
Aerodynamic Shape Optimization using a Time-Spectral
Approach for Limit Cycle Oscillation Prediction

by

Sicheng He

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2021

Doctoral Committee:

Professor Joaquim R. R. A. Martins, Chair
Professor Carlos E. S. Cesnik
Professor Bogdan I. Epureanu
Professor Krzysztof J. Fidkowski

Sicheng He

hschsc@umich.edu

ORCID iD: 0000-0003-1307-4909

© Sicheng He 2021

To my parents

ii

Acknowledgments

I would like to thank Prof. Martins for his support through the years of my Ph.D. study. He has
pointed me towards a fruitful direction of research. His passion for numerical methods and aircraft
design is contagious. I have also benefited from the quick responses and feedbacks from him on
both research and other aspects of life. I consider myself very lucky to have Prof. Martins as my
advisor.

I would also like to acknowledge my committee members, Profs. Cesnik and Fidkowski from
the aerospace engineering department and Prof. Epureanu from the mechanical engineering de-
partment for agreeing to review this thesis and the efforts they have made to accommodate my
schedule. I took one of my first courses on structural mechanics and also the aeroelasticity course
from Prof. Cesnik. In the aeroelasticity class for the first time, I learned about the phenomenon
called flutter that I did not know by that time would be my Ph.D. thesis topic. After taking Prof.
Fidkowski’s aerodynamic class as an undergraduate, I made my mind to pursue a Ph.D. in this
field. He was also kind enough to take me over several independent studies that gave me a chance
to work on the discontinuous Galerkin method based code xflow. This makes the experience of
learning our CFD code ADflow much smoother.

During my Ph.D. study, I also had a great opportunity to collaborate with Profs. Terlaky, and
Zuluaga from Lehigh University on a side project about structural optimization. I have learned
many things about linear algebra and convex optimization from them. I also want to thank them
for the efforts they have put into editing my first structural optimization paper which I believe
improve the paper’s quality a lot. I am also thankful to Mohammad Shahabsafa, Ali Mohammad
Nezhad, Weiming Lei, and Ramin Fakhimi for their help.

Through my Ph.D., I collaborated the most with Eirikur Jonsson. I learned many things from
him about programming and visualization through this collaboration. Besides, whenever I had
any issue with my computer or the cluster, Eirikur was always there to help. Daning Huang,
Gaetan Kenway, John Hwang, and Charles (Sandy) Mader helped me to get on my research. The
Friday frisbee games with them are missed a lot. I also enjoyed the time that I spent with the
lab visiting students Jichao Li, Yayun Shi, Xiaolong He, and Song Chen. They were very hard
working and always held a very positive attitude about life and research even during difficult times

iii

(a.k.a your adjoint gradient does not match with the finite difference derivative). Talking with
them always reminded me about my home town that I did not have a chance to visit for the last
six years. I would like to thank Hang Li from the University of Tennessee for many useful talks
about flutter. I thank Yinqian Liao for the many questions she has answered about visualization
towards the very end of my Ph.D. study. I am grateful to Ping He, Peter Lyu, Devina Sanjaya,
and Shaowu Pan for giving so many great suggestions on research and beyond. I also benefited
from the interactions with Anil Yidrim, Ben Brelje, David Burdette, Gustavo Halila, John Jasa,
Josh Anibal, Marco Mangano, Mohamed Bouhlel, Nick Bons, Neil Wu, Sabet Seraj, Shamsheer
Chauhan, Shugo Kaneko, and Xiaosong Du. Chenyu Yi, Qian Ma, Xianjun Pei, Jifa Mei, Liren
Yang, Bowen Li, and Sid Srivastava have been very supportive all through the years.

Finally, I would like to thank my parents for their support through my Ph.D. study. Without
their support, I would never accomplish this goal.

iv

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . viii

List of Tables . xi

List of Appendices . xii

List of Acronyms . xiii

List of Symbols . xv

Abstract . xix

Chapter

1 Introduction . 1

1.1 Motivation . 1
1.2 Background . 5

1.2.1 Flutter and LCO . 5
1.2.2 LCO solution methods . 7
1.2.3 LCO derivative computation methods 10
1.2.4 Natural frequency and mode shape sensitivity computation methods . . . 12

1.3 Thesis overview . 15

2 Computational Components . 17

2.1 Prescribed motion equations . 17
2.2 Time-spectral CSD equations . 19

2.2.1 Airfoil . 19
2.2.2 Wing . 21

2.3 Time-spectral CFD equations . 25
2.3.1 Mesh deformation . 26
2.3.2 Mesh velocity computation . 27
2.3.3 GCL . 29
2.3.4 Boundary condition for the airfoil test case 30

v

2.3.5 Boundary condition for the wing test case 31
2.3.6 Load calculation for the airfoil test case 32
2.3.7 Load calculation for the wing test case 32

2.4 CFD–CSD load and displacement transfer . 33
2.4.1 Displacement transfer . 33
2.4.2 Load transfer . 34

2.5 AD . 35
2.5.1 Variables and functions as lines of code 35
2.5.2 FAD . 36
2.5.3 RAD . 37
2.5.4 Example . 38

3 Time-Spectral Aeroelastic Equations and Jacobian-Free Newton–Krylov Solver . . 41

3.1 Time-spectral aeroelastic equations . 41
3.2 Time-spectral aeroelastic solution . 43
3.3 Preconditioner . 45

3.3.1 Direct-inversion preconditioner . 46
3.3.2 Schur complement based preconditioner 47
3.3.3 Saddle point system preconditioner . 48
3.3.4 Diagonal correction . 48

4 Time-Spectral Aeroealstic ADjoint and Krylov Subspace Solver 50

4.1 Coupled adjoint overview . 50
4.2 Coupled adjoint implementation . 53

4.2.1 Prescribed motion residual partial derivatives, ∂Rm/∂q, ∂Rp/∂q 53
4.2.2 Structural residual partial derivatives, ∂STS/∂x 54
4.2.3 Structural residual partial derivatives, ∂STS/∂q 54
4.2.4 Aerodynamic residual partial derivatives, ∂ATS/∂x 56
4.2.5 Aerodynamic residual partial derivatives, ∂ATS/∂q 56

4.3 Coupled adjoint solution . 58
4.3.1 Coupled Krylov solver . 58

5 Derivatives for Eigenvalues and Eigenvectors for Analytic RAD 60

5.1 Generalized eigenvalue problem . 61
5.2 Background . 62
5.3 Derivation of the RAD formulae . 65

5.3.1 Adjoint method . 66
5.3.2 Modal method . 69
5.3.3 Improved modal method . 72

5.4 Implementation recommendations . 74
5.4.1 Recommendation 1: Never form M̂, K̂ matrices explicitly 74
5.4.2 Recommendation 2: Reuse factorized matrices 75

5.5 Derivative verification . 75

vi

5.5.1 Numerical model . 75
5.5.2 Dot product test . 76
5.5.3 Lanczos iteration benchmark . 76

5.6 Summary . 80

6 Flutter and LCO Analysis Results . 82

6.1 Airfoil results . 82
6.1.1 Aerodynamic benchmark with prescribed motion 82
6.1.2 LCO prediction . 90
6.1.3 Flutter boundary prediction . 98
6.1.4 Preconditioner performance study . 101

6.2 Wing results . 105
6.2.1 Model description . 105
6.2.2 Flutter boundary results . 110
6.2.3 LCO results . 112

7 Aerodynamic Shape Optimization for LCO Speed 120

7.1 Airfoil results . 120
7.1.1 ADjoint solution performance . 120
7.1.2 Derivative verification . 122
7.1.3 LCO speed index optimization . 122

7.2 Wing results . 130
7.2.1 ADjoint solution performance . 130
7.2.2 Derivative verification . 131
7.2.3 LCO speed optimization . 132

8 Conclusion . 138

Bibliography . 142

Appendices . 155

vii

LIST OF FIGURES

FIGURE

1.1 The transonic dip is best captured using a nonlinear viscous aerodynamic model [57]. . 5
1.2 LCO response curves and flutter point. 6

2.1 Typical section wing model; α and h represent the pitching and plunging motion,
respectively; b is half chord length; cg is center of gravity; −ba is the elastic center
coordinate; bxα is the center of gravity coordinate. 20

2.2 The implemented GCL compares well with analytic results Benoit and Nadarajah [9]. 30
2.3 Transfer illustration. PS is a projection of PA on the structure mode surface. |PAP ′A| =

|PSP ′S |. 33

5.1 Schematic of the original generalized eigenvalue solver, the FAD mode solver, and the
RAD mode solver. Ṁ and K̇ are the coefficients of the directional derivatives, and Φ̂ΦΦ

and Λ̂ΛΛ are the weights of the weighted output derivative. 64
5.2 XDSM for the eigenvalue problem. 67
5.3 Finite-element model of the beam. 75
5.4 Upper: Eigenvalue derivative relative error. Lower: Eigenvector derivative relative

error. We test RAD: λ1 →M,K, and compare with a reverse mode Lanczos iteration.
Total degrees-of-freedom is 80. 79

6.1 NACA 64A010 Euler meshes. 84
6.2 NACA 64A010 RANS meshes. 85
6.3 NACA 64A010 prescribed motion inviscid Cl, Cm curves benchmarked with experi-

mental results by Davis [23]. N = 256 for the time-accurate solutions. Every fourth
point is shown. 86

6.4 NACA 64A010 prescribed motion viscous Cl, Cm curves benchmarked with experi-
mental results by Davis [23]. N = 256 for the time-accurate solutions. Every fourth
point is shown. 87

6.5 Inviscid time-accurate load history with different steps sizes and mesh levels. From
top to bottom are coarse, medium and fine mesh results, respectively. 88

6.6 Viscous time-accurate load history with different steps sizes and mesh levels. From
top to bottom are coarse, medium and fine mesh results, respectively. 89

viii

6.7 LCO responses under various Vf at M = 0.8 with time-spectral and time-accurate
methods using an inviscid flow model. The results from Li and Ekici [70], Thomas
et al. [137] are also included. 92

6.8 LCO responses under various Vf at M = 0.8 with time-spectral and time-accurate
methods using a viscous flow model. 93

6.9 Time-accurate LCO responses under Vf = 0.716 at M = 0.8 for medium mesh with
an inviscid flow model. The reference prescribed pitching magnitude for time-spectral
method with 7 time instances is 2◦. 95

6.10 Time-accurate LCO responses under Vf = 0.729 at M = 0.8 for medium mesh with
a viscous flow model. The reference prescribed pitching magnitude for time-spectral
method with 7 time instances is 2◦. 96

6.11 LCO with inviscid flow model with and without GCL. 97
6.12 LCO with viscous flow model with and without GCL. 98
6.13 NACA 64A010 flutter boundary compared with Euler results from Li and Ekici [71]

and Hall et al. [43] and RANS results (with SA turbulence model) Bohbot et al. [14]
and Marti and Liu [94] . 100

6.14 Solutions at M = 0.7 and M = 0.83 with medium mesh 192× 64 using Euler model.
The former solution is used to warm-start the latter solution. 102

6.15 Convergence history for solving the M = 0.83 flutter boundary with an initialization
of the M = 0.7 Euler solution. 103

6.16 Convergence history for solving the M = 0.72 flutter boundary with an initialization
of the M = 0.7 RANS solution. 104

6.17 First 5 modes of AGARD 445.6 case weakened mode 3 [147]. The coordinates of
the blue points are from the AGARD report. The gray surfaces are a polynomial
regression of those blue points. 107

6.18 Geometry of AGARD 445.6 case . 108
6.19 CFD mesh used in this study. Inviscid mesh shown in the left, and viscous grid shown

in the right. 110
6.20 AGARD 445.6 flutter boundary with different structural modes considered. Current

results match better with numerical results by [74] than with experimental results by
Yates [147]. 112

6.21 Cp distribution at M = 0.499 with an inviscid flow model. From top to bottom are
three different time instances at the flutter point. 113

6.22 Cp distribution at M = 0.954 with an inviscid flow model. From top to bottom are
three different time instances at the flutter point. 114

6.23 Cp distribution at M = 1.141 with an inviscid flow model. From top to bottom are
three different time instances at the flutter point. 114

6.24 Cp distribution atM = 0.499 with a viscous flow model. From top to bottom are three
different time instances at the flutter point. 115

6.25 Cp distribution atM = 0.954 with a viscous flow model. From top to bottom are three
different time instances at the flutter point. 115

ix

6.26 Cp distribution atM = 1.141 with a viscous flow model. From top to bottom are three
different time instances at the flutter point. 116

6.27 5th time instance of LCO responses for AGARD 445.6 at M = 0.954 with different
prescribed motion magnitude . 117

6.28 LCO behavior for AGARD 445.6 at M = 1.072 . 118
6.29 LCO behavior for AGARD 445.6 at M = 0.954 . 119

7.1 Adjoint equation residual convergence history for Vf and C l. A 10−8 relative residual
convergence criterion is enforced. 121

7.2 FFD box for the adjoint test . 122
7.3 FFD box for the aerodynamic shape optimization . 124
7.4 Vf optimization history . 126
7.5 Geometry of baseline and optimized airfoil . 127
7.6 Cp distributions for the baseline (left) and the optimized (right) airfoils at different

time-instances. 128
7.7 Cp distributions on the surface of the baseline (black) and optimized (blue) airfoils at

different time-instances. 129
7.8 Adjoint equation residual convergence history for Vf and C l. 10−8 residual conver-

gence is enforced. 131
7.9 FFD box for the adjoint test . 132
7.10 FFD box for the LCO speed optimization . 135
7.11 Vf optimization history . 136
7.12 LCO speed optimization results. The block on the left shows the lift coefficient distri-

bution. The block in the middle shows Cp distribution on pressure (left) and suction
(right) sides. The block on the right shows Cp distribution over airfoil cross-sections
at slices A to C. Baseline (blue) and optimized (green) results are shown. Row 1 to
row 3 correspond with time-instance 1 to 3. 137

x

LIST OF TABLES

TABLE

5.1 Geometry dimensions, discretization, and material properties of the beam model. . . . 76
5.2 Dot product test results. 77
5.3 RAD relative error using a random eigenvector or eigenvalue seed compared with a

reverse mode implementation of a Lanczos method [55]. 78
5.4 Summary of methods. 81

6.1 Specifications for the CT6 test case [23]. 83
6.2 Mesh sizes. 83
6.3 Maximum Cl and Cm predicted by time-accurate and time-spectral method using in-

viscid flow model. 90
6.4 Maximum Cl and Cm predicted by time-accurate and time-spectral method using vis-

cous flow model. 91
6.5 Simulation time (wall-time) (sec) by time-accurate and time-spectral method using

inviscid flow model. 91
6.6 Simulation time (wall-time) (sec) by time-accurate and time-spectral method using

viscous flow model. 92
6.7 Airfoil structural properties for LCO prediction [137]. 92
6.8 Airfoil structural properties of the Isogai case [53] 99
6.9 AGARD 445.6 wing geometric properties . 109
6.10 Density for each point from the flutter boundary [147] 111

7.1 Solution time of Vf and C l adjoint equations using two cores (one for structure and
the other for aerodynamic) with a medium Euler mesh with 3 time-instances. 121

7.2 Verification of coupled-adjoint gradients for the airfoil case 123
7.3 Aerodynamic shape optimization problem . 124
7.4 Function values with baseline and optimized aerodynamic shapes 125
7.5 Solution time of Vf and C l adjoint equations using 36 cores (one for structure and the

other for aerodynamic) with a medium Euler mesh with 3 time-instances. 130
7.6 Verification of coupled-adjoint gradients for the wing case. 133
7.7 Aerodynamic shape optimization problem . 134
7.8 Function values with baseline and optimized aerodynamic shapes 134

xi

LIST OF APPENDICES

APPENDIX

A CSD Equations Example . 156

B Derivation of Equations from Chapter 5 . 157

xii

LIST OF ACRONYMS

AD algorithmic differentiation

AGARD Advisory Group for Aerospace Research and Development

ALE arbitrary Lagrangian Eulerian

ANK approximate Newton–Krylov

AOA angle-of-attack

BWB blended wing body

CFD computational fluid dynamics

CFL Courant—Friedrichs—Lewy

CNK coupled Newton–Krylov

CSD computational structural dynamics

CS complex-step

DADI diagonalized alternating direction implicit iterations

DFT discrete Fourier transform

DOF degree-of-freedom

FD finite difference

FFD free-form deformation

FEM finite element method

FFT fast Fourier transform

FGMRES flexible generalized minimal residual

FAD forward algorithmic differentiation

xiii

GCL geometric conservation law

GMRES generalized minimal residual

GS Gauss–Seidel

LCO limit cycle oscillation

LHS left hand side

MDO multidisciplinary design optimization

MC Monte Carlo

NLFD nonlinear frequency domain

PDE partial differential equation

RAD reverse algorithmic differentiation

RANS Reynolds-averaged Navier–Stokes

RHS right hand side

SA Spalart–Allmaras

SPS saddle point system

TSD transonic small disturbance

uCRM undeflected Common Research Model

URANS unsteady Reynolds-averaged Navier–Stokes

XDSM extended design structure matrix

xiv

LIST OF SYMBOLS

Latin Symbols

An a vector containing all values of the area in different time-instances of a
cell

Ai area of a cell at the ith time-instance
ATS time-spectral CFD residual
a nondimensional location of airfoil elastic axis
B1 a matrix dependent on Vf , fn, Mn, dDQ/dω, and un

B2 a matrix dependent on ∂|α1st mode|/∂un and ∂un∂φ/∂un

b semi chord length
Cl,i lift coefficient for ith time-instance
Cm,i moment coefficient for ith time-instance
Cp coefficient of pressure
D spectral differentiation operator
DQ second-order time differentiation operator for a two degree-of-freedom

system
Dt,t second order spectral differentiation operator
E set of all edges of a cell
erel finite-difference parameter
f aerodynamic load
fnA aerodynamic load on aerodynamic surface mesh nodes for all time-

instances
f̄i ith time-instance aerodynamic load, equal to

[
−Cl,i, 2Cm,i

]>
f̄r,i dimensionless aerodynamic for the ith structural mode
fr generalized external loads
f̄ dimensionless aerodynamic load
f̄n dimensionless aerodynamic load for all time-instances
G function that transfers structural displacements to aerodynamic surface

mesh
G′ functions that transfers aerodynamic surface loads to structural nodes
h plunging coordinate
I function of interest
Iα airfoil moment of inertia
J time-spectral aeroelastic equation Jacobian
K stiffness matrix
Kn stiffness matrix for all time-instances

xv

Kr reduced stiffness matrix
Kn
r reduced stiffness matrix for all time-instances

k a unit vector perpendicular to the airfoil plane
M mass matrix
Mn mass matrix for all time-instances
Mr reduced mass matrix
Mn

r reduced mass matrix for all time-instances
M Mach number
m airfoil mass
m0 wing mass
NCFD number of CFD state variables
NCSD number of CSD state variables
Nx number of the design variables
n number of time-instances
P preconditioner for coupled system
PCFD block preconditioner for CFD
Pmotion, CSD block preconditioner for motion and CSD component
p∞ mainstream static pressure
Q permutation matrix
q coupled time-spectral aeroelastic equation state variables
q∞ mainstream dynamic pressure
q(k) state variable for kth Newton iteration
R spatial CFD residual
R coupled time-spectral aeroelastic residual
Rm prescribed motion magnitude residual from R
Rp prescribed motion phase residual from R
r linear equation residual for Newton updates
rα radius of gyration
Sref reference area for the wing
STS time-spectral CSD residual
Sα static unbalance, equal to mbxα
T minimum time period, equal to 2π/ω
t time
Uf freestream speed
U∞ mainstream flow speed
u CSD state variable
ui state variable for ith time-instance
un CFD state variable for all time-instances
umin one of finite-difference parameters for matrix-free matrix-vector prod-

uct
V0 wing volume
Vi nodal velocity of the ith node

xvi

Vf flutter (LCO) velocity index, equal to Uf/bωα
√
µ

Vf,0 initial state flutter (LCO) velocity index
vi,j edge vector from point i to point j
Vx, Vy, Vz flow velocities relative to mesh in the x, y, z directions, respectively
vx, vy, vz flow velocities in the x, y, z directions, respectively
vx,g, vy,g, vz,g mesh velocities in the x, y, z directions, respectively
W aerodynamic surface mesh to volume mesh transfer module
XS,0 surface mesh for the jig shape
Xn
S surface mesh for all time-instances

Xn
V volume mesh for all time-instances

xng mesh x coordinates for all time-instances
xg mesh x coordinate
xα static unbalance
y+ non-dimensional distance of the first mesh layer from a wall

Greek Symbols

α pitching coordinate
αm mean angle of attack
α1 pitching motion first harmonic mode
∆q increment unit Newton step without preconditioner
∆qVf , ω,CSD part of ∆q corresponding to Vf , ω and CSD state variables
∆q1 first two rows of mbqVf ,ω,CSD, corresponding to Vf and ω
∆q2 3rd row and beyond of mbqVf , ω,CSD, corresponding to the CSD state

variables
∆y increment unit Newton step with preconditioner
∆yCFD CFD state variable part of ∆y
∆yVf , ω,CSD Vf , ω and CSD state variable part of ∆y
ε0,j prescribed motion magnitude for the jth mode
ζ CFD state variables
ζn CFD state variables for all time-instances
ηηηij structural displacement of jth mode
η̄ηηij dimensionless structural displacement of jth mode
θ Newton step size parameter
θ1stharmonic,j the phase angle of 1st harmonic component of the jth mode
ΛΛΛ matrix composed of eigenvalues of the generalized eigenvalue problem
µ airfoil (wing) mass ratio
ΦΦΦ the matrix made up of φφφj
Φ̆ΦΦ polynomial fitted mode shapes
Φ̂ΦΦ reduced set of the mode shapes
Φ̃ΦΦ truncated set of the mode shapes
φ pitching motion for first harmonic mode phase

xvii

φ0 prescribed pitching motion for first harmonic mode phase
φφφj the jth structural mode shape
ψψψ the adjoint vector
ΩΩΩ the matrix made up of ω
ΩΩΩn ΩΩΩ for all time-instances
ω flutter (LCO) frequency, equal to 2π/T
ωj natural frequency of the jth mode
ωh plunging natural frequency
ωα scaling frequency (pitching natural frequency for the airfoil and the 2nd

structural mode natural frequency for the wing)
ω0 initial state flutter (LCO) frequency

xviii

ABSTRACT

In aircraft design, limit cycle oscillation (LCO) is an important phenomenon that we need to con-

sider. Future aircraft are likely to have more flexible wings making them more susceptible to

LCO. To avoid this tendency, we can conduct an multidisciplinary design optimization (MDO) to

maximize the LCO onset speed by changing the aerodynamic shape of a wing.

One challenge is that we need to simulate LCO efficiently using a high-fidelity computational

fluid dynamics (CFD) model. Previous harmonic-balance-based LCO prediction methods ei-

ther have low linear convergence rates or require expensive Newton steps to achieve quadratic

convergence. To address this, we propose a preconditioned, Jacobian-free, coupled Newton–

Krylov (CNK) method for the time-spectral aeroelastic equations. By solving the coupled system

directly, the method reduces the computational cost of each Newton step, making quadratic conver-

gence affordable. We demonstrate the capability of the CNK solver by verifying the results against

a time-accurate solver and by comparing them to other harmonic-balance-based results reported

in the literature. We observe that the proposed method is more efficient than the time-accurate

method in LCO response simulations.

Another challenge is that we need to compute the LCO speed derivative to a large number of

design variables. We base our work on previous research in the literature, which uses a segregated

adjoint formulation. We use the coupled adjoint approach, which is a monolithic way to compute

the gradient. The coupled adjoint is cheaper to compute compared to the segregated adjoint. We

verify the adjoint sensitivity computation with the finite difference method, where we achieve

10−6 accuracy for most design variables for the wing test case. We conduct an aerodynamic shape

optimization of a wing, and the LCO speed increases by 118%.

xix

Finally, to extend the adjoint method to an aerostructural optimization problem, we propose

two formulations based on reverse algorithmic differentiation (RAD) to reduce the computational

cost to one single computation.

To conclude, we developed computational methods to make aerodynamic shape optimization

for LCO suppression practical for wing cases, and the RAD formulae for the mode shapes and

natural frequencies are likely to be useful for future aerostructural optimization.

xx

CHAPTER 1

Introduction

In this chapter, we present the motivation for our research in Section 1.1. The context for the

different parts of this thesis is explained in Section 1.2. Finally, we show our contributions and

present the organization of the thesis in Section 1.3.

1.1 Motivation

The wings of next-generation aircraft are trending towards the higher aspect ratio, more flexible

designs, making them more prone to flutter. Since flutter is a certification-critical phenomenon, it

is important to predict this aeroelastic phenomenon accurately as early as possible in the design

process. Ignoring flutter may lead to overly-flexible wings that cause problems when certifying the

aircraft. Flutter issues are often identified only at the final design or flight testing stages, at which

point design changes are extremely costly. Therefore, accurate flutter prediction methods reduce

the risk and can lead to significant cost savings.

LCO is another important phenomenon encountered in wing design, which can be subcritical

or supercritical [57]. LCO is a more general concept than flutter where the latter can be taken as an

LCO with an infinitesimal motion magnitude. Thus, besides a more detailed elaboration of flutter

and LCO in Section 1.2, in the rest of the thesis, we will treat flutter as a special case of LCO

and avoid mentioning flutter if possible. Exceptions includes flutter boundary, and flutter point

1

(speed).

LCO only appears in nonlinear dynamic systems, where the nonlinearity could come from

the aerodynamic model. Both shock wave motions and flow separations could result in a nonlin-

ear relation between the aerodynamic force with respect to structural displacement. It could also

come from the structural model. Possible structural model nonlinearity includes a control surface

freeplay, geometric nonlinearity, and other factors [24]. In this thesis, we only consider the aerody-

namic model nonlinearity. To resolve the shock wave motion and the flow separation, we employ

time-spectral methods with Euler and Reynolds-averaged Navier–Stokes (RANS) equations.

Time-spectral method is an efficient tool used for simulating periodic flows [39, 44, 102].

The time-spectral method was developed for turbomachinery applications and later used to model

external flows. By keeping several uniformly distributed “snapshots” in time, the time-spectral

method reconstructs the periodic flow field using Fourier transform. Earlier studies have shown

that the time-spectral method is one order more efficient in simulating periodic flow compared with

the general-purpose time-accurate method, such as unsteady Reynolds-averaged Navier–Stokes

(URANS) [101]. This is because the latter has to resolve a transient response before the final

periodic flow field is captured, and the former method directly models the final periodic flow field.

Another reason is that the time-spectral method requires much fewer time instances per period

compared with the time-accurate method. The approach is an ideal time discretization scheme for

LCO modeling because LCO is periodic in time. For more discussion on spectral methods, we

refer the readers to the book by Boyd [16].

In LCO simulation, the frequency and flow speed to trigger such responses are not known and

need to be figured out. This is different from a compressor turbine [44], a helicopter blade [22]

or a rotor [47] where the frequency and boundary conditions are known a priori . To address the

issue, Thomas et al. [137] proposed a set of equations to model LCO. The set of equations include

aerodynamic equations, structural dynamic equations, and prescribed motion magnitude and phase

equations. We denote the set of equations as the time-spectral aeroelastic equation to distinguish it

2

from the steady-state aerostrucural equation [62]. By solving this time-spectral aeroelastic equa-

tion, the LCO speed and motion frequency are found. They proposed using the Newton method to

solve this set of equations. The Newton solver interfaced directly with the computational structural

dynamics (CSD) solver, and the aerodynamic load was evaluated by solving CFD equations with

the current structural displacement. Because of this segregated formulation, the method required

multiple flow solutions for each Newton step. A total of O(NCSD × n × NNewton) CFD evalua-

tions for each solution is required, where NCSD is CSD degree-of-freedom (DOF)s, n is number

of time instances, and NNewton is number of Newton steps. To address the high computational cost

issue, we propose an alternative CNK method which only requires the CFD residual to be driven to

zero twice: once at a warm start stage and the other during the time-spectral aeroelastic equations

solution.

When designing an aircraft, the aircraft shall never demonstrate any LCO behavior within its

flight envelop. That is to say, we want to make sure that the LCO speed be high enough to avoid

any catastrophe. When high fidelity tools are used for design optimization, the only viable opti-

mization methods are gradient-based optimization approaches due to fewer function evaluations

required compared with other gradient-free methods such as genetic algorithms. For the derivative

computation, there are several methods available: finite difference (FD), complex-step (CS), direct

and adjoint methods [95]. The former three methods are preferred for cases with more functions

of interest than design variables. The adjoint method, however, is preferred for the opposite case

where there are more design variables than functions of interest. For aerodynamic shape optimiza-

tion, there are usually a handful of functions of interest and hundreds or even thousands of design

variables. Thus, an adjoint method shall be used. A segregated adjoint formulation was proposed

by Thomas and Dowell [135]. Similar to the solution method proposed by Thomas et al. [137], the

structural equations are directly resolved, and the aerodynamic equations are enforced implicitly.

Using this formulation, the derivative of the generalized aerodynamic load at each time-instance

for each structural DOF needed to be computed resulting in NCSD × n aerodynamic adjoint to be

3

solved for each coupled adjoint computation (The direct method is equally applicable here since

the Jacobian here is a square matrix). To address this high computational cost, we develop a cou-

pled adjoint formulation where the adjoint of the coupled system is solved together once. The

linear system is only slightly bigger than the original CFD adjoint equations by O(NCSD × n)

making the resulting coupled adjoint much more computationally efficient.

In this thesis, we consider optimizing the LCO speed index by changing the aerodynamic shape.

Ultimately, we want to take the structural design variables into the picture for an aerostructural op-

timization. To achieve that goal, we could at first construct a finite element model based on input

structural design variables. And then, we conduct a modal analysis to construct the mode shapes

of the structure. After this, we can conduct an LCO analysis based on the methods proposed in

this thesis. For the derivative computation, the same adjoint method proposed in the thesis could

be used. However, different from the aerodynamic shape optimization, here we must compute the

derivative of the structural modes with respect to the design variables. In the literature, there are

forward formulations that are able to solve the problem inO(r×nx) iterations, where r is the num-

ber of modes and nx is the number of structural variables. And there is also the adjoint approach

that can be used to compute the gradient accurately by solving r adjoint equations. We propose

two methods to compute the derivatives. The first method approximate the mode shape derivative

by conducting O(r) matrix-vector product computations. The second method adds correctional

terms to the first formulation to make it more accurate, but this also adds a computational cost of

solving additional r elastic equations. We show that these equations can be solved at a low cost.

4

1.2 Background

1.2.1 Flutter and LCO

Flutter is a dynamic aeroelastic instability that causes divergent harmonic vibrations. The flut-

ter speed corresponds to the minimum airspeed where the structure enters into periodic oscilla-

tion [13].

Flutter in the subsonic regime can be modeled with linear aerodynamics using a doublet-lattice

method (DLM), for example. Most commercial airliners operate in the transonic regime, which is

more challenging to model because it involves highly nonlinear aerodynamics. In particular, there

is a significant reduction in the flutter speed in the transonic regime, called the transonic dip, as

shown in Fig. 1.1. The transonic dip is mainly due to compressibility effects. Low fidelity models

tend to underestimate this dip, leading to overprediction of the flutter speed. In this work, we

model the flow with the Euler equations and RANS equations so that we can capture the transonic

dip.

Mach number

Linear theory

Nonlinear theory (viscous)

Critical point

Flutter
speed

Subsonic Transonic

Nonlinear theory (inviscid)

Figure 1.1: The transonic dip is best captured using a nonlinear viscous aerodynamic model [57].

LCO is a periodic motion of the structure due to interactions between the fluid and the structure.

LCO can be supercritical or subcritical. These two types of responses are visualized in Fig. 1.2,

where the dashed lines represent unstable responses, and the solid lines represent stable ones.

5

The arrows indicate the paths taken by subcritical and supercritical LCO responses with varying

airspeed.

The supercritical LCO is a smooth and benign response, for which the structure stays steady

below the flutter speed. As the airspeed increases above the flutter point, the structure enters into a

periodic motion. If the airspeed decreases, the motion reduces in magnitude and returns to a stable

state, following the same trajectory as when the speed increases, but in the reverse direction.

The subcritical LCO features a sudden jump to a finite magnitude LCO as the airspeed in-

creases. This class of LCO exhibits a hysteresis when varying the airspeed. Once the LCO is

encountered, it continues to a much lower airspeed than the value that originally triggers the onset

of the LCO, before jumping back to a steady and non-oscillatory state. The red curves in Fig. 1.2

show the path of this type of LCO. The sharp jump in the oscillation magnitude of subcritical LCO

may be destructive, and therefore we want to make sure that designs do not exhibit this behavior.

This requires a model that can capture both the subcritical and supercritical response branches.

Capturing the unstable branch from subcritical LCO can be particularly challenging.

Speed
Flutter point

Limit cycle
amplitude

LCO pointsε

Subcritical

Supercritical

Figure 1.2: LCO response curves and flutter point.

6

1.2.2 LCO solution methods

In the research community, the standard method for predicting a wing’s flutter boundary is to

analyze the wing with a time-accurate CFD solver coupled to a CSD solver, as proposed by Liu

et al. [81]. However, these methods incur a high computational cost, since hundreds or thousands of

time steps are required to simulate the LCO response. Furthermore, to accurately locate the flutter

point, several flow conditions need to be tested. Opgenoord et al. [108] attempted to reduce the cost

of this type of analysis by constructing a low-fidelity aerodynamic model based on time-accurate

CFD data. The low-fidelity model has around 5% error compared with CFD results for airfoil or

wing test cases in the transonic regime. Opgenoord et al. [108] considered one airfoil shape factor

variable–the thickness ratio for the low-fidelity model. To make the model useful for designers, a

much bigger design space needs to be sampled. Ghadami et al. [34], Riso et al. [115] developed a

data-driven method for flutter boundary prediction. At first, several time-accurate solutions were

sampled under different flow speeds in the pre-flutter domain. The corresponding damping ratios

were collected. Then, the damping ratio was approximated as a function of flow speeds. Finally,

the flutter speed that corresponded with a zero damping ratio was found. Several pre-flutter sample

points should be enough to capture the flutter point. However, the pre-flutter points seemed to be

very close to the flutter point [115]. For a new configuration, it may be difficult to decide where to

put the sampling points.

Another shortcoming of the time-accurate methods is that they cannot predict the unstable

branch from the subcritical response. This is because any small perturbation steers it towards

stable branches with either a higher limit cycle amplitude or a fixed point.

As in many periodic problems, much of the computational time consumed in the time-accurate

simulation is spent resolving the decay of the initial transients in the unsteady problem [102]. For-

tunately, in problems where the periodic steady-state solution is of primary interest, time-periodic

simulation methods, such as the nonlinear frequency domain (NLFD) method [102], the harmonic-

balance method [44], and the time-spectral method [39, 44] can all be used to accelerate the so-

7

lution process. Recently, the scalability of the time-spectral method was improved by Rameza-

nian et al. [114]. The computational time of the proposed method was demonstrated to scale with

n log2 n for even numbers of time instances and with 2n log3 n for odd numbers. This was achieved

by using the fast Fourier transform (FFT) to replace the original discrete Fourier transform (DFT).

In the present work, we use the original time-spectral method. The idea is to capture a time-

periodic variable with snapshots from different time instances using DFT, which allows the time

derivatives to be evaluated using spectral differentiation. Formulating the problem completely in

the time domain makes it easier to implement in an existing steady solver.

Work has also been done to extend these spectral methods to solve aeroelastic problems. For

example, Kachra and Nadarajah [58] extended the NLFD method to simulate an airfoil aeroelastic

response in a loosely coupled manner. Tardif and Nadarajah [129] and Benoit and Nadarajah [9]

proposed the geometric conservation law (GCL) for time-spectral CFD, where they solve struc-

tural and aerodynamic equations separately, and exchange the interface data for every few cycles.

Mavriplis and Yang [100] proposed a GCL scheme in which the swept volumes are computed

by discretizing the trajectories of the faces between the two time-levels into a large number of dis-

crete steps and computing the volume swept between each step using a two-point integration rule in

time. Choi and Datta [22] performed a time-spectral aeroelastic simulation of a three-dimensional

helicopter rotor. Mundis and Mavriplis [104] decomposed the flow into a periodic and a polyno-

mial motion in time. With the polynomial components, this method captured transient aeroelastic

responses accurately.

There has also been significant effort put into the prediction of LCO using spectral methods.

Thomas et al. [137] proposed a set of equations to capture the LCO. The solution of the equations

satisfied aerodynamics, structural dynamics, prescribed motion magnitude, and prescribed motion

phase constraints. They proposed using the Newton method to solve this set of equations. The

Newton solver interfaced directly with the CSD solver and the aerodynamic load was evaluated by

solving CFD equations with the current structural displacement. Later, they presented a detailed

8

parametric study of an airfoil case based on this method [65], studied wing LCO [136], proposed

an aeroelastic adjoint method [135], and presented a numerically stabilized solution method [132].

Because a segregated formulation was used, the method required multiple flow solutions for each

Newton step. The method needed NCSD × n × NNewton CFD evaluations for each solution, where

NCSD is CSD DOF, n is number of time instances, and NNewton is number of Newton steps.

In the present work, we reduce the computational cost of each Newton step by letting the

Newton solver interface with CSD and CFD solvers simultaneously. Thus, we update both the

structural displacements and the CFD solution simultaneously, allowing the Newton iterations to

be completed with residual evaluations rather than full solutions.

Other spectral methods developed to analyze LCO are categorized based on whether the pre-

scribed motion magnitude and phase constraints are considered. Among the methods that con-

sider the prescribed motion, Thomas and Dowell [131] proposed a fixed-point iteration approach.

With the proposed method, the CFD equation is no longer treated as a segregated module, and

the method’s computational cost is no longer proportional to the number of structural DOF. To

address the issue with the expensive Newton step, a nonlinear Gauss–Seidel (GS) type method

named as “one-shot” method was proposed [70–73]. The name “one-shot” indicates that the CFD

residual is reduced to zero only at the end. Gong and Zhang [38] solved the same set of equa-

tions for the flutter point prediction. However, for LCO, Gong and Zhang [38] proposed a different

treatment, where the LCO speed was prescribed, and the motion was solved. All the methods men-

tioned above have a linear convergence rate. In contrast, our proposed method exhibits a quadratic

convergence rate, making it more efficient compared with other approaches.

For the methods that do not consider the prescribed motion, Prasad et al. [113] presented a

procedure to update LCO speed and frequency. Yao and Marques [146] proposed a procedure that

adapted the LCO frequency but not LCO speed based on earlier work by Ekici and Hall [29]. Tardif

and Nadarajah [129] proposed a LCO onset condition that within the M consecutive aeroelastic

iterations, the LCO magnitude should not change. They constrained lift coefficient magnitude and

9

phase, and solved for LCO speed and frequency.

In this work, we propose to use a CNK method to solve the time-spectral aeroelastic equations

that include the prescribed motion constraint. In theory, it has a quadratic convergence rate, which

we have observed in practice. By resolving all the state variables at once, we reduce the number

of CFD solutions. During the nonlinear solution, each Newton step is solved with the Jacobian-

free Krylov solver. Thus, the Jacobian of the time-spectral aeroelastic equations is never formed

explicitly, which used much less memory. We propose direct, Schur, and saddle point system (SPS)

preconditioners for the Krylov solver. This approach has been used to predict wing aeroelastic

response with an inviscid model as well [50].

1.2.3 LCO derivative computation methods

For partial differential equation (PDE) constrained optimization problems, the function eval-

uation can be very expensive. The only promising method to conduct such optimization is the

gradient-based optimization method as demonstrated by Lyu et al. [88] because the gradient-based

method requires much fewer function evaluations compared with the gradient-free method. The

adjoint method was developed to evaluate function derivative with a large number of design vari-

ables [54, 59, 99].

In the perspective of dynamical systems theory, the behavior of a nonlinear dynamic system

includes fixed points, LCO, and chaos. The derivative of a steady fluid dynamic or fluid-structure

interaction problems are mature these days with the triumph of adjoint-based approach [54, 99].

Most solutions encountered for the steady problems are fixed points. Recent efforts include adding

model fidelities [42, 111, 121] and including new constraints [61, 75]. The adjoint method for

LCO is less developed with some previous work on LCO [135] and buffet [133]. For the chaotic

system, the least square shadowing adjoint by Shimizu and Fidkowski [122], Wang et al. [143] was

developed to deal with numerical stability issues.

The flutter point or LCO derivative computation method can be classified into two categories

10

based on model fidelity: (1). Non-CFD based approaches, and (2). CFD-based methods. For

category (1), Bartels and Stanford [5] solved a structural optimization problem with the flutter

constraint computed by eigenvalue analysis. Beran et al. [10], Kennedy et al. [60] developed ad-

joint equations for the flutter constraint that is formulated using Hopf bifurcation. Jonsson et al.

[55, 56] proposed an adjoint method with an enhanced pk method that can track the change of

flutter modes. Lupp and Cesnik [84], Lupp et al. [85] optimized the fuel burn of a blended wing

body (BWB) [86] configuration and an undeflected Common Research Model (uCRM) 13.5 con-

figuration [17] with geometric nonlinear flutter constraint, respectively. Though computationally

efficient, most of the methods in this category are not able to predict important nonlinear flow

phenomena such as shock waves motion as a function of the structural displacement.

There is a handful of CFD-based methods for flutter analysis with sensitivities in the litera-

ture. Stanford et al. [125] proposed a pk method with nonlinear Euler solver and time-linearized

transonic small disturbance (TSD) analysis. Chen et al. [20] proposed a method using an Euler

CFD solver and a boundary layer code. The derivative is evaluated by the CS method. The com-

putational cost of this method scales with the number of design variables that makes it impractical

for problems with a large number of design variables. Zhang et al. [150, 151] formulated a time-

accurate adjoint for flutter analysis with an Euler solver. In their formulation, the flutter speed is

not a variable to be solved for under given design variables. Instead, the flutter speed is a fixed

parameter to be provided by the user and the optimizer’s role is to find a configuration to make

sure under the given speed the wing has a neutral response. This formulation is not flexible enough

to provide a flutter constraint for aircraft design. Kiviaho et al. [66] developed a time-accurate

adjoint by the matrix-pencil method. Leveraging the efficient harmonic balance solver, Thomas

and Dowell [130], Thomas et al. [134], Thomas and Dowell [135] proposed a novel harmonic bal-

ance adjoint for the LCO. The proposed adjoint method is much cheaper in memory use compared

with existing unsteady adjoint formulations because only a handful of time instances needed to be

stored. They proposed to solve the adjoint equation in a segregated manner. Using the segregated

11

approach, the CSD equations are directly handled, and the CFD load are treated as a function of

the structural displacements. To compute the LCO speed derivatives, the derivative of generalized

CFD loads of each structural DOF for each time instance with respect to the design variables need

to be computed. By applying the adjoint method for the CFD component to compute the aforemen-

tioned derivative, there will be O(NCSD × n) CFD adjoint equations waiting to be solved where

NCSD is the structural DOF, and n is the number of time instances. Even though the computational

cost is no longer dependent on the number of design variables, this cost still seems to be too much.

One contribution of the thesis is to deal with the challenge related to the gradient evaluation.

We propose to use a monolithic Krylov subspace method to solve the aeroelastic adjoint equation

originally proposed by Thomas et al. [134] where a segregated approach is used to solve the adjoint

equation. Compared to the segregated approach, our monolithic approach requires to solve a single

slightly bigger linear system compared with solving O(NCSD) linear systems. Since the method is

categorized as an adjoint method, the derivative computation time is independent of the number of

design variables. The Krylov subspace method is applied for the equation solution that requires the

evaluation of transpose Jacobian and vector products. To further reduce the memory cost, instead

of forming the matrix explicitly, we apply a matrix-free RAD approach that was based on the

previous work by Mader et al. [91].

1.2.4 Natural frequency and mode shape sensitivity computation methods

Eigenvalue and eigenvectors are essential metrics when characterizing dynamic system behav-

ior and stability. They are widely used in engineering applications, such as structural dynamics

with mode superposition [6], aeroelastic simulation [25, 57, 126, 127], laminar-turbulence tran-

sition prediction [26, 118, 120, 121], buffet-onset prediction [139, 145], reacting flow instability

analysis [30], turbine blade mistuning prediction [8, 79, 89, 128], and dynamic system identifica-

tion [77, 78]. In free-vibration problems, the eigenvalues represent the natural frequencies, and

the eigenvectors represent the corresponding mode shapes. The eigenvalues and eigenvectors are

12

found by solving the generalized eigenvalue problem Mφφφ = Kφφφλ where M,K are mass and stiff-

ness matrices, respectively, and λ,φφφ is an eigenvalue-eigenvector pair. Both matrices are real and

symmetric. When performing gradient-based design optimization, the derivatives of the eigenval-

ues and the eigenvectors with respect to the design variables need to be computed efficiently and

accurately.

There have been significant efforts in computing the eigenvalue and eigenvector derivatives.

Fox and Kapoor [32] proposed a modal formulation, by which an eigenvector derivative vector is

decomposed into a linear combination of eigenvectors. One drawback of the formulation is that

it requires the knowledge of all the eigenvectors to compute one eigenvector derivative vector to

machine precision. Liu et al. [82] discussed the truncation error of the formulations proposed by

Fox and Kapoor [32] when only a subset of eigenvectors is used. Lim et al. [76] and Wang [141]

proposed an improved modal formulation based on the formulations proposed by Fox and Kapoor

[32] with a reduced basis. The improved modal formulation uses the calculated reduced eigenvec-

tors to approximate the truncated terms. They showed that the improved modal formulation is more

accurate than that computed by Fox and Kapoor [32]. Bernard and Bronowicki [11] and Zhang and

Wei [149] extended the modal method to cases with repeated eigenvalues. Beck et al. [8] used the

modal method to compute the derivative of cyclically symmetric bladed disks with repeated eigen-

values. Later, Nelson [107] proposed an alternative normalization condition that does not require

knowledge of all the eigenvectors. Murthy and Haftka [105] reviewed the field and proposed an

improved method of Nelson [107] that removes the dependency on the left eigenvectors. Friswell

and Adhikari [33] extended Nelson’s method to include the complex eigenvectors. Rudisill and

Chu [116] proposed iterative and algebraic methods to compute derivatives for the eigenvalues

and eigenvectors. This method requires the computation of the left eigenvectors in addition to the

commonly used right eigenvectors. Lin et al. [80] provides a recent review of progress in this area.

However, most of these efforts propose formulations that do not scale well with the number

of design variables. Because high-fidelity wing design optimization requires many design vari-

13

ables [55, 57], we focus on developing formulations that scale well with the number of design

variables.

Algorithmic differentiation (AD) is a powerful tool for differentiating computer programs.

Various tools have been developed that generate differentiated codes by transforming the source

code line-by-line [45]. Although transforming highly optimized linear algebra libraries (e.g., LA-

PACK) is possible, it is tedious and requires significant implementation effort. Its success depends

directly on the transformation tool used and on the source code programming paradigm. Further-

more, the transformed code’s performance may be sub-optimal compared to the original routine

both in terms of speed and memory usage.

Dwyer and Macphail [27] and Giles [35] showed that fundamental matrix operations such

as matrix products, inversion, and eigenvalue and eigenvector computation, can be conveniently

differentiated using analytic formulas suitable for AD. This is advantageous because the derivatives

can then be computed using the optimized libraries, without having to differentiate the underlying

library source code.

In this work, we derive analytic AD expressions for computing the derivatives of eigenvalues

and eigenvectors of a real and symmetric generalized eigenvalue problem. Previous research on the

eigenvalue and the eigenvector AD has largely focused on direct formulations known as forward

algorithmic differentiation (FAD). FAD computes the derivatives by applying the chain rule in

a forward sequence of operations propagating from the inputs (design variables) to the outputs

(eigenvalues and eigenvectors in this case). The computational cost of FAD is proportional to the

number of design variables.

Another approach for computing derivatives is the adjoint method, whose cost is independent

of the number of design variables [95]. The adjoint analogue in AD is RAD, which computes

the derivatives by applying the chain rule backward, starting with the outputs and ending with the

inputs. Like the adjoint method, the computational cost of RAD is independent of the number of

design variables but is proportional to the number of outputs. This is beneficial for the problems

14

with many design variables as inputs and few functions of interest as outputs.

One example of such a problem is multidisciplinary design optimization (MDO) problems that

may have hundreds to thousands of design variables [17, 48]. Another example is the artificial

neural network error backpropagation [7, 12, 15], which may involve millions of inputs and a

single output (the loss function).

In many situations, we are only interested in a handful of eigenvalues and eigenvectors [50, 56,

74, 115, 124, 136].

Analytic eigenvalue differentiation methods suitable for RAD have been reported in the lit-

erature. Recently, Jonsson et al. [55] proposed a method based on reverse Lanczos iteration to

efficiently compute derivatives using RAD. Giles [35] presented a collection of analytic matrix

derivative results suitable for FAD and RAD. Specifically, Giles [35] presented a RAD formula-

tion for a standard eigenvalue eigenvector problem.

In this work, we present three RAD formulations of the generalized eigenvalue problem for

eigenvalue and eigenvector derivative computations. One of the formulations was originally pro-

posed by Lee [69], and we include it here for completeness. We propose a projection-based RAD

formulation based on the work of Fox and Kapoor [32]. We also present the truncation error of

this method and discuss special conditions under which the truncation error vanishes. To reduce

the error due to a truncated set of eigenvectors, we also develop a projection-based RAD formu-

lation with correctional terms based on methods proposed by Lim et al. [76] and Wang [141].

As previously mentioned, we focus on problems with real and symmetric matrices and distinct

eigenvalues.

1.3 Thesis overview

The contributions of the research are summarized as follows.

• We develop a CNK method to solve for flutter onset and LCO modeled by time-spectral

15

aeroelastic equations. The method is more efficient than the segregated Newton method in

the literature. The segregated method needed NCSD × n×NNewton CFD evaluations for each

solution. While, our method only requires the CFD residual to be driven to zero twice: once

at a warm start stage and the other during the time-spectral aeroelastic equations solution.

• We develop a monolithic Krylov subspace method to solve the aeroelastic adjoint equation

originally proposed by Thomas et al. [134]. Compared to the segregated approach, the mono-

lithic approach requires to solve a single slightly bigger linear system compared with solving

O(NCSD) linear systems. By applying the adjoint method, the gradient evaluation time is

independent of the number of design variables. And we apply the solver to optimize LCO

speed for two-dimensional and three-dimensional configurations.

• We develop two RAD based formulae for mode shapes and natural frequencies derivative

computation encountered in an aerostructural optimization problem. We demonstrate that

the FAD based methods have a cost of O(rNx). The proposed formulae reduce that to O(r)

computation.

The thesis is organized as follows. In Chapter 2, we introduce the individual tools used in this

research. The following chapters, Chapters 3 to 5, cover the theory developed in this research.

To be specific, in Chapter 3, we present the coupled Newton–Krylov method. In Chapter 4, we

detail the coupled ADjoint method. In Chapter 5, we derive the mode shape and natural frequency

derivatives. Then, in Chapters 6 and 7, we demonstrate the capability of the solvers using two-

dimensional airfoil and three-dimensional wing cases. In Chapter 6, the LCO and flutter boundary

are solved based on the method developed in Chapter 3. And in Chapter 7, we verify the adjoint-

based derivative computation based on the method developed earlier in Chapter 4 with the FD

method, and we perform LCO speed optimization. Finally, in Chapter 8, we present the conclusion

of the thesis.

16

CHAPTER 2

Computational Components

In this section, we present individual components later used in Chapters 3 to 5. Most of the

tools were developed earlier and the new developments are noted. Because Chapters 3 to 5 motivate

the use of the tools introduced here, it may be helpful to read the later chapters, Chapters 3 and 4,

before reading this current chapter. This chapter is organized as follows: In Sections 2.1 to 2.3, we

discuss the prescribed equations, time-spectral CSD equations, and time-spectral CFD equations,

respectively. These three sets of equations are components for the governing equations for the

LCO. Then, in Section 2.4, we cover the information transfer between the structural and the

aerodynamic components. Finally, in Section 2.5, we cover the concept of AD.

2.1 Prescribed motion equations

In this section, we present derivation of the two equations constraining the magnitude and

phase of the natural mode similar with [49]. States from different time-instances are defined as

η̄1
j , η̄

2
j , . . . , η̄

n
j for the j th mode. Defining ω = 2π/T , where T is the time period, a harmonic

motion for the j th mode can be described by the following expression,

η̄,j(t) ≈ c0,j + c1,je
iωt + c2,je

i2ωt + . . .+ c−2,je
−i2ωt + c−1,je

−iωt, (2.1)

17

where η̄,j(t) denotes the j th structural mode coefficient with its all resolved frequency components,

and ci,j are coefficients for different frequency components. η̄,j(t) is related with η̄1
j , η̄

2
j , . . . , η̄

n
j

through taking time snapshots, i.e., η̄ij = η̄,j (((i− 1)T) /n). ci,j are related with the snapshots

η̄1
j , η̄

2
j , . . . , η̄

n
j through DFT,

[c0,j, c1,j, c2,j, ..., c−2,j, c−1,j] =
1

n
DFT

(
η̄1
,j, η̄

2
,j, ..., η̄

n
,j

)
. (2.2)

The dominant temporal mode of the j th structural mode is derived as

η̄1st harmonic,j = c1,je
iωt + c−1,je

−iωt

= [<(c1,j) + <(c−1,j)] cos (ωt) + [=(−c1,j) + =(c−1,j)] sin (ωt) + pure imaginary number

= Cc,j cos (ωt) + Cs,j sin (ωt) + pure imaginary number,

(2.3)

where the coefficients Cc,j and Cs,j are defined as

Cc,j = <(c1,j) + <(c−1,j),

Cs,j = −=(c1,j) + =(c−1,j).

(2.4)

By dropping the imaginary part and using trigonometric identities, we obtain

< (η̄1st harmonic,j) = |η̄1st harmonic,j| sin (ωt+ θ1st harmonic,j) , (2.5)

18

where dominant mode magnitude and phase are given as

|η̄1st harmonic,j| =
√
C2
c,j + C2

s,j,

θ1st harmonic,j = sin−1

 Cc,j√

C2
c,j + C2

s,j

 .

(2.6)

Finally, the prescribed motion residual are defined as

Rm := |η̄1st harmonic,j| − ε0,j,

Rp := θ1st harmonic,j − θ0,j,

(2.7)

where ε0,j, θ0,j are prescribed small motion magnitude and its phase, for the j th structural mode,

and Rm,Rp are residuals for prescribed motion magnitude and phase, respectively. For the wing

test case, the prescribed motion is applied to the first natural mode i.e. j = 1.

The above discussion is intended for the wing test case. The airfoil test case follows very

similar derivations. The only difference is that for the airfoil test case, the constrained motion is

the pitching motion αi, i = 1, . . . , n.

2.2 Time-spectral CSD equations

2.2.1 Airfoil

For the airfoil test case, we consider the two-dimensional airfoil model introduced by Isogai

[53], which is shown in Fig. 2.1.

The CSD equation of motion for this model is

1 xα

xα r2
α

ḧ
b

α̈

+

(
ωh
ωα

)2

0

0 r2
α

h
b

α

 =

V 2
f

π

−Cl
2Cm

 , (2.8)

19

α h

b
b

−ba
cg

bxα

Figure 2.1: Typical section wing model; α and h represent the pitching and plunging motion,
respectively; b is half chord length; cg is center of gravity; −ba is the elastic center coordinate; bxα
is the center of gravity coordinate.

where xα is the dimensionless static unbalance; rα is the dimensionless section moment of inertia

about the elastic axis, or the radius of gyration; ωh, ωα are the uncoupled natural frequencies of

typical section in plunge and pitch, respectively; h/b is the dimensionless plunging motion, and

α is the pitching motion; Vf is the LCO speed index defined as Uf/bωα
√
µ, where µ is the airfoil

mass ratio and Uf is the freestream speed. Equation (4.5) can be succinctly written as

Mü + Ku = f , (2.9)

where

M :=

1 xα

xα r2
α

 , K :=

(
ωh
ωα

)2

0

0 r2
α

 , (2.10)

and

u :=

h
b

α

 , f :=

V 2
f

π

−Cl
2Cm

 . (2.11)

The time-spectral method can also be applied to the CSD equation. We pick snapshots in the

time history and use spectral differentiation to get the time derivative following similar procedures

20

to those used for time-spectral CFD. The time-spectral CSD equation can be written as

STS(Vf , ω,u
n, f̄n) := MnDQ(ω)un + Knun −

V 2
f

π
f̄n = 0 (2.12)

where f̄n = [−Cl, 2Cm]n
> and un denotes the displacement for all the time-instances and

Mn :=

M

. . .

M

, Kn :=

K

. . .

K

, DQ(ω) := Q>

D(ω)2

D(ω)2

Q, (2.13)

The mass and stiffness matrices are repeated n times in the diagonal of Mn and Kn, respectively.

The permutation matrix Q is defined as

Qi,j =

1 if mod(j, 2) = di/ne

0 otherwise
, (2.14)

where i, j are index variables that are set to values between 1 and 2n. We give an example with

three time-instances for illustration in Appendix A.

2.2.2 Wing

A mode based structural model is used for the wing test case. The CSD equations are

Mü + Ku = f , (2.15)

where M ∈ RN×N is the mass matrix, K ∈ RN×N is the stiffness matrix, u ∈ RN is the displace-

ment, f ∈ RN is the external load, and N is the DOF of the CSD equations.

We construct the CSD equations using the structural natural mode shapes. At first, we conduct

21

a modal analysis,

ω2
jMφj = Kφj, (2.16)

where ωj,φj are the j th natural frequency and mode shape, respectively. Rewrite Eq. (2.16) in

matrix form

KΦ = MΦΩ2. (2.17)

Φ and Ω are defined as

Ω := Diag(ω1, · · · , ωr),

Φ :=

[
φ1, · · · ,φr

]
,

(2.18)

where r is the number of modes and mode shapes computed which is typically much smaller than

the structural DOF, i.e., r � N .

Next, we rewrite Eq. (2.15) in the generalized coordinates. Assuming that displacements can

be approximated by u ≈ Φη and pre-multiply Eq. (2.15) with Φᵀ, we have

ΦᵀMΦη̈ + ΦᵀKΦη −Φᵀf = 0,

⇒Mrη̈ + Krη − fr = 0,

(2.19)

where η is the general coordinate and subscript Mr,Kr, fr denote the reduced or generalized mass,

stiffness, and force matrices. Mr,Kr, and fr are defined as

Mr = ΦᵀMΦ,

Kr = ΦᵀKΦ,

fr = Φᵀf .

(2.20)

Equation (2.19) can then be written as using Eq. (2.17)

Mrη̈ + MrΩ
2η − fr = 0. (2.21)

22

Then, the time-spectral form of Eq. (2.21) can be written as,

Mn
r (QᵀDt,tQ)ηn + Mr(Ω

n
r)2ηn − fnr = 0, (2.22)

where

Mn
r := Diag(ΦᵀMΦ, . . . ,ΦᵀMΦ︸ ︷︷ ︸

n

) = Diag(Mr . . . ,Mr︸ ︷︷ ︸
n

),

Ωn := Diag(Ω, . . . ,Ω︸ ︷︷ ︸
n

),

Qi,j =

1 if mod(j, r) = di/ne),

0 otherwise,

Dt,t := Diag(D2
t , . . . ,D

2
t︸ ︷︷ ︸

r

) = ω2Diag(D2, . . . ,D2

︸ ︷︷ ︸
r

) = ω2D̄2,

fnr :=

[
Φᵀf1, . . . ,Φᵀfn

]ᵀ
=

[
fr,1, . . . , fr,n

]ᵀ
.

(2.23)

Here Q is a permutation matrix and ω is the flow frequency as defined Section 2.1. Together with

the second order spectral derivative matrix Dt,t, the second time derivatives of state variables for

different modes are obtained,

η̈n = (QᵀDt,tQ)ηn. (2.24)

Finally, we derive the dimensionless form of Eq. (2.22). The aerodynamic forces are normal-

ized by the dynamic pressure q∞ = (1/2) ρ∞U
2
∞ and the reference Sref by the following equation

f̄ =
f

1
2
ρ∞U2

∞Sref
, (2.25)

where f is the dimensional load and f̄ is the dimensionless load. It follows that the normalized

23

generalized aerodynamic forces are then written as

f̄nr :=

Φᵀf̄1

...

Φᵀf̄n

=

f̄r,1
...

f̄r,n

. (2.26)

To nondimensionalize Eq. (2.22) we use the wing mass m0, the semi-chord b and the first

torsion mode natural frequency, ωα = ω2, which in this case is the second natural mode. The

dimensionless CSD equation can then be written in residual form as,

STS :=

(
Mn

r

m0

)(
ω2

ω2
α

)(
QᵀD̄2Q

)(ηn

b

)
+

(
Mn

r

m0

)(
Ω2

ω2
α

)(
ηn

b

)
− 1

2

ρ∞U
2
∞Sref

m0ω2
αb

f̄nr

=

(
Mn

r

m0

)(
ω2

ω2
α

)(
QᵀD̄2Q

)
η̄n +

(
Mn

r

m0

)(
Ω2

ω2
α

)
η̄n − 1

2

(
Srefb

V0

)
V 2
f f̄nr = 0,

(2.27)

where the following dimensionless coefficients have been introduced and are defined as,

µ :=
m0

ρ∞V0

,

Vf :=
U∞√
µωαb

,

η̄n :=
ηn

b
.

(2.28)

Here, µ is the mass ratio, V0 is the volume of a conical frustum having root chord as lower base

diameter, tip chord as upper base diameter, and panel span as height and Vf is the LCO speed

index.

24

2.3 Time-spectral CFD equations

The aerodynamic model used for this work is the ADflow CFD solver [63, 92]1 a parallel,

finite-volume, cell-centered, multiblock, and overset code that solves the Euler and RANS equa-

tions in either steady, unsteady, or time-spectral modes. For unsteady applications, the second-

order implicit backward difference formula (BDF2) time integration scheme is used. For mov-

ing meshes, an arbitrary Lagrangian Eulerian (ALE) formulation satisfying GCL [138] has also

been implemented in ADflow by Huang and Friedmann [52]. In this work, we consider both

the Euler and the RANS equations. For the RANS equations, we use the Spalart–Allmaras (SA)

turbulence model [87, 123]. The time-spectral solver in ADflow has second-order accuracy in

space [90]. For the time-space parallelization strategy, our code is parallelized by block instead of

time-instance Mader and Martins [90], Mader [93].

The time-spectral method is well-established in CFD [39, 44]. The method converts an un-

steady CFD problem into a series of time-coupled steady-state problems. The equations generated

by this set of coupled steady-state problems have two additional parameters: the time period con-

sidered (T) and the number of time-instances or points (n) to be solved within that period. If we

write the time-dependent residual as A(ζζζ(t)) = 0, then the time-spectral form is A(ζζζn, T) = 0,

where ζζζn represents the state variables for all time-instances, i.e., n times the size of the steady-

state solution.

The residual form of the time-spectral CFD equations can be written as

ATS := D(ω)ζζζn + R(ζζζn) = 0. (2.29)

When solving the Euler equations, R(ζζζn) is the inviscid flow residual vector, and ζζζn is the vector

of inviscid flow states for all time-instances. When solving the RANS equations, R(ζζζn) is the

viscous flow residual vector concatenated with the SA turbulence model residuals, and ζζζn is the
1https://github.com/mdolab/adflow

25

https://github.com/mdolab/adflow

vector of viscous flow states concatenated with the SA turbulence model states. The matrix D(ω)

is an n× n matrix that depends on the angular velocity ω = 2π/T , and is defined as

Di,j(ω) =

ω(−1)(j−i)

2 sin (π(j − i)/n)
, if i 6= j,

0, if i = j,

(2.30)

where Di,j is the entry at the ith row and the j th column of the matrix D and i, j ∈ {1, . . . , n}.

When more time-instances are added (for higher-frequency terms), the problem size increases,

making it more challenging to converge the residual due to the larger off-diagonal terms in D.

The LCO speed index (Vf) is also a variable. It affects the CFD equations through the boundary

condition (or through the mesh velocity, if the air is set to be at rest, and the airfoil and the mesh

are in motion). For reasons mentioned in the following section, the mesh nodal coordinates also

affect the results. A more general form of the CFD equations is

ATS(Vf , ω, ζζζ
n,Xn

V) = 0, (2.31)

where Xn
V represents the mesh volume nodal coordinates for all time-instances. Equation (2.31) is

efficiently solved using the approximate Newton–Krylov (ANK) method [148]. ANK allows for a

robust start-up and a rapid terminal convergence of the flow solver.

2.3.1 Mesh deformation

Mesh quality is important for reliable results. In an aeroelastic computation, the geometry

is altered when the structure deforms and the mesh is required to adjust accordingly. To ensure

the quality of the deformed mesh, we use an analytic inverse distance method implemented in an

open-source package IDWarp [119]. 2 Using this method, the displacements of the CFD volume

2https://github.com/mdolab/idwarp

26

https://github.com/mdolab/idwarp

mesh are a combination of all surface deformations weighted by the inverse of the distance to each

surface node. The computational cost of a naive implementation of this method scales with the

number of surface nodes. However, with a suitable fast spatial search algorithm and multipole-like

expansion of the summation, the cost can be reduced to O(logN)[83]. IDWarp is fast and robust

enough to be used in aerostructural optimization with large deflections [17, 18]. Therefore, we

expect this algorithm to be able to handle the LCO displacements. This remains to be tested, in

particular for cases with viscous wing meshes with large deformation under LCO. For a typical

aerostructural analysis, the mesh movement scheme requires only 2–3% of the total solution time.

With the mesh deformation algorithm, we have:

Xn
S = G(un),

Xn
V = W(Xn

S),

(2.32)

(2.33)

where the structural displacements (un) are used to compute the updated aerodynamic surface

coordinates (Xn
S), which in turn are used to compute the updated deformed volume coordinates

(Xn
V). Given these quantities and the spectral differentiated mesh velocity, we can rewrite the CFD

residual form in terms of the structural displacement as

ATS(Vf , ω, ζζζ
n,un) = 0, (2.34)

which is solved together with other components to capture the LCO response.

2.3.2 Mesh velocity computation

As shown in Eq. (2.31), the aerodynamic residual ATS is dependent on the volume mesh co-

ordinates. One source of this dependency is through the computation of the flux term through a

moving mesh surface. For a dynamic mesh CFD solution, the relative velocity is needed for flux

27

calculation, which we write as

Vx = vx − vx,g,

Vy = vy − vy,g,

Vz = vz − vz,g,

(2.35)

(2.36)

(2.37)

where Vx, Vy, and Vz are relative velocities, vx, vy, and vz are the absolute velocities, and vx,g, vy,g,

and vz,g are the surface mesh cell center velocities. This is a new feature that we add to ADflow.

We solve for the mesh velocity by spectral differentiation. The mesh motion can be approxi-

mated as a sum of harmonic functions,

xg ≈
(n−1)/2∑

k=−(n−1)/2

x̂ke
i 2πk
T
t. (2.38)

Only the x coordinate is shown here, but the y and z coordinates have the same form. Here, we

assume that the total number of time-instances (n) is odd. If xg is the x coordinate of a node in

the mesh, x̂k are their corresponding Fourier series coefficients. Using the approach used for the

approximation of the temporal derivative term in time-spectral CFD [39, 44], we have:

ẋng ≈ D(ω)xng , (2.39)

where ẋng is the vector of true mesh nodal velocities for all time-instances, and xng are the mesh

nodal coordinates for all time-instances.

The surface mesh cell center velocities vx,g, vy,g, and vz,g, are approximated by averaging of the

nodal velocities. Benoit and Nadarajah [9] observe that for an airfoil with a pitching magnitude

of 5◦, the maximum CL computed by a solver satisfying GCL and another solver not satisfying

GCL differs by less than 0.5%. However, for another case with 20◦ pitching amplitude, the value

increases to 15.21%. In our case, since for all cases the pitching amplitude is within 2◦, we expect

GCL not having a significant impact on the solution. We discuss GCL in Section 2.3.3 and we

28

present two cases in Section 6.1.2.2 that support the claims made by Benoit and Nadarajah [9].

2.3.3 GCL

We propose a simple method to enforce the GCL that is based on the assumption that all nodes

undergo harmonic motions [9]. Without GCL, we compute the area rate, Ȧn, and the area rate

swept by each edge, (dA/dt)i,j , by using the following formulae,

Ȧn = D(ω)An,
(

dA

dt

)

i,j

=

(
Vi + Vj

2
× vi,j,k

)
,

(2.40)

where An = [A1, . . . , Ak, . . . An]ᵀ, Ak is the area of a cell from the kth time-instance, (dA/ dt)i,j

denotes the area rate swept by an edge i, j (where i, j are the nodal indices), Vi and Vj are

nodal velocities computed using Eq. (2.39), vi,j denotes the vector xj − xi, and k is a unit vector

perpendicular to the plane that the airfoil belongs to.

In general, the GCL is not satisfied using Eq. (2.40), i.e.,

dA

dt
6=
∑

(i,j)∈E

(
dA

dt

)

i,j

, (2.41)

where E is the set of all edges from a cell.

We enforce the GCL by keeping the second equation and removing the first equation from

Eq. (2.40). We reconstruct the area rate from the rate swept by each surface by using the following

formulae
dA

dt
=
∑

(i,j)∈E

(
dA

dt

)

i,j

,

(
dA

dt

)

i,j

=

(
Vi + Vj

2
× vi,j,k

)
.

(2.42)

Thus, the GCL is satisfied by construction.

29

The area rate swept by an edge used in Eq. (2.42) was verified with the analytic area rate for

the quadrilateral element case proposed by Benoit and Nadarajah [9]. As shown in Fig. 2.2, the

rate computed with the time-spectral method matches the analytic solution.

0.0 0.2 0.4 0.6 0.8 1.0
t/T

−2

0

2

4

6

8

Area rate
Analytic
(Benoit, Nadarajah, 2019)

Time-spectral

Figure 2.2: The implemented GCL compares well with analytic results Benoit and Nadarajah [9].

2.3.4 Boundary condition for the airfoil test case

The boundary conditions for the airfoil and the wing test cases are set in different ways fol-

lowing different conventions by Isogai [53], Yates [147], respectively. For the airfoil test case, the

boundary condition for the CFD solver are composed of (T∞, p∞,M). The pressure, p∞ is fixed

to 101325.0 Pa and the Mach number, M is also given. The temperature, T∞ is determined by Vf

30

and M . Using the definition of LCO speed index, Mach number, and the ideal gas law,

U∞ = Vfbωα
√
µ,

a =
U∞
M

,

T∞ =
a2

γR
,

(2.43)

where a is speed of sound, we can compute the temperature.

2.3.5 Boundary condition for the wing test case

Following the convention by Yates [147], the triplet (T∞, p∞,M) is determined differently

compared with the airfoil test case. In this analysis, we define the problem in terms of (M,µ, Vf).

Thus, we need to compute (T∞, p∞). Here we detail the procedure to compute the boundary

conditions. Flow density can be computed from previously defined nondimesnional coefficients in

Eq. (2.28),

ρ∞ =
m0

µV0

. (2.44)

Similarly, from Eq. (2.28) and the dynamic pressure, the static pressure, p∞ is obtained as

U∞ = Vfbωα
√
µ,

q∞ =
1

2
ρ∞U

2
∞,

p∞ =
2q∞
γM2

.

(2.45)

Finally, the temperature T∞ is found by the ideal gas law,

T∞ =
p∞
ρ∞R

, (2.46)

where R is the gas constant for air.

31

Here, M and µ are taken as parameters whereas Vf is taken as an independent state variable.

Subsequently, we can define the static pressure and temperatures as a function of the LCO speed

index,

T∞ = T∞(Vf),

p∞ = p∞(Vf).

(2.47)

2.3.6 Load calculation for the airfoil test case

The computation of aerodynamic loads for the airfoil test cases boils down to the computation

of lift and moment coefficient, Cl and Cm, respectively. They are straightforward to compute and

the derivation is omitted. For more detail, the readers are referred to the standard textbook by

Anderson [3].

2.3.7 Load calculation for the wing test case

For the wing test case, the load transfer component need to know the aerodynamic load in

dimensionless form. The aerodynamic load is computed at each nodes for each time-instance i

fi = fi(XS,i, ζi), (2.48)

where XS,i is the surface mesh for time-instance i. The dimensionless aerodynamic load is as

previously defined Eq. (2.26)

f̄i =
1

q∞Sref
fi(XS,i, ζi).

Furthermore, since U∞ = U∞(Vf), we finally have

f̄i = f̄i(Vf ,XS,i, ζi). (2.49)

32

2.4 CFD–CSD load and displacement transfer

Between the CFD and CSD components, the displacement information is transferred from

the CSD component to CFD component, and the load information is transferred in the opposite

direction. For the airfoil test case, the displacement transfer is reduced to a rigid body motion

problem and the load transfer is reduced to the computation of Cl and Cm as discussed before.

These operations are simple to do and thus are omitted here. However, the information transfer for

the wing test case is relatively complicated and we have done some new development here. This is

detailed in this section.

2.4.1 Displacement transfer

In general, the aerodynamic and structural grids do not have the same topology or match in

terms of surface grid point locations. Thus, an interpolation scheme is needed to transfer both loads

and displacements the is suitable for not matching grids. In this work, a relatively simple strategy

is adapted. Given the structure mode shapes Φ at coordinates Xmode we fit Φ with a fourth-order

polynomial which we denote as Φ̆ΦΦ. The aerodynamic mode shapes can then be computed from this

function by evaluating it using the jig shape i.e. Φ̆ΦΦ3(XJ).

CSD mesh

PA

P
′

A

P
′

S

PS

CFD upper surface mesh

CFD lower surface mesh

Figure 2.3: Transfer illustration. PS is a projection of PA on the structure mode surface. |PAP ′A| =
|PSP ′S |.

The displacement of the CFD nodes in the ith time-instance can be defined in term of the

33

aerodynamic modes shapes as,

ū3,i = Φ̆ΦΦ3(y1, y2)η̄i. (2.50)

Here we ignore any displacement in u1 and u2 since the magnitude of these two components is

much smaller than compared with u3. The surface deformation of the aerodynamic mesh can then

be written as

XS,i = XJ +

0

0

Φ̆ΦΦ3(XJ)

η̄ib. (2.51)

where XJ surface coordinates of the undeformed aerodynamic mesh i.e. the jig shape coordinates.

2.4.2 Load transfer

The virtual work on the CFD mesh after a small deformation can be written as

δW CFD,i = −
(
f̄3,i(Vf , ζi,XS,i)

)ᵀ
δū3,i

= −
(
f̄3,i(Vf , ζi,XS,i)

)ᵀ
Φ̆ΦΦ3(XJ)δη̄i,

(2.52)

where Eq. (2.50) was applied. The virtual work on the CSD mesh is given as

δW CSD,i =
(
f̄r,i(XJ , Vf , ζi,XS,i)

)ᵀ
δη̄i. (2.53)

To make the transfer consistent, we have

δW CFD,i + δW CSD,i = 0, (2.54)

34

for all virtual displacement. This gives

f̄r,i(XJ , Vf , ζi,XS,i) = Φ̆ΦΦ3(XJ)ᵀ
(
f̄3,i(Vf , ζi,XS,i)

)
. (2.55)

We choose this light-weight transfer scheme because it is easier to implement than more in-

volving transfer scheme as discussed by Kenway et al. [62].

2.5 AD

AD is a well known approach based on the systematic application of the differentiation chain

rule to computer programs [40, 96, 106]. When implemented appropriately, AD can achieve ma-

chine precision. Its computational cost can be either proportional to the number of inputs or the

number of outputs depending on the mode it is implemented with. We cover the two modes in the

following sections. For a more detailed discussion on AD, we refer the readers to the textbook by

Martins and Ning [96].

2.5.1 Variables and functions as lines of code

We represent the variables of the computer code by a sequence

v = v1, v2, . . . , vN . (2.56)

Parts of v overlap with the inputs x, and outputs f . The rest of v is the intermediate variables. In

general, a variable assignment corresponding with a line of code can be dependent on variables

including itself:

vi = Vi(v1, . . . , vN), (2.57)

35

where Vi(·) is an explicit function. By introducing additional variables, we can avoid variable

substitution, and unroll the function such that a variable assignment is only dependent on the

variables assigned previously. Then, we have

vi = Vi(v1, . . . , vi−1). (2.58)

Using this definition, we can derive the derivatives using the chain rule. There are two modes

of the chain rules. In the forward mode, we fix one input and compute all the output derivatives

with this input. In the reverse mode, we fix one output and compute the derivative with respect to

all the inputs.

2.5.2 FAD

The chain rule for the forward mode can be written as:

dvi
dvj

=
i−1∑

k=j

∂Vi
∂vk

dvk
dvj

. (2.59)

For the forward mode, we fix j and incrementing i to get the derivative of all variables with respect

to vj . For a fixed input j, we define that

v̇i :=
dvi
dvj

. (2.60)

We name v̇i as the forward seed.

Supposing we have the following sequence of variables (v1, v2, v3, v4) where v1, v2 are the

inputs, x1, x2, v3 is an intermediate variable, and v4 is the output, f . To compute the derivative of

f with respect to x2, we set v̇2 = 1, and increment i using Eq. (2.59). We collect the output and

obtain v̇4 that equals dy/ dx2.

36

For the directional derivative, i.e., when we want to compute the derivative in the direction of a

vector c = Rnx . This can be easily done by adding one additional node v0, and edges vi = civ0 for

i = 1, . . . , nx. Then, by computing dvi/ dv0, we obtain the directional derivative. Alternatively,

we can simply set v̇i to be equal to ci for i = 1, . . . , nx, and we will get the same result. In the rest

of the section, we directly set the input forward seeds.

The number of FAD code calls is proportional to the number of inputs and is independent of

the number of outputs.

2.5.3 RAD

The reverse mode is also based on the chain rule. It can be written as

dvi
dvj

=
i∑

j+1

∂Vk
∂vj

dvi
dvk

. (2.61)

For a fixed output i, we define that

v̄j :=
dvi
dvj

. (2.62)

We name v̄j as the reverse seed.

Consider the same example used in the previous section. To compute the derivative of f with

respect to x2, we set v̄4 = 1, and increment j using Eq. (2.61). We collect the output and obtain v̄2

that equals dy/ dx2.

When we compute the derivative for the weighted output with the weight, w ∈ Rnf , we can

simply add another node vN+1, and edges based on vN+1 =
∑nf

j=1wjvN−nf+1+j . By setting v̄N+1 =

1, and collect v̄i, we obtain the total derivative of the weight output. Alternatively, we can simply

set v̄N−nf+1+j to be equal to wj for j = 1, . . . , nf , and we will get the same result. In the rest of

the section, we directly set the input reverse seeds.

Different from the FAD method, for the RAD method, the number of RAD code calls is pro-

37

portional to the number of inputs and is independent of the number of outputs.

2.5.4 Example

2.5.4.1 Equivalency of FAD and RAD

The FAD and RAD formulae are two different ways to express the same underlying derivatives.

We demonstrate it using a simple example with v = v1, v2, v3, where v1 and v3 are the only input

and output, respectively. The goal is to compute dv3/ dv1.

Using Eq. (2.59), we set that v̇1 = 1, and we have

dv3

dv1

=
∂V3

∂v1

dv1

dv1

+
∂V3

∂v2

dv2

dv1

=
∂V3

∂v1

v̇1 +
∂V3

∂v2

dv2

dv1

=
∂V3

∂v1

+
∂V3

∂v2

dv2

dv1

.

(2.63)

Alternatively, using Eq. (2.61), we set that v̄3 = 1, we have

dv3

dv1

=
∂V2

∂v1

dv3

dv2

+
∂V3

∂v1

dv3

dv3

=
∂V2

∂v1

dv3

dv2

+
∂V3

∂v1

v̄3

=
∂V2

∂v1

dv3

dv2

+
∂V3

∂v1

.

(2.64)

Finally, we need to use the identity that

dvi+1

dvi
=
∂Vi+1

∂vi
, (2.65)

which can be derived by plugging in j = i−1 into Eq. (2.59). Using this identity, we have dv3/ dv1

derived from Eq. (2.63) and Eq. (2.64) are indeed identical.

38

2.5.4.2 Superiority of RAD method for problems with fewer outputs than inputs

As we mentioned earlier, RAD method outperforms FAD method for problems with fewer

outputs than inputs. We demonstrate this point by the following example.

The function is defined as

def f (x1 , x2) :

re turn x2 ** 2 , s i n (x1 * x2)

We want to compute (df2/ dx) at the point x = (π/6, 1).

At first, we unroll the code by defining new intermediate variables

v1 = x1,

v2 = x2,

v3 = v1v2,

v4 = v2
2,

v5 = sin v3.

(2.66)

We can differentiate the code using FAD and RAD. For the FAD method, we at first set v̇1 = 1

to compute df2/ dx1. Using Eq. (2.59), we have

v̇1 = 1,

v̇2 = 0,

v̇3 =
∂V3

∂v1

v̇1 +
∂V3

∂v2

v̇2 = v2 = 1,

v̇4 =
∂V4

∂v1

v̇1 +
∂V4

∂v2

v̇2 +
∂V4

∂v3

v̇3 = 0,

v̇5 =
∂V5

∂v1

v̇1 +
∂V5

∂v2

v̇2 +
∂V5

∂v3

v̇3 +
∂V5

∂v4

v̇4 = cos v3v̇3 =

√
3

2
.

(2.67)

Thus, we have df2/ dx1 =
√

3/2. Similarly, by setting v̇2 = 1 and conducting a similar computa-

39

tion, we find that df2/ dx2 =
(√

3π
)
/12.

Alternatively, for the RAD method, we set f̄2 = 1, i.e., v̄5 = 1. Using Eq. (2.61), we have

v̄5 = 1,

v̄4 = 0,

v̄3 =
∂V4

∂v3

v̄4 +
∂V5

∂v3

v̄5 = cos v3v̄5 =

√
3

2
,

v̄2 =
∂V3

∂v2

v̄3 +
∂V4

∂v2

v̄4 +
∂V5

∂v2

v̄5 = v1v̄3 + 2v2v̄4 =

√
3π

12
,

v̄1 =
∂V2

∂v1

v̄2 +
∂V3

∂v1

v̄3 +
∂V4

∂v1

v̄4 +
∂V5

∂v1

v̄5 = v2v̄3 =

√
3

2
.

(2.68)

For this example, we have one output function and two input variables. For the RAD method,

it requires one computation to obtain the derivatives. While, for the FAD method, it requires

two computations. Thus, the RAD method is better than FAD method for this example. Generally

speaking, for problems with weighted output with more than one design variable, the RAD method

is superior. This is exactly the reason we develop the RAD formulae in Chapter 5.

40

CHAPTER 3

Time-Spectral Aeroelastic Equations and

Jacobian-Free Newton–Krylov Solver

In this chapter, we present our LCO solution method based on the CNK method. The derivation

is written for the wing test case. For the airfoil case, we only need to switch the underlying

modules as discussed in Chapter 2. For example, the displacement for the wing test case is defined

as ηηηn, and for the airfoil test case, the displacements are αααn and hhhn for pitching and plunging,

respectively. The chapter is organized as follows: In Section 3.1, we present the time-spectral

aeroelastic equations that are the governing equation of an LCO. Then, in Section 3.2, we discuss

our proposed method to solve the time-spectral aeroelastic equations.

3.1 Time-spectral aeroelastic equations

In this section, we explain the motivation and the components of the time-spectral aeroelastic

equations. As discussed in the introduction, we are interested in finding the LCO speed index,

Vf , and the LCO frequency, ω for the prediction of an LCO. Considering those variables as state

variables, in addition to the spectral CSD and CFD state variables (ηηηn and ζζζn, respectively), we

can form a state vector, q, of 2 + NCSD × n + NCFD × n states. However, once we take the CSD

and CFD equations into account, we only have NCSD × n + NCFD × n equations. Therefore, two

more equations are needed to make sure there are equal numbers of equations and variables.

41

Without additional constraints, any point in Fig. 1.2 from either curve is a feasible solution

satisfying both CSD and CFD equations. By specifying a constraint on the magnitude of the

motion, the solution is limited to one point on the curve. This leaves the solution the freedom

to shift the phase. Thus, an equation is added to constrain the phase, and a unique solution is

obtained. This formulation was originally proposed by Thomas et al. [137] using the harmonic-

balance method.

The time-spectral aeroelastic system of equations in residual form are defined as the aggrega-

tion of the motion equation residuals for the magnitude and phase (Rm and Rp, respectively), the

CSD equation residuals (STS), and the CFD equation residuals (ATS):

R(q) :=

Rm

Rp

STS

ATS

, (3.1)

where the state variable vector q is defined as

q :=

Vf

ω

ηηηn

ζζζn

. (3.2)

The above formulation is general in the sense that different fidelities could be used. For in-

stance, a full finite-element model can be applied to compute STS instead of the simpler two-

dimensional spring model used in this work. We use the equation to predict both flutter and LCO.

The difference is that for predicting the flutter point, a very small amplitude is used, and solv-

ing for LCO assumes larger amplitudes. In the following sections, we detail the components of

42

Eq. (3.1) specific to this work. Finally, in Section 3.3, we discuss the preconditioner design which

is a critical element for the Krylov subspace methods.

3.2 Time-spectral aeroelastic solution

Now we present the solver for the time-spectral aeroelastic equations (3.1), which consists of

a preconditioned coupled Jacobian-free Newton–Krylov method. Applying Newton’s method to

Eq. (3.1) is solved using Newton’s method, which results in the following linear system:

J∆q = −R(q(k)),

q(k+1) = q(k) + θ∆q,

(3.3)

where

J =
∂R(q)

∂q

∣∣∣
q=q(k)

(3.4)

is the Jacobian evaluated at step k. Solving the linear system yields the step ∆q, which is then

used to update the current value of the state vector, q(k), to a new one, q(k+1). In the update, θ is a

positive step size determined by line-search methods.

In this work, we use the flexible generalized minimal residual (FGMRES) method in conjunc-

tion with the cubic line-search option to solve Eq. (3.3), leveraging the PETSc library [4]. Each

increment, ∆q, is solved iteratively until the tolerance determined by the Eisenstat–Walker algo-

rithm is met [28]. The FGMRES method is a Krylov subspace method that minimizes the residual

norm ||r||2 with respect to ∆q [117] where r = J∆q + R(q(k)). The method requires an initial

guess for the step, ∆q0 which is discussed later in this section. We set the Krylov subspace size

to m = 30 in our computations. The most computationally demanding steps of this process are

those related to the matrix-vector products, Jv. Instead of evaluating all the terms in the Jaco-

bian, storing them and directly applying matrix vector product, we use a directional finite-different

43

approximation,

Jv ≈ R(q(k) + εv)−R(qk)

ε
. (3.5)

This approach is more efficient both in terms of computational time and memory. The step size ε

is determined by [19],

ε =

erelv
>q(k)/‖v‖2

2 if
∣∣v>q(k)

∣∣ > umin‖v‖1

erelumin sign
(
v>q(k)

)
‖v‖1/‖v‖2

2 otherwise
, (3.6)

where umin and erel are set to 10−6 and 10−8, respectively. This Jacobian-free Newton–Krylov

method is detailed by Knoll and Keyes [67].

Solving the time-spectral aeroelastic equations has now been reduced to a sequence of residual

evaluations. This residual evaluation is described in Algorithm 1. This algorithm is an extension

of the steady-state aeroelastic solver developed by Kenway et al. [62].

Algorithm 1 Coupled nonlinear residual computation
1: function R(Vf , ωf , ηηηn, ζζζn)

2: Xn
S ← G(ηηηn) . Transfer displacements

3: Xn
V ←W (Xn

S) . Deform volume mesh to match surface

4: ATS ← ATS (Vf , ωf , ζζζ
n,Xn

V) . Evaluate CFD residuals

5: fnA ← fnA (ζζζn,Xn
S) . Evaluate aerodynamic forces

6: f̄n ← G′(fnA) . Transfer forces

7: STS ← STS(Vf , ωf , ηηη
n, f̄n) . Evaluate CSD residuals

8: Rm ←Rm(ηηηn) . Evaluate prescribed motion magnitude residual

9: Rp ←Rp(ηηη
n) . Evaluate prescribed motion phase residual

10: R← (Rm,Rp,STS,ATS) . Combine residuals

11: return R

12: end function

For a Newton-type method to converge, the initial guess needs to be close to the solution.

44

We use a previous solution (Vf, prev, ωprev, ηηη
n
prev, ζζζ

n
prev), at Mprev, as the initial guess for a new Mach

number, Mcurr.

This strategy assumes that the states at Mcurr and Mprev are close. To further improve the initial

solution quality, we perform the following two additional steps. First, we conduct one complete

CFD analysis using (Vf, prev, ωprev, ηηη
n
prev) atMcurr, which gives ζζζninter. Then, we start the CNK solution

at the new Mach number, Mcurr, using (Vf, prev, ωprev, ηηη
n
prev, ζζζ

n
inter) as the initial guess. This approach

is used in the application sections whenever a warm start is used. Other strategies exist in literature

to obtain an initial guess. Thomas et al. [137] proposed using the linear flutter solution found by

a time-linearized aerodynamic analysis as an initial point for the Newton solver. The method was

shown to be effective, requiring only a few iterations to achieve convergence.

3.3 Preconditioner

When solving Eq. (3.3), one critical requirement for good performance of an iterative method

is that the eigenvalues of J be close to each other. To guarantee this, we need to construct a

suitable preconditioner. Similar to the previous steady aerostructural work, we implement a right

block-Jacobi preconditioner P such that

(JP−1)∆y = −R(q(k)),

P−1∆y = ∆q.

(3.7)

The second equation is expanded as

P−1
motion,CSD 0

0 P−1
CFD

∆yVf ,ω,CSD

∆yCFD

 =

∆qVf ,ω,CSD

∆qCFD

 . (3.8)

The preconditioner already implemented for the steady CFD solver P−1
CFD was reused [62]. The

45

preconditioner uses an additive Schwartz method with an overlap of 1 (ASM(1)) at the top level

with an incomplete lower-upper decomposition using two levels of fill (ILU(2)) for the local block

preconditioners. The preconditioner is based on a first-order discretization to reduce its band-

width. For the time-spectral CFD preconditioner, the coupling between different time instances is

ignored, resulting in n blocks of such preconditioners on the diagonal. For more discussion about

the block diagonal preconditioner and the time-spectral preconditioner, we refer the reader to the

aerostructural preconditioner demonstrated by Kenway et al. [62], and the time-spectral precondi-

tioner demonstrated by Mader and Martins [90].

The preconditioner PCSD for the motion equations and the CSD equations are new develop-

ments implemented in this work. Three preconditioning strategies are developed here and their

numerical performance is compared in Section 6.1.4.

3.3.1 Direct-inversion preconditioner

Due to the relatively small problem size resulting from the airfoil problem considered in this

work, a direct factorization is reasonable. A direct inversion of the Jacobian is used as the precon-

ditioner for the motion equations and the CSD equations. The resulting preconditioner is:

P−1
motion, CSD =

0 0
∂|η̄1st harmonic,j |

∂ηηηn

0 0
∂θ1st harmonic,j

∂ηηηn

−
(
Srefb
V0

)
Vf
(
f̄nr
) (

Mn
r

m0

)(
2ω
ω2
α

) (
QᵀD̄2Q

)
(η̄n)

((
Mn
r

m0

)(
ω2

ω2
α

) (
QᵀD̄2Q

)
+
(

Mn
r

m0

)(
Ω2

ω2
α

))

−1

.

(3.9)

Unless otherwise stated, all results presented in this work use the direct-inversion preconditioner.

46

3.3.2 Schur complement based preconditioner

With a more involved case and a larger structure, such as a full finite element method (FEM)

wing box model, the direct inversion of Eq. (3.9) may not be possible and a more suitable pre-

conditioner strategy should be found. However, for a FEM solver with time-spectral capability, an

existing routine could be used to invert the diagonal component MnDQ + Kn. Based on that, we

propose to form a preconditioner for P−1
motion,CSD by applying Schur complement. We expand the

equation for the structure and motion preconditioner,

PCSD∆qVf ,ω,CSD = ∆yVf ,ω,CSD,

0 B>2

B1 A

∆q1

∆q2

 =

∆y1

∆y2

 ,

(3.10)

where

A = MnDQ + Kn,

B1 =

[
−2Vf

π
fn Mn dDQ

dω
un
]
,

B2 =

[
∂|α1|
∂un

∂φ
∂un

]
.

(3.11)

The solution for the updates is

∆q1

∆q2

 =

S−1
A S−1

A (−B>2 A−1)

−A−1B1S
−1
A −A−1B1S

−1
A (−B>2 A−1) + A−1

∆y1

∆y2

 , (3.12)

where SA = −B>2 A−1B1 is the Schur complement of A in PCSD. In this way, we leverage on the

existing solver for the inversion operation of A. In a time-spectral FEM solver, if a direct solver

is used, as with TACS [59], then A−1 is the direct factorization of the matrix. Alternatively, if

an iterative solver is applied, A−1 could be approximated by the preconditioner used in the FEM

solver.

47

3.3.3 Saddle point system preconditioner

Instead of computing all the terms in the matrix inversion 3.12, we can ignore secondary terms

to make the computation more efficient. The SPS preconditioner is given by

P̃motion, CSD =

SA

A

 . (3.13)

where the off-diagonal terms and−A−1B1S
−1
A (−B>2 A−1) from the 2nd diagonal term in Eq. (3.12)

are all ignored. This makes it easier to compute the preconditioner, but makes the preconditioner

less effective in improving the original linear system conditioning number. We evaluate the perfor-

mance of the different preconditioners in Section 6.1.4.

3.3.4 Diagonal correction

For the airfoil test case, we find that the aforementioned preconditioners can be used as it is

and have good performance in general. However, for the wing test case, we test with the direct-

inversion preconditioner and the solver stalls at around 10−4 time-spectral aeroelastic residual. We

find that the cause of the issue is that the first two rows from PCSD is not diagonally dominant. We

fix the issue by adding a diagonal correction, εcorr to the two rows where εcorr ∈ (10−3, 10−5).

Pmotion, CSD, corr = Pmotion, CSD +

εcorr 0 0

0 εcorr 0

0 0 0

. (3.14)

This seemingly small change has a significant impact on the solution convergence. With the cor-

rection, the residual is finally driven to 10−10. Later in Chapter 4, the transpose of the current

preconditioners are used for the adjoint equation solutions. The correction has a similar impact on

the adjoint equation convergence. However, the correction term seems does not have much effect

48

on the airfoil case. This is remained to be investigated.

49

CHAPTER 4

Time-Spectral Aeroealstic ADjoint and Krylov

Subspace Solver

In this chapter, we present the coupled adjoint method developed for efficient derivative com-

putation. This chapter is organized as follows: In Section 4.1, we present the coupled adjoint

equation. Then in Section 4.2, we show the implementation detail of the coupled adjoint equation

solution method. For the implementation, the Krylov subspace method is used to solve the linear

coupled adjoint equations and AD is used to evaluate the matrix-vector product required by the

Krylov subspace method. In Section 4.2, we present the related matrix-vector products. Finally,

the coupled adjoint solution method is shown in Section 4.3. The preconditioning method which

is critical for the convergence of a Krylov subspace method is shown in Section 4.3 as well.

4.1 Coupled adjoint overview

The function of interest (e.g. Vf) derivatives with respect to design variables are important

design information. We apply the adjoint method to evaluate the sensitivity. For a more general

treatment for the adjoint method, we refer the readers to Martins and Hwang [95]. The total

50

derivatives of the function of interest with respect to the design variables are given as follows

dI

dx
=
∂I

∂x
+
∂I

∂q

dq

dx
,

=
∂I

∂x
+

[
∂I
∂Vf

∂I
∂ω

∂I
∂ηηηn

∂I
∂ζζζn

]

dVf
dx

dω
dx

dηηηn

dx

dζζζn

dx

,

(4.1)

where set I as the function of interest, x as the design variables, and the state variable q is defined

in Eq. (3.2). The total derivatives of the state variables dq/ dx with respect to the design variables

from Eq. (4.1) also satisfies the following equation

dR
dx

=
∂R
∂x

+
∂R
∂q

dq

dx
= 0,

dRm
dx

dRp
dx

dSTS
dx

dATS
dx

=

∂Rm
∂x

∂Rp
∂x

∂STS
∂x

∂ATS
∂x

+

∂Rm
∂Vf

∂Rm
∂ω

∂Rm
∂ηηηn

∂Rm
∂ζζζn

∂Rp
∂Vf

∂Rp
∂ω

∂Rp
∂ηηηn

∂Rp
∂ζζζn

∂STS
∂Vf

∂STS
∂ω

∂STS
∂ηηηn

∂STS
∂ζζζn

∂ATS
∂Vf

∂ATS
∂ω

∂ATS
∂ηηηn

∂ATS
∂ζζζn

dVf
dx

dω
dx

dηηηn

dx

dζζζn

dx

= 0.

(4.2)

This is based on the fact that no matter what values we set for the design variables, the residual

should always be zero for a physical solution. Combining Eq. (4.1) and Eq. (4.2), we obtain the

51

following equation

dI

dx
=
∂I

∂x
−ΨΨΨᵀ

∂Rm
∂x

∂Rp
∂x

∂STS
∂x

∂ATS
∂x

,

∂Rm
∂Vf

∂Rm
∂ω

∂Rm
∂ηηηn

∂Rm
∂ζζζn

∂Rp
∂Vf

∂Rp
∂ω

∂Rp
∂ηηηn

∂Rp
∂ζζζn

∂STS
∂Vf

∂STS
∂ω

∂STS
∂ηηηn

∂STS
∂ζζζn

∂ATS
∂Vf

∂ATS
∂ω

∂ATS
∂ηηηn

∂ATS
∂ζζζn

ᵀ

ΨΨΨ =

∂I
∂Vf

∂I
∂ω

∂I
∂ηηηn

∂I
∂ζζζn

,

(4.3)

where ΨΨΨ is the adjoint variables. The second equation from Eq. (4.3) is the so-called time-spectral

aeroelastic adjoint equation. The adjoint method has the advantage that the number of linear so-

lutions required to get the total derivatives scales with the dimension of the function of interest I

rather than the dimension of the design variables. This is an advantage in aerodynamic shape de-

sign problems, since we typically have few functions of interest but hundreds of design variables.

If there are more functions of interest than design variables, we should do the opposite: associating

(∂R/∂q)−1 with ∂R/∂x. If Vf is chosen for I , then we have

∂I

∂x
= 0,

∂I

∂q
=

1

0

0

0

,

(4.4)

which simplifies our computation a bit.

52

4.2 Coupled adjoint implementation

Equation (4.3) says nothing about the solution methodology. There are many ways to solve

for the adjoint equation. The linear GS method proposed by Kenway et al. [62], Martins et al.

[98], Shi et al. [121], the coupled Krylov adjoint solver by Kenway et al. [62], Shi et al. [121], the

Monte Carlo (MC) method by Wang et al. [142] which is developed mainly for unsteady adjoint

though, and more recently by dynamic mode decomposition method [21]. For the current work,

we apply a coupled Krylov method, since it has been demonstrated by Kenway et al. [62] to be

computationally more efficient than the linear GS method.

One key component for the coupled Krylov is the matrix-vector products between the transpose

of the Jacobian matrix with certain seeds. To compute this accurately and efficiently, we apply the

reverse AD method, which is precise up to machine precision, following Mader et al. [91].

The coupled adjoint and function sensitivity evaluation involves four components as shown

in Eqs. (4.1) and (4.2). (∂R/∂q)ᵀΨ, (∂R/∂x)ᵀΨ, ∂I/∂q and ∂I/∂x. In this work, ∂I/∂q is a

simple constant vector and ∂I/∂x is simply zero as mentioned in Eq. (4.4). We focus on the other

two components in this section.

4.2.1 Prescribed motion residual partial derivatives, ∂Rm/∂q, ∂Rp/∂q

The prescribed motion residual is solely dependently on displacements ηηη. Since the dimension

of ∂Rm/∂ηηη
n, ∂Rp/∂ηηη

n are quite small, with a dimension of n×NCSD for either of them, instead

of giving the matrix-vector product form, we simply store the matrix explicitly. And the matrix

entries are evaluated using the finite difference method.

53

4.2.2 Structural residual partial derivatives, ∂STS/∂x

The expression for CSD equations is defined earlier in Eq. (2.27) and we write it out again here

in Eq. (4.5)

STS =

(
Mn

r

m0

)(
ω2

ω2
α

)(
PᵀD̄2P

)
η̄n +

(
Mn

r

m0

)(
Ω2

ω2
α

)
η̄n − 1

2

(
Srefb

V0

)
V 2
f f̄nr = 0. (4.5)

The partial derivatives of structural residual with respect to design variables are given as

(
∂STS

∂x

)ᵀ

φφφ =

(
∂XS,0

∂x

)ᵀ(
∂Xn

S

∂XS,0

)ᵀ(
∂fn

∂Xn
S

)ᵀ(
∂ f̄nr
∂fn

)ᵀ(
∂STS

∂ f̄nr

)ᵀ

φφφ, (4.6)

where φφφ is an arbitrary seed for the structural residual, XS,0 is the jig shape aerodynamic surface

mesh coordinate, Xn
S is deformed aerodynamic surface mesh coordinate from all time instances, fn

are aerodynamic load at each surface mesh point, and f̄nr is the generalized dimensionless aerody-

namic load. The design variables affect the structure residual only through the aerodynamic load.

This is due to the assumption that the structure remains unchanged during optimization. However,

for aerostructural optimization problems, there are additional terms such as ∂Mn
r /∂x to be taken

into account.

4.2.3 Structural residual partial derivatives, ∂STS/∂q

In this section, we present the partial derivative ∂STS/∂q. Because q = (Vf , ω,ηηη
n, ζζζn), there

are four terms to be derived: (1). ∂STS/∂Vf , (2). ∂STS/∂ω, (3). ∂STS/∂ηηη
n, and (4). ∂STS/∂ζζζ

n.

The partial derivatives of structural residual with respect to Vf are given as:

(
∂STS

∂Vf

)ᵀ

φφφ = −
(
Srefb

V0

)
Vf
(
f̄nr
)ᵀ
φφφ. (4.7)

54

The partial derivatives of structural residual with respect to ω are given as:

(
∂STS

∂ω

)ᵀ

φφφ =

(
Mn

r

m0

)(
2ω

ω2
α

)(
QᵀD̄2Q

)
(η̄n)ᵀφφφ. (4.8)

The partial derivatives of structural residual with respect to structural state variables are more

complicated. It is composed of two ingredients: (1). Directly through ηηη shown in Eq. (4.5), and

(2). Indirectly through the generalized aerodynamic loads. The result is shown below

(
∂STS

∂ηηηn

)ᵀ

φφφ

=

((
Mn

r

m0

)(
ω2

ω2
α

)(
QᵀD̄2Q

)
+

(
Mn

r

m0

)(
Ω2

ω2
α

))ᵀ

φφφ

︸ ︷︷ ︸
(1)

+

(
∂Xn

S

∂ηηηn

)ᵀ(
∂fn

∂XXXn
S

)ᵀ(
∂ f̄nr
∂fn

)ᵀ(
∂STS

∂ f̄nr

)ᵀ

φφφ

︸ ︷︷ ︸
(2)

.

(4.9)

Notice that ∂Xn
S/∂ηηη

n, ∂fn/∂XXXn
S , ∂ f̄nr /∂fn, and ∂STS/∂ f̄nr , are all block diagonal matrices.

Finally, the partial derivatives of structural residual with respect to aerodynamic state variables

are given as
(
∂STS

∂ζζζn

)ᵀ

φφφ =

(
∂ f̄nr
∂ζζζn

)ᵀ(
∂STS

∂ f̄nr

)ᵀ

φφφ. (4.10)

Similar with ∂Xn
S/∂ηηη

n and ∂STS/∂ f̄nr , ∂ f̄nr /∂ζζζ
n is also block diagonal because the aerodynamic

state variables only affect generalized aerodynamic load from the same time instance.

55

4.2.4 Aerodynamic residual partial derivatives, ∂ATS/∂x

The partial derivative of aerodynamic residual with respect to the design variables multiplied

with an aerodynamic residual seed is expanded as

(
∂ATS

∂x

)ᵀ

ψψψ =

(
∂XS,0

∂x

)ᵀ(
∂Xn

S

∂XS,0

)ᵀ(
∂Xn

V

∂Xn
S

)ᵀ(
∂ATS

∂Xn
V

)ᵀ

ψψψ, (4.11)

where Xn
V represents the deformed volume coordinates for n time instances, and ψψψ represents an

arbitrary vector encountered when we use a Krylov subspace solver. Since we use RAD for the

matrix-vector product, none of the matrices is formed explicitly here. The product (∂ATS
n/∂xnV)ᵀψψψ

is computed using ADflow by Kenway et al. [63], Mader and Martins [90]. The product with

(∂Xn
V /∂Xn

S)ᵀ is computed using IDWarp [119]. The original mesh deformation method is pro-

posed by Luke et al. [83] which scales with O(N log(N)) where N is the number of 3D elements.

Notice that (∂ATS
n/∂xnV)ᵀ is coupled for different time instances. On the contrary, (∂Xn

V /∂xnS)ᵀ

is decoupled for different time instances. The product with (∂Xn
S/∂XS,0)ᵀ is newly implemented

in the transfer class. The product with ∂XS,0/∂x is evaluated using pyGeo by Kenway et al. [64].

4.2.5 Aerodynamic residual partial derivatives, ∂ATS/∂q

We covered the matrix-vector multiplication between aerodynamic residual partial derivatives

with respect to design variables in the previous section. Now we switched to consider the partial

derivatives with respect to the state variables.

The LCO speed index affects the aerodynamic residual by perturbing the boundary conditions

as discussed Section 2.3.5. The matrix-vector product between the aerodynamic residual partial

derivative with respect to the LCO speed index and an aerodynamic seed is given as

(
∂ATS

∂Vf

)ᵀ

ψψψ =

(
dT∞
dVf

)ᵀ(
∂ATS

∂T∞

)ᵀ

ψψψ +

(
dp∞
dVf

)ᵀ(
∂ATS

∂p∞

)ᵀ

ψψψ (4.12)

56

where T∞, p∞ are the boundary temperature and pressure, respectively.

The partials for angular velocity ω is computed directly by

(
∂ATS

∂ω

)ᵀ

ψψψ. (4.13)

With spectral interpolated grid velocity [49], the grid velocity will be dependent on the time period.

The matrix-vector multiplication between aerodynamic residual partial derivatives with respect

to structural displacement ηηηn and aerodynamic residual seeds is given as

(
∂ATS

∂ηηηn

)ᵀ

ψψψ =

(
∂Xn

S

∂ηηηn

)ᵀ(
∂Xn

V

∂Xn
S

)ᵀ(
∂ATS

∂Xn
V

)ᵀ

ψψψ, (4.14)

where the term (∂Xn
S/∂ηηη

n)ᵀ is related to how the structural displacement impact the surface co-

ordinates, and other terms were discussed in Eq. (4.11). Similar with (∂Xn
V /∂Xn

S)ᵀ, (∂Xn
S/∂ηηη

n)ᵀ

is decoupled between time instances. Finally, the (∂ATS/∂ηηη
n)ᵀ is dense – each displacement is

likely to affect all the aerodynamic residuals. The displacement affects the aerodynamic residual

within its own time instance. It affects other time instances by affecting the spectral interpolated

grid velocity.

Finally, the partial derivative of aerodynamic residual with respect to aerodynamic state vari-

ables (
∂ATS

∂ζζζn

)ᵀ

ψψψ, (4.15)

has already been developed and discussed in detail by Mader and Martins [90].

57

4.3 Coupled adjoint solution

4.3.1 Coupled Krylov solver

To solve the coupled adjoint equation, we apply the Krylov subspace method. Krylov subspace

method has the advantage that it is not required to store the matrix explicitly and only the matrix-

vector products are required for the solution. Since the matrix-vector products are between the

transpose of Jacobian matrices and vectors, we apply RAD to this operation. The pseudocode for

the operation is given in Algorithm 2.

Algorithm 2 Coupled Krylov method linear operator
1: function MULT(w)
2: (wRm ,wRp ,wSTS ,wATS)← w . Extract prescribed motion magnitude, prescribed motion phase,

structural, and aerodynamic residual seeds
3: wfn ← ∂ f̄n

∂fn
ᵀ ∂STS
∂ f̄n

ᵀ
wSTS . Compute the aerodynamic load seeds

4: wXn
S
← ∂Xn

V
∂Xn

S

ᵀ ∂ATS
∂Xn

V

ᵀ
wATS + ∂fn

∂Xn
S

ᵀ
wfn . Compute the aerodynamic surface coordinates seeds

5: yVf ← ∂ATS
∂Vf

ᵀ
wATS + ∂STS

∂Vf

ᵀ
wSTS . Compute the speed index seed with aerodynamic and

structural contributions
6: yω ← ∂ATS

∂ω

ᵀ
wATS + ∂STS

∂ω

ᵀ
wSTS . Compute the frequency seed with aerodynamic and structural

contributions
7: yηηηn ←

((
Mn
r

m0

)(
ω2

ω2
α

) (
QᵀD̄2Q

)
+
(

Mn
r

m0

)(
Ω2

ω2
α

))ᵀ
wSTS + ∂Rm

∂ηηηn
ᵀ
wRm+

∂Rp

∂ηηηn
ᵀ
wRp+

∂Xn
S

∂ηηηn
ᵀ
wXn

S

. Compute structural displacement seeds with prescribed motion, aerodynamic and structural contribu-
tions

8: yζζζn ← ∂ATS
∂ζζζn

ᵀ
wATS + ∂fn

∂ζζζn
ᵀ
wfn . Compute aerodynamic state variable seeds with structural and

aerodynamic contributions
9: y← (yyyVf , yyyω,yηηηn ,yζζζn) . Combining the output seeds

10: return y

11: end function

In Algorithm 2, we use the partial derivatives derived in the previous sections after merging

similar terms. In Line 3 of Algorithm 2, we compute the fn seed later used in Eq. (4.9) and

Eq. (4.10). In Line 4, we compute the Xn
S seed needed for Eq. (4.14) and Eq. (4.9). In Line 5,

we compute the Vf seed using Eq. (4.12) and Eq. (4.7). Similarly, in Line 6, we compute the ω

seed using Eq. (4.13) and Eq. (4.8). In Line 7, we compute the ζζζn seed using Eq. (4.9), Xn
S seed

58

computed previously in Line 4, and the prescribed motion seed described in Section 4.2.1. In Line

8, we compute ζζζn seeds using Eq. (4.15) and fn seed computed in Line 3.

To improve the convergence of the Krylov method, we apply a block Jacobi preconditioner. The

reason we choose block Jacobi preconditioner is that it will allow the structural and aerodynamic

preconditioning to be carried out in parallel and it allows the reuse of the time-spectral aerodynamic

preconditioner developed in [90]. The preconditioner is defined by

(
JᵀP−ᵀ

)
τττ =

∂I

∂q
,

P−ᵀτττ = ΨΨΨ,

(4.16)

where Pᵀ is the preconditioner, τττ is the solution of the preconditioned system. To be more specific,

the second equation is expanded as

P−ᵀmotion, CSD 0

0 P−ᵀCFD

τττmotion, CSD

τττCFD

 =

ΨRm,Rp,STS

ΨATS

 . (4.17)

where P−1
mot, STS

is the Jacobian of the prescribed motion residual and structural residual with respect

to LCO speed index, frequency and structural displacements, τττmotion, CSD and τττCFD are components

from τττ , and ΨRm,Rp,STS and ΨATS are components from ΨΨΨ. As mentioned before, the CFD pre-

conditioner P−ᵀCFD has been implemented previously by Mader and Martins [90]. For the prescribed

motion and CSD preconditioner, we use the transportation of the preconditioning matrices from

Section 3.3.

Similar to the preconditioner for our Newton–Krylov solver, the diagonal correction Sec-

tion 3.3.4 is critical for the convergence of the adjoint equation residuals. Without the correction,

the adjoint equation residual stalls at about 10−4. With the correction, the adjoint equation residual

can be reduced to about 10−10.

59

CHAPTER 5

Derivatives for Eigenvalues and Eigenvectors for

Analytic RAD

In this chapter, we present methods to efficiently compute the eigenvalue and eigenvector

derivatives. Currently, we make the assumption that during the aerodynamic shape optimization

(see Chapter 7), the structural model is unchanged. In reality, the derivative of the structural natural

frequencies and mode shapes with respect to the design variables needs to be taken into account.

We develop effcient RAD formulae for this purpose. This chapter is organized as follows: In Sec-

tion 5.1, we define the generalized eigenvalue problem encountered in structural mechanics. In

Section 5.2, we present the background. We discuss how the proposed formulae in this chapter

are related with the LCO speed optimization. In Section 5.3, we present our new formulae for the

derivative computation. In Section 5.4, we give some recommendations on how to implement the

formulae efficiently both in speed and memory. Later, in Section 5.5, we verify the proposed for-

mulae using an Euler–Bernoulli beam test case. Finally, we summarize the research in Section 5.6.

For a brief review of the AD technique and the conventions of symbols used in this chapter e.g. ·̄

and ·̇, we refer the readers to Section 2.5.

60

5.1 Generalized eigenvalue problem

The generalized eigenvalue problem in the case of a structural problem with a full basis can be

written as,

MΦ−KΦΛ = 0

ΦᵀMΦ− I = 0

, (5.1)

where M,K ∈ Rn×n are the mass and stiffness matrices, which are symmetric, Λ ∈ Rn×n is a

diagonal matrix with n eigenvalues occupying the diagonal, Φ ∈ Rn×n is a matrix of n eigenvec-

tors corresponding with the n eigenvalues from Λ, and I ∈ Rn×n is an identity matrix. We assume

that there is no repeated eigenvalues, i.e., Λii 6= Λjj, ∀i 6= j. The mass and stiffness matrices are

dependent on the design variables x, but we omit them here to simplify notation. For structural

applications, we are interested in the lowest natural frequencies and the associated mode shapes. In

this case, the lowest natural frequency corresponds to the dominant eigenvalue. The ith dominant

eigenvalue, Λii, is related with the ith natural frequency, ωi, by

Λii =
1

ω2
i

. (5.2)

In many practical applications, such as structural and aeroelastic optimization, only a handful

of eigenvalues and the associated eigenvectors are needed and therefore r � n. The full basis

eigenvalue and eigenvectors, Λ ∈ Rn×n and Φ ∈ Rn×n, respectively, can be written as,

Φ =

[
Φ̂ Φ̃

]
,

Λ =

Λ̂ 0

0 Λ̃

 ,

(5.3)

where Λ̂ ∈ Rr×r and Φ̂ ∈ Rn×r are the reduced eigenvalues and eigenvectors, and Λ̃ ∈ R(n−r)×(n−r)

and Φ̃ ∈ Rn×(n−r) are the truncated eigenvalues and eigenvectors, respectively. The reduced gen-

61

eralized eigenvalue problem can then be written as,

MΦ̂−KΦ̂Λ̂ = 0

Φ̂ᵀMΦ̂− Î = 0

, (5.4)

where Î is an r × r identity matrix.

5.2 Background

Even though the adjoint method is written in a general form, some simplifications are made in

Chapter 7 to make the problem more approachable. One simplification is that when we update the

geometry of the wing during an aerodynamic shape optimization process, the mode shapes remain

unchanged. If we only consider the shape variables, this simplification will not affect the final

result much. However, when we consider aerostructural optimization with planform variables, the

assumption no longer holds. Taking into this additional dependency, most of the derivation in

Chapter 4 of partial derivatives are valid except for one

∂STS

∂x

ᵀ

ψψψ, (5.5)

which is decomposed into

dΦ̂ΦΦ

dx

ᵀ
∂STS

∂Φ̂ΦΦ

ᵀ

ψψψ +
dΛ̂ΛΛ

dx

ᵀ
∂STS

∂Λ̂ΛΛ

ᵀ

ψψψ + other terms, (5.6)

where Φ̂ΦΦ is the mode shapes, and Λ̂ΛΛ is the natural frequencies. The derivative of the mode shapes

and natural frequencies with respect to the design variables are defined using total derivative sym-

bols d (·) meaning that the derivative is computed satisfying the Eq. (5.1). With an aerostructural

optimization, when the design variables are updated, the mode shapes and natural frequencies

62

change. Thus, dΦ̂ΦΦ/dx and dΛ̂ΛΛ/ dx are no longer equal to zero. The “other terms” are usually

straightforward to compute, we focus on the computation of dΦ̂ΦΦ/dx and dΛ̂ΛΛ/ dx.

We can expand Eq. (5.6) and directly relate Eq. (5.6) with Eq. (5.4). For Eq. (5.6), we define

that

Φ̂ΦΦ :=
∂STS

∂Φ̂ΦΦ

ᵀ

ψψψ,

Λ̂ΛΛ :=
∂STS

∂Λ̂ΛΛ

ᵀ

ψψψ,

(5.7)

where Φ̂ΦΦ and Λ̂ΛΛ are the weights of the outputs Φ̂ΦΦ and Λ̂ΛΛ. Notice that the design variables, x, affect

the mode shapes, Φ̂ΦΦ, and natural frequencies, Λ̂ΛΛ by changing the mass matrix, M, and stiffness

matrix, K. Thus, using Eq. (5.7), the two spelled out terms from Eq. (5.6) can be written as

dΦ̂ΦΦ

dx

ᵀ
∂STS

∂Φ̂ΦΦ

ᵀ

ψψψ =
∂M

∂x

ᵀ dΦ̂ΦΦ

dM

ᵀ

Φ̂ΦΦ +
∂K

∂x

ᵀ dΦ̂ΦΦ

dK

ᵀ

Φ̂ΦΦ,

dΛ̂ΛΛ

dx

ᵀ
∂STS

∂Λ̂ΛΛ

ᵀ

ψψψ =
∂M

∂x

ᵀ dΛ̂ΛΛ

dM

ᵀ

Λ̂ΛΛ +
∂K

∂x

ᵀ dΛ̂ΛΛ

dK

ᵀ

Λ̂ΛΛ.

(5.8)

Equation (5.8) could be expensive to evaluate if it is not done carefully. For example, a naive

way to compute the component (∂M/∂x)ᵀ
(

dΦ̂ΦΦ/dM
)ᵀ

Φ̂ΦΦ is to apply FD method to evaluate each

row (for each xi, i = 1, . . . nx) from
(

dΦ̂ΦΦ/dM
)

(∂M/∂x). This requires us to solve the equations

Eq. (5.1) nx times (see Fig. 5.1). In the context of high-fidelity optimization, nx is in the order

of 102 to 103, and r is about 10 to 102. Thus, this naive way to compute this partial derivative

requires 103 to 105 modal equation solutions! This becomes a bottleneck of the coupled adjoint

derivative computation. This analysis is also valid for a FAD implementation. We iterate through

each coordinate i = 1, . . . , nx where we set the forward seed with ẋi = 1 and the rest be zero.

Then, we compute the corresponding forward seeds Ṁ = ∂M/∂xi. Next, we call the FAD code

(see Fig. 5.1) to compute ˙̂
ΦΦΦ =

(
dΦ̂ΦΦ/dM

)
Ṁ. Finally, we evaluate the inner product of flattened

˙̂
ΦΦΦ and Φ̂ΦΦ. Thus, as we mentioned before, this method also requires us to call the FAD function

nx times (within each function call, there are r internal iterations through the eigenpairs). Similar

63

scaling analysis holds true for the rest of the terms from the right hand side (RHS) of Eq. (5.8).

Generalized eigenvalue problem solverM K Φ̂ Λ̂

Generalized eigenvalue problem solver

differentiated in FAD mode

Ṁ K̇
˙̂
Φ

˙̂
Λ

M̄ K̄
¯̂
Φ

¯̂
ΛGeneralized eigenvalue problem solver

differentiated in RAD mode

Figure 5.1: Schematic of the original generalized eigenvalue solver, the FAD mode solver, and the
RAD mode solver. Ṁ and K̇ are the coefficients of the directional derivatives, and Φ̂ΦΦ and Λ̂ΛΛ are the
weights of the weighted output derivative.

Fortunately, what we really want to compute is the derivative of a weighted output, i.e., Φ̂ΦΦ
ᵀ
Φ̂ΦΦ

instead of the individual terms from (∂M/∂x)ᵀ
(

dΦ̂ΦΦ/dM
)ᵀ

Φ̂ΦΦ. In this chapter, we develop two

RAD based formulae that can evaluate this product with O(r) computations. The first formula

only requires us to evaluate matrix-vector products and is free from any equation solution at the

cost of some solution accuracy. And the second formula adds additional correction terms to the

first formula to make it more accurate. Compared with O(r)× nx function calls made by FAD or

FD methods, the RAD formulae are preferred.

64

5.3 Derivation of the RAD formulae

In this section, we present methods that compute the following weighted output derivatives

efficiently

dΦ̂ΦΦ

dM

ᵀ

Φ̂ΦΦ,
dΦ̂ΦΦ

dK

ᵀ

Φ̂ΦΦ,
dΛ̂ΛΛ

dM

ᵀ

Λ̂ΛΛ,
dΛ̂ΛΛ

dK

ᵀ

Λ̂ΛΛ. (5.9)

It is possible that not all the weights are non-zero. For example, we may only need to compute the

derivative of the eigenvalues. Then, we have that Λ̂ΛΛ 6= 0 and Φ̂ΦΦ = 0. Since the ultimate goal is

to compute the derivative with respect to the design variables, x, Eq. (5.8), it pays off to combine

similar terms to reduce the computational cost. Thus, we derive formulae to compute M and K

defined as follows

M :=
dΦ̂ΦΦ

dM

ᵀ

Φ̂ΦΦ +
dΛ̂ΛΛ

dM

ᵀ

Λ̂ΛΛ,

K :=
dΦ̂ΦΦ

dK

ᵀ

Φ̂ΦΦ +
dΛ̂ΛΛ

dK

ᵀ

Λ̂ΛΛ.

(5.10)

We present three methods: (1) The adjoint method, (2) the modal method, and (3) the improved

modal method. The first formula treats the weighted outputs as the objective function and the

equations of the generalized eigenvalue problem Eq. (5.1) as constraints. Then, an adjoint approach

is applied to compute the derivatives. This approach was proposed by Lee [69], but here we provide

a derivation and expressions suitable for RAD and adjoint implementations. The second and the

third formulae, which we call the “modal method” and the “improved modal method”, are novel and

new contributions. Both formulae project the modal derivative onto the reduced space spanned by

the computed modes. Due to the components of the derivatives that are orthogonal to the reduced

space, neither method achieves machine precision. However, in the improved modal method, we

introduce correction terms to improve its accuracy. Both RAD derivations rely on techniques

proposed by Giles [35], Minka [103]. Furthermore, in these derivations, we leverage previously

developed FAD based formulae proposed by Fox and Kapoor [32] for the modal method, and Lim

et al. [76] and Wang [141] for the improved modal method.

65

The derivations presented detail the dependency between (M,K) and (Λ,Φ). We omit the step

relating derivatives of (M,K) to the design variables x, which is problem-specific. In the case of

a structural optimization problem, the omitted step relating (M,K) to x is usually provided by the

FEM software with optimization capability. An example of such implementations can be found in

the TACS open-source FEM package [59].1

5.3.1 Adjoint method

In this section, we present an adjoint derivation to compute the derivatives of the generalized

eigenvalue problem. This method is based on the work proposed by Lee [69], but the derivation

presented here is better suited for RAD implementation. In this approach, the weighted output

function (a linear function) is treated as a function of interest and the generalized eigenvalue prob-

lem Eq. (5.1) as constraints. By applying the adjoint method to compute the derivatives, the com-

putational cost is no longer dependent on the number of design variables, which motivates the

development of this method.

The function of interest and the constraints are given as

I = φφφi
ᵀφφφi + λiλi,

R =

R1

R2

 =

Mφφφi −Kφφφiλi

φφφᵀ
iMφφφi − 1

 ,

(5.11)

where I is a function of interest, R are the residuals, λi and φi are the ith eigenpair, and the ·̄

represents the weight for the weighted output. We write the weighted output in the most general

form. However, it is possible that we are only interest with portion of them, e.g., only the eigen-

value derivative is of interest. For this case, we can simply set φφφi = 0. We further define the state

1https://github.com/gjkennedy/tacs

66

https://github.com/gjkennedy/tacs

variables, q, of the problem as,

q =

φφφi

λi

 . (5.12)

The derivative of the function of interest, dI/ dx, equals

dI

dx
=

dφφφi
dx

ᵀ

φφφi +
dλi
dx

λi. (5.13)

The procedures to compute the operations discussed above is presented in Fig. 5.2 using an

extended design structure matrix (XDSM) format [68]. The function of interest, I , of the problem

is only directly dependent on the state variable q and not the design variables. However, it is

affected indirectly by the design variables through the state variables, which are impacted by M(x),

and K(x). Therefore, we have, ∂I/∂x = 0 but dI/ dx 6= 0.

x x

K K

M M

Generalized eigenvalue problem solver φφφi ,λi

I = φ̄φφ
>
i φφφi + λ̄iλi I

Figure 5.2: XDSM for the eigenvalue problem.

Differentiating both the function of interest and the residual with respect to the design variables

and applying the adjoint method [1, 54], the total derivative of the function of interest can be written

67

as,
dI

dx
=
∂I

∂x
−ψψψᵀ

i

∂R

∂x

= −ψψψᵀ
i

∂R

∂x
,

(5.14)

where ∂I/∂x is zero as explained in the previous paragraph, and the adjoint vector ψψψi is the

solution of the adjoint equation,

∂R

∂q

ᵀ

ψψψi =
∂I

∂q
. (5.15)

Expanding the residual and adjoint vectors and taking the partial derivatives to find the blocks of

the Jacobian ∂R/∂q, we obtain

M−Kλi −Kφφφi

2φφφᵀ
iM 0

ᵀ

ψψψi,R1

ψi,R2

 =

φφφi

λi

 , ψψψi =

ψψψi,R1

ψi,R2

 , (5.16)

where ψψψi,R1 is a subvector of ψψψi, and ψi,R2 is an entry of ψψψi.

Applying the chain rule to the Jacobian of the residuals, ∂R/∂x, we obtain

∂R

∂x
=
∂R

∂M

∂M

∂x
+
∂R

∂K

∂K

∂x
, (5.17)

where ∂R/∂M and ∂R/∂K are three-dimension tensors with dimension Rn×n×n, where (∂R/∂M)ijk =

∂Ri/∂Mjk, and similarly for ∂R/∂K. Furthermore, ∂M/∂x and ∂K/∂x are three-dimensional

tensors with dimension of Rn×n×nx , where (∂M/∂x)ijk = ∂Mij/∂xk, and similarly for ∂K/∂x.

Inserting Eq. (5.17) into Eq. (5.14) we obtain,

dI

dx
= −ψψψᵀ

i

∂R

∂M

∂M

∂x
−ψψψᵀ

i

∂R

∂K

∂K

∂x
,

Mᵀ
i := −ψψψᵀ

i

∂R

∂M
,

Kᵀ
i := −ψψψᵀ

i

∂R

∂K
.

(5.18)

68

The products −ψψψᵀ
i ∂R/∂M and −ψψψᵀ

i ∂R/∂K are evaluated using RAD. The resulting derivatives

expressions are derived as

Mi = − (ψψψi,R1 + φφφiψi,R2)φφφ
ᵀ
i ,

Ki = ψψψi,R1λiφφφ
ᵀ
i ,

(5.19)

where Mi ∈ Rn×n is the reduced mass matrix reverse seed, and Ki ∈ Rn×n is the reduced stiffness

matrix reverse seed (see the Appendix B.4 for the detailed derivation).

When multiple eigenvectors are considered, the previous expression can be more conveniently

written as

M̂ = −
(
Ψ̂R1 + Φ̂Diag

(
Ψ̂R2

))
Φ̂ᵀ,

K̂ = Ψ̂R1Λ̂Φ̂ᵀ,

(5.20)

where M̂ ∈ Rn×n is the reduced mass matrix reverse seed, K̂ ∈ Rn×n is the reduced stiffness

matrix reverse seed, Ψ̂R1 columns are composed of ψψψi,R1 with i = 1, . . . , r, and Ψ̂R2 diagonal is

composed of ψi,R2 with i = 1, . . . , r. To compute for the final solution, the adjoint method requires

us to solve Eq. (5.16) r times the adjoint. For completeness, the direct method for computing the

same derivatives is included in the Appendix B.3.

5.3.2 Modal method

In this section, we present a novel RAD formula that eliminates the need for solving Eq. (5.16)

r times in the previous adjoint formula. The proposed method only requires evaluating O(r) of

matrix-vector products instead of solving any equations, making it much cheaper at the cost of

additional truncation error. Its better efficiency is achieved by projecting the derivative onto a

reduced eigenspace. Later, we show that the relative error is about 1% when about 10 eigenpairs

are considered for a beam problem.

69

5.3.2.1 Derivation

We derive the RAD formula using the FAD formula. We show the FAD formula in the liter-

ature at first. For the FAD based formula, we project the derivative in the basis spanned by the

eigenvectors. The FAD expressions were derived by Fox and Kapoor [32] and can be equivalently

written as

Λ̇ = Λ
(
I ◦
(
−ΦᵀK̇ΦΛ + ΦᵀṀΦ

))
,

Φ̇ = Φ
(
F ◦

(
−ΦᵀK̇ΦΛ + ΦᵀṀΦ

))
− 1

2
Φ
(
I ◦
(
ΦᵀṀΦ

))
,

(5.21)

where K̇, Ṁ are the input derivative seeds for the stiffness and mass matrices, respectively, Λ̇, Φ̇

are the output seeds for the eigenvalues and eigenvectors, respectively. The matrix F is defined as

Fij = λi/ (λj − λi), the operator “◦” is the Hadamard product, defined as (A ◦B)i,j := AijBij

where A and B are matrices.

The RAD expressions are derived using the matrix trace identities

Tr(ΛᵀΛ̇) + Tr(ΦᵀΦ̇) = Tr(KᵀK̇) + Tr(MᵀṀ). (5.22)

More details about the identity is given in Appendix B.2. Substituting in the FAD expressions,

Eq. (5.21), and manipulating the equation we obtain

Tr
(
MᵀṀ

)
+ Tr

(
KᵀK̇

)

=Tr
((

Φ
(
ΛᵀΛ

)
Φᵀ + Φ

((
ΦᵀΦ

)
◦ Fᵀ

)
Φᵀ − 1

2
Φ
((

ΦᵀΦ
)
◦ I
)

Φᵀ

)
Ṁ

)

+ Tr
((
−ΦΛ

(
ΛᵀΛ

)
Φᵀ −ΦΛ

((
ΦᵀΦ

)
◦ Fᵀ

)
Φᵀ
)
K̇
)
.

(5.23)

The full derivation of the RAD result is given in Appendix B.5. By matching the left hand side

70

(LHS) and RHS of Eq. (5.23), we conclude that

M = Φ

(
ΛΛ + F ◦

(
ΦᵀΦ

)
− 1

2
I ◦
(
ΦᵀΦ

))
Φᵀ,

K = −Φ
(
ΛΛ + F ◦

(
ΦᵀΦ

))
ΛΦᵀ.

(5.24)

The above derivation assumes the knowledge of the full basis. If we want to work with a

reduced set of eigenvalues and eigenvectors, we can write the same equation but for the reduced

matrices,

M̂ = Φ̂

(
Λ̂Λ̂ + F̂ ◦

(
Φ̂ᵀΦ̂

)
− 1

2
Î ◦
(
Φ̂ᵀΦ̂

))
Φ̂ᵀ,

K̂ = −Φ̂
(
Λ̂Λ̂ + F̂ ◦

(
Φ̂ᵀΦ̂

))
Λ̂Φ̂ᵀ,

(5.25)

where F̂ ∈ Rr×r is a submatrix of F, defined as F̂ = F(1 : r, 1 : r). In a memory-efficient

implementation, the matrices M̂ and K̂ should not be stored explicitly. Instead, only the individual

terms in the RHS of Eq. (5.25) should be stored. To be more specific, the specific size of each

matrices are: Φ̂, Φ̂ ∈ Rn×r, Λ̂, Λ̂ ∈ Rr×r (only the diagonal terms are non-zero), and F̂ ∈ Rr×r.

Further implementation recommendation are discussed in Section 5.4. Together with Eq. (5.18),

we can compute the total derivatives.

5.3.2.2 Truncation error analysis

Due to the use of a reduced basis, a truncation error is implicitly introduced with the proposed

method. The truncation error of the mass and stiffness matrices is defined as

∆M = M− M̂,

∆K = K− K̂.

(5.26)

71

By expanding Eq. (5.24) in terms of a reduced and truncated basis and subtracting Eq. (5.25), the

truncation error is derived as

∆M = Φ̃
(
F̃2 ◦

(
Φ̃ᵀΦ̂

))
Φ̂ᵀ,

∆K = −Φ̃
(
F̃2 ◦

(
Φ̃ᵀΦ̂

))
Λ̂Φ̂ᵀ,

(5.27)

where F̃2 = F[r + 1 : n, 1 : r]. The full derivation of this result is included in Appendix B.6.

We can make several observations on the truncation error. First, we observe that if only the

eigenvalues are seeded, i.e., Φ̂ = 0, then ∆M = ∆K = 0. In other words, the eigenvalue RAD is

computed accurately without any truncation error using the modal formula.

Second, let us consider the truncation error related to the eigenvector seeds. If the reverse

seed, Φ̂, is in the space spanned by Φ̂, then we have that Φ̃ᵀΦ̂ = 0 due to orthogonality of the

eigenvectors. Thus, by Eq. (5.27), the truncation error is zero for this special case. For more

general cases the residual norm
∣∣∣
∣∣∣Φ̂− Φ̂

(
Φ̂ᵀΦ̂

)∣∣∣
∣∣∣ would indicate whether the truncation error is

significant.

Finally, compared with the adjoint method, which requires solving linear equations, the pro-

posed formula only involves matrix products. However, the disadvantage of the current approach

is that it does not achieve machine precision like the adjoint method when eigenvector seeds are

involved. Nevertheless, in Section 5.5, we demonstrate that a few eigenvectors (about 6 for the test

case presented) give satisfactory results. To remedy this inaccuracy, we also propose an improved

modal method in the following section. Also, as discussed before, if only the eigenvalue seeds are

involved, we should use the modal based method due to its efficiency and accuracy.

5.3.3 Improved modal method

Instead of neglecting the higher-order eigenvectors’ contribution completely, we can approxi-

mate it using the method proposed by Lim et al. [76], Wang [141]. Following this approach, the

72

eigenvalue output seed is the same as for the modal based method expressed in Eq. (5.21). While,

the eigenvector output seed in Eq. (5.21) needs to be modified. The full derivation of the FAD

formulae is given in Appendix B.7. The final expression for the eigenvector seed is restated here

φ̇φφi =
r∑

l=1,l 6=i

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl

λi − λl

−
r∑

l=1

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl
λi

+ K−1(−K̇φφφiλi + Ṁφφφi)
1

λi

− 1

2
φφφi

(
φφφᵀ
i Ṁφφφi

)
,

(5.28)

where i = 1, . . . , r. The equation can then be cast back into the matrix form as,

˙̂
Φ =Φ̂

(
F̂ ◦

(
−Φ̂ᵀK̇Φ̂Λ̂ + Φ̂ᵀṀΦ̂

))

− Φ̂
(
Ĝ ◦

(
−Φ̂ᵀK̇Φ̂Λ̂ + Φ̂ᵀṀΦ̂

))
+ K−1

(
−K̇Φ̂ + ṀΦ̂Λ̂−1

)

− 1

2
Φ̂
(
I ◦
(
Φ̂ᵀṀΦ̂

))
,

(5.29)

where Ĝ ∈ Rr×r is the approximate eigenvalue ratio, Ĝij := λi/λj .

The reverse derivative can be derived similarly to the modal method approach discussed in the

previous section and is given as,

M̂ = Φ̂

(
Λ̂Λ̂ + (F̂− Ĝ) ◦

(
Φ̂ᵀΦ̂

)
− 1

2
Î ◦
(
Φ̂ᵀΦ̂

))
Φ̂ᵀ +

(
K−1Φ̂

)
Λ̂−1Φ̂ᵀ,

K̂ = −Φ̂
(
Λ̂Λ̂ + (F̂− Ĝ) ◦

(
Φ̂ᵀΦ̂

))
Λ̂Φ̂ᵀ −

(
K−1Φ̂

)
Φ̂ᵀ.

(5.30)

This approach relies on solving the system of equations Kŷi = φ̂φφi of size n for i = 1, . . . , r. We

can write this in matrix form

KŶ = Φ̂, (5.31)

where ŷi for i = 1, . . . r are the columns of Ŷ. Finally, as observed previously in Section 5.3.2,

73

the matrices M̂, K̂ should not be stored explicitly, and instead, we should store the terms in the

RHS. This is explained in more detail in Section 5.4.

5.4 Implementation recommendations

In the previous section, we presented the mathematical derivations of the proposed formulae.

However, for a successful implementation in practice, additional considerations are often neces-

sary. In this section, we give some recommendations on how to implement the proposed methods

in practice to optimize both their memory requirement and speed.

5.4.1 Recommendation 1: Never form M̂, K̂ matrices explicitly

This recommendation is related to memory use efficiency. Inspecting Eq. (5.20), Eq. (5.25),

and Eq. (5.30) it is evident that M̂, K̂ are dense n × n matrices, with rank of no more than r.

Further, we notice that all formulae can be expressed as

l∑

j=1

P̂jSjΦ̂
ᵀ, (5.32)

where P̂j ∈ Rn×r, Sj ∈ Rr×r, and l are number of terms. For example, consider K̂ from the

adjoint method, Eq. (5.20), where P̂1 = Ψ̂R1 , S1 = Λ̂ and l = 1. Instead of storing each of

the matrices explicitly, the individual terms P̂j and Sj are stored, in addition to the already stored

reduced set of eigenvalue and eigenvectors. This requires O (n× r) units of memory for each

matrix. If the matrices are stored explicitly, O (n× n) units of memory are required for each of

them, which could be a memory bottleneck for a program considering the original matrix is stored

in sparse format. Also, by not evaluating the product, we reduce the computational cost.

74

5.4.2 Recommendation 2: Reuse factorized matrices

In the adjoint and improved modal methods, we need to solve linear equations. The specialized

adjoint equation is probably not implemented for a regular FEM code with optimization capability.

However, for any FEM solver, the procedure to compute and solve equations on the same form

as Eq. (5.31) must already exist as it resembles the linear elastic equation. If a direct solver is

used (see [59]), then the matrix K has already been factorized during the solution stage before we

compute the derivatives. Thus, solving Eq. (5.31) can be done with a relatively low cost by taking

advantage of the already factorized matrix.

5.5 Derivative verification

To verify the three formulae from the previous section, we present verification cases based on

a beam structural model. We benchmark the proposed methods by comparing against previously

implemented reverse Lanczos iteration method [55].

5.5.1 Numerical model

We use a simple beam FEM to construct representative mass and stiffness matrices that can be

used to verify the proposed formulae. The geometry under consideration, shown in Fig. 5.3, is a

cantilevered beam discretized using Euler–Bernoulli beam elements. The geometry dimensions,

l w

h

Figure 5.3: Finite-element model of the beam.

75

discretization, and material property are defined in Table 5.1.

Table 5.1: Geometry dimensions, discretization, and material properties of the beam model.

Property Value

l 1 m
w 0.01 m
h 0.01 m

Nelements 40

E 200 GPa
ρ 8000 kg/m3

5.5.2 Dot product test

To verify the RAD analytic expression derived in the previous sections, we perform several

derivative verification tests. To verify the reverse implementation, we perform a dot product test

where the input seeds are randomly generated [46]. A dot product test demonstrates that the for-

ward and reverse formulae and implementation are consistent; it is a necessary but not sufficient

condition for correct derivatives. In our case, the dot product test can be done by comparing both

sides of Eq. (B.8), which should agree to machine precision. Representative results from the dot

product are listed in Table 5.2. Here, we apply numpy.linalg package [140] to solve Eqs. (5.16)

and (5.31) which is a wrapper for underlying LAPACK modules [2] using pivoted LU decomposi-

tion for linear system solution [37]. All methods match each other close to machine precision.

5.5.3 Lanczos iteration benchmark

To verify the derivative correctness and accuracy of the adjoint and modal methods, we apply

a previously verified Lanczos implementation [55] in reverse mode. In this study, we randomly

76

Table 5.2: Dot product test results.

Tr
(
MᵀṀ + KᵀK̇

)
Tr
(
ΦᵀΦ̇ + ΛᵀΛ̇

)

Adjoint method −224164.05170795295 −224164.05170788695
Modal method (full basis) −224164.05170814358 −224164.05170814352
Improved modal method (full basis) −224164.05170807874 −224164.05170806960

generate the input seeds for the eigenvalue and eigenvector, and check the error of the outputs M

and K. We use the following definitions to quantify the errors. The RAD relative error is defined

as

εM :=

∥∥M−Mref
∥∥
F∥∥Mref

∥∥
F

,

εK :=

∥∥K−Kref
∥∥
F∥∥Kref

∥∥
F

,

(5.33)

where ·F denotes the Frobenius norm, ‖A‖F =
√∑

i,j |aij|2 and Mref and Kref are the reference

values for the reverse mass and stiffness matrices. Another frequently used norm for matrix is

p-norms, defined as ‖A‖p = sup
‖Ay‖p
‖y‖p

induced by vector p-norms. However, the Frobenius norm

is commonly used as it is easier and more directly computed than the 2-norm for matrices. It can

be shown that the 2-norm is related with the Frobenius norm through the following inequality

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 , (5.34)

where A is an n× n matrix. This is equivalently written as,

1√
n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F . (5.35)

Thus, the 2-norm is bound by the Frobenius norm by multiplying a factor, and vice versa.

We compare the adjoint method and modal method with full basis with a reverse mode imple-

77

mentation of the Lanczos method. The results are listed in Table 5.3. Overall, the results agree

well with the reference but do not reach a full machine precision. The error in the eigenvector is

greater than the error in the eigenvalues. The reason for this may be that the reverse Lanczos does

not guarantee to give machine precise results due to its iterative nature.

Table 5.3: RAD relative error using a random eigenvector or eigenvalue seed compared with a
reverse mode implementation of a Lanczos method [55].

εM εK

Eigenvector
Adjoint method 9.585173902423778× 10−7 5.960441261582237× 10−8

Modal method (full basis) 9.585170660956007× 10−7 5.959330021020872× 10−8

Improved modal method
(full basis)

9.585174968559026× 10−7 5.960289226431842× 10−8

Eigenvalue
Adjoint method 1.7853147735487777× 10−10 5.479618561347628× 10−12

Modal method (full basis) 1.3251425390595622× 10−11 2.408203987921325× 10−11

Improved modal method
(full basis)

1.3251425390595622× 10−11 2.408203987921325× 10−11

We compare the modal method with a different number of truncated basis, against the reverse

Lanczos implementation. First, we conduct a test with λ1 6= 0 and all other eigenvalues and

eigenvectors with zero seeds. The results are listed in Fig. 5.4; they show that the error is around

10−11, and is independent of the number of modes considered. The modal and the improved modal

methods exhibit the same error. As discussed in the previous section, the reason for this is that the

eigenvalue RAD does not contribute to the truncation error.

Next, we conduct another test in which φ1 6= 0 and all eigenvalues and other eigenvectors

have zero seeds. In Fig. 5.4, we show the eigenvector RAD results compared against the Lanczos

method. When about 10 modes are considered, the relative error in the mass and stiffness reverse

seeds is reduced by about 2 orders. For the improved modal method, the relative error quickly

reduces to below 10−6 using fewer than 10 modes. This demonstrates the superiority in accuracy

of the proposed method.

78

−14

−12

−10

−8

−6

−4

−2

0

log10(εM,K)

M modal method

K modal method

M improved modal method

K improved modal method

0 5 10 15

Number of modes

−6

−4

−2

0

log10(εM,K)
M modal method

K modal method

M improved modal method

K improved modal method

Figure 5.4: Upper: Eigenvalue derivative relative error. Lower: Eigenvector derivative relative

error. We test RAD: λ1 → M,K, and compare with a reverse mode Lanczos iteration. Total

degrees-of-freedom is 80.

To conclude, if great accuracy is the primary concern, we recommend the use of the adjoint

method. However, if about 1% error is good enough and computational efficiency is more im-

portant than accuracy, then we recommend the modal method. The improved modal method is

somewhere in between these two extremes—it is more accurate compared to the modal method

but also more expensive. Compared to the adjoint method, it is easier to solve the equations for

the improved modal method than the adjoint method. This is because the linear equations of the

improved modal method have the same coefficients as the linear elastic equations, whose solution

strategy has been extensively studied. Also, if a direct solver for the elastic equation is used for

an optimization problem, the stiffness matrix, K, is factorized for each major step, making K−1yi

79

much cheaper to evaluate [59].

5.6 Summary

In this chapter, we presented RAD based formulae for the eigenvalue and eigenvectors deriva-

tive computations. These approaches are suitable for applications in optimization problems where

eigenvalues and eigenvectors are affected by design variables, such as, flutter, LCO, and transition

prediction. Methods in the literature focus on problems with more outputs than inputs. When there

are more inputs than outputs, we need to develop new efficient formulae. RAD based formulae can

address this need. We presented three formulae: (1) The adjoint method, (2) the modal method,

and (3) the improved modal method. Out of the three methods, (2) and (3) are novel. The three

methods have different characteristics and can be applied in accordance with the desired accuracy

and speed. The adjoint method theoretically can achieve the machine precision but it requires solv-

ing n+1 dimensional linear equations r times. The proposed modal method projects the derivative

in the space spanned by the eigenvectors. It only requires evaluating matrix products to compute

the RAD derivatives. However, it is not as accurate as the adjoint method when only a handful of

eigenpairs are known. The proposed improved modal method is based on the modal method with

additional correction terms. It is more accurate than the modal method, requiring fewer modes to

obtain the same accuracy. However, to achieve this improved accuracy, we need to solve r systems

of equations n × n in size, increasing the computational cost. When implementing these RAD

methods, we need to take care of memory footprint and leveraging existing tools as discussed in

Section 5.4. The formulae and theory derived in this chapter were verified and found to be con-

sistent with our previous reverse mode Lanczos iteration implementation. These conclusions are

summarized in Table 5.4.

80

Ta
bl

e
5.

4:
Su

m
m

ar
y

of
m

et
ho

ds
.

M
K

E
qu

at
io

n
to

so
lv

e
A

cc
ur

at
e

or
ap

pr
ox

im
at

e

A
dj

oi
nt

m
et

ho
d

−
(Ψ̂

R
1

+
Φ̂

D
ia

g
(Ψ̂

R
2

))
Φ̂

ᵀ
Ψ̂

R
1
Λ̂

Φ̂
ᵀ

[M
−

K
λ
i
−

K
φφ φ
i

2φφ
φ
ᵀ i
M

0

] ᵀ
[ψ

i,
R

1

ψ
i,

R
2

]

=

[φ
i

λ
i] ,i

=
1,

2
,.
..
,r

A
cc

ur
at

e

M
od

al
m

et
ho

d
Φ̂
(Λ̂

Λ̂
+

F̂
◦(

Φ̂
ᵀ
Φ̂
))

Φ̂
ᵀ

+
Φ̂
(−

1 2
Î
◦(

Φ̂
ᵀ
Φ̂
))

Φ̂
ᵀ

−
Φ̂
(Λ̂

Λ̂
+

F̂
◦(

Φ̂
ᵀ
Φ̂
))

Λ̂
Φ̂

ᵀ
N

/A
A

pp
ro

xi
m

at
e

Im
pr

ov
ed

m
od

al
m

et
ho

d

Φ̂
(Λ̂

Λ̂
+

(F̂
−

Ĝ
)
◦(

Φ̂
ᵀ
Φ̂
))

Φ̂
ᵀ

+
Φ̂
(−

1 2
Î
◦(

Φ̂
ᵀ
Φ̂
))

Φ̂
ᵀ

+
(K

−
1
Φ̂
) Λ̂

−
1
Φ̂

ᵀ

−
Φ̂
(Λ̂

Λ̂
+

(F̂
−

Ĝ
)
◦(

Φ̂
ᵀ
Φ̂
))

Λ̂
Φ̂

ᵀ

−
(K

−
1
Φ̂
) Φ̂

ᵀ
K

ŷ
i

=
φ̂φ φ
i

i
=

1,
2
,.
..
,r

A
pp

ro
xi

m
at

e

81

CHAPTER 6

Flutter and LCO Analysis Results

In this chapter, we present flutter and LCO simulation results using CNK method discussed

earlier in Chapter 3. This chapter is organized as follows: In Section 6.1, we present the two-

dimensional airfoil results. In addition to the flutter and LCO simulation, we also present aerody-

namic only benchmark cases. We also study GCL, and preconditioner performance in this section.

Then, in Section 6.2, we demonstrate the three-dimensional wing results.

6.1 Airfoil results

In this section, we present numerical results for aerodynamic, LCO, flutter boundary, and pre-

conditioner performance cases. The computations were completed using a high-performance par-

allel computer with nodes composed of two 3.0 GHz Intel Xeon Gold processors, for a total of 36

cores and 180 GB memory per node.

6.1.1 Aerodynamic benchmark with prescribed motion

Here we study the flutter and LCO characteristics of the NACA 64A010 airfoil using the pro-

posed time-spectral approach. This test case–known as CT6—has been extensively studied under

various conditions in the literature, both experimentally [23], and numerically [70, 137]. The spec-

ifications of the flow case are listed in Table 6.1.

82

Table 6.1: Specifications for the CT6 test case [23].

Parameter Value

Mean angle of attack 0.0◦

Pitching amplitude 1.02◦

Mach number 0.796

Reduced frequency (for half-chord length) 0.202

Pitching axis 0.248c

Three levels of meshes are generated for both Euler and RANS cases using the following steps.

The airfoil geometry is fit with a spline using the open-source package pySpline1 to generate a

suitable surface discretization. For the Euler case, the trailing edge is sharp, but for the RANS

case, the trailing edge is blunt. The blunt trailing edge is obtained by cutting the original airfoil at

99% chord length and then resizing it to 100% chord length. The volume mesh is then extruded

using the hyperbolic mesh generator pyHyp2, such that the far-field is about 10 chords away from

the geometry. All meshes are one cell in the spanwise direction, with symmetry planes on both

sides to simulate two-dimensional flow.

The Euler and RANS meshes are shown in Fig. 6.1 and Fig. 6.2, respectively. The detailed

mesh size information is listed in Table 6.2. The first layer cell thickness is 10−6 of the chord

length for the RANS fine mesh, which corresponds to y+ = 0.29 for the aerodynamic test case.

Table 6.2: Mesh sizes.

Type Coarse Medium Fine

Euler 96× 32 192× 64 384× 128
RANS 136× 32 272× 64 544× 128

For the boundary conditions, we use far-field boundary conditions at the edges of the mesh for

1https://github.com/mdolab/pyspline
2https://github.com/mdolab/pyhyp

83

https://github.com/mdolab/pyspline
https://github.com/mdolab/pyhyp

both Euler and RANS meshes. A symmetrical boundary condition is applied on the planes on both

sides of the airfoil. For the Euler case, an inviscid wall boundary condition is applied and for the

RANS case an adiabatic viscous wall boundary condition is used. For the SA model, we enforce

turbulence state variables to be zero at the wall and apply the turbulence model far-field boundary

condition at the edges of the mesh.

(a) Detailed view of the fine, medium, and coarse

meshes.

(b) Fine mesh complete domain. The radius

of the far field is about 10 chord lengths.

Figure 6.1: NACA 64A010 Euler meshes.

84

(a) Detailed view of the fine, medium, and coarse

meshes.

(b) Fine mesh complete domain. The radius

of the far field is about 10 chord lengths.

Figure 6.2: NACA 64A010 RANS meshes.

Figures 6.3 and 6.4 show computed Cl and Cm hysteresis compared to the experimental results

for the inviscid and viscous cases, respectively.

85

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.10

−0.05

0.00

0.05

0.10

Cl

fine mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

medium mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

coarse mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

Davis, 1982

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Pitching angle α, (deg)

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

Cm

fine mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

medium mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

coarse mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

Davis, 1982

Figure 6.3: NACA 64A010 prescribed motion inviscid Cl, Cm curves benchmarked with exper-

imental results by Davis [23]. N = 256 for the time-accurate solutions. Every fourth point is

shown.

86

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.10

−0.05

0.00

0.05

0.10

Cl

fine mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

medium mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

coarse mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

Davis, 1982

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Pitching angle α, (deg)

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

Cm

fine mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

medium mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

coarse mesh
time spectral
1 harmonic
2 harmonic
3 harmonic
time accurate

Davis, 1982

Figure 6.4: NACA 64A010 prescribed motion viscous Cl, Cm curves benchmarked with exper-

imental results by Davis [23]. N = 256 for the time-accurate solutions. Every fourth point is

shown.

87

0.0 0.2 0.4

−0.10

−0.05

0.00

0.05

0.10

Cl

0.518 0.520 0.522
0.1080

0.1085

0.1090

0.1095

0.1100

0.1105 N = 256
N = 128
N = 64

0.0 0.2 0.4

−0.015

−0.010

−0.005

0.000

0.005

0.010

Cm

0.536 0.538 0.540
0.0116

0.0117

0.0118

0.0119

0.0120

N = 256
N = 128
N = 64

0.0 0.2 0.4

−0.10

−0.05

0.00

0.05

0.10

Cl

0.518 0.520 0.522
0.1040

0.1045

0.1050

0.1055

0.1060 N = 256
N = 128
N = 64

0.0 0.2 0.4
−0.015

−0.010

−0.005

0.000

0.005

0.010

Cm

0.536 0.538 0.540
0.0125

0.0126

0.0127

0.0128

0.0129

0.0130 N = 256
N = 128
N = 64

0.0 0.2 0.4

Time, (sec)

−0.10

−0.05

0.00

0.05

0.10

Cl

0.518 0.520 0.522

Time, (sec)
0.104

0.105

0.106

0.107

0.108 N = 256
N = 128
N = 64

0.0 0.2 0.4

Time, (sec)

−0.015

−0.010

−0.005

0.000

0.005

0.010

Cm

0.536 0.537 0.538 0.539 0.540

Time, (sec)
0.01280

0.01285

0.01290

0.01295

0.01300

0.01305

0.01310

0.01315

0.01320

N = 256
N = 128
N = 64

Figure 6.5: Inviscid time-accurate load history with different steps sizes and mesh levels. From

top to bottom are coarse, medium and fine mesh results, respectively.

88

0.0 0.2 0.4

−0.10

−0.05

0.00

0.05

0.10

Cl

0.5180 0.5185 0.5190 0.5195 0.5200 0.5205
0.1020

0.1021

0.1022

0.1023

0.1024

0.1025 N = 256
N = 128
N = 64

0.0 0.2 0.4

−0.010

−0.005

0.000

0.005

0.010

Cm

0.5325 0.5350 0.5375 0.5400 0.5425
0.0110

0.0112

0.0114

0.0116

0.0118

0.0120 N = 256
N = 128
N = 64

0.0 0.2 0.4

−0.10

−0.05

0.00

0.05

0.10

Cl

0.518 0.519 0.520 0.521
0.1022

0.1024

0.1026

0.1028

0.1030

0.1032

0.1034
N = 256
N = 128
N = 64

0.0 0.2 0.4

−0.010

−0.005

0.000

0.005

0.010

Cm

0.5325 0.5350 0.5375 0.5400 0.5425
0.0117

0.0118

0.0119

0.0120

0.0121

0.0122

0.0123 N = 256
N = 128
N = 64

0.0 0.2 0.4

Time, (sec)

−0.10

−0.05

0.00

0.05

0.10

Cl

0.518 0.519 0.520 0.521

Time, (sec)
0.1040

0.1045

0.1050

0.1055

0.1060 N = 256
N = 128
N = 64

0.0 0.2 0.4

Time, (sec)

−0.015

−0.010

−0.005

0.000

0.005

0.010

Cm

0.5325 0.5350 0.5375 0.5400 0.5425

Time, (sec)

0.01200

0.01225

0.01250

0.01275

0.01300

0.01325

0.01350

0.01375

N = 256
N = 128
N = 64

Figure 6.6: Viscous time-accurate load history with different steps sizes and mesh levels. From

top to bottom are coarse, medium and fine mesh results, respectively.

For verification, the time-spectral solution is compared with a forced motion time-accurate

solution, which is conducted for all three mesh levels for both inviscid and viscous test cases. For

the time-accurate solution, we conduct a step size convergence study using N = 64, 128 and 256

whereN is the number of steps per period. The results are shown in Figs. 6.5 and 6.6. Furthermore,

on each mesh level, the number of harmonics is varied to study the effect on the solution. In

general, for both Cl and Cm, the time-spectral and time-accurate (using N = 256) solutions show

good agreement on all meshes Figs. 6.3 and 6.4. The detailed information for the relative error and

simulation times are shown in Tables 6.3 to 6.6. The solution time using the time-spectral method

89

is smaller than the time-accurate solution. The RANS time-spectral simulation using the fine mesh

does not have a similar computational time enhancement compared with other levels of meshes.

This was found to be caused by multiple fractional steps taken during approximate Newton–Krylov

(ANK) solution process. In general, for the time-spectral method with more frequencies included,

the prediction matches better with that of the time-accurate method at a cost of increased simulation

time. Though there is an exception that using 3 harmonics for the inviscid case is not showing

consistent improvement over using 2 harmonics. The non-monotonic behavior of the maximum

Cl error could be caused by several reasons: 1) The time-accurate reference is not fully converged

with respect to the total simulation time or the number of time steps used per period; 2) The time-

spectral solver does not reach the monotonical convergence region with respect number of time

instances, suggesting that more harmonics may be needed to see a monotonic convergence. More

tests remain to be done to get more accurate solutions. Using more frequency components results

in more computational time as shown in Tables 6.5 and 6.6. We find that Cl predicted by the

time-spectral method matches better with that predicted by time-accurate compared with Cm.

Table 6.3: Maximum Cl and Cm predicted by time-accurate and time-spectral method using invis-
cid flow model.

Mesh Property TA (N = 256) TS 1 TS 2 TS 3

Cl

coarse 0.109715 0.109495 (−0.201%) 0.109812 (0.0885%) 0.109700 (−0.0144%)
medium 0.105380 0.105313 (−0.0633%) 0.105400 (0.0191%) 0.105178 (−0.192%)
fine 0.106712 0.106686 (−0.0237%) 0.106773 (0.0579%) 0.106581 (−0.120%)

Cm

coarse 0.0118323 0.0122157 (3.24%) 0.0121171 (2.41%) 0.0121752 (2.90%)
medium 0.0128413 0.0130259 (1.44%) 0.0128974 (0.437%) 0.0128871 (0.357%)
fine 0.0130321 0.0132904 (1.98%) 0.0131580 (0.967%) 0.0131364 (0.800%)

6.1.2 LCO prediction

After verifying the accuracy of the time-spectral CFD solver with a deforming mesh, we use it

to predict LCO using the algorithm as described in Section 3.2. We predict multiple LCOs under

different motion magnitudes, following the case setup of Thomas et al. [137]. The detailed settings

90

Table 6.4: Maximum Cl and Cm predicted by time-accurate and time-spectral method using vis-
cous flow model.

Mesh Property TA (N = 256) TS 1 TS 2 TS 3

Cl

coarse 0.102349 0.102407 (0.0563%) 0.102470 (1.19%) 0.102334 (−0.0143%)
medium 0.103062 0.103194 (0.128%) 0.103115 (0.0515%) 0.102967 (−0.0919%)
fine 0.104499 0.104680 (0.173%) 0.104593 (0.0901%) 0.104426 (−0.0701%)

Cm

coarse 0.0116326 0.0119574 (2.79%) 0.0118772 (2.10%) 0.0118085 (1.51%)
medium 0.0118100 0.0120467 (2.00%) 0.0119127 (0.870%) 0.0118733 (0.536%)
fine 0.0120191 0.0122853 (2.21%) 0.0121452 (1.05%) 0.0120940 (0.622%)

Table 6.5: Simulation time (wall-time) (sec) by time-accurate and time-spectral method using
inviscid flow model.

Mesh TA TS 1 TS 2 TS 3

coarse 351.620 4.916 11.662 22.876

medium 498.816 22.313 38.828 58.434

fine 1001.420 20.319 49.683 88.728

are given in Table 6.7.

The Mach number is 0.8 and the nondimensional location of airfoil elastic axis a is −0.6. The

mean angle of attack αm is zero. The way we set the boundary condition based on the current

estimation of Vf is described in Appendix C. The |α1| versus Vf and ω versus Vf plots are shown

in Fig. 6.7 and Fig. 6.8 for the inviscid and viscous case, respectively.

91

Table 6.6: Simulation time (wall-time) (sec) by time-accurate and time-spectral method using
viscous flow model.

Mesh TA TS 1 TS 2 TS 3

coarse 385.156 6.970 29.302 30.834

medium 1113.613 20.335 67.806 132.095

fine 4287.730 325.443 736.514 1658.282

Table 6.7: Airfoil structural properties for LCO prediction [137].

Parameter Expression Value

Static unbalance xα = Sα/mb 0.25

Radius of gyration (squared) r2
α = Iα/mb

2 0.75

Plunging natural frequency [rad/s] ωh 50.0

Pitching natural frequency [rad/s] ωα 100.0

Frequency ratio ωh/ωα 0.5

Mass ratio µ = m/πρ∞b
2 75.0

0.64 0.66 0.68 0.70 0.72 0.74

Velocity index, Vf
0.0

0.5

1.0

1.5

2.0

2.5

|α1st mode|, (deg)
Li, Ekici, 2017

Thomas et al., 2002

fine mesh
time-spectral
1 harmonic
2 harmonic
3 harmonic

time-accurate

medium mesh
time-spectral
1 harmonic
2 harmonic
3 harmonic

time-accurate

coarse mesh
time-spectral
1 harmonic
2 harmonic
3 harmonic

time-accurate
Richardson extrapolation
1 harmonic
2 harmonic
3 harmonic

refined mesh
time-spectral
1 harmonic
2 harmonic
3 harmonic

time-accurate

63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0

LCO angular velocity, ω, rad/sec
0.0

0.5

1.0

1.5

2.0

2.5

Thomas et al., 2002

Li, Ekici, 2017

fine mesh
time-spectral

1 harmonic
2 harmonic
3 harmonic

time-accurate

medium mesh
time-spectral

1 harmonic
2 harmonic
3 harmonic

time-accurate

coarse mesh
time-spectral

1 harmonic
2 harmonic
3 harmonic

time-accurate

refined mesh
time-spectral

1 harmonic
2 harmonic
3 harmonic

time-accurate

Richardson extrapolation
1 harmonic
2 harmonic
3 harmonic

Figure 6.7: LCO responses under various Vf at M = 0.8 with time-spectral and time-accurate

methods using an inviscid flow model. The results from Li and Ekici [70], Thomas et al. [137] are

also included.

92

0.64 0.66 0.68 0.70 0.72 0.74

Velocity index, Vf
0.0

0.5

1.0

1.5

2.0

2.5

|α1st mode|, (deg)

fine mesh
time-spectral
1 harmonic
2 harmonic
3 harmonic

time-accurate

medium mesh
time-spectral
1 harmonic
2 harmonic
3 harmonic

time-accurate

coarse mesh
time-spectral
1 harmonic
2 harmonic
3 harmonic

time-accurate

63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0

LCO angular velocity, ω, rad/sec
0.0

0.5

1.0

1.5

2.0

2.5

fine mesh
time-spectral

1 harmonic
2 harmonic
3 harmonic

time-accurate

medium mesh
time-spectral

1 harmonic
2 harmonic
3 harmonic

time-accurate

coarse mesh
time-spectral

1 harmonic
2 harmonic
3 harmonic

time-accurate

Figure 6.8: LCO responses under various Vf at M = 0.8 with time-spectral and time-accurate

methods using a viscous flow model.

For verification purposes, time-accurate aeroelastic LCO solutions are generated for each of

the three meshes. A Newmark-beta scheme is employed to integrate the structural equation of

motion in time. For each time step, the CFD residual is reduced by 5× 10−2 using a diagonalized

alternating direction implicit iterations (DADI). The maximum number of DADI iterations is

set to 30. The Courant—Friedrichs—Lewy (CFL) number is set to be 6.0 and 1.5 for inviscid

and viscous cases, respectively. For each velocity index, the time-accurate aeroelastic solution is

executed sufficiently long to obtain a converged LCO solution. The time step is set to be 0.0008 s,

giving over 100 points for each period. LCO solutions with a very low magnitude, i.e., at velocities

immediately past the flutter point, require a large number of time steps to reach a neutral response.

Solutions with a larger magnitude converge quicker.

We observe that the time-spectral results (with three harmonics) compare well with the time-

accurate results (less than 1% relative error for all cases). At the largest magnitude, |α1| = 2◦, a

model with three harmonics agrees better to the time-accurate solution compared with a model with

93

two harmonics, which in turn agrees better than that with one harmonic. As the prescribed pitching

magnitude decreases, the difference between those three curves reduces, eventually ending at the

flutter point. Thus, to predict the flutter speed, one harmonic is sufficient. However, to predict a

finite amplitude LCO, two or more harmonics are necessary.

We also add a refined mesh (768× 256 cells) result for the inviscid mesh. This was done to ob-

tain a spatially independent mesh. A Richardson extrapolation is then conducted based on results

of the medium, fine and refined meshes. The relative error between the Richardson extrapolation

and refined mesh is about 1.5%. A similar study was attempted for the viscous case using the

refined mesh with 1088× 256 cells, but we had difficulty to converge the aeroelastic residual. The

refined mesh RANS cases were only partially converged as we experienced convergence issues

with the linear solution inside the Newton iteration. It might be caused by the fact that the pre-

conditioner is not accurate enough. This can likely be addressed using a stronger, more accurate

preconditioner for the linear system.

The mesh density has an impact on whether the LCO response is supercritical or subcritical.

From the Vf -|α1| plot in Fig. 6.7, for the medium and fine mesh, a supercritical response is ob-

served. However, for the coarse mesh, the response is subcritical. Thus, to determine whether an

LCO is supercritical or subcritical, we recommend: (1) use a mesh as fine as possible, (2) conduct

a mesh convergence study. Otherwise, we may arrive at an opposite conclusion as in this case.

One additional advantage of the time-spectral method over the time-accurate method is that it

can trace the unstable branch of a subcritical response (refer to the dashed line from Fig. 1.2), and

the time-accurate can not. With the unstable branch captured, we can determine whether the airfoil

has a supercritical response or subcritical response. Additionally, we can parametrize the curve and

optimize its shape. This is evident from the time-accurate coarse mesh solution shown in Fig. 6.7.

All time-accurate solutions with a velocity index less than the flutter point (approaching from the

left) follow the stable branch and result in a steady-state response. Once the velocity is increased

past the flutter point, the time-accurate solution demonstrates a rapid increase in magnitude and

94

eventually reaches the stable branch. This is why one time-accurate solution appears to have zero

amplitude before the flutter point.

Finally, for each level of meshes, the RANS results have higher flutter velocity indices com-

pared to the Euler results. It is as expected from Fig. 1.1. And a similar trend for the flutter

boundary is observed in Section 6.1.3.

6.1.2.1 Step size convergence study

We demonstrate the LCO responses under three step-sizes for the medium mesh for inviscid

and viscous cases. The results are shown in Figs. 6.9 and 6.10 for inviscid and viscous cases,

respectively.

0 1 2 3 4 5 6 7 8

Time (sec)

−2

−1

0

1

2

Pitching, (deg)

Prescribed motion magnitude

7.90 7.92 7.94 7.96 7.98 8.00

Time (sec)

−2

−1

0

1

2
∆t = 0.0016 sec

∆t = 0.0008 sec
∆t = 0.0004 sec

Figure 6.9: Time-accurate LCO responses under Vf = 0.716 atM = 0.8 for medium mesh with an

inviscid flow model. The reference prescribed pitching magnitude for time-spectral method with 7

time instances is 2◦.

For the inviscid case, the relative error of the pitching magnitude between ∆t = 0.0004 sec

and ∆t = 0.0008 sec and between ∆t = 0.0008 sec and ∆t = 0.0016 are 0.48% and 2.36%,

95

respectively. The result with ∆t = 0.0004 sec is close to being step-size independent. Using 36

cores, the computational time for ∆t = 0.0016, 0.0008, and 0.0004 sec are 555 sec, 1114 sec, and

2275 sec for one flow condition at Vf = 0.716. Using time-spectral method, the LCO curve (with

21 flow conditions) with medium mesh under 3, 5, and 7 time instances take 834 sec, 1912 sec, and

2763 sec (with the warm start time included, see Section 3.2), respectively.

0 1 2 3 4 5 6 7 8

Time (sec)

−2

−1

0

1

2

Pitching, (deg)

Prescribed motion magnitude

7.90 7.92 7.94 7.96 7.98 8.00

Time (sec)

−2

−1

0

1

2
∆t = 0.0004 sec

∆t = 0.0008 sec
∆t = 0.0016 sec

Figure 6.10: Time-accurate LCO responses under Vf = 0.729 at M = 0.8 for medium mesh with

a viscous flow model. The reference prescribed pitching magnitude for time-spectral method with

7 time instances is 2◦.

For the viscous case the relative error of the pitching magnitude between ∆t = 0.0004 sec

and ∆t = 0.0008 sec and between ∆t = 0.0008 sec and ∆t = 0.0016 are 1.86% and 4.65%,

respectively. The result with ∆t = 0.0004 sec is close to being step-size independent, but an even

finer mesh could be added to further reduce the error. Using 36 cores, the computational time for

∆t = 0.0016, 0.0008, and 0.0004 sec are 1238 sec, 2533 sec, and 5187 sec for one flow condition

at Vf = 0.729. Using time-spectral method, the LCO curve (with 21 flow conditions) with medium

mesh under 3, 5, and 7 time instances take 1022 sec, 3501 sec, and 5978 sec (with the warm start

time included, see Section 3.2), respectively.

96

6.1.2.2 GCL

Here we compare the LCO result with and without GCL. The results are shown in Figs. 6.11

and 6.12 for the inviscid and viscous cases, respectively. The results presented here are obtained

using the medium mesh.

0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73

Velocity index, Vf
0.0

0.5

1.0

1.5

2.0

2.5

|α1st mode|, (deg)

w/ GCL
time-spectral

1 harmonic
2 harmonic
3 harmonic

w/o GCL
time-spectral

1 harmonic
2 harmonic
3 harmonic

64.0 64.5 65.0 65.5 66.0 66.5

LCO angular velocity, ω, rad/sec
0.0

0.5

1.0

1.5

2.0

2.5

w/ GCL
time-spectral

1 harmonic
2 harmonic
3 harmonic

w/o GCL
time-spectral

1 harmonic
2 harmonic
3 harmonic

Figure 6.11: LCO with inviscid flow model with and without GCL.

For the inviscid case, the velocity index predicted with GCL is slightly lower than without

GCL. As the prescribed motion magnitude decreases, the difference between the two reduces. The

maximum relative error of Vf using one, two, and three harmonics are 0.25%, 0.11%, and 0.12%,

respectively. For the angular velocity prediction, when the prescribed motion magnitude is within

0◦ to 1◦, the angular velocity predicted with GCL is higher than without GCL. With only one

harmonic, the angular velocity predicted is lower with GCL than without GCL for the prescribed

motion magnitude between 1◦ and 2◦. For two or three harmonics the predicted values, with or

without GCL, are close to identical between 1◦ and 2◦. The maximum relative error of ω using

one, two, and three harmonics are 0.077%, 0.068%, and 0.062%, respectively.

97

0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74

Velocity index, Vf
0.0

0.5

1.0

1.5

2.0

2.5

|α1st mode|, (deg)

w/ GCL
time-spectral

1 harmonic
2 harmonic
3 harmonic

w/o GCL
time-spectral

1 harmonic
2 harmonic
3 harmonic

64.5 65.0 65.5 66.0 66.5 67.0

LCO angular velocity, ω, rad/sec
0.0

0.5

1.0

1.5

2.0

2.5

w/ GCL
time-spectral

1 harmonic
2 harmonic
3 harmonic

w/o GCL
time-spectral

1 harmonic
2 harmonic
3 harmonic

Figure 6.12: LCO with viscous flow model with and without GCL.

For the viscous case, the velocity index and angular velocity predicted with GCL is lower

than without GCL when considering only one harmonic. For two or three harmonics the results,

the curves with or without GCL, almost overlap with each other. The maximum relative error

of Vf using one, two, and three harmonics are 0.14%, 0.029%, and 0.030%, respectively. And

the maximum relative error of ω using one, two, and three harmonics are 0.081%, 0.012%, and

0.025%, respectively.

For inviscid and viscous cases, within the motion magnitude range considered in the paper, the

introduction of GCL affects the LCO results at most by 0.25%, both for the velocity index and

angular velocity predictions. Thus, we use models without GCL in the rest of the paper.

6.1.3 Flutter boundary prediction

In this section, we use the algorithm described in Section 3.2 to compute the flutter boundary.

We demonstrate our method by showing its capability to accurately capture the transonic dip de-

scribed in Section 1.2 for the Isogai aeroelastic benchmark case [53], whose structural properties

98

Table 6.8: Airfoil structural properties of the Isogai case [53]

Parameter Expression Value

Static unbalance xα = Sα/mb 1.8

Radius of gyration r2
α = Iα/mb

2 3.48

Plunging natural frequency ωh 100.0

Pitching natural frequency ωα 100.0

Frequency ratio ωh/ωα 1.0

Mass ratio µ = m/πρ∞b
2 60.0

are listed in Table 6.8.

The freestream angle-of-attack is set to zero and the prescribed motion magnitude is set to 0.1◦.

We choose this motion magnitude because if we decrease it further, the convergence rate becomes

lower. We use one harmonic (three time-instances) for this simulation, a choice that is based on the

results in Fig. 6.7—as the LCO magnitude is reduced, the impact of increasing the number of time

instances decreases. The flutter boundary for the time-spectral method is sequentially determined

starting from M = 0.7. Each higher Mach number solution is solved with the neighboring lower

Mach number solution as an initial guess using the strategy as introduced in Section 3.2. We

consider three levels of mesh sizes. The results are shown in Fig. 6.13.

99

0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900
Mach number, M

0.5

1.0

1.5

2.0

2.5

3.0

Flutter velocity, Vf

Li, Ekici, 2018

Hall et al., 2000

Marti, Liu, 2017

Bohbot et al., 2001

Euler coarse

medium
fine

RANS coarse
medium
fine

Figure 6.13: NACA 64A010 flutter boundary compared with Euler results from Li and Ekici [71]

and Hall et al. [43] and RANS results (with SA turbulence model) Bohbot et al. [14] and Marti and

Liu [94]

From Fig. 6.13, we see that the proposed CNK solver finds the transonic dip. The computed

inviscid solution matches results published in the literature, especially in the transonic dip region.

Within the upper branch, in the range of M ∈ [0.83, 0.9], our method tends to underpredict the

flutter boundary. Around M = 0.8, our method tends to overpredict the flutter boundary compared

with other methods. This may be partly due to the different meshes used in different papers. The

viscous solution shows a more pronounced dip in the transonic regime than the reference time-

accurate solution of the RANS equations with SA turbulence model by Bohbot et al. [14], Marti

and Liu [94]. The reference solution by Bohbot et al. [14], Marti and Liu [94] are relatively sparsely

sampled in the critical range, M = 0.825 − 0.85, making direct comparison difficult. For Mach

numbers beyond 0.86, our solver has difficulty converging the residual. To extend the solution to

higher Mach numbers is part of our future work plans.

100

6.1.4 Preconditioner performance study

We now compare the performance of different preconditioners presented in Section 3.3. For

the inviscid case, we show the convergence history for the M = 0.83 flutter case with an initial

guess at M = 0.7. The prescribed pitching motion magnitude is set to 0.5◦. We use the medium

mesh with 192× 64 cells and three time-instances.

The viscous case proves to be more challenging to converge. For instance, we cannot solve for

the state variables at M = 0.83 using the solution at M = 0.7 in a similar manner as the inviscid

case. Instead, we present the convergence history solving the equations at M = 0.72 using the

solution at M = 0.7 as the initial guess. We tried several Mach numbers between 0.72 and 0.83,

but they failed to converge. We use 0.5◦ as the prescribed pitching motion magnitude and the

coarse mesh (136× 32 cells) in this study. Three time-instances are used.

101

C
p
: 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

(a) Snapshots at M = 0.7

C
p
: 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

(b) Snapshots at M = 0.83

Figure 6.14: Solutions at M = 0.7 and M = 0.83 with medium mesh 192× 64 using Euler model.

The former solution is used to warm-start the latter solution.

For the inviscid flow case, the initial guess and the final solution flow field snapshots are shown

in Fig. 6.14(a) and Fig. 6.14(b), respectively. The initial guess is a subsonic case without any shock

waves, but the final solution does exhibit shock waves. The initial flutter speed index is 1.32, and

the final solution is 0.56. The relative difference of the flutter speed index is 58%. For the viscous

102

flow case, the initial flutter boundary is 1.42, and the final solution is 1.30. It is reduced by 8.45%.

0 50 100 150 200
−15

−10

−5

0

log10(||R||2)

Full
Schur

SPS
w/o PC

0 50 100 150 200

−10

−5

0

log10

(
|Vf−Vf,0|
Vf,0

)

Full
Schur

SPS
w/o PC

0 50 100 150 200
Iteration

−10

−5

0

log10

(
|ω−ω0|
ω0

)

Full
SPS

Schur
w/o PC

Figure 6.15: Convergence history for solving the M = 0.83 flutter boundary with an initialization

of the M = 0.7 Euler solution.

103

0 5 10 15 20 25 30 35 40
−10.0

−7.5

−5.0

−2.5

0.0

log10(||R||2)

FullSchur SPS

0 5 10 15 20 25 30 35
−8

−6

−4

−2

0

log10

(
|Vf−Vf,0|
Vf,0

)

FullSchur SPS

0 5 10 15 20 25 30 35
Iteration

−8

−6

−4

−2

0

log10

(
|ω−ω0|
ω0

)

FullSchur SPS

Figure 6.16: Convergence history for solving the M = 0.72 flutter boundary with an initialization

of the M = 0.7 RANS solution.

The convergence history for the inviscid flow model is shown in Fig. 6.15. With full precon-

ditioner (by direct inversion) or with Schur preconditioner, the residual is reduced by about 10

orders in around 15 steps. Using 4 cores, the direct inversion and Schur preconditioner takes about

95.18 sec and 98.33 sec, respectively. For the SPS preconditioner, more iterations are required (30

steps) using 300.21 sec. However, if no preconditioner is used, it takes more than 200 steps to

converge the simulation in about 3011.27 sec. The convergence history for the viscous flow model

is shown in Fig. 6.16. We find that if no preconditioner is applied the residual will not converge.

Using a full or Schur preconditioner will give a similar performance with a wall-time of 54.30 and

65.99 sec, respectively. The SPS preconditioner performs the worst requiring close to double the

number of iterations with a wall-time of 261.11 sec.

For our current problem, Schur and direct inversion are the best performing preconditioners.

The computational costs are similar because the preconditioning matrices computed by these two

104

methods are identical. The computational costs forming these preconditioners are negligible com-

pared with the CFD preconditioning. The difference in the convergence history may be attributed

to the fact that the PETSc performance is not deterministic. Using the SPS preconditioner, or

simply not using any preconditioner, will increase the solution computational cost or worse, not

converge. However, for a more complex FEM model, there may be a trade-off between the SPS

and Schur, but that remains to be explored.

6.2 Wing results

6.2.1 Model description

6.2.1.1 Structural model

The model set up is based on the “weakened model 3” from Advisory Group for Aerospace

Research and Development (AGARD) report by Yates [147] At first, we conduct conversion of the

dimensionless structural mode. In the AGARD 445.6 case, the modes are given as displacements

at points. The generalized mass matrix, Φ̃ᵀMΦ̃, in the original AGARD report is normalized to

give unit mass in English units (lbf · sec2 · in−1). Here the original matrix can be written in SI units

105

as,

Φ̃ᵀMΦ̃ =

1lbf sec2 in−1

. . .

1lbf sec2 in−1

,

=

1slug ft
sec2 sec2 in−1

. . .

1slug ft
sec2 sec2 in−1

,

=

12slug
. . .

12slug

,

=

175.127kg
. . .

175.127kg

.

(6.1)

However, in this work, we require this to be dimensionless from such that.

Φᵀ M

m0

Φ = I. (6.2)

We thus seek to find a scaling factor c such that,

(c
√
m0Φ̃

ᵀ)
M

m0

(c
√
m0Φ̃) = I. (6.3)

Thus by expanding

(c
√
m0Φ̃

ᵀ)
M

m0

(c
√
m0Φ̃) = c2Φ̃ᵀMΦ̃ = c2

175.127kg
. . .

175.127kg

= I. (6.4)

106

we can find the coefficient to be c = 1/
√

175.127 = 0.075565. Thus, to obtain a dimensionless

form we use the following scaling,

Φ = 0.075565
√
m0Φ̃. (6.5)

where m0 is the initial weight of the wing.

The first 5 mode shapes Φ are shown in Fig. 6.17. We use scikit-learn [109] to construct a 4th

order polynomial approximation Φ̂ for each structural mode. In Figure 6.17, Φ̂ is shown as gray

surfaces which demonstrate acceptable fit with respect to the structural mode shapes, Φ, shown as

blue dots. We then use Φ̂ to evaluate aerodynamic nodal displacements as given in Eq. (2.51).

x y

φ1

(a) 1st mode (1st bending mode),

ωr,1 = 60.31 rad/sec

x y

φ2

(b) 2nd mode (1st torsion mode),

ωr,2 = 239.80 rad/sec

x y

φ3

(c) 3rd mode (2nd bending

mode), ωr,3 = 303.78 rad/sec

x y

φ4

(d) 4th mode (2nd torsion mode),

ωr,4 = 575.19 rad/sec

x y

φ5

(e) 5th mode (3rd bending

mode), ωr,5 = 742.13 rad/sec

Figure 6.17: First 5 modes of AGARD 445.6 case weakened mode 3 [147]. The coordinates of the

blue points are from the AGARD report. The gray surfaces are a polynomial regression of those

blue points.

107

Note that in the AGARD report [147], a sixth mode is also included but is ignored here. This

is because the sixth mode is a lateral motion (in-plane) mode and its z direction displacement is no

longer the dominant motion, which is in contrary to our transfer class assumptions. Further, other

work has indicated that the sixth mode is insignificant to flutter boundary prediction [73].

6.2.1.2 Aerodynamic model

We generate the geometry based on AGARD report [147] using the open-source package py-

Layout3 which is an inhouse built geometry engine. The wing planform is shown in Fig. 6.18 and

the detailed geometry parameters are given in Table 6.9. The wing airfoil cross section is a NACA

65A004.

Λcr/4 = 45 deg

cr = 0.559 m

ct = 0.369 m

b/2 = 0.762 m

Figure 6.18: Geometry of AGARD 445.6 case

The surface mesh is generated by ICEM [31]. We then apply the open-source package pyHyp4,

an inhouse hyperbolic mesh generator, to generate the volume mesh from the surface mesh. The

mesh we use for the work is a “O” mesh as shown in Fig. 6.19. For the inviscid mesh, there are

186 mesh points around the airfoil, 128 mesh points orthogonal to the surface of the wing, and 49

3https://github.com/mdolab/pylayout.git
4https://github.com/mdolab/pyhyp.git

108

https://github.com/mdolab/pylayout.git
https://github.com/mdolab/pyhyp.git

Table 6.9: AGARD 445.6 wing geometric properties

Description Symbol Value Unit

Sweep Λcr/4 45 deg
Aspect ratio AR 1.65 -
Taper ratio λ 0.66 -
Semi span b/2 0.762 m
Root chord cr 0.559 m
Tip chord ct 0.369 m
Area A 0.353 m2

mesh points in the spanwise direction. The thickness of the first layer of mesh around the wing is

10−3 m. For the viscous mesh, the mesh has the same topology. But the thickness of the first layer

of mesh is 10−6 m which is much smaller compared with the inviscid mesh to resolve the boundary

layer. For the viscous mesh, the last 1% of the wing has been chopped off and the rest of the wing

has been scaled up to give the same chord length. The tip of the wing is rounded which makes it

easier for the solver to reduce the residual.

109

Figure 6.19: CFD mesh used in this study. Inviscid mesh shown in the left, and viscous grid shown

in the right.

6.2.2 Flutter boundary results

In this section, we compute the flutter boundary of the proposed method and compare it to ex-

perimental and other CFD results. The Mach numbers chosen here to compute the flutter boundary

are the same as used in the AGARD report [147]. For each Mach number, the flow density is given

in Table 6.10. With a Vf given, the triplet (T∞, p∞,M) is fully determined that is described earlier

in Section 2.3.5.

The flutter boundary is computed in the following manner. At first, we compute the flutter onset

110

Table 6.10: Density for each point from the flutter boundary [147]

M density (slug/ft3)

0.499 0.000830
0.678 0.000404
0.901 0.000193
0.954 0.000123
1.072 0.000107
1.141 0.000152

velocity atM = 0.499. We then use this result to initialize the neighboring states forM = 0.654 as

we expect the solution to be close. We continue with this initialization strategy and then obtain the

whole flutter boundary shown in Fig. 6.20. The transonic dip due to the nonlinear dynamics around

M = 0.954 is captured. Three time-instances are considered for the flutter boundary computations.

In the figure, we compare current result using different numbers of mode shapes with experi-

mental results by Yates [147] and numerical results by Li and Ekici [74] who solved the Euler and

RANS equations with a harmonic balance approach. Our results are consistent with results by Li

and Ekici [74]. The results match especially well at the Euler transonic dip. We also observe that

both simulation results cannot make a prediction close enough to experimental results. the flutter

boundary at M = 1.072, 1.141 very accurately. However, the viscous results are much more closer

to the experimental results compared with the inviscid results indicating that viscosity is playing a

critical role for these two cases. This is an indication of the importance of high-fidelity models.

Our solutions using an inviscid flow model are shown in Figs. 6.21 to 6.23 at three different

Mach numbers, M = 0.499, 0.954, and 1.141. Each of these figures contains snapshots of the

pressure coefficient (Cp) distribution from three different time instances. At M = 0.499, the flow

speeds up in the mid chord and slows down at the tip. At M = 0.954, right at the transonic dip,

we can see a shock wave forming at the trailing edge. And at M = 1.141, there is one shock wave

ahead of the leading edge of the wing and there is another shock wave formed along the trailing

edge similar to that of M = 0.954. From the figures, we can see that the prescribed motion is

111

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Mach number, M

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Flutter velocity, Vf

Inviscid
Li, Ekici, 2019

Li, Ekici, 2019
Viscous

Yates, 1963
experimental

Figure 6.20: AGARD 445.6 flutter boundary with different structural modes considered. Current
results match better with numerical results by [74] than with experimental results by Yates [147].

insignificant as expected.

Our solutions using a viscous flow model are shown in Figs. 6.24 to 6.26 at three different

Mach numbers, M = 0.499, 0.954, and 1.141. The flow fields look similar to those from inviscid

simulations. The mesh used for this study is coarsened by a factor of 2 in all directions.

6.2.3 LCO results

The proposed method can also be used to predict the LCO behavior using larger prescribed

motion amplitudes. We studied the LCO responses of the wing under different Mach numbers

using Euler and RANS flow models under different prescribed motion magnitude as shown in

Fig. 6.27. The same flow conditions are used here as those used in the flutter boundary prediction

Table 6.10. Different from the flutter boundary prediction, we consider five time-instances to

112

X

Y

Z

X

Y

Z

X

Y

Z

CoefPressure
0.1
0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08
-0.1

Figure 6.21: Cp distribution at M = 0.499 with an inviscid flow model. From top to bottom are
three different time instances at the flutter point.

capture additional higher frequency components induced by a larger prescribed motion magnitude.

The LCO responses are shown in Fig. 6.28. It is observed that most LCOs are subcritical for

the Euler result besides the one at M = 1.141 which has a supercritical response for prescribed

motion magnitude below 0.06 after that the response is becoming subcritical. Most LCOs with

RANS flow model also have slightly subcritical responses. And similar to the Euler results, the

LCO at M = 1.141 seems also to be initially supercritical and then transit to subcritical responses

with an increased prescribed motion magnitude. The Euler mesh has been coarsened once, and the

RANS mesh has been coarsened twice for the study.

The flow field at M = 0.954 with prescribed motion magnitude η1 st mode = 0.1 is shown in

Fig. 6.29. The formation and dissipation of the shock wave are shown in this case. This demon-

strates that the proposed method can capture flow nonlinearity caused by shock wave motions.

113

X

Y

Z

X

Y

Z

X

Y

Z

CoefPressure
0.1
0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08
-0.1

Figure 6.22: Cp distribution at M = 0.954 with an inviscid flow model. From top to bottom are
three different time instances at the flutter point.

X

Y

Z

X

Y

Z

X

Y

Z

CoefPressure
0.1
0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08
-0.1

Figure 6.23: Cp distribution at M = 1.141 with an inviscid flow model. From top to bottom are
three different time instances at the flutter point.

114

X

Y

Z

X

Y

Z

X

Y

Z

CoefPressure
0.1
0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08
-0.1

Figure 6.24: Cp distribution at M = 0.499 with a viscous flow model. From top to bottom are
three different time instances at the flutter point.

X

Y

Z

X

Y

Z

X

Y

Z

CoefPressure
0.1
0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08
-0.1

Figure 6.25: Cp distribution at M = 0.954 with a viscous flow model. From top to bottom are
three different time instances at the flutter point.

115

X

Y

Z

X

Y

Z

X

Y

Z

CoefPressure
0.1
0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08
-0.1

Figure 6.26: Cp distribution at M = 1.141 with a viscous flow model. From top to bottom are
three different time instances at the flutter point.

116

X Y

Z

CoefPressure: -0.1 -0.06 -0.02 0.02 0.06 0.1

Undeformed
|η1,1 | = 2 × 10−2

|η1,1 | = 4 × 10−2

|η1,1 | = 6 × 10−2

|η1,1 | = 8 × 10−2

|η1,1 | = 10−1

Figure 6.27: 5th time instance of LCO responses for AGARD 445.6 at M = 0.954 with different
prescribed motion magnitude

117

0.3 0.4 0.5 0.6 0.7

Vf

0.00

0.02

0.04

0.06

0.08

0.10

0.12

|η1st mode|,

Euler
M = 0.954

RANS
M = 0.954

M = 1.072 M = 1.072

M = 0.678

M = 0.678 M = 1.141 M = 1.141

Figure 6.28: LCO behavior for AGARD 445.6 at M = 1.072

118

X

Y

Z

CoefPressure

0.1

0.08

0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 6.29: LCO behavior for AGARD 445.6 at M = 0.954

119

CHAPTER 7

Aerodynamic Shape Optimization for LCO Speed

In the chapter, we present results for LCO speed optimization. The chapter is organized as

follows: In Section 7.1, we present results airfoil aerodynamic shape optimization result. Then, in

Section 7.2, we present wing aerodynamic shape optimization result. For each section, besides op-

timization results, we also discuss the adjoint solution performance and adjoint derivative accuracy.

More details about the adjoint method are presented earlier in Chapter 4.

7.1 Airfoil results

7.1.1 ADjoint solution performance

We consider the adjoint solution for variables LCO speed index, Vf , and average lift coefficient,

C l defined as

C l =
1

n

∑

i=1,n

Ci
l , (7.1)

where Ci
l is a lift coefficient from the ith time-instance and n is the total number of time-instances.

For this test, we select n = 3. The flight conditions are described in Chapter 6 in Section 6.1.2,

and the detailed structural set up are given in Table 6.7. In addition, the prescribed motion is set to

be 0.1◦ and the Mach number is set as M = 0.825. A medium Euler mesh is used (see Fig. 6.1 for

more details about the mesh).

120

The residual convergence history of the adjoint equations for LCO speed index, Vf , and average

lift coefficient Cl Eq. (4.3) are shown in Fig. 7.1. The x axis is the number of iterations taken by

generalized minimal residual (GMRES) method and the y axis is the logarithm of the adjoint

equation residual. A relative residual decrease of 10−8 is achieved for both cases. During the

solution of both equations, there is an initial slow convergence state. Later, for Vf after about

60 iterations and for C l after about 30 iterations, both methods enter to a linear convergence rate

regime similar to those reported by Kenway et al. [62], Shi et al. [121].

0 20 40 60 80 100
Iteration

−8

−6

−4

−2

0

log10 (Radjoint)

Vf

C̄l

Figure 7.1: Adjoint equation residual convergence history for Vf and C l. A 10−8 relative residual
convergence criterion is enforced.

The simulation is conducted using two cores, one for structure and the other for aerodynamics,

using an Intel i7-4790L CPU @ 4.00 GHz. The computational times are reported in Table 7.1 with

a primal solution time with 84.99 sec.

Table 7.1: Solution time of Vf and C l adjoint equations using two cores (one for structure and the
other for aerodynamic) with a medium Euler mesh with 3 time-instances.

Function of interest Number of iteration Time (sec)

Vf 110 262.89
C l 104 244.00

121

7.1.2 Derivative verification

We want to test the LCO speed sensitivity with respect to the design variables, i.e. dVf/dx

solved by ADjoint method describe in Chapter 4 with the FD method. The case setup is described

in Section 7.1.1. We consider both geometric design variables and angle-of-attack (AOA). The

geometric design variables are the y coordinates of 8 free-form deformation (FFD) points for the

verification case as shown in 7.2.

Figure 7.2: FFD box for the adjoint test

We compute the derivatives by solving the coupled adjoint equation Eq. (4.3). It is tested

against the FD method with four different step sizes 10−5, 10−6, 10−7 and 10−8. And the step with

the minimal difference from the adjoint method has been shown in the table. We find that the

relative error is between orders of 10−3 to 10−6 for all the design variables. And most of the design

variables have a relative error in the order of 10−5 for the test. That is about the best performance

achievable in a comparison with the FD method due to the truncation error as shown by Martins

et al. [97], Shi et al. [121]. A more accurate test of the adjoint method can be achieved using the

CS method [97].

7.1.3 LCO speed index optimization

We conduct an optimization to maximize the LCO speed index. The problem is set up for the

demonstration purpose. For a more realistic case, the LCO speed index should be a constraint

rather than an objective function. We have the “y” coordinates of FFD points and AOA as our de-

sign variables. The body fitted FFD is shown in Figure 7.3 with 16 points. We constrain the upper

122

Table 7.2: Verification of coupled-adjoint gradients for the airfoil case

Var Coupled adjoint FD Rel. error hopt

1 −0.49878545 −0.49880140 3.20× 10−5 10−8

2 0.48993934 0.48985941 −1.63× 10−4 10−7

3 0.02804556 0.02808902 1.55× 10−3 10−8

4 1.86143706 1.86150342 3.56× 10−5 10−6

5 −0.98933053 −0.98931430 −1.64× 10−5 10−8

6 2.03503684 2.03484926 −9.22× 10−5 10−7

7 −1.25761856 −1.25766695 3.85× 10−5 10−5

8 −1.67100493 −1.67109631 5.47× 10−5 10−7

AOA −0.06127731 −0.06127724 −1.16× 10−6 10−6

and lower bounds (0.01c and −0.01c respectively where c is the chord length) of displacement of

the “y” coordinates of FFD points. Since the FFD points at the leading edge and the trailing edge

are forced to be symmetric with respect to the chord line, only two points out of the four points are

independent. Thus, in total, we have 14 geometric design variables and 1 design variable for AOA.

We also constrain the area, S, be between S0 and 10S0, where S0 is the initial area, i.e.,

S0 ≤ S ≤ 10S0. (7.2)

Additionally, we set a constraint for the time averaged lift coefficient C l defined as Eq. (7.1) to be

C l = 0.3. (7.3)

And the bounds for AOA are defined as

0◦ ≤ AOA ≤ 10◦. (7.4)

The optimization problem is summarized in Table 7.3. We use SNOPT [36] as the optimizer that

has a python interface from pyOptsparse [110, 144].

123

Figure 7.3: FFD box for the aerodynamic shape optimization

Table 7.3: Aerodynamic shape optimization problem

Function/variable Description Quantity
maximize Vf LCO speed index
w.r.t y FFD control points y coordinates 14

AOA angle of attack 1
s.t. −0.01c ≤ y ≤ 0.01c bounds on FFD control points y coordinates 14

0◦ ≤ AOA ≤ 10◦ bounds AOA y coordinates 1
C l = 0.3 lift constraint 1

S0 ≤ S ≤ 10S0 area constraint 1

The flight condition is similar with that used in Section 6.1.3 for the case at

M = 0.85, (7.5)

within the transonic dip. We adjust the initial AOA for the optimization problem to be

AOA = 3.77◦ (7.6)

to match the average lift constraint. AOA is subsequently updated by the optimizer during the

optimization process. A medium Euler mesh is used as described earlier in Fig. 6.1. The prescribed

motion magnitude is set to be 1◦ and three time-instances are used.

The initial and final values of the functions of interest are summarized in Table 7.4. It is

observed that the optimized shape has Vf at 0.85823 compared with the initial value at 0.61702.

The objective function has increased by 39.09%. The constraint violation for C l has increased a

bit but is within the feasibility range set for the optimizer. For the area constraint, similar with

124

drag optimization result by He et al. [51], the optimizer choose to keep the current area instead of

increasing it.

Table 7.4: Function values with baseline and optimized aerodynamic shapes

Function Baseline Optimized
Vf 0.61702 0.85823
C l 0.30003 0.30065
S S0 1.00657S0

A detailed optimization history is shown in Fig. 7.4. Vf starts with a quick jump, it then keeps

increasing at a constant rate, and it finally plateaus. The violation of C l constraint increases rapidly

at the beginning and decreases slowly afterward. The airfoil cross-section area decreases initially

to almost the lower bound but later increases moderately to 1.00657S0. The optimizer has taken

over 500 steps for this case to the final optimized solution. This is because we have limited the

maximum step size for the optimizer to make sure that the solver converges for most points. We set

the maximum step to be 10−5 for SNOPT. We observe that if no such limit is set, the optimization

may fail at the first dozens of steps with a lower Vf . The failure is caused by some unphysical

oscillatory geometry.

125

V
f

0.65

0.7

0.75

0.8

0.85

Iteration

V
o

lu
m

e

0 100 200 300 400 500
1

1.001

1.002

1.003

1.004

1.005

1.006

C
l

0.3

0.3005

0.301

0.3015

0.302

Figure 7.4: Vf optimization history

The baseline and optimized airfoils are shown in Fig. 7.5. The corresponding fields of the

coefficient of pressure are shown in Fig. 7.6. And the surface pressure coefficient distribution is

presented in Fig. 7.7. There is a kink created at the quarter chord in the pressure side of the airfoil.

This may be related to the two shock waves generated in the pressure side as indicated by Figs. 7.6

and 7.7. For a drag minimization problem, we usually observe that the optimizer attempts to reduce

the strength of the shock wave or even remove it [51] to reduce the pressure drag. However, for

the current optimization problem, it seems that the strength of the existing shock wave has been

126

strengthened at the suction side, and at the same time, shock waves are created at the pressure

side. The double-shock wave pattern has been observed multiple times when we conduct LCO

speed optimization under different Mach numbers. But at this point, the benefit of such flow

structures can not be explained. The optimization of the LCO speed adopted by this research and

several research efforts in the field Prasad et al. [112], Thomas and Dowell [135] are more about

verifying the algorithm and implementation than about generating physical meaningful geometries.

Additional development is required for more physically sound optimization problems such as drag

minimization with an LCO speed constraint.

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.04

−0.02

0.00

0.02

0.04

y

Optimized

Baseline

Figure 7.5: Geometry of baseline and optimized airfoil

127

Time

instance

1

2

3

Baseline Optimized

CoefPressure: -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Figure 7.6: Cp distributions for the baseline (left) and the optimized (right) airfoils at different

time-instances.

128

C
p

1

0.5

0

0.5

1
C

p

1

0.5

0

0.5

1

x

C
p

0 0.2 0.4 0.6 0.8

1

0.5

0

0.5

1

Figure 7.7: Cp distributions on the surface of the baseline (black) and optimized (blue) airfoils at

different time-instances.

129

7.2 Wing results

7.2.1 ADjoint solution performance

Similar with the airfoil case, we study the adjoint solver performance for the LCO speed, Vf ,

and average lift coefficient, C l defined in Eq. (7.1). In this study, we use the medium Euler mesh

by coarsening the Euler mesh from Fig. 6.19 by a factor of 2 in all directions. The setup of the case

is similar to that Section 6.2.2 at M = 0.954 besides we pick a relatively large AOA at 5◦ to make

the problem more general and thus to expose any potential derivative error hidden in a symmetrical

wing case. Three time-instances are considered in this test.

The computations are completed using a high-performance parallel computer with nodes com-

posed of two 3.0 GHz Intel Xeon Gold processors, for a total of 36 cores and 180 GB memory

per node. Out of all the cores, we partition it in such a way that one is dedicated to the structural

component and the rest are dedicated to the aerodynamic component. The computational time

for an LCO analysis is about 387.89 sec. The adjoint solution times for Vf and C l are shown

in Table 7.5. The convergence criterion for both variables is a reduction of residual by 8 orders

compared with the initial residual. We observe that the iterations taken by C l is about 8% more

compared with that of Vf . This seems to be related to a longer initial slow convergence region as

shown in Fig. 7.8. Similar to the airfoil test case, we observe a pattern with a slow convergence

region at the beginning and a linear convergence region towards the end.

Table 7.5: Solution time of Vf and C l adjoint equations using 36 cores (one for structure and the
other for aerodynamic) with a medium Euler mesh with 3 time-instances.

Function of interest Number of iteration Time (sec)

Vf 127 363.30
C l 136 397.25

130

0 20 40 60 80 100 120 140
Iteration

−10

−8

−6

−4

−2

0

log10 (Radjoint)

Vf

C̄l

Figure 7.8: Adjoint equation residual convergence history for Vf and C l. 10−8 residual conver-
gence is enforced.

7.2.2 Derivative verification

We verified the derivative for the airfoil case in Section 7.1.2. However, the test case for a

wing is more complicated and needs a separate verification. At first, the CFD component is more

involving. The airfoil case is a pseudo-2D test case meaning that we use one layer of hexahedron

meshes for the airfoil instead of using 2D quadrilaterals. However, there are no fluxes through

the surface of the airfoil due to symmetry. The wing case involves the nonzero flux of mass,

momentum, and energy in the third coordinate. In addition, boundary conditions are set in different

manners. And finally, the load and displacement transfer schemes are different for the two cases.

Thus, we need to verify the more complicated time-spectral aeroelastic adjoint in a separate test.

The case setup is identical to that described earlier in Section 7.2.1. We consider geometric

variables of FFD box and AOA. We use a coarse FFD box with 18 FFD points that able to move

in z direction as shown in Fig. 7.9 to save some FD computation time. We compare the derivative

computed with the adjoint method Eq. (4.3) and that computed by FD method. For FD method,

we consider 4 different step sizes, 10−5, 10−6, 10−7, 10−8 and the one with most digits match with

the adjoint method is shown in Table 7.6. We observe that most of the derivatives have a relative

131

error of 10−6 between the adjoint and the FD method. There are four derivatives with 10−5, and

four with 10−7 relative error, respectively. This is the first time the LCO speed derivative can

be computed with such accuracy for a wing case using CFD tools. Overall, it is likely that it is

most digits match can be expected for a comparison with FD method due to the truncation error

as detailed by Martins et al. [97]. A more accurate comparison with the CS method [97] may give

more confidence to the derivative accuracy.

Figure 7.9: FFD box for the adjoint test

7.2.3 LCO speed optimization

With the derivative information obtained by the ADjoint method verified above, we are ready

to conduct an aerodynamic shape optimization for the wing. Similar to the airfoil optimization

problem we have set up earlier, the objective function is the LCO speed index. It is maximized to

avoid LCO. The constraints include the time-averaged lift coefficient, CL = 0.3, the volume of

132

Table 7.6: Verification of coupled-adjoint gradients for the wing case.

Var Coupled adjoint FD Rel. error hopt

1 0.10714487 0.10714620 1.24× 10−5 10−7

2 −0.24528040 −0.24528059 7.75× 10−7 10−6

3 −0.81450993 −0.81450864 −1.58× 10−6 10−7

4 −0.39010121 −0.39010195 1.90× 10−6 10−7

5 −0.09141936 −0.09142020 9.19× 10−6 10−7

6 0.09613774 0.09613788 1.46× 10−6 10−6

7 −0.06384253 −0.06384292 6.11× 10−6 10−6

8 −0.07267708 −0.07267748 5.50× 10−6 10−7

9 0.59039067 0.59039223 2.64× 10−6 10−7

10 −0.11932325 −0.11932292 −2.77× 10−6 10−6

11 0.16195491 0.16195787 1.83× 10−5 10−7

12 −0.51788331 −0.51788325 −1.16× 10−7 10−6

13 0.73402951 0.73403319 5.01× 10−5 10−7

14 0.25486670 0.25486890 8.63× 10−6 10−8

15 −0.04201696 −0.04201401 −7.02× 10−5 10−7

16 −0.23273019 −0.23273112 4.00× 10−6 10−7

17 0.10436176 0.10436169 −6.71× 10−7 10−7

18 0.54089810 0.54089828 3.33× 10−7 10−7

AOA 0.00962494 0.00962503 8.69× 10−6 10−6

the wing shall be between V0 and 10V0 where V0 is the baseline volume of the wing, and a lower

bound on thickness. There are also bounds on AOA and FFD points displacements. The problem

setup is described in Table 7.7.

We use the same mesh and operation condition as that from Section 7.2.1 except for the AOA.

We start with an AOA which gives a CL close to the specified CL. The Mach number is specified as

M = 0.954 which is in the transonic dip as shown Fig. 6.20. We use a denser FFD box compared

with the one used in Section 7.2.2 to give better control of the surface geometry. The FFD box

with 50 FFD points is shown in Fig. 7.10.

The optimization history of the functions of the LCO speed, Vf , average lift coefficient, CL,

and volume, V are shown in Fig. 7.11. Vf almost increases in a monotonic way instead of several

points. CL starts with a value that violates the constraint. Shortly into the optimization process, it

133

Table 7.7: Aerodynamic shape optimization problem

Function/variable Description Quantity
maximize Vf LCO speed index
w.r.t y FFD control points y coordinates 50

AOA angle of attack 1
s.t. −0.02 m ≤ y ≤ 0.02 m bounds on FFD control points y coordinates 50

0◦ ≤ AOA ≤ 10◦ bounds AOA y coordinates 1
CL = 0.3 lift constraint 1
t ≥ 0.75t0 thickness constraint 25

V0 ≤ V ≤ 10V0 volume constraint 1
yupper = −ylower symmetric leading/trailing edge constraints 10

takes a spike and decreases later to about 0.325. Later, CL stays at a value of around 0.35 until for

the last 20 iterations. Finally, it decreases to a value satisfying the lift constraint within the numer-

ical tolerance. The volume constraint is almost perfectly satisfied through the optimization. The

initial and final values of the functions are given in Table 7.8. Vf has increased quite significantly

by about 118%. This indicates that the time-spectral aeroelastic adjoint solver is indeed a useful

tool for the LCO speed derivative computation and optimization. This is the first optimization of

Vf with respect to geometric design variables for a wing test case using time-spectral CFD method.

Table 7.8: Function values with baseline and optimized aerodynamic shapes

Function Baseline Optimized
Vf 2.78040× 10−1 6.04802× 10−1

C l 3.15069× 10−1 3.00165× 10−1

V V0 1.00000V0

The initial and optimized flow field is shown in Fig. 7.12. We observe that after optimization

the wing gets a wavy shape as illustrated by the right panel of Fig. 7.12. At slice B, the shock

wave strength seems to be increased. This is the opposite of what has been observed for a drag

minimization problem where the shock wave strength is usually decreased to reduce wave drag.

The strengthened shock wave seems to be similar to what we have observed in te previous airfoil

shape optimization problem Fig. 7.6. Besides, by taking a close look at the lift distribution on the

134

Figure 7.10: FFD box for the LCO speed optimization

left panel of Fig. 7.12, before optimization, it seems the lift has a relatively uniform distribution

in the spanwise direction except that it has a bump in the middle. However, the optimized wing

shifts more load in board. Shifting the load in board and reduce the load at the tip is favorable

in the sense that it reduces the structural vibration at the tip. It seems that the load shift could be

attributed to the shock waves created on the suction side.

The aerodynamic shape generated here is not realistic. This may be due to the unphysical

problem setup–there is no wing designed to maximize the LCO speed. The optimizer may take

advantage of the fact and creates features like shock waves to increase Vf . A better way of formu-

lating the problem is to make the LCO speed as a constraint and use drag as the objective function.

135

V
f

0.3

0.4

0.5

0.6

C
l

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Iteration

v
o

lu
m

e

0 20 40 60 80 100

0.6

0.8

1

1.2

1.4

Figure 7.11: Vf optimization history

136

C
o

e
fP

re
s
s
u

re

0
.1

5

0
.1

2

0
.0

9

0
.0

6

0
.0

3

0 -0
.0

3

-0
.0

6

-0
.0

9

-0
.1

2

-0
.1

5

C
o

e
fP

re
s
s
u

re

0
.1

5

0
.1

2

0
.0

9

0
.0

6

0
.0

3

0 -0
.0

3

-0
.0

6

-0
.0

9

-0
.1

2

-0
.1

5
°

1.
00

°
0.

75
°

0.
50

°
0.

25
0.

00
0.

25
0.

50
0.

75
1.

00

0.
0

0.
2

0.
4

C
l

C
l
=

0.
3

°
1.

00
°

0.
75

°
0.

50
°

0.
25

0.
00

0.
25

0.
50

0.
75

1.
00

0.
0

0.
2

0.
4

C
l

C
l
=

0.
3

°
1.

00
°

0.
75

°
0.

50
°

0.
25

0.
00

0.
25

0.
50

0.
75

1.
00

0.
0

0.
2

0.
4

C
l

C
l
=

0.
3

°
1 0 1

C
p

°
1 0 1

C
p

°
1 0 1

C
p

°
1 0 1

C
p

°
1 0 1

C
p

°
1 0 1

C
p

°
1 0 1

C
p

°
1 0 1

C
p

°
1 0 1

C
p

A
B

C

A
B

C
Ti

m
e

in
st

an
ce

1 2 3

Sl
ic

e
O

pt
im

ize
d

Ba
se

lin
e

Ba
se

lin
e

O
pt

im
ize

d
Pr

es
su

re
 s

id
e

Su
ct

io
n

si
de

Fi
gu

re
7.

12
:L

C
O

sp
ee

d
op

tim
iz

at
io

n
re

su
lts

.T
he

bl
oc

k
on

th
e

le
ft

sh
ow

s
th

e
lif

tc
oe

ffi
ci

en
td

is
tr

ib
ut

io
n.

T
he

bl
oc

k
in

th
e

m
id

dl
e

sh
ow

s
C
p

di
st

ri
bu

tio
n

on
pr

es
su

re
(l

ef
t)

an
d

su
ct

io
n

(r
ig

ht
)s

id
es

.
T

he
bl

oc
k

on
th

e
ri

gh
ts

ho
w

s
C
p

di
st

ri
bu

tio
n

ov
er

ai
rf

oi
lc

ro
ss

-
se

ct
io

ns
at

sl
ic

es
A

to
C

.B
as

el
in

e
(b

lu
e)

an
d

op
tim

iz
ed

(g
re

en
)r

es
ul

ts
ar

e
sh

ow
n.

R
ow

1
to

ro
w

3
co

rr
es

po
nd

w
ith

tim
e-

in
st

an
ce

1
to

3.

137

CHAPTER 8

Conclusion

In this work, we developed new computational methods to make it possible to perform aero-

dynamic shape optimization to suppress LCO. The new methods include CNK method for LCO

simulation, the coupled ADjoint method for the LCO speed derivative computation, and two RAD-

based formulae for structural mode and natural frequency derivative computation.

One challenge of LCO optimization using CFD tools is their high computational cost. To

address this issue, we developed a Jacobian-free Newton–Krylov solver for both two-dimensional

airfoil and three-dimensional wing. The LCO response is captured by time-spectral aeroelastic

equation composed of the prescribed motion equations, CSD equations, and CFD equations. We

considered both Euler and RANS equations for the CFD equations. The solver is more efficient

compared with the segregated approach in the literature because each Newton step is cheaper

to evaluate. The segregated method needed O(NCSD × n × NNewton) CFD evaluations for each

solution, where NCSD is the number of DOFs in the CSD model, n is the number of time-instances,

and NNewton is the number of Newton steps. Our CNK method only requires that the CFD residual

be driven to the machine precision twice: once at a warm start stage, and the other during the

time-spectral aeroelastic equations solution.

We compared our results with those from the literature and our time-accurate solvers for (1)

Time-spectral aerodynamic only simulations, (2) flutter boundary simulations, and (3) LCO simu-

lations. We found that our results had an overall good match with those from the literature.

138

Since the preconditioners play a key role in the Krylov subspace solver performance, we devel-

oped three preconditioning strategies: (1) Direct inversion preconditioner, (2) Schur complement

based preconditioner, and (3) SPS preconditioner. The direct inversion and Schur complement

based preconditioners yield the same preconditioning matrix. However, the Schur complement

based preconditioner obtains the preconditioning matrix by manipulating the block structure of the

matrix. The SPS preconditioner is a block diagonal approximation of the Schur preconditioner. It

is less accurate but cheaper to evaluate. We found that for the airfoil test case, direct inversion and

Schur complement based preconditioners have the best performance. But when a more compli-

cated FEM model is used, a trade-off between the direct inversion (or Schur complement based)

preconditioner and the SPS preconditioner is anticipated.

We explored the impact of GCL on LCO simulation. We proposed a volume rate computation

formula that satisfies GCL. GCL was considered to be critical for time-accurate CFD. However,

in this study, we found that for the airfoil test case within a pitching range of [−2◦, 2◦], the impact

of GCL on Vf is no more than 0.5% for both Euler and RANS equations. Thus, it is not a critical

factor that has to be taken into account for the time-spectral method-based LCO simulation in the

motion magnitude range given above.

Another challenge of LCO optimization using CFD tools is that we need to evaluate the deriva-

tive of the LCO speed, Vf , with respect to a large number of design variables. To address this

challenge, we proposed the use of the coupled adjoint method that is a monolithic way to compute

the derivative. We based our work on previous research in the literature, which used a two-level

adjoint formulation. The coupled adjoint is cheaper to compute compared to the two-level adjoint.

This is because, for each coupled adjoint solution, we only need to solve one slightly bigger linear

system compared to solving O(NCSD × n) linear systems where NCSD is the structural DOF and

n is the number of time-instances.

The derivatives computed using the adjoint method were verified against those computed using

the FD method for both two-dimensional and three-dimensional problems. We considered both

139

geometric design variables using FFD box and AOA. Most of the design variables have a relative

error of 10−5 and 10−6 for two-dimensional airfoil and three-dimensional wing test cases, respec-

tively. This is the first time the LCO speed derivative can be computed with such accuracy for a

wing case using time-spectral method-based CFD tools.

Using the CNK solver and the coupled ADjoint solver developed in this work, we were able

to conduct aerodynamic shape optimization of Vf for both a two-dimensional airfoil case and a

three-dimensional wing case. The constraints taken into consideration include the time-averaged

lift constraint, volume (area) constraints, and thickness constraints. We were able to find configu-

rations to increase Vf by 39% and 118% for a two-dimensional airfoil case and a three-dimensional

wing case, respectively. Thanks to the efficient solution method and derivative computation method

developed in this work, we conducted the first optimization of Vf with respect to geometric design

variables for a wing test case using the time-spectral method-based CFD method.

We noticed that the optimized configurations had unrealistic features, such as wavy patterns and

strengthened shock waves. These features were used by the optimizer to shift the load in board.

These features were not useful for drag reduction aerodynamic or aerostructural optimization prob-

lems because these features usually correspond with high wave drags. Thus, an alternative drag

optimization with Vf constraint may be a more physical and well-posed problem to be explored in

the future.

Finally, to extend the adjoint method to an aerostructural optimization problem, we addressed

a computational bottleneck related to the structural modes and natural frequency derivative com-

putation. If it is not handled carefully, this computation may have a cost of the order of the number

of design variables. We developed two formulations based on RAD to reduce it to one single

computation We named the methods: (1) the modal method, and (2) the improved modal method.

The modal method only requires evaluating a handful of matrix-vector products. The improved

modal method is more accurate compared with the modal method, but it requires equation solu-

tions. We showed that the additional equations to be solved for the improved modal method are

140

elastic equations and the direct solution method can be leveraged to solve the equations efficiently.

We verified the proposed methods by implementing a reverse Lanczos iteration and the ad-

joint of an Euler–Bernoulli beam test case. Within about 10 iterations, the modal method and the

improved modal method reduce the error by about 2 and 6 orders, respectively.

To conclude, we developed computational methods to make aerodynamic shape optimization

to suppress LCO practical for wing cases, and the RAD formulae for the mode shapes and natural

frequencies are likely to be useful for the future aerostructural optimization.

141

Bibliography

[1] Howard M. Adelman and Raphael T. Haftka. Sensitivity analysis of discrete structural
systems. AIAA Journal, 24(5):823–832, 1986. doi:10.2514/3.48671.

[2] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammar-
ling, J. Demmel, C. Bischof, and D. Sorensen. LAPACK: A portable linear algebra library
for high-performance computers. In Proceedings of the 1990 ACM/IEEE Conference on
Supercomputing, Supercomputing ’90, pages 2–11, Los Alamitos, CA, USA, 1990. IEEE
Computer Society Press. ISBN 0-89791-412-0.

[3] John D. Anderson. Fundamentals of Aerodynamics. McGraw–Hill, 1991.

[4] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient
management of parallelism in object oriented numerical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Software Tools for Scientific Computing,
pages 163–202. Birkhäuser Press, 1997. doi:10.1007/978-1-4612-1986-6 8.

[5] Robert E. Bartels and Bret Stanford. Economical Unsteady High Fidelity Aerodynamics in
a Structural Optimization with a Flutter Constraint. In 35th AIAA Applied Aerodynamics
Conference, Denver, CO, June 5–9 2017. doi:10.2514/6.2017-4358.

[6] Klaus-Jürgen Bathe. Finite element procedures. Klaus-Jurgen Bathe, 2006.

[7] Atilim Günes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine
Learning Research, 18(1):5595—5637, January 2018.

[8] Joseph A. Beck, Jeffrey M. Brown, Onome E. Scott-Emuakpor, Emily B. Carper,
and Alex A. Kaszynski. Modal expansion method for eigensensitivity calculations of
cyclically symmetric bladed disks. AIAA Journal, 56(10):4112–4120, October 2018.
doi:10.2514/1.j057322.

[9] Marc Benoit and Siva Nadarajah. On the geometric conservation law for the non linear
frequency domain and time-spectral methods. Computer Methods in Applied Mechanics
and Engineering, 355:690–728, October 2019. doi:10.1016/j.cma.2019.04.002.

142

http://dx.doi.org/10.2514/3.48671
http://dx.doi.org/10.1007/978-1-4612-1986-6_8
http://dx.doi.org/10.2514/6.2017-4358
http://dx.doi.org/10.2514/1.j057322
http://dx.doi.org/10.1016/j.cma.2019.04.002

[10] Philip S. Beran, Bret K. Stanford, and Kevin G. Wang. Fast Prediction of Flutter and Flut-
ter Sensitivities. In 17th International Forum on Aeroelasticity and Structural Dynamics
(IFASD), Como, Italy, June 25–28 2017. doi:10.2514/6.2017-1350.

[11] Michael L. Bernard and Alien J. Bronowicki. Modal expansion method for eigensensitivity
with repeated roots. AIAA Journal, 32(7):1500–1506, July 1994. doi:10.2514/3.12221.

[12] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[13] Raymond L. Bisplinghoff and Holt Ashley. Principles of Aeroelasticity. Dover Publications,
Inc., 1975.

[14] Julien Bohbot, Julien Garnier, Stephane Toumit, and Denis Darracq. Computation of the
flutter boundary of an airfoil with a parallel navier-stokes solver. In 39th Aerospace Sciences
Meeting and Exhibit. American Institute of Aeronautics and Astronautics, January 2001.

[15] Mohamed Amine Bouhlel, Sicheng He, and Joaquim R. R. A. Martins. Scalable gradient-
enhanced artificial neural networks for airfoil shape design in the subsonic and transonic
regimes. Structural and Multidisciplinary Optimization, 61:1363–1376, March 2020.
doi:10.1007/s00158-020-02488-5.

[16] John P. Boyd. Chebyshev and Fourier Spectral Methods. DOVER Publications, Inc., 2000.

[17] Timothy R. Brooks, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. Benchmark
aerostructural models for the study of transonic aircraft wings. AIAA Journal, 56(7):2840–
2855, July 2018. doi:10.2514/1.J056603.

[18] Timothy R. Brooks, Joaquim R. R. A. Martins, and Graeme J. Kennedy. High-fidelity
aerostructural optimization of tow-steered composite wings. Journal of Fluids and Struc-
tures, 88:122–147, July 2019. doi:10.1016/j.jfluidstructs.2019.04.005.

[19] Peter N. Brown and Youcef Saad. Hybrid krylov methods for nonlinear systems of equa-
tions. SIAM Journal on Scientific and Statistical Computing, 11(3):450–481, May 1990.
doi:10.1137/0911026.

[20] P. C. Chen, Zhichao Zhang, and Eli Livne. Design-Oriented Computational Fluid Dynamics-
Based Unsteady Aerodynamics for Flight-Vehicle Aeroelastic Shape Optimization. AIAA
Journal, 53(12):3603–3619, 2015. doi:10.2514/1.J054024.

[21] Wengang Chen, Weiwei Zhang, Yilang Liu, and Jiaqing Kou. Accelerating the convergence
of steady adjoint equations by dynamic mode decomposition. Structural and Multidisci-
plinary Optimization, 2020. doi:10.1007/s00158-020-02531-5.

[22] Seongim Choi and Anubhav Datta. Cfd prediction of rotor loads using time-spectral method
and exact fluid-structure interface. 2008. doi:10.2514/6.2008-7325.

143

http://dx.doi.org/10.2514/6.2017-1350
http://dx.doi.org/10.2514/3.12221
http://dx.doi.org/10.1007/s00158-020-02488-5
http://dx.doi.org/10.2514/1.J056603
http://dx.doi.org/10.1016/j.jfluidstructs.2019.04.005
http://dx.doi.org/10.1137/0911026
http://dx.doi.org/10.2514/1.J054024
http://dx.doi.org/10.1007/s00158-020-02531-5
http://dx.doi.org/10.2514/6.2008-7325

[23] S.S. Davis. Naca 64a010 (nasa ames model) oscillatory pitching. AGARD Report 702,
AGARD,Dataset 2., January 1982.

[24] Earl H. Dowell. A Modern Course in Aeroelasticity. Springer International Publishing,
2015. doi:10.1007/978-3-319-09453-3.

[25] Ariel Drachinsky and Daniella E. Raveh. Modal rotations: A modal-based method for
large structural deformations of slender bodies. AIAA Journal, pages 1–15, May 2020.
doi:10.2514/1.j058899.

[26] J. Driver and D. W. Zingg. Numerical aerodynamic optimization incorporat-
ing laminar-turbulent transition prediction. AIAA Journal, 45(8):1810–1818, 2007.
doi:10.2514/1.23569.

[27] Paul S. Dwyer and M. S. Macphail. Symbolic matrix derivatives. The Annals of Mathemat-
ical Statistics, 19(4):517–534, May 1948.

[28] Stanley C. Eisenstat and Homer F. Walker. Choosing the forcing terms in an inexact
newton method. SIAM Journal on Scientific Computing, 17(1):16–32, January 1996.
doi:10.1137/0917003.

[29] Kivanc Ekici and Kenneth C. Hall. Harmonic balance analysis of limit cycle oscillations in
turbomachinery. AIAA Journal, 49(7):1478–1487, July 2011. doi:10.2514/1.j050858.

[30] Benjamin Emerson, Tim Lieuwen, and Matthew P. Juniper. Local stability analysis and
eigenvalue sensitivity of reacting bluff-body wakes. Journal of Fluid Mechanics, 788:549–
575, January 2016. doi:10.1017/jfm.2015.724.

[31] Mark A. Finlayson. ANSYS ICEM CFD User’s Manual. ANSYS, Inc., Canonsburg, PA,
November 2013.

[32] R. L. Fox and M. P. Kapoor. Rates of change of eigenvalues and eigenvectors. AIAA Journal,
6(12):2426–2429, December 1968. doi:10.2514/3.5008.

[33] Michael I. Friswell and Sondipon Adhikari. Derivatives of complex eigenvectors using
Nelson's method. AIAA Journal, 38(12):2355–2357, December 2000. doi:10.2514/2.907.

[34] Amin Ghadami, Carlos E.S. Cesnik, and Bogdan I. Epureanu. Model-less forecasting of
hopf bifurcations in fluid-structural systems. Journal of Fluids and Structures, 76:1–13,
2018. doi:10.1016/j.jfluidstructs.2017.09.005.

[35] Mike Giles. An extended collection of matrix derivative results for forward and reverse
mode algorithmic differentiation. Technical Report 08/01, Oxford University Computing
Laboratory, Parks Road, Oxford, UK, January 2008.

[36] Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM Journal of Optimization, 12(4):979–1006, 2002.
doi:10.1137/S1052623499350013.

144

http://dx.doi.org/10.1007/978-3-319-09453-3
http://dx.doi.org/10.2514/1.j058899
http://dx.doi.org/10.2514/1.23569
http://dx.doi.org/10.1137/0917003
http://dx.doi.org/10.2514/1.j050858
http://dx.doi.org/10.1017/jfm.2015.724
http://dx.doi.org/10.2514/3.5008
http://dx.doi.org/10.2514/2.907
http://dx.doi.org/10.1016/j.jfluidstructs.2017.09.005
http://dx.doi.org/10.1137/S1052623499350013

[37] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD, 3 edition, 1996.

[38] Yiming Gong and Weiwei Zhang. Efficient aeroelastic solution based on time-
spectral fluid–structure interaction method. AIAA Journal, 57(7):3014–3025, July 2019.
doi:10.2514/1.j057628.

[39] Arathi Gopinath and Antony Jameson. Time spectral method for periodic unsteady compu-
tations over two- and three- dimensional bodies. Technical report, 2005.

[40] Andreas Griewank. Evaluating Derivatives. SIAM, Philadelphia, 2000.

[41] Raphael T. Haftka and Zafer Gürdal. Elements of Structural Optimization. Kluwer, 3rd
edition, 1993.

[42] Gustavo L. O. Halila, Joaquim R. R. A. Martins, and Krzysztof J. Fidkowski. Adjoint-
based aerodynamic shape optimization including transition to turbulence effects. Aerospace
Science and Technology, (107):1–15, December 2020. doi:10.1016/j.ast.2020.106243.

[43] Kenneth C. Hall, Jeffrey P. Thomas, and Earl H. Dowell. Proper orthogonal decomposition
technique for transonic unsteady aerodynamic flows. AIAA Journal, 38(10):1853–1862,
October 2000. doi:10.2514/2.867.

[44] Kenneth C. Hall, Jeffrey P. Thomas, and W. S. Clark. Computation of unsteady nonlinear
flows in cascades using a harmonic balance technique. AIAA Journal, 40(5):879–886, 2002.
doi:10.2514/2.1754.

[45] L. Hascoët and V Pascual. TAPENADE 2.1 user’s guide. Technical report 300, INRIA,
2004. URL https://hal.inria.fr/inria-00069880/document.

[46] Laurent Hascoet and Valérie Pascual. The Tapenade automatic differentiation tool: Princi-
ples, model, and specification. ACM Transactions on Mathematical Software, 39(3):20:1–
20:43, May 2013. ISSN 0098-3500. doi:10.1145/2450153.2450158.

[47] Ping He, Alton J. Luder, Charles A. Mader, Kevin J. Maki, and Joaquim R. R. A. Martins.
A time-spectral adjoint approach for aerodynamic shape optimization under periodic wakes.
In AIAA SciTech Forum, Orlando, FL, January 2020. AIAA. doi:10.2514/6.2020-2114.

[48] Ping He, Charles A. Mader, Joaquim R. R. A. Martins, and Kevin J. Maki. DAFoam: An
open-source adjoint framework for multidisciplinary design optimization with OpenFOAM.
AIAA Journal, 58(3), March 2020. doi:10.2514/1.J058853.

[49] Sicheng He, Eirikur Jonsson, Charles A. Mader, and Joaquim R. R. A. Martins. A coupled
Newton–Krylov time spectral solver for flutter prediction. In 2018 AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Kissimmee, FL, January 2018.
American Institute of Aeronautics and Astronautics. doi:10.2514/6.2018-2149.

145

http://dx.doi.org/10.2514/1.j057628
http://dx.doi.org/10.1016/j.ast.2020.106243
http://dx.doi.org/10.2514/2.867
http://dx.doi.org/10.2514/2.1754
https://hal.inria.fr/inria-00069880/document
http://dx.doi.org/10.1145/2450153.2450158
http://dx.doi.org/10.2514/6.2020-2114
http://dx.doi.org/10.2514/1.J058853
http://dx.doi.org/10.2514/6.2018-2149

[50] Sicheng He, Eirikur Jonsson, Charles A. Mader, and Joaquim R. R. A. Martins. A coupled
Newton–Krylov time-spectral solver for wing flutter and LCO prediction. In AIAA Aviation
Forum, Dallas, TX, June 2019. doi:10.2514/6.2019-3549.

[51] Xiaolong He, Jichao Li, Charles A. Mader, Anil Yildirim, and Joaquim R. R. A. Martins.
Robust aerodynamic shape optimization—from a circle to an airfoil. Aerospace Science and
Technology, 87:48–61, April 2019. doi:10.1016/j.ast.2019.01.051.

[52] Daning Huang and Peretz P. Friedmann. An integrated aerothermoelastic analysis
framework for predicting the response of composite panels. In 15th Dynamics Spe-
cialists Conference. American Institute of Aeronautics and Astronautics, January 2016.
doi:10.2514/6.2016-1090.

[53] Koji Isogai. On the transonic-dip mechanism of flutter of a sweptback wing. AIAA Journal,
17(7):793–795, July 1979. doi:10.2514/3.61226.

[54] Anthony Jameson. Aerodynamic design via control theory. Journal of Scientific Computing,
3(3):233–260, September 1988. doi:10.1007/BF01061285.

[55] Eirikur Jonsson, Gaetan K. W. Kenway, Graeme J. Kennedy, and Joaquim R. R. A. Mar-
tins. Development of flutter constraints for high-fidelity aerostructural optimization. In 18th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, CO, June
2017. doi:10.2514/6.2017-4455. AIAA 2017-4455.

[56] Eirikur Jonsson, Charles A. Mader, Graeme J. Kennedy, and Joaquim R. R. A. Martins.
Computational modeling of flutter constraint for high-fidelity aerostructural optimization.
In 2019 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence, San Diego, CA, January 2019. American Institute of Aeronautics and Astronautics.
doi:10.2514/6.2019-2354.

[57] Eirikur Jonsson, Cristina Riso, Christopher A. Lupp, Carlos E. S. Cesnik, Joaquim R.
R. A. Martins, and Bogdan I. Epureanu. Flutter and post-flutter constraints in air-
craft design optimization. Progress in Aerospace Sciences, 109:100537, August 2019.
doi:10.1016/j.paerosci.2019.04.001.

[58] Farid Kachra and Siva K. Nadarajah. Aeroelastic solutions using the nonlinear frequency-
domain method. AIAA Journal, 46(9):2202–2210, September 2008. doi:10.2514/1.27602.

[59] Graeme J. Kennedy and Joaquim R. R. A. Martins. A parallel finite-element framework for
large-scale gradient-based design optimization of high-performance structures. Finite Ele-
ments in Analysis and Design, 87:56–73, September 2014. doi:10.1016/j.finel.2014.04.011.

[60] Graeme J. Kennedy, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. Towards
gradient-based design optimization of flexible transport aircraft with flutter constraints. In
Proceedings of the 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Confer-
ence, Atlanta, GA, June 2014. doi:10.2514/6.2014-2726. AIAA 2014-2726.

146

http://dx.doi.org/10.2514/6.2019-3549
http://dx.doi.org/10.1016/j.ast.2019.01.051
http://dx.doi.org/10.2514/6.2016-1090
http://dx.doi.org/10.2514/3.61226
http://dx.doi.org/10.1007/BF01061285
http://dx.doi.org/10.2514/6.2017-4455
http://dx.doi.org/10.2514/6.2019-2354
http://dx.doi.org/10.1016/j.paerosci.2019.04.001
http://dx.doi.org/10.2514/1.27602
http://dx.doi.org/10.1016/j.finel.2014.04.011
http://dx.doi.org/10.2514/6.2014-2726

[61] Gaetan K. W. Kenway and Joaquim R. R. A. Martins. Buffet onset constraint formula-
tion for aerodynamic shape optimization. AIAA Journal, 55(6):1930–1947, June 2017.
doi:10.2514/1.J055172.

[62] Gaetan K. W. Kenway, Graeme J. Kennedy, and Joaquim R. R. A. Martins. Scalable paral-
lel approach for high-fidelity steady-state aeroelastic analysis and derivative computations.
AIAA Journal, 52(5):935–951, May 2014. doi:10.2514/1.J052255.

[63] Gaetan K. W. Kenway, Charles A. Mader, Ping He, and Joaquim R. R. A. Martins. Effective
adjoint approaches for computational fluid dynamics. Progress in Aerospace Sciences, 110:
100542, October 2019. doi:10.1016/j.paerosci.2019.05.002.

[64] Gaetan K.W. Kenway, Graeme. J. Kennedy, and Joaquim R. R. A. Martins. A CAD-free ap-
proach to high-fidelity aerostructural optimization. In Proceedings of the 13th AIAA/ISSMO
Multidisciplinary Analysis Optimization Conference, number AIAA 2010-9231, Fort Worth,
TX, September 2010. doi:10.2514/6.2010-9231.

[65] Denis B. Kholodar, Jeffrey P. Thomas, Earl H. Dowell, and Kenneth C. Hall. Parametric
study of flutter for an airfoil in inviscid transonic flow. Journal of Aircraft, 40(2):303–313,
March 2003. doi:10.2514/2.3094.

[66] Jan F Kiviaho, Kevin Jacobson, Marilyn J Smith, and Graeme Kennedy. Application
of a time-accurate aeroelastic coupling framework to flutter-constrained design optimiza-
tion. In 2018 Multidisciplinary Analysis and Optimization Conference, page 2932, 2018.
doi:10.2514/6.2018-2932.

[67] Dana A Knoll and David E Keyes. Jacobian-free Newton–Krylov methods: a survey of
approaches and applications. Journal of Computational Physics, 193(2):357–397, 2004.
doi:10.1016/j.jcp.2003.08.010.

[68] Andrew B. Lambe and Joaquim R. R. A. Martins. Extensions to the design structure matrix
for the description of multidisciplinary design, analysis, and optimization processes. Struc-
tural and Multidisciplinary Optimization, 46:273–284, August 2012. doi:10.1007/s00158-
012-0763-y.

[69] Tae Hee Lee. Adjoint method for design sensitivity analysis of multiple eigenvalues and as-
sociated eigenvectors. AIAA Journal, 45(8):1998–2004, August 2007. doi:10.2514/1.25347.

[70] Hang Li and Kivanc Ekici. Revisiting the One-shot method for modeling limit cycle oscil-
lations: Extension to two-degree-of-freedom systems. Aerospace Science and Technology,
69:686–699, 2017. doi:10.1016/j.ast.2017.07.037.

[71] Hang Li and Kivanc Ekici. A novel approach for flutter prediction of pitch–plunge airfoils
using an efficient one-shot method. Journal of Fluids and Structures, 82:651–671, October
2018. doi:10.1016/j.jfluidstructs.2018.08.012.

147

http://dx.doi.org/10.2514/1.J055172
http://dx.doi.org/10.2514/1.J052255
http://dx.doi.org/10.1016/j.paerosci.2019.05.002
http://dx.doi.org/10.2514/6.2010-9231
http://dx.doi.org/10.2514/2.3094
http://dx.doi.org/10.2514/6.2018-2932
http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://dx.doi.org/10.1007/s00158-012-0763-y
http://dx.doi.org/10.1007/s00158-012-0763-y
http://dx.doi.org/10.2514/1.25347
http://dx.doi.org/10.1016/j.ast.2017.07.037
http://dx.doi.org/10.1016/j.jfluidstructs.2018.08.012

[72] Hang Li and Kivanc Ekici. Improved one-shot approach for modeling viscous transonic limit
cycle oscillations. AIAA Journal, 56(8):3138–3152, August 2018. doi:10.2514/1.j056969.

[73] Hang Li and Kivanc Ekici. Aeroelastic modeling of a three-dimensional wing using the
harmonic-balance-based one-shot method. In AIAA Scitech 2019 Forum. American Institute
of Aeronautics and Astronautics, January 2019. doi:10.2514/6.2019-0607.

[74] Hang Li and Kivanc Ekici. Aeroelastic modeling of the AGARD 445.6 wing using the
harmonic-balance-based one-shot method. AIAA Journal, 57(11):4885–4902, November
2019. doi:10.2514/1.j058363.

[75] Yingqian Liao, Sicheng He, Joaquim R. R. A. Martins, and Yin Lu Young. Hydrostructural
optimization of generic composite hydrofoils. In AIAA SciTech Forum, Orlando, FL, January
2020. AIAA. doi:10.2514/6.2020-0164.

[76] K. B. Lim, J. L. Junkins, and B. P. Wang. Re-examination of eigenvector deriva-
tives. Journal of Guidance, Control, and Dynamics, 10(6):581–587, November 1987.
doi:10.2514/3.20259.

[77] R. M. Lin and M. K. Lim. Complex eigensensitivity-based characterization of structures
with viscoelastic damping. The Journal of the Acoustical Society of America, 100(5):3182–
3191, November 1996. doi:10.1121/1.417202.

[78] R. M. Lin and T. Y. Ng. Frequency response functions and modal analysis of general non-
viscously damped dynamic systems with and without repeated modes. Mechanical Systems
and Signal Processing, 120:744–764, April 2019. doi:10.1016/j.ymssp.2018.10.032.

[79] R. M. Lin and T. Y. Ng. Prediction of mistuning effect of bladed disks us-
ing eigensensitivity analysis. Engineering Structures, 212:110416, June 2020.
doi:10.1016/j.engstruct.2020.110416.

[80] R. M. Lin, J. E. Mottershead, and T. Y. Ng. A state-of-the-art review on theory and en-
gineering applications of eigenvalue and eigenvector derivatives. Mechanical Systems and
Signal Processing, 138:106536, April 2020. doi:10.1016/j.ymssp.2019.106536.

[81] F Liu, J Cai, Y Zhu, HM Tsai, and AS F. Wong. Calculation of wing flutter by a coupled
fluid-structure method. Journal of Aircraft, 38(2):334–342, 2001. doi:10.2514/2.2766.

[82] Zhongsheng Liu, Suhuan Chen, Min Yu, and Youqun Zhao. Contribution of the trun-
cated modes to eigenvector derivatives. AIAA Journal, 32(7):1551–1553, July 1994.
doi:10.2514/3.12228.

[83] Edward Luke, Eric Collins, and Eric Blades. A fast mesh deformation method using explicit
interpolation. Journal of Computational Physics, 231(2):586–601, January 2012. ISSN
0021-9991. doi:10.1016/j.jcp.2011.09.021.

148

http://dx.doi.org/10.2514/1.j056969
http://dx.doi.org/10.2514/6.2019-0607
http://dx.doi.org/10.2514/1.j058363
http://dx.doi.org/10.2514/6.2020-0164
http://dx.doi.org/10.2514/3.20259
http://dx.doi.org/10.1121/1.417202
http://dx.doi.org/10.1016/j.ymssp.2018.10.032
http://dx.doi.org/10.1016/j.engstruct.2020.110416
http://dx.doi.org/10.1016/j.ymssp.2019.106536
http://dx.doi.org/10.2514/2.2766
http://dx.doi.org/10.2514/3.12228
http://dx.doi.org/10.1016/j.jcp.2011.09.021

[84] Christopher A. Lupp and Carlos E. S. Cesnik. A gradient-based flutter constraint in-
cluding geometrically nonlinear deformations. In 2019 AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, San Diego, California, 2019. AIAA.
doi:10.2514/6.2019-1212.

[85] Christopher A. Lupp, Carlos E.S. Cesnik, Philip Beran, Joshua Deaton, and David Easter-
ling. Including geometrical nonlinear flutter constraints in high fidelity aircraft optimization.
In International Forum on Aeroelasticity and Structural Dynamics 2019, Savannah, Geor-
gia, 2019.

[86] Zhoujie Lyu and Joaquim R. R. A. Martins. RANS-based aerodynamic shape optimization
of a blended-wing-body aircraft. In 21st AIAA Computational Fluid Dynamics Conference,
San Diego, CA, July 2013. doi:10.2514/6.2013-2586.

[87] Zhoujie Lyu, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins. RANS-based aerody-
namic shape optimization investigations of the Common Research Model wing. In Proceed-
ings of the AIAA Science and Technology Forum and Exposition (SciTech), National Harbor,
MD, January 2014. doi:10.2514/6.2014-0567. AIAA 2014-0567.

[88] Zhoujie Lyu, Zelu Xu, and Joaquim R. R. A. Martins. Benchmarking optimization al-
gorithms for wing aerodynamic design optimization. In Proceedings of the 8th Interna-
tional Conference on Computational Fluid Dynamics, Chengdu, Sichuan, China, July 2014.
ICCFD8-2014-0203.

[89] Andrew C. Madden, Matthew P. Castanier, and Bogdan I. Epureanu. Mistuning iden-
tification of blisks at higher frequencies. AIAA Journal, 49(6):1299–1302, June 2011.
doi:10.2514/1.j050427.

[90] Charles A. Mader and Joaquim R. R. A. Martins. Derivatives for time-spectral compu-
tational fluid dynamics using an automatic differentiation adjoint. AIAA Journal, 50(12):
2809–2819, December 2012. doi:10.2514/1.J051658.

[91] Charles A. Mader, Joaquim R. R. A. Martins, Juan J. Alonso, and Edwin van der Weide.
ADjoint: An approach for the rapid development of discrete adjoint solvers. AIAA Journal,
46(4):863–873, April 2008. doi:10.2514/1.29123.

[92] Charles A. Mader, Gaetan K. W. Kenway, Anil Yildirim, and Joaquim R. R. A. Mar-
tins. ADflow—an open-source computational fluid dynamics solver for aerodynamic
and multidisciplinary optimization. Journal of Aerospace Information Systems, 2020.
doi:10.2514/1.I010796.

[93] Charles Alexander Mader. Stability-Constrained Aerodynamic Shape Optimization with
Applications to Flying Wings. PhD thesis, University of Toronto, August 2012.

[94] Ferran Marti and Feng Liu. Multiple equilibrium points of airfoil flutter in viscous flow. In
55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronau-
tics, January 2017. doi:10.2514/6.2017-1647.

149

http://dx.doi.org/10.2514/6.2019-1212
http://dx.doi.org/10.2514/6.2013-2586
http://dx.doi.org/10.2514/6.2014-0567
http://dx.doi.org/10.2514/1.j050427
http://dx.doi.org/10.2514/1.J051658
http://dx.doi.org/10.2514/1.29123
http://dx.doi.org/10.2514/1.I010796
http://dx.doi.org/10.2514/6.2017-1647

[95] Joaquim R. R. A. Martins and John T. Hwang. Review and unification of methods for
computing derivatives of multidisciplinary computational models. AIAA Journal, 51(11):
2582–2599, November 2013. doi:10.2514/1.J052184.

[96] Joaquim R. R. A. Martins and Andrew Ning. Engineering Design Optimization. Cambridge
University Press, 2021. (to be published).

[97] Joaquim R. R. A. Martins, Peter Sturdza, and Juan J. Alonso. The complex-step derivative
approximation. ACM Transactions on Mathematical Software, 29(3):245–262, September
2003. doi:10.1145/838250.838251.

[98] Joaquim R. R. A. Martins, Juan J. Alonso, and James J. Reuther. High-fidelity aerostructural
design optimization of a supersonic business jet. Journal of Aircraft, 41(3):523–530, May
2004. doi:10.2514/1.11478.

[99] Joaquim R. R. A. Martins, Juan J. Alonso, and James J. Reuther. A coupled-adjoint sensitiv-
ity analysis method for high-fidelity aero-structural design. Optimization and Engineering,
6(1):33–62, March 2005. doi:10.1023/B:OPTE.0000048536.47956.62.

[100] D. J. Mavriplis and Z. Yang. Time spectral method for periodic and quasi-periodic unsteady
computations on unstructured meshes. Mathematical Modelling of Natural Phenomena, 6
(3):213–236, 2011. doi:10.1051/mmnp/20116309.

[101] M McMullen, Antony Jameson, and J Alonso. Application of a non-linear frequency domain
solver to the euler and navier-stokes equations. In 40th AIAA Aerospace Sciences Meeting
& Exhibit, page 120, 2002.

[102] Matthew McMullen. The Application of Non-Linear Frequency Domain Methods to the
Euler and Navier-Stokes Equations. PhD thesis, Stanford University, March 2003. URL
citeseer.ist.psu.edu/mcmullen03application.html.

[103] Thomas. P. Minka. Old and new matrix algebra useful for statistics. 2000.

[104] Nathan Mundis and Dimitri Mavriplis. Quasi-periodic time spectral method for aeroelastic
flutter analysis. 2013. doi:10.2514/6.2013-638.

[105] Durbha V. Murthy and Raphael T. Haftka. Derivatives of eigenvalues and eigenvectors of a
general complex matrix. International Journal for Numerical Methods in Engineering, 26
(2):293–311, 1988. doi:10.1002/nme.1620260202.

[106] Uwe Naumann. The Art of Differentiating Computer Programs—An Introduction to Algo-
rithmic Differentiation. SIAM, 2011.

[107] Richard B. Nelson. Simplified calculation of eigenvector derivatives. AIAA Journal, 14(9):
1201–1205, September 1976. doi:10.2514/3.7211.

150

http://dx.doi.org/10.2514/1.J052184
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.2514/1.11478
http://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
http://dx.doi.org/10.1051/mmnp/20116309
citeseer.ist.psu.edu/mcmullen03application.html
http://dx.doi.org/10.2514/6.2013-638
http://dx.doi.org/10.1002/nme.1620260202
http://dx.doi.org/10.2514/3.7211

[108] Max M. J. Opgenoord, Mark Drela, and Karen E. Willcox. Influence of transonic flutter
on the conceptual design of next-generation transport aircraft. AIAA Journal, pages 1–15,
March 2019. doi:10.2514/1.j057302.

[109] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Rettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[110] Ruben E. Perez, Peter W. Jansen, and Joaquim R. R. A. Martins. pyOpt: A Python-based
object-oriented framework for nonlinear constrained optimization. Structural and Multidis-
ciplinary Optimization, 45(1):101–118, January 2012. doi:10.1007/s00158-011-0666-3.

[111] Michael G. H. Piotrowski and David W. Zingg. Smooth local correlation-based transi-
tion model for the spalart–allmaras turbulence model. AIAA Journal, pages 1–19, 2020.
doi:10.2514/1.j059784.

[112] Rachit Prasad, Hyunsoon Kim, and Seongim Choi. Flutter related design optimization us-
ing the time spectral and coupled adjoint method. In 2018 AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference. American Institute of Aeronautics and As-
tronautics, January 2018. doi:10.2514/6.2018-0101.

[113] Rachit Prasad, Hyunsoon Kim, Seongim Choi, and Seulgi Yi. High fidelity prediction of
flutter/LCO using time spectral method. In 2018 AIAA/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference. American Institute of Aeronautics and Astro-
nautics, January 2018. doi:10.2514/6.2018-0459.

[114] Donya Ramezanian, Dimitri Mavriplis, and Behzad R. Ahrabi. An order N log N parallel
solver for time-spectral problems. Journal of Computational Physics, 411:109319, June
2020. doi:10.1016/j.jcp.2020.109319.

[115] Cristina Riso, Amin Ghadami, Carlos E. S. Cesnik, and Bogdan I. Epureanu. Data-driven
forecasting of postflutter responses of geometrically nonlinear wings. AIAA Journal, 58(6):
2726–2736, June 2020. doi:10.2514/1.j059024.

[116] Carl S. Rudisill and Yee-Yeen Chu. Numerical methods for evaluating the deriva-
tives of eigenvalues and eigenvectors. AIAA Journal, 13(6):834–837, June 1975.
doi:10.2514/3.60449.

[117] Yousef Saad. A flexible inner-outer preconditioned gmres algorithm. SIAM Journal on
Scientific Computing, 14(2):461–469, 1993. doi:10.1137/0914028.

[118] Peter J. Schmid and Dan S. Henningson. Stability and Transition in Shear Flows. Springer
New York, 2001. doi:10.1007/978-1-4613-0185-1.

151

http://dx.doi.org/10.2514/1.j057302
http://dx.doi.org/10.1007/s00158-011-0666-3
http://dx.doi.org/10.2514/1.j059784
http://dx.doi.org/10.2514/6.2018-0101
http://dx.doi.org/10.2514/6.2018-0459
http://dx.doi.org/10.1016/j.jcp.2020.109319
http://dx.doi.org/10.2514/1.j059024
http://dx.doi.org/10.2514/3.60449
http://dx.doi.org/10.1137/0914028
http://dx.doi.org/10.1007/978-1-4613-0185-1

[119] Ney Secco, Gaetan K. W. Kenway Ping He, Charles A. Mader, and Joaquim R. R. A. Mar-
tins. Efficient mesh generation and deformation for aerodynamic shape optimization. AIAA
Journal, 2020. (In press).

[120] Yayun Shi, Raphael Gross, Charles A. Mader, and Joaquim R. R. A. Martins. Transition
prediction based on linear stability theory with the RANS solver for three-dimensional con-
figurations. In Proceedings of the AIAA Aerospace Sciences Meeting, AIAA SciTech Forum,
Kissimmee, FL, January 2018. doi:10.2514/6.2018-0819.

[121] Yayun Shi, Charles A. Mader, Sicheng He, Gustavo L. O. Halila, and Joaquim R. R. A.
Martins. Natural laminar-flow airfoil optimization design using a discrete adjoint approach.
AIAA Journal, 58(11):4702–4722, 2020. doi:10.2514/1.J058944.

[122] Yukiko S. Shimizu and Krzysztof Fidkowski. Output-based error estimation for chaotic
flows using reduced-order modeling. In 2018 AIAA Aerospace Sciences Meeting. American
Institute of Aeronautics and Astronautics, 2018. doi:10.2514/6.2018-0826.

[123] Philippe Spalart and Steven Allmaras. A One-Equation Turbulence Model for Aerodynamic
Flows. La Recherche Aerospatiale, 1:5–21, 1994.

[124] Bret Stanford and Philip Beran. Direct flutter and limit cycle computations of highly flexible
wings for efficient analysis and optimization. Journal of Fluids and Structures, 36:111–123,
jan 2013. doi:10.1016/j.jfluidstructs.2012.08.008.

[125] Bret Stanford, Carol D. Wieseman, and Christine Jutte. Aeroelastic Tailoring of Trans-
port Wings Including Transonic Flutter Constraints. In 56th AIAA/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference, Kissimmee, FL, January 2015.
doi:10.2514/6.2015-1127.

[126] Weihua Su and Carlos E. S. Cesnik. Strain-based analysis for geometrically non-
linear beams: A modal approach. Journal of Aircraft, 51(3):890–903, May 2014.
doi:10.2514/1.c032477.

[127] Praneeth Reddy Sudalagunta, Cornel Sultan, Rakesh K. Kapania, Layne T. Watson, and
Pradeep Raj. Accurate computing of higher vibration modes of thin flexible structures.
AIAA Journal, 54(5):1704–1718, May 2016. doi:10.2514/1.j054428.

[128] Weihan Tang, Seunghun Baek, and Bogdan I. Epureanu. Reduced-order models for blisks
with small and large mistuning and friction dampers. Journal of Engineering for Gas Tur-
bines and Power, 139(1), September 2016. doi:10.1115/1.4034212.

[129] Pierre-Olivier Tardif and Siva Nadarajah. Three-dimensional aeroelastic solutions via the
nonlinear frequency-domain method. AIAA Journal, 55(10):3553–3569, October 2017.
doi:10.2514/1.j054849.

152

http://dx.doi.org/10.2514/6.2018-0819
http://dx.doi.org/10.2514/1.J058944
http://dx.doi.org/10.2514/6.2018-0826
http://dx.doi.org/10.1016/j.jfluidstructs.2012.08.008
http://dx.doi.org/10.2514/6.2015-1127
http://dx.doi.org/10.2514/1.c032477
http://dx.doi.org/10.2514/1.j054428
http://dx.doi.org/10.1115/1.4034212
http://dx.doi.org/10.2514/1.j054849

[130] Jeffrey Thomas and Earl Dowell. Discrete adjoint method for aeroelastic design optimiza-
tion. In 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, page
2298, 2014. doi:10.2514/6.2014-2298.

[131] Jeffrey Thomas and Earl Dowell. A fixed point iteration approach for harmonic balance
based aeroelastic computations. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference. American Institute of Aeronautics and Astronautics,
January 2018. doi:10.2514/6.2018-1446.

[132] Jeffrey Thomas and Earl H. Dowell. Methodology for numerically stabilizing a harmonic
balance based aeroelastic solution approach. In AIAA Scitech 2020 Forum. American Insti-
tute of Aeronautics and Astronautics, January 2020. doi:10.2514/6.2020-1446.

[133] Jeffrey Thomas and Earl H. Dowell. Discrete adjoint constrained design optimization ap-
proach for unsteady transonic aeroelasticity and buffet. In AIAA AVIATION 2020 FORUM.
American Institute of Aeronautics and Astronautics, 2020. doi:10.2514/6.2020-3137.

[134] Jeffrey Thomas, Earl Dowell, and Kenneth C Hall. Discrete adjoint method for nonlinear
aeroelastic sensitivities for compressible and viscous flows. In 54th AIAA/ASME/ASCE/AH-
S/ASC Structures, Structural Dynamics, and Materials Conference, page 1860, 2013.
doi:10.2514/6.2013-1860.

[135] Jeffrey P Thomas and Earl H Dowell. Discrete adjoint approach for nonlinear unsteady
aeroelastic design optimization. AIAA Journal, pages 1–9, 2019. doi:10.2514/1.J057504.

[136] Jeffrey P. Thomas, Earl H. Dowell, and Kenneth C. Hall. A harmonic balance approach for
modeling three-dimensional nonlinear unsteady aerodynamics and aeroelasticity. In 5th In-
ternational Symposium on Fluid Structure International, Aeroeslasticity, and Flow Induced
Vibration and Noise. ASME, 2002. doi:10.1115/imece2002-32532.

[137] Jeffrey P. Thomas, Earl H. Dowell, and Kenneth C. Hall. Nonlinear inviscid aerodynamic
effects on transonic divergence, flutter, and limit-cycle oscillations. AIAA Journal, 40(4):
638–646, apr 2002. doi:10.2514/2.1720.

[138] P. D. Thomas and C. K. Lombard. Geometric conservation law and its application to flow
computations on moving grids. AIAA Journal, 17(10):1030–1037, October 1979. ISSN
0001-1452. doi:10.2514/3.61273.

[139] Sebastian Timme. Global instability of wing shock-buffet onset. Journal of Fluid Mechan-
ics, 885, January 2020. doi:10.1017/jfm.2019.1001.

[140] Stéfan van der Walt, S Chris Colbert, and Gaël Varoquaux. The NumPy array: A structure
for efficient numerical computation. Computing in Science & Engineering, 13(2):22–30,
March 2011. doi:10.1109/mcse.2011.37.

[141] B. P. Wang. Improved approximate methods for computing eigenvector derivatives in struc-
tural dynamics. AIAA Journal, 29(6):1018–1020, June 1991. doi:10.2514/3.59945.

153

http://dx.doi.org/10.2514/6.2014-2298
http://dx.doi.org/10.2514/6.2018-1446
http://dx.doi.org/10.2514/6.2020-1446
http://dx.doi.org/10.2514/6.2020-3137
http://dx.doi.org/10.2514/6.2013-1860
http://dx.doi.org/10.2514/1.J057504
http://dx.doi.org/10.1115/imece2002-32532
http://dx.doi.org/10.2514/2.1720
http://dx.doi.org/10.2514/3.61273
http://dx.doi.org/10.1017/jfm.2019.1001
http://dx.doi.org/10.1109/mcse.2011.37
http://dx.doi.org/10.2514/3.59945

[142] Qiqi Wang, David Gleich, Amin Saberi, Nasrollah Etemadi, and Parviz Moin. A monte
carlo method for solving unsteady adjoint equations. Journal of Computational Physics,
227(12):6184–6205, 2008. doi:10.1016/j.jcp.2008.03.006.

[143] Qiqi Wang, Rui Hu, and Patrick Blonigan. Least squares shadowing sensitivity analysis
of chaotic limit cycle oscillations. Journal of Computational Physics, 267:210–224, 2014.
doi:10.1016/j.jcp.2014.03.002.

[144] Neil Wu, Gaetan Kenway, Charles A. Mader, John Jasa, and Joaquim R. R. A. Mar-
tins. pyOptSparse: a Python framework for large-scale constrained nonlinear optimiza-
tion of sparse systems. Journal of Open Source Software, 5(54):2564, October 2020.
doi:10.21105/joss.02564.

[145] Shenren Xu, Sebastian Timme, and Kenneth J Badcock. Enabling off-design linearised
aerodynamics analysis using Krylov subspace recycling technique. Computers & Fluids,
140:385–396, 2016. doi:10.1016/j.compfluid.2016.10.018.

[146] W. Yao and S. Marques. A harmonic balance method for nonlinear fluid
structure interaction problems. Computers & Structures, 201:26–36, May 2018.
doi:10.1016/j.compstruc.2018.02.003.

[147] E.C. Yates. Agard standard aeroelastic configuration for dynamic response, candidate con-
figuration i—-wing 445.6. NASA TM-100492, 1987.

[148] Anil Yildirim, Gaetan K. W. Kenway, Charles A. Mader, and Joaquim R. R. A. Mar-
tins. A Jacobian-free approximate Newton–Krylov startup strategy for RANS simula-
tions. Journal of Computational Physics, 397:108741, November 2019. ISSN 0021-9991.
doi:10.1016/j.jcp.2019.06.018.

[149] De-Wen Zhang and Fu-Shang Wei. Computation of eigenvector derivatives with repeated
eigenvalues using a complete modal space. AIAA Journal, 33(9):1749–1753, September
1995. doi:10.2514/3.12723.

[150] Zhichao Zhang, P. C. Chen, Shuchi Yang, Zhicun Wang, and Qiqi Wang. Unsteady
Aerostructure Coupled Adjoint Method for Flutter Suppression. AIAA Journal, 53(8):2121–
2129, 2015. doi:10.2514/1.J053495.

[151] Zhichao Zhang, Ping-Chih Chen, Qiqi Wang, Zhiqiang Zhou, Shuchi Yang, and Zhicun
Wang. Adjoint based structure and shape optimization with flutter constraints. In 57th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Ameri-
can Institute of Aeronautics and Astronautics, 2016. doi:10.2514/6.2016-1176.

154

http://dx.doi.org/10.1016/j.jcp.2008.03.006
http://dx.doi.org/10.1016/j.jcp.2014.03.002
http://dx.doi.org/10.21105/joss.02564
http://dx.doi.org/10.1016/j.compfluid.2016.10.018
http://dx.doi.org/10.1016/j.compstruc.2018.02.003
http://dx.doi.org/10.1016/j.jcp.2019.06.018
http://dx.doi.org/10.2514/3.12723
http://dx.doi.org/10.2514/1.J053495
http://dx.doi.org/10.2514/6.2016-1176

Appendices

155

APPENDIX A

CSD Equations Example

The example is related with Section 2.2.
Consider,

M

M
M

ü1

ü2

ü3

+

K
K

K

u1

u2

u3

 =

V 2
f

π

f̄1

f̄2

f̄3

 , (A.1)

where the subscript denotes the time instance (e.g., u2 indicates displacement from the second
instance) and f̄i is defined as [−Cl,i, 2Cm,i]> for the ith time instance. Permute the history vector,

Q

u1

u2

u3

 = Q

h1
b

α1
h2
b

α2
h3
b

α3

=

h1
b
h2
b
h3
b

α1

α2

α3

, (A.2)

where the permutation matrix Q is defined as

Q =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

. (A.3)

With the permutation matrix Q, we conduct spectral differentiation twice to get the second deriva-
tive (e.g., for the pitching mode: α̈ααn ≈ D(ω)(α̇ααn) ≈ D(ω)2αααn). Then we have:

M
M

M

Q>

[
D(ω)2

D(ω)2

]
Q

u1

u2

u3

+

K
K

K

u1

u2

u3

 =

V 2
f

π

f̄1

f̄2

f̄3

 . (A.4)

156

APPENDIX B

Derivation of Equations from Chapter 5

B.1 Dot product identity
The dot product identity originally proposed by Minka [103] is the key for the derivation of the

RAD formulations. This identity is also known as a “dot product test” [46], which is an indication
that the forward and reverse codes are consistent. Let Q be an input matrix and H be an output
matrix dependent on Q. For H(Q), the identity is

Tr(HᵀḢ) = Tr(QᵀQ̇), (B.1)

where

Ḣ =
∂H

∂Q
Q̇,

Q =
∂H

∂Q

ᵀ

H.

(B.2)

The equality is verified as follows

Tr(HᵀḢ)

=Tr
(

Hᵀ

(
∂H

∂Q
Q̇

))
(by the first equation from Eq. (B.2))

=Tr
((

Hᵀ∂H

∂Q

)
Q̇

)
(by reordering the multiplication sequence)

=Tr
(
Q>Q̇

)
(by the second equation from Eq. (B.2)).

(B.3)

Using the identity and by matching terms, we can derive RAD formulations based on correspond-
ing FAD formulations.

To demonstrate how to apply Eq. (B.1), consider a linear equation for simplicity

H(Q) = AQ, (B.4)

157

where A is a constant matrix. Differentiating Eq. (B.4), we obtain the FAD term

Ḣ = AQ̇, (B.5)

and by inserting into Eq. (B.1) we obtain,

Tr(HᵀAQ̇) = Tr(QᵀQ̇). (B.6)

Since the equation holds true for arbitrary Q̇, comparing the LHS and RHS we conclude that

Q = A>H, (B.7)

which is the RAD result.
This equation can be generalized to multiple inputs and multiple outputs by summing up the

input product traces on one side of the equation and the output on the other. For the generalized
eigenvalue problem, we have inputs, K,M, and outputs, Λ,Φ, we obtain

Tr(ΛᵀΛ̇) + Tr(ΦᵀΦ̇) = Tr(KᵀK̇) + Tr(MᵀṀ). (B.8)

This expression is the foundation to derive the RAD formulations for the modal method, pre-
sented in the next section, and the improved modal method presented in Section 5.3.3. This process
was proposed by Minka [103] and was used by Giles [35] to derive a series of very useful RAD
results.

B.2 Trace identities
These are several matrix identities used frequently in the paper for the trace operation[35, 103]:

Tr(AB) = Tr(BA)

Tr(A + B) = Tr(A) + Tr(B)

Tr(A(B ◦C)) = Tr((A ◦Bᵀ)C).

(B.9)

B.3 Direct method for eigenvalue and eigenvector sensitivities
The direct method for derivative computation for the ith eigenpair, (λi,φφφi) requires the solution

of the linear system [41],

[
M−Kλi −Kφφφi

2φφφᵀ
iM 0

] [
φ̇φφi
λ̇i

]
=

[
−Ṁφφφi + K̇φφφiλi
−φφφᵀ

i Ṁφφφi

]
. (B.10)

158

B.4 Derivation of Eq. 5.19
In this section we provide the derivation for Mi. The derivation for Ki is similar and is there-

fore omitted. From Eq. (5.18), we want to evaluate

Mi =
∂R

∂M

ᵀ

(−ψψψi) . (B.11)

As mentioned in the main text of the paper, we evaluate this product using RAD. Here,−ψψψi can be
taken as a seed for R, i.e., −ψψψi is an instance of R. We use the following identity from Eq. (B.1)
for the derivation,

Tr(RᵀṘ) = Tr(Mᵀ
i Ṁi). (B.12)

Before proceeding with deriving the RAD formulation, we derive the FAD expressions. We dif-
ferentiate Eq. (5.11) to obtain the partial derivative of R with respect to M. The FAD formulation
is given as

Ṙ =

[
Ṁiφφφi
φφφᵀ
i Ṁiφφφi

]
. (B.13)

Now we derive Mi. By taking −ψψψi as a reverse seed, we obtain

Tr(RᵀṘ) = Tr(−ψψψᵀ
i Ṙ). (B.14)

We now substitute in the FAD formulation Eq. (B.13),

Tr(−ψψψᵀ
i Ṙ) = Tr

(
−ψψψᵀ

i

[
Ṁiφφφi
φφφᵀ
i Ṁiφφφi

])
. (B.15)

Expanding the ψψψi =
[
ψψψᵀ

R1
ψψψᵀ

R2

]ᵀ, we get

Tr
(
−ψψψᵀ

i

[
Ṁiφφφi
φφφᵀ
i Ṁiφφφi

])
= Tr

(
−ψψψᵀ

i,R1
Ṁiφφφi −ψψψi,R2φφφ

ᵀ
i Ṁiφφφi

)
(B.16)

Now using the first identity from Eq. (B.9), we obtain

Tr
(
−ψψψᵀ

i,R1
Ṁiφφφi −ψψψi,R2φφφ

ᵀ
i Ṁiφφφi

)
= Tr

(
−φφφiψψψᵀ

i,R1
Ṁi − φφφiψψψi,R2φφφ

ᵀ
i Ṁi

)
, (B.17)

and by factoring out similar terms, we obtain

Tr
(
−φφφiψψψᵀ

i,R1
Ṁi − φφφiψψψi,R2φφφ

ᵀ
i Ṁi

)
= Tr

((
−φφφiψψψᵀ

i,R1
− φφφiψψψi,R2φφφ

ᵀ
i

)
Ṁi

)
. (B.18)

By Eq. (B.12), we can then write

Tr
((
−φφφiψψψᵀ

i,R1
− φφφiψψψi,R2φφφ

ᵀ
i

)
Ṁi

)
= Tr(Mᵀ

i Ṁi). (B.19)

159

Since the equation holds for arbitrary Ṁ, comparing and matching the LHS and RHS we conclude
that

Mi = − (ψψψi,R1 + φφφiψψψi,R2)φφφ
ᵀ
i , (B.20)

B.5 Derivation of Eq. 5.23
We use the identity Eq. (B.8), which is a generalized form of Eq. (B.1) for the multiple input

and output matrices case, together with the FAD result Eq. (5.21) for the RAD derivation. First,
using Eq. (B.8) and Eq. (5.21), we have

Tr
(
MᵀṀ

)
+ Tr

(
KᵀK̇

)

=Tr(ΛᵀΛ̇) + Tr(ΦᵀΦ̇)

=Tr
(
ΛᵀΛ

(
I ◦
(
−ΦᵀK̇ΦΛ + ΦᵀṀΦ

)))

+ Tr
(

ΦᵀΦ
(
F ◦

(
−ΦᵀK̇ΦΛ + ΦᵀṀΦ

))
− 1

2
ΦᵀΦ

(
I ◦
(
ΦᵀṀΦ

)))
.

(B.21)

Regrouping the terms, we obtain

Tr
(
ΛᵀΛ

(
I ◦
(
−ΦᵀK̇ΦΛ + ΦᵀṀΦ

)))

+ Tr
(

ΦᵀΦ
(
F ◦

(
−ΦᵀK̇ΦΛ + ΦᵀṀΦ

))
− 1

2
ΦᵀΦ

(
I ◦
(
ΦᵀṀΦ

)))

=Tr
(

ΛᵀΛ
(
I ◦
(
ΦᵀṀΦ

))
+ ΦᵀΦ

(
F ◦

(
ΦᵀṀΦ

))
− 1

2
ΦᵀΦ

(
I ◦
(
ΦᵀṀΦ

)))

+ Tr
(
ΛᵀΛ

(
I ◦
(
−ΦᵀK̇ΦΛ

))
+ ΦᵀΦ

(
F ◦

(
−ΦᵀK̇ΦΛ

)))
,

(B.22)

We then use the third identity from Eq. (B.9) to get

Tr
(

ΛᵀΛ
(
I ◦
(
ΦᵀṀΦ

))
+ ΦᵀΦ

(
F ◦

(
ΦᵀṀΦ

))
− 1

2
ΦᵀΦ

(
I ◦
(
ΦᵀṀΦ

)))

+ Tr
(
ΛᵀΛ

(
I ◦
(
−ΦᵀK̇ΦΛ

))
+ ΦᵀΦ

(
F ◦

(
−ΦᵀK̇ΦΛ

)))

=Tr
(((

ΛᵀΛ
)
◦ I
) (

ΦᵀṀΦ
)

+
((

ΦᵀΦ
)
◦ Fᵀ

) (
ΦᵀṀΦ

)
− 1

2

((
ΦᵀΦ

)
◦ I
) (

ΦᵀṀΦ
))

+ Tr
(((

ΛᵀΛ
)
◦ I
) (
−ΦᵀK̇ΦΛ

)
+
((

ΦᵀΦ
)
◦ Fᵀ

) (
−ΦᵀK̇ΦΛ

))
.

(B.23)

160

Then, we use the first identity from Eq. (B.9) to get

Tr
((

ΛᵀΛ
) (

ΦᵀṀΦ
)

+
((

ΦᵀΦ
)
◦ Fᵀ

) (
ΦᵀṀΦ

)
− 1

2

((
ΦᵀΦ

)
◦ I
) (

ΦᵀṀΦ
))

+ Tr
((

ΛᵀΛ
) (
−ΦᵀK̇ΦΛ

)
+
((

ΦᵀΦ
)
◦ Fᵀ

) (
−ΦᵀK̇ΦΛ

))

=Tr
(

Φ
(
ΛᵀΛ

)
ΦᵀṀ + Φ

((
ΦᵀΦ

)
◦ Fᵀ

)
ΦᵀṀ− 1

2
Φ
((

ΦᵀΦ
)
◦ I
)
ΦᵀṀ

)

+ Tr
(
−ΦΛ

(
ΛᵀΛ

)
ΦᵀK̇−ΦΛ

((
ΦᵀΦ

)
◦ Fᵀ

)
ΦᵀK̇

)
.

(B.24)

Finally, we merge similar terms, and we obtain

Tr
(

Φ
(
ΛᵀΛ

)
ΦᵀṀ + Φ

((
ΦᵀΦ

)
◦ Fᵀ

)
ΦᵀṀ− 1

2
Φ
((

ΦᵀΦ
)
◦ I
)

ΦᵀṀ

)

+ Tr
(
−ΦΛ

(
ΛᵀΛ

)
ΦᵀK̇−ΦΛ

((
ΦᵀΦ

)
◦ Fᵀ

)
ΦᵀK̇

)

=Tr
((

Φ
(
ΛᵀΛ

)
Φᵀ + Φ

((
ΦᵀΦ

)
◦ Fᵀ

)
Φᵀ − 1

2
Φ
((

ΦᵀΦ
)
◦ I
)
Φᵀ

)
Ṁ

)

+ Tr
((
−ΦΛ

(
ΛᵀΛ

)
Φᵀ −ΦΛ

((
ΦᵀΦ

)
◦ Fᵀ

)
Φᵀ
)
K̇
)
,

(B.25)

which is equal to

Tr
((

Φ
(
ΛᵀΛ

)
Φᵀ + Φ

((
ΦᵀΦ

)
◦ Fᵀ

)
Φᵀ − 1

2
Φ
((

ΦᵀΦ
)
◦ I
)

Φᵀ

)
Ṁ

)

+ Tr
((
−ΦΛ

(
ΛᵀΛ

)
Φᵀ −ΦΛ

((
ΦᵀΦ

)
◦ Fᵀ

)
Φᵀ
)
K̇
)
,

=Tr
(
MᵀṀ

)
+ Tr

(
KᵀK̇

)
.

(B.26)

Since the equality holds for arbitrary Ṁ, and K̇, comparing the LHS and RHS we conclude that

M = Φ

(
ΛΛ + F ◦

(
ΦᵀΦ

)
− 1

2
I ◦
(
ΦᵀΦ

))
Φᵀ,

K = −Φ
(
ΛΛ + F ◦

(
ΦᵀΦ

))
ΛΦᵀ.

(B.27)

B.6 Derivation of Eq. 5.27
The derivation of the truncation error Eq. (5.27) is as follows. The full basis RAD result given

in Eq. (5.24) can be written as a combination of the reduced basis denoted by (̂), and the truncated

161

basis denoted by (̃) as,

M =
[
Φ̂Φ̃

]
([

Λ̂ 0

0 Λ̃

][
Λ̂ 0
0 0

]
+

[
F̂ F̃1

F̃2 F̃3

]
◦
([

Φ̂ᵀ

Φ̃ᵀ

] [
Φ̂ 0

]))[
Φ̂ᵀ

Φ̃ᵀ

]

− 1

2

[
Φ̂Φ̃

]([Î 0

0 Ĩ

]
◦
([

Φ̂ᵀ

Φ̃ᵀ

] [
Φ̂ 0

]))[
Φ̂ᵀ

Φ̃ᵀ

]
,

=
[
Φ̂Φ̃

]
([

Λ̂Λ̂ 0
0 0

]
+

[
F̂ F̃1

F̃2 F̃3

]
◦
[
Φ̂ᵀΦ̂ 0

Φ̃ᵀΦ̂ 0

])[
Φ̂ᵀ

Φ̃ᵀ

]

− 1

2

[
Φ̂Φ̃

]
([

Î 0

0 Ĩ

]
◦
[
Φ̂ᵀΦ̂ 0

Φ̃ᵀΦ̂ 0

])[
Φ̂ᵀ

Φ̃ᵀ

]
,

=
[
Φ̂Φ̃

]

[
Λ̂Λ̂ 0
0 0

]
+

 F̂ ◦

(
Φ̂ᵀΦ̂

)
0

F̃2 ◦
(
Φ̃ᵀΦ̂

)
0

[
Φ̂ᵀ

Φ̃ᵀ

]

− 1

2

[
Φ̂Φ̃

]
[
Î ◦
(
Φ̂ᵀΦ̂

)
0

0 0

][
Φ̂ᵀ

Φ̃ᵀ

]
,

=Φ̂Λ̂Λ̂Φ̂ᵀ +
(
Φ̂
(
F̂ ◦

(
Φ̂ᵀΦ̂

))
Φ̂ᵀ + Φ̃

(
F̃2 ◦

(
Φ̃ᵀΦ̂

))
Φ̂ᵀ
)
− 1

2
Φ̂
(
Î ◦
(
Φ̂ᵀΦ̂

)
Φ̂ᵀ
)
,

=

(
Φ̂
(
Λ̂Λ̂ + F̂ ◦

(
Φ̂ᵀΦ̂

))
Φ̂ᵀ − 1

2
Φ̂
(
Î ◦
(
Φ̂ᵀΦ̂

)
Φ̂ᵀ
))

+ Φ̃
(
F̃2 ◦

(
Φ̃ᵀΦ̂

))
Φ̂ᵀ,

=M̂ + ∆M.

(B.28)

Comparing the last line with Eq. (5.25), the expression for the ∆M truncation error is

∆M = Φ̃
(
F̃2 ◦

(
Φ̃ᵀΦ̂

))
Φ̂ᵀ. (B.29)

We conduct a similar derivation for ∆K. The full basis RAD expression for K is,

K = −
[
Φ̂Φ̃

]
([

Λ̂ 0

0 Λ̃

][
Λ̂ 0
0 0

]
+

[
F̂ F̃1

F̃2 F̃3

]
◦
([

Φ̂ᵀ

Φ̃ᵀ

] [
Φ̂ 0

]))[
Λ̂ 0

0 Λ̃

] [
Φ̂ᵀ

Φ̃ᵀ

]
,

= −
[
Φ̂Φ̃

]

[
Λ̂Λ̂ 0
0 0

]
+

 F̂ ◦

(
Φ̂ᵀΦ̂

)
0

F̃2 ◦
(
Φ̃ᵀΦ̂

)
0

[
Λ̂ 0

0 Λ̃

] [
Φ̂ᵀ

Φ̃ᵀ

]
,

= −Φ̂
(
Λ̂Λ̂ + F̂ ◦

(
Φ̂ᵀΦ̂

))
Λ̂Φ̂ᵀ +

(
−Φ̃

(
F̃2 ◦

(
Φ̃ᵀΦ̂

))
Λ̂Φ̂ᵀ

)
,

= K̂ + ∆K,

(B.30)

Comparing this last line with Eq. (5.25), the expression for the truncation error ∆K is

∆K = −Φ̃
(
F̃2 ◦

(
Φ̃ᵀΦ̂

))
Λ̂Φ̂ᵀ. (B.31)

This concludes our derivation for the truncation error presented in Eq. (5.27).

162

B.7 Derivation of Eq. 5.28
The following FAD derivation is due to Lim et al. [76] and Wang [141]:

φ̇φφi =
n∑

l=1,l 6=i

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl

λi − λl
− 1

2
φφφi

(
φφφᵀ
i Ṁφφφi

)
,

=
r∑

l=1,l 6=i

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl

λi − λl

+
n∑

l=r+1

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl

λi − λl
− 1

2
φφφi

(
φφφᵀ
i Ṁφφφi

)
,

≈
r∑

l=1,l 6=i

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl

λi − λl

+
n∑

l=r+1

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl
λi
− 1

2
φφφi

(
φφφᵀ
i Ṁφφφi

)
,

=
r∑

l=1,l 6=i

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl

λi − λl

−
r∑

l=1

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl
λi

+
n∑

l=1

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl
λi

− 1

2
φφφi

(
φφφᵀ
i Ṁφφφi

)
,

=
r∑

l=1,l 6=i

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl

λi − λl

−
r∑

l=1

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl
λi

+
n∑

l=1

φφφlλlφφφ
ᵀ
l (−K̇φφφiλi + Ṁφφφi)

1

λi

− 1

2
φφφi

(
φφφᵀ
i Ṁφφφi

)
,

=
r∑

l=1,l 6=i

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl

λi − λl

−
r∑

l=1

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl
λi

+ K−1(−K̇φφφiλi + Ṁφφφi)
1

λi

− 1

2
φφφi

(
φφφᵀ
i Ṁφφφi

)
,

(B.32)

163

where i = 1, . . . , r. From the second to third equality we have used the assumption that λi � λl
where l = r + 1, . . . , n. Thus,

λl
λi − λl

≈ λl
λi
. (B.33)

In the last equality of Eq. (B.32), we use the following result,

K−1 = ΦΛΦᵀ. (B.34)

which can be obtained by manipulating Eq. (5.1)
From the above derivation, we have shown that

φ̇φφi =
r∑

l=1,l 6=i

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl

λi − λl

−
r∑

l=1

φφφl(−φφφᵀ
l K̇φφφiλi + φφφᵀ

l Ṁφφφi)
λl
λi

+ K−1(−K̇φφφiλi + Ṁφφφi)
1

λi
− 1

2
φφφi

(
φφφᵀ
i Ṁφφφi

)
.

(B.35)

164

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Acronyms
	List of Symbols
	Abstract
	Introduction
	Motivation
	Background
	Thesis overview

	Computational Components
	Prescribed motion equations
	Time-spectral CSD equations
	Time-spectral CFD equations
	CFD–CSD load and displacement transfer
	AD

	Time-Spectral Aeroelastic Equations and Jacobian-Free Newton–Krylov Solver
	Time-spectral aeroelastic equations
	Time-spectral aeroelastic solution
	Preconditioner

	Time-Spectral Aeroealstic ADjoint and Krylov Subspace Solver
	Coupled adjoint overview
	Coupled adjoint implementation
	Coupled adjoint solution

	Derivatives for Eigenvalues and Eigenvectors for Analytic RAD
	Generalized eigenvalue problem
	Background
	Derivation of the RAD formulae
	Implementation recommendations
	Derivative verification
	Summary

	Flutter and LCO Analysis Results
	Airfoil results
	Wing results

	Aerodynamic Shape Optimization for LCO Speed
	Airfoil results
	Wing results

	Conclusion
	Bibliography
	Appendices
	CSD Equations Example
	Derivation of Equations from Chapter 5
	Dot product identity
	Trace identities
	Direct method for eigenvalue and eigenvector sensitivities
	Derivation of Eq. 5.19
	Derivation of Eq. 5.23
	Derivation of Eq. 5.27
	Derivation of Eq. 5.28

