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Abstract 

 

Since the introduction of the highly effective measles-mumps-rubella (MMR) vaccine in 

1971, measles incidence has decreased by over 95% globally. In 2012, the Measles and Rubella 

Initiative set to eliminate measles in five WHO regions by 2020. However, a recent global 

resurgence of measles amid rising levels of vaccine hesitancy threatens elimination. This 

dissertation explored three factors that may have contributed to this measles resurgence: spatial 

clustering of non-vaccination, rising vaccine hesitancy, and policies allowing non-medical 

exemptions (NMEs).  

Aim 1 evaluated the consequences of spatial clustering of non-vaccination and the risks 

posed by using aggregate surveillance estimates to predict outbreaks. This analysis used a spatial 

dynamic compartmental model, fixing overall vaccination coverage at 95% (the WHO 

elimination vaccination threshold for measles) and simulating outbreaks across a landscape of 

non-vaccination clustering motifs. Simulation output revealed that measles outbreaks occurred 

even at 99% overall vaccination coverage when clustering of non-vaccination was present,  

calling into question the appropriateness of large-scale herd immunity measures. Aggregation of 

vaccination data obscured fine-scale clustering and significantly downwardly biased predicted 

outbreak probability and size, thus underestimating risk.  



 xxi 

Aim 2 applied the theoretical findings from Aim 1 using school-level kindergarten 

vaccination data from the Michigan Department of Health and Human Services from 2008-2018. 

While Aim 1 showed the importance of clustering in driving outbreaks, there is no standard, best 

practice metric or scale to assess non-vaccination clustering. Across four metrics and four spatial 

scales, estimates of clustering varied significantly. Measures of exposure performed better than 

measures of spatial autocorrelation and segregation, both in terms of sensitivity to changing 

vaccination rates and outbreak-relevant interpretations. All metrics were better able to capture 

clustering when finer-scaled data were used. Aggregating vaccination data negatively biased 

estimates of how many students were at-risk of disease, using herd immunity thresholds for 

measles, mumps, and rubella. Since most public reporting of vaccination rates occurs at the 

county or state level, these results indicate that such aggregation underestimates the population 

of at-risk children in Michigan.  

Aim 3 assessed the impact of regulatory changes on vaccine exemptions; namely 

Michigan’s 2015 Administrative Rules change requiring parents to attend a vaccine education 

session at their local health department prior to receiving an NME. This policy had mixed 

results. While initially the state experienced a 32% decline in the number of exemptions, NMEs 

returned nearly to pre-policy levels after four years. School type was a significant predictor of 

NME receipt: compared to public schools, private schools had approximately twice and virtual 

schools about five times the rate of exemptions. Additionally, philosophical, religious, and 

medical exemption clusters manifested in distinct geographies. This suggests that if future policy 

changes affect access to certain types of exemptions in Michigan, they may have a spatially 

heterogeneous impact.  



 xxii 

Together, this dissertation illustrates that regulatory policies which permit vaccine-

hesitant parents to obtain NMEs for their children result in geographically heterogeneous 

landscapes of non-vaccination, clustered by sociodemographic and social characteristics. This 

heterogeneity leads to violations in the assumptions underlying vaccination thresholds set for 

disease elimination initiatives. Acknowledging such heterogeneity in vaccination patterns, using 

finer-scale data to identify communities with low vaccination rates, measuring clustering with 

appropriate and interpretable statistics, and constructing vaccination policies that effectively 

reduce rates of exemptions are necessary to combat the resurgence of measles and achieve global 

elimination goals.  
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 Introduction 

 
This dissertation explores three factors that may have contributed to the resurgence of 

vaccine-preventable diseases (VPDs), such as measles, despite access to effective vaccination 

and health care services in the United States. Together, spatial clustering of vaccine attitudes and 

exemptions, the growth of vaccine hesitancy, and regulatory policies allowing non-medical 

vaccine exemptions (NMEs) can impact transmission dynamics, permitting measles’ resurgence 

across the globe despite an effective vaccine and relatively high national coverage rates. Chapter 

2 examines the consequences of spatial clustering of non-vaccination and the risks posed by 

aggregate surveillance estimates in containing and predicting outbreak size and probability. 

Chapter 3 uses four spatial clustering metrics and geographic scales to assess the landscape of 

clustering of NMEs in Michigan from 2008-2018, applying the theoretical proof-of-concept from 

Chapter 2 to real vaccination data. Chapter 4 evaluates Michigan’s 2015 Administrative Rules 

change requiring parents to attend an in-person waiver education session at their local health 

department prior to receiving a non-medical vaccine exemption waiver, and the impacts of this 

policy on vaccine hesitancy and spatial clustering of susceptibility.   
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1.1 Specific aims and hypotheses 

 

Aim 1: Given a theoretical, spatial measles model on a 16x16 grid schematically representing 

contiguous neighborhoods and fixing average vaccination at ~95% (the herd immunity threshold 

for measles assuming homogeneous mixing), how do different clustering motifs impact disease 

risk? At what scale is clustering important for changing transmission dynamics? At what scale-

resolution should vaccination levels be examined? 

 

Hypothesis 1: As clustering increases, the risk of disease acquisition both for individuals in the 

population and the Ro of a given ‘introduced case’ will increase, accompanied by more sporadic 

outbreaks with higher caseloads. Outbreaks occurring under more clustered scenarios may also 

have the potential to cause more cases, thus creating greater morbidity and mortality. 

Additionally, high-risk areas might be obscured if the vaccination coverage in this gridded 

environment is aggregated to too high a scale (i.e. at the neighborhood or quadrant level). This 

has implications for disease surveillance in practice: the results of this aim could ensure 

increased awareness of the limitations associated with the current scope and scaling of 

surveillance regarding clustered non-vaccination.  

 

Aim 2: What is the vaccination landscape among children enrolled in kindergarten in the state of 

Michigan from 2008-2018? How does the interpretation of clustering of non-vaccination change 

as different clustering metrics are used (Moran’s I, Isolation Index, Modified Aggregation Index, 

Theil Index)? As the scale of aggregation grows (from school to Census block to Census tract to 
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school district to county), what is the incremental impact on identification of unvaccinated 

students and high-risk schools vulnerable to outbreaks?  

 

Hypothesis 2: The landscape of vaccination exemptions will not be homogeneous across the 

state, with vaccination outcomes clustered both at the school (micro-level) and regional (higher-

aggregation) levels. However, different metrics will be differentially able to identify and quantify 

such clustering. It is important to balance the surveillance/aggregation level with the capacity to 

evaluate data on a sufficiently fine scale to identify those at risk. Aggregating from school to 

school district may still permit identification of the most at-risk schools (e.g. those with >10% 

NME rate), however at higher levels of aggregation the most high-risk schools may not be 

identifiable, missing important local clustering which generates pockets of susceptibility and 

promotes outbreak risk.  

 

Aim 3: Did Michigan’s 2015 Administrative Rules change to mandate immunization 

information sessions for parents at the local health department prior to obtaining an NME reduce 

NME rates across the state? Was the reduction in rates uniform across school districts or 

geographically clustered? What were socio-demographic predictors of NMEs before and after 

the policy change, and did any predictors change over time?  

 

Hypothesis 3: This change in administrative policy did reduce the overall number of NMEs, but 

those reductions occurred predominantly where the majority of NMEs obtained prior to the 2015 

rule change were convenience exemptions because children weren’t vaccinated in time for 

school, not exemptions driven by conviction. We also hypothesize that increasing distance to the 
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health department will lead to decreased exemption rates after the policy was implemented due 

to the additional difficulty in obtaining an exemption if the health department is further away, 

with only parents who have the strongest convictions continuing to exempt their children. 

  

1.2 Background and significance 

1.2.1 Global measles resurgence 

Measles natural history and transmission 

Measles is a highly contagious paramyxovirus and despite decades of successful 

vaccination campaigns, it remains one of the leading causes of infectious mortality in children in 

low- and middle- income countries (LMICs). In 2018, there were more than 140,000 deaths from 

measles, mostly occurring among children under the age of five.1 Measles is spread through 

direct or airborne contact between individuals.2 The measles virus is highly communicable, 

capable of infecting up to 90% of susceptible persons who come into contact with an infected 

case, and is able to live for up to two hours in the air after an infected individual has coughed or 

sneezed.2 This contributes to the extremely high transmission rate of measles, with one of the 

largest basic reproductive numbers (Ro, the number of individuals an infected person could infect 

in an entirely susceptible population) of any infectious disease (Ro = 12-18).1,3  

Clinically, measles results in a distinct febrile rash illness, with affected individuals 

infectious from four days before to four days after rash onset.2 Measles can also cause significant 

morbidity, with between 20% and 25% of cases leading to hospitalization, and serious 

complications including encephalitis (about 1 in 1,000 cases), pneumonia (about 1 in 20 cases), 

and rarely, subacute sclerosing panencephalitis (SSPE), a fatal central nervous system disease 
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which develops about 7-10 years after acute measles illness.1,2 Measles can be fatal, especially in 

young children, with ~ 2-3 per 1,000 cases resulting in death.2  Measles’ well-defined period of 

communicability, anchored around a highly visible and pathognomonic rash, along with an easily 

obtained and interpreted IgM antibody test, have made measles the paradigm of a rapidly-

diagnosed disease. Additionally, measles is extremely well-reported in the United States, as one 

case constitutes an outbreak for reporting purposes. The intense surveillance of measles, along 

with the distinctive signs and symptoms of illness, have helped public health officials institute 

effective control measures against its spread in the United States.  

The measles vaccine, a live vaccine, was first licensed in 1963 and combined with 

mumps and rubella vaccines as the measles-mumps-rubella vaccine (MMR) in 1971.1 The 

Centers for Disease Control and Prevention (CDC) in the United States currently recommends 

two doses of the MMR vaccine for optimal protection: the first between the age of 12 and 15 

months, and the second between 4 and 6 years of age.4 The vaccine is highly effective and 

generally induces lifelong immunity, with 2 doses conferring 97% protection against measles.2  

Since the introduction of this MMR vaccine in 1971, measles incidence has decreased by over 

95% globally, and measles-related mortality has decreased by over 92%. Currently, the majority 

of deaths occur in children under the age of five in LMICs.1  

Due to the success of the vaccine, the lack of non-human reservoirs, and ease of clinical 

diagnosis, the Measles and Rubella Initiative along with the Global Vaccine Action Plan targeted 

measles for global elimination, seeking to reduce incidence to fewer than five cases per million 

across the world and eliminate measles in five WHO regions by the end of 2020.5,6 However, 

despite significant improvements in vaccination coverage, which reduced the death toll of 

measles from >500,000 in 2000 to 110,000 in 2017, more recent progress with elimination 
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efforts has slowed,7 as cases are re-emerging and vaccine coverage is declining.8 Though 

measles’ easily clinically identifiable rash was one of the key features that initially made it a 

feasible target for elimination, the rarity of measles cases now in high-income countries (HICs) 

has created a conundrum in which many doctors have never actually seen a case of measles. This 

leads to missed cases, misdiagnosis, and reduced awareness.9 Measles’ high transmission rate 

further complicates elimination goals: to halt ongoing transmission, an extremely high critical 

vaccination fraction (Vc, the proportion of the population which must be vaccinated to reach herd 

immunity) is needed, in the range of 95%.1,3  

 

Recent resurgence in the U.S. and other developed countries 

Although the CDC certified measles as eliminated from the WHO Region of the 

Americas in 2000,10 declining vaccination coverage has threatened this elimination status, which 

is conditional on no circulating, epidemiologically-linked disease for more than 12 continuous 

months.10,11 A large measles outbreak in Disneyland, California was the first major measles 

outbreak in the U.S. since the declaration of elimination, with 147 cases from 2014-2015.12,13 

This outbreak was particularly significant as it showed the vulnerability to disease that 

accompanies decreases in local vaccination coverage in certain geographic areas.12 This outbreak 

contributed to the national spike in measles cases seen in the U.S. in 2014, as shown in Figure 

1.1.14  Despite the notable increase in measles cases in 2014, there were no significant changes in 

overall vaccination coverage in U.S. children aged 19-35 months over this time period which 

could explain the increased case burden based on data from the CDC’s National Immunization 

Survey (NIS).  This further highlights that changes in local vaccination rates were driving 

increased susceptibility to measles – but those local differences were obscured by national 
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averages – with vaccination coverage varying up to 38.1 percentage points among the 50 states.15 

The Disneyland outbreak proved to be a harbinger of future measles outbreaks, as 2019 

witnessed 1,28216 cases of measles across 31 states,14 the highest number of cases since 1992. 

Additionally, the 2019 outbreaks in the United States were just one week shy of reaching 12 

continuous months of measles transmission, only days away from losing measles elimination 

status granted 19 years prior. However, 2019 was a bad year for measles not just in the United 

States – globally, 2019 had the most measles cases and deaths in 26 years, with the WHO 

warning the global community that increased vigilance is urgently needed to avoid further steps 

backwards.17  

 

Outbreak response 

One of the largest outbreaks of 2019 occurred in New York City among the Orthodox 

Jewish community in Brooklyn.18 The New York State school immunization survey showed that 

overall measles vaccination coverage for children in Pre-K through 12th grade was 98%,1 well 

above the threshold thought to be sufficient to confer herd immunity. An analysis at a finer-scale 

revealed that the schools affected by the outbreak had a measles vaccination coverage rate of 

only 77%, not high enough to interrupt disease transmission.19 Struggling to control the outbreak 

and prevent spread throughout the broader metropolitan area that is home to over eight million 

people, the New York City Department of Health and Mental Hygiene declared the measles 

outbreak a public health emergency.10 New York City required all unvaccinated individuals aged 

6 months or older in four Brooklyn zip codes experiencing the outbreak to receive an MMR 

vaccine, with a penalty of $1,000 for refusal.20,21 It is important to note that measles vaccination 

can also be used for post-exposure prophylaxis within 72 hours of exposure with high levels of 
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success in averting disease. Therefore, vaccination for those in high-risk areas could impart 

immunity both in terms of pre- and post-exposure prophylaxis.1 

While the goal of this vaccination order was to protect the community from the virus, the 

mandate was deemed by many to be overly prescriptive, causing controversy and raising ethical 

questions about infringement of personal liberty in the name of public health.10,19 Rockland 

County, also in New York State, employed a different well-known and frequently used public 

health strategy, preventing those who were unvaccinated from going to school in the county and 

only allowing students to return to school when school-level vaccination rates reached 95%.21 

This practice of school exclusion, a form of social distancing, is a well-accepted and proven 

method of communicable disease control that has been used in this country for over a century. 

Despite these practices being intended to prioritize community safety and reduce viral spread, the 

public can (and often does) respond to these outbreak control measures with anger, frustration, 

and pushback, especially among those who fear vaccination or intentionally resist vaccination for 

personal, philosophical, or religious reasons. These reactions show how important it is to 

understand the historical precedent for such vaccination mandates and highlight the ways in 

which legislation can effectively prevent outbreaks and reduce the need for such controversial, 

stringent methods to control an ongoing outbreak.  

The following introductory discussion will detail three factors that have contributed to the 

measles resurgence in high-income countries (HICs) despite access to effective, nearly 

universally available vaccination: (1) spatial factors, including clustering of non-vaccinated 

individuals, (2) attitudinal factors such as vaccine hesitancy, and (3) regulatory factors, such as 

legislative and administrative policies regarding vaccine exemptions, which can either permit or 

restrict access to vaccine exemptions, impacting vaccination rates dramatically.  
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1.2.2 Spatial factors: clustering of non-vaccinators 

The impact of spatial clustering on disease  

One important contributor to the re-emergence of measles in high-income countries 

(HICs) is spatial clustering of non-vaccinated individuals, which promotes the spread of disease 

and can be obscured by aggregate vaccination coverage statistics. Herd immunity thresholds 

calculated for disease elimination initiatives inherently assume homogeneity of vaccination, 

contact, and disease transmission at the level at which vaccination coverage is measured . 

However, these assumptions do not hold when individuals are geographically or socially 

clustered by vaccination status, increasing the effective Ro and, correspondingly, the Vc. 

Clustering of susceptibility can allow diseases to spread considerably despite national 

vaccination coverage thresholds theoretically capable of interrupting transmission (under the 

assumptions of homogeneity) being met, or even exceeded.22 

A 2018 landmark paper by Olive et al. predicted high-risk areas for measles outbreaks in 

the United States based on the presence of geographic clusters of NMEs creating pockets of 

susceptibility, which the authors referred to as coldspots.23 Additionally, Truelove et al. explored 

the impact of spatial clustering of immunity on measles elimination and found that using data 

from the Tanzania Demographic and Health Survey (DHS), spatial clustering of non-vaccination 

increases the Vc by 3% for measles, by 6% for mumps, by 8% for rubella, and by 19% for 

cholera.22 Spatial heterogeneities in coverage are particularly pertinent for diseases like measles, 

which is near elimination, as the impact of clustering on the probability of an outbreak becomes 

exponentially greater as regions approach elimination vaccination thresholds (~94-95% for 

measles).22 In the United States, clustering of non-vaccination is likely driven by some 

combination of attitudinal, access-related, and sociodemographic factors.24 While there is strong 
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evidence that vaccine exemptions (specifically religious and philosophical exemptions) are 

clustered geographically, further research is needed to understand how and if vaccine hesitancy 

is also geographically clustered, or if regulatory and sociodemographic factors drive this 

clustering to manifest in spatial exemption patterns rather than any notable patterning of 

underlying hesitancy beliefs.24–27  

 

Identifying a meaningful scale of spatial clustering  

When defining spatial scales to measure clustering of vaccination outcomes, the potential 

intervention, the level of surveillance, and the reality of obtaining data at a certain level of 

granularity must all be taken into consideration. In addition to these factors, it is important to 

note the spatial scale at which vaccination coverage estimates are meaningful and actionable. 

Many studies of vaccination explore aggregate measures at the national level. However, such 

national estimates obscure transmission dynamics that exist at a finer scale and challenge the 

interpretation of concepts such as herd immunity, because coverage estimates of large regions 

cannot safely assume herd immunity is maintained at the level at which diseases circulate.  

Cliff et al. conducted one of the first spatial analyses of measles transmission in 1992, 

tackling this question directly by exploring the correlation of monthly measles cases among 

Northeastern states, finding that sub-national variability in vaccination and disease risk was 

significant.28 Measles incidence was dominated by local transmission: two-thirds of the states 

studied experienced measles outbreaks due to spread from affected neighboring states.28 Beyond 

motivating spatial analysis of measles transmission, Cliff et al. called for “a finer geographic grid 

than the system of states”, highlighting the need for additional study to determine the levels of 

meaningful spatial heterogeneity and clustering.28 However, the optimal level of granularity that 
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should be analyzed to permit the identification of clusters and actionable interventions for VPDs 

has yet to be clearly identified and incorporated into vaccination reporting in the United States. It 

is also important that any chosen level of granularity is considered acceptable by the public, 

legislators, and public health authorities. The following discussion highlights analyses that have 

been used to examine heterogeneities in measles vaccination coverage and outbreak risk on 

variable spatial scales, starting with the most aggregated, low-resolution, and progressing to the 

most granular. 

At the largest, most zoomed-out spatial scale, measles transmission occurs in a global 

context. The African continent has particularly rampant measles transmission, necessitating 

vaccination coverage levels above the Vc to meet elimination targets and reduce disease burden.  

However, there appears to be notable spatial heterogeneity at the sub-continental level, as 

country-specific differences provide insight into vaccination programs and coverage between 

contiguous countries.29,30 Brownwright et al. identified that the average measles-containing 

vaccine (MCV) coverage across 10 contiguous sub-Saharan African countries from 2008-2013 

was 83.6% using data from the Demographic and Health Surveys (DHS), nationally 

representative household surveys established by the United States Agency for International 

Development (USAID) in 1984 and administered in over 90 countries around the world.29 

However, this aggregate number obscured significant country-to-country differences with serious 

implications for disease control in each country: vaccination coverage ranged from a low of 

69.6% in Madagascar, to a high of 95% in Rwanda.29   

Sub-national analyses have identified distinct patterns of spatial clustering using the 

geographic scale of the cluster variable from the DHS and at larger, regional scales.30  Such 

studies have shown that while many reports simply evaluate national averages of vaccination 
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coverage, predicted outbreak risk within these spatial clusters was highly variable, with clusters 

often occurring along national borders.29 Even sub-national aggregate data can pose problems for 

distribution of resources and/or interventions, as in Namibia, where Ntirampeba et al.31 found 

regional data created a “spatial misalignment problem if the purpose is to make decisions at the 

constituency level,” highlighting the need for the scale of analysis to match the scale of a 

potential intervention.  

An alternative is to use multiple spatial scales: Wesolowski et al. sought to incorporate 

spatial patterns of individual movement by using travel data from mobile phones to approximate 

individual connectivity for measles outbreak risk in Pakistan.32 This project incorporated three 

scales of data: regional measles incidence, national-level vaccination coverage, and human travel 

data at a much finer scale, but overall yielded poor predictive ability.32 Lo et al. used higher-level 

variables, such as statewide NME laws, and mandated vaccination regulations within schools, to 

evaluate cost-effectiveness and public health burden of declining MMR vaccination rates.33  

Utilizing county- and state-level data, they found a 5% decline in MMR coverage could increase 

annual measles cases threefold, which would cost the United States $2.1 million.33   

In some cases, different scales of analysis can have different yields in terms of 

understanding the epidemiology of a given disease, as in Malawi, where the cause of a 

resurgence in measles cases after declining annual disease burden was unknown. Using health 

facility catchment areas as the unit of analysis, Kundrick et al. found significant variation in 

vaccination coverage (from 61% to 99%) and found that previous district-level analyses had 

obscured important variability and clusters of susceptibility at the health facility-level.34 In this 

case, finer-resolution data in Malawi yielded very different findings and helped identify the root 

cause of why there had been infectious disease spreading in communities: the authors were able 



 13 

to identify and target interventions to specific health facilities catchment areas with low 

vaccination rates and high rates of disease spread. This shows that choosing the right scale of 

analysis can provide actionable public health solutions that would not be possible if data at 

coarser spatial scales were used instead.  

Beyond health-facility catchment areas, it is unclear what costs and benefits are 

associated with finer-resolution data. Approximating individual movement with mobile phone 

records has limitations, with the potential to introduce more error and noise35, and such high-

resolution mapping of vaccination coverage may not afford significantly more information than 

DHS cluster-level data.36 Two papers have attempted to tackle individual-level spatial 

heterogeneity, which may not be appropriate nor feasible for interpreting the impact of clusters 

of non-vaccination on community risk within populations, though they provide a good construct 

for understanding the relative risk of individuals within a broader community. 37,38  

These examples illustrate that violations of the assumption of homogeneity of measles 

vaccination and population mixing, both required to calculate the Vc to maintain herd immunity, 

may result in a dangerously inaccurate picture of susceptibility. This motivates the use of an 

appropriate geographic scale to avoid a spatial misalignment problem when analyzing measles 

non-vaccination. The literature discussed above exemplifies the feasibility of examining spatial 

measles vaccine heterogeneity at many different scales. Significant heterogeneity was identified 

consistently at a sub-district level, be it local constituency31, DHS cluster29 or school-district33, 

though the use of finer scales of analysis such as cellular mobility data32 and individual person-

to-person data38 may be less appropriate for understanding community dynamics and predicting 

high-risk areas in near-elimination frameworks. As such, an analysis that examines vaccination 

coverage and/or refusal rates at these different levels, and how aggregation to these levels 
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changes predictive power to assess outbreak risk, is important. Additionally, clarifying the scale 

at which clustering of reduced vaccination occurs and is significant for impacting disease risk is 

necessary to inform vaccination policy and target effective interventions.  

 

Spatial clustering implications for COVID-19 management and vaccine distribution 

It is imperative to better understand and control the spread of preventable diseases such 

as measles while the COVID-19 pandemic is ongoing, especially before a vaccine is widely 

available. Elucidating the impact of spatial clustering of differential immunity and clarifying the 

most effective scale of surveillance will be useful to produce concrete solutions to reduce case 

burden and health service utilization. Recent research has highlighted that non-pharmaceutical 

interventions (such as social distancing and mask wearing) may have downstream implications 

for seasonal cycles of respiratory viruses typically occurring in the winter, such as respiratory 

syncytial virus (RSV) and influenza. While mask wearing and social distancing may result in 

less circulating illness in the 2020-2021 flu season, the 2021-2022 flu season may be 

significantly worse as a buildup of susceptibility occurs in concert with reductions in non-

pharmaceutical interventions.39 This research indicates that nontraditional seasonal patterns of 

illness may occur in the years following the COVID-19 pandemic, and that attention to spatial 

clustering of immunity will be highly relevant to targeting interventions and reducing morbidity 

in the wake of COVID-19.  

Additionally, spatial clustering analyses have direct implications for managing COVID-

19 therapeutic and vaccine distribution, as the clustering of susceptibility and immunity is likely 

to occur in the communities both least and most hard-hit in the first waves of transmission.40 

Truelove et al. showed that fine-scale spatial clustering of non-vaccination resulted in the largest 
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increases in the critical vaccination fraction for diseases with lower values of Ro. Because the Ro 

of COVID-19 is about four fold lower than that of measles, analyses exploring the impact of 

spatial clustering of COVID-19 susceptibility may be as or more acute than analogous 

explorations into spatial clustering of measles non-vaccination.22 

 

1.2.3 Attitudinal factors: vaccine hesitancy 

History of vaccine hesitancy  

The modern anti-vaccine movement gained significant momentum in 1998 after Andrew 

Wakefield’s publication of his now-infamous article in The Lancet linking measles-mumps-

rubella (MMR) vaccination with neurodevelopmental issues, such as autism.41 By the late 1990s, 

many vaccine-preventable diseases (VPDs) were no longer commonplace in the U.S., and thus 

parents making vaccination decisions for their children were no longer witnessing these diseases 

regularly in their daily life. As a result, the timing of Wakefield’s article, published as VPD rates 

were waning, gave rise to growing parental distrust of vaccines and influenced their risk 

calculation about whether to vaccinate their children. Parents worried that the risks of vaccine 

complications were potentially greater than the risks of contracting the disease itself, since fear 

of VPDs had decreased as preventable diseases faded from the collective global memory. While 

Wakefield was found guilty of falsification of data and lost his medical license (in addition to all 

other authors retracting the conclusions of the paper besides Wakefield himself),42 it took The 

Lancet until 2010 – 12 years – to retract his paper. Unfortunately, his so-called findings 

produced an enduring conviction in many parents across the globe that vaccines cause autism, a 

conviction that remains common to this day. Wakefield’s article also had a significant impact on 

vaccination rates in the United Kingdom, where MMR coverage dropped from ~90% in 1996 to 
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<80% in 2001.43 The sticky myth that vaccines cause autism is not supported by scientific 

research. Instead, the social and geographical patterning of autism diagnoses likely reflects social 

diffusion, with researchers finding that parents discussing autism diagnoses among their children 

was most consistent with the increased diagnosis and spatial patterning of autism in California.44 

Despite the fact that Wakefield’s article was published in 1998, vaccine hesitancy was 

not formally defined by the World Health Organization’s (WHO) Strategic Advisory Group of 

Experts on Immunization (SAGE) Vaccine Hesitancy Working Group until 2011.45 The WHO 

defined the continuum of vaccine hesitancy as: “delay in acceptance or refusal of vaccines 

despite availability of vaccination services. Vaccine hesitancy is complex and context specific, 

varying across time, place and vaccines. It is influenced by factors such as complacency, 

convenience and confidence.”45 Since the WHO’s definition, the SAGE Working Group on 

Vaccine Hesitancy developed a globally relevant survey tool to assess vaccine hesitancy in 2015. 

Though this has a broader reach than the first survey created to assess vaccine hesitancy, the 

Parental Attitudes on Childhood Vaccines (PACV) survey, developed in 2011,46,47 there are very 

few quantitative scales which are broadly validated ways to measure vaccine hesitancy in 

epidemiologic research. Additional research and validated scales to assess different components 

of vaccine hesitancy are much needed. 

 

Recent research on vaccine hesitancy 

Vaccine hesitancy was defined recently, and the body of literature assessing vaccine 

hesitancy, its predictors, and its effects on community susceptibility to VPDs is therefore still 

fairly small. Though Wakefield’s study has been widely discredited, studies have found that 

parents of children with autism are still less likely to vaccinate younger siblings.48,49 According 
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to the affect heuristic,50 individuals who perceive more benefit to something (i.e. a vaccination), 

are also more likely to believe that it is safer, while those who have more negative feelings 

towards vaccination are more likely to perceive the risks as higher. Vaccine hesitancy has been 

shown to hinge upon such heuristics51 – heavily involving emotions and intuitive thinking, and 

contributing to the reason why conspiracy theories and anecdotal case reports can so effectively 

fuel fear about vaccine adverse events (VAEs) outweighing the benefits of vaccination. 

Unfortunately, the role of these heuristics and cognitive biases in the development of vaccine 

hesitancy can also help explain why the damage done by Wakefield’s 1998 paper has proved so 

difficult to undo.52  

Vaccine hesitancy defies convenient explanation in terms of socioeconomic and 

demographic factors. In HICs, vaccine hesitancy is more common in more affluent and highly 

educated (college education and beyond) groups. However, vaccine hesitancy may not exactly 

track with vaccine uptake, which also includes access-related factors, with children living below 

the federal poverty level found to have lower vaccination coverage than those above it.15,53 The 

relationship between sociodemographic predictors, vaccine hesitancy, and uptake is somewhat 

unclear and may differ in LMICs. An additional consideration when reflecting on potential 

differences in both vaccine hesitancy and uptake between HICs and LMICs is the inverse equity 

hypothesis, which postulates that new interventions are first adopted by the wealthy, thus 

increasing and perpetuating inequalities with the poorest falling behind all other groups.54 For 

this reason, combined with the affect heuristic described above, it is plausible that there would be 

a meaningful distinction observed between HICs and LMICs whereby hesitancy (fueled by lower 

perception of individual risk from VPDs, among other factors), is higher in HICs, yet vaccination 

uptake is higher in those regions as well, while access factors in LMICs cause vaccination 
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outcomes to lag behind even though vaccine hesitancy may not be as pronounced of a 

phenomenon. Further research is needed to identify the predictors of vaccine hesitancy in 

different global and societal contexts, which may influence how parents develop and act on 

vaccine hesitancy.55–57 

It is important to note that vaccine hesitancy is not a static phenomenon – but can and 

likely does change over time based on experiences with vaccinating one’s children, discussing 

vaccinations with others, or events in the popular news media. Thus, studies assessing parental 

attitudes around vaccines at different times (pregnancy, during the first year of a child’s life, 

after the child has been vaccinated) will likely have different conclusions.58  Few studies have 

explored vaccine hesitancy, attitudes, knowledge, and beliefs of parents with young children, 59,60 

and fewer still have explored how vaccine hesitancy changes over time from pregnancy through 

the child’s early years when children receive most of their vaccinations.61,62  Vaccine attitudes 

during pregnancy are not necessarily predictive of later vaccination behavior, so depending on 

experiences with vaccination, a hesitant pregnant woman may have a fully-vaccinated child.63 

More research is needed to understand how hesitancy develops and changes over time. 

The few studies on vaccine hesitancy among mothers of young children have shown that 

mothers are most unsure about vaccination during pregnancy.61 A cohort study of young mothers 

in Washington state found that vaccine hesitancy significantly decreased between the child’s 

birth and second birthday.58  The decrease in vaccine hesitancy seems to have been driven by 

improving confidence that vaccines are safe and effective.58 On the other hand, parents may 

become more hesitant toward vaccines if their child has a perceived contraindication to 

vaccination.62 In a study conducted in Germany, where there are no vaccine mandates (only 

recommendations), vaccine hesitancy was assessed by asking about perceived risk and concern 
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about VPDs, perceived risk and concern about VAEs, and general attitudes and experiences with 

vaccination.63 The authors found that the first experience a mother has with vaccinating her child 

is crucial to changing risk perceptions and vaccination concerns.63 Taken together, these studies 

show the significance of early vaccination events on mothers’ beliefs about vaccination.  

Even mothers intending to vaccinate their children prefer to have physicians who are 

flexible regarding vaccination schedules. A study of first time expectant mothers showed that the 

majority of mothers wanted their children to receive all the vaccines recommended by the 

CDC/Advisory Committee on Immunization Practices (ACIP) (75%) with a smaller proportion 

wanting all the vaccines but spaced out further than the recommended schedule (10.5%).64 

Despite this sentiment, these mothers felt it was important (23%) or very important (36.5%) that 

their pediatrician be flexible regarding the childhood vaccines and schedules.64 Additionally, 

94.5% of mothers believed they should ask questions about vaccine safety and importance to 

their pediatricians, which highlights the important role that conversations with health care 

providers may play in vaccination decision-making: primary care provider recommendation 

continues to be one of the strongest influencers of parents’ decision to vaccinate.64 

Opel et al. identified that there are two broadly different communication strategies used 

by providers, participatory and presumptive, that influence parental decision making about 

vaccines and speak to this desire for provider flexibility.65 The more flexible participatory 

format, such as “what do you want to do about shots” opens a different conversation with parents 

than the presumptive format, such as “we have to do some shots”.65 Significantly fewer parents 

ultimately accepted all vaccines at the end of the visit if providers used participatory 

conversations, but were more likely to highly rate their physician experience if the provider 

initiated with a participatory conversation, speaking to the survey results above that mothers 
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desire flexibility from their pediatricians.65 This presents a challenge for clinicians, as the 

participatory approach has generally become increasingly favored, but such an approach needs to 

be balanced against the value of increasing vaccine uptake.   

The concept of a ‘flexible’ vaccination schedule was popularized by Dr. Robert Sears’ 

2007 bestseller, “The Vaccine Book: Making the Right Decision for Your Child”.66 The book 

contains ‘Dr. Bob’s Alternative Vaccine Schedule’, a formula he provides parents to withhold or 

space out vaccines, claiming that the CDC’s and American Academy of Pediatrics’ schedule has 

children receive too many vaccines at once, overwhelming their immune systems.67 Part of what 

is so dangerous about this alternative schedule is that it seems to provide a middle ground for 

parents – not just accepting or rejecting all pediatric vaccinations, but allowing parents to make a 

so-called ‘informed’ decision, though most of Dr. Sears’ patients avoid vaccinations.67 

Unfortunately, Dr. Sears’ narrative has produced an enduring sentiment among many parents that 

children’s immune systems are incapable of handling the routine vaccination schedule. 

Additionally, Dr. Sears is under investigation by the Medical Board of California for medical 

vaccine exemptions he wrote in 2016, in addition to facing a 35-month probation charge for 

gross negligence.68 Despite his legal troubles, he has many followers who delay or skip 

vaccinations for their children, unnecessarily extending the period during which children are 

susceptible to preventable diseases due to untimely vaccination.   

Overall, more research is needed to understand the factors that drive vaccine hesitancy, as 

well as where these factors are likely to cluster: in schools, in neighborhoods, or centered around 

providers with certain conversational styles around pediatric vaccinations. Increased legislation 

to tighten loopholes for NMEs is important to improve overall vaccination uptake, however a 

monolithic regulatory approach is unlikely to be wholly successful in reducing vaccine 
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hesitancy. More buy-in is needed from vaccination providers who can understand the power of 

experiences (personal, friend, or media-mediated) on vaccine acceptance and from policymakers, 

who together can help to identify ways to communicate with patients and develop policy to 

improve vaccination uptake.69 An important component of this future research is to understand 

the ways in which uncertainty around disease risk and vaccine risk, as well as the role of 

communication of this uncertainty, fuels vaccine hesitancy.  

 

Vaccine hesitancy and the COVID-19 pandemic 

Since the COVID-19 pandemic emerged onto the global scene in December, 2019, 

infectious disease dynamics, public health policy, therapeutics, and vaccinations have been in the 

public eye considerably more than in the recent past. By April 2020, most of the U.S. population 

was under a shelter-in-place order of some kind, with highly criticized lockdowns seeming the 

only way to ensure population safety until the advent of a COVID-19 vaccine.70 Despite 

COVID-19 being an infectious disease pandemic responsible for massive economic, public 

health, hospital capacity overflow, and daily life disruption, surveys have found that a sizeable 

proportion of the population is resistant to trusting a COVID-19 vaccine: surveys in France 

found that 26% of respondents would not take a COVID-19 vaccine,71,72 and studies in the U.S.73 

and Italy74 found that only 58% and 59% of respondents, respectively, intended to be vaccinated. 

It is also important to consider how vaccine hesitancy may reinforce observed disparities in 

COVID-19 morbidity and mortality,75 a topic that the COVID Collaborative (a bipartisan group 

comprising former FDA Commissioners, CDC Directors, U.S. Surgeons General, leading public 

health experts, and members of front-line health worker advocacy groups, among others) has 

been exploring. In a November 2020 survey, the COVID Collaborative found that only 14% of 
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Black Americans and 34% of Latinx Americans believe that the COVID-19 vaccine would be 

safe, and only 18% of Black Americans and 40% of Latinx Americans trust that a COVID-19 

vaccine would be effective.76 These are highly troubling statistics that could threaten to increase 

observed disparities in COVID-19 infection among racial minorities in the United States.  

With increasing politicization of a vaccination effort surrounding the November 2020 

Election by President Trump, including rejecting the Food and Drug Administration (FDA)’s 

guidance about vaccine safety protocols,77 trust in the government assuring vaccine safety and 

efficacy is eroding, contributing to increased vaccine hesitancy.78 The COVID Collaborative 

survey found that this particular element was a significant driver of lacking trust, and such 

diminished trust followed racial lines, with only 4% of surveyed Black Americans and 18% of 

surveyed Latinx Americans having trust in the Trump Administration’s COVID-19 response.76 

Additionally, 75% fewer Blacks and Latinx Americans would be willing to take a COVID-19 

vaccine if it were granted only Emergency Use Authorization from the FDA.76  

While the findings from the COVID Collaborative pertain directly to a COVID-19 

vaccine, such findings indicate that public confidence in vaccines could be diminishing 

confidence in other vaccines as well.79 This change in attitude towards vaccination is particularly 

dangerous in the context of COVID-19, where pediatric vaccination rates are plunging across the 

United States as individuals avoid non-essential medical visits and many preventive services 

have been suspended during the pandemic, potentially leaving many children under-immunized 

upon returning to the classroom.80,81 It is critical now, more than ever, to understand the drivers 

of vaccine hesitancy and learn how to combat vaccine refusal effectively to reduce resurgent 

outbreaks of many VPDs concurrent with the COVID-19 pandemic. 
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1.2.4 Regulatory factors: vaccine mandates and exemptions 

Historical precedent of vaccine mandates 

The last element contributing to the resurgence of measles is the regulatory (legislative 

and administrative) system that permits vaccine exemptions for non-medical (i.e. philosophical 

and/or religious) reasons. The history of both compulsory vaccination and permissible reasons 

for exemptions harkens back to the late 1800s, when infectious diseases had high levels of 

endemic transmission across the US, and individual states began passing laws making vaccines 

compulsory for schoolchildren.82 After a landmark case in 1905, Jacobson v. Massachusetts, the 

Supreme Court determined that public health vaccination mandates were constitutional, 

confirming that states do have the police power to protect public health and safety, even if doing 

so subordinates individual liberties to the common good.83,84 This derives from the concept of 

parens patriae, Latin for “parent of his/her country,” which grants the state the legal power to act 

as parent to those who cannot or will not take care of themselves as a constitutional doctrine.85  

This case was raised by Pastor Henning Jacobson, who had been vaccinated against 

smallpox as a child and claimed both he and one of his sons endured adverse vaccine effects. He 

thus refused to vaccinate his other children after moving to Massachusetts, despite such 

vaccinations being mandatory for school entry, and refused to pay the fine incurred by not 

vaccinating his children.83 The Court’s interpretation of parens patriae was strengthened in 

Zucht v. King in 1922, where a young Rosalyn Zucht was excluded from entering both public 

and private schools in San Antonio, Texas after refusing her smallpox vaccination.86 The 

Supreme Court ruled that schools could refuse to admit students who failed to meet the 

vaccination requirements from Jacobson v. Massachusetts.86 Despite appeals to violations of 
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personal liberty, the court’s affirmation of the constitutionality of these mandates would set the 

stage for compulsory vaccination laws moving forward.86,87 

These landmark Supreme Court decisions affirmed the constitutionality of parens patriae 

for compulsory vaccination, but only 17 states had measles vaccination requirements for school 

entry in 1969.87 Of these, only 12 states required vaccination against all 6 diseases for which 

routine vaccinations were available at the time.87 Subsequent trouble controlling the spread of 

measles in the 1960s and 1970s prompted rapid change in state laws across the US, laying the 

groundwork for the mandatory vaccination laws in place today.87 By the early 1980s, all 50 

states had some requirements for children’s school entry conditional on immunization status, a 

dramatic change from the legal landscape just a decade prior.87 However, with new laws around 

mandatory vaccination came new loopholes and exemptions. Differences in state exemption 

policies created a mixed landscape of vaccination exemptions in the U.S., with some states 

permitting NMEs for religious, and/or philosophical reasons and others not.82 Exemption rates 

have increased in recent years, coinciding with the resurgence of measles in the U.S.23,88  

The resurgence of measles has drawn attention to the notion of these loopholes in 

exemption policies in the U.S. and contrasted the situation in the U.S. with that of other 

countries. However, it is important to note that mandatory vaccination is not a common practice 

worldwide: a recent study found that of 193 countries surveyed, only 105 (54%) had evidence of 

a national mandatory vaccination policy requiring at least one vaccine.89 Of those, a slight 

majority, 62 countries (59%), enforce penalties on individuals who do not comply with 

vaccination requirements.89  However, those penalties were highly variable – ranging in severity 

from one-time fines to jail time.89 Some countries opt for different types of systems, like 
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Australia, which have no compulsory vaccinations, but use negative financial incentives to 

promote vaccination instead.90  

 

Landscape of NMEs across the United States 

In addition to the varied global landscape of mandatory vaccination policies mentioned 

above, within the United States (which has no national vaccination mandate), individual states 

have highly variable vaccination requirements. The ease of obtaining an NME range from very 

restrictive to very permissive (Figure 1.2) based upon the state. At one extreme, Ohio parents can 

simply sign a note indicating their child has immunity or disease history, exempting them from 

vaccination. By contrast, Mississippi, which has not allowed NMEs since 1999, has the best 

pediatric vaccination rates in the US, with no reported cases of measles since 1992.91,92  

These state-by-state differences are becoming increasingly significant as rising parental 

concern around vaccine safety and effectiveness has led to more parents refusing vaccinations 

for their children, increasing the number of children with NMEs in the United States.87 One of 

the great paradoxes of measles, and VPDs in general, in that as greater success is achieved in 

controlling them, there are fewer cases, and the perceived risk becomes low compared to 

negative press about vaccines, thus fueling the disproportionate fears about vaccine adverse 

reactions. It is for this reason that vaccines are often considered to be a victim of their own 

success, viewed less favorably as they effectively conquer infectious disease.  

Beyond state-level differences, NME rates also vary by sociodemographic factors and by 

school type.93 A study in California found that private schools had 2.2-fold higher NME rates 

than public schools for the 2009-2010 school year, while Waldorf schools had personal belief 

exemption (PBE) rates of an astonishing 45.1%, 19 times higher than public schools.93 However, 
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understanding these statistics is complex. Under-vaccination (individuals who receive some, but 

not all, of their recommended vaccinations) and non-vaccination (individuals who receive no 

vaccines) broadly comprise two distinct groups: those who are under-vaccinated are often 

minorities of lower socioeconomic status with less education, while non-vaccinated children are 

often white, wealthy, highly-educated, and have private insurance.92 The non-linear association 

of socio-demographics and overlapping networks of school, work, and household connections, 

complicated by variable state laws, make teasing apart issues related to vaccine hesitancy and 

exemptions quite challenging. 

From 1991 to 2004, the average state-level NME rate in the U.S. increased from 0.98% to 

1.48%, primarily driven by personal beliefs or philosophical exemptions (PBEs).87,94 From 2011-

2016, the rate of NMEs further increased from 1.75% to 2.25%.95 These historical trends were 

summarized by Olive et al., who found that PBEs have risen in 12 of the 18 states that allow 

them (AR, AZ, ID, ME, MN, ND, OH, OK, OR, PA, TX, UT) since 2009.23 Within these states, 

some standout metropolitan areas with very high numbers of NMEs might represent potential 

‘hotspots’ for disease: notably Seattle, Spokane, and Portland in the Northwest; Salt Lake City, 

Provo, Houston, Fort Worth, Plano, and Austin in the Southwest; Troy, Warren, Detroit, and 

Kansas City in the Midwest; and Pittsburgh in the Northeast.23 Olive et al. predicted that high 

numbers of NMEs in these densely populated urban areas would hasten outbreaks. This 

prediction was surprisingly accurate, with 5 of these cities in the top-10-risk category later 

experiencing a measles outbreak in 2019. 

Legislation regarding vaccination rules and exemptions have occurred in parallel to these 

rising NME rates, with 10 major legislative changes occurring from 2011-2016 across the US.95 

Nine of these 10 policies made NMEs harder to obtain. Even more striking is how many pieces 



 27 

of legislation related to vaccine mandates and exemptions have been introduced in recent years, 

with 26 states introducing 70 bills from 2014-2018, though only 11 of these 70 bills passed.93 In 

the wake of the highly publicized Disneyland outbreak in California in 2014, most of these 

introduced bills (56/70) sought to make exemptions harder to obtain, and none of the bills 

proposing laxer requirements for vaccination exemptions (14/70) passed.93 Michigan, after 

having the fourth highest NME rate in the country in 2014, modified its state Administrative 

Rules, effective January 1st, 2015, to make parents attend an in-person educational waiver 

education session at their local health department prior to a health department official signing 

their requested non-medical exemption waiver. Interestingly, this did not require a legal or 

legislative change and was instead implemented through the Michigan Department of Health and 

Human Services (MDHHS) Administrative Rules to avoid political conflict.93 This bypass of the 

Republican legislature was strategic on MDHHS’s part since the Republican-held legislature 

would not have been sympathetic to the proposal, and represents yet another pathway by which 

vaccines and exemptions can be regulated, with less fanfare than the legislative route. 

In addition to reducing NME rates, such regulatory changes can impact the clustering of 

non-vaccinations, which is another important driver of outbreaks. In California, NME rates 

among kindergarteners increased from 0.73% in 2000 to 3.09% in 2013, though this increase was 

accompanied by a concerning increase in geographic clustering, making outbreaks even more 

likely.24 Delamater et al. found evidence that regions with high levels of NMEs in 2000, which 

tended to have higher median household income and higher proportion of white race,96 acted as 

seed locations, stimulating NMEs in nearby areas and showing evidence of social contagion.24 

California’s responded to this increase in NMEs with two separate legislative changes to the ease 

with which exemptions could be obtained. In 2014, California passed Assembly Bill 2109 (AB 
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2109), which required parents to submit proof of discussing the risks of non-vaccination with a 

health care practitioner before obtaining an NME, a similar idea to Michigan’s vaccine waiver 

education program, yet involving a trusted health care practitioner rather than a team of vaccine 

educators at the local health department.25 California’s AB 2109 led to a 0.3% decrease per year 

in NMEs, but ultimately had no lasting impact on geographic clustering of exemptions, rendering 

those communities in high exemption clusters at continued high risk of VPD outbreaks.93   

A more stringent legislative effort in California went into effect just two years later, on 

July 1st, 2016. SB 277 eliminated philosophical vaccine exemptions entirely, accompanying an 

increase in childhood vaccination coverage by 3% in the following year.93 However, as 

philosophical exemption rates plummeted, the rate of medical exemptions after SB 277 increased 

by 300%, indicating that vaccine hesitant parents in California may have been acquiring medical 

exemptions from doctors willing to provide them (including Dr. Robert Sears).93 Additionally, 

SB 277’s fine print states that students with an NME obtained before the 2016 school year need 

not receive mandatory vaccinations until the 7th grade school checkpoint, reducing the short-term 

effectiveness of this legislation.26,27 However, despite these caveats, it does appear that SB 277 

both reduced the number of under-vaccinated children and the number of schools inside 

geographic clusters of NMEs, thus likely reducing the risk of VPD outbreaks across the state.25  

Nonetheless, the implementation of SB 277 so soon after AB 2109 made it impossible to 

evaluate the longer-term outcomes of an education-based hurdle to non-medical exemptions in 

California, leaving room for further evaluation of the efficacy of such a policy. 
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Recent changes in legislation 

As of December 2020, all but five states (California, Maine, Mississippi, New York and 

West Virginia) offer NMEs for either religious, personal or philosophical reasons.97 Due to 

significant concern about the spread of measles across the U.S. in light of highly publicized and 

widespread measles outbreaks in 2019, three states changed their exemption laws over the course 

of 2019 to make non-medical vaccine exemptions harder to obtain at the state level.97 New York 

State eliminated religious exemptions for vaccinations in response to the spread of measles in 

Orthodox Jewish communities,98 Maine signed a law repealing religious and philosophical 

vaccine exemptions, and Washington signed a bill to limit personal belief exemptions to measles 

vaccinations.97   

 

NMEs and disease risk  

Olive et al.’s 2018 study23 was surprisingly accurate at predicting hotspots for future 

measles outbreaks based on rates and geographic clustering of NMEs across the US, which 

illustrated an important, prospective proof-of-concept that clusters of NMEs can predispose 

regions to outbreaks. Additionally, Sarkar et al.99 used a quantitative model to identify which 

U.S. counties were at the highest risk of a measles outbreak in 2019, using four factors to 

develop a risk profile at the county-level: international air travel volume, NME rates, population, 

and the incidence rate of measles at the origin location. Since its publication, 30 of the 45 

counties that have reported a measles outbreak in the U.S. have been in either what Sarkar et al. 

deemed a “high-risk” county or were adjacent to a high-risk county. 

Thus there is evidence that state laws allowing NMEs do have a direct effect on the rate 

of NMEs, and subsequently, the rate of preventable disease outbreaks within those states. In 
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addition, the restrictiveness of these NME requirements has been found to have an effect on the 

number of NMEs that are issued to parents, with states with more restrictive laws that impose 

greater hurdles and burdens on parents having fewer NMEs.24 States with comparatively easy 

exemption policies have a higher average rate of NMEs (2.97%) compared to those with medium 

(1.77%) and hard (1.84%) exemption policies, though these differences were not significant.95 

The fact that the restrictiveness of the state policy affects NME rates has direct implications for 

how legislation regulating NMEs may influence vaccination coverage and illustrates that 

pursuing stricter regulations for obtaining NMEs is a useful and important avenue for reducing 

community susceptibility to VPDs.84  

Finally, children with an NME have a higher risk of both acquiring and transmitting 

VPDs. Children with vaccine exemptions are as much as 35 times more likely to contract 

measles as nonexempt children, and 6 times more likely to contract pertussis.87 In fact, studies 

have found evidence consistent with the hypothesis that geographic clusters of NMEs and 

waning immunity to the pertussis vaccine might be responsible for the resurgence of pertussis in 

the US.100 In a study looking at pertussis in Michigan, Omer et al. found that Census tracts in an 

exemption cluster were three times as likely to also be a cluster for pertussis than tracts outside 

of an exemption cluster.101 Similarly, in Oregon, geographic clusters of non-immunized children 

were found to drive a measles outbreak across the community.102 Thus NMEs increase the risk of 

both acquiring and transmitting infectious diseases, further solidifying the importance of 

pursuing more stringent NME regulation as an actionable public health measure.  
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1.2.5 Goals of this dissertation  

This introduction has discussed three factors that may have contributed to the global 

resurgence of VPDs, such as measles, despite access to effective vaccination and health care 

services. First, spatial clustering of non-vaccination creates small pockets of susceptibility, or 

coldspots, which can impact transmission dynamics and be missed by aggregate surveillance 

estimates, allowing outbreaks to occur in regions thought to be safe from VPDs due to high 

aggregate vaccine coverage. Second, vaccine hesitancy encompasses a spectrum of behaviors 

and attitudes towards vaccination, culminating in vaccine refusal. The origins of vaccine 

hesitancy are not fully understood, and its association with sociodemographic factors are also 

complex. More research needs to be done to understand how vaccine hesitancy changes over 

time and clusters geographically. Finally, regulatory factors such as variable state policies 

allowing religious and philosophical NMEs contribute to increased numbers of exempted 

children, and permit geographically clustered regions of non-vaccination and underlying anti-

vaccine sentiment to proliferate, increasing community-wide susceptibility to VPDs.  This 

dissertation will delve into these three factors in more detail to better understand their individual 

and collective contributions to the resurgence of measles in the United States as well as more 

local evaluations of the risk of outbreaks and vaccine policy effectiveness in Michigan.  
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Figure 1.1 Measles cases in the U.S. by year, 2010 – 2019. Adapted from CDC 103 
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Figure 1.2 Landscape of U.S. vaccine exemptions permitted by state 104 
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 Does Fine-Scale Spatial Clustering of Measles Non-Vaccination Increase 

Outbreak Potential? A Simulation-Based Study of the Impacts of Heterogeneous Non-

Vaccination and Aggregated Reporting Data1 

 

2.1 Significance statement 

The U.S. witnessed large, persistent measles outbreaks in 2019, nearly losing its 

elimination status, despite achieving national measles vaccination coverage above the WHO 

recommendation of 95%. Previous research has shown that measles outbreaks in high-coverage 

contexts are driven by spatially clustered non-vaccination, locally depressing immunity levels. 

We perform a series of computational experiments to assess the impact of non-vaccination 

clustering on outbreak potential and how predictions of disease risk might be biased by 

measuring vaccination rates at coarse spatial scales. When non-vaccination is locally clustered, 

reporting aggregated data can substantially underestimate outbreak risk. This research illustrates 

that finer-scale vaccination data is needed to prevent a return to endemic measles transmission. 

 
 

 

1 This chapter has been published as: Masters NB, Eisenberg M, Delamater PL, Kay M, Boulton 
ML, Zelner J. Fine-scale spatial clustering of measles non-vaccination that increases outbreak 
potential is obscured by aggregated reporting data, PNAS 2020;117(45): 28506-28514. 
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2.2 Abstract 

The U.S. experienced historically high numbers of measles cases in 2019, despite 

achieving national measles vaccination rates above the WHO recommendation of 95% coverage 

with two doses. Since the COVID-19 pandemic began, resulting in suspension of many clinical 

preventive services, pediatric vaccination rates in the U.S. have fallen precipitously, dramatically 

increasing the risk of measles resurgence. Previous research has shown that measles outbreaks in 

high-coverage contexts are driven by spatial clustering of non-vaccination, which decreases local 

immunity below the herd immunity threshold. However, little is known about how to best 

conduct surveillance and target interventions to detect and address these high-risk areas, and 

most vaccination data is reported at the state-level – a resolution too coarse to detect community-

level clustering of non-vaccination characteristic of recent outbreaks. In this paper, we perform a 

series of computational experiments to assess the impact of clustered non-vaccination on 

outbreak potential and the magnitude of bias in predicting disease risk posed by measuring 

vaccination rates at coarse spatial scales. We find that when non-vaccination is locally clustered, 

reporting aggregate data at the state- or county-level can result in substantial underestimates of 

outbreak risk. The COVID-19 pandemic has shone a bright light on the weaknesses in U.S. 

infectious disease surveillance, as well as a broader gap in our understanding of how to best use 

detailed spatial data to interrupt and control infectious disease transmission. Our research clearly 

outlines that finer-scale vaccination data should be collected to prevent a return to endemic 

measles transmission in the US. 
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2.3 Introduction 

The Global Vaccine Action Plan set a goal of measles elimination in five WHO regions 

by 2020. However, re-emergence of measles in ostensibly post-elimination settings and slow 

progress in endemic settings have thwarted these international control efforts, with 187/194 

(96%) of WHO member states reporting measles cases in 2019.105 Globally, the first half of 2019 

witnessed the most reported measles cases since 2006, with 791,143 suspected cases in 2019, 

compared to 484,077 in 2018, a 63% increase.(2,3) Recent drops in vaccination coverage have 

threatened the WHO American Region’s measles elimination status, attained in 2000.10  

In the United States, a 2014 measles outbreak originating at Disneyland was the largest, 

most-publicized outbreak event since the declaration of elimination.12  Majumder et al. estimated 

that the vaccination rate among those infected in this outbreak was between 50%-86%, much 

lower than California’s state average of 92.8%  (± 3.9%), 3,15 and the national average of 

91.9%.15  Local variability in measles vaccine coverage likely contributed to the size of the 

outbreak, with Pingali et al. finding 93 regions, or ‘coldspots’, encompassing 31% of 

California’s primary schools, where many kindergarteners were not up-to-date for recommended 

vaccinations.108  This demonstrates how fine-scale clustering of non-vaccination can increase the 

likelihood of outbreaks while ‘flying below the radar’ of statewide statistics. Such exemption 

clusters have also been responsible for outbreaks of pertussis in Michigan109 and Florida110, and 

measles in Oregon.102 Vaccination heterogeneity is a key threat to measles elimination and 

control: in the U.S. alone, 2019 saw 1,282 cases of measles in 31 states, the most since 1992, 

making a return to endemic measles likely if these trends are not rapidly reversed. 16 
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2.3.1 Redefining vaccination coverage targets 

To meet global elimination goals, the WHO has set vaccination coverage targets of 95% 

for the first and second doses of the pediatric measles-containing vaccine (MCV).5,6 High 

coverage of MCV is necessary because measles is highly contagious with a basic reproduction 

number (R0), of 12-18, among the highest known values, though estimates of the Ro are quite 

variable.111,112 Although the MMR vaccine is highly immunogenic, with two doses conferring 

97% protection, 2 the proportion of the population that needs to be vaccinated or have natural 

immunity from prior disease to prevent outbreaks, known as the critical vaccination fraction 

(Vc),2  is nonetheless very high, around 94-95% 1,3.  A key assumption underlying most estimates 

of Vc is that the population is evenly mixed and that all susceptible, infectious, and immune 

individuals contact each other with equal probability. However, when non-vaccinated individuals 

are geographically clustered, this formula can underestimate Vc by as much as 3%, so that 

outbreaks remain possible despite statewide vaccination coverage targets being met or 

exceeded.22  

 

 
 

 

2 This can be calculated as 𝑅 = 	𝑅$ ∗ ((1 − (𝑉* ∗ 𝑉+)), where 1 − (𝑉* ∗ 𝑉+) is the proportion of 
the population that remains susceptible after vaccination. The Vc can be expressed in terms of 
infectiousness and vaccine efficacy: 

𝑉* =
1 −	 1𝑅$
𝑉+

 

 
where VE is the proportion of vaccinated individuals protected from disease, or the vaccine 
efficacy.22	 
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2.3.2 What is the right scale of surveillance? 

While the role of heterogeneous mixing and infectiousness in populations in increasing 

outbreak risk for vaccine-preventable diseases (VPDs) has been demonstrated in prior studies 

23,24,26,108,109,113–116, public health surveillance systems typically report vaccination coverage at the 

county and state level – obscuring this risk. For example, in Michigan, 4.54% of kindergarteners 

statewide had vaccination waivers for the 2018-2019 school year – meeting the WHO threshold 

of 95% overall vaccination. That same year, a large measles outbreak occurred in Oakland 

County, where the waiver rate was 7.14%, but school-district waiver rates ranged from 0 – 

23.4%, and two schools reported > 50% waivers (Figure 2.1A).  

Additionally, many clinical preventive services have been suspended in the wake of the 

COVID-19 pandemic, with many individuals fearful of doctors and non-emergent visits delayed, 

which has led to plummeting pediatric vaccination rates nationally; an estimated 400,000 fewer 

measles-containing vaccine (MCV) doses were ordered January 6 - April 18, 2020 than were 

ordered over the same period last year.80 In Michigan, vaccination rates have dropped to 

dangerously low levels for measles in particular – with only 70.9% of 16-month-old children 

currently up to date for MCV – down from 76.1% last year.81 As such, understanding the role 

that clustering of non-vaccination for measles plays in outbreak risk is especially important – as 

existing clusters are likely to be magnified by plummeting pediatric vaccination rates. 

Furthermore, elucidating at what scale aggregate surveillance data is too unreliable to capture 

such fine-scale heterogeneity will be necessary to successfully implement control strategies for 

both emergent measles outbreaks and ongoing COVID-19 infections. Because granular 

vaccination data is not readily available to researchers, this paper uses a simplified, schematic 
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model to provide proof-of-concept and understand the mechanisms by which clustering of non-

vaccination, and aggregation of such data, impact population health and outbreak risk.    

 

2.4 Methods 

2.4.1 Simulated environment 

To understand how aggregation of surveillance data may impact outbreak risk 

assessment, we constructed a spatial measles transmission model in a simulated city of 256,000 

people laid out on a 16x16 grid. Our model includes four nested levels analogous to those found 

in real vaccination data, 1000-person blocks (1 cell), 4000-person tracts (4 cells), 16,000 person 

neighborhoods (16 cells), and 64,000 person quadrants (64 cells). This configuration allows us 

to fix the population average vaccination coverage while varying the spatial distribution of 

coverage at multiple scales to isolate the specific impact of clustering at different levels. Our 

model encoded contact between individuals within each block and with contiguous blocks, as 

school-aged children have primarily local contacts. Contact between blocks used queen’s 

contiguity, in which all surrounding cells are considered neighbors (cells which share an edge or 

a corner with the index cell, such that cells in the center of the grid would have eight neighbors). 

The spatially dependent force of infection was split such that 50% of transmission occurred 

within cells and 50% of transmission was split between all neighboring cells equally. We fixed 

population-wide measles vaccine coverage at the WHO threshold for measles (95%) while 

varying the spatial distribution and intensity of local clustering of vaccination (Figure 2.1B-C). 

In all simulations,	R$ was fixed at 16, and the average community vaccination coverage was 

95%, which represents a scenario in which a completely homogeneous model would predict that 

an outbreak is not possible.  
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2.4.2 Clustering motifs of non-vaccination 

Clustering motifs were generated using stratified random sampling at the quadrant, 

neighborhood, tract, and block level to produce different landscapes and spatial distributions of 

non-vaccinators within this population. The motifs were created by sampling 12,800 (5% of the 

total population) unvaccinated individuals into individual cells with probability proportional to 

the intensity of clustering at each of the four nested spatial levels, allowing us to explore the 

difference in outcomes between motifs with equivalent vaccination coverage but with large- vs. 

fine-scale clustering, and vice-versa. A depiction of this process is shown in Figure 2.6. In all 

simulations, we assigned the top-left quadrant to be the most highly-clustered quadrant, and 

explored scenarios in which 85% of the non-vaccinators were in that quadrant, and the remaining 

15% evenly distributed among the remaining quadrants, to the least clustered case in which a 

quarter of non-vaccinators were deposited in each quadrant. Three additional sets of probabilities 

generated the full set of clustering motifs: 70%, 58%, and 40% of non-vaccinators in the top left 

quadrant, distributing the remaining 30%, 42%, and 60% of non-vaccinators evenly among 

remaining quadrants, respectively. Of the 625 potential clustering motifs representing every 

combination of probabilities, 336 were consistent with a scenario of 95% vaccination coverage at 

the population level, i.e. where the proportion of non-vaccinators in each cell was < 1.  

 

2.4.3 Model structure 

We modeled transmission using a deterministic, compartmental, Susceptible-Infected-

Recovered (SIR) model (Equation 2.1) where the clustering motifs representing different 

landscapes of non-vaccination were used as initial conditions for the compartmental transmission 
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model (Figure 2.7) 22,23. For simplicity, no vital dynamics were included due to a simulation time 

of one year.  

 

2.4.4 Measuring clustering 

Clustering of non-vaccination in each motif was measured using Moran’s I, a measure of 

global spatial autocorrelation117 and the isolation index, a measure of the proportion of within-

group contacts in a population with two main sub-groups (i.e. vaccinated and unvaccinated)118. 

Moran's I (Equation 2.2) ranges from -1 to 1, where a value of -1 corresponds to perfect 

clustering of dissimilar values (e.g. high-low clustering), 0 indicates no autocorrelation, and 1 

indicates perfect clustering of similar values (e.g. high-high)117. By contrast, the Isolation Index 

(Equation 2.3) measures exposure, specifically the extent to which non-vaccinated individuals 

contact each other: if there is little systematic separation of the groups, the value of isolation will 

approach the global percent of non-vaccinators, and will approach 1 when non-vaccinators are 

highly concentrated in one geographic location.118 

 

2.4.5 Measuring aggregation effects 

To examine the how the resolution of vaccination data impacts model-based risk 

predictions, we created counterfactual simulations to see how much error was incurred by 

coarsening the spatial vaccination data. This is analogous to quantifying ‘Type M’ errors of 

magnitude described by Gelman et al.119 The clustering motifs described above were regarded as 

the ‘true’ vaccination data, with resolution at the block level. The grid was coarsened by moving 

up the levels of aggregation shown in Figure 2.1: block-level data was aggregated up to the tract 

level, where the four cells that belong to each tract were averaged and non-vaccinators were 
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redistributed to the contributing cells. This process was then repeated at the neighborhood and 

quadrant level. Once these aggregated motifs were generated, we ran the SIR model on the 

coarsened grids to see how the predicted case burden differed from that of the block-level, ‘true’ 

data, using the difference in these predictions to characterize the bias from aggregating this data.  

 

2.4.6 Statistical analysis and simulation protocol 

Simulations were conducted in R version 3.6.0 using the deSolve package. The SIR 

model was simulated across the clustering motifs and the outbreak potential and cumulative 

incidence were calculated for four scenarios: an initial seed case dropped in the center of each 

quadrant to capture spatially heterogeneous outcomes based upon the location of the introduced 

case. The attack rate (AR) after one year of simulation time was calculated, with AR = 1 year 

cumulative incidence / initial susceptibles. For each motif, ten simulations were run for a seed 

case dropped in each quadrant to capture stochastic variation due to the multinomial probability 

distribution used to generate the motifs themselves, generating 40 simulated runs for each motif. 

The Moran’s I and Isolation Index of the starting motifs were calculated by generating the motifs 

30 times each and taking the average value to account for sampling differences. The Isolation 

Index was normalized using the formula: normalized Isolation = (Isolation Index - minimum 

Isolation) / (maximum Isolation – minimum Isolation)) for easier interpretation. For assessing 

outbreak potential, we defined an outbreak as a simulation with 5 or more secondary cases. Code 

used to generate all simulations, motifs, and datasets can be found at: 

https://github.com/epibayes/Measles-Spatial-Clustering-and-Aggregation-Effects/  
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2.4.7 Sensitivity analysis 

Numerous sensitivity analyses were conducted to evaluate the robustness of our findings 

to different assumptions. Our baseline model uses density-dependent transmission where the 

force of infection for neighbor-driven transmission dependent on the number of neighbors, and 

we assessed the model instead with a frequency-dependent force of infection. Additionally, the 

baseline model assumed that 50% of transmission occurred within cell, and 50% was divided 

between neighboring cells. We varied this percentage of between-cell transmission from 10% to 

75% to examine the impact of changing neighbor-driven transmission. Finally, the overall 

percentage of vaccination was modified from the baseline scenario of 95%, with sensitivity 

analyses using 94%, 98%, and 99% overall vaccination (yielding a total number of possible 

motifs that did not exceed cell-level populations over 1,000 of 296, 543, and 620, respectively). 

We also assessed combinations of different vaccination percentages and between-cell 

transmission rates to explore the impact of varying both parameters at once.  

 

2.5 Results 

2.5.1 Impact of clustering on outbreak probability and size 

The intensity of clustering of vaccination and contact between non-vaccinators was 

assessed using Moran’s I 117 and the Isolation Index 118.  In both univariate and multivariate 

models, for 95% overall vaccination, a change from the minimum to maximum values of 

normalized Isolation was associated with an 80% increase in AR (~7,325 cases), while no 

association was observed for Moran’s I (Table 2.1). This suggests that isolation better captures 

the central role of clustering of susceptible individuals than Moran’s I, which is agnostic about 

the nature of clustering measured (i.e. of non-vaccination or vaccination). 
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2.5.2 Impact of clustering on outbreak risk and magnitude 

Simulations from this model at 95% coverage across all possible clustering motifs (n = 

336) yielded an average cumulative AR of 30% (Table 2.2). Sensitivity analyses evaluating the 

cumulative incidence and AR at 94%, 98%, and 99% coverage showed that large outbreaks were 

possible at all coverage rates when non-vaccination was spatially clustered. By contrast, a full 

environment-level simulation (with spatially randomly distributed non-vaccinators, i.e. no 

encoded clustering), revealed that at 95% vaccination coverage and above, there was fewer than 

1 secondary case, and only 1.24 secondary cases observed for 94% overall vaccination, 

indicating that herd immunity is upheld when there is no spatial clustering of non-vaccination 

(Table 2.3). In all simulations, when the initial case was seeded in the quadrant inhabited by the 

majority of non-vaccinators, a larger outbreak was predicted as compared to seeding cases in the 

other quadrants, with introductions to quadrant furthest in cartesian distance from the low-

vaccination area resulting in fewest overall cases and longest time-to-peak of cases. Most cases 

occurred in cells with low vaccination rates, though there was spillover to adjacent cells due to 

high levels of infection pressure from their low-coverage neighbors (Figure 2.2). Sensitivity 

analyses of frequency-dependent transmission yielded similar cumulative incidence counts to the 

density-dependent baseline model (Table 2.4).  

Our simulations consistently showed that increasing clustering at each level of 

aggregation (blocks, tracts, neighborhoods, and quadrants) corresponded to higher cumulative 

incidence of cases (see Appendix A Figure A.5- Figure A.8).  In addition to exploring the 

outbreak size as an outcome, we evaluated outbreak probability, defining three thresholds for an 

outbreak: 5, 10, and 20 cases over the course of one year. For 94% overall vaccination, 93.5% of 

simulation runs yielded outbreaks (defined as 5 or more cases), and there was a 92.3% 
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probability of an outbreak with a threshold of 20 cases (see Appendix A Table A.3, Figure A.13, 

Figure A.14). For 95% overall vaccination, 89.0% of simulation runs generated a 5+ case 

outbreak, and 87.4% of simulation runs generated a 20+ case outbreak. For 99% vaccination 

coverage, the outbreak probability was much lower: 19.3% of simulation runs generated 5 or 

more cases, and 18.1% of runs generated 20 or more cases. These results show that outbreak 

probability decreases as coverage increases, yet in this clustered landscape of non-vaccination, 

even for 99% overall vaccination rates, there was a sizeable proportion of simulation runs that 

were able to generate outbreaks.  

 

2.5.3 Impact of measurement scale on outbreak size prediction errors 

Our design analysis consisted of taking the block-level ‘ground truth’ results of each 

simulation and aggregating these data up to each of the levels in Figure 2.1. This resulted in large 

downward biases in both the simulated probability of observing outbreaks and their predicted 

size. The expected outbreak size for simulations at 95% overall vaccination was predicted to be 

3886 (AR=30.4%) cases using unaggregated data, 2122 (AR=16.6%) using tract-level 

aggregation (45.4% reduction), 911 (AR=7.1%) using neighborhood-level aggregation (76.5% 

reduction), and 227.3 cases when aggregated to the quadrant level (94.2% reduction) (Figure 

2.3). Figure 2.4 illustrates how this aggregation process obscures fine-scale spatial heterogeneity 

for three selected motifs, where three very different underlying patterns of non-vaccination and 

resultant outbreak potential converge to an identical motif with an expected AR of 51% when 

aggregated to the quadrant level. Across all motifs, the downward bias in the estimated isolation 

index increased with the intensity of aggregation (Appendix A Figure A.9). 
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Aggregating vaccination data resulted in consistent underestimates of outbreak potential, 

with this bias growing as a function of the intensity of clustering in the input motif and the level 

of aggregation (Figure 2.5). This trend was observed across all motifs, with models using data 

aggregated to the tract-level predicting 41% - 65% fewer cases than simulations using non-

aggregated data, and neighborhood-level aggregation resulting in 72-99% fewer cases detected 

(at 94% and 99% overall vaccination, respectively) (Appendix A Table A.4). Quadrant-level 

aggregation resulted in greater than 90% reduction in detected cases at all tested vaccination 

levels. The proportion of expected cases plotted by isolation index of the initial motif can be seen 

in Figure 2.5A, however it is important to recall that increasing isolation index corresponds to 

increased simulated cumulative incidence, thus higher levels of aggregation yield reduced 

accuracy in predicting outbreak potential, with greater numbers of cases missed, as vaccination 

landscapes become more clustered (Figure 2.5B).  This phenomenon was observed for all 

simulated vaccination levels (see Appendix A Figure A.10, Figure A.11, Figure A.12). 

 

2.6 Discussion 

Our results illustrate how failure to account for fine-scale heterogeneity in susceptibility 

can result in overly optimistic estimates of outbreak potential. This mismatch between 

assumptions of homogeneous mixing which underlie the classical calculation of the Vc and the 

reality of local clustering of non-vaccination can lead to missed opportunities for preventing 

outbreaks. This is underscored by the finding that even at 99% overall vaccination coverage, 

theoretically far exceeding the Vc for measles, deviations from homogeneity permitted outbreaks 

to occur. We found increasing isolation of non-vaccination predicted increased cumulative 
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incidence at all vaccination levels, suggesting that the isolation index can be used to assess area-

level outbreak vulnerability.  

Additionally, our models show that aggregation-based estimates of outbreak risk relying 

on assumptions of homogeneity have the potential to mischaracterize the population at risk. As 

fine-scale vaccination data was aggregated, or ‘coarsened’, a large downward bias resulted in the 

projected number of cases, which grew with successive levels of aggregation. This has 

immediate implications for vaccine-coverage surveillance in the US, highlighting that finer-scale 

data are needed to fully understand community susceptibility to outbreaks of measles and other 

VPDs. This accords with Truelove et al. and Brownright et al.’s suggestions, 22,120 that setting the 

classical Vc as a national or state-wide vaccination target may ultimately permit endemic 

transmission, necessitating a greater focus on assessments of finer-scale vaccination levels. 

Similarly, Tatem 121 argues that fine-scale analysis can better highlight communities at risk, 

though public health surveillance would to need to be strengthened and enhanced, requiring a 

greater structural investment for this to be carried out effectively. Additionally, as shown in 

Figure 1A, regions without available vaccination data are often aggregated up into areal 

estimates of vaccination coverage, propagating errors associated with this missingness upward, 

which only further highlights the need for collection and dissemination of finer-scale vaccination 

data in order to make informed decisions about populations at risk. 

 An important caveat is that while vaccination data is collected at the school-level for 

entry requirements, publicly released data instead are typically aggregated to the county- or state-

level despite the existence of finer-scaled data, representing a lost opportunity for improving 

surveillance.  Leslie et al. found that only 20 U.S. states report school-level data, 4 report school-

district level data, 19 report county-level data, and 2 report health department level data, but only 
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a subset (n = 26) provide such data online, with 14 states providing data only after onerous 

Freedom of Information Act Requests.122 Additionally, the CDC receives state-level vaccination 

data, which is far from the granular scale needed to set national policies that are sensitive to local 

vulnerability to measles.123  

Identifying the scale at which vaccination data is reported and available for analysis is not 

straightforward and comes with important trade-offs between privacy, feasibility, and cost. Many 

policy benchmarks are set at the national level, which may fail to account for transmission 

dynamics playing out on a smaller scale, as coverage estimates of large regions cannot assume 

herd immunity is maintained at the scale of transmission. When defining such a spatial scale, 

relevant considerations comprise the potential intervention, the scale of surveillance, the reality 

of obtaining high-quality, granular data, and the level at which vaccination coverage estimates 

are meaningful and actionable.  

A number of different spatial scales have been explored in the literature, with notable 

heterogeneity in vaccination coverage identified at the sub-continental level, subnational 120, and 

regional levels.30 If the geographic level of data is mismatched to the scale of an intervention,31 

reliance on aggregated data may result in diminished effectiveness of aid and interventions, 

leading to erroneous conclusions about what works for preventing VPD outbreaks 34. To address 

varied findings at different levels of analysis, some authors have also attempted to use multiple 

spatial scales, though such studies have yielded poor predictive ability.32,33, At the finest spatial 

scales, such as human individual movement37,38 or mobility data using cell phone records,35 there 

is significant potential for the introduction of too much noise, yielding less informative results.36 

As such, it is important to acknowledge that more research must be done to elucidate a feasible 

and  actionable spatial scale to evaluate vaccination coverage, especially in countries nearing 
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measles elimination where significant heterogeneity is may undermine elimination efforts if 

unidentified.  

 

2.6.1 Strengths and limitations 

This study has many strengths. Much of the literature surrounding spatial clustering of 

non-vaccination utilizes complex methods of identifying ‘hotspots’ of infection in an 

environment with many complicating factors surrounding the reliability and accuracy of 

geographic and immunization coverage data, such as data that is spatially ‘jittered’ to preserve 

anonymity. 22,120 Our work provides a much needed proof-of-concept, illustrating that fixing 

vaccination coverage and adjusting only the degree of clustering has large impacts on the risk 

and magnitude of outbreaks. Additionally, the literature on spatial heterogeneity in vaccination 

coverage is typically focused on patterns observed in vaccination coverage or serology data. Our 

use of simulation in an idealized environment allows for a better understanding of the 

implications of the types of clustering identified in these earlier analyses for outbreak risk.  

This study has some limitations as well. We used an SIR model, which does not use an 

incubation period (which could be encoded using an SEIR model with a compartment for latent 

infection) because the time dynamics of transmission were not a key focus of this paper, and 

both models will result in the same predictions of epidemic size. We also did not consider 

vaccine failure (i.e. assumed 100% vaccine effectiveness), and thus our results likely 

underestimate the number of cases that could occur in a worst-case-scenario. Additionally, we 

used a deterministic transmission model to highlight the impact of clustering of non-vaccination 

and aggregation, yet the occurrence and size of outbreaks is in reality a function of both 

stochasticity in the population distribution of susceptibility – which we model explicitly – and 
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demographic stochasticity in transmission dynamics, which our model omits.  The use of a 

deterministic model allowed us to focus specifically on the stochastic variation of the spatial 

distribution of non-vaccination, but our results should be interpreted in light of this choice. 

Finally, a square grid with fixed population size of 256,000 individuals is a stylized, simplified 

representation of a city, and is not meant to directly represent the complexity of real-world 

contact networks, but instead seeks to capture a mix of local and non-local transmission. Making 

optimal use of these findings necessitates understanding how this heterogeneity impacts 

dynamics in the context of more heterogeneous and multi-layered contact networks. Finally, the 

model’s dynamics are dependent upon our choice to analyze a population smaller than the 

critical population size of ~400-500,000, above which endemic circulation becomes possible. 

This allowed us to focus on the types of outbreak scenarios that are currently of the most 

pressing concern, but limits applications of this research to endemic transmission.  

 

2.7 Conclusions 

We show that the assumptions of spatially homogeneous vaccination coverage and 

contact result in an underestimation of the true number of individuals who need to be vaccinated 

to prevent outbreaks. Fine-scale clustering, as measured by high values of the Isolation Index, 

produced scenarios with the greatest outbreak potential. Since such fine-scale vaccination data is 

not broadly available in the United States, it is difficult to allocate resources, plan vaccination 

strategies, and respond to imported measles cases in a way that is responsive this type of 

localized clustering. Especially given the ongoing pandemic, it is imperative to better understand 

and control the spread of preventable diseases such as measles – focusing on concrete ways to 

reduce case burden and health service utilization - as the coming school year is likely to see 
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unprecedented challenges as COVID-19 cases grow and the fall influenza season approaches. 

The approach here is also likely to have important implications for managing COVID-19 

therapeutic/vaccine distribution, as clustering of susceptibility and immunity are likely to occur 

in the communities both least and most hard-hit in the first waves of transmission. As noted by 

Truelove et al., fine-scale clustering of the sort described here resulted in the largest increases in 

the critical vaccination fraction for diseases with lower values of R0. This suggests that issues 

around spatial clustering of susceptibility to COVID-19, which has an Ro roughly four times 

lower than measles, may be as or more acute as in the scenarios described here.22 This research 

thus motivates the need not only for increased vaccination coverage, but also for the collection of 

finer-scale vaccination data to create ‘susceptibility maps’ that can guide policy-makers and 

health practitioners to preferentially direct resources to those areas at highest risk of outbreaks.  
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Figure 2.1 Impact of spatial aggregation of vaccination data on coverage estimates 

 

A) Vaccination coverage data from Oakland County, Michigan at five different levels of spatial 
scale: block groups, Census tracts, school districts, congressional districts, and the county-level. 
B) Schematic illustrating the spatial model used in this study, with a 256-grid cell environment, 
each which contains 1,000 individual people, divided into spatial scales of ‘blocks’ (all grid 
cells), ‘tracts’ (groups of four cells), ‘neighborhoods’ (groups of 16 cells), ‘quadrants’ (groups of 
64 cells), and finally the entire vaccination ‘environment’ (all 256 cells aggregated to one unit), 
the level at which overall vaccination percentages are fixed for analysis (i.e. at 95%, 98%). C) 
Example data from one simulated set of vaccination conditions, fixed at 95% overall vaccination, 
showing impact of aggregation to these different scales on loss of granularity of block-level data. 
  

Childhood Vaccination Waiver Rates from Oakland County, 2018, at Different Levels of Aggregation

Block Groups Census Tracts Congressional DistrictsSchool Districts County

“Blocks” “Tracts” “Quadrants”“Neighborhoods” “Environment”

Overall Waiver Percentage in Each Areal Unit

0%            0-2%           2-5%          5-10%       10-15%       15-20%      20-40%       40-80%         >80             NA

Example data from one set of simulated vaccination conditions, with overall vaccination level across the environment at 95%

Aggregation levels of ‘blocks’ – each individual cell (each cell contains 1,000 individuals),  
tracts’ – groups of four cells (4,000 people), ‘neighborhoods’ - groups of 16 cells (16,000 
people), and  ‘quadrants’ – groups of 64 cells (64,000 people), make up our simulated 
‘environment’ (256,000 total people) – the level at which an overall vaccination level is fixed. 

SPATIAL
MODEL

A)

B)

C)
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Figure 2.2 Distribution of non-vaccination at baseline (left) and case burden after 1 year (right) 
for four selected clustering motifs with 95% overall vaccination coverage  

 

In each case, a seed infection was introduced into the top left quadrant and cases spread 
throughout and beyond the demarcated boundaries of high-risk unvaccinated regions, as can be 
seen for motifs 1 and 2. For motif 3, the four foci of non-vaccination with >25% unvaccinated 
proportions are the hardest hit in terms of attack rate after 1 year, with > 150 cases per cell 
(>15% attack rate), but the surrounding cells, with 5-10% non-vaccination, see 10-50 cases after 
1 year, representing a 1-5% attack rate. Finally, for motif 4, a fine-scale clustering pattern creates 
local cells with high attack rates, but all cells have a nonzero attack rate. 
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Figure 2.3 Impact of scale of aggregation on estimated outbreak size (cumulative incidence) at 
94%, 95%, 98%, and 99% overall vaccination coverage 

 

Cumulative incidence at four different  levels of vaccination coverage: 94%, 95%, 98%, 99%, 
including non-aggregated vaccination data (block-level) resolution to tract level (4-cell) 
resolution, to neighborhood (16 cell), and finally quadrant-level (64-cell) shows the reduction in 
estimated case burden as aggregation increases, a pattern that holds true across all levels of 
vaccination. 
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Figure 2.4 Aggregated vaccine coverage systematically downplays outbreak risk, an example 
using three distinct motifs which are aggregated to become an identical motif at the quadrant 
level 

 

Aggregation from ‘true’ 256-cell (block-level) resolution to tract level (4-cell) resolution, to 
neighborhood (16-cell), and finally quadrant-level (64-cell) resolution using a starting 
vaccination motif with overall vaccination at 95%. Three different motifs with different 
clustering patterns were subsequently aggregated up these three levels and yielded the same 
aggregate motif at the quadrant level, illustrating that large-scale vaccination data can mask 
significant heterogeneity at finer scales. 
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Figure 2.5 Underestimates of outbreak risk grow with increasing Isolation Index of non-
vaccinators in initial clustering motifs 

 

A) Proportion of estimated cases identified, treating the block-level, or individual-cell level 
simulation results as ‘truth’, in grey, when motifs are aggregated to the tract, neighborhood, and 
quadrant levels, sorted by Isolation Index of starting motif. B) Difference in number of estimated 
cases, or cumulative incidence, by aggregation level and Isolation Index of initial motif, 
illustrating greater loss in predicted number of cases as both aggregation level and Isolation 
Index increase. 
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Figure 2.6 Simplified representation of generation of clustering motifs using stratified sampling 
at four levels of aggregation 

 

Motifs were generated by toggling the ‘degree’ of clustering in the upper left quadrant at each 
spatial scale to create 625 different possible vaccination motifs for each fixed overall vaccination 
level (i.e. 94%, 95%, 98%, 99%). Overall, a set of cumulative probabilities were used to generate 
these motifs, as described in the methods, with a maximum ‘clustering’ degree of 85% of non-
vaccinators at a given level clustered into the top left quadrant (and 15% in the remaining three 
quadrants), to 70% of non-vaccinators being clustered into the top left quadrant (with 30% split 
between the remaining three quadrants), to 58% clustering in the top left, 40%, and finally the 
homogeneous case with 25% in all quadrants at each spatial scale. These cumulative 
probabilities were applied at these four nested levels (level 4 = quadrant, level 3 = neighborhood, 
level 2 = tract, and level 1 = block) to generate the motifs used in the simulations.  
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Figure 2.7 Susceptible-Infected-Recovered (SIR) compartmental model schematic diagram 

 

 

 

 

 

 

 

 

 

Compartments represent Susceptible (S), Infected (I), and Recovered individuals (R), with state 
transitions characterized by 𝛃, the probability of becoming infected and 𝛄, the recovery from 
infection. Finally, p, the probability of vaccination, renders an individual recovered, not 
susceptible. For the purposes of this model, we are assuming vaccination occurs prior to 
individuals entering the landscape/simulation.  
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Table 2.1 Linear multivariate model fit of attack rate by clustering at each level  

 

 Univariate Analysis Multivariate Analysis 
Predictor Attack Rate 

Estimate  
(CI Estimate) 

p-
value 

R2 Attack Rate 
Estimate  

(CI Estimate) 

p-value R2 

Moran’s I 0.011 (140.9) 0.069 0.000 -- 
  

Isolation index* 0.832 (10,660) <0.001 0.801 0.572 (7,325.5) <0.001 
 

Level 1 
clustering** 

0.059 (752.3) <0.001 0.132 0.048 (620.1) <0.001 
 

Level 2 
clustering** 

0.048 (619.8) <0.001 0.090 0.040 (509.7) <0.001 
 

Level 3 
clustering** 

0.041 (522.9) <0.001 0.064 0.033 (428.1) <0.001 
 

Level 4 
clustering** 

0.036 (463.8) <0.001 0.050 0.029 (377.5) <0.001 
 

      
0.826 

*Isolation index was normalized so that a one-unit increase in Isolation Index represented the spread 
from the minimum value to maximum value of the Isolation Index for a given level of overall vaccination  
**The clustering levels were operationalized as ordinal variables with steps increasing from 25% 
(homogeneous) in one quadrant, 40%, 58%, 70%,and 85%. 
 

95% Overall Vaccination: Linear multivariate model fit to attack rate over 1 year of simulation 
time, with estimates from models with cumulative incidence as the outcome in parentheticals, 
shows that clustering at each level (level 1 – level 4) all correspond to higher cumulative 
incidence 
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Table 2.2 Mean simulated cumulative incidence and attack rate by vaccination coverage  

   

 Vaccination Level 

Seed 
Quadrant 

94% Coverage 
(15,360 non-
vaccinators) 

95% Coverage 
(12,800 non-
vaccinators) 

98% Coverage 
(5,120 non-
vaccinators) 

99% Coverage 
(2,560 non-
vaccinators) 

1 6576  (42%) 4758 (37%) 1054 (21%) 296 (12%) 

2 5265 (34%) 3779 (29%) 475 (9%) 56 (2%) 

3 5267 (34%) 3778 (29%) 473 (9%) 54 (2%) 

4 4748 (31%) 3249 (25%) 325 (6%) 19 (0.7%) 

Overall 5489 (36%) 3891 (30%) 582 (11%) 106 (4%) 
 

Here we see that the estimated mean number of cases at each vaccination level, across all 
clustering motifs, decreases significantly from 94% to 99%, yet clustering indicates that even at 
99% vaccination coverage, there is still a mean attack rate of 4%.  
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Table 2.3 Simulation results of null model containing no spatial clustering  

 
Overall 

vaccination level 
Quadrant of 

seed case 
Cumulative 

incidence after 
1 year 

Average CI 
(across four 
quadrants) 

Average AR 
(across four 
quadrants) 

94% 

1 1.0466 

1.240 0.008% 2 1.2724 
3 1.4038 
4 1.2378 

95% 

1 0.7459 

0.795 0.006% 2 0.7749 
3 0.8043 
4 0.8561 

98% 

1 0.1647 

0.199 0.004% 2 0.1764 
3 0.1912 
4 0.2639 

99% 

1 0.0533 

0.079 0.003% 2 0.0633 
3 0.0893 
4 0.1095 

 
Simulation results of ‘null model’ containing no spatial clustering of non-vaccination, but just 
random sampling of 94, 95, 98, and 99% vaccination coverage, respectively, across the 256-cell 
grid. Seeding a case into each quadrant yielded just over 1 secondary case, on average, for 94% 
overall vaccination, corresponding to a one-year attack rate (AR) of 0.008%, with the average CI 
decreasing to 0.795 cases for 95% vaccination, 0.199 for 98% vaccination, and 0.079 cases for 
99% vaccination, indicating that herd immunity is upheld at 95% vaccination and above. 
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Table 2.4 Sensitivity analysis of frequency-dependent transmission 

 
 
 Vaccination Level 

Seed 
Quadrant 

94% Coverage 
(15,360 non-
vaccinators) 

95% Coverage 
(12,800 non-
vaccinators) 

98% Coverage 
(5,120 non-
vaccinators) 

99% Coverage 
(2,560 non-
vaccinators) 

1 6161.1 (40%) 4694.1 (37%) 1030.3 (20.1%) 281.3 (11%) 

2 5102.0 (33%) 3612.7 (28%) 423.8 (8.3%) 46.9 (1.8%) 

3 5097.8 (33%) 3618.5 (28%) 431.2 (8.4%) 49.7 (1.9%) 

4 4631.5 (30%) 3142.5 (25%) 291.2 (5.7%) 22.5 (0.8%) 

Overall 5248 (34%) 3766 (29%) 544.2 (10.6%) 100 (4%) 

 
Sensitivity analysis of frequency-dependent transmission: mean simulated cumulative incidence 
results and attack rate (in parentheticals) by overall vaccination level and location of seed 
quadrant for selected vaccination coverage rates: 94%, 95%, 98%, and 99%. Here we see very 
small differences from the density-dependent transmission baseline model.  
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Equation 2.1 Deterministic differential equations of the SIR model 124  

 

																	
𝑑𝑆
𝑑𝑡 = −	𝛽𝑆𝐼 

																								
𝑑𝐼
𝑑𝑡 = 	𝛽𝑆𝐼 − 𝛾𝐼	

																							
𝑑𝑅
𝑑𝑡 = 	𝛾𝐼 

 
 
Equation 2.2 Global Moran’s I 117  

 

𝐼 =
𝑁
𝑊
∑ ∑ 𝑤=>(𝑥= − �̅�)(𝑥> − �̅�)>=

∑ (𝑥= − �̅�)A	=
 

 

Where N is the number of spatial units that are indexed by 𝑖 and 𝑗, and 𝑥 is the variable of 
interest, and �̅� is the mean of 𝑥; 𝑤=> is a matrix of spatial weights with zeroes on the diagonal and  
𝑊 is the sum of all weights 𝑤=>.  
 
 
 
 
Equation 2.3 The Isolation Index 118 

 

									D EF
𝑥=
𝑋H I

𝑥=
𝑡=
JK

L

=MN

 

 

Where 𝑥= is the number of non-vaccinators per cell, 𝑋 is the total number of non-vaccinators in 
the environment, and 𝑡= is the total population in each cell.  
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 Measuring Multiple Dimensions of Non-Vaccination Clustering in Michigan 

from 2008-20183 

 

3.1 Significance statement 

Recent research has illustrated the importance of clustered non-vaccination for outbreak 

potential, however there is no best practice for how to measure this clustering of non-

vaccination, or at what spatial scale. Numerous clustering metrics are available in the statistical, 

geographic, and epidemiologic literature, but these were not all conceptualized with transmission 

risk in mind, and their values and interpretation may also vary with the scale of aggregation used 

and population-level non-vaccination rates. In this chapter, school-level kindergarten vaccine 

exemption data are used to characterize the spatiotemporal landscape of vaccine exemptions in 

Michigan from 2008-2018 using four different metrics at four geographic aggregation levels. 

This analysis reveals that these different clustering metrics tell very different stories about the 

landscape of non-vaccination clustering in Michigan, and we recommend measuring fine-scale 

vaccination data whenever possible with the Isolation Index to best predict outbreak risk.  

 
 

 

3 This work has been published as: Masters NB, Delamater PL, Boulton ML, Zelner J. Measuring 
multiple dimensions and indices of non-vaccination clustering in Michigan: 2008-2018, 
American Journal of Epidemiology. 2020. Epub ahead of print. DOI: 10.1093/aje/kwaa264  
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3.2 Abstract 

Michigan experienced a significant measles outbreak in 2019 amidst rising rates of non-

medical vaccine exemptions (NMEs) and low vaccination coverage compared with the rest of the 

United States. There is a critical need to better understand the landscape of non-vaccination in 

Michigan to assess the risk of vaccine-preventable outbreaks in the state, yet there is no agreed-

upon best practice for characterizing spatial clustering of non-vaccination, and numerous 

clustering metrics are available in the statistical, geographic, and epidemiologic literature. We 

used school-level NME data to characterize the spatiotemporal landscape of vaccine exemptions 

in Michigan from 2008-2018 using Moran’s I, the Isolation Index, Modified Aggregation Index, 

and the Theil Index at four spatial scales. We also used thresholds of 5%, 10%, and 20% non-

vaccination to assess the bias incurred when aggregating vaccination data. We found that 

aggregating school-level data to levels commonly used for public reporting can lead to large 

biases in identifying the number and location of at-risk students, and that different clustering 

metrics yielded variable interpretations of the non-vaccination landscape in Michigan. This paper 

shows the importance of choosing clustering metrics with their mechanistic interpretations in 

mind: be it large- or fine-scale heterogeneity, or between-and-within group contributions to 

spatial variation.  

 

3.3 Introduction 

Childhood vaccination is highly effective in reducing the burden of disease, preventing 

an estimated 20 million cases of infectious illness and more than 40,000 deaths per year in the 

United States.125 However, increasing parental concerns about vaccine safety and religious and 
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civil liberties worldwide have led to growing rates of vaccine hesitancy, defined by the WHO as 

the “delay in acceptance or refusal of vaccines despite availability of vaccination services”45. The 

global upsurge in vaccine hesitancy has been accompanied by rising rates of nonmedical 

exemptions (NMEs) from required childhood vaccinations.87  

In the United States, the NME rate for children entering kindergarten increased from 

1.2% in 2009 to 2.5% in 2018.126,127 This trend of increasing NME rates is further complicated 

by variability in vaccination mandates across U.S. states, which determine the ease with which 

an NME can be obtained.91,92,128 As of May 2020, 45 states (all except for California, Maine, 

Mississippi, New York and West Virginia) offer NMEs for religious or philosophical reasons.97 

In Michigan, both philosophical and religious exemptions are permitted. In Michigan, a state 

administrative rule change in 2015 required that parents attend an in-person education session at 

their local health department prior to obtaining an exemption.126,129 Beyond this requirement, 

Michigan imposes no additional NME restrictions.  

A number of studies have examined the relationship between NMEs and the occurrence 

of outbreaks of vaccine-preventable diseases (VPDs), finding that vaccine-exempted children 

have a substantially higher risk of acquiring and transmitting VPDs than those without; exempt 

children are up to 35 times more likely to contract measles, and 6 times more likely to  acquire 

pertussis.87,100  Michigan and many other states experienced large measles outbreaks in 2019, 

which prompted a number of states to amend their vaccination policies: New York eliminated 

religious exemptions,98 Maine removed both religious and philosophical vaccine exemptions, 

and Washington state eliminated philosophical exemptions for the measles, mumps, and rubella 

(MMR) vaccine.97 However, Michigan did not alter its policies beyond the 2015 administrative 

rule change.  
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It is important to explore community-level patterns of vaccination, e.g., identifying 

geographic clusters of vaccine exemptions can help target pockets of population-level 

susceptibility to reduce outbreak potential.22,24,26,29,108 Vaccination and exemption rates are 

typically reported at coarse geographic scales such as states or counties,123,127 with finer-scale 

data not widely used for evaluation and policymaking purposes.122,123 However, vaccination 

behavior has been shown to vary locally, resulting in localized clusters of unvaccinated, 

susceptible individuals with high rates of within-group contact.26,87,100,108,130,131 These exemption 

clusters have been related to outbreaks of pertussis in Michigan101 and Florida110, and measles in 

Oregon.102 Additionally, during the 2019 measles outbreaks in the US, 89% of cases occurred in 

under- or non-vaccinated individuals.103,132  

The manner in which school-level vaccination data is collected, distributed, and shared is 

salient when evaluating patterns of NMEs in the context of drawing conclusions about local and 

population-scale susceptibility to VPDs. In most states, vaccination histories are collected at 

kindergarten entry (age 5-6 years) and again in sixth or seventh grade. If communities have 

persistently high waiver rates, over time a sizeable portion of the student body will be 

unvaccinated and therefore susceptible to VPDs.24,26,96 As such, the spatiotemporal landscape of 

vaccine exemption is important to understand the link between persistent kindergarten 

exemptions and subsequent outbreak risk.  

While there is a critical need to better understand the landscape of non-vaccination in 

Michigan and other states, there is no agreed-upon best practice for characterizing the 

relationship between spatial clustering of non-vaccination and VPD outbreak risk. Numerous 

clustering metrics are available in the statistical, geographic, and epidemiologic literature, but 

these were not all conceptualized with transmission risk in mind. Additionally, their values and 
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qualitative interpretation may vary with the scale of aggregation and the population-level rate of 

non-vaccination. The most commonly utilized metric for assessment of clustering at the 

population level is Moran’s I29,30,38,131,133, though researchers have also used the Modified 

Aggregation index108, Isolation Index134, and Theil index134 to evaluate clustering of non-

vaccination. In this paper, we use school-level NME data to characterize the spatiotemporal 

landscape of vaccine exemptions in Michigan from 2008-2018 using each of these metrics and 

we varied the level of geographic aggregation used for data inputs to these measures. The study 

period from 2008-2018 was used because it captures Michigan’s immunization waiver trends 

over the past decade and both predates and follows the Michigan Department of Health and 

Human Services’ 2015 modification of State administrative rules requiring parents to undergo an 

education session at their local health department prior to obtaining a non-medical vaccine 

exemption (NME). The objectives of this analysis are to better understand how spatial clustering 

of non-vaccination in Michigan has varied in recent years, and the extent to which each metric 

captures the important dimensions of this variation, including sensitivity to the 2015 

administrative rules change.  

 

3.4 Methods 

3.4.1 Data preparation 

  Annual school-level vaccination and exemption data were obtained from the Michigan 

Department of Health and Human Services (MDHHS) containing school-level vaccination 

records from 2008-2018 including school name, calendar year, grade (kindergarten, 7th grade, or 

other), number of children enrolled, number of students up-to-date for required vaccinations, and 

number of vaccine exemption waivers issued per year by waiver type (personal belief, medical, 
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or religious exemption). Of the 84,175 total records (representing each school with potential 

entries for each grade from 2008-2018) from 5,252 unique schools, 76,922 (91.5%) records were 

matched to an address by comparing the data to Michigan school vaccination data from before 

2013, when the data included school addresses. An additional 5,871 records were matched using 

the district and building codes for schools, and 775 schools were matched by searching 

Michigan’s Educational Entity Master Data.135 This resulted in 5,086 (96.8%) matched and 166 

unmatched schools. Names for these 166 schools were edited to address potential syntax 

inconsistencies: periods, dashes, and contractions were removed, resulting in an additional 97 

matches. Of the 69 schools which were searched manually, 37 were matched to an address, 

leaving 32 unmatched schools and 5,220 matched schools (though only 4 of the 32 unmatched 

schools had nonzero enrollment from 2008-2018, Appendix B, Table B.1).  

 The 5,220 schools with identified street addresses were geocoded using ESRI ArcMap 

(Redlands, CA) version 10.7.1 in ArcGIS and re-projected to the NAD1983 Michigan Georef 

Projection. Schools were subset to those with matching street addresses (excluding matches by 

zip code, county, or post office) only, yielding 5,053 schools. 2,978 schools over the study 

period contained vaccination data on kindergarten students. We only used data on kindergarten 

students because the kindergarten entry point has many more required vaccinations, and we 

believe that exploring vaccine waivers for kindergarten students is thus more informative. When 

spatially linking data with the final set of geocoded schools, the analytic sample comprised a 

total of 2,896 schools. These data were spatially joined to the 2010 Census block groups, tracts, 

school districts, and counties.  
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3.4.2 Vaccine exemption rate calculations 

Yearly kindergarten-entry data was summed for schools falling in each block group, tract, 

school district, and county. For each level of data aggregation and year, the percent of 

kindergarteners with combined vaccine exemption waivers was calculated by dividing the 

number of students with a waiver by the total number of students enrolled.24 In this data source, 

the number of students with exemptions is not broken down by what vaccines were exempted, 

and thus a student with an exemption for one antigen would be indistinguishable from a 

completely unvaccinated student. 

 

3.4.3 Assessing aggregation bias in identifying high-risk schools  

At each level of aggregation, we assessed the number of students with waivers in a given 

geographic unit. We imposed waiver rate thresholds as criteria for defining schools as ‘high-risk’ 

based on estimates of the critical vaccination fraction (Vc) of common vaccine preventable 

diseases, where Vc = 1 – 1/Ro (Ro is the reproductive number of the pathogen).136 As such, we 

chose approximate waiver thresholds of 5%, 10%, and 20% at which the Vc would be exceeded 

for common preventable diseases: measles (Ro = 12-18, Vc ~95%),22  mumps (Ro = 7 – 8.5, Vc 

~89%)137, and rubella, (Ro ~ 6, Vc ~83%).138 For each threshold, we classified the number of 

schools that met or exceeded that threshold for a given year and used the kindergarten enrollment 

figures to determine the total number of children at-risk: the enrollment for all schools at or 

above these thresholds. For each level of aggregation, we repeated this procedure to identify how 

many block groups, tracts, school districts, and counties exceeded each threshold, and multiplied 

by the population of students within that spatial unit to determine the at-risk population. We then 
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determined the bias associated with aggregating to different spatial scales, using the school-level 

data as the ‘gold standard’.  

 

3.4.4 Clustering metrics 

We used four statistics to explore spatial clustering of non-vaccination and the impact of 

aggregation on each: Moran’s I117, Isolation Index139, Modified Aggregation Index108, and Theil 

Index140. Moran’s I is a measure of global spatial autocorrelation, which describes similarity 

between observations located near each other:117  

 

Equation 3.1 Moran’s I 

 

𝐸𝑞. 3.1																																𝐼 =
𝑁
𝑊
∑ ∑ 𝑤=>(𝑥= − �̅�)(𝑥> − �̅�)>=

∑ (𝑥= − �̅�)A	=
 

 

where 𝑁 is the number of spatial units indexed by 𝑖 and 𝑗, 𝑥 is the number of non-vaccinators per  

unit, �̅� is the mean non-vaccinators per unit; 𝒘𝒊𝒋	is a matrix of spatial weights, and 𝑊 is the sum 

of all weights 𝒘𝒊𝒋. Values of Moran's I range from -1 to 1, with -1 corresponding to perfect 

clustering of dissimilar values (e.g. high-low clustering), 0 indicating no clustering, and 1 

indicating perfect clustering of similar values (e.g. high-high clustering)117. Despite its common 

use as a measure of clustering, the epidemiological interpretation of Moran’s I for non-

vaccination is ambiguous. This is because it measures the overall balance of clustering regardless 

of whether that clustering indicates increased (high-high) vs. diminished (low-low) risk. Because 

Moran’s I is also normalized between -1 and 1, direct interpretation in terms of outbreak 

thresholds is difficult. 
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The Isolation Index (or Aggregation Index)139 measures how much exposure members of 

a minority group have to one another118. In this context, it is computed as the average proportion 

of non-vaccinators in each areal unit weighted by the proportion of non-vaccinators in the overall 

population: 

 

Equation 3.2 The Isolation (Aggregation) Index  

 

𝐸𝑞. 3.2																																DEF
𝑥=
𝑋H I

𝑥=
𝑡=
JK

L

=MN

 

 

Where 𝑥= is the number of non-vaccinators per geographic unit, 𝑋 is the total number of non-

vaccinators in the environment, and 𝑡= is the total population per geographic unit.  If non-

vaccinators are randomly distributed across spatial areas, the value of the index will approach the 

global percent of non-vaccination, and will equal 1 when non-vaccinators are concentrated in a 

single location with no vaccinators.118  When applied to kindergarten-level non-vaccination rates, 

the Isolation Index measures the probability that a kindergartener with a waiver would come into 

contact with another unvaccinated student at a randomly selected school. Higher values indicate 

that exempted students are clustered in a few schools, while low values would indicate that such 

students are distributed across many schools. 

 The Modified Aggregation Index, proposed by Pingali et al.108, adjusts the Isolation 

Index to describe clustering of non-vaccination in only those locations in which transmission 

between non-vaccinators is possible139 by modifying the Isolation Index formula so that schools 

with only one unvaccinated student do not contribute to the value of the index: 
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Equation 3.3 The Modified Aggregation Index  

 

𝐸𝑞. 3.3																																D EF
𝑥=
𝑋H I

𝑥= − 1
𝑡= − 1
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L
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The Modified Aggregation Index reflects the probability that an exempted kindergarten student 

would come into contact with another exempted student in some geographic unit in which there 

are at least two non-vaccinated individuals. 

Finally, the Theil Index140 has been used to characterize scales of racial residential 

segregation,134 because it is additively decomposable, meaning that the specific contributions of 

each level to overall clustering can be isolated. The Theil Index, 𝐻, can be calculated as shown 

below: 

 

Equation 3.4 The Theil Index (H)  

 

𝐸𝑞. 3.4																																			𝐻Y⊂[ =
1

𝑁[𝐸[
D𝑁\(𝐸[ − 𝐸\)	
Y

\MN

 

 

Where 𝑁[ is the total population, 𝑁\ is the total population of a subunit (which will vary in 

different sizes in this example, schools, block groups, tracts, etc.). 𝐸[ is the total Shannon 

entropy of non-vaccination in the system, and 𝐸\ is the Shannon entropy of non-vaccination in a 

subunit. Entropy (Equation 3.5) measures the amount of uncertainty in an outcome, where 𝑝=	 is 

the proportion of non-vaccinators, and reaches a maximum at 𝑝== 0.5, and equals zero when 𝑝= = 

0 or 1:  
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Equation 3.5 Entropy (E) 

 

𝐸𝑞. 3.5																															𝐸 = 𝑝= ln I
1
𝑝=
J + (1 − 𝑝=) ln I

1
1 − 𝑝=

J 

 

Because 𝐻 is a weighted sum of the entropies at different levels, it can be decomposed into its 

macro and micro components to reveal the importance of within- and between-location 

heterogeneity for the intensity of clustering.140 This decomposition is useful for understanding  

the bias that would be incurred using different scales of analysis as surveillance units. However, 

the Theil index measures variation in local and global population composition rather than 

concentration of susceptible individuals, potentially limiting its applicability to outbreak risk.  

 All statistics were calculated for each year (2008-2018) for each level of aggregation 

(school, block group, tract, school district, and county). The calculation of these statistics 

required a definition of spatial neighbors. We conducted the analysis using the K nearest 

neighbors (KNN) method with K = 5 to represent a local phenomenon (i.e. using a smaller 

geographic catchment area). We also used K = 10 and 20 as sensitivity tests for the 

neighborhood definition, finding inconsequential variation in the results (Table 3.2). Analyses 

were performed in R (Vienna, Austria) version 3.6.0.  

 

3.5 Results 

3.5.1 Vaccine exemption rates at different geographic levels 

 Over the period 2008-2018, statewide vaccine exemption rates for students entering 

kindergarten in Michigan ranged from a minimum of 3.6% in 2015 to a maximum of 5.9% in 
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2012 (Table 3.1). The waiver rate increased from 2008-2013, fell in 2015 with institution of 

Michigan’s administrative rules change requiring an in-person education session prior to 

obtaining an NME, and subsequently increased from 2015 to 2018. The unweighted mean of 

school-level exemption rates is likely more useful for characterizing local risk than the 

population-weighted statewide average, with a high of 9.8% in 2014. The standard deviation of 

school-level waiver rates reached 26.1% in 2014, indicating large school-level variation while 

also illustrating how state-level aggregate statistics can obscure epidemiologically relevant 

information. From the block-group level and above, waiver rates converged towards the state 

average, and variability decreased, suggesting that the majority of spatial information loss occurs 

locally.  

 

3.5.2 Assessing aggregation bias in identifying high-risk schools 

Figure 3.1 shows the percent of students at-risk based on three waiver rate thresholds 

(5%, 10%, and 20%). For a relatively small threshold (5%), when waiver rates are measured at 

the block group, tract and school district level, the estimated number of students at-risk is 

consistent with estimates from the school level. However, aggregation to the county-level 

resulted in notable over-estimation of the student body at-risk from 2010-2014, and significant 

under-estimation from both 2008-2009 and 2015-2016 (Table 3.3). For waiver thresholds of 10% 

and 20%, county-level aggregation always underestimated the number of at-risk students: by an 

average of 82.2%, and 99.8%, respectively. Most public reporting of vaccination rates occurs at 

the county or state level, and these results suggest that rates derived from such data are likely to 

be significant underestimates of the size of at-risk student population.123  However, it is 

important to note that even smaller-scale aggregation biased the estimated population at-risk, 
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with more granular block group-level aggregation resulting in a 5.6%, 23.0%, and 52.9% 

reduction in the estimated number of students at-risk for 5%, 10%, and 20% waiver thresholds, 

respectively. The raw number of students estimated to be at-risk at each waiver threshold and 

aggregation level is available in Appendix B, Figure B.1.  

 

3.5.3 Clustering metrics 

 Values of the Moran’s I, Isolation Index, Modified Aggregation Index, and Theil Index 

over the study period are illustrated in Figure 2, and show very different trajectories both 

between levels of aggregation within and across metrics. Moran’s I showed substantial 

variability over time and increased with the level of aggregation, as the statistic measures 

clustering of like values, regardless of whether they are low or high. Thus, as levels of 

aggregation increase and fine-scale noise is reduced (NME rates move toward the center), 

Moran’s I increased. The Isolation Index and Modified Aggregation Indices had the largest 

values at the finest resolution of data and decreased as aggregation increased. Because these 

indices measure exposure of an unvaccinated student to another unvaccinated student, such 

values decrease with increasing spatial unit size as aggregation effectively smooths over schools 

with a large proportion of unvaccinated students. Finally, the decomposed Theil Index showed 

that the between block-group contribution to heterogeneity in vaccination averaged at 92.4%, 

between tract-level contribution was 80.5%, and between school district was 44.5%. Thus about 

55.5% of the heterogeneity in vaccination waivers occurred within school districts, 19.5% of this 

variability occurred within tracts, and only 7.6% occurred within block groups. (Figure 3.2, Table 

3.4). This within-unit component of variability can be conceptualized as approximating the 
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heterogeneity, or spatial uncertainty, in vaccination coverage that would be smoothed over by 

using aggregate estimates at each level.   

 

3.6 Discussion  

In this study, we characterized the changing landscape of non-vaccination in Michigan 

from 2008-2018 and assessed how one’s view of this landscape may change based on the 

measure of clustering and level of data employed.  We found that estimates of clustering varied 

significantly across commonly-employed spatial metrics and four scales of aggregation often 

found in administrative data and public reports. Perhaps the most commonly used statistic to 

assess clustering of non-vaccination is Moran’s I,29,30,38,131,133 yet our analysis found that Moran’s 

I values were highly dependent on the spatial scale employed – with higher levels of aggregation 

resulting in higher values, and no consistent pattern across spatial scales. Because Moran’s I does 

not distinguish between clustering of vaccinators vs. non-vaccinators, a state with many clusters 

of high vaccination rates would report the same statistic if these were replaced with identical 

clusters of low vaccination rates. Therefore, interpreting Moran’s I as an indicator of outbreak 

risk is challenging. Additionally, because Moran’s I increases with the scale of aggregation, the 

utility of this metric for assessing outbreak risk ambiguous.  

The Isolation and Modified Aggregation Indices, which are measurements of within-

group exposure, have been used by Buttenheim et al.108  and Pingali et al.134 to evaluate 

clustering of non-vaccination over space and time. We found that values of these indices 

decreased with increasing aggregation and reflected the same qualitative patterns at all spatial 

scales. Because these metrics measure the probability that an unvaccinated student would come 



 78 

into contact with another unvaccinated student at a given spatial scale, they have a direct and 

intuitive epidemiologic interpretation, with higher values suggesting increased outbreak risk.  

The Theil Index134 provides a metric for the macro and micro decomposition of 

contributions to heterogeneity in non-vaccination, with decomposition into between- and within-

group components helping to guide how biased aggregate estimates would be to different 

geographic units, as aggregation implicitly assumes homogeneity at and below that scale. We 

found that there was more variability in non-vaccination within than between school districts, 

indicating that epidemiologically relevant heterogeneity may be ignored if even a level as 

granular as school districts is used as the scale of analysis for vaccination data. At the tract and 

block group level, ~80 and >90% of variability in vaccination occurred between spatial units, 

indicating that these units are more homogeneous regions of non-vaccination, and perhaps better 

suited to being used for vaccine surveillance. Like Moran’s I, the Theil Index does not yield an 

intuitive metric of outbreak risk, but is a very useful tool for understanding the appropriate level 

of vaccination and disease surveillance in different contexts.       

Finally, we found that these clustering metrics had varying sensitivity to changes in 

exemption rates following Michigan’s 2015 administrative rules change. Moran’s I did not 

exhibit any discontinuous change before and after the policy change in 2015, and the Theil Index 

did not show large changes in heterogeneity of non-vaccination or its spatial decomposition. By 

contrast, the Isolation and Modified Aggregation Indices clearly reflected an impact of the policy 

change at all scales that is consistent with population-level changes. The differential values and 

ability of these four metrics to capture changes in the data showcase the importance of choosing 

a clustering metric to capture epidemiologic risk, and evaluate policy changes based on their 

potential impacts on susceptibility to disease outbreaks. Based on evidence from our findings in 
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this paper, and in a simulation-based study (Chapter 2) that showed strong correlation of the 

Isolation Index to outbreak probability and size, we believe that the Isolation Index should be 

used more readily as a measure of informative clustering of non-vaccinators for assessing 

outbreak risk and community susceptibility.  

 

3.6.1 Strengths and limitations 

Despite its use of highly granular data and thorough review of different clustering 

measurements, our study has some limitations. Our use of kindergarten exemption data 

necessarily results in an incomplete picture of the vaccination status of the full student 

population. It is also possible that the data are incomplete or entries were inconsistent over time. 

We do not break out exemptions by type in this analysis, however future studies could evaluate 

differential clustering patterns specific to philosophical, religious, and medical waivers, and 

could employ medical exemptions as a type of control as they are theoretically less likely to 

cluster geographically. This study has other notable strengths: this data source represents all 

schools: private, day-care, pre-kindergarten, charter, and public, with at least 5 students in the 

state of Michigan, providing a more complete assessment of vaccination status and clustering 

patterns than analyses using only public school data. Additionally, this study uses school-level 

data, which are appropriate to use as a ‘gold standard’ for VPD risk, the level at which much 

transmission occurs.110  

 

3.7 Conclusions 

In conclusion, we found that aggregating school-level vaccination data to levels 

commonly used for public reporting can lead to large downward biases in identifying the number 
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and location of at-risk students. We also found that four commonly-employed clustering metrics 

provided different interpretations of the landscape of non-vaccination in Michigan, both over 

time and at different spatial scales. Overall, values of the Isolation and Modified Aggregation 

Indices appeared to be the most consistent across spatial scale and most sensitive to detecting the 

2015 reduction in vaccination waivers. These findings have direct consequences for surveillance 

and monitoring of vaccination rates in the U.S., as vaccination and exemption rates are typically 

monitored at the state or county-level. This paper shows the importance of choosing clustering 

metrics with their mechanistic interpretations in mind: be it large- or fine-scale heterogeneity, or 

between-and-within group contributions to spatial variation. Additionally, because metrics vary 

due to the chosen scale of analysis, it is important to present metrics at multiple spatial scales 

whenever possible. If multiple spatial scales and metrics are not possible, we encourage 

investing in using finer spatial scales to assess spatial clustering, such as the block group or tract 

level, where all metrics were more able to capture fine-scale heterogeneity that is important for 

assessing outbreak risk. We also suggest employing the Isolation Index because of its sensitivity 

to changing vaccination rates and simulation-based evidence of its utility in assessing outbreak 

potential. Future studies should explore the linkages between different characterizations of 

spatial clustering of non-vaccination and subsequent outbreak potential to provide additional best 

practices on the utility of different metrics.  
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Figure 3.1 Proportion of kindergarten students deemed to be ‘at-risk’ based on three thresholds 
of vaccination waivers (5%, 10%, and 20%), at four levels of aggregation: block group, tract, 
school district, and county, Michigan 2008-2018  

 

Proportion of detected students deemed to be ‘at-risk’ based on three thresholds of vaccination 
waivers: 5% (indicated by circles and solid line), 10% (indicated by x’s and dotted line), and 
20% (indicated by triangle and dashed line), with aggregation to the A) block group, B) tract, C) 
school district, and D) county level over the study period from 2008-2018. For the 5% waiver 
threshold, low-level aggregation (panels A-C) does not lead to much bias, though county-level 
aggregation results in positive and negative bias in the proportion of at-risk students. For the 
10% and 20% waiver thresholds, higher levels of aggregation systematically result in greater 
underestimation of the at-risk population. 
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Figure 3.2 Assessing four metrics of global clustering at four spatial scales: schools, block 
groups, tracts, and school districts, to describe vaccination clustering in MI from 2008-2018  

 
 
Assessing four metrics of global clustering at four spatial scales to describe vaccination 
clustering in Michigan from 2008-2018: A) Moran’s I, B) the Scaled Isolation Index (the 
Isolation Index normalized by subtracting the mean overall waiver rate each year, so that the 
minimum value is 0), C) the Modified Aggregation Index, and D) the decomposed Theil Index – 
reflecting the within-group segregation or heterogeneity at each spatial scale. Each metric is 
presented over time and broken out by level of aggregation: baseline values at the school-level, 
and aggregate values at the block group, tract, and school district-levels. Note – for the Theil 
Index, the ‘school-level’ line indicates the total (non-decomposed) value of the Theil Index as 
schools are the baseline unit of aggregation, thus all of the variability would be within schools. 
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Table 3.1 Unweighted mean and standard deviation of kindergarten waiver rates (%) in 
Michigan from 2008-2018 at the school, block group, tract, school district, county, and state-
level 

 Unweighted Mean Waiver Rate at each Geographic Level (%)a 

Year Schools Block 
Groups Tracts School 

Districts Counties State 

2008 6.1 (14.7) 4.7 (6.5) 4.5 (5.9) 4.3 (4.0) 4.0 (2.4) 4.2 
2009 6.5 (15.4) 5.0 (6.7) 4.9 (6.1) 4.7 (4.8) 4.3 (2.7) 4.4 
2010 8.8 (18.0) 6.5 (7.6) 6.3 (7.2) 6.3 (5.6) 5.7 (3.4) 5.7 
2011 8.5 (20.0) 6.4 (7.9) 6.3 (7.4) 6.2 (5.8) 5.6 (3.2) 5.5 
2012 9.3 (15.9) 6.9 (8.1) 6.6 (7.3) 6.0 (4.7) 6.0 (3.0) 5.9 
2013 9.2 (19.1) 6.8 (8.5) 6.5 (7.5) 6.3 (6.3) 5.6 (3.8) 5.8 
2014 9.8 (26.1) 6.7 (10.8) 6.5 (10.0) 5.8 (8.1) 4.9 (3.0) 5.3 
2015 6.0 (13.6) 4.4 (6.4) 4.1 (5.3) 4.0 (3.9) 3.8 (2.3) 3.6 
2016 7.3 (23.7) 5.0 (8.8) 4.5 (7.3) 4.2 (5.2) 3.9 (2.3) 3.7 
2017 7.7 (20.5) 5.4 (8.6) 5.0 (7.3) 4.8 (5.8) 4.5 (2.5) 4.2 
2018 7.3 (14.6) 5.8 (9.0) 5.2 (6.7) 5.0 (5.0) 4.7 (2.3) 4.5 

 

a This table shows the unweighted mean and standard deviation of overall vaccine waiver rates 
at individual schools, block groups, tracts, school districts, and counties, to express variability in 
the landscape of vaccination across the state of Michigan depending on which scale is used. The 
standard deviation indicates the range of waiver rates present at many of these smaller spatial 
scales, revealing heterogeneity in vaccination levels obscured by state-level averages. 
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Table 3.2 Summary of Moran’s I values of spatial autocorrelation at three different neighbor 
definitions: KNN5, KNN10, and KNN20 across vaccine waiver types using kindergarten 
vaccination data in Michigan, 2008-2018 

  KNN5 KNN10 KNN20 

YEAR 
Number of 

Schools Moran’s I Moran’s I Moran’s I 
Total Waivers 

2008 2346 0.0415 0.0433 0.0386 
2009 2258 0.0786 0.0661 0.0634 
2010 2150 0.0678 0.0644 0.0632 
2011 2125 0.0575 0.0552 0.0508 
2012 2072 0.1062 0.0947 0.0893 
2013 2077 0.0794 0.0725 0.0602 
2014 2200 0.038 0.0369 0.0269 
2015 2045 0.0789 0.0679 0.0643 
2016 2164 0.0467 0.0394 0.0311 
2017 2140 0.0326 0.0323 0.0314 
2018 2116 0.0382 0.0436 0.0322 

Philosophical Waivers 
2008 2346 0.0503 0.0519 0.0457 
2009 2258 0.0449 0.0446 0.0478 
2010 2150 0.0913 0.0797 0.0787 
2011 2125 0.0834 0.0777 0.0718 
2012 2072 0.1264 0.1171 0.1024 
2013 2077 0.1101 0.1036 0.0835 
2014 2200 0.0413 0.0408 0.0317 
2015 2045 0.0891 0.0736 0.0699 
2016 2164 0.0432 0.0468 0.0343 
2017 2140 0.058 0.0557 0.0517 
2018 2116 0.046 0.048 0.0368 

Religious Waivers 
2008 2346 0.0026 0.0058 0.0024 
2009 2258 0.0838 0.0455 0.0265 
2010 2150 0.0029 0.0036 0.0024 
2011 2125 0.0158 0.0191 0.0135 
2012 2072 0.0122 0.0075 0.0057 
2013 2077 0.0081 0.0083 0.0066 
2014 2200 0.0124 0.0097 0.0075 
2015 2045 0.0565 0.0564 0.0507 
2016 2164 0.0347 0.0229 0.0244 
2017 2140 0.0255 0.0243 0.019 
2018 2116 0.0141 0.0122 0.0106 

Medical Waivers 
2008 2346 0.023 0.0267 0.0233 
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2009 2258 0.0221 0.0163 0.0131 
2010 2150 0.0208 0.0292 0.0239 
2011 2125 0.0318 0.0309 0.0344 
2012 2072 0.0219 0.0217 0.0202 
2013 2077 0.0698 0.0608 0.0477 
2014 2200 0.0213 0.0229 0.0136 
2015 2045 0.0152 0.0111 0.0077 
2016 2164 0.0316 0.0159 0.0148 
2017 2140 -0.0027 -0.0029 -0.0016 
2018 2116 0.0222 0.0105 0.0036 
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Table 3.3 Bias results from aggregation analyses at 5%, 10%, and 20% thresholds of 
vaccination waivers to show raw bias and bias percent in estimating number of students ‘at-risk’ 
(above these thresholds) at different spatial scales using kindergarten vaccination data from 
Michigan 2008-2018 

5% Waiver Threshold 

Year 
Total 

schools 
at-risk 

Total 
students 
at-risk 

Bias by 
block 
group 

Bias by 
tract 

Bias by 
school 
district 

Bias by 
county 

Bias % 
by 

block 
group 

Bias % 
by tract 

Bias % 
by 

school 
district 

Bias % 
by 

county 

2008 855 43480 -2806 -2674 -2615 -12148 -6.5% -6.1% -6.0% -27.9% 
2009 864 44956 -4196 -3128 -2330 -14021 -9.3% -7.0% -5.2% -31.2% 
2010 1002 54121 -1956 -635 4046 21814 -3.6% -1.2% 7.5% 40.3% 
2011 978 53206 -2531 -1399 3315 21410 -4.8% -2.6% 6.2% 40.2% 
2012 1016 56156 -1491 -977 2490 18682 -2.7% -1.7% 4.4% 33.3% 
2013 1006 54577 -1832 -648 715 16138 -3.4% -1.2% 1.3% 29.6% 
2014 965 47542 -1155 715 4394 19375 -2.4% 1.5% 9.2% 40.8% 
2015 650 30805 -1420 -1473 -589 -14295 -4.6% -4.8% -1.9% -46.4% 
2016 697 31331 -2687 -724 -1998 -12679 -8.6% -2.3% -6.4% -40.5% 
2017 760 36778 -3191 -2676 2558 -196 -8.7% -7.3% 7.0% -0.5% 
2018 860 42021 -2742 -2097 -249 -4251 -6.5% -5.0% -0.6% -10.1% 
Avg 878 44998 -2364 -1429 885 3621 -5.6% -3.4% 1.4% 2.5% 

10% Waiver Threshold 

Year 
Total 

schools 
at-risk 

Total 
students 
at-risk 

Bias by 
block 
group 

Bias by 
tract 

Bias by 
school 
district 

Bias by 
county 

Bias % 
by 

block 
group 

Bias % 
by tract 

Bias % 
by 

school 
district 

Bias % 
by 

county 

2008 370 13514 -3072 -3066 -9335 -12611 -22.7% -22.7% -69.1% -93.3% 
2009 418 16808 -4116 -4758 -9574 -15375 -24.5% -28.3% -57.0% -91.5% 
2010 580 26370 -4281 -4742 -7130 -21177 -16.2% -18.0% -27.0% -80.3% 
2011 553 25274 -5695 -6302 -7284 -21561 -22.5% -24.9% -28.8% -85.3% 
2012 593 26858 -4881 -4864 -8986 -20991 -18.2% -18.1% -33.5% -78.2% 
2013 575 25709 -4525 -4276 -8107 -5848 -17.6% -16.6% -31.5% -22.7% 
2014 573 22748 -5519 -5677 -7168 -21277 -24.3% -25.0% -31.5% -93.5% 
2015 303 9407 -3496 -4127 -7202 -8446 -37.2% -43.9% -76.6% -89.8% 
2016 310 7941 -2141 -2626 -5280 -7145 -27.0% -33.1% -66.5% -90.0% 
2017 367 11262 -2131 -2605 -7356 -10127 -18.9% -23.1% -65.3% -89.9% 
2018 394 12933 -3145 -3999 -9107 -11632 -24.3% -30.9% -70.4% -89.9% 
Avg 458 18075 -3909 -4277 -7866 -14199 -23.0% -25.9% -50.7% -82.2% 
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20% Waiver Threshold 

Year 
Total 

schools 
at-risk 

Total 
students 
at-risk 

Bias by 
block 
group 

Bias by 
tract 

Bias by 
school 
district 

Bias by 
county 

Bias % 
by 

block 
group 

Bias % 
by tract 

Bias % 
by 

school 
district 

Bias % 
by 

county 

2008 121 2776 -1605 -1865 -2685 -2776 -57.8% -67.2% -96.7% -100% 
2009 139 3670 -2147 -2650 -3525 -3670 -58.5% -72.2% -96.0% -100% 
2010 185 5229 -2697 -3376 -4792 -5229 -51.6% -64.6% -91.6% -100% 
2011 192 5975 -3244 -3963 -5561 -5975 -54.3% -66.3% -93.1% -100% 
2012 217 6390 -3820 -4029 -6151 -6390 -59.8% -63.1% -96.3% -100% 
2013 209 6671 -3238 -3723 -6438 -6499 -48.5% -55.8% -96.5% -97.4% 
2014 225 5072 -3070 -3584 -4871 -5072 -60.5% -70.7% -96.0% -100% 
2015 105 1876 -930 -1289 -1803 -1876 -49.6% -68.7% -96.1% -100% 
2016 145 2281 -973 -1576 -2136 -2281 -42.7% -69.1% -93.6% -100% 
2017 164 2771 -1467 -1856 -2657 -2771 -52.9% -67.0% -95.9% -100% 
2018 160 2674 -1226 -1750 -2581 -2674 -45.8% -65.4% -96.5% -100% 
Avg 169 4126 -2220 -2696 -3927 -4110 -52.9% -66.4% -95.3% -99.8% 
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Table 3.4 Decomposition of Theil Index values using kindergarten vaccination data from 
Michigan, 2008-2018 

Theil Index Decomposition: Values and % Segregation Attributable to Between-Group at Each 
Spatial Scale 

Year 

Total 
Segregation 

(School-
Level) 

Between 
Block 
Group 

Segregation 

% 
Between 

Block 
Group 

Between 
Tract 

Segregation 

% 
Between 

Tract 

Between 
School 
District 

Segregation 

% 
Between 
School 
District 

2008 0.141 0.130 92.4% 0.114 81.1% 0.062 44.1% 
2009 0.142 0.133 94.0% 0.118 83.4% 0.070 49.2% 
2010 0.131 0.123 93.5% 0.110 83.6% 0.066 50.2% 
2011 0.135 0.126 93.9% 0.114 84.4% 0.071 52.5% 
2012 0.131 0.122 93.4% 0.110 83.9% 0.065 49.5% 
2013 0.136 0.127 93.3% 0.112 82.3% 0.067 48.9% 
2014 0.149 0.136 91.4% 0.118 79.6% 0.066 44.2% 
2015 0.140 0.130 92.8% 0.111 78.9% 0.056 40.1% 
2016 0.144 0.133 92.3% 0.112 77.8% 0.055 38.0% 
2017 0.140 0.126 90.2% 0.106 76.1% 0.049 34.8% 
2018 0.120 0.108 90.1% 0.089 74.2% 0.044 36.8% 

Average 0.137 0.127 92.4% 0.110 80.5% 0.061 44.5% 
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  Does Requiring Parental Vaccine Education Reduce Non-Medical Exemptions? 

Evaluating the Long-Term Impact of Michigan’s 2015 Administrative Rules Change 4 

 

4.1 Significance statement 

In the United States, vaccines are regulated at the state level via school entry 

requirements. Currently, 45 out of 50 states permit non-medical vaccine exemptions (NMEs) for 

religious or philosophical reasons. Michigan allows both philosophical and religious exemptions, 

and facing the fourth highest exemption rate in the U.S. in 2014, changed its state Administrative 

Rules, effective January 1st, 2015, to curb NME rates. This rule mandated parents to attend an in-

person vaccine education session at their local health department before obtaining an NME. 

There has not been a long-term evaluation of the success of this policy, and Michigan was the 

first state to try an administrative change regarding parental education as a strategy for reducing 

NME rates. As a result, in this chapter we explore the impact of this rule change on the landscape 

of exemptions in Michigan from 2011-2018, how exemptions are geographically clustered 

throughout the state, and whether the rule change affected the distribution of those exemptions.  

 
 

 

4 This manuscript is under review at Pediatrics as: Masters NB, Zelner J, Delamater PL, Hutton 
D, Kay M, Eisenberg MC, Boulton ML. Does Requiring Parental Education Reduce Vaccine 
Exemptions? Evaluating Michigan’s 2015 Administrative Rules Change.  
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4.2 Abstract 

Vaccine hesitancy is a growing threat to health in the United States. Michigan’s 

Administrative Rules were changed in 2015, requiring parents to attend an in-person education 

session at their local health department prior to obtaining a non-medical vaccine exemption 

(NME). We evaluated sociodemographic predictors of NMEs before and after this change using 

binomial regression and measured geographic clustering using the Local Indicators of Spatial 

Association. Immediately following Michigan’s rule change, NMEs fell dramatically. However, 

NME rates rebounded in subsequent years, returning to near-2014 levels by 2018, although 

income disparities in NME rates decreased. Additionally, philosophical, religious, and medical 

vaccine waivers exhibited distinct geographic patterns, which largely persisted after 2015. While 

the rule change caused a short-term decline in NME rates, the dramatic rise in NMEs in the 

following four years indicates that requiring parental education prior to receiving a waiver did 

not cause a sustained reduction on Michigan’s NME rates. 

 

4.3 Introduction 

Vaccine hesitancy is an alarming global phenomenon, with the World Health 

Organization (WHO) declaring it one of the top 10 leading threats to health.141 The WHO defines 

vaccine hesitancy as: “delay in acceptance or refusal of vaccines despite availability of 

vaccination services.”45 In higher income countries, vaccine hesitancy is more common among 

affluent and highly educated groups, though this hesitancy may not directly reflect vaccine 

uptake, as children living below the federal poverty level have been found to have lower 

vaccination coverage than those above it.15,53  
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In North America and Europe, parental concerns around vaccine safety and religious and 

civil liberties are leading to increasing rates of non-medical (philosophical or religious) vaccine 

exemptions (NMEs).87 The rising rates of non-vaccination indicated by these NMEs is leading to 

increasingly frequent and severe outbreaks of vaccine preventable diseases (VPDs), such as 

measles. In 2019, the U.S. experienced its highest number of measles cases in 27 years14 and 

nearly lost its measles elimination status,10 which is conditional on having no circulation of 

measles in the community for 12 continuous months.1,132  

In 2019, U.S. measles outbreaks primarily occurred in areas with high rates of religious 

exemptions, including Orthodox Jewish communities. The four states most affected were New 

York (914 cases), Washington (86 cases), California (68 cases), and Michigan (46 cases).132 In 

New York, statewide measles vaccination coverage for children in Pre-K through 12th grade was 

98%,1 well above the threshold thought to be sufficient to confer herd immunity (~95%), 

however, the outbreak occurred in schools with a measles vaccination rate of 77%, illustrating 

how heterogeneity can lead to outbreaks even when overall coverage reaches herd immunity 

thresholds.19 In March 2019, an infectious person traveled from New York to Michigan, 

initiating an outbreak in the Orthodox Jewish community in Oakland County, which would 

become the largest measles outbreak in Michigan since 1991.142  

In response to accelerating VPD outbreaks, some states have sought to reduce the rate of 

NMEs. In the U.S., school entry vaccination requirements are regulated at the state level and are 

highly variable in terms of the parental burden imposed to obtain an NME.91,92 Some state-

specific exemption policies recently changed due to measles concerns: in 2019, New York, 

Maine, and Washington tightened their exemption policies to reduce the number of NMEs.98 

Despite this, as of December 2020, 45 states allow NMEs for religious or philosophical reasons, 
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all but California, Maine, Mississippi, New York and West Virginia.. More restrictive NME 

policies have been shown to decrease the number of NMEs,95,24 reducing outbreak risk because 

exempted children have a higher risk of acquiring and transmitting VPDs.87,100 However, as seen 

in New York, schools with high NME rates, even in well-vaccinated communities, can create 

local regions of susceptibility to disease, and there is increasing evidence that such geographic 

clustering of NMEs is a significant driver of outbreaks.101,93  

In 2014, Michigan had the fourth highest vaccination exemption rate in the U.S. In 

response to this, Administrative Rule 325.176(12) was changed, effective January 1st, 2015, 143 to 

require parents to attend an in-person vaccine education session at the local health department 

before obtaining an NME.93,129 One study found that philosophical exemptions decreased the 

year following the rule change, but did not examine longer-term trends, and thus was unable to 

evaluate whether NME rates remained lower or rebounded to pre-rule change levels.144 While 

Michigan was the first state to require in-person waiver education at a local health department, 

Washington (SB 5005 in 2011145) and California (AB 2109 in 201424) both previously passed 

legislation requiring parents to receive counseling from a health care provider before obtaining 

an NME. These policies had different results – SB 5005 decreased rates of exemptions and 

reduced geographic clustering of exemptions,145 effectively lowering outbreak risk, while AB 

2109 reduced NME rates for incoming kindergarteners, but had no apparent effect on geographic 

clustering, which is just as important a driver of outbreaks, and should be prioritized as an 

outcome of these policies.93 California passed SB 277 in 2016, removing NMEs entirely, and 

making it impossible to evaluate the longer-term impact of AB 2109.26  

Michigan’s 2015 Administrative Rule change thus provides a unique opportunity to 

evaluate the lasting impact of in-person vaccine education sessions at a local health department 
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on NME rates, implemented via administrative action. In this study, we: (1) examine the four-

year impact of the Administrative Rules change on NME rates in Michigan, and (2) describe the 

geography and persistence of waiver clustering using a Local Indicators of Spatial Association 

(LISA) approach, and finally (3) explore predictors of NMEs before and after the policy 

accounting for spatial variation.  

 

4.4 Methods 

4.4.1 Data source 

 School-level vaccine exemption data from 2008-2018 were obtained from the Michigan 

Department of Health and Human Services (MDHHS). These data were aggregated and were 

previously publicly available on the MDHHS website, thus no IRB approval was required. Data 

included school name, calendar year, grade, number of children enrolled, number of students up-

to-date, and number of exemption waivers issued by type. Michigan kindergarteners were 

required to receive a second dose of the Varicella vaccine in 2010,146 thus we selected an 

analytic period of 2011 – 2018 to maintain constant vaccine requirements. Data cleaning and 

geocoding, described in Masters et al.147, resulted in a sample of 2,769 schools from 2011-2018, 

which were spatially joined to 2010 school districts to link per-capita income, percent white 

population, and percent population over age 25 with a college degree from the American 

Community Survey (ACS) 5-year estimate 2018 (data from 2013-2017).  
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4.4.2 Temporal trends of non-vaccination  

For each year, the percent of kindergarteners in each school with vaccine exemptions was 

calculated by dividing the number of students with a vaccine exemption by the number of 

enrolled students. Data were aggregated to the school district level by summing NME counts in 

schools based upon their school district. Geographic trends in exemption rates were broken down 

by religious, philosophical, and medical exemptions and evaluated from 2011-2014 and 2015-

2018. Analysis was done using R version 3.6.0 and maps were generated using ESRI ArcMap 

version 10.7.1.  

 

4.4.3 Impact of the 2015 policy change 

We used a hierarchical binomial regression model (using the R package lme4148) to 

understand variation in school-level NME rates. This model included random intercepts at the 

school district-level and a binary variable indicating whether the time period was before or after 

the rule change. Geographic clustering of waivers (by type) before and after the change was 

assessed using the Local Indicator of Spatial Association (LISA),149 which identifies spatial 

clusters of high and low values of the waiver rate (Appendix Equation 1).24 The LISA statistic 

was calculated for school districts, a meaningful administrative unit for policy action and 

parental decision-making, for each year, and the results were aggregated to determine whether 

and how long clusters persisted over time in the pre-and post-implementation periods.  
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4.4.4 Sociodemographic predictors of NMEs  

We used a hierarchical, mixed effects Bayesian binomial model with school district-level 

random intercepts (using the R package rstanarm150) to evaluate predictors of NMEs over the 

study period accounting for variation at the school district-level inherent in the data. We used 

zero-mean Gaussian priors for the intercept (sd = 10), and coefficients (sd = 2.5). We regressed 

school-level NME rates on school district-level demographics, including percent adults with 

college education, per-capita income, and percent white, all categorized into tertiles, school type, 

and a continuous variable calculated as the travel time in hours to the nearest local health 

department from a given school, using ArcGIS’s origin destination cost matrix calculation 

service. Based on model fitting, health department travel time and per-capita income were 

interacted with year (centered at 2014), to evaluate whether associations changed after the 

policy’s implementation. We ran a counterfactual exercise using the model output to generate the 

posterior mean of the marginal probability of obtaining an NME in each year, fixing the 

distribution of school types, travel times, and demographics. This presents the predicted 

probability of an NME if every kindergartener in Michigan were in each type of school, or in 

each category of per-capita income, percent college-education, percent white, or percentile 

distance to the health department and allows us to make counterfactual comparisons of predicted 

NME probabilities in these groups.  

 

4.5 Results 

4.5.1 Temporal trends of non-vaccination  

From 2011–2014, overall waiver rates remained fairly stable, for an average of 5.6% per 

year. However, the proportion of total waivers due to NMEs increased during this period while 
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medical exemptions decreased (Figure 4.1). After Michigan’s rule change was implemented on 

January 1st, 2015 (after the 2014-2015 school year began, thus first impacting waiver rates for 

the 2015 year), a marked reduction in waiver rates to 3.6% is evident. The unadjusted binomial 

model (Appendix Table C.1) showed that the odds of obtaining an NME were significantly lower 

in the four years after the policy was put into effect compared to the four years prior. However, 

after 2015, waiver rates increased each year, rising to 3.7% in 2016, 4.2% in 2017, and 4.5% in 

2018 (a 26% fold increase since 2015). Since 2015, medical exemption rates stayed stable while 

philosophical and religious waiver rates increased by 18% and 70%, respectively.  

Public and charter schools had the lowest waiver rates, around 5% for the duration of the 

study period, though charter schools had notably increasing rates of waivers after 2015 (Figure 

4.2, Appendix Table C.2). On average, 91.3% of kindergarteners included in this dataset 

attended public school, 7.8% attended private school, 0.6% attended charter school, and 0.2% 

attended virtual school. Private schools had higher rates of waivers from 2011-2018, around 10% 

prior to the 2015 policy, dropping to 7.3% in 2015, and increasing steadily each year, reaching 

8.6% by 2018. Virtual schools had the highest waiver rates – above 27% in 2012, 2013, and 

2018.  

 

4.5.2 Impacts of the policy on geographic clustering of NMEs 

 While NME rates fell in the immediate aftermath of the 2015 rule change, rates have 

increased steadily since and maintained relatively stable patterns of geographic clustering. Figure 

4.3 shows local clusters of high vaccine waiver rates which have persisted across Michigan for 

the period from 2011-2014 and from 2015-2018. Different types of NMEs followed distinct 

patterns of clustering within the state, with each type characterized by its own ‘at-risk’ region. 



 97 

Figure 4.3A shows that philosophical waiver clusters persisted in rural, remote regions of the 

Upper Peninsula, that a cluster in the Northwestern lower peninsula disappeared after 2015, and 

that a new cluster in Mid-Michigan emerged after 2015. There were 56 school districts in a high 

philosophical exemption cluster from 2011-2014, decreasing to 26 for the period from 2015-

2018, though the number of persistent clusters (3+ years) was unchanged, with 8 in each time 

period (Appendix Table C.3). The distribution of religious exemption clusters showed little 

change after 2015 (Figure 4.3B): there were 32 religious exemption school district clusters in 

both time periods, though fewer persistent clusters afterwards. Finally, for medical exemptions 

(Figure 4.3C), some persistent clusters in the Northeastern lower peninsula disappeared, yet a 

large, more persistent cluster appeared in Southeast Michigan, overlapping with a philosophical 

exemption cluster. The number of medical exemption clusters dropped from 43 to 25, though 

both time periods had one persistent cluster. Overall, the 2015 rule change appeared to reduce 

the number of philosophical exemption clusters, diminished the spatial distribution of some 

medical exemption clusters, but religious exemption clusters were largely unchanged – with 

some additional clusters appearing after implementation of this administrative change.  

 

4.5.3 Identifying predictors of NME rates  

 Our counterfactual analysis of the predicted probability of an NME if every 

kindergartener in Michigan were in each category of select demographic variables revealed that 

the average marginal probability of obtaining an NME was similar for kindergarteners whose 

school district was in the two lowest tertiles of per-capita income (with the probability of an 

NME ranging from 2.6% to 4.7% over the study period), but was higher for those in the highest 

tertile of per-capita income (as high as 7.2% in 2012, Figure 4.4, Appendix Table C.4). After the 
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rule change in 2015, the discrepancy in the posterior mean average probability of an NME 

diminished between those in the wealthiest tertile and the poorer two tertiles. School district 

level percent whiteness was monotonically associated with NME rates: kindergarteners in the 

lowest (1st) tertile had the lowest NME probability and those in the highest (3rd) tertile had the 

highest (Appendix Table C.4). For percent college education, a different association was 

observed; kindergarteners in the middle tertile had the highest probability of an NME vs. the 

other tertiles (Appendix Table C.4).  Increased travel time to the health center did not have a 

predictive effect on average probability of an NME (Appendix Figure C.2, Appendix Table C.6).  

 

4.6 Discussion 

High rates of NMEs, the result of widespread vaccine hesitancy, are a critical public 

health challenge that have begun to reverse decades of public health success in the control of 

VPDs. Rising NME rates across the U.S. over the last two decades have led to the passage of 

legislation that attempts to make them more difficult to obtain.95 While New York, Maine, and 

Washington tightened restrictions on NMEs in the wake of the 2019 measles outbreaks, 

Michigan did not pass comparable legislation. In fact, even minor policy remedies presented in 

the state have been stymied: Michigan introduced HB 4610 in May 2019 to make schools with 

>5% waiver rates publicly post such information, but there has been no movement on this bill.151 

As such, it is clear that Michigan’s 2015 Administrative Rule change, which did not require 

legislative action, was a strategic avenue for MDHHS to attempt to reduce NMEs while avoiding 

political conflict with an unsympathetic state legislature.93 Although the rule change induced a 

sharp decline in the number of NMEs in the year after it went into effect, NME rates in Michigan 

have since rebounded nearly to pre-2015 levels, suggesting that this change has not had an 
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enduring impact. Interestingly, medical exemption rates decreased after the rule change, and 

have remained at these reduced levels since 2015. The rate of religious exemptions has 

rebounded faster than philosophical exemptions, which is concerning given that the 2019 

outbreaks were primarily driven by religious clusters. This rebound also suggests that increasing 

restrictions alone – particularly if other avenues remain to obtain NMEs – is unlikely to reduce 

vaccine hesitancy and stem the tide of vaccine refusal. 

Michigan’s increasing waiver rates mirror national trends: from 1991 to 2004, the mean 

state-level NME rate increased from 0.98% to 1.48%,87,94 and from 2011-2016, the national rate 

of NMEs increased from 1.75% to 2.25%.95 Michigan’s high rate of NMEs has put the state at 

risk: Olive et al. identified Michigan’s Oakland, Macomb, and Wayne counties to be among the 

10 counties in the U.S. with the highest numbers of NMEs. The risk associated with this falling 

vaccination coverage became more apparent during 2019, when Oakland County was the 

epicenter of the measles outbreak in Michigan.23 Our analysis confirmed that NME rates are 

persistently high in these counties. Importantly, our study also identified fine-scale school 

district-level clustering of philosophical exemptions present in Oakland county and clusters of 

religious exemptions in Macomb county, indicating that VPD risk may also be high within 

particular schools and localities. Overall, the fact that in four years, waiver rates have already 

rebounded to nearly pre-rule change levels, indicates that stronger legislative and public health 

action, combined with multi-faceted approaches that do not rely exclusively on legislative and 

administrative changes, is needed to curb the increasing VPD outbreak risk in Michigan.152  

Our findings that private schools had about twice the rate of exemptions as public and 

charter school aligns with research from California.93 Though the vast majority of 

kindergarteners in this dataset attended public school, ~8% of the students attended private 
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schools, and thus the increase in private school exemption rates is concerning. Virtual schools  

provide a glimpse at the non-vaccination rates among homeschooled children over this time 

period, and had extremely high exemption rates. Additionally, the number of kindergarten 

students enrolled in virtual schools increased nearly ten-fold over the study period, from 57 

students in 2011 to 487 students in 2018, thus the high rates of exemptions in the virtual school 

children is particularly worrying if these numbers continue to rise, which may occur especially in 

the aftermath of the COVID-19 pandemic.  

We also identified persistent spatial clusters with consistently high waiver rates both 

before and after the rule change.29,131,133,134 This is important because spatial clustering of non-

vaccination may dramatically increase the risk of outbreaks at the local and population level.153 

Given that students who obtain kindergarten vaccine exemptions will age through the 

educational system, a region with persistently high kindergarten waiver rates is likely to have 

markedly reduced vaccination levels in its student body, accumulating susceptible children to 

outbreaks of VPDs.26 Our analysis showed that many exemption clusters remained persistent 

after the rule change, which more strongly aligns with the aftermath of AB 2109 in California, 

which decreased exemption rates but not clustering,24,126,154 than Washington’s SB 5005. 

Additionally, the geography of philosophical and religious NMEs were distinct, with 

philosophical clusters persisting in a stretch of school districts in Southeast and Western 

Michigan, with some clusters in the Upper Peninsula, while religious waivers clustered in 

Southeast Michigan. These findings generally concur with Mashinini et al.154 However, our 

analysis used school districts as the clustering unit and differentiated clusters based on their 

persistence, providing results at an actionable geographic unit. The distinct patterns of spatial 

clustering observed for different waiver types indicate that the downstream impacts of policy 
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changes to further restrict access to NMEs would likely play out heterogeneously across a state 

characterized by a diverse socioeconomic, racial, and religious landscape.  

Results from our counterfactual exercise using Bayesian regression output underscored 

that school type was a strong predictor of NME rates, with virtual schools and private schoolers 

having higher probabilities of waivers than their public school counterparts. Distance to the 

health center was not a strong predictor of school-level waiver rates, highlighting that this policy 

likely only reduced exemptions due to convenience, rather than conviction, and potentially 

indicating that those who pursed an NME after 2015 were sufficiently motivated that the 

opportunity cost associated with traveling to the health department was not a high barrier. We 

found non-linear patterns across school-district level percent whiteness, percent college-educated 

adults, and per-capita income. This generally concurs with prior research where under-

vaccinated children are often minorities of lower socioeconomic status and educational 

attainment, while completely non-vaccinated children are often white, wealthy, educated, and 

privately insured.92  

 

4.6.1 Strengths and limitations  

A notable strength of this study is the use of school-level data to identify potential 

geographic clustering and regions where herd immunity might be broken due to high exemption 

rates. This data source represents all schools: private, day-care, charter, virtual, and public, with 

at least five students in Michigan, providing a near-complete assessment of kindergarten 

vaccination status. Additionally, school-level data is appropriate here given that it is the unit of 

aggregation at which much of transmission occurs. Geocoding these schools allowed for linkage 
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of sociodemographic variables from the ACS, permitting measures of community-level 

demographics while employing transmission-level vaccination data.  

This study also has some limitations, most importantly that we only analyzed exemption 

data for kindergarteners, thus creating an incomplete picture of the vaccination status of the full 

student population in these schools. Additionally, it is possible that there is missing data, if not 

all students were present when schools were surveyed for vaccination and enrollment records. 

Finally, using school district-level demographics may not be a perfect match to the student body 

from each school, as school catchment areas may extend beyond the boundaries of the units 

chosen or be very specific sub-segments of a geographic unit, introducing the possibility of 

ecologic bias. 

 

4.7 Conclusions and policy implications 

Our results illustrate that although Michigan’s Administrative Rules change reduced the 

number of NMEs immediately after its implementation, NMEs have since rebounded. Many 

school district-level clusters with high NME rates have persisted. These findings indicate that 

this change did not have a strong, lasting impact on the pattern or rate of NMEs in Michigan. 

Navin et al. found that Michigan’s vaccine waiver educators rarely convinced parents to 

vaccinate their children after attending an education session, underscoring that such a policy is 

effectively imposing a cost to reduce convenience exemptions, yet unlikely to change 

perception.155  They also found that while such burdens may decrease NME rates, there may be a 

threshold of burden beyond which increasing inconvenience does not further reduce 

exemptions.156 As a result, it is important to balance the implementation of stronger policies to 
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curb NME rates to reduce the frequency of outbreaks with the possibility of backlash against 

restrictions of individual liberty.157,158 

Michigan’s administrative policy should be viewed within the larger context of the 

interventions available to reduce incentives to obtain exemptions. Such policies carry risk, 

because suboptimal vaccine policy design can backfire and fuel anti-vaccine sentiment.159 In 

addition to state regulation of vaccine exemptions, interventions should seek to counter growing 

levels of vaccine hesitancy through education, building confidence in vaccines and government, 

curbing misinformation, educating doctors about the importance of vaccination and minimizing 

missed opportunities, and increasing the affordability of vaccines.160 These recommendations are 

particularly important against a backdrop of the COVID-19 pandemic, which has led to reduced 

ambulatory care visits, causing a precipitous drop in pediatric vaccination rates.80,81 This could 

create a dangerous environment as underimmunized children return to school. At this critical 

juncture, we must increase vaccine uptake, reduce the burden of preventable disease, minimize 

the risk of additional outbreaks, and maintain health care capacity. 
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Figure 4.1 Percent of children with vaccine exemptions in the state of Michigan broken out by 
waiver type (philosophical, medical, religious) from 2011-2018 with Administrative Rules 
change going into effect on January 1st, 2015 
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Figure 4.2 Percent of children with vaccine exemptions in the state of Michigan broken out by 
school type (charter, private, public, and virtual schools) from 2011-2018 

 

 

The percent of children with vaccine exemptions in the state of Michigan broken out by school 
type (charter, private, public, and virtual schools) from 2011-2018 highlights a large rebound in 
vaccination waiver rates among virtual schools, a notable rebound among charter schools, and 
less of a rebound among private and public schools since the 2015 policy change.  
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Figure 4.3 Persistence of LISA clusters of philosophical, religious, and medical exemptions at 
the school district level, represented as the number of years in which each school district was in 
a high-high LISA waiver cluster, before and after the January 1st, 2015 policy change 
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High-high waiver clusters indicate that the highlighted school districts were identified by the 
LISA statistic as significant clusters of high waiver rates (indicating that both a given school 
district and the average of its neighboring school districts had significantly high waiver rates). A) 
Philosophical waiver persistence from 2011-2014 and 2015-2018, B) Religious waiver 
persistence from 2011-2014 and 2015-2018, and C) Medical waiver persistence from 2011-2014 
and 2015-2018. LISA: Local Indicators of Spatial Association 
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Figure 4.4 Bayesian binomial logistic hierarchical model output showing posterior mean 
average marginal effects of probability of getting a non-medical exemption (NME) waiver for 
selected demographic predictors at the school district level: tertiles of percent whiteness, tertiles 
of percent of adults over 25 with a college education, and per-capita income 
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 Summary and Conclusions 

 

5.1 Summary of dissertation findings 

This dissertation explored the implications of how spatial clustering of vaccine hesitancy 

and non-medical vaccine exemptions (NMEs) (which are permitted by 45/50 states’ regulations) 

affects herd immunity, impacts population-level disease dynamics, and has contributed to the 

resurgence of measles. Aim 1 assessed the impacts of spatially clustered non-vaccination on 

outbreak probability and size using a theoretical simulation model, and showed how aggregating 

fine-scale data to the scales often reported (i.e. the county or state level) can obscure important 

information necessary to accurately determine high-risk areas. While spatial clustering is 

important for assessing outbreak risk, there is no standard metric recommended to evaluate such 

clustered landscapes of non-vaccination. Thus, Aim 2 used kindergarten vaccination data from 

Michigan from 2008-2018 to explore four different metrics at four geographic scales to make 

recommendations about how best to measure clustering of vaccination data in practice. Finally, 

Aim 3 addressed the issue of vaccine hesitancy and regulation, analyzing the long-term results of 

a 2015 Michigan Administrative Rules change that made parents attend a waiver education 

session at their local health department prior to receiving an NME waiver.  The new rule led to 

an initial drop in NME rates, but there has since been a significant rebound, and waivers across 

the state remained geographically clustered after the change. More detailed summaries of these 
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three studies are described below, highlighting the public health implications of such research as 

well as notable strengths and limitations. 

 

5.1.1 Aim 1 

Even though overall measles vaccination rates in the United States averaged over 95% in 

2019, meeting the WHO vaccination coverage target and threshold for maintaining measles herd 

immunity, there were still over 1,200 cases of measles across 31 states that year, and the United 

States was just a week away from losing elimination status granted 19 years prior.16 Measles is 

one of the most contagious infectious diseases known, with a basic reproduction number (Ro) 

estimated at 12-18. This high Ro necessitates the high proportion of the population that needs to 

be vaccinated or have natural immunity from prior disease in order to prevent outbreaks, a 

measure referred to as the critical vaccination fraction (Vc).111,112 However, the standard 

calculation of Vc assumes that the population is evenly mixed and that all individuals contact one 

another with equal likelihood. When non-vaccinated individuals are geographically clustered, the 

formula can underestimate the Vc, allowing outbreaks to occur despite vaccination coverage 

targets being met or exceeded at the state or national level, as seen in 2019.22  

This research used a theoretical environment: a 256-cell grid with 1,000 people per cell 

and four nested levels approximating scales of real vaccination data: “blocks” of 1,000 people 

(individual cells, approximating the size of a Census block group), “tracts” of 4,000 people (4 

cells, approximating Census tracts), “neighborhoods” of 16,000 people (16 cells, approximating 

neighborhoods), and “quadrants” of 64,000 people (64 cells, approximating a town). This model 

incorporated a spatial transmission process, with each block capable of transmitting measles 

within its cell and to neighboring cells via a spatial force of infection term. The overall number 
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of non-vaccinated individuals in the environment was fixed at 5%. The only parameter that 

varied in the analysis was the degree of clustering of non-vaccinated individuals, to evaluate the 

impact of such clustering on outbreak probability and size.  

 This analysis found that without clustering, overall vaccination coverage levels of 94% 

and higher upheld herd immunity. However, once clustering was introduced, all vaccination 

levels tested (up to 99%) allowed breakthrough outbreaks to occur. As the degree of clustering 

increased, outbreaks occurred with both higher probability and larger size. Additionally, 

aggregation of the fine-scale data to larger units (analogous to using county, state, or national-

level vaccination coverage statistics), severely underestimated expected outbreak probability and 

size of simulated scenarios. With 95% overall vaccination, the expected outbreak size was 45.4% 

lower when data were aggregated to the tract level, 76.5% lower at the neighborhood level, and 

94.2% lower at the quadrant level.  Finally, the clustering and aggregation effects magnified each 

other: aggregating vaccination data consistently underestimated outbreak potential, and the bias 

grew as the clustering of the motif increased, measured by the Isolation Index.   

These results, while evaluated in a theoretical framework, have real-world implications 

for vaccine surveillance and outbreak risk assessment. First, they highlight how misleading the 

assumptions of homogeneous mixing which underlie herd immunity calculations can be. Even at 

99% overall vaccination coverage, clustering of non-vaccinators permitted outbreaks. This 

compels a rethinking of whether calculations of herd immunity are meaningful when applied at 

large spatial scales. Additionally, aggregating data introduces strong bias into predictions of 

outbreak potential because it obscures fine-scale clustering, illustrating that finer-scale data are 

needed to fully understand the risk of outbreaks of measles and other vaccine-preventable 

diseases (VPDs). Such data are collected at the school-level for school entry vaccination 
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requirements, but publicly released data are usually presented at the county- or state-level. The 

fact that all states have immunization information systems makes the release of such fine-scale 

data possible, and opens the door to cross-state cooperation to assess regional risk as well – as 

infectious diseases do not observe administrative boundaries.161,162 Continuing to release only 

aggregated vaccination data when much more fine-scaled data exist represents a significant lost 

opportunity for surveillance.   

As with all studies, this research has both strengths and limitations. A major strength is 

that this simple model helps to explain how clustering impacts outbreak potential. While the 

simplicity is a strength in communicating the implications of this research, it also carries 

limitations; this model does not represent the social dynamics of true cities and interpersonal 

networks. The dynamic SIR model did not have an incubation period, which does not change the 

total number of cases expected, but also imperfectly represents how measles is transmitted.  

Overall, this dissertation chapter effectively presented a proof-of-concept using a simple, 

easy-to-visualize model that showcases what happens when aggregate vaccination coverage is 

theoretically high enough to maintain herd immunity, yet non-vaccinators are spatially clustered. 

As such, this study provides insight into the implications of reported vaccination data in the 

United States, which aggregates vaccination data to large geographic scales. The findings from 

this paper will help to successfully implement control strategies for emergent measles outbreaks, 

and potentially other VPDs, and help make the overall U.S. vaccine reporting system and data 

dissemination more robust and informative for assessing outbreak risk. 
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5.1.2 Aim 2 

In the United States, the non-medical vaccine exemption (NME) rate for children 

entering kindergarten has been increasing alongside rising parental concerns about vaccine safety 

and religious and civil liberties.126,127 In this context of growing non-vaccination,163 it is 

important to explore community-level patterns of vaccination and target pockets of susceptibility 

to reduce outbreak potential. While vaccination and exemption rates are typically reported at 

coarse geographic scales,123,127 vaccination behavior has been shown to vary locally, resulting in 

clusters of unvaccinated individuals.101,123,124 Additionally, despite a need to better understand 

the landscape of non-vaccination, there is no best practice to characterize spatial clustering in 

terms of outbreak and public health risk.  

This dissertation chapter explored the utility of four different clustering metrics to assess 

the spatiotemporal landscape of vaccine exemptions in Michigan: Moran’s I24 , the Modified 

Aggregation Index108, Isolation Index134, and Theil Index134 at four spatial scales. These metrics 

were applied to school-level vaccination exemption data from the Michigan Department of 

Health and Human Services on 2,896 schools from 2008-2018. These data represent nearly all 

kindergarteners in Michigan who attended a school with at least 5 enrolled students during this 

time period.  

This research found that estimates of the clustering of vaccine exemptions varied 

significantly depending on which of the four spatial metrics and scales of aggregation (block 

group, Census tract, school district, and county) were used. Though Moran’s I is perhaps the 

most commonly used statistic to assess spatial autocorrelation, it was heavily dependent upon the 

scale of the data. Additionally, Moran’s I does not distinguish between clustering of vaccinators 

vs. non-vaccinators, challenging its interpretation for outbreak risk. The Isolation and Modified 
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Aggregation Indices can be interpreted as the probability that an unvaccinated student would 

come into contact with another unvaccinated student at a given spatial scale. These measures 

thus carry an intuitive epidemiologic interpretation, with higher values suggesting increased 

outbreak potential. Finally, the Theil Index does not have a direct outbreak risk interpretation, 

but can be useful in determining the appropriate level of vaccination and disease surveillance in 

different contexts. Using the Theil Index to characterize heterogeneity, more variability occurred 

within than between school districts, suggesting that units larger than Census tracts or block 

groups contain too much heterogeneity to be assumed to be homogeneous (the baseline 

assumptions made when choosing an aggregate scale for reporting vaccination data).    

This research project culminated in a recommendation to use the Isolation and Modified 

Aggregation Indices as preferred clustering metrics for future research evaluating non-

vaccination. These measures were the most consistent across spatial scale, the most sensitive to 

detecting the 2015 reduction in vaccination waivers, and have the most sensible interpretation in 

terms of transmission-dynamics. Because all metrics varied with the scale of analysis, metrics 

should be presented at multiple scales when possible. If using multiple scales is not possible, we 

encourage using finer-resolution data to assess clustering (such as the block group or tract) where 

all metrics were more able to capture outbreak risk-relevant fine-scale heterogeneity.  

This study has some limitations, including the restriction to kindergarten exemption data, 

resulting in an incomplete picture of the vaccination status of all students; and the data may be 

incomplete entries or contain errors. The strengths of this research include the use of highly 

granular data and an in-depth methodological comparison of different clustering metrics. This 

data source represents all schools – private, pre-kindergarten, charter, virtual, and public – with 

at least five students, nearly providing the complete population of Michigan kindergarteners. 



 115 

This study also uses school-level data, which captures the level at which much transmission 

occurs. Finally, this analysis is a natural complement to Aim 1: using real data to contextualize 

fine-scale clustering and how outbreak prediction is degraded as data are aggregated. Together, 

these two analyses present important evidence about why clustering of non-vaccination must be 

measured with the appropriate metrics and fine-scale data. 

 

5.1.3 Aim 3 

In response to increasing VPD outbreaks and rising NME rates across the United States, 

some states have sought to reduce NMEs through legislative and administrative changes. Policies 

that restrict access or create cumbersome hurdles to obtaining NMEs can be effective in reducing 

exemption rates.95,24 In 2014, Michigan had the fourth highest vaccine exemption rate in the U.S. 

This prompted the state to modify Administrative Rule 325.176 (12)143, effective January 1st, 

2015, to mandate parents to attend an in-person vaccine education session at their local health 

department prior to obtaining an NME waiver.93,129 While NME rates for incoming 

kindergarteners dropped in the following year, no studies have evaluated the longer term impacts 

of this change.129 Michigan was the first state to require a waiver education program at the local 

health department, and to do so through an administrative, not legislative, pathway, thus the 

impacts of this administrative change can hold important lessons for future policy.  

Using MDHHS kindergarten vaccination data from 2011-2018 (the same data utilized in 

Aim 2, restricted to 2011-2018 such that all vaccination requirements were consistent throughout 

the study period), this research evaluated the impact of the 2015 policy change on NME rates in 

Michigan, identified local and persistent clusters of vaccination waivers, and explored 

sociodemographic predictors of NMEs before and after the policy change. This research showed 
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that Michigan’s 2015 policy achieved mixed results: the state experienced an initial, sharp 

decline in the number of NMEs followed by a significant rebound. The fact that NME rates have 

returned nearly to pre-2015 levels in just four years indicates that stronger legislative action may 

be needed to curb vaccine exemptions in Michigan. This analysis revealed that compared to 

public and charter schools, private schools had nearly double and virtual schools about five times 

the rates of vaccine exemptions. This analysis also showed numerous persistent clusters of 

school districts with consistently high waiver rates, with the geographic distribution of 

philosophical, religious, and medical waiver clusters each following a separate geographic 

pattern. Most clusters persisted despite the policy change. 

A Bayesian regression analysis found that school type was a strong predictor for NMEs, 

highlighting the increased probability of waivers among kindergarteners in virtual and private 

schools. Contrary to our initial hypothesis, distance to the local health department was not a 

strong predictor of school-level waiver rates, suggesting that those who sought an NME were 

willing to do so regardless of distance. We also found non-linear patterns of NME probability 

across school-district level percent whiteness, percent college-educated adults, and per-capita 

income. These findings generally align with prior research: percent college-educated did not 

have large impacts on the probability of receiving an NME, but those in the highest per-capita 

income tertile had significantly increased likelihood of receiving an NME, though this effect 

decreased in size after the policy change.  

Overall, this research found that Michigan’s Administrative Rules change did not sustain 

its reduction of NMEs. Additionally, the fact that distance to the health department was not 

shown to be predictive of NMEs supports Navin et al., who found that Michigan’s vaccine 

waiver educators rarely convinced parents to vaccinate their children.155 These findings highlight 
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that this policy is effectively just a hurdle for parents who seek an exemption – a hurdle that 

motivated parents can clearly overcome.155  Navin et al. also found that there may be a threshold 

of burden beyond which increasing inconvenience does not further reduce exemption rates,156 

which may explain why further driving distance to the health department was not a deterrent 

beyond the education session itself. The clustering analysis revealed that should future policy 

changes occur in Michigan to restrict or change access to certain types of NMEs, either religious 

or philosophical, such policies would impact regions of the state differentially.  

This study used school-level data to identify potential geographic clustering and regions 

where local herd immunity might be broken due to high exemption rates. School-level data is the 

appropriate scale of analysis, as it is the unit at which much transmission occurs. Geocoding 

allowed for linkage of socio-demographics using the American Community Survey, joining 

measures of community-level demographics while employing transmission-level vaccination 

data and permitting cluster identification. This study also has some limitations, most importantly 

its restriction to kindergarteners, representing an incomplete picture of the true vaccination status 

of the full student population in these schools. Additionally, using Census-level demographics 

also may not be a perfect match to the student body from each school. 

 

5.2 Future work 

This dissertation provides insight using both theoretical dynamic modeling of a measles 

system (Aim 1, Chapter 2) and data-driven, statistical and spatial approaches using Michigan 

kindergarten vaccination data (Aim 2, Chapter 3 and Aim 3, Chapter 4). While Aim 1 used 

simulation to illustrate how increased clustering impacts outbreak probability, a real-world test 

case using fine-scale vaccination data alongside these dynamic simulation methods would be an 
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interesting project for future work. For example, a useful contribution would be to use school-

level vaccination data in Michigan, New York, Washington, or California, the four hardest-hit 

states by the 2019 measles outbreak, aggregated to different administrative levels (school district, 

county, state, etc.) to characterize outbreak risk before the 2019 measles outbreak. One could 

then use these data to measure the impact of differently-scaled predictions of outbreak risk to 

assess the relative findings of aggregation bias in a real disease system, paired with surveillance 

data to identify how measles cases actually spread through those communities. Aim 2 explored 

numerous clustering metrics and spatial scales for their differential ability to distinguish 

important patterns in vaccination data for outbreak assessment. Using these clustering statistics 

in combination with compartmental dynamic models can help capture how each metric is able to 

relate to outbreak potential in a more direct way, better identifying the utility of these metrics for 

different research scenarios. Finally, Aim 3 evaluated Michigan’s 2015 Administrative Rules 

change to assess clustering of individual waiver types and socio-demographic predictors of 

obtaining an NME over time. This analysis allowed us to explore ecologic predictors of waiver 

rates when applied to school-level data. However, individual-level analysis of socio-

demographic predictors of non-vaccination is much needed to avoid ecologic bias and better 

ascertain the reasons for vaccine hesitancy and subsequently obtaining non-medical exemptions 

in Michigan.    

 

5.3 Conclusions and policy implications 

In conclusion, this dissertation provides an explanation for why, despite high national 

vaccination rates, an extremely immunogenic vaccine, and nearly universal vaccine access, 

measles has been resurging both across the globe and within the United States. This dissertation 
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is rooted in understanding the consequences of vaccine hesitancy, which was declared one of the 

top 10 threats to health by the WHO in 2019.  This dissertation also evaluates the impact of 

policy that permits vaccine hesitant parents to obtain NMEs for their children. This research 

found that the heterogeneous distribution of NMEs throughout the population, often clustered in 

small communities that share the same beliefs and sociodemographic characteristics, can cause 

significant consequences for community disease dynamics, even beyond those groups with high 

exemption rates.  

While this dissertation does not present a solution for the problem of rising vaccine 

hesitancy itself, the three analyses have strong policy implications. First of all, a greater 

investment in database management and data sharing is warranted – to use the data collected 

from the state Immunization Information Systems (IIS), which cover approximately 95% of 

children under the age of five in the United States,162 and to permit such data to be used at finer 

scales to inform surveillance, outbreak control, and immunization programming interventions. 

Overall, this involves a re-thinking of vaccination data from how it is currently maintained – as 

registry data – to more of an active surveillance approach, finding clusters of unvaccinated 

individuals using similar systems to those currently used to detect cases and clusters of infectious 

diseases. It is important that such finer-scale data are broadly disseminated to researchers and 

policymakers, rather than the aggregate reported estimates at the county and state-level which are 

currently available. Second, and contingent upon the availability of such finer-scale data, it is 

important to measure spatial clustering of non-vaccination with indices that have a direct 

epidemiologic interpretation, rather than the typical standard of Moran’s I, such that the 

relationship between more highly clustered non-vaccination is actionable and its consequences 

for outbreak risk are interpretable. Finally, there is a need to construct vaccination policies that 



 120 

more effectively reduce the rates of NMEs. As seen in Michigan, relying on the local health 

department for waiver education sessions did not change the minds of parents with anti-vaccine 

sentiments, and only temporarily reduced the rate of convenience exemptions. In the future, 

multi-dimensional interventions could improve the root causes of vaccine hesitancy if effective 

programs are rolled out at the patient, provider, community, school, state, and national levels. 

More broadly, halting the resurgence of VPDs such as measles in high-income regions 

like the United States requires earlier intervention – not just to address the consequences of 

vaccine hesitancy – but also to curb vaccine hesitancy itself. Interventions should thus go beyond 

administrative and legislative restrictions, and make an effort to reduce anti-vaccine sentiment 

through education campaigns, building confidence in vaccines and government, curbing 

misinformation, educating doctors about the importance of vaccination, minimizing missed 

opportunities, and increasing affordability of vaccines.160 Against the backdrop of the COVID-19 

pandemic, which has led to reduced ambulatory care and non-emergent health-care visits in the 

United States, causing plummeting pediatric vaccination rates, along with the suspension of 

global vaccination programs in developing countries, such measures could be especially 

impactful.81,164 The repercussions of COVID-19, with many under-immunized children returning 

to school, could threaten to spur resurgence of additional VPDs, further endangering population 

health and leading to increased, preventable morbidity and mortality. As a result, this is a critical 

moment to address vaccine hesitancy and increase vaccine uptake through effective policies.  

  



 121 

 

 

Appendix A Chapter 2 Appendix 
 

Data Availability 
 
Code used to generate all simulations and datasets can be found in the Github repository: 
https://github.com/epibayes/Measles-Spatial-Clustering-and-Aggregation-Effects/  
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Figure A.1 Relationship between Moran’s I of initial conditions and predicted cumulative 
incidence across 336 motifs that do not exceed cell-level population of 1,000 for 95% overall 
vaccination coverage 

 

 
 
Moran’s I of initial conditions (n = 336 possible motifs) representing the distribution of the 5% 
(n = 12,800) non-vaccinators in the environment vs. cumulative incidence after running measles 
SIR model for 365 days (with overall vaccination coverage at 95%) shows no clear relationship 
between Moran’s I of the starting motif and cumulative incidence of simulated dynamic model. 
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Figure A.2 Relationship between Isolation Index of initial conditions and predicted cumulative 
incidence across 336 motifs that do not exceed cell-level population of 1,000 for 95% overall 
vaccination coverage 

 
Isolation Index of initial conditions representing the distribution of the 5% (n = 12,800) non-
vaccinators in the environment vs. cumulative incidence after running measles SIR model for 
365 days (with overall vaccination coverage fixed at 95%) shows a monotonic, positive 
relationship between initial Isolation Index of starting motif and cumulative incidence of 
simulated dynamic model. 
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Figure A.3 Relationship between Isolation Index of initial conditions and predicted cumulative 
incidence across 296 motifs that do not exceed cell-level population of 1,000 for 94% overall 
vaccination coverage 

 
 
Isolation Index of initial conditions (n = 296 possible motifs) representing the distribution of the 
6% (n = 15,360) non-vaccinators in the environment vs. cumulative incidence after running 
measles SIR model for 365 days (with overall vaccination coverage at 94%) shows a monotonic, 
positive relationship between initial Isolation Index of starting motif and cumulative incidence of 
simulated dynamic model at 94% overall vaccination coverage. 
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Figure A.4 Relationship between Isolation Index of initial conditions and predicted cumulative 
incidence across 620 motifs that do not exceed cell-level population of 1,000 for 99% overall 
vaccination coverage 

 
Isolation Index of initial conditions (n = 620 possible motifs) representing the distribution of the 
1% (n = 2,560) non-vaccinators in the environment vs. cumulative incidence after running 
measles SIR model for 365 days (with overall vaccination coverage at 99%), shows a monotonic, 
positive relationship between initial Isolation Index of starting motif and cumulative incidence of 
simulated dynamic model at 99% overall vaccination coverage. 
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Figure A.5 Examining the effect of clustering at each level of aggregation (blocks, tracts, 
neighborhood, and quadrants) among the 336 possible motifs that do not exceed 1,000 
individuals per cell for 95% overall vaccination coverage 

 
 
Examining the effect of clustering at each level of aggregation (blocks, tracks, neighborhoods, 
quadrants) among the 336 possible clustering motifs that do not exceed 1,000 individuals per cell 
on cumulative incidence for an overall vaccination percentage of 95%. We see a clear pattern 
illustrating higher cumulative incidence as clustering increases at each level: the block, tract, 
neighborhood, and quadrant levels, with the most highly clustered motifs (at each level) 
corresponding to the highest cumulative incidence values.  
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Figure A.6 Examining the effect of clustering at each level of aggregation (blocks, tracts, 
neighborhood, and quadrants) among the 296 possible motifs that do not exceed 1,000 
individuals per cell for 94% overall vaccination coverage 

 
 
Examining the effect of clustering at each level of aggregation (blocks, tracks, neighborhoods, 
quadrants) among the 296 possible clustering motifs that do not exceed 1,000 individuals per cell 
on cumulative incidence for an overall vaccination percentage of 94%. We see a clear pattern 
illustrating higher cumulative incidence as clustering increases at each level: the block, tract, 
neighborhood, and quadrant levels, with the most highly clustered motifs (at each level) 
corresponding to the highest cumulative incidence values. 
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Figure A.7 Examining the effect of clustering at each level of aggregation (blocks, tracts, 
neighborhood, and quadrants) among the 543 possible motifs that do not exceed 1,000 
individuals per cell for 98% overall vaccination coverage 

 
Examining the effect of clustering at each level of aggregation (blocks, tracks, neighborhoods, 
quadrants) among the 543 possible clustering motifs that do not exceed 1,000 individuals per cell 
on cumulative incidence for an overall vaccination percentage of 98%. We see a clear pattern 
illustrating higher cumulative incidence as clustering increases at each level: the block, tract, 
neighborhood, and quadrant levels, with the most highly clustered motifs (at each level) 
corresponding to the highest cumulative incidence values. 
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Figure A.8 Examining the effect of clustering at each level of aggregation (blocks, tracts, 
neighborhood, and quadrants) among the 620 possible motifs that do not exceed 1,000 
individuals per cell for 99% overall vaccination coverage 

 
 
Examining the effect of clustering at each level of aggregation (blocks, tracks, neighborhoods, 
quadrants) among the 620 possible clustering motifs that do not exceed 1,000 individuals per cell 
on cumulative incidence for an overall vaccination percentage of 99%. We see a clear pattern 
illustrating higher cumulative incidence as clustering increases at each level: the block, tract, 
neighborhood, and quadrant levels, with the most highly clustered motifs (at each level) 
corresponding to the highest cumulative incidence values. 
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Figure A.9 Examining the effect of aggregation on Isolation Index of initial motifs 

 
The effect of aggregation on Isolation Index of initial motifs, with black line 
representing ‘truth’, or a slope of 1, or the value of the initial motif, and the subsequent 
aggregated isolation values plotted for the tract, neighborhood, and quadrant-level aggregation 
levels.   
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Figure A.10 Underestimation of outbreak risk grows with intensity of isolation of non-
vaccinators across 296 motifs that do not exceed cell-level populations of 1,000 at an overall 
vaccination coverage rate of 94%  

 
 
A) Proportion of estimated cases identified, treating the block-level, or individual-cell level 
simulation results as ‘truth’, in grey, when motifs are aggregated to the tract, neighborhood, and 
quadrant levels, sorted by Isolation Index of starting motif. B) Difference in number of estimated 
cases, or cumulative incidence, by aggregation level and Isolation Index of initial motif, 
illustrating greater loss in predicted number of cases as both aggregation level and Isolation 
Index increase.  
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Figure A.11 Underestimation of outbreak risk grows with intensity of isolation of non-
vaccinators across 543 motifs that do not exceed cell-level populations of 1,000 at an overall 
vaccination coverage rate of 98% 

 

A) Proportion of estimated cases identified, treating the block-level, or individual-cell level 
simulation results as ‘truth’, in grey, when motifs are aggregated to the tract, neighborhood, and 
quadrant levels, sorted by Isolation Index of starting motif. B) Difference in number of estimated 
cases, or cumulative incidence, by aggregation level and Isolation Index of initial motif, 
illustrating greater loss in predicted number of cases as both aggregation level and Isolation 
Index increase.  
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Figure A.12 Underestimation of outbreak risk grows with intensity of isolation of non-
vaccinators across 620 motifs that do not exceed cell-level populations of 1,000 at an overall 
vaccination coverage rate of 99% 

A) Proportion of estimated cases identified, treating the block-level, or individual-cell level 
simulation results as ‘truth’, in grey, when motifs are aggregated to the tract, neighborhood, and 
quadrant levels, sorted by Isolation Index of starting motif. B) Difference in number of estimated 
cases, or cumulative incidence, by aggregation level and Isolation Index of initial motif, 
illustrating greater loss in predicted number of cases as both aggregation level and Isolation 
Index increase.  
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Figure A.13 95% Overall vaccination coverage: outbreak probability increases with Isolation 
Index of starting motif, regardless of which quadrant the seed case is placed in 

 
 
Binomial loess plots comparing 95% vaccination coverage with seed introductions into the 
center of quadrant 1 (top left), quadrant 2 (top right), quadrant 3 (bottom left), and quadrant 4 
(bottom right) illustrate that as the Isolation Index increases of the starting motif (indicating a 
higher degree of clustering in the vaccination landscape), the outbreak probability increases to 
nearly 100%. The outbreak probability certainly is reduced in quadrant 4, furthest from the high-
level clustering of non-vaccinators, requiring higher values of the Isolation Index to correspond 
to increased outbreak probability. However even introductions to the bottom right quadrant can 
yield fairly high outbreak probability at high values of the Isolation Index of the starting motif 
for 95% overall vaccination.  
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Figure A.14 99% Overall vaccination coverage: outbreak probability increases with Isolation 
Index of starting motif, regardless of which quadrant the seed case is placed in 

 
 
Binomial loess plots comparing 99% vaccination coverage with seed introductions into the 
center of quadrant 1 (top left), quadrant 2 (top right), quadrant 3 (bottom left), and quadrant 4 
(bottom right) illustrate that as the Isolation Index increases of the starting motif (indicating a 
higher degree of clustering in the vaccination landscape), the outbreak probability increases, 
nearly to 100% for introductions in quadrant 1-3. However, the outbreak probability is reduced 
more notably in quadrant 4, reaching a maximum of about 75% for the most clustered motifs. 
99% overall vaccination shows more clearly what we would expect – that because our clustering 
motifs placed unvaccinated individuals into the top left quadrant at each level, introductions into 
the fourth quadrant are the least likely to start an outbreak, even if they are highly clustered.  
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Table A.1 94% overall vaccination: linear multivariate model fit to attack rate over 1 year of 
simulation time, with estimates fit to cumulative incidence models in parentheticals, shows that 
clustering at each level correspond to higher cumulative incidence  

 Univariate Analysis Multivariate Analysis 
Predictor Attack Rate 

Estimate  
(CI Estimate) 

p-
value 

R2 Attack Rate 
Estimate  

(CI Estimate) 

p-value R2 

Moran’s I 0.016 (246.0) 0.0085 0.001 -0.033 (-506.2) <0.001 
 

Isolation Index* 0.865 (13,279.9) <0.001 0.805 0.505 (7,759.3) <0.001 
 

Level 1 
clustering** 

0.056 (854.3) <0.001 0.122 0.059 (907.2) <0.001 
 

Level 2 
clustering** 

0.046 (703.9) <0.001 0.083 0.052 (797.2) <0.001 
 

Level 3 
clustering** 

0.039 (601.0) <0.001 0.060 0.049 (749.5) <0.001 
 

Level 4 
clustering** 

0.037 (561.7) <0.001 0.053 0.052 (797.9) <0.001 
 

      
0.844 

*Isolation Index was normalized so that a one-unit increase in Isolation Index represented the 
spread from the minimum value to maximum value of the Isolation Index for a given level of 
overall vaccination  
**The clustering levels were operationalized as ordinal variables with steps increasing from 25% 
(homogeneous) in one quadrant, 40%, 58%, 70%,and 85%. 
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Table A.2 99% overall vaccination: linear multivariate model fit to attack rate over 1 year of 
simulation time, with estimates fit to cumulative incidence models in parentheticals, shows that 
clustering at each level correspond to higher cumulative incidence 

 Univariate Analysis Multivariate Analysis 
Predictor Attack Rate 

Estimate  
(CI Estimate) 

p-
value 

R2 Attack Rate 
Estimate  

(CI Estimate) 

p-value R2 

Moran’s I -0.023 (-58) <0.001 0.003 -0.043 (-110.6) <0.001 
 

Isolation Index* 0.355 (909.9) <0.001 0.379 0.451 (1,154.2) <0.001 
 

Level 1 
clustering** 

0.022 (56.9) <0.001 0.085 -0.001 (-3.0) 0.124 
 

Level 2 
clustering** 

0.020 (51.7) <0.001 0.070 -0.004 (-10.0) <0.001 
 

Level 3 
clustering** 

0.017 (43.8) <0.001 0.050 -0.009 (-23.6) <0.001 
 

Level 4 
clustering** 

0.015 (38.5) <0.001 0.039 0.018 (-46.2) <0.001 
 

      
0.395 

*Isolation Index was normalized so that a one-unit increase in Isolation Index represented the 
spread from the minimum value to maximum value of the Isolation Index for a given level of 
overall vaccination  
**The clustering levels were operationalized as ordinal variables with steps increasing from 25% 
(homogeneous) in one quadrant, 40%, 58%, 70%,and 85%. 
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Table A.3 Simulated outbreak probability results by overall vaccination level and three different 
outbreak thresholds: 5, 10, and 20 cases at three selected overall vaccination coverage rates: 
94%, 95%, and 99%  

 

Overall 
vaccination 

% 

Outbreak 
threshold 

(number of 
cases) 

Number of 
simulation runs 

exceeding 
outbreak 
threshold 

Total 
number of 
simulation 

runs 

% of 
simulations 
exceeding 
outbreak 
threshold 

% of 
simulations 
without an 
outbreak 

94%  

5 11074 11840 93.5% 6.5% 
10 10991 11840 92.8% 7.2% 
20 10923 11840 92.3% 7.7% 

95%  

5 11962 13440 89.0% 11.0% 
10 11864 13440 88.3% 11.7% 
20 11743 13440 87.4% 12.6% 

99% 
5 4785 24800 19.3% 80.7% 
10 4626 24800 18.7% 81.3% 
20 4479 24800 18.1% 81.9% 

  
Simulated outbreak probability results by overall vaccination level and three different outbreak 
thresholds: 5, 10, and 20 cases for selected vaccination coverages: 94%, 95%, and 99%. This 
table highlights that with 94% overall vaccination, the outbreak probability across all motifs 
ranges from 93.5% (with a threshold of 5 cases to 98.2% with a threshold of 20 cases), the 
outbreak probability for 95% ranges from 89.0% (for 5 cases) to 87.4% (for 20 cases), and the 
outbreak probability for 99% vaccination ranges from 19.3% (for 5 cases) to 18.1% (for 20 
cases). Outbreak probability here was defined as any of the simulation runs for each set of motifs 
at each vaccination threshold that generated an outbreak with at least the threshold number of 
cases. 
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Table A.4 Simulated cumulative incidence results by overall vaccination level and level of 
aggregation for selected vaccination coverages: 94%, 95%, 98%, and 99% 

Aggregation 
Level 

Median 
Simulated 

Cases 

Mean 
Simulated 

Cases 

Inter-Quartile 
Range (IQR) 

% Reduction in 
Mean Cases 

Detected after 
Aggregating 

Overall Vaccination Level: 94% 
Block 6059.98 5381.72 5187.60 ref 
Tract 2060.60 3157.50 6048.68 -41.3% 
Neighborhood 3.67 1521.14 2331.15 -71.7% 
Quadrant 1.03 499.48 0.73 -90.7% 

Overall Vaccination Level: 95% 
Block 3999.06 3886.31 4931.25 ref 
Tract 825.76 2122.29 3897.61 -45.4% 
Neighborhood 0.77 911.16 513.04 -76.6% 
Quadrant 0.56 227.29 0.48 -94.2% 

Overall Vaccination Level: 98% 
Block 8.02 581.42 1090.29 ref 
Tract 1.10 227.17 0.69 -60.9% 
Neighborhood 1.09 77.28 0.17 -86.7% 
Quadrant 1.16 1.26 0.14 -99.8% 

Overall Vaccination Level: 99% 
Block 1.05 106.36 0.45 ref 
Tract 1.03 37.40 0.11 -64.8% 
Neighborhood 1.03 1.40 0.08 -98.7% 
Quadrant 1.07 1.10 0.06 -99.0% 

 
Simulated cumulative incidence results by overall vaccination level and level of aggregation for 
selected vaccination coverages: 94%, 95%, 98%, and 99%: highlighting the percent of mean 
cases detected after aggregating data to the three levels of aggregation, showing a 90.7% 
reduction in mean detected cases after aggregating at 94% overall vaccination, 94.2% reduction 
after aggregating at 95% coverage, and over 99% reduction in estimated cases for both 98% and 
99% vaccination.  
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Appendix B Chapter 3 Appendix 
 

Data Availability 
 
Code used to generate all analyses can be found in the Github repository: 
https://github.com/epibayes/MDHHS-Vaccination-Data  
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Figure B.1 Difference in raw number of detected students deemed to be ‘at-risk’ based upon 
three thresholds of vaccination waivers: 5%, 10%, and 20% 

 

Difference in raw number of detected students deemed to be ‘at risk’ based upon three thresholds 
of vaccination waivers: 5%, 10%, and 20%, with aggregation to the A) block group, B) tract, C) 
school district, and D) county levels over the study period from 2008-2018. For the 5% waiver 
threshold, low-level aggregation (panels A-C) does not lead to much bias, though county-level 
aggregation results in positive and negative bias in the percent of at-risk students. For the 10% 
and 20% waiver thresholds, higher levels of aggregation result in greater underestimation of the 
at-risk population. 
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Table B.1 Kindergarten enrollment over the study period for 32 missing school records from 
kindergarten vaccination data in Michigan, 2008-2018 

School Name County ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 Total 
Country 

Meadows Missaukee - - - - - - - - - - - 0 

Misty Mornings Clare - - - - - - - - - - - 0 
Chappel Dam Gladwin - - - - - - - - - - - 0 

Mapleview 
Amish Gladwin - - - - - - - - - - - 0 

Parker Amish Gladwin - - - - - - - - - - - 0 
Whispering 
Pines Amish Isabella - - - - - - - - - - - 0 

St Peters 
Developmental 
Kindergartner 

Kent - - - - - - 1 - - - - 1 

Community 
Christian 

Academy  KD 
Macomb - - - - - - 0 - - - - 0 

Applegrove 
Amish Mecosta - - - - - - - - - - - 0 

Deerfield Acres 
Amish Mecosta - - - - - - - - - - - 0 

Jersey Acres 
Amish Mecosta - - - - - - 0 - - - - 0 

Maple Lane 
Amish Mecosta - - - - - - - - - - - 0 

Meadow Lane 
Amish Mecosta - - - - - - - - - - - 0 

Miller Amish Mecosta - - - - - - - - - - - 0 
North Hinton 

Amish Mecosta - - - - - - - - - - - 0 

Quigly Creek 
Amish Mecosta - - - - - - - - - - - 0 

Ribble Amish Mecosta - - - - - - - - - - - 0 
Rolling Acres 

Amish Mecosta - - - - - - - - - - - 0 

Shady Maple 
Amish Mecosta - - - - - - - - - - - 0 

Morning Star 
(Amish) Oscoda - - - - - - - - - - - 0 

Sunrise View 
(Amish) Oscoda - - - - - - - - - - - 0 
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Pilgrim 
Pathway School 

Amish 

Presque 
Isle - - - - - - - - - - - 0 

Small Steps Big 
Dreams LL St. Clair - - - - - - - - - - - 0 

The Paris 
Academy Kent - - - - - - - - 11 - - 11 

Alternative 
Education Barry - - - - - - - - - - - 0 

Center for 
Excellence 
Children 
Academy  

Oakland - - - - - - 3 - - - - 3 

Outbreak Site 2 Ingham - - - - - - - - - - 12 12 

Outbreak Site Ingham - - - - - - - - 0 0 0 0 
School Test 

Site Ingham - - - - - - - - 0 0 0 0 

Blain 
Elementary Kent - - - - - - - - - - 0 0 

JC ISD East 
Campus Jackson - - - - - - - - - - - 0 

Ontonagon  
ISD Ontonagon - - - - - - - - - - - 0 

Total number of students in unmatched, unidentifiable schools from 2008-2018 27 
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Appendix C Chapter 4 Appendix 
 
Data Availability 
 
Code used to generate all analyses can be found in the Github repository:  
https://github.com/epibayes/MDHHS-Vaccination-Data   
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Equation C.1 The Local Indicators of Spatial Association (LISA statistic)  

 

𝐸𝑞	𝐶. 1																		𝐼= = 		
𝑥= − 𝑋c
𝑆=A

D 𝑤=,>(𝑥= − 𝑋c
L

>MN,>d=

) 

 

𝑤𝑖𝑡ℎ																	𝑆=A = 	
∑ 𝑤=,>L
>MN,>d=

𝑛 − 1 − 𝑋cA 

 

where 𝑥= is the number of non-vaccinators for geographic unit 𝑖, 𝑋c is the mean of non-

vaccination rates, 𝑤=,> is the spatial weight between geographic units 𝑖 and 𝑗, and 𝑛 

represents the number of spatial units.149  A positive I indicates that a given spatial unit (in 

this case, school districts) has neighboring features (school districts) that have similarly 

high or low attribute values, indicating that the school district is part of a high- or low-

waiver cluster. A negative I instead indicates that a school district has neighbors with 

dissimilar values, making a given school district an outlier. Setting the confidence limits 

to 95% selects only statistically significant clusters of high values (HH clusters, as shown 

in Figure 4.3), low values (LL), or outliers (HL, LH).  
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Table C.1 Unadjusted binomial logistic model of NMEs at the school-level with random 
intercepts for school district and indicator variable for vaccine policy change, 2011-2018 

 

 

 
Estimate  

 (𝛽) 

Odds 

Ratio 

Standard 

Error 
p-value 

Intercept -3.102 0.045 0.0327 <0.001 

Policy Change Indicator  

(2015-2018 vs. 2011-2014) 
-0.435 0.647 0.0112 <0.001 
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Table C.2 State-level vaccination exemption data in Michigan with student enrollment figures, 
broken out by non-medical waiver types and by and school type from 2011-2018 

Year Student Enrollment % Waivers % Philosophical Waivers % Religious Waivers 
Charter Schools  

2011 278 5.04 71.43 14.29 
2012 359 6.41 47.83 47.83 
2013 362 4.42 43.75 50.00 
2014 562 3.91 54.55 45.45 
2015 713 3.09 59.09 36.36 
2016 961 2.91 57.14 35.71 
2017 1009 4.56 67.39 30.43 
2018 1280 5.55 56.34 40.85 

Private Schools 
2011 9459 8.84 70.33 14.83 
2012 9072 10.50 75.03 14.27 
2013 9113 10.07 74.73 17.86 
2014 9128 10.28 72.17 21.86 
2015 8901 7.27 73.88 20.56 
2016 9263 7.69 73.60 23.03 
2017 9134 8.02 72.85 24.01 
2018 9184 8.61 68.90 26.93 

Public Schools 
2011 111279 5.26 76.21 13.25 
2012 111375 5.47 76.01 14.59 
2013 107363 5.45 74.24 17.46 
2014 105130 4.85 71.92 21.85 
2015 103217 3.25 77.26 16.82 
2016 105286 3.27 75.44 19.27 
2017 105650 3.80 73.41 21.36 
2018 104742 4.06 71.89 22.58 

Virtual Schools 
2011 57 21.05 91.67 8.33 
2012 74 27.03 55.00 45.00 
2013 200 27.00 64.81 35.19 
2014 241 19.50 53.19 46.81 
2015 205 13.66 67.86 28.57 
2016 287 19.86 66.67 31.58 
2017 411 24.57 71.29 23.76 
2018 487 27.52 61.19 26.12 
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Table C.3 Local Indicators of Spatial Association (LISA) school and school district-level cluster 
persistence in pre- and post-administrative rules change time periods (2011-2014 and 2015-
2018) 

Persistence of 
spatial unit in 
waiver cluster 

Pre-or Post- 
Policy 

Change Time 
Period 

Number of 
total 

clusters* 

Number of 
philosophical 

waiver clusters 

Number of 
religious 
clusters 

Number of 
medical 
clusters 

School District Level 
1+ year 2011-2014 52 56 32 43 
1+ year 2015-2018 34 26 32 25 
2+ years 2011-2014 20 23 12 10 
2+ years 2015-2018 14 14 8 4 
3+ years 2011-2014 12 8 6 1 
3+ years 2015-2018 8 8 2 1 
all 4 years 2011-2014 3 2 3 0 
all 4 years 2015-2018 3 4 0 0 

Individual Schools 
1+ year 2011-2014 101 131 28 70 
1+ year 2015-2018 63 87 56 34 
2+ years 2011-2014 18 37 5 7 
2+ years 2015-2018 16 20 11 0 
3+ years 2011-2014 2 7 1 0 
3+ years 2015-2018 4 7 2 0 
all 4 years 2011-2014 1 2 0 0 
all 4 years 2015-2018 3 1 1 0 
*For this table, only showing "high-high" waiver clusters, meaning that these clusters were identified 
by the LISA statistic as significant clusters of high waiver rates (indicating that both a given school 
district and the average of its neighboring school districts had significantly high waiver rates).  
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Table C.4 Bayesian binomial hierarchical model output showing posterior mean average 
marginal effects of the probability of getting an NME waiver for selected demographic 
predictors at the school district level (tertiles of school district percent whiteness, percent 
college education, and per-capita income) 

Year 

Tertile of 
School-
District 
Level % 

Whiteness* 

Posterior 
mean average 
probability of 
obtaining an 

NME1 

Tertile of 
School-

District Level 
% College 

Education** 

Posterior 
mean average 
probability of 
obtaining an 

NME2 

Tertile of 
School-District 

Level Per-
Capita 

Income*** 

Posterior 
mean average 
probability of 
obtaining an 

NME3 

2011 
1st 3.9% 1st 4.7% 1st 4.5% 
2nd 5.6% 2nd 6.1% 2nd 4.3% 
3rd 6.6% 3rd 5.5% 3rd 7.0% 

2012 
1st 4.0% 1st 4.9% 1st 4.7% 
2nd 5.8% 2nd 6.4% 2nd 4.4% 
3rd 6.9% 3rd 5.6% 3rd 7.2% 

2013 
1st 3.8% 1st 4.6% 1st 4.3% 
2nd 5.5% 2nd 6.1% 2nd 4.4% 
3rd 6.5% 3rd 5.4% 3rd 6.8% 

2014 
1st 3.5% 1st 4.2% 1st 3.8% 
2nd 4.9% 2nd 5.4% 2nd 3.8% 
3rd 5.9% 3rd 4.8% 3rd 6.2% 

2015 
1st 2.3% 1st 2.8% 1st 2.6% 
2nd 3.4% 2nd 3.7% 2nd 2.9% 
3rd 4.0% 3rd 3.3% 3rd 4.0% 

2016 
1st 2.4% 1st 2.9% 1st 2.9% 
2nd 3.4% 2nd 3.8% 2nd 3.1% 
3rd 4.1% 3rd 3.4% 3rd 3.9% 

2017 
1st 2.7% 1st 3.2% 1st 3.3% 
2nd 3.8% 2nd 4.2% 2nd 3.4% 
3rd 4.6% 3rd 3.8% 3rd 4.3% 

2018 

1st 2.8% 1st 3.4% 1st 3.6% 
2nd 4.0% 2nd 4.4% 2nd 3.6% 
3rd 4.8% 3rd 3.9% 3rd 4.5% 

1 Marginalized over the distribution of covariates excluding year and School District Level % Whiteness 
2 Marginalized over the distribution of covariates excluding year and School District Level % College Education 
3 Marginalized over the distribution of covariates excluding year and School District Level Per-Capita Income 
* Tertiles of School District-Level Percent White are: 1st Tertile: 5.9% - 73.9%, 2nd Tertile: 73.9% - 91.7%, 3rd 
Tertile: 91.7% - 99.5% 
** Tertiles of School District-Level Percent College Education are: 1st Tertile: 5.2% - 18.0%, 2nd Tertile: 18.0% - 
31.9%, 3rd Tertile: 31.9% - 78.4% 
*** Tertiles of School District-Level Per-Capita Income are: 1st Tertile: $11,371 - $24,551, 2nd Tertile: $24, 551 - 
$32,148, 3rd Tertile: $32,148 - $73,834 
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Table C.5 Bayesian binomial hierarchical model output showing posterior mean average 
marginal effects of the probability of getting an NME waiver by school type from 2011-2018 

Year School Type Posterior mean average probability 
of obtaining an NME1 

2011 

Public 4.5% 
Charter 4.9% 
Private 8.4% 
Virtual 22.1% 

2012 

Public 4.7% 
Charter 5.1% 
Private 8.7% 
Virtual 22.9% 

2013 

Public 4.5% 
Charter 4.9% 
Private 8.3% 
Virtual 22.0% 

2014 

Public 3.9% 
Charter 4.2% 
Private 7.2% 
Virtual 19.7% 

2015 

Public 2.7% 
Charter 2.9% 
Private 5.1% 
Virtual 14.7% 

2016 

Public 2.7% 
Charter 2.9% 
Private 5.1% 
Virtual 14.7% 

2017 

Public 3.0% 
Charter 3.3% 
Private 5.7% 
Virtual 16.1% 

2018 

Public 3.1% 
Charter 3.4% 
Private 5.9% 

Virtual 16.7% 
1 Marginalized over the distribution of covariates excluding year and School Type 
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Table C.6 Bayesian binomial hierarchical model output showing posterior mean average 
marginal effects of the probability of getting an NME waiver by distance to the health 
department from 2011-2018 

Year Percentile of Travel Time (Distance to 
Local Health Department)* 

Posterior mean average probability of 
obtaining an NME1 

2011 
10th Percentile  5.1% 
90th Percentile  5.9% 

2012 10th Percentile 5.2% 
90th Percentile 6.2% 

2013 
10th Percentile 4.9% 
90th Percentile 6.0% 

2014 10th Percentile 4.5% 
90th Percentile 5.2% 

2015 
10th Percentile 3.3% 
90th Percentile 3.3% 

2016 
10th Percentile 3.2% 
90th Percentile 3.6% 

2017 
10th Percentile 3.7% 
90th Percentile 3.9% 

2018 
10th Percentile 3.9% 
90th Percentile 4.0% 

* The 10th Percentile of travel time to the local health department was 0.101 hours (~6 minutes). The 90th Percentile 
of travel time was 0.592 hours (~35 minutes) 
1 Marginalized over the distribution of covariates excluding year and travel time to the health department 
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Figure C.1 Bayesian binomial hierarchical model output showing posterior mean average 
marginal effects of probability of getting an NME comparing charter, private, public, and virtual 
schools 

  

  

Posterior Mean Average Marginal Effects: 
Probability of Getting an NME by School Type

Po
st

er
io

r M
ea

n 
Pr

ob
ab

ilit
y

School Type
Charter
Private
Public
Virtual



 153 

Figure C.2 Bayesian binomial hierarchical model output showing posterior mean average 
marginal effects of probability of getting an NME comparing the 10th and 90th percentile of 
travel time to the local health department 
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Figure C.3 Bayesian binomial hierarchical model output showing mean differences of posterior 
mean average marginal effects of probability of getting an NME comparing private, virtual, and 
charter schools to public schools 

 

The probability that the mean difference for virtual and private schools is higher than that of 
public schools was ~1, indicating no overlap in the distributions. The probability that the mean 
difference for charter schools – public schools was greater than 0 was 0.8248, thus these 
distributions were not significantly different.  
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Figure C.4 Bayesian binomial hierarchical model output showing mean differences of posterior 
mean average marginal effects of probability of getting an NME comparing the third (highest) 
tertile of school district level percent college education and the second (middle) tertile of school 
district level percent college education to the 1st tertile 

 

The probability that the mean difference for the third tertile – the first tertile of percent college 
education was > 0 was 0.971, and the probability that the second tertile was greater than the first 
tertile was 0.9996.  
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Figure C.5 Bayesian binomial hierarchical model output showing mean differences of posterior 
mean average marginal effects of probability of getting an NME comparing the third (highest) 
tertile of school district level per-capita income and the second (middle) tertile of school district 
level per-capita income to the 1st tertile 

 

The probability that the mean difference for the second tertile – the first tertile of per-capita 
income was > 0 was 0.5534, not significant, and the probability that the third tertile was greater 
than the first tertile was 0.997. This illustrates that overall, the third, and wealthiest tertile of per-
capita income had significantly increased probability of an NME waiver compared to the first, 
though it is clear that this effect does diminish somewhat after the 2015 policy. 
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Figure C.6 Bayesian binomial hierarchical model output showing mean differences of posterior 
mean average marginal effects of probability of getting an NME comparing the third (highest) 
tertile of school district level percent white and the second (middle) tertile of school district level 
percent white to the 1st tertile 

 

The probability that the mean difference for both the third and second tertiles minus the first 
tertile was ~1, indicating no overlap between the distributions and illustrating that both the 
second and third tertile of school district-level percent whiteness had significantly higher 
expected probability of an NME. 
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Figure C.7 Bayesian binomial hierarchical model output showing mean differences of posterior 
mean average marginal effects of probability of getting an NME comparing the 90th percentile to 
the 10th percentile of distance (in hours) to the local health department 

 

The probability that the mean difference from the 90th to 10th percentile was > 0 over the study 
period was 0.866,which is not significant. Additionally, it is clear that the effect size of the mean 
difference is very small, with the maximum mean difference between the 90th and 10th percentile 
of travel time at 0.01 hours. 
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