et al. 1993; Castro and 

Berridge 2014; Castro and Bruchas 2019; Faure et al. 2010; Kelley and Swanson 1997; Richard 

and Berridge 2011a; Richard et al. 2013b, 2013a).  

Accumbens shell motivational mechanisms 

NAc medial shell, as a striatal-level structure in a macrosystem framework (Alheid and 

Heimer 1988; Heimer and Van Hoesen 2006; Heimer et al. 2007; Zahm 2006), is a powerful 

mediator of both positively- and negatively-valenced ‘wanting’ modes throughout the rostral-

caudal axis.  NAc may also have two major modes for initiation of these behaviors, as both 

inhibition and excitation of NAc can both produce motivated behaviors (O’Donnell and Grace 

1995; O’Donnell et al. 1999).  For example, original electrode self-stimulation studies support 

the finding that excitation of NAc is reinforcing and positively-valenced (Mogenson et al. 1979; 

Phillips 1984; Van Ree and Otte 1980; Rolls 1971).  Further, countless modern pharmacology 
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and optogenetic studies demonstrate that NAc activation can generate intense motivation (Cole et 

al. 2018; Koo et al. 2014; Lex and Hauber 2008; Lobo et al. 2010; Schmidt et al. 2006).   

However, a long history of research instead provides support for an alternative hypothesis 

that NAc generates motivation via relative neurophysiological inhibition of NAc MSNs 

(Carlezon and Wise 1996; Carlezon and Thomas 2009; Cheer et al. 2005; Krause et al. 2010; 

Meredith et al. 2008; Roitman et al. 2005, 2008, 2010; Taha et al. 2006; Wheeler et al. 2008).  

For example, while inhibition of NAc medial shell through AMPA receptor antagonist (e.g., 

DNQX) microinjections can produce intense eating and appetitive behaviors, these same 

manipulations can also elicit fearful defensive treading in rats (Reynolds and Berridge 2008; 

Richard and Berridge 2011b; Richard et al. 2013b).  Microinjections of GABAA agonist 

muscimol show similar incentive and aversive effects, further supporting the notion of an 

inhibitory NAc motivational mode (Covelo et al. 2014; Faure et al. 2010; Reynolds and Berridge 

2001, 2002, 2008; Richard and Berridge 2011b; Richard et al. 2013b; Stratford and Kelley 1997; 

Stratford and Wirtshafter 2012).  

The proposed mechanism for these muscimol and DNQX effects is through the largely 

supported disinhibition hypothesis of motivation generated by NAc shell.  Based on both 

pharmacological and electrophysiological evidence, this theory posits that NAc neuronal 

inhibition causes disinhibition of structures downstream from NAc, such as lateral hypothalamus 

(LH), VTA, and ventral pallidum (Heimer et al. 1991; Humphries and Prescott 2010; Lu et al. 

1998; Mogenson et al. 1983; Usuda et al. 1998; Zahm and Heimer 1990; Zhou et al. 2003).  

Thus, it is hypothesized that releasing these targets from tonic GABAergic suppression therefore 

releases related motivated behaviors.  However, while the disinhibition theory remains largely 

popular, it has not been directly tested previously. 
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Examining NAc disinhibition hypothesis 

NAc DNQX- and muscimol-elicited ‘desire’ and ‘dread’ effects have been hypothesized 

to act through this disinhibition hypothesis, but this has never been explicitly tested.  In Chapter 

2, we tested whether local neuronal inhibition is necessary for microinjections of the glutamate 

AMPA antagonist DNQX in the rostral medial shell of nucleus accumbens, to generate intense 

appetitive motivation to consume food reward (i.e., ‘desire’), or in caudal NAc shell, to generate 

behavioral antipredator reactions that reflect intense defensive motivation (i.e., ‘dread’).  To do 

this we added optogenetic ChR2 excitation at the same NAc site as concurrent DNQX 

microinjections, to test whether local neuronal excitation prevents glutamate AMPA blockade 

from generating robust appetitive or defensive behaviors.  Finally, we also investigated whether 

NAc relative inhibition by DNQX produces GABAergic disinhibition of downstream limbic 

structures into excitation as predicted by the disinhibition hypothesis, by assessing distant Fos 

activation in those structures.     

Chapter 2 provides direct support for an inhibition-based mechanism for motivation in 

NAc shell, and further demonstrates that these neural mechanisms underlying incentive and 

aversive motivation can be overlapping and even occur by the same brain manipulations.  Here 

we also show how a stressful environment can change appetitive manipulations to become 

aversive, supporting the flexibility of limbic control of affective valence.  However, while stress 

is typically assumed to be aversive and a negatively-valenced driver of motivation, is that 

universally the case?  

Aversive motivation neural mechanisms 

The psychological drives underlying incentive motivation are intuitively straightforward.  

An organism must have the ability to direct motivation to external stimuli to obtain resources 
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necessary for survival, and the attribution of incentive salience to these stimuli can enhance the 

success of these abilities.  Aversive motivation has also been hypothesized to elicit motivation, 

though often through separate psychological mechanisms.  Drive-reduction theories posit that 

motivation to pursue a goal is elicited to relieve an aversive state, thus making the act of 

reducing the drive the reward, rather than the object of the directed motivation (Hull 1951; 

Miller 1971).  In modern psychological theories of drive-reduction, this aversive state elicited by 

an increasing motivational drive is often described as distressing, suggesting an integral role of 

brain stress systems in these aversive experiences (Koob and Volkow 2010; Koob et al. 2014). 

When investigating brain stress systems and neural mechanisms underlying aversive 

motivation, perhaps the most evoked neural mediator is corticotropin-releasing factor (CRF).  

CRF is a 41-amino acid peptide, also known as corticotropin-releasing hormone in the peripheral 

nervous system for its role in initiation of the hypothalamic-pituitary-adrenal axis (Sutton et al. 

1982; Vale et al. 1981).  CRF release is triggered in the brain by a diverse range of external 

stressors to initiate behavioral and physiological stress responses, and CRF is therefore viewed as 

one of the most integral brain stress molecules (Koob et al. 2014).  CRF is densely expressed in 

the paraventricular nucleus of the hypothalamus to initiate peripheral stress responses, though 

CRF-containing neurons and CRF1 and CRF2 receptors are widely distributed throughout the 

brain (Dabrowska et al. 2016, 2013; Lemos et al. 2019; Makino et al. 1994a, 1994b; 

Merchenthaler 1984; Merchenthaler et al. 1984; Peng et al. 2017; Schulkin 2017; Swanson et al. 

1983). 

Decades of research have now linked extra-hypothalamic CRF systems to a full range of 

affective and physiological negative distress states.  For example, activation of CRF systems 

through intraventricular microinjections in mice and rats mimic arousal and anxiety-like 
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responses to natural stressors and can enhance “emotionality” as predicted in aversive distress 

states (Dunn and Berridge 1990; Heinrichs and Joppa 2001; Hupalo et al. 2019; Koob and Bloom 

1985).  CRF-containing neuronal populations are additionally linked to a wide spectrum of 

negatively-valenced affective behaviors, including anxiety, pain, fear and fear learning, and drug 

withdrawal (Asok et al. 2018, 2016; Fadok et al. 2017; Funk et al. 2006; Minami 2019; 

Pomrenze et al. 2019b, 2019a; Sahuque et al. 2006; Takahashi et al. 2019; Tran et al. 2014).  

With the wide range of aversive motivational states that CRF could potentially initiate through 

activation, alterations in brain CRF systems have been hypothesized to play a role in many 

neuropsychiatric conditions including depression, generalized anxiety disorder, post-traumatic 

stress disorder, and most prominently, addiction (Dunlop et al. 2017; Epstein et al. 2016; Erb and 

Brown 2006; Koob 2010, 2013; Koob et al. 2014; Schwandt et al. 2016; Simms et al. 2014; 

Spierling and Zorrilla 2017; Tollefson et al. 2017; Zorrilla and Koob 2004).  

Opponent-process theory of addiction 

Perhaps the most notable drive-reduction theory in modern neuroscience builds upon this 

hypothesized role of CRF in mediating aversive distress, positing that drive-reduction can spur 

motivation to overcome these negative states.  The allostatic theory of addiction, also known as 

the opponent-process, hedonic homeostatic dysregulation, or hyperkatifeia theory of addiction, 

further hypothesizes that distress states are key to explaining continued drug use and addictive 

relapse (Koob and Le Moal 1997, 2008; Koob and Schulkin 2019; Koob 2010, 2013).  The 

original opponent-process theory of Solomon and Corbit described a motivational a-process 

which causes an A-state that is positive and euphoric, though slowly decreases in strength over 

time (Solomon and Corbit 1978; Solomon 1980).  The a-process also initiates a b-process, which 

causes a nasty, aversive B-state that increases over time.  Koob and colleagues modify this 
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theory into a neuroscientific theory of addiction, where taking addictive drugs activates the a-

process leading to a euphoric, pleasant state (i.e., the “high” a drug causes), though the strength 

of this A-state decreases over time due to drug tolerance (Koob and Le Moal 1997, 2008).  

However, what is posited to drive continued drug use is that the a-process also activates the 

opponent b-process and the subsequent negative aversive B-state, in this case linked to 

distressing withdrawal from drug use.  Just as the A-state wanes over repeated drug use, the 

opponent B-state grows over time and causes continued drug pursuit and consumption through 

attempts at self-medicating this escalating aversive withdrawal state.  Neurochemically, this 

withdrawal-induced distressing B-state is posited to be driven largely by enhancement and 

activation of brain CRF systems, particularly in the extended amygdala (Funk et al. 2006; Koob 

and Le Moal 1997, 2008; Koob and Schulkin 2019; Koob 2010, 2013; Olive et al. 2002; Park et 

al. 2013; Zorrilla et al. 2014). 

Traditionally CRF’s role in aversive motivation is heavily implicated in the extended 

amygdala regions of the central amygdala (CeA) and bed nucleus of stria terminalis (BNST), 

which contain dense extra-hypothalamic CRF neuron populations (Erb et al. 2001a; Heinrichs et 

al. 1995; Pomrenze et al. 2019b, 2019a; Rinker et al. 2017; Sahuque et al. 2006).  However, the 

evoked concept of the extended amygdala in the opponent-process theory of addiction also 

includes transitional parts of the medial accumbens shell, which contains a population of sparse 

and relatively unexamined CRF-containing neurons (Koob and Schulkin 2019; Koob 2010, 

2013; Lemos et al. 2012, 2019).  While many negatively-valenced states driven by CRF systems 

have been documented, a role in positive motivational mechanisms remains relatively unexplored 

(Lemos and Alvarez 2020).  Given the integral role that these CRF-neuronal populations are 
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posited to have in addictive behaviors and a variety of other affective neuropsychiatric disorders, 

investigating potential incentive motivation mechanisms is critical.  

CRF-mediated incentive and aversive motivation for sucrose rewards 

As an integral stress-related neurotransmitter, CRF-containing neurons offer potential 

mechanisms for amplifying incentive motivation, such as a surge in incentive salience and 

reward consumption following a positively experienced stressor.  In line with this, NAc CRF 

microinjections cause surges in cue-triggered ‘wanting’ in a Pavlovian Instrumental Transfer 

(PIT) task, equivalent to dopamine-stimulating amphetamine microinjections (Peciña et al. 

2006).  Similarly, NAc CRF microinjections cause conditioned place-preferences and stimulate 

local dopamine release in unstressed mice (Lemos et al. 2012). 

CRF-containing neurons in the CeA and BNST have long been implicated in motivated 

behaviors.  While CRF in CeA and BNST has largely been assumed to drive negative and 

aversive motivational effects such as anxiety and distress (Asok et al. 2018; Fadok et al. 2017; 

Funk et al. 2007; Koob 2013; Partridge et al. 2016; Pomrenze et al. 2019b; Sahuque et al. 2006; 

Tran et al. 2014), there is some evidence that CeA CRF-containing neurons at least may also 

contribute to positive incentive effects as well.  Specifically, mice will self-stimulate for 

optogenetic excitation of CRF-containing neurons in this striatal-level structure (Kim et al. 

2017).  

Chapter 3 of this dissertation therefore examines the potential incentive and aversive 

motivational roles of CRF-containing neurons in NAc, CeA, and BNST using new transgenic 

Crh-Cre rats.  These rats underwent operant tasks to test how excitation of CRF-containing 

neurons in these structures may amplify or bias incentive motivation for sucrose rewards and 

underwent self-stimulation tests to assess the potential positive or negative valence of stimulation 
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by itself.  Finally, we compared activation patterns of recruited downstream structures following 

excitation of CRF-containing neurons in NAc, CeA, and BNST through distant Fos analysis, and 

used Fluorescent in Situ Hybridization (FISH) to quantify and compare CRF systems in NAc, 

CeA, and BNST in this transgenic BAC rat line.  

CRF-containing neurons and cocaine motivation. 

While the role of CRF-containing neurons in incentive motivation for natural rewards 

such as sucrose is informative, CRF has largely been implicated as the cause of aversive distress 

from withdrawal symptoms following cessation of drug-use (Koob and Volkow 2016; Koob et 

al. 2014; Merlo Pich et al. 1995; Olive et al. 2002; Park et al. 2013; Zorrilla et al. 2014).  Indeed, 

the allostatic model of addiction, based on the opponent-process theory, posits that CRF in CeA 

and BNST are elevated during drug-withdrawal and causes negative aversive distress, thus 

leading to relapse through attempts at hedonic self-medication (Koob and Le Moal 1997, 2008; 

Koob and Schulkin 2019; Koob 2013; Koob et al. 2014; Solomon and Corbit 1978; Zorrilla et al. 

2014).  However, it is also plausible that CRF-systems could contribute to relapse and addiction 

through positive incentive mechanisms, such as promoting drug intake due to stress-induced 

surges in incentive salience.  Therefore, Chapter 4 of this dissertation probes how optogenetic 

stimulation of CRF-containing neurons in NAc, CeA, and BNST may bias or amplify motivation 

for cocaine-rewards, using transgenic rats and a modified self-administration two-choice task 

(Warlow et al. 2017). 

Summary 

Overall, this dissertation examines the generation and amplification of incentive 

motivation and aversive motivation by limbic structures.  It investigates how stressful 

experiences and stress-related neural systems may enhance and direct these motivational 



 12 

modes, particularly through striatal-level limbic structures including the nucleus accumbens 

medial shell and central amygdala. 
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CHAPTER II. ‘Desire’ and ‘Dread’ From Nucleus Accumbens Inhibitions: Reversed by Same-Site 
Optogenetic Excitations.  

Introduction 

Localized neuropharmacological glutamate blockade at sites in the medial shell of 

nucleus accumbens (NAc), by microinjections of the glutamate AMPA antagonist, DNQX, 

produce either intense appetitive behavior or fearful behavior.  Valence depends partly on site 

placement along a rostro-caudal gradient.  Rostral shell microinjections of DNQX produce 

increased appetitive motivation, such as increased eating and food intake, and establish 

conditioned place preferences (Maldonado-Irizarry et al. 1995; Reynolds and Berridge 2003).  

By contrast, caudal shell DNQX microinjections can instead elicit active-coping forms of 

‘fearful’ behaviors, such as anti-predator defensive treading-burying, fearful vocalizations to 

touch, and establish conditioned place avoidance (Faure et al. 2010; Reynolds and Berridge 

2001, 2002, 2008; Richard and Berridge 2011b; Richard et al. 2013b).  Beyond anatomical 

determinants, the motivational valence produced by DNQX microinjections at many shell sites 

can be shifted by changes in the emotional ambience or stress-levels of the external environment 

(Reynolds and Berridge 2008; Richard and Berridge 2011b).    

What underlying neurobiological mechanisms are responsible for this NAc-generated 

‘desire’ or ‘dread’?  A major neurobiological hypothesis has been that reward motivation is 
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generated via relative neurophysiological inhibition of NAc medium spiny neurons (MSNs) 

(Carlezon and Wise 1996; Carlezon and Thomas 2009; Cheer et al. 2005; Krause et al. 2010; 

Meredith et al. 2008; Roitman et al. 2008; Taha et al. 2006; Wheeler et al. 2008).  By this 

hypothesis, NAc neuronal inhibition of MSNs shuts off axonal GABA release from projections 

to anatomical targets in lateral hypothalamus (LH), ventral pallidum (VP), and ventral tegmental 

area (VTA), releasing those targets from tonic GABAergic suppression, and disinhibiting them 

into relative excitation to generate intense motivation (Heimer et al. 1991; Humphries and 

Prescott 2010; Lu et al. 1998; Mogenson et al. 1983; Usuda et al. 1998; Zahm and Heimer 1990; 

Zhou et al. 2003).   

This NAc-inhibition hypothesis also has plausibility when applied to DNQX 

microinjections, to the extent that local AMPA blockade suppresses the ability of excitatory 

glutamate signals from cortex, hippocampus, or basolateral amygdala to produce local excitatory 

post-synaptic potentials in MSNs.  This would produce at least relative inhibition of those local 

MSNs, by suppressing activity below normal levels.  

However, as yet, there is no direct evidence that neuronal inhibition is actually necessary 

NAc for DNQX microinjections to generate either appetitive or fearful motivations.  

Alternatively, other pharmacologically-induced post-synaptic neurochemical and second 

messenger effects of the drugs induced in parallel with electrophysiological changes, as well as 

presynaptic antagonist effects, might cause the motivated behaviors (Lee et al. 2010; Menuz et 

al. 2007; Tarazi et al. 1998a, 1998b).  

 

Here with colleagues Dr. Shannon Cole and Dr. Jeffrey Olney, we directly tested the 

hypothesis that local neuronal inhibition is necessary for DNQX microinjections in NAc to 
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induce intense motivated behaviors.  This was done by locally opposing putative DNQX-

inhibition of NAc neurons at the microinjection site by adding optogenetic channelrhodopsin 

(ChR2) excitation at the same NAc site.  Our results indicate that localized ChR2 excitation at 

the same site of a DNQX microinjection reverses both positively-valenced desire and negatively-

valenced dread induced by DNQX microinjections at their corresponding rostrocaudal sites in 

NAc medial shell.  Both motivational reversals occurred only if ChR2 optic fiber tip and DNQX 

microinjector tip were within 0.5mm (or at least 0.8mm) of each other in shell, but not if fiber tip 

and microinjector tip are spaced further apart.  Laser-induced behavioral reversals of DNQX 

effects were also accompanied by neurobiological reversal of recruitment of Fos increases in LH, 

VP, VTA, and other limbic structures, that were otherwise induced by NAc DNQX 

microinjections.  These results help confirm the necessity of relative NAc inhibition, and support 

the release of downstream targets into excitation, for NAc DNQX microinjections to generate 

appetitive or defensive motivations. 
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Materials and Methods 

Subjects 

Forty-nine rats (Sprague Dawley or Long Evans obtained Envigo, Indianapolis, IN or 

bred in-house; n = 5 females and n = 43 males; 300-500g) were implanted with bilateral NAc 

cannula for drug microinjection, and received bilateral virus microinfusions (ChR2 or eYFP) and 

bilateral optic fibers implanted at the same individualized sites in medial shell of NAc.  Sites 

were bilaterally identical within an individual, but were staggered across individuals so that the 

group as a whole filled most of the NAc medial shell.  Rats were housed in same-sex pairs or 

groups of three on a 12:12-hour reverse light/dark cycle at ~21°C with ad libitum access to food 

(Purina Rat Chow) and water.  All experimental procedures were approved by the University 

Committee on the Use and Care of Animals (UCUCA) at the University of Michigan and carried 

out in accordance with the guidelines on animal care and use by the National Institutes of Health.   

Experimental groups   

1. Standard lab – Within subject Group: 14 total (Sprague-Dawley = all male) 

2. Stressful environment – Within subject group: 11 total (Long-Evans = 5 female, 6 male)  

3. Standard Lab Fos mapping – Between-subject group: 24 total (Sprague Dawley = all male) 

Three separate groups of rats were run.  Two groups compared within-subject behavior of the 

same individuals after four different NAc microinjection/laser conditions (Within-subject 

comparison groups): DNQX microinjection alone, DNQX microinjection plus laser illumination 

during test, vehicle microinjection alone, and vehicle microinjections plus laser illumination 

during test.  These two within-subject groups differed in the rat strain and emotional ambience of 

their external environment used to test behavior after NAc microinjections.  The first within-
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subject group used Sprague-Dawley rats tested in a standard laboratory environment (standard 

lab environment groups).  The second within-subject group added loud sound to the behavioral 

test environment, in the form of raucous music, intended to raise potential stress levels to 

facilitate DNQX-elicitation of defensive treading-burying behavior as a ‘fearful’ anti-predator 

reaction, and used Long-Evans rats, as they may potentially have greater emotional-reactivity to 

stress than Sprague-Dawley rats (de Boer et al. 2003) (stressful environment group).  The third 

group provided between-subject behavioral comparisons, and allowed measurement of the size 

of local Fos plumes in NAc induced by each microinjection/laser condition, and changes in 

distant Fos expression in other limbic structures accompanying those conditions (Fos mapping; 

between-subject condition).  Because repetition of microinjections can induce local gliosis or 

necrosis at a microinjection site that impedes drug spread, potentially reducing Fos plume size of 

a final drug microinjection and reducing behavioral effects elicited by the drug microinjection 

(Castro and Berridge 2017; Richard and Berridge 2011b), each rat in this between-subject group 

was tested behaviorally only once with a single microinjection/optogenetic condition (individuals 

assigned in counterbalanced numbers to each of the four conditions).  Brains were processed for 

Fos expression immediately afterwards.  This avoided underestimation of NAc Fos plume sizes, 

which would have distorted assessment of whether DNQX microinjection plumes and ChR2 

laser illumination plumes anatomically overlapped in a given rat. 

Cranial cannulation and fiber implantation surgery 

Rats were anesthetized using isoflurane (5% induction, maintenance at 1-2%), and 

pretreated with atropine (.05 mg/kg, i.p.) to prevent respiratory distress.  Carprofen (5.0 mg/kg, 

s.c.) was additionally administered for post-surgical analgesia, and cefazolin (75 mg/kg, s.c.) was 

administered to prevent infection.  Rats were positioned in a stereotaxic apparatus (David Kopf 
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Instruments, Tujunga, CA, USA), with the mouth bar set to 5.0 mm above intra-aural for cannula 

insertion, with the head flat using a lateral 16 degree angle for optic fiber insertion to avoid the 

cannula path and not penetrate lateral ventricles, and to achieve positioning of fiber/cannula tips 

closely together (Figure 2.1).  Bilateral stainless-steel microinjection guide cannulae (14 mm, 23-

gauge) and bilateral optic fibers (approximately 8-9 mm in length) were aimed at matching NAc 

sites.  Guide cannula ended 2 mm above optic tips, because microinjector tips extended 2.0 mm 

beyond the end of the guide cannulae, and sites for optic fiber tip and microinjector tip were 

intended to be identical (7.6 mm on the dorsoventral plane).  Bilateral sites were also identical 

for a given rat.  However, site coordinates were staggered across rats so that the group’s 

collective sites filled the entire rostrocaudal extent of NAc medial shell (ranging between antero-

posterior AP +2.2+3.0; medio-lateral ML ± 0.8+1.2mm, and dorso-ventral DV-7.6mm; all 

relative to bregma).   

During the surgery, the microinjector was inserted into the guide cannula, and each rat 

received bilateral 0.5 µL microinfusions of either AAV5-hSYN-ChR2-eYFP virus (UNC Vector 

Core, Chapel Hill, NC, USA; rate = 0.1 µL per min; 5-min duration; ChR2 rats) or optically 

inactive control virus that lacked ChR2 (AAV5-HSYN-eYFP, UNC Vector Core; control eYFP 

rats).  After microinfusions, virus was allowed to diffuse for 10 minutes before withdrawing 

microinjector cannula. 

Next, optic fiber implants were inserted in a flat-skull position at a 16° lateral angle, 

triangulating the aim of the optic fiber tip to closely approach the microinjector cannula tip 

without following the same track.  Optic fiber implants were always aimed at coordinates 

approximately 0.3mm above the microinjector tip, so that illumination would overlap with tissue 

containing the drug (AP +1.0 to +2.5 ML ± 3.0 to ± 3.5 mm; DV-6.5 to -7.2; at 16 degree lateral 
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angle).  External ends of microinjection guide cannula and fiber implants were secured to the 

skull with four surgical screws and dental acrylic.  Stainless-steel stylets (28-gauge) were 

inserted into the guide cannulae to prevent infection and clotting.   

 Rats were monitored daily post-operatively for 7 days.  Each rat received another dose of 

carprofen for additional pain relief after 24 hours, and received topical reapplications of 

antibiotic ointment around the skullcap every day for the week.  Approximately 4 weeks was 

allowed before behavioral testing to allow virus incubation and adequate ChR2 expression.   

Post-test site verification 

 All optic fiber and microinjection sites were verified histologically after the experiments 

were completed.  Any rat that had fiber optic tips and microinjector tips within <1 mm of each 

other on at least one side of in medial shell was considered to have potentially overlapping or 

aligned NAc sites for optogenetic stimulation and drug microinjections (aligned 

fiber/microinjector tips; see Fos plume results below).  Any rat with fiber optic tips more distant 

than 1.0 mm away from microinjector tip was considered to have misaligned tips.  Aligned 

versus misaligned groups were statistically compared separately to assess if behavioral effects 

for laser modulation of DNQX-induced motivations differed depending on proximity of fiber tips 

to microinjector tips.  

Handling and Habituation 

For 2-3 days before behavioral testing began, rats were handled for at least 15 minutes 

per day for acclimation.  Then for four additional habituation days, rats were connected to 

optogenetic laser delivery cables and placed in the test chamber for 1 hour per day.  The 

behavioral test chamber permitted ad libitum access to food and water, and contained cob 

bedding as a substrate to support potential defensive treading/burying.  Laser power supplies 
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were turned on during these habituation sessions, so rats became accustomed to their ambient 

sound, but laser output to cables was turned off.  On the fourth day of chamber habituation, rats 

received an intra-accumbens microinjection of vehicle solution prior to being placed into the test 

chamber, to habituate them to all aspects of receiving a microinjection and handling procedures. 

Intracranial Microinjections for behavioral testing 

Drug microinjections were administered bilaterally.  Rats received either the AMPA 

antagonist DNQX dissolved in vehicle (220ng/0.5µL/side; Sigma-Aldrich Corporation, St. 

Louis, MO, USA) or vehicle alone (50% DMSO and 50% 0.15M saline).  Vehicle/DNQX 

conditions counterbalanced across days for within-subject rats.  Microinjections of 0.5-µL-per-

side were spaced 48 hours apart on test days for within-subject groups to ensure that there were 

no lingering drug effects.  A standard dose of DNQX at 220 ng/0.5 µL per side was selected 

based on results of a previous study in our laboratory (Richard and Berridge 2013), which 

indicated this DNQX dose to produce moderate levels of either appetitive behavior or defensive 

behavior, depending on rostro-caudal site in NAc medial shell.    

To administer NAc microinjections, rats were individually taken out of their home cages 

and the experimenter removed the stylet protecting the guide cannulae.  Rats were gently held in 

the experimenter’s lap while microinjectors (16 mm, 29-gauge) connected to PE-20 delivery 

tubing were inserted into each guide cannula, and microinjections were made.  Microinjections 

were administered at a rate of 0.3 µL/minute using a microinjection syringe pump to deliver a 

total 0.5 µL volume per side of NAc (Hamilton Company, Reno, NV, USA).  After a DNQX or 

vehicle microinjection, microinjectors were left in place ~1 minute to allow for drug diffusion.  

Stylets were replaced in guide cannulae after microinjectors were removed, fiber optic cables 

were attached, and rats were immediately put into the testing chamber. 
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Optogenetic Laser Stimulation 

Prior to all tests, two fiber optic cables were attached to a rat’s bilateral fiber implants, so 

that laser could be bilaterally delivered to NAc.  Laser power supplies were always turned on to 

keep fan sound constant, though laser was activated only during particular test sessions, as 

described below Fiber optic implant output was measured to be >85% efficiency, and laser 

intensity was kept between 8-10 mW at tips.  Laser illumination was programmed to deliver 5s 

bins of 25 Hz (5 ms ON, 25 ms OFF) blue (473 nm) laser stimulation with 15 s in between the 

laser bins, and ON-OFF bins were cycled repeatedly throughout the whole 1-hr test.   

Behavioral Testing 

DNQX and laser effects on appetitive eating behavior and defensive behavior were 

measured in 1-hr daily tests on four test days with the following conditions counterbalanced in 

order: (i) baseline condition (vehicle microinjection, no laser), (ii) Laser-alone condition (Laser 

stimulation, vehicle microinjection), (iii) DNQX-alone condition (DNQX but no laser), and (iv) 

combined DNQX-Laser condition (DNQX microinjection, laser stimulation).  Tests were 

conducted in a transparent chamber (25.5 x 46 x 46 cm) containing at least 3 cm of granular 

corncob bedding on the floor, plus a water cup taped to the bottom on one side, and a pre-

weighed amount of rat chow (25-30 g of Purina rat chow).  The cob bedding provided material 

that rats could kick forward, as a substrate to support defensive treading/burying behavior.  The 

room contained standard white ambient illumination (400-500 lux).  Ambient sound levels were 

50-60 decibels measured in test chamber.  A video camera in front of each test chamber recorded 

behavior for subsequent slow-motion analysis.   

Behavioral testing in Sensory Stressful Environment 

A separate group of rats (n = 11) underwent testing conditions described above, except in 



 22 

a laboratory environment with elevated levels of sound (rock music soundtrack: Iggy Pop, 

Hippodrome Paris 77; 80-87 decibels measured in chamber), intended to create a potentially 

more stressful ambience.  Ambient light levels were identical to those in standard testing 

environment (400-500 lux).  

Behavioral scoring of defensive reactions during retrieval at end of test 

At the end of the testing session, the experimenter retrieved the rat with a gloved hand 

using a standardized set of slow-approach movement similar to previous studies (Richard and 

Berridge 2011b): a) the experimenter approached the chamber with slow steps (taking 

approximately 3s), b) reached with one gloved hand inside the chamber to slowly approach the 

rat and stroke its side once (taking ̴ 3 sec), c) inserted 4 fingers beneath the rat with palm up, and 

then d) gently lifted the rat out of the chamber (taking ̴ 3s).  Any audible distress calls, escape 

attempts or bite attempts directed at the experimenter were recorded during the retrieval process.  

A bite attempt was counted if a rat attempted to contact the experimenter’s hand with teeth.  

Escape attempts were counted if a rat rapidly moved away from a hand or attempted to climb the 

wall upon initial touch or lifting.  Distress calls were noted any if audible vocalizations were 

made during the retrieval procedure. 

Behavioral Scoring of Video-records 

Video-recorded behavior during tests was scored in slow motion (1/8-1/2 speed; 

Observer software, Noldus), by observers blind to experimental condition.  Eating (actively 

chewing and swallowing food), defensive treading/burying, escape attempts (subject tries to 

move away from the experimenter’s reach), were all measured as cumulative duration in seconds 

of each behavior.  Bouts of eating (counted as the number of times eating was initiated after a 

pause of >0.5 sec), bouts of treading (counted as the number of times treading was initiated after 
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a pause of >0.5 sec) and distress vocalizations were all counted as discrete events or bouts each 

time they occurred.   

Brain Histology   

Thirty minutes after the end of the final behavioral testing session for within-subject 

groups, or after the single behavioral test session for the between-subject group, rats received an 

overdose of sodium pentobarbital (0.8 mL), and were transcardially perfused (i.e., 90 min after 

final DNQX or vehicle microinjection for all groups).  Brains were post-fixed in 

paraformaldehyde for two days at 4°C, then stored in a 25% sucrose solution at 4°C until later 

processing.   

For immunohistochemistry, brains were sliced into 40 µm sections using a cryostat 

(Leica, Wetzlar, Germany).  Tissue was rinsed for 10 min in 0.1M sodium phosphate buffer 

(NaPB) three times, then blocked with 5% normal donkey serum for 30 minutes.  Tissue was 

incubated overnight at room temperature in rabbit anti-cFos (1:1000; Catalog #: ABE457; Lot #: 

3142408; Millipore, Burlington, MA).  Slices were rinsed three times for 10 minutes in 0.1M 

NaPB before incubation with donkey anti-rabbit Alexa Fluor 594 (1:300; Code #: 711-585-152; 

Lot #: 1827674; Jackson Immunoresearch, West Grove, PA) for 120 minutes.  Tissue was again 

rinsed for 10 minutes in 0.1M NaPB three times and mounted onto slides.  Images of the fiber 

and cannula tip were taken using a digital camera (QImaging, Surrey, BC, Canada) attached to a 

fluorescence microscope (Leica, Wetzlar, Germany).  Sites of optic fibers and of microinjection 

cannulae were identified and mapped onto coronal slices from a rat brain atlas (Paxinos and 

Watson, 2007), and positions were extrapolated and transferred onto a sagittal slice (see Fig 2.1 

for example).   

Fos plume analysis 
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Local Fos plumes surrounding a fiber optic tip that was illuminated 90 minutes before 

perfusion, or surrounding the microinjector tip 90 minutes after a DNQX microinjection, reflect 

local changes in neuronal transcription induced by direct ChR2 photoexcitation or by DNQX 

neurochemical impact (compared to eYFP baseline or vehicle-microinjection baseline as control 

groups).  The diameter of a Fos plume provides an objective indicator of how far changes in 

neuronal activity induced by optogenetic stimulation or drug microinjection extend from the tips 

of fiber or cannula.  Fos expression was measured with a fluorescent microscopy filter and 

excitation band at 515–545 nm to identify Fos-positive cells.  Numbers of Fos-expressing cells 

were counted at 10x magnification within successive blocks (50 x 50 µm) of tissue emanating 

along eight radial arms centered at the optic fiber tip or microinjector tip.  Counts continued 

outward along an arm until at least two sequential blocks contained zero Fos-labeled cells, which 

was taken as marking the terminal radius of the Fos plume along that arm.  Intensities of Fos 

elevation in an illuminated ChR2 brain were calculated in terms of percent change from a control 

baseline measured in rats receiving vehicle microinjections alone and/or illuminated eYFP 

inactive-virus control rats.  That is, equivalent block locations from NAc of eYFP control rats 

that received laser illumination prior to perfusion similarly to ChR2 rats.  Fos elevations in ChR2 

blocks were denoted in increments of > 200% elevation or higher > 300% elevation above the 

baseline.  Similarly, changes induced by DNQX microinjections were computed by comparison a 

vehicle-microinjection baseline.  For that, Fos was measured in equivalent sites in rats that 

received vehicle microinjections 90 minutes before perfusion (Castro and Berridge 2017; Cole et 

al. 2018; Warlow et al. 2017). 

Distant Fos expression 

Recruitment of distant changes in Fos expression in other brain structures was also 
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assessed to determine functional connectivity expressed in anatomical patterns of limbic Fos 

elevation following microinjection or optogenetic manipulations that altered motivated behaviors 

(see Table 2.1 for list of structures).  Within each structure or subregion, Fos expressing neurons 

were counted in 2-3 separate sample boxes, placed roughly equidistantly within the structure, 

and at approximately the same locations across different rats.  The size of sample boxes was 

specifically adjusted to each brain structure, so that each sample box contained approximately 10 

Fos-expressing neurons in control rats that received vehicle microinjections in NAc.  The 

number of Fos expressing neurons within each box was counted separately for each NAc 

drug/laser condition as above and compared to the vehicle microinjection baseline, each 

measured in that particular corresponding brain structure or subregion in separate rats.    

Experimental Design and Statistical Analysis 

To evaluate behavioral data, effects of drug microinjections, ChR2 laser stimulation, 

drug-laser interactions, anatomical site effects, and sex differences when necessary were 

assessed initially via mixed model ANOVAs and subsequent pair-wise post hoc comparisons 

with Bonferroni corrections.  For non-normally distributed data (i.e., time spent treading), non-

parametric Kruskal-Wallis and follow up Wilcoxon tests were used.  Planned comparisons were 

used to compare Fos expression.  For statistical analysis of anatomical sites, the NAc medial 

shell was divided into rostral and caudal halves: rats with AP coordinates > 1.2 mm ahead of 

bregma were placed in the rostral group, and those with sites < 1.2 mm ahead of bregma in the 

caudal group.  Effects were considered statistically significant if p<.05, two-tailed.  Cohen’s d, 

and r =  for non-parametric tests, were used to calculate the magnitude of effect sizes.   
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Results 

Anatomical placements of optic fibers & microinjections in NAc  

Standard lab – Within subject group (Group 1).  NAc sites of optic fibers and 

microinjection cannulae were confirmed to be in the rostral half of medial shell for 11 of 14 rats, 

and in the caudal half of medial shell for 3 remaining rats.  To assess potential interaction 

between laser and drug at a given site, placements in one side of NAc shell that had optic fiber 

and microinjector tips anatomically aligned together (i.e., both tips <0.5 to 0.8 mm apart, based 

on Fos plume sizes below) were distinguished from placements that were not aligned (i.e., fiber 

tip >1 mm from cannula tip, even if both in medial shell) (Tables 2.2, 2.3).  Rats that had <0.5 

mm aligned tips on both sides of NAc were considered bilaterally aligned (n=7).  Rats that had 

unilateral <0.5 mm alignment on one side of NAc and 0.5 mm to 0.8 mm alignment on the 

contralateral side (n=2) were considered provisionally aligned, and explicitly compared to 

bilaterally aligned rats for ChR2 laser effects on DNQX-elicited behaviors.  Because these two 

groups showed comparable levels of laser-induced ChR2 suppression (laser ChR2 suppression 

for bilateral <0.5mm group = 62.0 + 13.6%; suppression for unilateral <0.5mm and contralateral 

0.5 to 0.8 mm group = 59.1 + 11.9%), they were combined in subsequent statistical analyses.  No 

rats had unilateral <0.5 mm alignment but non-aligned >1 mm placements on the contralateral 

side of NAc.  Remaining rats had bilaterally non-aligned placements, with tips >1 mm apart on 

both sides of NAc (n = 5) and were considered separately in statistical analyses. 

Local Fos plumes – zones of impact for DNQX microinjections and ChR2 laser stimulations 

DNQX microinjections and ChR2 fiber illumination both produced local Fos plumes of 

increased Fos expression immediately surrounding the cannula/fiber tips in NAc medial shell 

(Figure 2.1).  DNQX microinjections by themselves (without laser during the subsequent test) 
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produced Fos plumes with >300% intense increases in Fos over control levels measured at the 

same sites (i.e., after vehicle microinjections without laser) in a plume center of 94 ± 51 μm 

radius, and moderate >200% increases in a middle plume of 288 ± 63 μm radius, and an outer 

plume of 392 ± 58 μm radius of 125% elevation over control levels (effect of DNQX on plume 

radius versus vehicle non-laser group: F1,14 = 7.740, p = 0.015, d = 3.93).  Optogenetic excitation 

by itself, or laser illumination of NAc ChR2 neurons with vehicle microinjection, produced an 

intense inner plume with >300% elevation of 38 ± 13 μm radius, a middle plume of 206 ± 49 μm 

radius of >200%, and an outer plume of 300 ± 53 SEM μm radius of 25% elevation over control 

levels.  Therefore, the diameter of Fos plumes suggested that an aligned fiber tip placed within 

<0.5mm to <0.8mm of a microinjector tip, would create a zone of overlapping impact for both 

manipulations on neurons in medial shell.   

Adding aligned laser ChR2 stimulation to a DNQX microinjection trended toward 

shrinking the size of the resulting inner, middle, and outer Fos plumes by 67 ± 20% SEM, 31 ± 

22% SEM, and 18 ± 18% SEM, respectively, although variance was high, from sizes produced 

by DNQX microinjection alone (DNQX alone: inner plume = 94 ± 51 SEM μm, middle plume = 

288 ± 63 μm; outer plume = 392 ± 58 μm; Combined laser ChR2 + DNQX: inner plume = 31 ± 

19 μm, middle plume = 200 ± 63 μm; outer plume = 325 + 72 μm; Figure 2.1).  This trend 

toward reduction nearly reversed the level of laser ChR2 + DNQX local Fos elevation back to 

vehicle levels after laser excitation alone without DNQX (Laser alone: inner plume = 38 ± 13 

μm, middle plume = 206 ± 49 μm; outer plume = 300 ± 53 SEM μm), so that they no longer 

differed from vehicle plumes (F1,14 = 1.358, p = 0.263).  This suggests that laser ChR2 

stimulation opposed neurobiological effects of DNQX microinjection that controlled Fos 

increases in local neurons.  
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We note DNQX induction of increased local NAc Fos may seem confusing given that 

DNQX should suppress neuronal firing.  However, Fos reflects 3rd-messenger genomic 

transcription signals, in response in 2nd messenger intra-neuronal signals, and so can depart from 

electrophysiological activation (Herdegen and Leah 1998).  Whether DNQX-induced Fos 

reflects changes in receptor signal, or lateral GABAergic disinhibition from suppressed 

neighboring MSNs, or other factors is unknown.  We do not take Fos plumes as a proxy for 

electrophysiological activation, but merely as a proxy for spread of drug action or spread of 

laser/ChR2 action on local neurons.  

 NAc Laser reverses DNQX-elicited Fos increases in distant brain structures  

DNQX microinjections by themselves in NAc shell, without laser, also recruited distant 

increases in Fos expression in several other limbic brain structures distributed across the brain, 

consistent with the idea of downstream circuitry being released into excitation to generate 

motivated behaviors (Figure 2.2).  Fos expression was more than doubled by DNQX 

microinjections in several structures that directly receive NAc shell output projections, such as 

LH, VP and VTA, compared to control baselines measured in rats that received vehicle 

microinjection without laser: anterior ventral pallidum (aVP; 457 ± 94 % increase, t(10) = 3.103, 

p = 0.011, d = 2.31), posterior VP (pVP; 359 ± 65 % increase, t(9) = 3.269, p = 0.010, d = 2.36), 

anterior lateral hypothalamus (aLH; 228 ± 11 % increase, t(9) = 7.381, p < 0.001, d = 4.44), 

posterior LH (pLH; 257 ± 9 % increase, t(11) = 10.872, p < 0.001, d = 6.03) and VTA (214 ± 8 

% increase, t(8) = 8.403, p < 0.001, d = 5.37).  Fos expression was similarly increased by NAc 

DNQX in structures belonging to the extended amygdala macrosystem: anterior bed nucleus of 

stria terminalis (aBNST; 245 ± 23 % increase, t(10) = 4.198, p = 0.002, d = 2.85), posterior 

BNST (pBNST; 250 ± 29 % increase, t(10) = 4.046, p = 0.002, d = 2.67), medial amygdala 
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(MeA; 186 ± 24 % increase, t(11) = 3.200, p = 0.008, d = 2.07), central amygdala (CeA; 281 ± 

20 % increase, t(10) = 5.872, p < 0.001, d = 3.40).  Finally, NAc shell DNQX increased in 

another NAc component, the core (NAcC; 288 ± 36 % increase, t(9) = 3.769, p = 0.004, d = 

3.19).  However, trends toward increases did not reach statistical significance in several other 

structures: in anterior infralimbic (aIF; 101 ± 9 % increase, t(10) = 0.046, p = 0.964), posterior 

infralimbic (pIF; 103 ± 11 % increase, t(10) = 0.122, p = 0.906), basolateral amygdala (BLA; 

144 ± 24 % increase, t(10) = 0.850, p = 0.415), or perifornical hypothalamus (PFA; 136 ± 15 % 

increase, t(11) = 1.766, p = 0.105; Figure 2.2). 

Adding aligned laser illumination in ChR2 rats to DNQX microinjections in NAc shell 

also successfully attenuated the recruitment of increases in distant Fos expression over vehicle 

control levels in most structures listed above.  Accordingly, ChR2 rats that had aligned NAc 

shell laser illumination plus DNQX microinjections had significantly lower Fos in several limbic 

structures than ChR2 rats that received DNQX microinjections alone: DNQX-induced Fos was 

suppressed by ChR2 laser illumination in direct target subregions of VP, LH and VTA: pVP (73 

± 7 % suppression, t(7) = 2.696, p = 0.031, d = 2.59), aLH (52 ± 11 % suppression, t(7) = 5.274, 

p = 0.001, d = 3.46), pLH (54 ± 6 % suppression, t(8) = 8.070, p < 0.001, d = 5.58), and VTA 

(48 ± 7 % suppression, t(6) = 6.091, p = 0.001, d = 4.81).  DNQX-induced Fos was similarly 

suppressed by ChR2 laser illumination in extended amygdala structures: aBNST (54 ± 8 % 

suppression, t(8) = 2.878, p = 0.021, d = 2.37), pBNST (63 ± 5 %, t(8) = 3.411, p = 0.009, d = 

3.23), CeA (65 ± 18 % suppression, t(7) = 5.719, p = 0.001, d = 4.39).  Finally, DNQX-induced 

Fos was also suppressed by ChR2 laser illumination in the core of NAc (NAcC 58 ± 7 % 

suppression from DNQX alone; t(8) = 2.871, p = 0.021, d = 2.63).  However, no significant 

suppression was found in aVP or MeA, though there was a trend in this direction (aVP: 75 ± 6 % 
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suppression, t(8) = 2.281, p = 0.052, d = 2.33; MeA: 40 ± 5 % suppression, t(8) = 1.976, p = 

0.084, d = 1.93).  Similarly, there was no laser-induced change in structures that did not show a 

DNQX-recruited enhancement in Fos such as aIF (1 ± 2 % suppression, t(6) = 0.079, p = 0.940), 

pIF (11% suppression, t(5) = 0.285, p = 0.787), BLA (18 ± 12 % suppression, t(7) = 0.634, p = 

0.546), and PFA (34 ± 3 % suppression, t(8), p = 0.110).  

One ChR2 rat that received DNQX with laser illumination had only a unilateral NAc 

cannula aligned with fiber optic (with contralateral cannulae in ventral pallidum).  Nonetheless, 

this rat demonstrated a similar laser-induced attenuation of distant Fos activation compared to 

rats that received DNQX alone: aVP (70% suppression), pVP (66% suppression), aLH (30% 

suppression), pLH (43% suppression), VTA (56% suppression), aBNST (47% suppression), 

pBNST (59% suppression), CeA (54% suppression), NAcC (68% suppression).   

By contrast with ChR2 rats, laser was ineffective in control rats with inactive eYFP virus 

in altering DNQX-elicited Fos levels, at all sampled structures throughout the brain: eYFP rats 

that received DNQX plus laser did not differ from eYFP rats that received DNQX alone without 

laser (aVP (t(7) = 0.988, p = 0.356), pVP (t(6) = 1.183, p = 0.282), aLH (t(6) = 0.988, p = 0.361), 

pLH (t(7) = 4.745, p = 0.201), VTA (t(5) = 0.721, p = 0.503), aBNST (t(7) = 0.723, p = 0.493), 

pBNST (t(7) = 0.254, p = 0.806), MeA (t(7) = 0.835, p = 0.431), CeA (t(6) = 1.028, p = 0.344), 

NAcC (t(7) = 1.877, p = 0.103), aIF (t(5) = 1.524, p = 0.188), pIF (t(5) = 0.007, p = 0.995), BLA 

(t(6) = 0.562, p = 0.594), and PFA (t(7) 1.223, p = 0.261). 

 ChR2 rats that received laser alone in NAc, with vehicle but not DNQX microinjections, 

trended toward Fos changes in distant brain structures, but these did not reach statistical 

significance given the few subjects in this group (n=3).  That is, ChR2 rats that received NAc 

laser plus vehicle microinjections aVP (20 ± 59 % suppression below vehicle microinjections 
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alone, t(7) = 1.117, p = 0.301), pVP (138 ± 72 % enhancement, t(6) = 1.183, p = 0.282), aLH 

(132 ± 52 % enhancement, t(5) = 0.918, p = 0.401), pLH (147 ± 32 % enhancement, t(7) = 2.354, 

p = 0.051), VTA (106 ± 48% enhancement, t(4) = 0.207, p = 0.846), aBNST (132 ± 93 % 

enhancement, t(5) = 0.620, p = 0.563), pBNST (104 ± 38 % enhancement, t(6) = 0.119, p = 

0.909), MeA (145 ± 40 % enhancement, t(7) = 1.558, p = 0.163), CeA (132 ± 90 % 

enhancement, t(7) = 0.583, p = 0.578), NAcC (141 ± 51 % enhancement, t(5) = 0.782, p = 

0.470), aIF (102% enhancement, t(5) = 1.027, p = 0.351), pIF (8% suppression, t(5) = 1.034, p = 

0.349), BLA (144 ± 21 % enhancement, t(7) = 1.221, p = 0.262), PFA (103 ± 19 % 

enhancement, t(7) = 0.114, p = 0.912).  We note that other studies have reported distant increases 

in Fos in VP, LH, and VTA to be induced by ChR2 stimulation of NAc MSNs (Cole et al. 2018; 

Soares-Cunha et al. 2016). 

Behavioral effects: DNQX in shell increased food intake in standard lab environment 

Overall, DNQX microinjections in NAc shell increased food intake measured as grams 

consumed and similarly increased cumulative time spent eating (two-way ANOVA main effect 

of drug on food intake: F1,13 = 30.857, p < 0.001; two-way ANOVA main effect of drug on time 

spent eating: F1,13 = 28.665, p < 0.001; Figures 2.3 & 2.4).  Anatomical comparison of rostral 

versus caudal sites of DNQX microinjection in medial shell produced similar increases in food in 

the standard lab environment here, and the anatomical halves did not differ in magnitude of 

eating increase (ANOVA drug x laser conditions by anatomical placement on food intake: F1,12 = 

0.742, p = 0.406; on time spent eating: F1,12 = 0.185, p = 0.675; on eating bouts: F1,12 = 0.421, p 

= 0.529).   

Overall here, DNQX microinjections in NAc shell caused rats to increase food 

consumption >300% compared to vehicle microinjection baselines in the same rats (grams of 
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chow eaten 1.5g± 0.4g after vehicle; 4.8± 0.5 g after DNQX; t(13) = 5.464, p < 0.001, Cohen’s d 

= 1.46; Fig 2.3), a result consistent with many previous studies with DNQX sites mostly in 

rostral shell (Faure et al. 2010; Reynolds and Berridge 2008, 2003; Richard and Berridge 2011b; 

Richard et al. 2013b).  In behavioral duration of eating bouts, DNQX microinjections also 

increased bout duration by >250% relative to vehicle baselines (mean DNQX/no laser: 480.0 ± 

67.2 seconds in the hour-long session; vehicle/no laser: 181.6 ± 51.3 seconds; t(13) < 4.70, p = 

0.001, d = 1.26).  A bout was defined as continuous eating with no pause for at least 0.5 sec, 

separated from other bouts by pauses of >0.5sec.  DNQX similarly increased the number or 

frequency of emitted eating bouts by >250%, (t(13) = 3.02, p = 0.010, d = 0.81).   

Same-site optogenetic stimulation reversed DNQX increases in food intake 

Adding laser ChR2 excitation reversed the ability of DNQX microinjections in medial 

shell to cause increases in food intake, at least for rats with bilaterally aligned fiber and cannula 

tips at the same NAc site (i.e., both within 1 mm of microinjector tip), ( t(13) = 2.771, p = 0.016, 

d = 0.74; see Figure 2.3 and 2.7).  Rats with bilaterally aligned fiber/cannula tips consumed 5.5 ± 

0.6 grams after DNQX microinjection alone, but adding laser ChR2 stimulation to DNQX cut in 

half their intake to only 2.3± 0.7 grams (t(8) = 6.57, p < 0.001, d = 2.19).  This reduced level of 

intake after combining ChR2 laser illumination with DNQX no longer differed significantly from 

control baseline levels of the same rats after vehicle microinjection alone without laser (DNQX + 

laser = 2.3 grams; vehicle = 1.5 grams; t(8) = 1.05, p = 0.325).  Behaviorally, adding ChR2 laser-

stimulation to DNQX correspondingly reduced cumulative duration of time spent eating by 40% 

in rats with bilaterally aligned placement (t(8) = 2.77, p = 0.024, d = 0.92).  However, this laser-

induced reduction in time spent eating was only partial, as there was still a marginal trend 

towards more time eating after laser + DNQX combination (mean: 333.0 ± 90.5 seconds) than 
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after vehicle microinjection without laser (mean: 168.9 ± 52.5 seconds; t(8) = 2.23, p = 0.056). 

Similarly, adding ChR2 laser stimulation to DNQX sites did not significantly decrease the 

number of eating bouts (DNQX/no laser vs DNQX/laser on number of eating bouts: t(8) = 1.29, 

p = 0.234), though the number of eating bouts also no longer differed between DNQX + laser 

stimulation and control vehicle baselines or (t(8) = 0.646, p = 0.536).  

The 5 sec Laser ON, 15 sec OFF cycle was repeated throughout the 1-hr test, but we did 

not see differences in behaviors during the ON portions versus OFF portions of the cycle 

(normalized eating laser-ON: 528.7 ± 290.5 sec) vs laser-OFF (462.9 ± 221.4 sec; t(2) = 0.939, p 

= 0.447).  This suggests that behavioral suppression of DNQX is not tightly time-linked on the 

order of single seconds.  In other words, 5-sec laser ON bins appeared to exert a depressive 

effect on DNQX behaviors even during the 15 sec period of laser OFF, at least as long as the 

ON/OFF bins were continuously cycled. 

Separation >1mm between tips renders laser impotent to reverse DNQX eating increase    

A separate subgroup of 5 rats had bilaterally nonaligned sites, with fiber tips and 

cannulae tips spaced >1mm apart (no rats in this group had a unilaterally aligned site but 

contralaterally nonaligned site).  In bilaterally nonaligned rats, addition of ChR2 laser 

stimulation failed to reduce at all the DNQX-elevation of food intake (DNQX/laser: 4.3 ± 1.0 

grams; DNQX alone: 3.5 ± 0.9 grams; t(4) = 1.68, p = 0.168; Figure 2.7).  Similarly, in time 

spent eating, adding laser to DNQX-induced failed to impede the amount of eating behavior in 

bilaterally nonaligned rats (t(4) = 1.87, p = 0.135).  Thus, spatial separation of the optic fiber tip 

from microinjector cannula tip by a distance greater than 1 mm appeared to render optogenetic 

excitation ineffective, so that ChR2 laser was no longer able to counteract DNQX-induced 

increases in eating behavior or food intake.  This need for <1mm proximity suggests that laser 



 34 

must excite ChR2 neurons in a location that anatomically overlaps with that directly impacted by 

DNQX in order reverse behavioral effects of the NAc drug, a conclusion supported by Fos plume 

analyses above.  Consistent with the conclusion that NAc ChR2 excitation per se was not a 

strong suppressor of intake, ChR2 laser stimulation on its own (i.e., after vehicle microinjection) 

did not suppress chow consumption below baseline levels after vehicle alone here (bilaterally 

aligned group: t(8) = 0.607, p = 0.561; bilaterally nonaligned t(4) = 0.005, p = 0.996).     

We note that the homogenous appetitive pattern for NAc DNQX microinjections at all 

sites in medial shell was different from our previous studies, which found DNQX at caudal sites 

typically suppressed food intake in standard lab and instead generated active-coping fearful 

reactions, such as defensive burying (Reynolds and Berridge 2001, 2008; Richard and Berridge 

2011b, 2013).  Here, by contrast, few defensive behaviors were observed under any conditions, 

although we note that 11 of 14 rats here had sites in rostral shell, and only 3 rats had caudal sites.  

Thus, DNQX vs vehicle conditions did not differ (F1,12 = 0.352; p = 0.564), nor did rostral and 

caudal halves differ significantly (F1,12 = 0.058; p = 0.814).  For this reason, and because DNQX 

produced similar increases in food intake in the 3 rats with caudal sites as in the larger rostral 

group, subsequent analyses of laser and DNQX effects on food intake below combined all sites 

together.   

Single-test between-subject group local ChR2 laser reverses DNQX-stimulation of eating 

In the bilaterally-aligned ChR2 rats of group 2 (between-subjects comparison), each rat 

was behaviorally tested only in one of the four microinjection/laser conditions (balanced across 

different rats: vehicle-no laser; DNQX-no laser; DNQX-laser; vehicle-laser), and then 

immediately euthanized for Fos processing afterwards.  In this group, DNQX similarly elicited 

appetitive increases in intake when tested in a standard lab environment, and ChR2 laser 
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stimulation at the same site similarly reversed DNQX-induced increases in appetitive motivation 

(Figure 2.3).  Although a between-subjects comparison might be less sensitive than a within-

subjects comparison, most effects described above were reproduced here.  Rats with NAc DNQX 

microinjections alone ate more grams of food than rats that received vehicle microinjections 

alone (main effect of drug on intake: F1,5 = 66.517, p < 0.001).  Again as in the within-subjects 

comparison above, rats with DNQX-alone sites in either rostral or caudal halves of medial shell 

had higher food intakes than rats with corresponding vehicle-alone sites, and rostral and caudal 

halves did not differ in magnitude of intake enhancement (main effect of site: F1,5 = 3.755, p < 

0.110; site × valence interaction: F1,5 = 3.755, p < 0.110).  Similarly, no defensive behavior was 

elicited at any site.  For these reasons, rostral and caudal sites were again combined for 

subsequent statistical analyses of laser modulating effects on feeding behavior.   

Combined, rats that received DNQX microinjections without laser ate >700% more chow 

than rats that received vehicle microinjections without laser (DNQX: 7.4 ± 1.5 g; Vehicle: 1.0 ± 

0.8 g, p = 0.028, d = 3.14).  DNQX rats without laser similarly ate more than rats that received 

vehicle microinjections with laser (0.3 ± 0.2 g, p = 0.007, d = 4.27).   

Adding concurrent laser ChR2 stimulation during test reduced the magnitude of food 

intake elicited by DNQX microinjections back to vehicle baseline levels, so that intake did not 

differ from that of control rats that received vehicle (without laser; 1.0 ± 0.8g. p > 0.05).  Thus, 

intake of ChR2 rats with DNQX plus simultaneous laser illumination was roughly only 10% of 

intake levels of ChR2 rats that received DNQX alone (without laser) (ChR2 DNQX alone = 7.4 

± 1.5g; ChR2 DNQX + Laser = 0.8 ± 0.4g; Main effect of drug = F1,8 = 9.448, p = 0.015; Main 

effect of laser = F1,8 = 10.377, p = 0.012; drug × laser interaction = F1,8 = 6.615, p = 0.033).  

ChR2 rats that received vehicle microinjections plus laser illumination ate the lowest amount of 
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all (0.3 ± 0.2g), consistent with a main suppressive effect of laser, but this did not differ 

statistically from the ∼1 g amounts eaten by vehicle eYFP control rats.   

Among rats with bilaterally aligned optic fiber tips and DNQX microinjection tips (n=19 

of 24), those that concurrently received additional ChR2 laser excitation combined with DNQX 

ate far less chow (0.8 ± 0.4 g) than those that received DNQX microinjections alone without 

laser (7.4 ± 1.5 g; p = 0.012, d = 3.54).  The intake level of the rats with combined aligned ChR2 

laser stimulation plus DNQX microinjection did not differ from control baseline intake levels of 

rats that received vehicle microinjections alone without laser (p > 0.05).  Similarly, in terms of 

behavioral time spent eating, ChR2 rats that received DNQX microinjections alone spent 896 ± 

282 sec in cumulative duration of eating, whereas eating duration of ChR2 rats that had laser 

illumination added to DNQX microinjection was roughly half that amount, 374 ± 299 sec, 

though these were not statistically different (t(6) = 1.27, p = 0.250).  By comparison, ChR2 rats 

that received vehicle microinjections alone spent only 154 ± 117 sec engaging in eating, and 

ChR2 rats that received laser illumination added to vehicle microinjections trended toward 

reducing further to only 33 ± 30 sec (t(3) = 1.258, p = 0.298).   

One ChR2 rat that received DNQX with laser illumination had only a unilateral NAc 

cannula aligned with fiber optic tip, whereas the contralateral cannula missed the NAc shell 

entirely and was in ventral pallidum (Table 2.3).  This DNQX + laser rat with unilateral NAc 

shell cannula and ChR2 virus displayed nearly equivalent levels of laser-induced suppression 

DNQX-elicited feeding relative to rats that received DNQX with laser excitation with bilateral 

ChR2 expression (78% versus 94 ± 5%, p = 0.221).  All other rats in the between-subject group 

had bilaterally aligned fiber and cannula tips (i.e., <1.0 mm separation between optic fiber tip 

and microinjector tip).  
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Control rats with optically-inactive eYFP virus that received DNQX microinjections 

similarly ate more than rats that received vehicle microinjections alone (DNQX: 5.5 ± 1.6 g; 

vehicle: 0.7 ± 0.3 g; Main effect of drug: F1,8 = 9.582, p = 0.015).  However, laser illumination 

did not reduce the DNQX-induced increases in intake in eYFP rats, which remained comparable 

to intake of eYFP rats that received DNQX alone (F1,8 = 0.113, p = 0.745).  Similarly, laser 

illumination of the NAc shell did not impact intake in eYFP rats (no laser: 3.1 ± 1.2 g, laser: 2.2 

± 1.6 g; Main effect of laser: F1,8 = 0 .290, p = 0.605).   

Stressful environment – Within subject group: ChR2 laser reverses caudal DNQX-induced ‘fear’ 

as well as rostral ‘desire’ 

Why caudal DNQX sites produced more appetitive eating and less defensive 

treading/burying above than in our earlier studies remains unknown, but suggests a more positive 

bias in affective valence in our current rats.  As potential contributing factors, we note that rats in 

the present study had a history of greater environmental enrichment in rearing and housing 

conditions than rats in previous studies in our lab roughly (e.g., more toys, climbing features and 

related environmental enrichment are now provided in home cages than was typical in earlier 

years), and also were group housed throughout their lives, ensuring social interactions.  Possibly 

having enriched and social environments encourages a more positive valence bias in rats.  

Alternatively, genetic drift across generations may have altered affective dispositions, or the 

change could be due to other unknown causes.   

In any case, the relatively positive affective bias here prompted us to repeat the within-

subject experiment here, but using Long-Evans rats (n = 11), which may be more emotionally 

reactive than Sprague-Dawley rats, and imposing a moderately stressful environment.  A 

stressfully louder and brighter environment has been found to facilitate the induction of 
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negatively-valenced fearful behaviors by DNQX microinjections in NAc medial shell (Reynolds 

and Berridge, 2008; Richard and Berridge, 2011).  Inducing fearful defensive treading-burying, a 

natural rodent anti-predator reaction, by NAc DNQX microinjections in rats tested in a 

stressfully loud environment therefore allowed us to assess if aligned ChR2 laser illumination in 

medial shell reverses defensive motivation, just as it reversed appetitive motivation in the 

experiments above.   

Results showed that, as expected in the stressfully loud environment, NAc DNQX 

microinjections without laser at caudal sites in medial shell (defined as < +1.2mm anterior to 

bregma; n = 6), elicited negatively-valenced defensive treading-burying behavior (two-way 

repeated measures ANOVA valence x site interaction, F1,9 = 5.359, p = 0.046; Figures 2.5 & 

2.6).  Defensive treading-burying consisted of rhythmic forward-and backward thrusts of the 

forepaws (1-3 cm extension) with paw palm oriented forward.  The treading-burying movements 

served to kick granules of corncob bedding forward in front of the rat, which if sufficiently 

persistent and appropriately directed, can form an elevated mound as barrier between the rat and 

a perceived threat, and sometimes even bury a threatening object (Reynolds and Berridge, 2001; 

Treit et al., 1981).  

Lack of sex differences in DNQX+laser effects   

Overall, females with caudal DNQX placements tended to emit more defensive 

treading/burying (mean: 10.7 ± 3.9 sec) than males (mean: 3.5 ± 3.9 sec), although this sex 

difference was not significant given the small sample size (F1,4 = 1.665, p = 0.226).  However, 

females and males showed equal percentage levels of laser-induced ChR2 reduction of treading 

in the DNQX+Laser condition (Females: 49% reduction from DNQX-alone; mean: 12.4 ± 12.2 

sec; Males: 62% reduction from DNQX-alone: 4.3 ± 2.3) (F1,4 = 0.736, p = 0.439).   
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For rats with rostral NAc sites, males tended to eat more at baseline and after DNQX 

(baseline: 2.4 ± 0.4 g; DNQX: 5.8 ± 1.2 g) than females (baseline: 1.8 ± 0.5; DNQX; 3.9 ± 0.7 

g), though this was not significant for the current sample (F1,3 = 4.97, p = 0.112).  However, 

females and males showed equal percentage levels of laser-induced ChR2 reduction of food 

intake from the DNQX-alone condition (Males: 71 % reduction from DNQX-alone; mean: 1.7 ± 

1.0 g; Females: 87% reduction from DNQX-alone; 0.5 ± 0.3 g).  For these reasons, males and 

females were combined for subsequent statistical analyses of the effects of DNQX on appetitive 

vs defensive behavior, and for the modulating effects of adding laser to DNQX.   

Anatomical segregation of DNQX motivational valence: rostral desire vs caudal fear 

Here, the 3 rats with unilateral tips <0.5mm apart and contralateral tips between 0.5 - 

0.8mm apart showed levels of laser-induced suppressions of eating that were similar to 

suppression levels of rats with bilateral <0.5 mm placements (unilateral = 93.8% reduction; 

bilateral = 72.2 ± 11.1% reduction).  Unilaterally <0.5mm aligned rats with sites in caudal shell 

(n=2) also showed similar levels of laser-induced suppressions of defensive behavior as 

bilaterally aligned rats (unilateral <0.5mm = 56.4 ± 13.6%; bilateral < 0.5mm = 65.0 ± 20.4%). 

Therefore, unilaterally-aligned and bilaterally-aligned groups were combined together in 

subsequent statistical analyses.    

Defensive treading-burying behavior was elicited by DNQX alone in the loud 

environment only at sites in the caudal half of NAc shell, and never at rostral sites (Kruskal-

Wallis Test: Chi-Square: 15.225, p = 0.002; Figures 2.5 & 2.6).  Defensive treading-burying was 

oriented typically (67%) to throw cob bedding forward specifically towards the front of the 

transparent chamber facing the open room, which was relatively bright and where the human 

experimenter occasionally moved.  DNQX alone at caudal sites increased ‘fearful’ treading-
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burying behavior >750 % over vehicle/no laser control levels in the same rats (DNQX 

cumulative time spent treading: 17.8 ± 6.3 seconds per session; vehicle: 1.3 ± 0.9 seconds; 

Wilcoxon Z = 2.201, p = 0.028, r = 0.90).  Similarly, DNQX at caudal sites caused a >500% 

increase in the number of discrete bouts of defensive treading-burying over vehicle control levels 

of the same rats (bout = continuous treading-burying with no pause > 0.5 sec; DNQX bout 

number: 7.0 ± 1.0; vehicle: 1.3 ± 0.9; t(10) = 3.96, p = 0.011, d = 1.62).  The same caudal DNQX 

microinjections without laser did not increase food intake in the stressful environment (t(5) = 

1.97, p = 0.106).   

Conversely, at rostral sites in medial shell (> +1.2mm bregma; n = 5), DNQX 

microinjections alone elicited 400% increases in food intake above vehicle baseline levels of the 

same rats, similar to groups above (DNQX: 5.0 ± 1.8 grams; vehicle/no laser: 1.3 ± 0.9 grams; 

t(4) = 3.83, p = 0.019, d = 1.71), and >300% increases in time spent eating (DNQX: 635.8 ± 

125.0 seconds; vehicle: 191.6 ± 73.3 seconds; t(4) = 3.004, p = 0.040, d = 1.34).  Anatomically, 

all appetitive eating increases were produced only by sites in the rostral half of medial shell in 

this stressfully loud environment (t(9) = 2.642, p = 0.027, d = 1.60).  We note that one ChR2 rat 

had a unilateral microinjection site in rostral shell, with the contralateral cannula in the bed 

nucleus of stria terminalis.  Its unilateral DNQX NAc microinjection still caused an >800% 

increase in food intake; however, because it was only a unilateral NAc site, this rat was 

considered separately in the analysis of laser modulation effects below. 

Simultaneous laser ChR2 stimulation reversed DNQX-induced caudal fear and rostral desire    

In ChR2 rats with aligned fiber-cannula tips at caudal sites in medial shell, adding laser 

illumination reduced DNQX-elicited the amount of defensive behavior to about 50% compared 

to levels of the same rats after DNQX-alone (DNQX+laser: 9.0 ± 5.9 seconds cumulative 
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duration; DNQX alone: 17.8 ± 6.3 seconds; Wilcoxon, Z = 2.201, p = 0.028, r = 0.90; caudal vs 

rostral sites: Kruskal-Wallis Test: Chi-Square: 14.425, p = 0.002).  Levels of defensive behavior 

after combined laser + DNQX microinjection at caudal sites no longer statistically differed from 

control baseline levels measured after vehicle microinjections in the same rats, although still 

trending to remain nominally higher, suggesting at least a partial reversal that was very 

substantial (laser + DNQX mean: 9.0 ± 5.9; vehicle mean: 1.3 ± 0.9; Wilcoxon, Z = 1.214, p = 

0.225).  Laser illumination here appeared primarily to reduce the average length of bouts of 

defensive treading-burying (DNQX/no laser mean: 2.3 ± 0.4 seconds; DNQX/laser mean: 1.0 ± 

0.4 seconds; Wilcoxon, Z = 2.201, p = 0.028, r = 0.90), as the number of defensive bouts emitted 

during the session was not changed (DNQX/no laser: 7.0 ± 1.3; DNQX/laser: 5.2 ± 2.8; t(5) = 

0.921, p = 0.399).  In this sense, ChR2 excitation may have reduced the maintenance of fear-

motivated behavior promoted by caudal DNQX microinjections, more than its initiation. 

Comparing the 5 sec Laser ON bins vs 15 sec OFF bins as the cycle was repeated, similar levels 

of defensive treading/burying behavior were seen in both ON and OFF portions of the cycle 

(normalized treading/burying laser-ON: 12.0 ± 7.1 sec; laser-OFF: 9.5 ± 5.9; t(3) = 1.608, p = 

0.20).  This again suggests that 5-sec laser ON bins exerted a depressive effect on DNQX 

behaviors even during the 15 sec period of laser OFF while ON/OFF bins were continuously 

cycled. 

After vehicle microinjections in ChR2 rats, defensive behavior was at near-zero levels 

even in the loud environment, and adding laser had no further effect (Vehicle/no laser: 1.4 ± 1.0; 

Vehicle/laser: 0.2 ± 0.2; Wilcoxon, Z = 1.069, p = 0.285).   

One caudal ChR2 rat had bilateral NAc sites of caudal microinjection/fiber placement, 

but the tips were aligned within <1mm only on one unilateral side, whereas on the contralateral 
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side spacing was further apart.  However, laser illumination in this unilaterally-aligned rat still 

reduced DNQX-elicited defensive treading behavior (from DNQX/no laser condition = 12 

seconds treading; Figure 2.7), suggesting again that a unilateral ChR2 neuronal depolarization 

which overlaps with its DNQX-induced Fos plume can successfully reduce DNQX generation of 

motivated behavior even when the contralateral DNQX microinjection in NAc goes locally 

unopposed.      

In ChR2 rats with rostral sites, adding simultaneous aligned laser illumination in the 

stressful environment again prevented DNQX from increasing food intake (drug x laser 

interaction, F1,4 = 8.696, p = 0.042; Figures 2.5 & 2.6).  Laser illumination to DNQX markedly 

decreased food consumption below DNQX/no laser levels of the same rats (DNQX/laser: 1.2 ± 

1.4 gram; DNQX/no laser: 5.2 ± 1.8 grams; t(4) = 4.634, p = 0.010, d = 2.07), and similarly 

reduced DNQX-induced time spent eating (DNQX/laser 187.8 ± 182.1 seconds; DNQX/no laser 

condition: 635.8 ± 125.0; t(4) = 3.11, p = 0.036, d = 1.39).  There were no differences in eating 

suppression between laser-ON bins (215.0 ± 20.1 sec) and laser-OFF bins (mean: 221.3 ± 24.1 

sec; t(2) = 1.462, p = 0.281) within the laser ON/OFF cycle during the DNQX/Laser test.  Laser 

by itself in absence of DNQX did not alter eating in this group, as there was no difference in 

food intake between vehicle/laser and vehicle alone conditions for either rostral (vehicle/laser: 

1.2 ± 0.3 g; vehicle alone: 1.3 ± 0.4 g; t(4) = 0.212, p = 0.843) or caudal sites (vehicle/laser: 2.0 

± 0.5 g; vehicle alone : 1.4 ± 0.6 g; t(5) = 1.027, p = 0.352).     

For the ChR2 rat with unilateral cannula/fiber sites in rostral shell but contralateral sites 

in BNST, adding laser illumination still reversed the increase in eating otherwise produced by 

DNQX (DNQX alone: 3.5g; Combined laser + DNQX = 1.5 g; Figure 2.7).  Similarly, another 

rostral rat with unilaterally aligned tips but contralaterally nonaligned tips (both sides in medial 
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shell), still showed laser reversal of DNQX-induction of eating.  These observations further 

support the suggestion that overlapping alignment of ChR2 excitation with DNQX 

microinjection on one side of NAc is sufficient to reverse effects of DNQX, even when the 

contralateral DNQX microinjection site is nonaligned (Table 2.2).  That suggests cross-

hemisphere interaction could be involved in optogenetic modulation of DNQX-elicited 

motivations, although we note that lateralization also exists for NAc inhibition effects in 

generating motivated behavior (Stratford and Wirtshafter, 2012).  
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Discussion 

Our findings demonstrate that optogenetic ChR2 excitation at same sites of DNQX 

microinjections in NAc medial shell can attenuate neurobiological recruitment of limbic 

circuitry, and reduce or reverse generation of intense appetitive or defensive behaviors otherwise 

elicited by those microinjections (Echo et al. 2001; Reynolds and Berridge 2008, 2003; Richard 

and Berridge 2011b, 2013; Stratford and Kelley 1997).   

Optogenetic reversals of DNQX-elicited motivation appeared to require that ChR2-laser 

excitation be at the same local NAc site as the DNQX microinjection.  That is, reversals occurred 

only if the optic fiber tip was within 0.5 mm (or at least 0.8 mm) of the DNQX microinjector tip, 

otherwise the laser became less effective.  This suggests that optogenetic depolarization does not 

simply produce an opposing motivational signal in NAc shell circuitry to counteract DNQX 

effects.  Rather, ChR2 excitation of neurons presumably reverses the relative neuronal 

inhibitions caused locally by blockade of glutamate AMPA signals in the same NAc site.    

Support for NAc-inhibition hypothesis of motivation generation   

To our knowledge, these results provide the first direct evidence for the hypothesis that 

relative inhibition of localized NAc shell neurons is necessary for DNQX microinjections to 

induce appetitive or ‘fearful’ motivations.  Similar NAc neuronal inhibitions have been 

suggested to mediate appetitive and defensive behaviors elicited microinjections of a GABAA 

agonist, such as muscimol in NAc shell (Stratford and Kelley, 1997; Stratford and Wirtshafter, 

2012; Covelo et al., 2014; (Faure et al. 2010; Reynolds and Berridge 2001, 2002, 2008; Richard 

and Berridge 2011b; Richard et al. 2013b).  NAc neuronal inhibitions may release downstream 

VP, LH and VTA targets into relative excitation, by decreasing their tonic suppression by NAc 

GABA inputs (Baldo et al. 2004; Bromberg-Martin and Hikosaka 2009; Ljungberg et al. 1991; 
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Smith et al. 2011; Stratford 2005; Tindell et al. 2009).  Target excitation was supported here by 

observing Fos increases in VP, LH, VTA, and other limbic structures after NAc DNQX 

microinjections that caused intense motivated behaviors.  Those distant neurobiological 

recruitments were also impeded here by the same NAc ChR2 excitations that produced 

behavioral reversals, supporting the hypothesis that released limbic target activation mediated the 

generation of motivated behaviors.  

Conceivably, a role for NAc shell inhibition in generating motivations could help explain 

why optogenetic excitation of NAc D1-MSNs or BLA projections to NAc is reported to stop 

ingestive motivation (O’Connor et al. 2015).  Here, however, we did not detect a significant 

reduction in spontaneous food intake from NAc laser ChR2 stimulation in rats with vehicle 

microinjections, although there was a trend toward reduced consumption.  Still, our ChR2 

depolarization was effective for blocking the intense eating otherwise produced by DNQX 

microinjections.   

Our results extend the NAc inhibition hypothesis to include NAc generation of negative-

valenced ‘fear’ motivation, as well as positive-valenced appetitive motivation.  Defensive 

treading is an active-coping type of antipredator reaction to perceived threats (Owings and Coss 

1977; Treit et al. 1981).  Defensive treading was reversed here by laser-induced ChR2 excitation 

at caudal NAc sites in a stressfully loud environment.  Thus, the hypothesis that NAc inhibition 

is required for DNQX-generation applies to motivated behaviors of both positive and negative 

valence.  Given that ChR2 effects were identified here with hSyn promoter that infected all local 

neurons, it will be of interest for future studies to target specific subtypes of NAc neurons (e.g., 

D1 dopamine receptor-expressing MSNs; D2 receptor-expressing MSNs; etc.) to parse their 

relative contributions to these effects. 
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Alternative pharmacological DNQX effects insufficient to cause motivations   

Besides relative inhibition of NAc neurons, other plausible hypotheses could have 

explained how DNQX microinjections in NAc shell generate motivations.  For example, 

pharmacological effects of AMPA blockade on neuronal function, which occur in parallel with 

relative inhibition, could have been more important than neuronal inhibition per se.  Such 

parallel effects might include post-synaptic second messenger signals and gene transcription 

changes in MSNs.  Alternatively, though DNQX is generally viewed as an AMPA post-synaptic 

receptor antagonist, it has been also reported to excite postsynaptic neurons (Lee et al. 2010; 

Menuz et al. 2007).  Additionally, DNQX can act as a competitive antagonist for kainate 

receptors on presynaptic axon terminals, which might further alter signals in NAc (Tarazi et al. 

1998a, 1998b).  Such effects could have been a primary mechanism for DNQX generation of 

motivation, but might not have been effectively opposed by laser ChR2 excitation of local 

neurons.  However, our finding that ChR2 laser depolarization of local NAc neurons successfully 

reversed DNQX-induction of appetitive and defensive motivations suggests that local neural 

inhibition is indeed required, and that other alternative neurobiological effects are not sufficient 

in absence of NAc neuronal inhibition.     

Anatomical valence gradient and environmental switching of site valence   

In standard laboratory conditions here, DNQX microinjections at both rostral and caudal 

shell sites generated increases in appetitive eating behavior.  However, a test environment with 

stressfully loud noise (rock music) caused DNQX at caudal shell sites instead to generate 

negatively-valenced ‘fearful’ motivation (i.e., defensive treading).  The difference between 

anatomical sites replicates our previous reports of a rostrocaudal valence gradient of desire vs 

dread in NAc medial shell for DNQX effects (Reynolds and Berridge, 2001, 2002, 2008; Richard 
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and Berridge, 2011; Richard et al., Berridge, 2013).  That anatomical difference also fits related 

reports of different affective functions or neurobiological features in rostral/caudal halves of 

NAc medial shell (Reed et al. 2018; Thompson and Swanson 2010; Trouche et al. 2019; Zahm et 

al. 2013). 

Similarly, the ability of changes in environment ambience to switch between appetitive 

versus defensive effects replicates our previous reports that switching from standard lab to a 

stressfully noisy-bright environment switches the valence of DNQX-induced motivation at NAc 

sites to negatively ‘fearful’ (Reynolds and Berridge, 2008; Richard and Berridge, 2011).  

However, results here differed from our previous DNQX reports as our current cohort of rats 

appeared more strongly biased overall towards positive valence.  Specifically, DNQX 

microinjections elicited appetitive food intake even at caudal sites in the standard lab 

environment, whereas our previous studies found that caudal DNQX evoked mostly defensive 

behavior.  Further, in the stressfully loud environment, only caudal sites generated defensive 

treading behavior here, whereas in previous studies many rostral shell sites additionally switched 

to defensive valence.  As caveat, we note that only louder sound was added to our stressful 

environment here, whereas previous studies of stress-induced switching also included brighter 

lights.  We did not compare combinations of light and sound here, but it is possible that adding 

brighter light or other stressful stimuli might have expanded the fear-generating zone further into 

the rostral medial shell, as in previous studies (Reynolds and Berridge, 2008; Richard and 

Berridge, 2011).    

Still, the lack of defensive behavior at caudal sites in standard lab suggests a difference in 

affective reactivity between current rats versus previous studies.  Although the reason for the 

difference remains unclear, several explanations seem possible.  For example, our current cohort 
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was raised in a more enriched environment than previous cohorts.  Current housing conditions 

include additional toys in home cages and always being housed in social groups, which might 

conceivably decrease chronic stress levels (Manouze et al. 2019) and reduce fearful reactivity  

(Clark and Galef 1980).  Also, behavioral test chambers here had taller walls to accommodate 

optogenetic cables, which might be perceived as more sheltering and less anxiogenic.  Finally, 

genetic drift in rat colonies may have altered emotional reactivity over several years.  To know 

which factors are actually responsible for modulating the affective valence of NAc DNQX 

effects would require further investigation.   

Contrary role of NAc depolarizations in motivation   

Despite ample evidence for the NAc inhibition hypothesis for motivation described 

above, we note there is also evidence to support a paradoxically opposite hypothesis: that 

neuronal excitations in the NAc shell can elicit appetitive motivation.  For example, decades of 

electrode self-stimulation studies suggested that neuronal excitations in NAc are reinforcing 

(Mogenson et al. 1979; Phillips 1984; Van Ree and Otte 1980; Rolls 1971).  Optogenetic studies 

similarly show that NAc MSN excitation can generate intense incentive motivation, reflected in 

either consummatory intake or appetitive instrumental measures (Koo et al. 2014; Lobo et al. 

2010).  How can NAc excitation effects be reconciled with NAc inhibition effects in generating 

appetitive and defensive motivations?   

There are several possibilities.  For example, NAc excitations may excite lateral 

inhibition, via inhibitory GABAergic interneurons that produce local inhibitions of other NAc 

neurons.  Indeed, ChR2 excitation of MSNs does inhibit at least some local NAc neurons 

(Kravitz and Kreitzer, 2011).  Alternatively, NAc neurons might have multiple excitatory and 

inhibitory modes for motivational functions, through bimodal “up” versus “down” states that 
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gate cortical and mesolimbic inputs (O’Donnell and Grace 1995; O’Donnell et al. 1999).  

Finally, excitation and inhibition might recruit different NAc neuronal ensembles, defined as 

subsets with coordinated firing patterns, which have distinct downstream consequences 

(O’Donnell and Grace 1995; O’Donnell et al. 1999; Pennartz et al. 1994). 

Conclusion 

Our results indicate that local NAc neuronal inhibition is a necessary mechanism for 

DNQX microinjections in medial shell to generate either appetitive or defensive motivation.  

Together, these findings support the hypothesis that inhibition of NAc medial shell neurons is an 

important mechanism for generating intense motivation states of both positive and negative 

valence. 
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Figures 

 
 

2.1  Representative fiber-cannula alignment, virus, and Fos expression in NAc shell 
(Top) Sagittal schematic of simultaneous DNQX microinjection and optogenetic stimulation procedure.  
(Middle Left) Example of alignment (<1mm apart) between tips of optic fiber and microinjection cannula 
(injector cannula protrudes below guide cannula).  (Middle Right) Coronal slice of NAc medial shell 
showing spread of virus expression (green), Fos expression (red), and fiber and cannula placements.  
(Bottom) Examples of mapped Fos plumes, comparing DNQX microinjection alone, Laser + vehicle, and 
DNQX + Laser conditions.   
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2.2  Same-site laser reverses distant Fos activation induced by NAc DNQX microinjections 
 (Top) Sagittal brain maps show recruitment of limbic Fos elevations by DNQX microinjections in NAc 
shell in comparison to vehicle (left; red/orange).  ChR2 laser induced reversals of DNQX-induced Fos is 
shown as suppressions from DNQX-alone levels (right; blue).  (Middle) Bar graphs depict the 
quantitative percent increase of DNQX-induced Fos elevations in limbic structures over vehicle control 
levels; dashed line at 100% = vehicle levels (red/orange bars).  Center uncolored bars show Laser + 
DNQX levels compared to vehicle levels.  Bottom bars (blue) show suppression of Laser + DNQX levels 
compared to DNQX-alone levels.  *p<0.05, **p<0.01, ***p<0.001  
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2.3  Aligned ChR2 laser reverses DNQX increases in food intake 
DNQX microinjections alone without laser caused increases in food intake for both the within-subjects 
group 1 (top) and between-subjects group 2 (bottom) for NAc shell sites in standard lab conditions.  
Aligned laser illumination in ChR2 rats (<1mm apart) reduced DNQX-levels of intake by approximately 
50%, reducing intake to baseline vehicle levels (top).  Laser illumination had no effect on vehicle or 
DNQX intake in control rats with inactive eYFP virus (bottom right).  Grey bars alone=no laser vehicle, 
blue bars alone = laser alone, grey bars with stripes=DNQX alone, and blue bars with 
stripes=DNQX+laser.  *p<.05, ***p<0.001  



 53 

 
 

2.4  NAc maps of increases induced by DNQX microinjections and reversals by laser 
(Top) Sagittal placements show % changes in food intake change from vehicle baseline induced by 
DNQX microinjections alone (green) in standard lab conditions for within-subjects group 1.  (Bottom) 
Percentage suppressions of intake from DNQX-levels induced by adding aligned laser illumination (blue). 
  



 54 

 
 

2.5  ChR2 laser reverses caudal 'fear' as well as rostral 'desire' from DNQX microinjections 
At caudal sites in NAc shell DNQX microinjections alone elicited defensive treading-burying behavior 
when ChR2 rats were tested in a stressfully loud environment (top left).  Defensive behavior was typically 
directed toward the transparent front of the cage and view of the room beyond (top right).  Adding aligned 
laser illumination substantially reversed DNQX ability to elicit defensive behavior at caudal sites.  At 
rostral sites, DNQX elicited increases in food intake in the loud environment (bottom left).  Laser 
illumination again reversed appetitive intake elicited by DNQX at rostral sites.  *p<0.05, **p<0.01  
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2.6  NAc maps of DNQX-induced caudal 'fear' and rostral 'desire' and laser reversals 
(Top) Sagittal placements show % increases in defensive behavior (orange) and in appetitive behavior 
(green) induced at sites in NAc shell by DNQX microinjections alone in the loud environment.  (Bottom) 
Placements show suppressions from DNQX-levels (blue) of motivated behavior induced by adding 
aligned laser illumination in the same ChR2 rats.  
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2.7  Alignment of fiber and cannula tips required to reverse DNQX-elicited motivation 
Laser illumination reversed DNQX-elicited motivations in ChR2 rats with closely aligned tips of optic 
fiber and microinjection cannula (<1mm apart in NAc shell, bilaterally aligned).  By contrast, laser was 
ineffective at reducing motivated behavior if fiber/cannula tips were spaced more than 1 mm apart 
bilaterally.  Appetitive intake of within-subjects group 1 in standard lab shown at top.  Rostral appetitive 
behavior and caudal defensive behavior of within-subjects group 3 tested in stressfully loud environment 
shown at bottom.  Having even one aligned fiber-cannula tip pairing appeared sufficient to reverse DNQX 
effects in the stressful environment for both rostral eating (bottom left) and caudal fear behaviors (bottom 
right). 
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Tables 

 
Limbic brain structures in which distant Fos recruitment was assessed 
BLA  MeA 
BNST  NAcC 
CeA PFA PFA 
IF VP 
LH VTA 

2.1  Structures of interest for distributed Fos analysis 
Fos was separately quantified in both anterior and posterior subregions of infralimbic cortex, and in bed 
nucleus of stria terminalis, lateral hypothalamus, and ventral pallidum. 
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2.2  Unilateral vs bilateral alignment of fiber/cannula tips for within-subjects groups 
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2.3 Between-subjects alignment of fiber/cannula tips for ChR2 animals only 
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CHAPTER III. Corticotropin Releasing Factor Systems in Nucleus Accumbens, Amygdala, and 
Bed Nucleus of Stria Terminalis: Incentive Motivation Versus Aversive Roles.  

Introduction  

Corticotropin releasing factor (CRF) is triggered by diverse aversive stressors to initiate 

behavioral and physiological stress responses (Bale and Vale 2003; Dallman et al. 2003; Dunn 

and Berridge 1990; Hupalo et al. 2019; Koob and Bloom 1985; McEwen and Akil 2020; Merali 

et al. 1998, 2004; Schulkin 2017; Stewart 2000; Vale et al. 1981).  CRF-expressing neurons are 

concentrated in the hypothalamic paraventricular nucleus (PVN), but also occur in the nucleus 

accumbens (NAc), and in extended amygdala components such as the central amygdala (CeA) 

and bed nucleus of the stria terminalis (BNST)(Dabrowska et al. 2016; Giardino et al. 2018; 

Gray and Magnuson 1992; Itoga et al. 2019; Kim et al. 2017; Lemos and Alvarez 2020; Lemos 

et al. 2012, 2019; Makino et al. 1994a, 1994b; Peciña et al. 2006; Pomrenze et al. 2015; Swanson 

and Simmons 1989).   

Stress can trigger relapse in addiction or eating disorders (Grilo et al. 2012; Koob and 

Schulkin 2019; Mantsch et al. 2016).  Traditional views suggest that CRF-containing systems 

increase reward consumption primarily by mediating the negative-valence of stress, creating 

unpleasant states that promote drug relapse or eating for hedonic self-medication (Koob and 

Schulkin 2019; Koob 2013; Roberto et al. 2017).  In the opponent-process theory of addiction 
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(Koob and Le Moal 1997; Solomon and Corbit 1978; Solomon 1980) taking addictive drugs 

activates a pleasant a-process, which is posited to trigger underlying longer-lasting aversive b-

processes to create an unpleasant opponent B-state of withdrawal.  In particular, opponent-

process neuroscience models of addiction have posited that activation of CeA and BNST CRF-

containing systems generates unpleasant withdrawal symptoms, again leading to relapse via 

hedonic self-medication (de Guglielmo et al. 2019; Funk et al. 2006; Koob and Le Moal 1997; 

Koob and Schulkin 2019; Koob 2013; Roberto et al. 2017; Zorrilla et al. 2014).   

However, CRF systems may also activate to changing events that mobilize biobehavioral 

responses, whether or not stressful (Merali et al. 1998, 2004; Schulkin 2017).  For example, 

CRF-containing neurons can be activated by positive reward stimuli (Kim et al. 2017; Lemos 

and Alvarez 2020; Lemos et al. 2012; Lim et al. 2007; Merali et al. 1998, 2004; Peciña et al. 

2006).  Some CRF systems may have positively-valenced roles in promoting appetitive incentive 

motivation without inducing negative distress or withdrawal.  For instance, NAc CRF 

microinjections in rats increase cue-triggered ‘wanting’ for sucrose during Pavlovian 

Instrumental Transfer testing, comparable to dopamine-stimulating amphetamine microinjections 

(Peciña et al. 2006).  NAc CRF microinjections can also establish positive conditioned place-

preference and increase NAc dopamine release in mice, only becoming aversive roles following 

severe stress (Lemos et al. 2012).  Additionally, mice self-stimulate for optogenetic excitation of 

CeA CRF-expressing neurons, suggesting incentive motivation (Kim et al. 2017).  CRF in rats 

does mediate stress-induced reinstatement for addictive drugs, but does not require either 

withdrawal or corticosterone (Erb et al. 2006; Shaham and Stewart 1995; Shaham et al. 1997).  

Overall, CRF seems not simply tied to an aversive affective dimension, but instead has a larger 



 62 

regulatory role in affective valence and organization of behaviors (Refojo et al. 2011; Vranjkovic 

et al. 2018; Wang et al. 2005). 

Here we examined potential positively-valenced versus negatively-valenced roles of 

CRF-expressing neurons in either NAc, CeA, or BNST, using BAC transgenic Crh-Cre+ rats 

(Pomrenze et al. 2015) to optogenetically stimulate CRF-containing neurons in each structure.  

During two-choice incentive motivation tests, rats could choose between earning sucrose paired 

with laser stimulations and another sucrose option without laser (Robinson et al. 2014).  In 

progressive ratio breakpoint tests, laser stimulation effects on incentive motivation magnitude for 

sucrose was assessed.  Finally, laser self-stimulation tests assessed whether CRF-containing 

neuronal stimulation was rewarding on its own.  We found that NAc and CeA CRF-containing 

neuron stimulation enhanced sucrose incentive motivation, was reinforcing, and recruited 

activation of mesolimbic circuitry.  Conversely, BNST CRF-containing neuronal stimulation was 

avoided, suppressed sucrose pursuit, and recruited pain-related circuitry. 
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Materials and methods 

Animals 

Female (n=37) and male (n=34) Crh-Cre+ Wistar rats (>250g at surgery) (Pomrenze et 

al. 2015), were bred and phenotyped in-house.  Same-sex groups were housed on a 12-hour 

reverse light-cycle (~21°C) with ad libitum food (Purina) and water.  All experimental 

procedures were approved by the University of Michigan Institutional Animal Care & Use 

Committee in accordance with NIH animal care and use guidelines. 

Surgery 

Surgeries followed previous methods (see Appendix A) (Baumgartner et al. 2020; 

Robinson et al. 2014; Warlow et al. 2020).  Bilateral 1.0µl infusions in NAc, CeA, or BNST 

contained either active AAV-DIO-ChR2-eYFP virus (n=33) or optically-inactive control virus 

AAV-DIO-eYFP (n=19) to infect only neurons containing Cre-recombinase.  We note that the 

Crh-Cre BAC rats used here express Cre primarily in CRF neurons that are also GABAergic 

(Pomrenze et al. 2015).  This makes them suitable for our study, given that CeA, BNST, and 

NAc CRF-expressing neurons predominantly co-express GABA.  A separate group received 

halorhodopsin AAV-DIO-NpHR-eYFP (n=19) virus for CRF-containing neuronal inhibition.  

NAc shell, lateral CeA, or dorsolateral BNST sites were staggered across individuals (Fig. 3.1, 

Table 3.1) and optic fibers were secured with surgical screws and acrylic.  

Stimulation parameters 

ChR2 laser-illumination (2-3mW; 473nm) was tested at 10Hz and 40Hz (Fadok et al. 

2017; Soares-Cunha et al. 2016; Torruella-Suárez et al. 2020).  Inhibitory halorhodopsin testing 

used constant-illumination (8-10mW; yellow 592nm) (Warlow et al. 2017). 

Two-choice sucrose  
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An instrumental two-choice task evaluated whether pairing CRF-expressing neuronal 

stimulation in NAc, CeA, or BNST with one sucrose reward made it more or less desirable than 

an identical sucrose reward delivered without laser (Appendix A)(Robinson et al. 2014).  Briefly, 

rats learned that presses on one lever earned sucrose pellets plus 8-sec laser illuminations and an 

8-sec tone or white-noise (Laser+Sucrose).  Presses on a different lever earned sucrose and 

noise/tone but no laser (Sucrose-alone).  Lever and tone/noise assignments were balanced across 

rats, but remained permanent for each rat. 

Reinforcement schedules increased across 8 test days: FR1 (days 1-3), FR4 (4), RR4 (5), 

RR6 (6-8).  Each day rats were required to earn rewards twice from each lever presented alone, 

before free-choice.  The alternate laser frequency (10Hz/40Hz) was tested on three subsequent 

RR6 days.  Separate halorhodopsin rats underwent identical procedures with yellow laser.  

Progressive ratio  

 Progressive ratio tests assessed whether ChR2 stimulation of CRF-containing neurons 

affects magnitude of sucrose incentive motivation (Appendix A) (Robinson et al. 2014).  Briefly, 

rats were tested one day with only the Laser+Sucrose (10Hz/40Hz) lever available, another day 

with Sucrose-alone, and a third Laser+Sucrose day with the alternate frequency.  Within each 

session, the responses required to earn the next reward increased after each reward, and 

breakpoint or ratio reached during 30min sessions was assessed.  Separate halorhodopsin rats 

underwent testing with inhibition. 

Spout-touch laser self-stimulation   

Incentive properties of laser alone without sucrose were tested in instrumental spout-

touch self-stimulation tests.  With two empty waterspouts available, each touch on a designated 

Laser-spout provided stimulation (3-sec; 10Hz/40Hz; 30min).  Touches on the other Inactive-
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spout earned nothing, as a baseline exploration measure.  Rats were classified on Day 1 as 

robust, low, or non-self-stimulators and Days 2-3 evaluated consistency of self-stimulation 

(Appendix A) (Warlow et al. 2020).  

Place-based self-stimulation   

In a different place-based self-stimulation test, rats could earn laser self-stimulations by 

remaining in a designated Laser-delivering chamber within a 3-chamber apparatus (2-major, 1-

smaller center, see Supplementary Methods) after an initial session without laser evaluated 

baseline preference.  For 3 test days, Laser-delivering chamber entries triggered laser (3-sec-

on/4-sec-off), which continued cycling as long as rats remained, terminating upon exit.  Time in 

Laser-delivering minus time in alternative No-laser chamber difference-scores were assessed. 

Histology 

Briefly, laser-stimulations preceded lethal doses of sodium pentobarbital and transcardial 

perfusions for Fos assessment (see Appendix A) (Baumgartner et al. 2020).  Brains were 

extracted, post-fixed, sectioned into 40µm slices via cryostat (Leica), processed for GFP and 

cFos immunohistochemistry (Fig. 3.2), and imaged using a digital camera (Qimaging) and 

fluorescence microscope (Leica). 

Coronal sections were imaged (10x magnification) to quantify distributed Fos using 

Paxinos & Watson atlas (Paxinos and Watson 2007).  Laser-recruited changes in Fos expression 

in NAc/CeA/BNST groups were compared to eYFP-control levels in several mesocorticolimbic 

structures (Table 3.2).    

CRF and Cre expression assessed by RNAScope® Fluorescent In Situ Hybridization (FISH) 

 Colocalization of Cre and CRF in infected neurons was verified with FISH (see 

Appendix A) (Lemos et al. 2019; Wang et al. 2012).  Cells containing Cre and Crh mRNAs were 
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manually counted in 100x100x17µm volumes from core samples in NAc, CeA, and BNST 

(n=6). 

Statistical Analyses  

 Mixed-model ANOVAs evaluated within-group (e.g., laser-pairings) and between-group 

effects (e.g., ChR2/eYFP) followed by post-hoc comparisons with Bonferroni corrections.  

Distant Fos was evaluated by unpaired t-tests.  Effect sizes are Cohen’s D.  For all analyses, 

significance level was p=0.05, two-tailed.  
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Results 

Cre and CRF colocalization 

 Crh and Cre mRNAs were visualized using FISH in slices from Crh-Cre+ rats (n=6) and 

found to typically occur together in the same neurons.  CRF+ and Cre+ co-expressing neurons 

were densely concentrated within the lateral CeA (10.1±0.9 co-labeled neurons per 

100x100x17µm volume) and dorsolateral BNST (10.0±0.7).  In NAc, CRF+ neurons were 

sparsely distributed throughout medial shell (6.0±0.7 co-labeled neurons, or nearly one-half 

CeA/BNST density; Fig. 3.3, Appendix A).   

 

NAc and CeA CRF-expressing neurons recruit similar structures, BNST shows distinct 

activation  

Recruitment of Fos elevation in distant brain circuitry was assessed following CRF-

expressing neuron excitation in NAc, CeA or BNST (Tables 3.2, A.1).   

Laser ChR2 excitation of CRF-containing neurons in NAc shell (NAcSh) recruited 150-

200% increases in distant Fos expression over eYFP control levels in reward-related 

mesocorticolimbic structures including NAc core, CeA, ventral tegmentum (VTA), ventral 

pallidum (VP), lateral hypothalamus (LH), etc. (Fig. 3.4A).  Similarly, CeA stimulation of CRF-

expressing neurons excitation increased Fos expression 150-250% in NAcSh, VTA, VP, LH, etc. 

(Fig. 3.4B).  

Conversely in BNST ChR2 rats, CRF-containing neuron excitation recruited distant Fos 

150-200% elevation in several structures related to pain, aversion, fear, or satiety: midbrain 

periaqueductal gray (PAG), PVN, and basolateral amygdala (BLA), in addition to 150% 

elevation in some mesocorticolimbic structures (Fig. 3.4C).  
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NAc and CeA CRF-expressing neuronal stimulation enhances paired-sucrose value  

NAc CRF-containing neuron incentive enhancement.  Pairing ChR2 stimulation of CRF-

containing neurons in NAc (n=8) with earning sucrose rewards in the two-choice tasks caused 

rats to pursue that paired Laser+Sucrose option nearly exclusively over the other identical 

Sucrose-alone option without laser (F1,6=46.700, p<0.001; Fig. 3.5A).  Rats reached a 7:1 ratio 

preference by final day 8 (t7=5.846, p=0.001, 95%CI:[208,491], d=2.66).  Both female and male 

ChR2 Crh-cre+ rats showed strong preferences for NAc Laser+Sucrose lever over Sucrose-alone 

lever (females: 5:1±1 ratio, males: 7:1±1; Fig. A.1A).  Both 10Hz (n=5; F1,4=24.540, p=0.008) 

and 40Hz frequencies of NAc laser excitation (n=7; F1,6=39.209, p=0.001) supported similar 

Laser+Sucrose preference, with no difference between them (F1,10=1.186, p=0.302; Fig. A.2C).  

By contrast, NAc eYFP controls with inactive virus chose randomly between Laser+Sucrose and 

Sucrose-alone options (n=6; F1,5=0.014, p=0.911; Fig. 3.5B).  

 

NAc CRF-containing neuron inhibition paired-avoidance.  Separate inhibition rats, with 

halorhodopsin (NpHR) in NAc, developed strong avoidance of the paired Laser+Sucrose option 

and instead preferred Sucrose-alone by a 20:1 ratio (n=6; F1,5=25.741, p=0.004; Fig. 3.5C).  

 

CeA CRF-containing neuron incentive enhancement.  In CeA, ChR2 stimulation of CRF-

containing neurons induced similar near-exclusive pursuit of the paired Laser+Sucrose option 

(n=9; F1,7=19.227, p=0.003; Fig. 3.6A), growing to a >10:1 ratio over Sucrose-alone by day 8 

(t8=5.110, p=0.001, 95%CI:[241,638], d=3.09).  Female and male ChR2 Crh-Cre+ rats had 

similar preference ratios for CeA Laser+Sucrose over Sucrose-alone (females: 13:1±2, males: 
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10:1±2; Fig. A.1A).  Both 10Hz (n=9; F1,8=59.101, p<0.001; Fig. A.2D) and 40Hz frequencies 

of CeA laser excitation (n=5; F1,4=90.572, p=0.001) supported comparable levels of preference 

(F1,12=0.534, p=0.479).  By contrast, control CeA eYFP rats chose equally between sucrose 

options (n=7; F1,6=0.003, p=0.959) and so differed significantly from CeA ChR2 rats 

(F1,14=4.853, p=0.045; Fig. 3.6B). 

CeA CRF-containing neuron inhibition paired-avoidance.  NpHR CeA inhibition of 

CRF-containing neurons (n=7) produced avoidance of the laser-paired sucrose option, instead 

causing a 10:1 ratio preference for Sucrose-alone (F1,6=72.960, p<0.001; Fig. 3.6C). 

NAc and CeA CRF-expressing neuronal excitation increases breakpoint 

Progressive ratio (PR) breakpoint tests assessed whether CRF-containing neuron 

stimulation changed the intensity of incentive motivation to obtain sucrose reward.  NAc ChR2 

rats (n=6) worked twice as hard in the PR task on their Laser+Sucrose day, and achieved 200% 

higher effort breakpoints, than on the Sucrose-alone day (t5=6.010, p=0.002, 95%CI:[23,58], 

d=2.6; Fig. 3.5D).  Both female (210±16%) and male rats doubled their breakpoints in 

Laser+Sucrose condition (170±24%; Fig. A.1B).  Similarly, 10Hz (t3=4.841, p=0.017, n=4) and 

40Hz (t5=6.010, p=0.002, n=6; Fig. A.3D) laser frequencies supported similar doubling of 

breakpoint.  NAc eYFP controls showed no breakpoint differences between Laser+Sucrose and 

Sucrose-alone days (n=5; t4=0.533, p=0.62; Fig. 3.5D), and so differed significantly from ChR2 

rats (F1,9=6.689, p=0.029).  

In CeA, excitation of CRF-containing neurons also increased Laser+Sucrose breakpoint 

by >200% over Sucrose-alone (n=7; t6=6.712, p=0.001, 95%CI:[34,73], d=3.58; Fig. 3.6D).  

CeA stimulation doubled breakpoint in both females (250±56%) and males (250 ±25% males; 

Fig. A.1B), and at both 10Hz (n=7, t6=4.992, p=0.002) and 40Hz frequencies (n=5, t4=4.3981, 
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p=0.012; Fig. A.3D).  Control CeA eYFP rats (n=5) showed no laser effect on breakpoint 

(t4=0.314, p=0.769; Fig. 3.6D), and significantly differed from ChR2 rats (F1,10=9.590, p=0.011).  

 

BNST CRF-containing neuron excitation induces laser-paired sucrose avoidance.  

In the two-choice task, BNST ChR2 rats avoided their Laser+Sucrose option and instead 

preferred Sucrose-alone (n=8; F1,6=13.927, p=0.010; Fig. 3.7A), reaching an 8:1 Sucrose-alone 

preference by day 8 (n=8; t7=6.059, p=0.001, 95%CI:[214,488], d=4.72).  ChR2 males showed 

numerically stronger avoidance of BNST Laser+Sucrose, (10:1±3 preference for Sucrose-alone) 

than females (5:1±1), but the small group sizes were not adequately powered to statistically 

evaluate sex differences here (Fig. A.1).  Both 10Hz (n=7; F1,6=30.241, p=0.002) and 40Hz 

frequencies supported similar Laser+Sucrose avoidance (n=5; F1,4=9.474, p=0.037), with no 

difference in magnitude (F1,10=0.996, p=0.342).  In contrast, BNST eYFP control rats chose 

equally between the two sucrose options (n=6; F1,5=0.054, p=0.826; Fig. 3.7B).   

 

BNST NpHR two-choice.  BNST NpHR rats (n=6) showed no statistical difference in 

choice between sucrose options (F1,5=0.167, p=0.700; Fig. 3.7C), although there was a 

nonsignificant trend toward preferring the Laser+Sucrose option paired with halorhodopsin 

inhibition. 

 

BNST CRF-containing neuron excitation suppresses sucrose incentive motivation.  

Excitation of BNST CRF-containing neurons suppressed incentive motivation to earn sucrose, 

reducing Laser+Sucrose breakpoint effort to half that of Sucrose-alone (t7=5.492, p=0.001, 

95%CI: [20,49], d=2.25; Fig. 3.7D).  Both female (49±27%) and male rats (54±14%) showed 
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similar breakpoint reductions, and both 10Hz (t7=6.178, p<0.001, n=8) and 40Hz frequencies 

were comparably effective (t3=5.333, p=0.013, n=4).  By contrast, BNST eYFP controls showed 

no breakpoint laser-effects (n=5; t4=0.441, p=0.682; Fig. 3.7D), and so differed from BNST 

ChR2 rats (F1,11=5.874, p=0.034). 

Opposite breakpoint effects for CRF-expressing neuronal inhibition  

Halorhodopsin inhibition of CRF-containing neurons in NAc (n=6, Fig. 3.5D) or CeA 

(n=7; Fig. 3.6D) suppressed Laser+Sucrose breakpoint to ~50% that of Sucrose-alone (NAc: 

t5=5.308, p=0.003, 95%CI:[19,53], d=2.58; CeA: t6=4.032, p=0.007, 95%CI:[13,55], d=2.33).  

BNST CRF-containing neuronal inhibition did not significantly alter breakpoint effort, though 

there was a nonsignificant trend toward a higher breakpoint for Laser+Sucrose (n=6; t5=0.717, 

p=0.506; Fig. 3.7D). 

 

Spout Self-stimulation: NAc and CeA stimulation of CRF-expressing neurons by itself is a 

moderate reward 

In the instrumental self-stimulation task, each touch on the designated Laser-spout earned 

3-sec of laser excitation, while Inactive-spout touches delivered nothing.  No NAc ChR2 rats met 

criterion for robust self-stimulation of >50 touches on Laser-spout on Day 1 (Warlow et al. 

2020).  However, 7 of 8 NAc ChR2 rats demonstrated low-level self-stimulation, meeting a 

lesser criterion of only >10 Laser-spout touches and >2x touches on Laser-spout as on Inactive-

spout.  On Days 2-3, those 7 NAc rats achieved 25-35 self-stimulations per 30min session, 

roughly 4x more than Inactive-spout touches (n=7; F1,5=7.823, p=0.038; Fig.8A), and~1.5x more 

Laser-spout touches than eYFP control rats (F1,9=9.949, p=0.012).  Female and male NAc ChR2 

rats showed similar levels of self-stimulation (males: 29±16 illuminations; females: 29±8), and 
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10Hz and 40Hz frequencies both supported self-stimulation (10Hz: 25±10, n=3; 40Hz: 32±10, 

n=4). 

CeA self-stimulation.  Two of eight CeA ChR2 rats met the >50 illuminations criterion 

for robust self-stimulation, while 7 met the lower >10 self-stimulation criterion.  These 7 CeA 

ChR2 rats self-stimulated ~25-35 times on days 2-3, >3x more than Inactive-spout (F1,5=12.009, 

p=0.018; Fig. 3.8B), and earned >3x more illuminations than eYFP control rats (F1,9=17.576, 

p=0.002).  The 2 most robust self-stimulators were both females and reached 40±3 self-

stimulations per day (males n=5, 23±7).  Both 10Hz (n=4) and 40Hz (n=3) frequencies supported 

similar levels of CeA self-stimulation (10Hz: 27±10 self-stimulations; 40Hz: 29±8).   

BNST fails to support self-stimulation.  No BNST ChR2 rats met any criteria for self-

stimulation of CRF-containing neurons, responding equally at low rates on both spouts (n=8, 

F1,6=0.006, p=0.939, Fig. 3.8C). 

 

CeA and NAc self-stimulation does not account for laser effects on sucrose motivation.   

Did laser self-stimulation in CeA and NAc substantially drive laser’s ability to control 

sucrose pursuit in two-choice or PR tasks?  The answer appears to be ‘no’: there was no 

correlation between self-stimulation values, which were generally low, and control of sucrose 

pursuit in the two-choice test (n=6 NAc: r=0.624, p=0.098; n=7 CeA: r=-0.024, p=0.926).  Nor 

was there a correlation between self-stimulation and enhancement of PR breakpoint, which was 

relatively strong in most NAc or CeA ChR2 rats (Pearson’s correlation, n=6 NAc: r=-0.349, 

p=0.498; n=7 CeA: r=0.605, p=0.280).  Finally, even CeA (n=1) and NAc (n=1) rats that failed 

to self-stimulate showed ~200% laser-induced enhancements of breakpoint, and control of 

Laser+Sucrose preference (11:1 ratio) as strong as in self-stimulators (~200%, 9:1). 
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NAc and CeA place-based self-stimulation, BNST place-avoidance 

Rats were additionally tested for self-stimulation using a second place-based task, where 

entering and staying in a designated chamber earned laser (cycling 3-sec-on/4-sec-off; 15min). 

NAc and CeA place-based self-stimulation.  NAc ChR2 rats spent >150% more time in 

Laser-delivering chamber than in No-laser chamber (F1,6=6.664, p=0.042; Fig. 3.9A).  NAc 

ChR2 rats also spent 150% longer in Laser-delivering chamber than they had during previous 

baseline tests without laser (t7=3.376, p=0.012, 95%CI:[56,318], d=1.21), and more time in their 

Laser-delivering chamber than inactive eYFP controls (t11=2.318, p=0.041, 95%CI: [9,353], 

d=1.05).  Both female (n=2) and male (n=6) NAc ChR2 rats spent comparably more time in the 

Laser-delivering chamber (female: 160±20%; males: 140±10%), and both 10Hz (n=3; 160±20%) 

and 40Hz (n=5; 160±20%) frequencies were equally effective. 

CeA ChR2 rats (n=8) demonstrated robust place-based self-stimulation of CeA CRF-

containing neurons, spending ~200% more time in Laser-delivering than the No-laser chamber 

(F1,6=21.085, p=0.004).  CeA ChR2 rats also spent 200% longer in Laser-delivering chamber 

than they had during previous baseline tests without laser (t7=3.038, p=0.019, 95%CI:[63,509], 

d=1.41), and more than CeA eYFP controls (t11=2.062, p=0.011, 95%CI:[57,484], d=1.20).  Both 

female (n=2; 160±20% more Laser-delivering time) and male (n=3; 200±20%) CeA ChR2 rats 

showed place-based self-stimulation, and 10Hz (n=5) and 40Hz (n=3) laser frequencies were 

both effective (10Hz: 200±10%; 40Hz: 150±30%).  

 

BNST induces place-avoidance.  BNST ChR2 rats mildly avoided the Laser-delivering 

chamber that stimulated CRF-containing neurons in BNST, spending only <75% as much time 
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there as in the No-laser chamber (n=10; F1,8=6.593, p=0.033; Fig. 3.9C).  ChR2 BNST rats also 

spent less time in their Laser-delivering chamber than they had during baseline tests without 

laser (t9=3.188, p=0.011, 95%CI:[67,397], d=1.25), and less time than eYFP control rats 

(t13=2.737, p=0.017, 95%CI:[49,415], d=1.76).  Both female (n=5) and male (n=5) BNST ChR2 

rats showed avoidance of the Laser-delivering chamber (female: <85±10%; males: <50±10%), 

and both 10Hz (n=6; <65±10%) and 40Hz (n=4; <70±10%) frequencies induced place-based 

avoidance. 
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Discussion 

Our results demonstrate that optogenetic excitation of CRF-containing neural systems in 

both CeA and NAc shell focused and increased incentive motivation for sucrose and carried 

positive valence by itself.  ChR2 stimulation of CRF-containing neurons in CeA and NAc 1) 

focused intense incentive motivation on the Laser+Sucrose option over an alternative Sucrose-

alone option in the two-choice task, 2) amplified incentive motivation and breakpoint effort for 

sucrose reward, and 3) was actively sought by itself as laser self-stimulation.  Simultaneously, 

ChR2 stimulation of CRF-expressing neurons in CeA and NAc recruited reward-related 

mesolimbic circuitry, reflected as Fos increases in VTA, NAc, VP, LH, etc. 

By contrast, only BNST optogenetic excitation of CRF-containing neurons produced 

aversive motivation.  BNST CRF-containing neuronal excitation here caused avoidance of the 

Laser+Sucrose option and of laser by itself, suppressed breakpoint of sucrose motivation, and 

recruited increased Fos in PVN and PAG, structures associated with negative-avoidance or 

distress.   

Our NAc and CeA incentive effects are consistent with previous reports that CRF 

systems in CeA or NAc can contribute positively to reward motivation (Kim et al. 2017; Lemos 

and Alvarez 2020; Lemos et al. 2012; Lim et al. 2007; Merali et al. 1998; Peciña et al. 2006).  

NAc CRF microinjections increase bursts of cue-triggered ‘wanting’ for sucrose rewards in rats, 

and cause conditioned place-preference and increase NAc dopamine release in non-stressed mice 

(Lemos and Alvarez 2020; Lemos et al. 2012; Peciña et al. 2006). 

CRF systems mobilize bio/behavioral responses to changing events (Merali et al. 1998, 

2004; Schulkin 2017), and can be responsive to either positive or negative events.  For instance, 

it has long been known that CRF systems in CeA respond to positive reward stimuli such as food 
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cues, not only to aversive stimuli (Merali et al. 1998).  Indicating positively-valenced roles, mice 

optogenetically self-stimulate CRF-containing neurons in CeA (Kim et al. 2017).  Our results 

confirm CeA CRF-containing neuronal self-stimulation in rats and extend CRF neuronal self-

stimulation to NAc.  They further demonstrate that NAc and CeA activations potentiate and 

focus incentive motivation for natural sucrose reward.  Conversely, CRF-containing neuronal 

stimulation in BNST produced opposite negative motivational effects.   

Future studies could identify the specific projections from CeA, NAc and BNST that 

mediate these effects.  For example, CeA CRF-containing neurons project to LH, VP, VTA, and 

BNST (Asok et al. 2018; Erb et al. 2001a; Pomrenze et al. 2015, 2019b; Rodaros et al. 2007; 

Ventura-Silva et al. 2020).  CeA-BNST CRF-containing projections may reliably mediate 

aversive motivation (Asok et al. 2018; de Guglielmo et al. 2019; Pomrenze et al. 2019b; 

Ventura-Silva et al. 2020), implying that projections to LH, VP, VTA or elsewhere may mediate 

incentive motivation effects.  ChR2 stimulation here likely activated these CeA-BNST 

projections too, implying that other positively-valenced CeA-outputs may overpower BNST 

aversive effects when simultaneously activated.  For NAc, local connections of CRF-containing 

neurons may mediate incentive motivation effects, such as intra-NAc connections to cholinergic 

interneurons, which may modulate dopamine release in NAc (Lemos and Alvarez 2020; Lemos 

et al. 2012, 2019).  Neuroanatomically, it would be of interest to additionally investigate the 

motivational effects of dense CRF-containing neuronal projections from hypothalamic PVN.  

However, PVN CRF-containing neurons may co-release glutamate, whereas the Crh-Cre rat line 

used here may primarily target CRF-expressing neurons that co-release GABA (Dabrowska et al. 

2013; Pomrenze et al. 2015).   
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Neurochemically, it would be useful in future studies to examine the roles in these 

motivational effects of CRF release versus other neurotransmitters co-released by CRF-

expressing neurons, such as GABA, dynorphin, neurotensin, and somatostatin (Partridge et al. 

2016; Pomrenze et al. 2015, 2019a; Shimada et al. 1989; Torruella-Suárez et al. 2020).  Co-

release might be related to why CRFR1 antagonists may fail to block stress-induced craving in 

clinical models (Grillon et al. 2015; Kwako et al. 2015; Schwandt et al. 2016; Shaham and de 

Wit 2016).   

 

Positive NAc and CeA vs negative BNST: Anatomical differences in motivational valence  

Why did CRF-containing neuron activations have positively-valenced effects in NAc and 

CeA but negatively-valenced effects in BNST?  NAc and CeA are both striatal-level structures in 

cortico-striatal-pallidal macrosystem frameworks of telencephalon organization, having 

neuronal, connectivity, neurochemical, and embryological features shared with neostriatum 

(Heimer et al. 2007; Swanson 2005; Zahm 2006).  For example, CeA and NAc contain mostly 

GABAergic neurons that receive descending cortical-type glutamatergic inputs and ascending 

mesotelencephalic dopaminergic inputs, and both send GABAergic outputs to pallidal-level 

structures of BNST or VP (Heimer and Van Hoesen 2006; Heimer et al. 2007; Swanson 2005; 

Zahm 2006).  In the same frameworks, BNST is a pallidal-level structure with descending 

outputs to hypothalamus and brainstem, plus ascending re-entrant projections back to thalamo-

cortico-striatal-pallidal loops (Dabrowska et al. 2016; Giardino et al. 2018; Gray and Magnuson 

1992; Heimer and Van Hoesen 2006; Heimer et al. 2007; Swanson 2005; Zahm 2006). 

 

Hypothesized roles of CRF-containing systems in addiction 
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Traditionally, CRF-containing neurons have been hypothesized to generate aversive 

states like anxiety and drug withdrawal, although CRF systems also have wider roles in affective 

appraisals of incentives that mobilize motivational states (Merali et al. 1998, 2004; Schulkin 

2017).  Our study helps puts this in perspective. 

Regarding the role of CRF in anxiety and addiction, the allostatic theory of addiction 

posits that CRF-containing neuronal activation in CeA and BNST components of extended 

amygdala cause aversive drug withdrawal, which is hypothesized to promote relapse through 

efforts to hedonically self-medicate via consumption of drug rewards (Funk et al. 2006; Koob 

and Le Moal 1997; Koob and Schulkin 2019; Koob 2013; Roberto et al. 2017; Zorrilla et al. 

2014).   

Our results call into question some of these assumptions.  Indeed, the hypothesis that 

CRF-containing neurons in CeA and BNST necessarily generate negatively-valenced states may 

not apply to CeA.  Instead, our results indicate that CRF-expressing neuronal activation in both 

CeA and NAc increases reward pursuit and produces positively-valenced incentive states which 

rats actively worked to induce.  Conversely, in partial support of the allostatic model, BNST 

CRF-containing neural activation did cause aversive motivational states.  However, the aversive 

state induced by stimulating BNST CRF-expressing neurons failed to increase reward-seeking, 

instead suppressing sucrose pursuit.   

This suggests that hedonic self-medication of aversion may not be the primary 

mechanism by which CRF-containing neurons promote reward pursuit and consumption for any 

of these structures.  Instead, CRF-expressing neurons in CeA and NAc amplify ‘wanting’ to 

pursue and consume rewards without aversive states, while BNST CRF-expressing neuronal 

excitation may actually impede reward pursuit and consumption.  This may be why drug 
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withdrawal is not as effective for reinstatement of drug taking as stress or drug priming (Erb et 

al. 2006; Mantsch et al. 2016; Shaham and Stewart 1995; Shaham et al. 1997).  Although brain-

wide CRF activation may cause aversive withdrawal states through BNST CRF-containing 

neurons, our results suggest that any accompanying increases in reward pursuit or addictive 

relapse might predominantly be due to co-activation of CRF incentive motivation systems in 

NAc and CeA. 

 

Valence flips 

Motivational valence induced by CeA optogenetic stimulation can switch depending on 

environmental situation, and therefore the valence of our CRF-containing neuron stimulation 

could potentially switch in certain circumstances (Lemos et al. 2012; Warlow et al. 2020).  If so, 

CRF systems could be quite labile in their functional role in motivated behaviors depending upon 

context and need, which deserves further investigation. 

 

Clinical implications 

Activation of CRF systems during stress or emotional excitement may promote relapse in 

addiction, binge-eating, and other excessive consumption.  The dominant perspective relied 

solely on the postulated aversiveness of CRF-expressing neural activation.  However, our results 

indicate that incentive motivation roles of CRF-containing neurons in NAc and CeA predominate 

under tested conditions, and promote intense reward pursuit without aversive distress (Kim et al. 

2017; Lemos et al. 2012; Peciña et al. 2006).  This could explain why even positively-valenced 

stressors (i.e., new relationships, winning the lottery) can be triggers of addictive relapse and 

binge-eating (Annis and Graham 1995; Kaundal et al. 2016; Larimer et al. 1999; Maisto et al. 
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1988a).  Conversely, aversive motivation induced by BNST CRF-containing neurons contributed 

little to reward pursuit.  Ultimately, CRF-containing systems have diverse motivational roles.  

Further clarification of negatively-valenced versus positively-valenced motivation roles of CRF 

systems will be important to understand how they promote excessive consumption in addiction 

and related disorders. 
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Figures 

 

3.1  Localization of function maps 
Function maps of effects on sucrose preference in two-choice task of ChR2 stimulation of CRF-
expressing neurons in A) NAc, C) CeA, and E) BNST.  Maps for inhibitory halorhodopsin effects of laser 
illumination on CRF-expressing neurons shown in B) NAc, D) CeA, and F) BNST (striped symbols).  
Symbol sizes reflect size of optogenetic Fos plumes (see Fig. 3.2 and Appendix A).  Yellow, orange, or 
red symbol colors show intensity of enhancement of laser-induced preference for Laser+Sucrose option 
over Sucrose-alone option produced at that site (effects shown for days 6-8 of two-choice task).  
Conversely, blue colors show intensity of avoidance of Laser+Sucrose (i.e., preference instead for 
Sucrose-alone).  Also see Table 3.1.  CPu, caudate putamen; LV, lateral ventricle; LS, lateral septum; VP, 
ventral pallidum; ac, anterior commissure; ic, internal capsule; GP, globus pallidus; MeA, medial 
amygdala; IntC, intercalated amygdala; BMA, basomedial amygdala; BLA, basolateral amygdala; fx, 
fornix; SHy, septohypothalamic nucleus; MPA, medial preoptic area; LPO, lateral preoptic area.  
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3.2  Virus expression and local Fos plumes 
Photomicrograph (×10 magnification) shows channelrhodopsin virus expression (ChR2; green), and 
neuronal Fos protein expression (magenta) immediately surrounding optic fiber tips for Crh-Cre+ rats in 
A) nucleus accumbens (NAc) shell, C) lateral division of central nucleus of amygdala (CeA) and E) 
dorsolateral division of bed nucleus of stria terminalis (BNST).  Blue diagrams at right show maps 
displaying size and intensity of local Fos plumes produced in each structure by laser stimulation of CRF-
containing neurons expressing ChR2 (i.e., zones of >150% Fos elevation and >200% Fos elevation over 
baselines (100%) measured in laser-illuminated eYFP control rats.  Average Fos plume diameters are 
shown for Crh-Cre+ ChR2 rats after laser illumination in B) NAc, D) CeA, and F) BNST CRF-containing 
neurons.  D: dorsal, M: medial, L: lateral, V: ventral to fiber tip; ac, anterior commissure; NAcC, nucleus 
accumbens core; NAcSh, nucleus accumbens shell; CeC, capsular central amygdala; CeL, lateral central 
amygdala; CeM, medial central amygdala; dlBNST, dorsolateral bed nucleus of stria terminalis; ic, 
internal capsule; LV, lateral ventricle.   
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3.3  CRF and Cre colocalization verification through fluorescence in situ hybridization 
Representative images for Cre mRNA expression and Crh mRNA expression in A) nucleus accumbens 
(NAc) shell, B) lateral division of CeA (CeL), and C) dorsolateral division of bed nucleus of stria 
terminalis (dlBNST) in Crh-Cre+ rats (n=6).  Low-power (20x) and high-power (40x) images show 
localization of neurons expressing Cre mRNA (green) or Crh mRNA (magenta), and Cre/Crh 
colocalization with cell bodies stained with DAPI (blue).  Arrows point to examples of cells coexpressing 
Cre and Crh mRNAs.  Scale bars denote 0.1mm at both 20x and 40x.  See Supplementary methods and 
results.  LV, lateral ventricle; LS, lateral septum; BLA, basolateral amygdala; CeC, capsular central 
amygdala, medial central amygdala; ic, internal capsule; ac, anterior commissure.  
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3.4  Laser-enhancements in distant Fos expression 
Brain maps show recruitment of distant Fos elevation in mesocorticolimbic structures following CRF-
containing neuron ChR2 stimulation in NAc, CeA or BNST (colors denote percent Fos elevation vs. 
eYFP controls, all two-way unpaired t-tests).  A) NAc ChR2 stimulation (n=3 female, n=3 male): NAc 
core (NAcC), ventral tegmentum (VTA), anterior ventral pallidum (aVP), posterior VP (pVP), anterior 
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lateral hypothalamus (aLH), pLH, medial amygdala (MeA), CeA, aBNST, pBNST.  B) CeA ChR2 
stimulation (n=3 female, n=3 male): orbitofrontal cortex (OFC), aNAcSh, pNAcSh, NAcC, aVP, pVP, 
aLH, pLH, MeA, VTA, aBNST, pBNST, and minor increases in basolateral amygdala (BLA; <150%).  
C) BNST ChR2 stimulation (n=2 female, n=3 male): BLA, periaqueductal gray (PAG), hypothalamic 
paraventricular nucleus (PVN), NAcC, pVP, aLH, pLH, MeA, and minor increases in pNAcSh (<150%) 
and CeA (<150%).  See Table A.1.  infralimbic cortex (IF); substantia nigra (SN).  Means and SEM 
reported. *p<0.05,**p<0.01,***p<0.001  
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3.5  CRF-containing neuron stimulation in NAc biases and amplifies sucrose motivation 
ChR2 excitation of CRF-containing neurons in NAc shell caused preference for paired Laser+Sucrose 
over Sucrose Alone in A) two-choice test (n=3 female, n=5 male), reaching a 7:1 ratio by day 8.  By 
contrast B) control NAc eYFP rats chose equally between options.  C) NpHR inhibition of CRF-
containing neurons in NAc shell (n=3 female, n=3 male) caused avoidance of Laser+Sucrose and 
Sucrose-alone preference.  D) In a progressive ratio test, NAc ChR2 CRF-containing neuron excitation 
enhanced incentive motivation breakpoint Laser+Sucrose over Sucrose Alone (n=2 female, n=4 male).  
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ChR2 rats had higher Laser+Sucrose breakpoints than eYFP controls (n=5).  Laser did not affect NAc 
eYFP control breakpoint between progressive ratio test days.  NAc NpHR inhibition of CRF-containing 
neurons reduced Laser+Sucrose breakpoint motivation (n=3 female, n=3 male).  Means and SEM 
reported. *p<0.05,**p<0.01,***p<0.001  
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3.6  CRF-containing neuron stimulation in CeA biases and amplifies sucrose motivation 
CeA ChR2 excitation of CRF-containing neurons caused near-exclusive preference for Laser+Sucrose 
over Sucrose-alone rewards in two-choice test (n=4 female, n=5 male), A) reaching a 10:1 ratio by day 8.  
B) CeA eYFP controls chose equally between sucrose options (n=7) and differed from CeA ChR2 rats.  
C) CeA NpHR inhibition of CRF-containing neurons caused Laser+Sucrose avoidance and Sucrose-
alone preference (n=2 female, n=5 male).  D) In progressive ratio test, CeA CRF-containing neuron 
excitation enhanced incentive motivation for sucrose breakpoint (n=3 female, n=4 male).  Laser did not 
affect CeA eYFP control breakpoint (n=5), which differed from ChR2 rats.  CeA NpHR inhibition of 
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CRF-containing neurons reduced Laser+Sucrose breakpoint (n=2 female, n=5 male).  Means and SEM 
reported.  *p<0.05,**p<0.01,***p<0.001  
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3.7  BNST CRF-containing neuron stimulation is avoided and suppresses sucrose motivation 
ChR2 rats avoided Laser+Sucrose that stimulated CRF-expressing neurons in BNST in A) two-choice 
test (n=5 female, n=3 male).  BNST ChR2 Laser+Sucrose avoidance rose to an 8:1 opposite preference 
for Sucrose-alone by day 8.  B) Control eYFP BNST rats chose equally between sucrose options (n=6).  
C) BNST NpHR rats (n=3 female, n=3 male) showed no significant difference between inhibitory 
Laser+Sucrose and Sucrose-alone.  D) BNST ChR2 excitation of CRF-containing neurons suppressed 
breakpoint effort for sucrose in progressive ratio tests (n=5 female, n=3 male).  Laser did not affect BNST 
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eYFP control breakpoint, and so eYFP rats significantly differed from BNST ChR2 rats in laser effects on 
breakpoint.  NpHR inhibition of BNST CRF-containing neurons did not statistically alter sucrose 
breakpoint, despite a nonsignificant trend toward increased motivation (n=3 female, n=3 male).  Means 
and SEM reported.  *p<0.05,**p<0.01,***p<0.001  
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3.8  Laser spout self-stimulation by NAc and CeA Crh-Cre+ rats, not BNST  
A) NAc ChR2 rats self-stimulated ~25-35 times on average (n=5 female, n=2 male), whereas NAc eYFP 
control rats (n=4) touched both spouts equally about 15 times.  B) CeA ChR2 rats similarly self-
stimulated (n=2 female, n=5 male), whereas eYFP control rats did not (n=4).  C) BNST ChR2 rats failed 
to self-stimulate for laser in BNST CRF-containing neurons (n=3 female, n=5 male).  Also see Fig. A.4 
and Fig. A.6D.  Means ± SEM, and individual scores shown.  *p<0.05,**p<0.01  
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3.9  Place-based self-stimulation and aversion of CRF-containing neuron stimulation 
A) NAc supported ChR2 place-based laser self-stimulation of CRF-containing neurons.  NAc ChR2 rats 
(n=2 female, n=6 male) spent more time in Laser-delivering chamber than in No-laser chamber, more 
time in Laser-delivering chamber than NAc eYFP controls (n=5), and more than they previously spent in 
same chamber during no-laser baseline preference tests.  B) CeA also supported place-based self-
stimulation of CRF-containing neurons.  CeA ChR2 rats (n=5 female, n=3 male) spent more time in 
Laser-delivering chamber than in no-laser chamber, more time in Laser-delivering chamber than CeA 
eYFP controls (n=5), and more than they previously spent in identical chamber during no-laser baseline 
tests.  C) Conversely, BNST produced avoidance the Laser-delivering chamber.  BNST ChR2 rats (n=5 
female, n=5 male) spent less time in Laser-delivering chamber than eYFP controls (n=5), and less time 
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than they spent in the same chamber during no-laser baseline tests.  Also see Fig. A.5 and Fig. A.6E.  
Means and SEM reported. *p<0.05  
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Tables 

Target 

Confirmed placement 
ranges (mm from Bregma) 

ChR2 
N’s 

eYFP 
N’s 

NpHR 
N’s Contralateral 

misses, locations 
A/P M/L D/V Uni Bil Uni Bil Uni Bil 

CeA -2.16 to 
-3.00 

± 4.2 
to 4.7 

-7.0 to 
-7.6 3 7 2 5 3 4 BLA, MeA, optic 

tract 

NAc +1.44 to 
0.96 

± 0.8 
to 1.6 

-6.3 to 
-7.6 4 5 3 4 3 3 DS, MS, NAcC 

BNST +0.24 to 
-0.24 

±1.6 to 
2.0 

-5.8 to 
-6.4 4 6 3 4 2 4 ac, GP 

3.1  Histological placements of experimental animals 
Table shows anatomical confirmed placement ranges for experimental animals targeting either lateral 
central amygdala (CeA), nucleus accumbens (NAc) shell, or dorsolateral bed nucleus of stria terminalis 
(BNST).  Confirmed placement ranges are determined from Paxinos and Watson brain atlas (Paxinos and 
Watson 2007) and display anterior/posterior (A/P), medial/lateral (M/L), and dorsal/ventral (D/V) 
coordinates in mm from bregma.  N-values for excitatory channelrhodopsin (ChR2), inactive control 
eYFP virus, and inhibitory halorhodopsin (NpHR) groups include those with bilateral fiber and virus 
placements (Bil) or unilateral virus/fiber placements in one hemisphere, with a contralateral miss in the 
other hemisphere (Uni).  For CeA rats (top), contralateral miss sites were located in either basolateral 
amygdala (BLA), medial amygdala (MeA), or optic tract, with no substantial virus expression found in 
these missed hemispheres.  For NAc rats (middle), placements for unilateral misses were located in dorsal 
striatum (DS), medial septum (MS), or nucleus accumbens core (NAcC) and no viral expression in these 
structures was observed.  For BNST rats (below) sites of unilateral misses in either the anterior 
commissure (ac) or globus pallidus (GP) without substantial virus expression.  See Fig. 3.1. 
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Regions 

Orbitofrontal cortex (OFC) Anterior lateral hypothalamus (aLH) 

Infralimbic cortex (IF) Posterior lateral hypothalamus (pLH) 

Nucleus accumbens core (NAcC) Paraventricular nucleus hypothalamus 
(PVN) 

Anterior nucleus accumbens shell (aNAcSh) Medial amygdala (MeA) 

Posterior nucleus accumbens shell (pNAcSh) Central amygdala (CeA) 
Anterior bed nucleus of stria terminalis 

(aBNST) Basolateral amygdala (BLA) 

Posterior bed nucleus of stria terminalis 
(pBNST) Ventral tegmentum (VTA) 

Anterior ventral pallidum (aVP) Substantia nigra (SN) 

Posterior ventral pallidum (pVP) Midbrain periaqueductal gray (PAG) 
3.2  Brain regions assessed for laser-recruited changes in Fos expression 
Laser-induced enhancements were assessed in the listed mesocorticolimbic brain regions, following CRF-
expressing neuronal excitation in NAc, CeA, or BNST.  Distant Fos levels in ChR2 animals were 
compared to levels assessed in inactive eYFP control rats that underwent identical Fos induction 
procedures. 
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CHAPTER IV. Corticotropin Releasing Factor (CRF) Systems Promoting Cocaine Pursuit: 
Through Distress or Incentive Motivation?    

Introduction 

Stress can exacerbate addictive relapse and consumption of sensory rewards (Erb et al. 

2001b; Koob et al. 2014; Mantsch et al. 2016; Shalev et al. 2010).  Neurobiologically, activation 

of brain corticotropin releasing factor (CRF) systems in limbic brain structures has been posited 

to drive stress-induced relapse and overconsumption in addiction via aversive distress states 

(Dallman 2010; Dunn and Berridge 1990; Koob and Le Moal 2008; Koob and Schulkin 2019; 

Koob and Volkow 2010; McEwen and Akil 2020; Merali et al. 1998, 2004; Shaham et al. 1997; 

Stewart 2000; Sutton et al. 1982; Vale et al. 1981). 

 For example, the allostatic theory of addiction (also called the opponent-process, hedonic 

dysregulation, hedonic homeostasis, or hyperkatifeia theory), posits that increases in activity of 

CRF neuronal systems in central amygdala (CeA) and bed nucleus of stria terminalis (BNST) 

drive negative distress feelings associated with withdrawal from addictive drugs, which in turn is 

posited to lead to relapse and overconsumption of pleasant rewards as attempts at hedonic self-

medication to counter the aversion (de Guglielmo et al. 2019; Koob and Le Moal 1997, 2008; 

Koob and Schulkin 2019; Koob 2013, 2021).  In that model, relapse and drug intake is thought to 

be driven by distress caused by the activation of CRF neural systems in CeA and BNST. 
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 However, other evidence suggests that CRF neural systems in both CeA and nucleus 

accumbens (NAc) may instead mediate incentive motivation mechanisms to pursue rewards, 

somewhat similar to the role of mesolimbic dopamine systems, without necessarily causing 

distress (Kim et al. 2017; Lemos and Alvarez 2020; Lemos et al. 2012; Peciña et al. 2006; Wang 

et al. 2005).  These mechanisms include incentive salience or cue-triggered ‘wanting’.  

In particular, we recently demonstrated that optogenetic stimulation of CRF-containing neurons 

in CeA and NAc of Crh-Cre+ rats produced positively-valenced incentive motivation to pursue 

and consume rewards, rather than causing negatively-valenced aversive motivation. 

(Baumgartner et al. 2021).  For example, CRF-expressing neuronal excitation in CeA and NAc 

was itself sought out by rats, which worked to obtain laser self-stimulations.  CRF-expressing 

neuronal stimulation also activated reward-related mesocorticolimbic circuitry to amplify 

incentive motivation to obtain and consume hedonic sucrose rewards in effort breakpoint tests, 

and focused intense motivation in a 2-choice task narrowly and specifically on the laser-paired 

sucrose reward, while the rats ignored an alternative sucrose reward that was not accompanied 

by CRF neuronal excitation (Baumgartner et al. 2021).   

Conversely, in BNST we found that optogenetic excitation of CRF-containing neurons caused an 

aversive state that ChR2 rats avoided, partially consistent with the allostatic hypothesis for CRF 

motivational function (Baumgartner et al. 2021).  However, rather than increase motivation to 

consume sucrose rewards as the hedonic self-medication hypothesis posits, the aversive state 

generated by activation of CRF-containing BNST neurons actually suppressed motivation to 

obtain hedonic sucrose rewards, rather than increasing it as postulated by opponent-process 

logic.  
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 The results of Baumgartner et al. (2021) indicate that CRF neural systems cause pursuit 

and consumption of sweet rewards by activating incentive motivation processes, not by hedonic 

self-medication attempts to alleviate distress.  But allostatic/hyperkatifeia hypotheses of CRF 

function have focused primarily on drug addiction, and it is not yet clear whether those sucrose-

based conclusions will transfer to drugs of abuse, such as cocaine.  Therefore, we examined here 

whether CRF neural mechanisms underlying pursuit and consumption of intravenous cocaine 

similarly operate by incentive motivation principles.  In BAC transgenic Crh-Cre rats, we paired 

optogenetic excitation of CRF-containing neurons in either NAc, CeA, or BNST with 

opportunities to earn intrajugular infusions of cocaine.  Using a 2-choice task (Warlow et al. 

2017) we examined if those groups of CRF ChR2 rats preferred or avoided an i.v. cocaine option 

accompanied by CRF-containing neuronal stimulation compared to an alternative i.v. cocaine 

option without CRF ChR2 activation.  Using a progressive ratio task to assess effort breakpoint, 

we also asked if ChR2 neural stimulation in Crh-Cre rats altered the intensity of incentive 

motivation to self-administer i.v. cocaine.  Finally, to assess the motivational valence effects of 

CRF-expressing neuronal stimulation we assessed whether rats would self-administer laser 

stimulation in NAc, CeA or BNST CRF systems by itself.  The results of these experiments 

provide insight into the incentive versus aversive motivational roles of particular CRF neural 

systems, and indicate that CRF neural systems may control cocaine pursuit and intake primarily 

by incentive motivation mechanisms, not by hedonic self-medication efforts to alleviate distress. 
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Methods 

 
Animals 

 Female (n=24) and male (n=9) transgenic Crh-Cre+ rats were bred and genotyped in 

house, from breeders obtained from the Messing laboratory at the University of Texas (Pomrenze 

et al. 2015).  Rats were housed in same-sex pairs at 21C under reverse light cycle with ad libitum 

access to food and water, until after intrajugular catheter implantation, when rats became single-

housed and were subsequently maintained at 85-90% ad lib body weight levels on a restricted 

food schedule for the duration of cocaine experiments.  All experimental procedures were 

approved by the University of Michigan Institutional Animal Care & Use Committee in 

accordance with NIH animal care and use guidelines. 

Optogenetic virus and fiber surgery 

Rats were anesthetized with isoflurane gas (induction: 4-5%, maintenance, 1-2%) and 

placed in a stereotaxic apparatus (David Kopf Instruments, Tujunga, CA) for surgery.  Rats 

received atropine (0.05 mg/kg; i.p.; Henry Schein) at start of surgery and after received cefazolin 

(75 mg/kg, s.c.; Henry Schein) and carprofen (5 mg/kg; s.c.; Henry Schein) for postsurgical pain 

relief.  Bilateral microinjections in either NAc, CeA, or BNST were made of either active AAV-

DIO-ChR2-eYFP virus (n=21) with ChR2 or optically-inactive control virus AAV-DIO-eYFP 

(n=12).  Both ChR2 virus and inactive eYFP-only virus are driven by an EF1a promoter to infect 

only Cre-recombinase+ neurons.  This transgenic Crh-Cre BAC rat line may primarily express 

Cre-recombinase in CRF neurons that also co-express GABA, which made it suitable for 

targeting the largely GABAergic CRF neuron populations in NAc, CeA and BNST here 

(Pomrenze et al. 2015).  Site coordinates for virus microinjections were bilaterally identical for 

individual rats, but staggered across rats in the following ranges so that the group’s sites filled 
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most of each targeted structure (NAc medial shell; lateral CeA; dorsolateral BNST).  NAc medial 

shell range (from bregma): A/P: +1.08 to +2.52, M/L: ±0.6 to 1.2, D/V: -6.0 to -7.07 (Angle 

used: 16 or 10 degrees, flat skull; n=10); lateral CeA range: A/P: -1.92 to -3.24, M/L: ± 3.8 to 

4.6, D/V: -6.8 to -7.8 (flat skull; n=13); dorsolateral BNST range, A/P: 0.36 to -0.36, M/L: 1.0 to 

1.8, D/V: -6.1 to -6.5, (Angle used: 16 degrees, flat skull; n=10).  A 1.0 microliter volume of 

virus per hemisphere was microinjected at each bilateral site over a 10-minute period (0.1 

microliter / minute), and microinjector was left in place an additional 10 minutes to allow 

diffusion.  Optic fibers (200 micrometer) were implanted above each site so that the fiber tip was 

0.3mm dorsal to virus microinjection site and secured with skull screws and dental cement.  Rats 

were monitored one-week post-surgery and received additional carprofen injections for two-days 

post-surgery for pain relief.  At least 3 weeks between stereotaxic surgeries and initial behavioral 

testing was provided for virus incubation and recovery from intrajugular catheter surgery.  

Intrajugular catheter surgery 

 Approximately 2 weeks after stereotaxic surgeries, rats underwent an additional surgery 

to insert an intravenous catheter into the jugular vein for cocaine self-administration experiments 

(Warlow et al. 2017).  Rats again received pre- and post-operative procedures as described 

above.  Briefly, a subcutaneous anchor was secured in the mid-scapular region and the attached 

Silastic catheter was passed subcutaneously up the back and dorsal neck region, and threaded 

into the right jugular vein (Warlow et al. 2017).  Following surgeries, rats received daily intra-

catheter gentamicin infusions for 10 days to prevent infection, as well as daily intra-catheter 

heparinized saline infusions that continued throughout testing.  Rats had 7-10 days for recovery 

and catheter patency was confirmed with brevital sodium injections (0.2ml, 20mg/ml) before 
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behavioral testing and again once testing was completed.  Rats that failed to become ataxic 

within 10s were excluded from self-administration analyses.    

Stimulation parameters  

 Optogenetic blue laser (592nm) laser excitation for ChR2 was delivered at 10Hz (10ms-

ON-90ms-OFF; 2-3mW) using durations and pairing conditions described below (Fadok et al. 

2017). 

Two-choice cocaine self-administration  

 An instrumental two-choice task was used to test whether pairing laser excitation of 

CRF-containing neurons in NAc, CeA, or BNST with earning cocaine reward by making 

nosepokes into one particular porthole made that cocaine option more or less valuable than an 

alternative option of identical cocaine infusion delivered alone (without laser) earned by 

nosepokes into a different porthole (Warlow et al. 2017).  Briefly, rats were trained on a fixed 

ratio 1 (FR1) schedule in a chamber containing two retractable portholes.  Crh-Cre ChR2 rats 

learned that a nose poke into one particular port hole (Laser+Cocaine porthole) would deliver 

intrajugular infusions of cocaine (0.3mg/kg for each rat, 50ul volume dissolved in a sterile saline 

solution, 2.8sec per infusion, National Institute on Drug Abuse), accompanied by 8-sec of laser 

stimulation, plus a distinct associated sound (8sec, tone or white noise).  Nosepokes into the 

other porthole earned identical cocaine infusions, plus the other sound cue, but no laser 

(Cocaine-alone porthole).  For both portholes a 20s timeout was initiated after each cocaine 

infusion earned, which coincided with retraction of the inserted portholes so no nosepokes could 

be made. 

 Rats were allowed to freely choose between Laser+Cocaine or Cocaine-alone options 

over 10 daily test sessions, after brief refresher experiences with both outcomes.  Each session 
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started with a single-choice trial: just one porthole was inserted into the chamber, and a nosepoke 

earned that porthole’s customary reward (either Laser+Cocaine or Cocaine-alone).  Then the 

first porthole was retracted, and the other porthole was inserted so the rat would experience its 

different reward (single-choice trial).  Both single-choice trials were repeated a second time, and 

these trials ensured the rats were reminded each day of the difference between Laser+Cocaine 

versus Cocaine-alone options, prior to making free choices.  Following completion of these 4 

single-choice trials, repeated 2-choice trials followed for the remainder of the daily session.  In 

2-choice trials, both portholes were inserted simultaneously, and rats were allowed to choose 

freely between both portholes and their outcomes.  These 2-choice trials continued for the 

remainder of the 60-min session, interrupted only by 20s timeout periods after each cocaine 

infusion.  To be included in the experiment, rats were required to make a total of at least 5 daily 

cocaine infusions on days 1-3, and rats that failed to reach that requirement were excluded from 

analyses (3 of 27 rats were excluded for this reason). 

Progressive ratio test of incentive motivation intensity  

 To test whether laser excitation of CRF-containing neurons changed the magnitude of 

incentive motivation for cocaine rewards, rats underwent two days of progressive ratio testing in 

60 minutes sessions to identify effort breakpoints.  On one day rats were tested with 

Laser+Cocaine, presenting its customary porthole alone.  On another day (in balanced order), 

rats were tested with Cocaine-alone, presenting its customary porthole.  Each day, after a 

cocaine infusion was received, the number of responses required to earn the next cocaine 

infusion increased on a progressive ratio schedule following the formula 

PR=[5𝑒𝑒(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛×0.2)]− 5.  The breakpoint effort at which rats stopped responding for 

cocaine rewards, or ratio was reached, was compared across day conditions. 
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Spout-touch self-stimulation   

 Incentive properties of laser alone without cocaine were tested in instrumental spout-

touch self-stimulation tests.  Rats had the opportunity to touch either of two empty spouts: 

touches on a designated ‘laser spout’ delivered brief 3-sec laser illuminations (3sec, 10Hz), 

whereas touches on the other ‘inactive’ spout delivered nothing, serving as a control measure of 

baseline exploratory touches.  Self-stimulation tests were repeated in 30-min sessions across 3 

days of testing.  

Histology  

To identify CRF-recruited circuitry via Fos analysis, rats underwent a final laser 

stimulation for 30-min, preceding euthanasia (45-min post-stimulation session) by lethal sodium 

pentobarbital injection, followed by transcardial perfusion and brain extraction.  A cryostat was 

used to slice brains into 40 micrometer slices (Leica, Wetzlar, Germany).  

Immunohistochemistry followed previously reported procedures to stain for Fos gene expression 

and GFP (Baumgartner et al. 2020).  Briefly, tissue was rinsed three times for 10min in sodium 

phosphate buffer (NaPB) and blocked in 5% normal donkey serum (60min) before overnight 

incubation in rabbit anti-cFos (1:2500; Catalog#: 226 003; Lot #: 4-63; RRID:AB_2231974; 

Synaptic Systems, Göttingen, Germany) and chicken anti-GFP (1:2000; Catalog#: AB13970; Lot 

#: GR3190550-30; RRID:AB_300798; Abcam, Cambridge, MA).  Slices were again rinsed 3x in 

NaPB for 10min and placed for 2 hours in biotinylated donkey anti-rabbit (1:300; Catalog #: 

AB2340593; Lot #: 128703; RRID: AB2340593; Jackson Immunoresearch, West Grove, PA) 

and donkey anti-chicken AlexaFluor 488 (1:300; Code #: AB2340375; Lot #: 144438; 

RRID:AB_2340375; Jackson Immunoresearch, West Grove, PA).  Following 3 more rinses in 

NaPb, tissue was then incubated for 90min in tertiary containing Streptavidin Cy3 (1:300; 



 106 

Catalog #: AB2337244, Lot #: 141873, RRID: AB_2337244; Jackson Immunoresearch, West 

Grove, PA), before three final 10min rinses.  Slices were mounted onto slides (Fischer), 

coverslipped with Prolong-gold with DAPI (Invitrogen), and imaged using a digital camera 

(Qimaging, Surrey, BC, Canada) attached to a fluorescent microscope (Leica, Wetzlar, 

Germany).  Viral expression of ChR2 virus was confirmed within NAc, CeA, or BNST targets 

(see Table 1), and visualized using filter cubes with excitation bands of 490-510nm.  

Local Fos plumes 
Local Fos plumes indicate the extent and degree of local neuronal activation immediately 

surrounding the fiber optic tip produced by ChR2 excitation of CRF-containing neurons.  Fos 

plumes in NAc, CeA, or BNST were measured by counting the number of Fos+ neurons in 

50x50um boxes placed along 8 radial axes emanating from the fiber optic tip after laser 

stimulation in CRF ChR2 rats (Baumgartner et al. 2020).  Counting continued in 50x50um boxes 

along each axis until 2 consecutive boxes containing zero Fos+ cells were reached.  Percent 

elevation in Fos expression compared to the same sites in eYFP control rats was calculated to 

determine the intensity of neuronal activation induced by CRF ChR2 laser stimulation in each 

box, and the radii of elevated plumes reflected the anatomical extent of local stimulation. 

Distant Fos analysis 

Functional connectivity, or recruitment of distant neural activity in other brain structures, 

was assessed by measuring by changes in Fos protein expression in coronal whole-brain images 

(10x magnification) within a number of mesocorticolimbic structures: anteromedial orbitofrontal 

cortex (OFC), infralimbic cortex (IF), anterior NAc shell (aNAcSh), posterior NAcSh (pNAcSh), 

NAc core (NAcC), anterior ventral pallidum (aVP), PVP, anterior BNST (aBNST), pBNST, 

anterior lateral hypothalamus (aLH), pLH, paraventricular nucleus of the hypothalamus (PVN), 

basolateral amygdala (BLA), CeA, medial amygdala (MeA), ventral tegmentum (VTA), 
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substantia nigra (SN), and midbrain periaqueductal grey (PAG).  In each structure targeted, 

boxes for counting Fos+ neurons were sized to contain ~10 Fos+ neurons in naïve unoperated 

brain tissue, ranging from 6-49 µm2.  In each structure, Fos was counted in 3 boxes placed at 

approximately the same locations between rats for each structure, assessed using a Paxinos brain 

atlas (Paxinos and Watson 2007).  Percent enhancement in Fos expression recruited in each 

structure by CRF-containing neuron laser stimulation in NAc, CeA, or BNST was calculated by 

comparison to equivalent sites in inactive eYFP control rats that received similar laser 

illuminations prior to euthanasia.  

Statistical analysis 

Behavioral data were analyzed using mixed-model ANOVAs with either between-subject 

(i.e., ChR2 vs. eYFP) or within-subject factors (i.e., days, laser effects), followed by two-tailed 

paired t-tests to assess within-subject post-hoc effects.  Wilcoxon Z tests were used for data that 

did not fit assumptions of parametric testing.  Independent pairwise comparisons were used for 

distant Fos analysis.  For all analyses p=0.05, and Cohen’s D was used to calculate effect sizes. 
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Results 

 

Local Fos plumes 

In NAc, ChR2 laser stimulation of CRF neurons rats produced 0.18-0.36mm radius local 

Fos plumes of 150-200% elevated expression immediately surrounding optic fiber tips, 

compared to NAc eYFP control levels at corresponding sites.  In CeA, ChR2 stimulation of 

CRF-containing neurons produced 150-200% elevated Fos plumes of 0.17–0.34mm radius, and 

in BNST produced 150-200% Fos plumes of 0.18-0.34mm radius.  These Fos plume sizes 

suggest that laser illumination of ChR2-infected CRF-containing neurons induced local zones of 

neural activation ~0.4-0.7mm in all three structures (Figure 4.1).  Therefore 0.7mm diameter size 

was used for placement symbols in localization-of-function maps (Figure 4.2). 

Distant Fos 

Excitation of CRF-expressing neurons in NAc medial shell (n=4 ChR2 NAc, n=3 eYFP 

NAc; Figure 4.3A) elicited >150-350% increases in Fos expression in distant mesocorticolimbic 

structures including the nucleus accumbens core (NAcC; t5 = 3.447, p = 0.018), anterior ventral 

pallidum (aVP; t5 = 7.109, p = 0.001), posterior VP (pVP t5 = 8.243, p < 0.001), posterior BNST 

(t5 = 3.065, p = 0.028), anterior lateral hypothalamus (aLH; t5 = 2.833, p = 0.037), posterior LH 

(t5 = 9.098, p < 0.001), CeA (t5 = 6.939, p = 0.001), and ventral tegmentum (VTA; t4 = 3.573, p 

= 0.023), as well as marginal trends toward enhancements in medial amygdala (MeA; t5 = 2.568, 

p = 0.050) and basolateral amygdala (BLA; t5 = 2.537, p = 0.052). 

 Stimulation of CRF-containing neurons in lateral CeA (n=5 ChR2 CeA, n=2 eYFP CeA; 

Figure 4.3B) also recruited mesocorticolimbic structures into activation, causing >150-350% 

increases in Fos expression in NAcC (t5 = 2.727, p = 0.041), NAc caudal shell (t5 = 5.529, p = 
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0.003), aVP (t5 = 2.893, p = 0.034), posterior BNST (t5 = 2.859, p = 0.035), pVP (t5 = 2.744, p = 

0.041), anterior LH (t5 = 6.291, p = 0.001), and VTA (t5 = 2.7240 p = 0.041), with marginal 

trends in NAc rostral shell (t5 = 2.408, p = 0.061) and MeA; t5 = 2.258, p = 0.074).  

 In contrast, stimulation of CRF-containing neurons in dorsolateral BNST produced 

minimal significant changes in Fos activation in tested structures, at least in the current small 

sample size (n=5 ChR2 BNST, n=1 eYFP BNST; Figure 4.3C).  Instead, excitation of this BNST 

CRF system solely produced a statistically significant change in the infralimbic cortex (IF) 

where Fos activation was suppressed with ChR2 stimulation (t4 = 3.822, p = 0.019). 

NAc and CeA paired CRF neuronal excitation focuses and amplifies cocaine motivation. 

For NAc CRF stimulation, in the 2-choice task where rats could freely choose between 

earning either a cocaine i.v. infusion plus with laser excitation of NAc CRF-containing neurons 

(Laser+Cocaine) or an identical cocaine infusion without laser (Cocaine alone), NAc ChR2 rats 

(n=6) primarily pursued only Laser+Cocaine, preferring that option by a 4:1 ratio over Cocaine 

alone by the final day (F1,5 = 8.365, p = 0.034; Figure 4.4A).  NAc ChR2 preference for 

Laser+Cocaine over Cocaine alone emerged as statistically significant by day 4 (t5 = 3.162, p = 

0.025).  On average, NAc ChR2 rats nosepoked 14.3±2.9 times at the Laser+Cocaine porthole 

on day 10 versus only 3.3±0.6 at the Cocaine alone porthole (responses: t5 = 3.307, p = 0.021).  

Consequently, NAc ChR2 rats earned nearly four times more Laser+Cocaine infusions 

(13.8±3.0) than Cocaine alone infusions (3.3±0.6; t5 = 3.050, p = 0.028).  Further, regarding 

absolute amounts of cocaine intake, NAc ChR2 rats consumed twice as much total cocaine than 

eYFP control rats even on the first day, indicating that NAc CRF stimulation quickly elevates 

overall consumption of cocaine (total infusions testing day 1; n=6 ChR2: 6.0±0.4; n=4 eYFP: 

3.7±1.4; t11 = 3.552, p = 0.005).  However, this difference in cocaine consumption disappeared 
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by day 2 and throughout day 10 of testing (total infusions day 10; n=6 ChR2: 17.2±2.6; n=3 

eYFP: 16.8±6.2; t8 = 0.071, p = 0.945). 

Unlike NAc ChR2 rats, NAc eYFP control rats chose essentially equally between 

Laser+Cocaine and Cocaine alone options across test days (day 10 Laser+Cocaine: 8.3±3.5 

infusions; Cocaine alone: 4.8±1.0; F1,2 = 2.077, p = 0.286; Figure 4.4B).  

For CeA CRF stimulation, in the 2-choice task, CeA ChR2 rats (n=5) similarly pursued 

their Laser+Cocaine option nearly exclusively, by almost a 4:1 ratio of nosepokes over Cocaine 

alone (F1,4 = 9.720, p = 0.036; Figure 4.5A).  This Laser+Cocaine preference emerged by testing 

day 6 for CeA ChR2 rats (t4 = 4.543, p = 0.010).  On day 10 CeA ChR2 rats earned 13.6±4.1 

Laser+Cocaine infusions, versus only 3.8±1.6 Cocaine alone infusions (t4 = 2.790, p = 0.049).  

By contrast, CeA eYFP control rats chose equally between Laser+Cocaine and Cocaine 

alone options, earning 5.8±3.8 Laser+Cocaine infusions and 3.0±0.7 Cocaine alone infusions by 

testing day 10 (n=4; F1,3 = 1.819, p = 0.270; Figure 4.5B) and significantly differed from CeA 

ChR2 in Laser+Cocaine preference (F1,7 = 5.845, p = 0.046).  On average, eYFP control rats 

consumed less total cocaine infusions as ChR2 rats on testing day 10, though this difference was 

not significant (eYFP rats: 9.0±5.0 total cocaine infusions; CeA ChR2 rats: 17.2±4.9; t6 = 1.152, 

p = 0.287).  

CRF-containing neuron excitation in NAc and CeA amplifies motivation breakpoint for cocaine. 

 A progressive ratio task measured the magnitude of incentive motivation, expressed as 

maximum effort or breakpoint that rats were willing to exert for cocaine.  In either NAc or CeA, 

laser ChR2 stimulation of CRF neurons approximately doubled effort breakpoint to obtain 

cocaine.  NAc ChR2 rats worked ~200% harder on the day when cocaine was accompanied by 

NAc laser than when cocaine was earned without laser (n=6; Wilcoxon Z = 2.023, p = 0.043; 
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Figure 4.4C), as NAc ChR2 effort breakpoints were 11.2±2.9 on Laser+Cocaine day versus only 

5.7±1.4 on Cocaine alone day.  Additionally, NAc ChR2 rats nosepoked 24.8±9.6 times (thus 

earning 4.5±0.8 infusions) on Laser+Cocaine day versus only 8.3±3.2 nosepokes and 2.7±0.6 

infusions on Cocaine alone day (Z = 2.023, p = 0.043).  In contrast, eYFP control rats with laser 

targeting NAc CRF neurons (n=4) did not differ in their breakpoints on Laser+Cocaine 

(6.0±2.2) versus Cocaine alone days (4.8±1.3; Z = 0.535, p = 0.5935), and eYFP effort on both 

days was similar to the lower NAc ChR2 effort on Cocaine alone day. 

 Similarly, CeA ChR2 rats reached breakpoints for cocaine that were >200% higher on 

Laser+Cocaine day (breakpoint: 8.4±1.8 ratio reached) than on Cocaine alone day (breakpoint: 

3.2±1.5; n=5; Wilcoxon Z = 2.060, p = 0.039; Figure 4.5C).  ChR2 rats nosepoked 16.4±4.1 

times on the Laser+Cocaine day (earning 4.0±0.4 average infusions), which was >400% more 

than the 3.2±1.5 nosepokes (and subsequent average 1.4±0.6 infusions) earned on Cocaine alone 

day (Z = 2.023, p = 0.043).  In contrast, CeA eYFP control rats (n=4) reached similar 

breakpoints between Laser+Cocaine (ratio reached: 7.3±2.0) and Cocaine alone days (6.0±1.6; 

Z = 1.342, p = 0.180), and thus significantly differed from CeA ChR2 rats (F1,7 = 8.810, p = 

0.021). 

Cocaine motivation unaffected by BNST CRF-containing neuron excitation. 

 In BNST, pairing laser excitation of CRF-containing neurons with one of two cocaine 

options in the 2-choice task potentially suppressed overall cocaine intake, but did not 

significantly alter preference among options (Figure 4.6A).  Regarding overall cocaine 

consumption, BNST ChR2 rats took much less cocaine in total (Laser+Cocaine infusions plus 

Cocaine alone infusions combined) than NAc ChR2 rats or CeA ChR2 rats (F2,14 = 5.002, p = 

0.023; Figure 4.7).  Overall, BNST ChR2 rats also consumed only roughly 2/3 as much cocaine 
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as BNST eYFP control rats with inactive virus by the final day of testing (BNST ChR2: 5.5±0.4 

total infusions on day 10; n=2 BNST eYFP: 9.0±1.0 infusions; t6= 3.834, p = 0.009).  Regarding 

choice, BNST ChR2 rats equally chose Laser+Cocaine and Cocaine alone options (n=5; F1,4 = 

0.435, p = 0.546), and responded for both options at very low rates.  For example, BNST ChR2 

rats made only 2.8±0.4 Laser+Cocaine nosepokes vs 3.6±0.6 Cocaine alone nosepokes on day 

10.  BNST ChR2 rats failed to escalate cocaine self-administration across days, earning a similar 

value of 5.5±0.4 Laser+Cocaine infusions on day 10 versus 7.7±2.0 Cocaine alone infusions on 

day 1; this was, if anything, higher than it was on day 10.  

BNST eYFP control rats similarly chose equally between Laser+Cocaine (5.5±0.5 day 

10 infusions) and Cocaine alone options (3.5±1.5; F1,1 = 3.94, p = 0.643; Figure 4.7B). 

In the progressive ratio task, BNST ChR2 laser stimulation of CRF-containing neurons 

failed to alter the breakpoint magnitude of motivation to work for cocaine rewards.  BNST ChR2 

rats reached effort breakpoints of 5.2±2.6 on Laser+Cocaine day and of 4.3±2.0 on Cocaine 

alone day (n=5 Wilcoxon Z = 0.921, p = 0.357; Figure 4.7C).  BNST ChR2 rats similarly did not 

differ in number of nosepoke responses for cocaine infusions, whether or not laser was 

concurrently present (n=5; Laser+Cocaine: 9.8±7.4 responses, Cocaine alone: 6.4±4.5; Z = 

1.095, p = 0.273).  BNST eYFP controls rats also showed no laser effects on effort breakpoint, 

reaching ratios of 6.0±0.0 for Laser+Cocaine and 3.0±1.0 for Cocaine alone (n=2, Z = 1.342, p 

= 0.180).  

Minimal CRF neuronal self-stimulation in NAc and CeA  

 In the spout-touch self-stimulation task, each instrumental touch on the designated empty 

Laser-spout earned 3-sec bins of laser excitation (10Hz).  Touches on the other Inactive spout 

delivered nothing and were a control measure of exploration.  Rats were categorized as robust 
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self-stimulators if they met the combined criteria of a) >50 Laser spout touches per session and 

b) twice as many Laser spout touches as Inactive spout touches.  Rats were categorized as low 

self-stimulators if they met the lesser combined criteria of a) >10 Laser spout touches (but <50), 

and b) twice as many Laser spout touches as Inactive spout touches.  For NAc sites, no rats met 

the >50 Laser spout touches criterion for robust self-stimulation on day 1, but 5 out of 6 NAc 

ChR2 rats met the lesser >10 Laser spout criterion for low self-stimulation.  Similarly, on days 

2-3 of testing these NAc ChR2 rats self-stimulated NAc CRF neurons 39.8±5.2 times by 

touching the Laser spout per 30-min session, compared to 9.9±4.9 touches on the Inactive spout, 

and so made >400% more contacts on the Laser spout than the Inactive spout (n=5; F1,4 = 

22.305, p = 0.009; Figure 4.8A).  In contrast, 1 control eYFP rat did initially meet low self-

stimulation criteria on day 1 but failed to meet this criterion on days 2-3.  Overall, NAc eYFP 

rats (n=4) touched equally on the Laser spout (11.6±5.8 touches) and Inactive spout (8.5±5.4 

touches) across days 2-3, earning only one-third the number of laser illuminations as NAc ChR2 

self-stimulators (F1,7 = 13.092, p = 0.009).  

For CeA sites, 2 out of 6 CeA ChR2 rats met criterion for robust self-stimulation, and 5 

out of 6 met criterion for low self-stimulation.  These CeA ChR2 rats self-stimulated by making 

40.0±12.9 touches on the Laser spout per day versus only 8.3±2.2 touches on their Inactive spout 

on days 2-3 of testing, or 400% more touches on Laser spout as on Inactive spout that delivered 

nothing (n=5; F1,4 = 7.713, p = 0.050; Figure 4.8B).  eYFP CeA control rats made only 13.0±3.7 

touches on the Laser spout versus 9.8±2.0 touches on the Inactive spout, which trended 

marginally toward fewer laser illuminations than CeA ChR2 rats on days 2-3 (F1,7 = 4.101, p = 

0.083).    
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 By contrast, BNST ChR2 rats failed to self-stimulate CRF-containing neurons in BNST.  

BNST ChR2 rats touched the Laser spout (24.3±7.1 touches) and Inactive spout (17.4±3.8) 

roughly equally on days 2-3 of testing (n=5; F1,4 = 0.811, p = 0.419), failing to meet criteria for 

either robust or low levels of BNST CRF self-stimulation (Figure 4.8C). 
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Discussion 

 

Pairing optogenetic excitation of CRF-containing neurons in NAc and CeA caused rats to 

selectively pursue and escalate self-administration of intrajugular cocaine infusions with 

concurrent ChR2 laser stimulation.  Excitation of these CRF systems in NAc and CeA focused 

pursuit on the laser-paired cocaine infusion in the two-choice task, enhanced breakpoint effort in 

the progressive ratio task, and was even sought after by itself in the spout-touch self-stimulation 

task.  In contrast, excitation of BNST CRF-containing neurons did not cause a focusing of 

cocaine pursuit on either the laser-paired or cocaine alone self-administration options, and if 

anything trended toward a suppression in escalation of cocaine intake.  Together these findings 

provide insight into the mechanisms through which brain stress systems can mediate cocaine 

pursuit and consumption. 

Motivation mechanisms for sucrose or cocaine 

We have previously demonstrated that optogenetic ChR2 stimulation of CRF systems in 

NAc and CeA can bias and amplify incentive motivation for sucrose rewards, while BNST CRF 

systems caused only aversive motivation and avoidance of paired-sucrose rewards (Baumgartner 

et al. 2021).  These sucrose incentive effects are in line with proposed neurobiological 

mechanisms through which stressors can lead to overconsumption and eating of “comfort foods” 

(Dallman et al. 2003).  However, theories on drug reward and addiction-related brain CRF 

systems are largely associated with aversive and distress-related motivation.  Our results provide 

evidence that drug pursuit and consumption can instead be driven by positively-valenced NAc 

and CeA CRF systems, similar to sucrose.  This suggests that our demonstrated incentive 
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motivation roles for NAc and CeA CRF-containing neurons may be more of a comprehensive 

brain mechanism for stress-based motivation than previously thought. 

 In contrast, the present study found that excitation of BNST CRF-containing neurons did 

not bias drug motivation either toward or away from the laser-paired cocaine infusion.  This 

result differs from previously demonstrated negative avoidance of a sucrose reward paired with 

laser excitation of BNST CRF-containing neurons, along with the patterns of distant Fos 

activation seen previously that were not recruited in the current study (Baumgartner et al. 2021).  

What could drive this difference between BNST CRF system control of sucrose versus cocaine 

motivation? One possibility is that BNST CRF systems may mediate aversive motivation for 

natural sucrose rewards, but there are other unknown mechanisms for motivation for cocaine 

rewards. This possibility would suggest that BNST CRF systems may actually be more important 

for natural rewards in comparison to drug motivation and addiction. Another possibility is that 

excitation of BNST CRF systems did in fact suppress cocaine motivation just like sucrose, and 

that suppression prevented any escalation of cocaine self-administration in general so that no 

avoidance could be detected.  Indeed, BNST ChR2 animals showed an overall suppression in 

total number of cocaine infusions across days in comparison to NAc and CeA ChR2 groups, and 

even inactive control virus animals.   

It is also possible that differences in life stress experiences could alter the control of 

BNST CRF systems on motivation. For example, the current experiment used rats on a restricted 

food diet during 2-choice cocaine operant tests, while previously rats that avoided laser-paired 

sucrose had ad libitum access to food in their home cages.  Typically, food restriction is known 

to enhance drug-seeking and consumption (Carroll et al. 1979; Papasava and Singer 1985).  

However, as CRF signaling has been implicated in both suppression of food intake and also 
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excessive food consumption, including differentially across brain structures, it is possible that 

BNST CRF systems may have unique motivational roles for food-restricted versus non-restricted 

rats (Bernier and Peter 2001; Dunn and Berridge 1990; Epstein et al. 2016; Iemolo et al. 2013; 

Krahn et al. 1986).  Another possible difference between this and previous sucrose experiments 

is that following catheter surgery, animals in the current study were single-housed to protect 

catheter patency, while previous sucrose rats were group-housed. This social isolation can 

conceivably cause chronic changes to brain stress systems like BNST CRF signaling, which 

could potentially explain the behavioral differences between sucrose and cocaine motivation 

experiments (Clark and Galef 1980; Manouze et al. 2019).  

Individual differences in experienced valence 

 Some individuals may be more or less affected by stress-induced reward consumption, 

and the current study indicates that there may be individual differences in affective valence 

induced by CRF systems.  The current work here, in line with previous findings (Baumgartner et 

al. 2021), demonstrates that some individual rats will self-stimulate for excitation of CRF-

containing neurons in NAc or CeA, thus suggesting an induced positive state.  However, this is 

not universally true for all rats, as a number of rats receiving the same NAc or CeA CRF-

containing neuronal stimulation do not meet any criteria for self-stimulation.  It is therefore 

possible that though CRF brain systems are able to guide and direct motivation for rewards, in a 

subset of individuals it can also mediate changes in affective valence, with no differences 

between these groups in cocaine pursuit and consumption.  Future research should investigate 

whether there is a relationship between these individual differences and other specific aspects of 

motivation, as in the present study, positively experienced self-stimulations in NAc and CeA 

ChR2 groups did not predict motivation to pursue and consume cocaine rewards. 
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Motivational roles for CRF systems 

 CRF systems in the extended amygdala are traditionally thought to generate aversive 

distress states, mediating anxiety-like responses to natural stressors and enhancing 

“emotionality” (Dunn and Berridge 1990; Heinrichs and Joppa 2001; Hupalo et al. 2019; Koob 

and Bloom 1985).  CRF-containing neuronal populations in CeA and BNST are linked to a wide 

spectrum of negatively-valenced states, including anxiety, pain, fear and fear learning, and drug 

withdrawal (Asok et al. 2018, 2016; Fadok et al. 2017; Funk et al. 2006; Minami 2019; 

Pomrenze et al. 2019b, 2019a; Sahuque et al. 2006; Takahashi et al. 2019; Tran et al. 2014).  As 

predicted by the allostatic model of addiction, chronic drug use increases CRF activation in the 

extended amygdala to elicit aversive withdrawal effects, thus leading to addictive relapse and 

overconsumption as attempts at hedonic self-medication (Funk et al. 2006; Koob and Le Moal 

1997, 2008; Koob and Schulkin 2019; Koob 2010, 2013; Olive et al. 2002; Park et al. 2013; 

Zorrilla et al. 2014).   

 However, our results support an alternate theory where CRF system activation increased 

drug seeking and escalation through incentive motivation, in contrast to hypothesized negative 

states induced by CRF.  This adds to a growing body of literature supporting a range of 

positively-valenced roles for CRF systems, capable of initiating bio-behavioral responses to both 

positive and negative stimuli (Kim et al. 2017; Lemos and Alvarez 2020; Lemos et al. 2012, 

2019; Merali et al. 1998, 2004; Schulkin 2017).  For the present NAc and CeA ChR2 incentive 

effects, CRF system activation may amplify incentive salience or ‘wanting’ to pursue and self-

administer cocaine drug rewards.  Further, while it is possible that the present BNST CRF-

containing neuronal stimulation may be neutral or aversive, we saw no evidence that activation 

of this BNST CRF system actually enhanced motivation for drug-seeking for either cocaine 
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reward, as would be predicted in hedonic-dysregulation theories.  If anything, the lack of 

escalation in our BNST ChR2 group as compared to other groups suggests that activation of 

these BNST neurons may actually be capable of suppressing motivation for cocaine, or is at least 

inconsequential to cocaine pursuit and consumption. 

Flexibility in valence 

It is of course possible that the positive valence of CRF system stimulation in NAc or 

CeA may flip valence under specific circumstances, such as chronic stress (Lemos and Alvarez 

2020; Lemos et al. 2012).  Indeed, preliminary work from our lab suggests that activation of CeA 

CRF-containing neurons does not increase appetitive behaviors toward an aversive stimulus 

(unpublished data), that excitation of all CeA cell-types is capable of eliciting (Warlow et al. 

2020).  Therefore, the target of CRF-initiated motivation and attribution of salience also likely 

influences resulting affective valence. Given the range of bio-behavioral states and responses to 

stressors that CRF is capable of initiating, a role for CRF in motivation is likely flexible and 

equally expansive (Schulkin 2017).  

CRF and addiction 

Understanding the relationship between brain CRF systems and drug motivation is 

integral to understanding stress-induced addictive relapse.  While the aversive distress of 

withdrawal or adverse life stressors is a plausible reason for relapse, addiction persists long after 

withdrawal states subside.  Additionally, cue-triggered drug craving often occurs in the absence 

of any feelings of conditioned withdrawal (Childress et al. 1988; O’Brien et al. 1998).  Here we 

demonstrate that the escalation of drug intake elicited by CRF systems is actually driven by 

incentive motivational mechanisms in NAc and CeA, while BNST CRF-containing systems if 

anything suppressed drug intake and escalation.  This may explain how positively-valenced 
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emotions and stressful events (i.e., forming a new relationship, winning the lottery) are 

recognized triggers for relapse in treatment programs in addition to typical aversive stressors 

(Annis and Graham 1995; Carney et al. 2000; Kaundal et al. 2016; Larimer et al. 1999; Maisto et 

al. 1988b; Swendsen et al. 2000).  Ultimately, while a role of CRF systems in aversive 

motivation is well defined, there is also a separable positive incentive role that we demonstrate 

here within the nucleus accumbens and central amygdala which may be integral to understanding 

substance abuse and addictive relapse (Lemos and Alvarez 2020). 

  



 121 

Figures 

 
 



 122 

4.1  Photomicrograph of virus expression and local Fos plumes. 
Photomicrographs display ChR2 virus expression (green) and Fos expression (purple) in Crh-Cre+ rats 
surrounding optogenetic fiber tips in A) nucleus accumbens (NAc) shell, B) central nucleus of the 
amygdala (CeA), and C) bed nucleus of the stria terminalis (BNST).  Laser Fos plume diagrams at right 
show size and intensity of local Fos expression following ChR2 stimulation of CRF-containing neurons.  
Light blue reflects >150% Fos enhancement and dark blue reflects >200% Fos enhancement over baseline 
inactive virus control groups.  NAcSh, nucleus accumbens shell; NAcC, nucleus accumbens core; opt, 
optic tract; CeL, lateral central amygdala; BLA, basolateral amygdala; mBNST, medial bed nucleus of 
stria terminalis; dlBNST, dorsolateral bed nucleus of stria terminalis.   



 123 

 
 

4.2  Localization of function maps 
Functional maps show histological placements of ChR2 rats receiving CRF-containing neuronal 
excitation in the A) nucleus accumbens (NAc) medial shell, B) central nucleus of the amygdala (CeA), or 
C) dorsolateral bed nucleus of the stria terminalis (BNST).  Symbol sizes show 0.7mm diameters to 
reflect measured radii of local Fos plumes.  Colors indicate % preference for the laser-paired cocaine 
option in 2-choice test, with reds indicating stronger Laser+Cocaine preference and blues indicating 
avoidance of the laser-paired cocaine infusion.  LS, lateral septum; LV, lateral ventricle; CPu, caudate 
putamen; NAc, nucleus accumbens; VP, ventral pallidum; ac, anterior commissure; ic, internal capsule; 
MeA, medial amygdala; GP, globus pallidus; IntC, intercalated amygdala; BMA, basomedial amygdala; 
BLA, basolateral amygdala; fx, fornix; SHy, septohypothalamic nucleus, MPA, medial preoptic area; 
LPO, lateral preoptic area  
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4.3  Distant Fos recruitment from NAc, CeA, or BNST CRF-containing neuron excitation 
Enhanced Fos expression >150-300% over eYFP control levels in mesocorticolimbic structures following 
ChR2 excitation of CRF-containing neurons in A) nucleus accumbens (NAc): enhancing distant Fos 
expression in the nucleus accumbens core (NAcC), anterior and posterior ventral pallidum (aVP, pVP), 
posterior bed nucleus of stria terminalis (BNST), anterior and posterior lateral hypothalamus (aLH, pLH), 
central amygdala (CeA), and ventral tegmentum (VTA) and B) CeA: enhancing Fos expression in NAcC, 
posterior NAc shell (pNAcSh), pBNST, aVP, pVP, aLH, and VTA.  C) Excitation of BNST CRF-
containing neurons caused a suppression in distant Fos expression in the infralimbic cortex (IF).  OFC, 
orbitofrontal cortex; aBNST, anterior bed nucleus of stria terminalis; PVN, paraventricular nucleus of the 
hypothalamus; MeA, medial amygdala; BLA, basolateral amygdala; SN, substantia nigra; PAG, midbrain 
periaqueductal grey area.  Means and SEM shown.  *p<0.05, **p<0.01, ***p<0.001  
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4.4  NAc CRF-containing neuronal stimulation biases and amplifies cocaine motivation 
A) ChR2 excitation of CRF-containing neurons in NAc medial shell caused preference for the laser-
paired cocaine infusion over Cocaine alone in the 2-choice test (n=6), reaching a 4:1 ratio by day 10.  B) 
In comparison, control NAc eYFP rats chose equally between options (n=3).  C) In progressive ratio (PR) 
breakpoint tests, NAc ChR2 CRF-containing neuron excitation enhanced incentive motivation breakpoint 
Laser+Sucrose over Sucrose Alone (n=6).  Laser did not affect NAc eYFP control breakpoint between 
progressive ratio test days (n=3).  Means and SEM reported.  *p<0.05 
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4.5  CeA CRF-containing neuronal stimulation biases and amplifies cocaine motivation 
A) ChR2 excitation of CRF-containing neurons in the lateral CeA) caused preference for the laser-paired 
cocaine infusion over Cocaine alone in the 2-choice test (n=5), reaching a 4:1 ratio by day 10.  B) In 
comparison, control CeA eYFP rats chose equally between options (n=4).  C) In progressive ratio (PR) 
breakpoint tests, CeA ChR2 CRF-containing neuron excitation enhanced incentive motivation breakpoint 
for Laser+Sucrose over Sucrose Alone (n=5).  Laser did not affect CeA eYFP control breakpoint (n=4) 
between progressive ratio test days.  Means and SEM reported.  *p<0.05  
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4.6  BNST CRF system stimulation fails to direct or enhance escalation of cocaine pursuit 
ChR2 excitation of BNST CRF-containing neurons did not direct cocaine preference in the 2-choice self-
administration task for either A) ChR2 BNST rats (n=5), or B) inactive eYFP control rats (n=2).  C) In 
progressive ratio (PR) breakpoint tests of magnitude of motivation to pursue cocaine, neither ChR2 BNST 
(n=5) or eYFP control (n=2) groups showed any difference in effort breakpoint nor nose poke responses 
between Laser+Cocaine and Cocaine alone days.  Means and SEM reported.  
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4.7  Differences in cocaine escalation for NAc and CeA versus BNST ChR2 groups 
When evaluating the total number of cocaine infusions (Laser+Cocaine plus Cocaine alone infusions) 
rats received across testing days, rats that had the opportunity to receive CRF-containing neuron 
stimulation of BNST neurons (n=5) showed a suppressed escalation of cocaine intake in comparison to 
rats able to receive CRF-containing neuron stimulation in NAc (n=6) or CeA (n=5).  Means±SEM shown.  
*p<0.05.  
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4.8  Spout self-stimulation of NAc and CeA CRF-containing neurons, not BNST 
A) In the spout-touch self-stimulation task, NAc ChR2 rats (n=5) given the opportunity to self-stimulate 
CRF-containing neurons in NAc shell responded on average 4x more on the Laser spout in comparison to 
the Inactive spout that delivered nothing.  These ChR2 NAc rats also responded at higher levels on the 
Laser spout than NAc inactive eYFP control rats (n=3).  B) Rats given the opportunity to touch a Laser 
spout that delivered CeA CRF-containing neuron excitation (n=5) touched the Laser spout 4x more than 
the Inactive spout, while CeA eYFP rats (n=2) responded randomly between both spouts.  C) Rats able to 
receive BNST CRF-containing neuron excitation showed no self-stimulation in the spout-touch task and 
responded randomly between the Laser spout and Inactive spout.  Means and SEM reported.  *p <0.05, 
**p<0.01  
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Tables 

Target 

Confirmed placement ranges 
(mm from Bregma) 

ChR2 
N’s 

eYFP 
N’s Contralateral misses, 

locations 
A/P M/L D/V Uni Bil Uni Bil 

CeA -1.92 to 
-3.12 

± 3.8 to 
4.6 

-6.8 to 
 -8.2 2 4 1 2 MeA, optic tract, BLA 

NAc +2.52 to 
1.08 

± 0.6 to 
1.6 

-6.0 to  
-7.0 2 2 1 2 NAcC 

BNST +0.36 to 
-0.36 ±1.4 to 1.8 -6.1 to  

-6.5 1 4 0 1 LS 

4.1  Histological placements of experimental animals 
Coordinates and N’s of ChR2 and eYFP Crh-Cre rats for central amygdala (CeA), nucleus 
accumbens (NAc), and bed nucleus of stria terminalis (BNST) target groups.  MeA, medial 
amygdala; BLA, basolateral amygdala; NAcC, nucleus accumbens core; LS, lateral septum. 
 



 132 

CHAPTER V. General Discussion  
 
Synopsis 

Incentive motivation and aversive motivation are controlled through interconnected 

limbic circuits capable of generating positively-valenced and negatively-valenced affective 

states.  Interactions between traditional reward-related circuitry and brain stress systems can 

modulate affective valence and motivation in response to changing internal states and 

environmental contexts.  Understanding these brain circuits and their ability to switch between 

positive and negative valence is critical to understanding the inappropriate attribution of salience 

and valence underlying neuropsychiatric disorders such as schizophrenia and addiction.  

Nucleus accumbens drives incentive ‘desire’ and aversive ‘dread’ through disinhibition 

 While the NAc medial shell has long been implicated in both appetitive and fearful 

motivated behaviors, there is opposing evidence on the mechanisms through which these 

behaviors are initiated.  On one side, decades of electrode self-stimulation and modern 

optogenetic studies have demonstrated that excitation of NAc shell elicits motivational effects 

(Cole et al. 2018; Koo et al. 2014; Lobo et al. 2010; Mogenson et al. 1979; Phillips 1984; Van 

Ree and Otte 1980; Rolls 1971).  However, a large body of literature also implicates inhibition of 

NAc shell in generating these behaviors (Echo et al. 2001; Reynolds and Berridge 2008, 2003; 

Richard and Berridge 2011b, 2013; Stratford and Kelley 1997).  
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 The NAc shell is therefore likely capable of multiple mechanisms for generating 

motivated behaviors, thus including both excitatory and inhibitory hypotheses.  This inhibitory 

mechanism is posited to require the release of downstream structures such as lateral 

hypothalamus (LH) and ventral pallidum (VP) into excitation through disinhibition (Heimer et 

al. 1991; Humphries and Prescott 2010; Lu et al. 1998; Mogenson et al. 1983; Usuda et al. 1998; 

Zahm and Heimer 1990; Zhou et al. 2003).  The disinhibition of NAc shell generating appetitive 

and fearful motivation aligns with pharmacological studies examining motivation elicited by 

DNQX or muscimol microinjections in NAc (Covelo et al. 2014; Faure et al. 2010; Reynolds and 

Berridge 2001, 2002, 2008; Richard and Berridge 2011b; Richard et al. 2013b; Stratford and 

Kelley 1997; Stratford and Wirtshafter 2012).  However, there are cases where DNQX can 

alternatively act as an AMPA receptor agonist (Lee et al. 2010; Menuz et al. 2007), in which 

case the observed behavioral effects would actually align with the long demonstrated excitatory 

effects (Mogenson et al. 1979; Phillips 1984; Van Ree and Otte 1980; Rolls 1971).  To my 

knowledge, this inhibition hypothesis has never been explicitly tested, and in Chapter 2 I sought 

to directly investigate this proposed mechanism. 

 The inhibition hypothesis was indeed supported in the current work, as simultaneous 

optogenetic excitation of NAc shell was capable of blocking the ‘desire’ and ‘dread’ behaviors 

elicited by DNQX microinjections.  First, I was able to replicate previous flips between 

appetitive and fearful motivation along the rostro-caudal gradient by manipulating environmental 

ambience.  Further, I demonstrated that both appetitive eating effects and fearful defensive-

treading effects generated by DNQX microinjections were suppressed by concurrent optogenetic 

excitation.  This importantly extends the inhibitory mode of motivation in NAc shell to both 
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incentive and aversive motivation, suggesting this disinhibition mechanism has a more expansive 

role in generating motivation.  

Next, I examined whether the downstream effects of DNQX-elicited motivation aligned 

with an inhibitory hypothesis of motivation by analyzing Fos gene expression as a proxy for 

neuronal activation.  As inhibiting NAc MSNs through DNQX AMPA receptor blockade is 

posited to release downstream structures into activation and release associated motivated 

behaviors, we in fact did demonstrate that DNQX microinjections both elicited appetitive 

motivation and enhanced Fos expression in downstream limbic structures such as LH, VP, and 

ventral tegmentum (VTA).  Further, concurrent optogenetic excitation suppressed both the 

DNQX-induced behavioral and neural effects, as ChR2 laser paired with DNQX microinjections 

returned downstream structures LH, VTA, and VP to baseline levels of activation.  Altogether, 

these experiments provide behavioral and neural evidence for an inhibitory mode of motivation 

in NAc medial shell that extends across positively- and negatively-valenced affective states. 

CRF brain systems in NAc, CeA, and BNST mediate incentive and aversive motivation for 

sucrose rewards 

 Corticotropin releasing factor (CRF) neural systems are highly implicated in generating 

aversive motivation underlying negative stress states such as aversive drug withdrawal (Bruchas 

et al. 2009; de Guglielmo et al. 2019; Grieder et al. 2014; Henckens et al. 2016; Koob et al. 

2014; Olive et al. 2002; Pomrenze et al. 2019b, 2019a).  However, other research provides 

evidence for potential incentive motivational roles of CRF systems, particularly in NAc and CeA 

(Kim et al. 2017; Lemos and Alvarez 2020; Lemos et al. 2012, 2019; Peciña et al. 2006).  

Chapter 3 of this dissertation therefore investigated the potential incentive and aversive 
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motivational roles of CRF-containing neuronal populations in NAc, CeA, and BNST through 

optogenetic manipulations in Crh-Cre+ transgenic rats.   

This work demonstrates that optogenetic excitation of CRF-containing neurons in NAc 

and CeA are capable of directing and amplifying incentive motivation for sucrose rewards and 

that it is inherently positively-valenced on its own.  Excitation of CRF-containing neurons in 

NAc or CeA caused rats to almost exclusively prefer a sucrose pellet paired with laser 

illuminations in the two-choice operant task, caused increased effort breakpoint for a laser-paired 

sucrose pellet in progressive ratio tests, and was actively sought after in self-stimulation tasks.  

This excitation also recruited a number of mesocorticolimbic structures into activation including 

VP, LH, and VTA, as measured through distant Fos analysis.  Further, halorhodopsin inhibition 

of NAc and CeA CRF-containing neurons produced oppositely-valenced effects, biasing 

motivation away from an inhibitory laser-paired sucrose reward and suppressing incentive 

motivation for inhibitory laser-paired sucrose in breakpoint tests.  This implies that not only are 

NAc and CeA CRF-containing neuronal populations sufficient for causing incentive motivation 

effects, but they are also necessary for this incentive motivation direction and amplification.  

 In contrast, excitation of BNST CRF-containing neurons produced only aversive 

motivation and negative-valence.  This CRF system activation caused strong avoidance of a laser 

paired-sucrose option in the two-choice task, suppressed incentive motivation for laser-paired 

sucrose through progressive ratio effort breakpoint tasks, and was avoided in self-stimulation 

tasks.  Finally, excitation of these BNST CRF systems recruited distinct activation patterns from 

NAc or CeA stimulation, eliciting Fos enhancements in pain- or distress-related structures 

including paraventricular nucleus of the hypothalamus and midbrain periaqueductal gray area.  
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Altogether, these findings suggest that BNST CRF systems may play a more traditional role in 

fear and aversive motivation as posited by opponent-process theories. 

 One novel finding from Chapter 3 lies in the strong motivational effects elicited by sparse 

CRF-containing neurons in NAc, in comparison to better categorized and denser CRF-containing 

populations in CeA and BNST.  Though little is known about CRF-expressing neurons in NAc, 

which may potentially act locally by activating acetylcholine interneurons and local dopamine 

release (Lemos et al. 2012, 2019), we were able to demonstrate their prevalence using 

fluorescent in situ hybridization (FISH).  With RNAScope FISH (Wang et al. 2012), I was able 

to validate the co-expression of Cre-recombinase and Crh mRNAs in NAc medial shell, lateral 

CeA, and dorsolateral BNST with minimal non-specific binding in the new Crh-Cre+ BAC 

transgenic rat line.  While CeA CRF-containing neuron populations have previously been 

validated using immunohistochemistry, potential Cre/CRF overlap in NAc cells in this rat line 

had not been previously evaluated (Pomrenze et al. 2015).  Further, I was able to assess Crh and 

Cre mRNA co-expression with FISH to quantitatively compare Cre selectivity and penetrance 

across regions.  This analysis showed that though they are less concentrated than CeA and BNST 

CRF neuronal populations, CRF-expressing neurons are prevalent throughout the rostro-caudal 

axis and dorsal/ventral portions of NAc medial shell.  If anything, we are potentially 

undercounting NAc CRF-containing neurons, as penetrance of Cre-recombinase in neurons with 

Crh mRNAs was lowest within the NAc in comparison to CeA and BNST expressions.  Future 

research should further categorize these NAc CRF-containing neurons, which though sparse are 

capable of greatly influencing incentive motivation. 
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Altogether, the set of findings from Chapter 3 highlights the range of affective valence 

capable of being generated by CRF-containing neuronal populations and suggests that incentive 

motivation mechanisms are possible from NAc and CeA CRF systems.  

CRF-containing neurons in NAc and CeA mediate incentive motivation for cocaine rewards, 

ambivalence from BNST CRF systems  

The influence of brain CRF systems on addictive behaviors and overconsumption has 

traditionally been posited to occur through negative distress states (Koob 2013; Roberto et al. 

2017; Zorrilla et al. 2014).  That is, increases in CRF expression in CeA and BNST are thought 

to drive the aversive feelings associated with drug withdrawal once use or consumption has 

ceased, and thus lead to addictive relapse in attempts to self-medicate this distressing state (de 

Guglielmo et al. 2017; Koob 2013; Koob et al. 2014; Olive et al. 2002; Roberto et al. 2017).  

This proposed mechanism of CRF systems in the extended amygdala is central to the prominent 

allostatic model of addiction, also known as opponent-process, hedonic homeostatic 

dysregulation, or hyperkatifeia theory theories.  Stemming from original opponent-process 

theory from Solomon & Corbit (Solomon and Corbit 1978; Solomon 1980), the allostatic model 

hypothesizes that with continued drug use, the positive or euphoric state induced by drugs of 

abuse, or positive A-state, gradually decreases with tolerance.  At the same time, continued drug 

use causes the opponent distressful B-state to increase over time, and this state is thought to be 

driven by upregulated CRF systems.  Through this lens, addictive relapse and overconsumption 

are proposed to occur as attempts to self-medicate the aversive affective states caused by CRF 

systems in the extended amygdala, which includes the CeA, BNST, and posterior portions of the 

accumbens shell in this model (Koob and Le Moal 1997, 2008; Koob and Schulkin 2019; Koob 

and Volkow 2010). 
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 However, addictive relapse can occur long after discontinued drug use or withdrawal 

subsides and positive stressors are also well known triggers for relapse, suggesting that aversive 

stress withdrawal states are likely not the only cause of addictive relapse or overconsumption 

(Childress et al. 1988; Grilo et al. 2012; Larimer et al. 1999; Maisto et al. 1988a, 1988b; O’Brien 

et al. 1998; Reyes et al. 2009).  Further, while CRF has indeed been long implicated in addictive 

relapse or reinstatement in animal models, these CRF-induced effects do not require other stress 

molecules like corticosterone and instead mimic reinstatement in ways similar to heroin (Shaham 

and Stewart 1995; Shaham et al. 1997).  

 Given the incentive motivational effects following CRF-containing neuronal stimulation 

in NAc and CeA in Chapter 3, I next wanted to test whether this positively-valenced affective 

state from CRF system activation could also be directed toward drugs of abuse.  Here the 

allostatic model of addiction would predict that pairing laser excitation of CRF-containing 

neurons with a cocaine reward would make that reward less valuable in comparison to a cocaine 

infusion without laser, since CRF system activation should create a negative distress state.  

However, we found that just as in Chapter 3 with sucrose rewards, laser excitation of NAc and 

CeA CRF-containing neurons was able to bias and amplify motivation for the paired cocaine 

reward.  Interestingly, we found that BNST CRF-containing neuron excitation did not direct 

motivation toward either cocaine option in contrast to the negative avoidance of laser-paired 

sucrose rewards demonstrated in Chapter 3.  However, while the aversive B-state caused by CRF 

activation is posited to cause escalation of intake to self-medicate the distress state, we saw no 

such evidence of escalation of cocaine self-administration in these BNST animals who if 

anything, demonstrated a suppression in cocaine escalation. 

Incentive and aversive motivation through ‘wanting’ systems 
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 It is critical to understand brain systems for incentive motivation and aversive motivation, 

particularly in cases where that motivation becomes pathological, such as addiction.  However, 

as outlined above, the current experiments investigating CRF system activation do not align with 

the theory of addiction that usually evokes this system, the allostatic or hedonic dysregulation 

theory.  Further, the Chapter 2 experiments do not align with this theory either, as the same 

inhibition of NAc, a region integral to addictive models, can cause both incentive and aversive 

motivation depending on the environment, thus suggesting more flexible mechanisms for 

affective valence rather that static motivational drives.  Indeed, the overconsumption of food 

elicited by DNQX microinjections was not in response to an aversive distress state, as rats with 

increased appetitive motivation here displayed no fear related or aversive reactions.  Further, the 

aversive motivation that was observed in rats following DNQX microinjections in the stressful 

environment did not coincide with appetitive effects, suggesting that these appetitive and distress 

behaviors are not dependent on one another.  Altogether, if the current experiments do not 

support opponent-process theories, what psychological mechanism could lead to such 

pathological motivational states and also align with the current findings?  

The ability of DNQX microinjections in NAc to elicit ‘desire’ and ‘dread’ are likely 

driven by directing endogenous mesolimbic dopamine and incentive salience systems.  

Psychologically, DNQX microinjections could elicit the demonstrated motivated behaviors by 

causing previously neutral cues (e.g., video camera and test room) to take on positive incentive 

salience in standard laboratory conditions or could cause these previously neutral cues to become 

more aversive and fearfully salient when tested in the stressful ambience.  Indeed, NAc 

disinhibition from DNQX and associated motivated behaviors are blocked by concurrent 

dopamine D1 or D2 receptor antagonists, suggesting that local dopamine signaling is required to 
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generate these motivational effects (Richard and Berridge 2011b; Richard et al. 2013b).  It would 

be interesting for future studies to test whether dopamine receptor antagonists would additionally 

block the recruitment of downstream mesocorticolimbic structures seen in the Fos analysis 

following DNQX microinjections, similar to concurrent optogenetic excitation.  

Given the wide influence of ‘wanting’ systems in incentive motivation, 

mesocorticolimbic dopamine could also mediate the present positively-valenced motivational 

effects that are influenced by acute stress and CRF systems (Berridge 2019; Lemos and Alvarez 

2020; Lemos et al. 2012; Peciña et al. 2006; Wang et al. 2005).  Local CRF-containing neurons 

in NAc or connections between CeA CRF-containing neurons and mesocorticolimbic dopamine 

could therefore modulate the attribution and magnitude of incentive salience ‘wanting’ for 

natural and drug rewards.  First, our distant Fos analyses did indicate that excitation of NAc or 

CeA CRF-containing neuronal populations recruits downstream mesolimbic structures such as 

VTA into activation, suggesting the recruitment of this incentive salience ‘wanting’ system.  

Further supporting this connectivity, NAc CRF microinjections elicit conditioned place-

preference and local dopamine release in non-stressed mice (Lemos et al. 2012).  However, 

chronic stress eliminates the ability of NAc CRF microinjections to stimulate local dopamine 

release, suggesting a mechanism through which stress experiences can cause flips between 

positively- and negatively-valenced affective states (Lemos et al. 2012).  Still, it is likely that 

CRF systems, at least in NAc, act to modify the incentive salience of reward cues.  In a 

Pavlovian Instrumental transfer (PIT) task, CRF microinjections in NAc shell amplify cue-

triggered ‘wanting’ and pursuit of a sucrose reward when a cue embodied with incentive salience 

is presented, comparable to dopamine-stimulating amphetamine microinjections in the same test 

(Peciña et al. 2006).  As these CRF-induced bursts in reward seeking are not triggered without 
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the presentation of the Pavlovian reward cue, NAc CRF systems are likely amplifying the 

attribution of incentive salience specifically.  It would be interest for future research to test 

whether the incentive motivational effects caused by CeA and NAc CRF-containing neuronal 

excitation would be blocked by concurrent dopamine antagonist administration or to test whether 

excitation of these neurons could also preferentially induce bursts of incentive motivation 

following presentation of a Pavlovian reward cue during PIT.   

Incentive sensitization theory 

 If CRF systems can influence ‘wanting’ and incentive motivation without requiring 

aversive states, there must still be a mechanism through which CRF systems and associated 

stress could lead to addictive relapse and overconsumption, given the large body of research 

implicating CRF in these behaviors (Mantsch et al. 2016; Shaham and Stewart 1995; Shaham et 

al. 1997).  Indeed, the incentive sensitization theory (IST) of addiction provides both 

psychological and neurobiological explanations.  

Most drugs of abuse directly or indirectly enhance dopamine release in NAc, thus 

activating incentive salience ‘wanting’ systems which can become sensitized with chronic use.  

Further, the sensitized dopaminergic response can coincide with sensitized incentive salience 

responses, or incentive sensitization, thus making drug-related cues more powerful and stronger 

‘motivational magnets’ over chronic use (Berridge and Robinson 2016; Horger et al. 1990; 

Kalivas and Stewart 1991; Mendrek et al. 1998; Robinson et al. 2016; Robinson and Berridge 

1993; Vezina et al. 2002).  This powerful incentive sensitization can explain the phenomenon of 

“chasing ghosts”, where some individuals with cocaine addiction report scouring the ground for 

and attempting to smoke tiny specks of white around them, despite rationally knowing that these 

are not cocaine but small pebbles (Rosse et al. 1993, 1994).   
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In particularly susceptible individuals, incentive sensitization can last many years, even 

after drug use subsides, as previous drug cues can long maintain their powerful incentive 

salience as a ‘motivational magnet’ (Robinson and Berridge 1993).  With the high occurrence of 

relapse despite years of sobriety, such as that seen in alcohol addiction, incentive sensitization 

theory can explain how a susceptible individual may still maintain that heightened incentive 

salience and sensitized dopaminergic response to previous alcohol-related cues that they may 

encounter (Robinson and Berridge 1993).  These powerful neurobiological and psychological 

effects therefore offer possible causes for addiction and escalating drug use, as well as relapse 

that occurs long after drug-use subsides.  Further, incentive sensitization and accompanying 

dopamine system sensitization can occur even without drug use for very vulnerable individuals, 

which could lead to behavioral addictions such as eating disorders or gambling addictions (Davis 

and Carter 2009; Devoto et al. 2018; Gearhardt et al. 2011; Hartston 2012; Linnet et al. 2012; 

O’Sullivan et al. 2011; Olney et al. 2018; Pfaus et al. 1990; Ray et al. 2012; Stice et al. 2012; 

Voon et al. 2017; Zeeb et al. 2017).   

These motivational mechanisms could underlie the surprising behavioral addictions that 

can be observed in some Parkinson’s patients following treatment with dopamine direct agonists.  

For certain individuals receiving supplemental dopamine medications, who therefore produce 

heightened dopaminergic responses similar to incentive sensitization, intense addictive behaviors 

such as compulsive gambling, compulsive sex, or compulsive shopping can occur, even for 

individuals who never displayed these behaviors pre-treatment (Bostwick et al. 2009; O’Sullivan 

et al. 2011; Vela et al. 2016; Voon et al. 2017; Warren et al. 2017; Weintraub et al. 2010). 

Sensitization of incentive salience for drug or reward cues can also be dynamic across 

different situations.  For example, particular states such as stress, hunger, etc. are capable of 
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amplifying that peak of incentive salience elicited by cues, thus suggesting that momentary 

experiences of stress or heightened emotions can enhance ‘wanting’ (Lemos and Alvarez 2020; 

Lemos et al. 2012; Peciña et al. 2006).  The current dissertation supports this notion, providing 

evidence that both external stressful environments and activation of CRF stress systems are 

capable of amplifying incentive motivation and aversive motivation.  Stressful or emotional 

moments can also enhance mesolimbic dopamine release, providing a mechanism through which 

these stress states can magnify incentive salience (Boyson et al. 2014; Lemos and Alvarez 2020; 

Lemos et al. 2012; Rougé-Pont et al. 1993; Wanat et al. 2008). 

Evidence for modes vs modules 

 The current experiments provide evidence for the coexistence of both excitatory and 

inhibitory mechanisms of motivation in NAc shell, and insight into the mechanisms through 

which the same limbic areas may be able to control both positively- and negatively-valenced 

effects.  For instance, the same DNQX microinjections were able to elicit both ‘desire’ and 

‘dread’ in NAc shell.  Further, despite the large body of literature demonstrating the negatively-

valenced effects of CeA CRF systems (Asok et al. 2018; Fadok et al. 2017; Jo et al. 2020; 

Partridge et al. 2016; Pomrenze et al. 2019b; Ventura-Silva et al. 2020), here I demonstrate that 

activation of these CeA CRF-containing neurons causes only positively-valenced effects in the 

current experiments.  Thus, this dissertation ultimately prompts the question of how could 

opposing valences be elicited from the same brain manipulations even within the same brain 

structures? 

 One option is called the ‘modules’ hypothesis.  This posits that there are actually 

separate brain units (e.g., cells, ensembles, or even brain areas) that control separate behaviors 

(Berridge 2019).  For example, perhaps there are specific neurons in the accumbens that elicit 



 144 

‘desire’ vs those that elicit ‘dread’ that make up the consistent rostro-caudal gradient or 

‘keyboard’ of motivational valence.  However, the modules hypothesis does not entirely explain 

the environmental tuning of the rostro-caudal axis in the generation of motivation, as these 

separate rostral and caudal modules would need to extend or shrink based on environmental 

conditions, such as in the stressful ambience condition.  Instead, this change in behavioral effects 

induced by the same manipulations in the same target locations supports a ‘modes’ hypothesis. 

 In contrast to a ‘modules’ framework, the ‘modes’ hypothesis posits that the same brain 

units can control separate behaviors (Berridge 2019).  Here, brain areas, neuronal ensembles, or 

general neurobiological units are capable of generating opposing valences.  This framework 

aligns much more with the motivational effects elicited from central points in the rostro-caudal 

axis of the accumbens medial shell, which are capable of generating either appetitive or aversive 

motivation, or even a mix of the two, based on environmental ambience. 

The current group of experiments provides evidence for the coexistence of both ‘modes’ 

and ‘modules’ motivational mechanisms across the limbic system.  Specifically, we demonstrate 

potential ‘modules’ of incentive motivation through CRF systems in NAc and CeA, versus a 

‘module’ of aversive motivation through BNST CRF systems that exists for both natural sucrose 

rewards and drug rewards such as cocaine.  However, it is of course possible that the 

positive/negative valence of incentive motivation versus fearful motivation induced by 

optogenetic stimulation of these CRF systems may be switchable, depending on environmental 

conditions.  Indeed, optogenetic stimulation of all neuronal cell-types in CeA has been found to 

flip depending on environmental situations and the types of stimuli laser is paired with (Warlow 

et al. 2020).  Beyond immediate environmental tunings, NAc CRF microinjections in mice have 

been found to flip from positively-valenced to negatively-valenced following chronic stress 
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exposure (Lemos et al. 2012).  Therefore, the valence of our specific CRF neuronal stimulation 

effects might also be capable of different ‘modes’ in different situations, so that CeA CRF or 

NAc CRF system valence might become negative in particular conditions, such as situations 

involving strong fear, aversive stress, or drug withdrawal.  Overall, the novel positive ‘modes’ of 

CRF-containing neurons in NAc and CeA contrasted with the well-documented negative 

‘modes’ of CRF systems, along with ambience-mediated ‘modes’ in accumbens medial shell for 

‘desire’ and ‘dread’, may ultimately indicate that the ability to elicit flexible motivational 

valences is a specific feature of striatal-level structures.  

Striatal-level generators of motivation 

 In a cortico-striatal-pallidal macrosystem, striatal-level structures NAc and CeA, which 

both generate incentive and aversive motivations, share unique anatomical characteristics that 

may particularly underlie their motivational strength (Alheid and Heimer 1988; Heimer and Van 

Hoesen 2006; Heimer et al. 2007; Swanson 2005; Zahm 2006).  This anatomical framework 

identifies conserved cortical-striatal-pallidal structures that show high overlap in neuron types, 

connectivity patterns, and embryological origins.  That is, NAc and CeA both receive descending 

glutamate inputs from cortical structures and send GABAergic outputs to pallidal targets, with 

loops to thalamus and back to cortical regions.  For example, the NAc receives cortical inputs 

from prefrontal cortex and sends projects to ventral pallidum, closely resembling dorsal striatum 

connectivity (Alheid and Heimer 1988; Heimer et al. 1991; Mogenson et al. 1983; Swanson 

2005; Zahm and Heimer 1990).  The CeA additionally fits the striatal criteria when using a 

macrosystem framework that identifies the extended amygdala.  Specifically, the CeA receives 

cortical-like glutamatergic input from basolateral amygdala and sends GABAerfic projections to 

the BNST as a pallidal-level structure (Alheid and Heimer 1988; Alheid 2003; Heimer and Van 
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Hoesen 2006; Heimer et al. 2007).  These parallel macrosystems in NAc and CeA may therefore 

include special roles for striatal-level structures in generating motivation, likely through specific 

mesocorticolimbic dopamine connections (Alheid 2003; Carlezon and Thomas 2009; Fudge and 

Emiliano 2003; Heimer and Van Hoesen 2006; Kim et al. 2017; Mogenson et al. 1980; Richard 

et al. 2013a; Robinson et al. 2014; Warlow et al. 2020, 2017; Zahm 2006).  

 Conversely, the only structure in the current experiments that solely elicited aversive 

motivation is the BNST, a pallidal-level structure.  Indeed, BNST mirrors other pallidal-level 

structures of ventral pallidum and globus pallidus in being composed of mostly GABAergic 

neurons receiving striatal-type inputs, with outputs sent primarily to effector targets in 

hypothalamus and brainstem and minor projections to re-entrant thalamo-cortico-striatal-pallidal 

loops (Alheid and Heimer 1988; Alheid 2003; Heimer and Van Hoesen 2006; Heimer et al. 

2007; Zahm 2006).  As a structure that has currently only demonstrated a negatively-valenced 

motivational ‘mode’ in the present dissertation, it is possible that differences in striatal- and 

pallidal-level structures underlie different incentive motivational capabilities. 

 Incentive and aversive motivation in clinical disorders 

 The present collection of results emphasizes the influence of brain stress systems and 

environmental stressors in the magnifying of incentive and fearful salience, thus resulting in 

powerful incentive motivation and aversive motivation.  Such cases of extreme ‘wanting’ have 

major implications for clinical cases of excessive reward pursuit and consumption, such as 

addiction (Berridge and Robinson 2016; Olney et al. 2018; Robinson et al. 2016; Robinson and 

Berridge 1993).  Given the prevalence of stress-induced relapse in both animal models and 

human experiences, understanding the brain mechanisms that drive this tuning of incentive 

salience are of critical importance for any therapeutic interventions (Hellberg et al. 2019; Reyes 
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et al. 2009; Shaham et al. 1997; Stewart 2000; Sureshkumar et al. 2017).  This dissertation 

therefore offers a strong argument for stress-based tuning through an incentive sensitization 

theory addiction framework.  The incentive motivation elicited by CRF systems in particular 

may explain why positive stressors are well-known triggers for relapse in rehabilitation 

programs, and in general can explain how relapse can occur long after consumption and 

withdrawal has subsided (Grilo et al. 2012; Kaundal et al. 2016; Larimer et al. 1999; Reyes et al. 

2009; Stewart 2000; Sureshkumar et al. 2017).  Positively-valenced stressors are much less 

studied in animal models of relapse in comparison to negatively-valenced stressors, and this 

work highlights the need for both in investigations into the neurobiology of addictive relapse. 

Though the current set of experiments provide much insight into the incentive and 

aversive motivational mechanisms that may drive addiction, these findings have many further 

implications in neuropsychiatric disorders beyond substance use disorders.  For example, the 

fearful negative salience elicited toward seemingly neutral environmental cues following DNQX 

administration could be a mechanism through which paranoia and fear may occur in 

schizophrenia.  Indeed, elevated dopamine signaling is highly implicated in the neurobiological 

profile of schizophrenia, which is posited to contribute to psychosis through aberrant salience 

(Abi-Dargham et al. 1998; Breier et al. 1997; Ceaser and Barch 2015; Davis et al. 1991; Howes 

and Kapur 2009; Howes et al. 2009; Kapur 2003; Kapur et al. 2005).  Given the bivalent 

motivation generated by accumbens inhibition, schizophrenia perhaps involves neural 

dysregulations in the rostro-caudal ‘keyboard’ gradient of ‘desire’ and ‘dread’, biasing toward 

the incorrect attribution of aberrant salience for stimuli that would be positive or neutral to 

neurotypical individuals (Faure et al. 2010; Olney et al. 2018; Richard and Berridge 2011a, 

2013). 
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 Dysregulations in brain CRF systems have additionally been implicated in a range of 

stress- and anxiety related neuropsychiatric disorders (Epstein et al. 2016; Hostetler and 

Ryabinin 2013; Piccin and Contarino 2020; Zorrilla and Koob 2004).  Women are twice as likely 

to be diagnosed with anxiety-related disorders in general, which can include generalized anxiety 

disorder, obsessive-compulsive disorder, post-traumatic stress disorder, and depression (Kessler 

et al. 2012; Navarro-Mateu et al. 2015).  Mounting evidence supports prominent sex-based 

differences in CRF systems in both animal and human models that could mediate these clinical 

presentations (Agoglia et al. 2020; Bangasser and Wiersielis 2018; Becker 2016; Dunlop et al. 

2017; Malikowska-Racia and Salat 2019; O’Dell and Torres 2014; Piccin and Contarino 2020; 

Salvatore et al. 2018; Tollefson et al. 2017; Uchida et al. 2019; Uribe et al. 2020).  However, 

recent clinical trials report that CRF antagonist administration does little to relieve symptoms of 

these and addictive disorders in women or men (Coric et al. 2010; Dunlop et al. 2017; Grillon et 

al. 2015; Kwako et al. 2015; Schwandt et al. 2016), suggesting that the expression of anxiety-

related disorders and sex differences likely stems from an interaction of multiple neurobiological 

systems (Shaham and de Wit 2016).   

Conclusion 

In conclusion, the limbic system contains powerful mediators and generators of both 

incentive motivation and aversion motivation, particularly in striatal-level structures.  This 

dissertation ultimately emphasizes the flexibility of these motivational brain circuits, which must 

adapt to constantly changing internal and external environments.  While mesocorticolimbic 

dopamine may drive ‘wanting’ and incentive or fearful motivation directly, stress can greatly 

influence these motivational drives through activation of brain CRF systems and environmental 

tunings of the rostro-caudal ‘keyboard’ of the accumbens medial shell.  Overall, further research 
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into the brain mechanisms underlying stress-mediated incentive motivation and aversion 

motivation would offer critical insights into various neuropsychiatric disorders of affective 

valence and motivation.  



 150 

Appendix A: Chapter III Supplementary information  
 

Chapter III Supplementary Methods 
 
Stereotaxic surgery 

 

Rats were anesthetized with isoflurane gas (4-5% induction, 1-2% maintenance) and 

placed in stereotaxic apparatuses (David Kopf, CA).  Pre-surgery rats received atropine 

(0.05mg/kg; i.p.; Henry Schein) and post-surgery received cefazolin (75mg/kg, s.c.; Henry 

Schein) and carprofen, which was also provided for 2 days post-surgery (5mg/kg; s.c.; Henry 

Schein).  Bilateral infusions in NAc, CeA, or BNST contained either active AAV-DIO-ChR2-

eYFP virus (n=19 female, n=14 male), or optically-inactive control virus AAV-DIO-eYFP (n=10 

female, n=9 male), both driven by EF1a promoters to infect only neurons containing Cre-

recombinase.  A separate group received halorhodopsin AAV-DIO-NpHR-eYFP (n=8 female, 

n=11 male) virus for CRF-containing neuronal inhibition (Fig. A.6).  NAc shell coordinates 

were: flat skull, from bregma A/P: +1.0 to +2.0, M/L: ±2.5 to 3.3, D/V: -6.5 to -7.2 (10º-16º; 

n=13 female, n=11 male).  Lateral CeA coordinates were: A/P: -2.2 to -2.8, M/L: ±4.2 to 4.7, 

D/V: -7.2 to -7.6 (n=12 female, n=12 male).  Dorsolateral BNST coordinates were: A/P: +0.24 to 

-0.24, M/L: ±3.6, D/V: -6.9, (16º; n=12 female, n=11 male).  Sites were bilaterally identical 

within individuals but staggered across rats (Fig. 3.1, Table 3.1).  Rats received bilateral 1.0µl 

virus infusions (0.1µl/min) with 10min for diffusion, and optic fibers (200µm) 0.3mm above 



 151 

virus were secured with surgical screws and acrylic.  Rats were monitored 7 days post-surgery, 

with 3 weeks for viral incubation.    

Two-choice sucrose  

Rats underwent an instrumental two-choice task to evaluate whether associative pairing 

of CRF-containing neuronal stimulation with earning one sucrose reward made it more or less 

desirable than an identical sucrose reward received without laser (Robinson et al. 2014).  Rats 

were first habituated to sucrose pellets in home cages and underwent 1 day where pellets were 

delivered to the operant box sucrose dish freely every minute for 25min.  Next, rats received 5 

days of Pavlovian lever training in ~45min sessions, where one of two levers appeared in 

alteration every minute for 8-sec paired with a distinct tone or white noise assigned to each lever, 

which was followed by a sucrose pellet for rats to associate these levers and rewards. 

Next, one lever was permanently assigned Laser+Sucrose for each rat (counter-balanced) 

and the other was assigned the Sucrose-alone.  Training included one day of fixed ratio 1 (FR1) 

reinforcement, where rats could freely choose between both available levers in 30min sessions. 

Each Laser+Sucrose lever press earned a sucrose pellet, assigned tone, and laser illumination (8-

sec).  Responses on Sucrose alone lever earned a sucrose pellet and assigned tone only.  Rats 

next underwent 3 days of FR1 with each session now beginning with a forced-exposure to each 

lever: only one lever was presented (random order) until the rat pressed it, that lever was 

repeated a second time, and then it was withdrawn while the other lever was presented twice. 

This was to remind rats of each lever outcome daily before choosing freely.  The remainder of 

the 30min session had both levers available for free choice.  Levers retracted for an 8-sec time 

out period following each reward earned.  On days 4-8, the beginning forced-exposure to both 

levers continued and the schedule of reinforcement escalated: FR4 (day 4), random ratio 4 (RR4, 

day 5), and RR6 (days 6-8).  Three additional RR6 days followed at the alternate laser frequency 

for each rat (10Hz or 40Hz).  The separate group with inhibitory halorhodopsin virus underwent 

identical procedures with constant yellow laser illumination.  

Progressive ratio  

 Progressive ratio (PR) tests assessed whether ChR2 stimulation of CRF-expressing 

neurons changed the magnitude of incentive motivation to earn sucrose reward.  Rats were tested 

one day with laser stimulation, using parameters identical to those in the two-choice task, and 

with only Laser+Sucrose lever available in a 30min session.  A second test on a separate day 
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was run withonly Sucrose-alone lever available, and without laser (counter-balanced order).  A 

third test on Laser+Sucrose day followed but used the alternate laser frequency (10Hz/40Hz). 

Within each session, the number of responses required to earn next reward increased after each 

reward received, following PR=[5𝑒𝑒(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛×0.2)]− 5, rounded to the nearest integer 

(Robinson et al. 2014).  Breakpoint or ratio-reached were compared between days.  Separate 

halorhodopsin rats underwent similar PR tests with laser inhibition. 

Spout-touch self-stimulation   

Incentive properties of CRF-expressing neuronal stimulation alone without sucrose were 

tested in an instrumental spout-touch self-stimulation test.  With two empty waterspouts 

available, each touch on a designated Laser-spout provided stimulation (3-sec; 10Hz/40Hz; 

30min).  Touches on the other Inactive-spout earned nothing, as a baseline exploration measure.  

Rats were classified on Day 1 as robust self-stimulators if they made 2x more touches on Laser-

spout as on Inactive-spout, and made >50 Laser-spout touches (Warlow et al. 2020).  Others 

were classified as low-level self-stimulators if they made at least 10 Laser-spout touches and 2x 

more Laser-spout than Inactive-spout touches.  Days 2-3 evaluated the consistency of self-

stimulation.  MedPC programs recorded responses.  Pilot NpHR groups underwent similar 

testing with inhibitory yellow laser (constant Hz, 8-sec stimulation; Fig. A.6) 

Place-based self-stimulation   

In another, relatively passive, place-based self-stimulation test, rats could earn laser self-

stimulations by entering and remaining in a designated chamber within a 3-chamber apparatus (2 

major, 1 smaller center).  Rats started sessions in the center chamber.  An initial session without 

laser evaluated baseline preference.  Then for 3 test days, one side was designated the Laser-

delivering chamber, with distinct contextual cues (dots/stripes, floor textures), and the opposite 

side was another no-laser chamber with distinct cues.  Entry into the Laser-delivering chamber 

(>half-body) triggered onset of laser stimulation, which continued to cycle for as long as rats 

remained in that chamber (3-sec-on/4-sec-off; 10Hz/40Hz; triggered via MATLAB program), 

and terminated upon exit.  Time spent in each chamber was scored by video (Noldus Observer 

XT 12).  Difference-scores (Laser-delivering - No-laser seconds) were compared between 

groups.  Pilot NpHR groups underwent similar testing with inhibitory yellow laser (constant Hz, 

cycling 8-sec-on, 4-sec-off; Fig. A.6) 

Histology  
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Brains were sectioned into 40 micrometer slices using a cryostat (Leica, Wetzlar, 

Germany).  Tissue was rinsed for 10min in 0.1M sodium phosphate buffer (NaPB) three times 

and blocked with 5% normal donkey serum (60 min).  Tissue was incubated overnight at room 

temperature in rabbit anti-cFos (1:2500; Catalog#: 226 003; Lot #: 4-63; RRID: AB_2231974; 

Synaptic Systems, Göttingen, Germany) and chicken anti-GFP (1:2000; Catalog#: AB13970; Lot 

#: GR3190550-30; RRID:AB_300798; Abcam, Cambridge, MA).  Slices were rinsed 3x for 

10min in 0.1M NaPB before incubation with biotinylated donkey anti-rabbit secondary (1:300; 

Catalog #: AB2340593; Lot #: 128703; RRID: AB_2340593; Jackson Immunoresearch, West 

Grove, PA) and donkey anti-chicken Alexa Fluor 488 (1:300; Code #: AB2340375; Lot #: 

144438; RRID:AB_2340375; Jackson Immunoresearch, West Grove, PA) for 120min.  Tissue 

was rinsed 3x for 10min in 0.1M NaPB before incubation with Streptavidin Cy3 (1:300; Catalog 

#: AB2337244, Lot #: 141873, RRID: AB_2337244; Jackson Immunoresearch, West Grove, PA) 

for 90min.  Tissue was rinsed 3x for 10min in 0.1M NaPB, mounted onto slides, and 

coverslipped with Pro-long gold (Invitrogen).  Images were taken using a digital camera 

(Qimaging, Surrey, BC, Canada) attached to a fluorescence microscope (Leica, Wetzlar, 

Germany) at sites surrounding optic fibers.  Immunoreactivity was visualized with filters with 

excitation bands 515-545 for Fos protein and 490-510 for virus.  Adobe Photoshop was used to 

adjust contrast and brightness.  

Local Fos plumes 

Local Fos plumes were evaluated by counting Fos+ neurons in 15 successive blocks 

(50x50um) along eight radial arms surrounding the fiber tip (Baumgartner et al. 2020; Warlow et 

al. 2020).  Neuron counting stopped once 2 consecutive blocks without Fos+ cells occurred, 

marking that arm’s radius.  Fos elevation was assessed as %change from levels of respective 

illuminated inactive-eYFP virus controls who underwent identical conditions. 
RNAScope® Fluorescent In Situ Hybridization (ISH) 

Brains were rapidly dissected, and flash frozen in dry ice.  Brains were equilibrized for at 

least 1 hour in a Leica cryostat and sectioned into 17µm slices.  A total of ~12-20 slices per rat 

(n=3 female, n=3 male) were collected from Crh-Cre+ rats.  Sections across the three slides per 

rat included sections of 1) nucleus accumbens shell and dorsal striatum, 2) dorsolateral BNST 

and globus pallidum, and 3) central amygdala and nearby amygdala nuclei.  Slices were thaw 

mounted on Superfrost plus slides (Fischer) and stored at -80 C with desiccators.  Procedures for 
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ISH followed Advanced Cellular Diagnostics (ACD) manual for RNAscope® 2.0 assay and 

followed previous reports (Lemos et al. 2019; Wang et al. 2012). 

Briefly, slides were fixed for 20 min (4º C) in 10% neutral buffered formalin and washed 

twice for 1 min each with PBS.  Slides were dehydrated for 5 min with 50% ethanol, for 5 min 

with 70% ethanol, and twice for 5 min with 100% ethanol before overnight incubation at -20º C 

in 100% ethanol.  The next day slides were first dried for 10 min (room temperature) and a 

hydrophobic barrier was drawn around the sections and dried for 15 min.  Section were 

incubated with Protease Pretreat-4 for 20 min, washed twice for 1 min each with ddH20, and 

incubated with ACD probes Rn-Crem-03 (Catalogue# 530001) and Rn-Crh-C3 (Catalogue # 

318931-C3) for 2 hours in the ACD HybEZ oven (40º C).  Slides then underwent amplification 

steps in the HybEZ oven (40º C) with two 2 min washes between steps (at room temperature).  

These amplification (at 40º C) steps included 1) Amp 1 for 30 min, 2) Amp 2 for 15 min, 3) Amp 

3 for 30 min, and 4) Amp 4-Alt A for 15 min.  Sections were stained with a DAPI-containing 

solution at room temperature, coverslipped with ProLong Gold Antifade, and stored at 4º C until 

imaging. 

Sections were imaged with a digital camera (Qimaging, Surrey, BC, Canada) attached to 

a fluorescence Leica DM microscope (Leica, Wetzlar, Germany).  Images at 40x were taken of 

the NAc shell, CeA, and BNST with the same hardware and software settings for quantification, 

titrated for each probe.  The number of cells expressing either Cre mRNA or Crh mRNA 

(containing >5 particles) were manually counted in core sample volumes (0.1mm x 0.1mm x 

17µm boxes; placed to contain at least 1 Crh+ expressing cell) of tissue in CeA, NAc shell, and 

BNST (CeA: n=3 female, n=3 male; NAc: n=3 female, n=4 male; BNST: n=3 female, n=3 male) 

(Lemos et al. 2019).    
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Chapter III Supplementary Results 
 

Local Fos plumes 

Laser excitation of CRF-containing neurons in NAc ChR2 rats elevated local Fos 

expression surrounding optic fiber tips by 150-200% in Fos plumes of 0.22-0.36mm radius, over 

NAc eYFP control level at corresponding sites (Fig. 3.1).  In CeA, ChR2 stimulation of CRF-

containing neurons produced 150-200% elevated Fos plumes of 0.25–0.38mm radius, and in 

BNST produced 150-200% Fos plumes of 0.26-0.43mm radius (Fig. 3.2).  These Fos plume sizes 

suggest that laser illumination of ChR2-infected CRF-containing neurons induced local zones of 

neural activation ~0.6-0.8mm in all three structures.  Therefore 0.7mm diameter size was used 

for placement symbols in localization-of-function maps (Fig. 3.1). 

 

Fluorescent in situ hybridization\ 

 The number of cells expressing either Cre+ mRNA or Crh+ mRNA (containing 

>5 particles) were counted in core sample volumes (0.1mm x 0.1mm x 17µm; placed to contain 

at least 1 Crh+ expressing cell) of tissue in CeA, NAc shell, and BNST (CeA: n=3 female, n=3 

male; NAc: n=3 female, n=3 male; BNST: n=3 female, n=3 male) (Lemos et al. 2019).  In CeA, 

CRF-containing neurons and Cre-expressing neurons were densely concentrated within the 

lateral division of CeA (CeL), with an average density of 10.1±0.9 co-labeled Cre+/CRF neurons 

in a 0.1mm x 0.1mm area.  CRF-containing neurons made up 31.3% of neurons sampled within 

the CeL, with an average of 10.5±1.0 Cre+ and 10.6±1.0 CRF+ neurons per box.  Similar 

densities were seen in females (34.0%) and in males (29.8%).  Non-specific Cre+ expression was 

not typically observed as 96.4% of Cre+ neurons in CeA were co-labeled with Crh mrRNA, and 

Cre+ mRNA was present in 95.3% of CRF mRNA-containing neurons (Fig. 3.3). 

 

In NAc, CRF-containing neurons were sparsely distributed throughout the rostro-caudal 

axis of medial shell (+2.52 to +1.08mm AP).  The density of Cre+/CRF+ neurons in NAc shell 

was 6.0±0.7 cells per 0.1mm x 0.1mm box, or approximately half that of CeA density.  NAc 

CRF-containing neurons made up 18.7% of neurons present in sample boxes, with an average of 

6.3±0.7 Cre+ and 6.9±0.7 CRF+ neurons per box.  Similar CRF+ mRNA expression was seen in 

the rostral (19.0% of neurons) and caudal (18.2%) accumbens shell.  Similar densities were seen 
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in females (18.4%) and in males (19.0%).  Significant non-specific Cre+ expression was not 

observed, with 95.3% of Cre mRNA+ neurons also containing CRF mRNA, and 87.1% of CRF 

mRNA+ neurons also were Cre mRNA+. 

In BNST, neurons expressing CRF mRNA+ were distributed throughout the dorsolateral 

BNST 1-3 slices per rat) with an average density of 10.0±0.7 co-labeled Cre+/CRF neurons per 

0.1x0.1mm box, similar as in CeA.  BNST CRF-containing neurons made up 23.2% of neurons 

sampled within the dorsolateral BNST, with an average of 11.0±0.9 Cre+ and 10.4±0.7 CRF+ 

neurons per box.  Substantial non-specific Cre+ expression was not observed as 90.1% of Cre+ 

neurons were co-labeled with CRF mrRNA, and Cre+ mRNA was present in 95.7% of CRF 

mRNA-containing neurons.  Similar densities were seen in females (19.7%) and in males 

(27.6%).   

 

Further analysis of potential sex differences for NAc & CeA groups 

Females and males both showed similar stimulation-induced incentive effects in NAc & 

CeA ChR2 groups on sucrose two-choice, sucrose breakpoint, and laser self-stimulation tests, 

but the N’s of sex groups within each structure were too small for statistical comparison.  

Therefore, it seemed of interest to further combine data from the two structures, and to 

statistically compare females vs males for combined CeA and NAc groups (n=9 Crh-Cre+ ChR2 

females, n=11 Crh-Cre+ ChR2 males).  A power analysis based on our observed laser CRF-

containing neuron ChR2 incentive effect sizes of 0.379 – 0.865 (partial η2) in two-choice, 

breakpoint, and self-stimulation results, indicated that groups of 2-4 of each sex would be 

required to achieve actual power of 0.97 – 0.99.  Similarly, a related power analysis based CRF-

related sex differences in a recent study (Piccin and Contarino 2020), indicated that groups of 

n=6 of each sex would be required for actual power of 0.98.  Our combined CeA/NAc sex 

groups at least exceeded these minimum N sizes.   

In the two-choice sucrose test (laser effect size, partial η2 = 0.865), female (n=7) and 

male (n=10) ChR2 rats did not differ in their strength of laser-induced preference for 

Laser+Sucrose over Sucrose-alone (F1,15 = 1.06, p = 0.319; CeA & NAc females = 9:1±1 ratio 

preference for Laser+Sucrose (452 ± 55 presses) over Sucrose-alone (57 ± 18); males = 8:1±1 

ratio preference for Laser+Sucrose (386 ± 46 responses) over Sucrose-alone: 46 ± 15).  Female 
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and male ChR2 rats also did not differ in overall lever-pressing in the two-choice task (F1,15 = 

0.545, p = 0.472).   

In the progressive ratio test of sucrose motivation for CeA/NAc ChR2 rats (laser effect 

size, partial η2 = 0.832), females and males did not differ in magnitude of enhancement of 

incentive motivation, both showing roughly 200% laser-induced increases in effort breakpoint 

(Laser+Sucrose females: 91 ± 10 breakpoint, n=6; males: 113 ± 9, n=7; Sucrose alone females: 

44 ± 10; males: 56 ± 9; F1,11 = 0.837, p = 0.380).  There was also no apparent sex difference in 

effort breakpoints achieved during progressive ratio regardless of laser effects (F1,11 = 1.961, p = 

0.189). 

In the spout-touch self-stimulation task (laser effect size, partial η2 = 0.830), female (n=7) 

and male (n=7) Crh-Cre+ ChR2 rats did not differ in their number of Laser-spout self-

stimulations (female = 17 ± 4 self-stimulations; male = 18 ± 4; F1,12 = 0.12, p = 0.915).  Females 

and males also did not differ in their pattern of touches across the two spouts (Inactive spout 

touches: female = 7±3; male = 9±3; F1,12 = 0.167, p = 0.690).  In the place-based self-stimulation 

task laser effect size, partial η2 = 0.379), female and male Crh-Cre+ ChR2 rats did not differ in 

their preference for the Laser-delivering chamber (females: 210% more time in Laser-delivering 

chamber than in No-laser chamber, n=7; males: 170%, n=7; F1,12 = 0.269, p = 0.613).  There 

were no sex differences in time spent in each chamber (females = 547±73 seconds in Laser-

delivering chamber: 255±43 sec in No-laser chamber; males = 519±74 sec in Laser-delivering 

chamber, 301±43 in No-laser chamber; F1,12 = 0.34, p = 0.857).  

We recognize that anatomical and behavioral sex differences have been reported in CRF 

systems, for example in extended amygdala and NAc (Agoglia et al. 2020; Bale and Vale 2003; 

Bangasser and Wiersielis 2018; Connelly and Unterwald 2020; Piccin and Contarino 2020; 

Salvatore et al. 2018; Torres et al. 2015; Uchida et al. 2019; Uribe et al. 2020; Valentino et al. 

2013; Weathington et al. 2014; Wiersielis et al. 2016).  However, our current data suggest 

incentive enhancement effects of ChR2 laser stimulation for CeA Crh-Cre+ and NAc Crh-Cre+ 

groups were similar for both females and males here, with roughly comparable magnitudes in 

both sexes.  We acknowledge that future studies with larger groups could potentially find subtle 

sex differences for these CRF ChR2 effects in future, but we conclude that the categorical effects 

for positively-valenced vs negatively-valenced motivation induced by CRF-containing neuronal 

stimulation in CeA, NAc and BNST described here appear robust and shared across sexes.  
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Figures 

 
 

A.1  Female and male groups across behavioral tests 
A) On average, male and female rats demonstrated similar levels of Laser+Sucrose preference in the two-
choice test (NAc: n=3 female, 5:1 ratio preference; n=5 male, 7:1 ratio; CeA: n=4 female, 13:1 ratio; n=5 
male, 10:1 ratio), while on average male BNST rats displayed a stronger opposite ratio preference for the 
Sucrose-alone option (n=5, 10:1 ratio) than female BNST rats (n=3 female, 5:1 ratio).  B) On average in 
NAc (n=2 female, n=4 male) and CeA (n=3 female, n=4 male) groups, both female and male rats 
displayed ~200% increases in Laser+Sucrose breakpoint effort.  In BNST groups, female (n=3) and male 
(n=5) rats showed similar ~50% suppression in Laser+Sucrose breakpoint effort.  C) In the spout-touch 
task, laser self-stimulations were similar for NAc rats (n=5 female, n=2 male; days 2-3, 10Hz and 40Hz 
combined), though the small group of female CeA ChR2 rats (n=2) on average self-stimulated more than 
male CeA rats (n=5).  D) On average, the small group of female NAc rats (n=2) displayed slightly higher 
levels of place-based self-stimulation than male NAc rats (n=6), and male BNST ChR2 rats showed a 
stronger laser-avoidance on average (n=5 female; n=5 male).  However, these small samples are not 
properly powered to detect meaningful sex differences across regions.  Means and SEM reported. 
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A.2  Two-choice extended data 
A) When comparing incentive motivational effects on sucrose preference between brain regions, there 
was no difference in laser bias for NAc and CeA ChR2 rats in the two-choice task (mixed-model 
ANOVA, laser x group interaction, F1,15 = 0.757, p = 0.398) or total number of Laser+Sucrose lever 
presses induced by ChR2 pairings (two-way unpaired t-test, t15 = 0.649, p = 0.526).  B) On average rats 
receiving unilateral ChR2 CRF-containing neuron excitation (NAc: n=4; CeA: n=3; BNST: n=2) 
demonstrated similar laser-preference as those receiving bilateral excitation (NAc: n=4; CeA: n=6; 
BNST: n=6), though groups were too small to detect possible differences.  C) Both 10Hz and 40Hz ChR2 
excitation caused similar preference for Laser+Sucrose with no differences between frequencies for NAc 
laser-effects (10Hz: F1,4 = 24.540, p = 0.008, n=5; 40Hz: F1,6 = 39.209, p = 0.001, n=7; frequency x laser 
interaction: F1,10 = 1.186, p = 0.302), or D) CeA ChR2 laser-preferences (10Hz: F1,8 = 59.101, p<0.001, 
n=9; 40Hz: F1,4 = 90.572, p = 0.001, n=5; frequency x laser interaction: F1,12 = 0.534, p = 0.479).  E) 
BNST ChR2 excitation during 3 days of RR6 showed similar Laser+Sucrose avoidance at both 10Hz (F1,6 
= 30.241, p = 0.002, n=7) and 40Hz (F1,4 = 9.474, p = 0.037, n=5), with no differences between 
frequencies (F1,10 = 0.996, p = 0.342).  Means and SEM reported.  n.s., nonsignificant 
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A.3  Progressive ratio extended data 
A) NAc and CeA ChR2 animals pressed more for Laser+Sucrose than Sucrose-alone (two-way paired t-
test, NAc: t5 = 4.015, p = 0.010, 95% CI: [58,234], d = 1.6, n=6; CeA: t6 = 4.959, p = 0.003, 95% CI: 
[113,333], d = 2.48, n=7), while BNST ChR2 rats responded at higher rates on the Sucrose alone day 
(two-way paired t-test, t7 = 6.178, p < 0.001, 95% CI: [109,243], d = 2.75, n=8).  eYFP rats responded 
equally between days across groups (two-way paired t-test, NAc: t4 = 0.788, p = 0.475, n=5; CeA: t4 = 
0.453, p = 0.673, n=5; BNST: t4 = 0.506, p = 0.640, n=5).  CeA NpHR rats pressed less on the 
Laser+Sucrose day (two-way paired t-test, t6 = 4.631, p = 0.004, 95% CI: [72,231], d = 2.44, n=7), as did 
NAc NpHR rats (two-way paired t-test, t5 = 4.659, p = 0.006, 95% CI: [69,239], d = 2.04, n=6).  BNST 
NpHR rats responded equally across PR days (two-way paired t-test, t5 = 0.365, p = 0.730, n=6).  B) 
When comparing incentive effects in sucrose motivation between brain regions, NAc and CeA ChR2 rats 
demonstrated comparable levels of breakpoint enhancement from CRF-containing neuron excitation 
(mixed-model ANOVA, laser x group interaction, F1,11 = 0.010, p = 0.921).  C) On average rats that 
received unilateral ChR2 stimulation (NAc: n=3; CeA: n=2; BNST: n=2) demonstrated comparable laser-
based effects on sucrose motivation as rats that bilateral ChR2 (NAc: n=3; CeA: n=5; BNST: n=5), 
though groups are too small to meaningfully compare effects.  D) Both 10Hz (t3 = 4.841, p = 0.017, n=4) 
and 40Hz ChR2 (t5 = 6.010, p = 0.002, n=6) excitation in NAc caused ~200% enhancements of 
breakpoint effort for Laser+Sucrose. CeA ChR2 stimulation of CRF-containing neurons also caused 
~200% increases in laser-paired breakpoint similarly at 10Hz (t6= 4.992, p = 0.002 n=7) or 40Hz (t4 = 
4.3981, p = 0.012, n=5).  BNST ChR2 excitation during PR testing showed comparable ~50% reductions 
in laser-paired breakpoint at10Hz (t7= 6.178, p<0.001, n=8) and 40Hz (t3 = 5.333, p = 0.013, n=4).  
Means and SEM reported.  n.s., nonsignificant, *p<0.05, **p<0.01, ***p<0.001  
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A.4  Spout self-stimulation extended data 
A) There was no difference in the magnitude of self-stimulation between NAc (n=7) and CeA (n=7) 
ChR2 rats (days 2-3, 10Hz and 40Hz combined; laser x group interaction, F1,12 = 0.002, p = 0.961).  B) 
Both 10Hz (NAc n=3; CeA n=3) and 40Hz (NAc n=4; CeA n=4) ChR2 excitation in NAc and CeA ChR2 
self-stimulators caused similar self-stimulation for Laser-spout on average, though groups are 
underpowered to detect potential differences.  C) A pilot experiment tested self-stimulation for 8-sec laser 
durations across ChR2 groups, though the present small pilot is not sufficiently powered to detect 
potential effects (10Hz and 40Hz, 2-3mW, 8-sec bins).  D) Correlations between percent preference for 
Laser-spout in spout self-stimulation task and percent preference or percent enhancements for 
Laser+Sucrose lever in two-choice and progressive ratio tasks.  Correlations and lines depict data only 
from rats designated as self-stimulators, while non-self-stimulating individuals are depicted for 
comparison.  Means and SEM reported.  n.s., nonsignificant *p<0.05 
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A.5  Place-based self-stimulation extended data 
A) Both NAc ChR2 and CeA ChR2 sites supported comparable levels of place-based self-stimulation of 
CRF-containing neurons (laser x group, F1,14 = 0.028, p = 0.871).  B) No significant laser-preference or 
avoidance was present for eYFP rats (main effect of laser, NAc: F1,4 = 0.113, p = 0.754, n=5; CeA: F1,4 = 
0.086, p = 0.784, n=5; BNST: F1,4 = 3.726, p = 0.126, n=5).  C) Both 10Hz and 40Hz ChR2 excitation in 
NAc caused similar levels of self-stimulation, causing ~150% increases on average in time spent in the 
Laser-delivering chamber at 10Hz (n=3) and 40Hz (n=5).  CeA ChR2 self-stimulation across frequencies 
was on average stronger at 10Hz frequency (n=5; 200±10% increase) than 40Hz (n=3; 150±25% 
increase), though groups are not properly powered to detect meaningful differences.  Laser-delivering 
chamber avoidance was present in rats receiving BNST CRF-neuron excitation at both laser frequencies 
tested (n=6 10Hz, n=4 40Hz) causing ~50% decrease in time spent in Laser-delivering side on average in 
the current sample.  Means and SEM reported.  n.s., nonsignificant 
 



 163 

 
A.6  Halorhodopsin pilot data 
A) Average Fos plume in Crh-Cre+ NpHR rats after laser inhibition targeting NAc CRF-expressing 
neurons (plumes of 0.11-0.22mm radius from fiber tip), B) CeA CRF-expressing neurons (plumes 0.08-
0.16mm radius), and C) BNST CRF-expressing neurons (0.09-0.14mm radius; >15% suppression from 
eYFP control baseline: yellow; >25% suppression from eYFP: orange).  D: dorsal, M: medial, L: lateral, 
V: ventral.  D) NAc, CeA, and BNST NpHR pilot rats in the spout self-stimulation test responded 
minimally and equally between Laser-spout (8-10mW; constant; 8-sec) and Inactive-spout, though groups 
are underpowered to properly detect laser-effects (NAc n=3; CeA n=3; BNST n=3).  E) Inhibition of 
CRF-expressing neurons in NAc (n=5), CeA (n=5), or BNST (n=4) NpHR rats does not support place-
based self-stimulation or avoidance, at least in these current pilot groups.  Means and SEM reported. 
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Tables  
 

NAc CRF 
neurons Fos+ count 

ChR2 vs. eYFP 
Unpaired t-test, p-

value 

Confidenc
e Interval 

Effect 
size 

Region NAc ChR2 
(n=6) 

NAc eYFP 
(n=5) t p 95% CI d 

IF 58.5 ± 6.4 47.8 ± 2.7 0.68 0.52   

OFC 64.2 ± 1.8 54.2 ± 9.4 0.37 0.72   

NAcC 87.7 ± 3.8 49.4 ± 2.7 7.89 <0.001* 27, 49 5.06 

aVP 62.7 ± 1.4 36.4 ± 3.6 7.29 <0.001* 18, 34 4.61 

pVP 68.6± 1.7 28.0 ± 2.4 13.56 <0.001* 34, 48 8.73 

aBNST 60.0 ± 1.9 36.6 ± 2.7 6.66 <0.001 15, 31 4.25 

pBNST 84.6 ± 3.4 39.4 ± 2.7 10.48 <0.001* 35, 55 6.45 

aLH 65.7 ± 2.9 36.2 ± 1.7 8.37 <0.001* 21, 37 5.46 

pLH 67.2 ± 3.3 30.4 ± 2.5 8.62 <0.001* 27, 46 5.41 

PVN 58.5 ± 3.5 49.6 ± 3.1 1.87 0.10   

MeA 66.8 ± 4.2 34.8 ± 3.8 5.58 <0.001* 19, 45 3.42 

CeA 65.2 ± 3.3 30.6 ± 1.3 9.00 <0.001* 26, 43 6.29 

BLA 44.8 ± 4.6 40.7 ± 4.3 0.34 0.74   

VTA 56.0 ± 1.2 27.8 ± 3.0 9.27 <0.001* 21, 35 5.76 

SN 32.2 ± 3.2 25.6 ± 5.0 1.15 0.28   

PAG 52.3 ± 3.6 40.6 ± 4.9 1.97 0.08   

CeA CRF 
neurons Fos+ count 

ChR2 vs. eYFP 
Unpaired t-test, p-

value 

Confidenc
e Interval  

Effect 
size 

Region CeA ChR2 
(n=6) 

CeA eYFP 
(n=5) t p 95% CI d 

IF 52.0 ± 4.9 39.4 ± 2.2 2.18 0.057   

OFC 71.2 ± 4.6 46.4 ± 2.1 4.52 0.001 12, 37 3.12 

aNAcSh 63.3 ± 3.5 37.2 ± 1.7 6.28 <0.001* 17, 36 4.21 

pNAcSh 90.0 ± 8.7 35.2 ± 4.2 5.28 0.001* 31, 78 3.56 
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NAcC 95.8 ± 9.6 25.8 ± 6.8 5.72 <0.001* 43, 98 3.62 

aVP 61.0 ± 2.3 28.2 ± 2.0 10.65 <0.001* 36, 40 6.62 

pVP 62.0 ± 2.4 29.2 ± 2.1 10.02 <0.001* 25, 40 6.19 

aBNST 85.7 ± 6.1 28.8 ± 2.0 8.17 <0.001* 41, 73 5.90 

pBNST 104.3± 7.0 41.6 ± 5.0 6.97 <0.001* 42, 83 4.41 

aLH 55.3 ± 2.7 27.6 ± 4.1 5.86 <0.001* 17, 38 4.20 

pLH 53.7 ± 2.0 30.6 ± 0.6 9.93 <0.001* 18, 28 7.33 

PVN 65.2± 10.3 51.4 ± 6.1 1.09 0.30   

MeA 60.5 ± 2.6 32.2 ± 3.3 6.82 <0.001* 19, 38 4.13 

BLA 54.5 ± 3.1 37.0 ± 6.3 2.65 0.027* 3, 32 1.62 

VTA 55.2 ± 7.0 33.6 ± 2.4 2.72 0.023* 4, 40 1.94 

SN 34.2 ± 4.2 29.6 ± 2.3 0.90 0.39   

PAG 47.7 ± 3.1 47.6 ± 2.0 0.02 0.99   

BNST CRF 
neurons Fos+ count 

ChR2 vs. eYFP 
Unpaired t-test, p-

value 

Confidenc
e Interval 

Effect 
size 

Region BNST 
ChR2 (n=5) 

BNST eYFP 
(n=4) t p 95% CI d 

IF 53.6 ± 6.2 47.5 ± 3.1 0.81 0.45   

OFC 64.0 ± 7.7 49.5 ± 4.9 1.49 0.18   

aNAcSh 65.0 ± 5.0 47.5 ± 5.9 2.28 0.056   

pNAcSh 68.6 ± 7.2 47.8 ± 1.9 2.50 0.041* 1, 41 2.08 

NAcC 74.6 ± 5.6 43.3 ± 2.5 4.69 0.002* 16, 47 3.58 

aVP 47.8 ± 5.8 33.8 ± 4.6 1.69 0.13   

pVP 63.2 ± 2.5 37.8 ± 0.86 8.752 <0.001* 19, 32 7.06 

aLH 67.8 ± 1.2 34.3 ± 1.5 17.44 <0.001* 29, 38 11.6 

pLH 65.4 ± 2.5 34.5 ± 2,6 8.49 <0.001* 22, 40 5.72 

PVN 73.8 ± 2.8 36.5 ± 1.6 10.74 <0.001* 29, 46 7.94 

MeA 72.4 ± 6.3 45.0 ± 4.0 3.45 0.011* 9, 46 2.49 

CeA 42.6 ± 3.9 29.0 ± 2.5 2.79 0.03* 2, 25 1.95 

BLA 72.0 ± 2.8 38.3 ± 2.1 9.26 <0.001* 25, 42 6.48 
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VTA 43.8 ± 5.4 41.8 ± 3.6 0.30 0.77   

SN 41.0 ± 1.9 34.5 ± 2.5 2.07 0.077   

PAG 71.0 ± 2.4 40.8 ± 5.0 5.84 0.001* 18, 42 3.92 
A.1  Brain-wide Fos activation from CRF system excitation in NAc, CeA, or BNST 
Table shows Fos+ protein quantification in mesocorticolimbic regions after final exposure to ChR2 
excitation in NAc (top; n=3 female, n=3 male ChR2 group), CeA (middle; n=3 female, n=3 male ChR2 
group), or BNST (below; n=2 female, n=3 male ChR2 group).  Fos+ protein quantification in 
mesocorticolimbic regions (left columns), for ChR2 rats and eYFP rats.  “Fos+ Count” reflects mean of 
each group at each site ± standard error (SEM).  Two-sided unpaired t-tests between ChR2 and eYFP rats 
were performed for each target group (NAc, CeA, or BNST).  Also see Fig. 3.4.  IF, infralimbic cortex; 
OFC, orbitofrontal cortex; aNAcSh, anterior nucleus accumbens shell; pNAcSh, posterior nucleus 
accumbens shell; NAcC, nucleus accumbens core; aVP, anterior ventral pallidum; pVP, posterior ventral 
pallidum; aBNST, anterior bed nucleus of stria terminalis; pBNST, posterior bed nucleus of stria 
terminalis; aLH, anterior lateral hypothalamus; pLH, posterior lateral hypothalamus; PVN, hypothalamic 
paraventricular nucleus; MeA, medial amygdala; CeA, central amygdala; BLA, basolateral amygdala; 
VTA, ventral tegmentum; SN, substantia nigra; PAG, midbrain periaqueductal gray.  *p<0.05, **p<0.01, 
***p<0.001  
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