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Abstract 
 
Every organism faces the challenge of organizing immense amounts of genetic 

information into a small physical space that is the cell. In eukaryotes, this process is 

facilitated by histones that wrap DNA into small units. While it has been historically 

assumed that bacteria do not have an organized genome, increasing evidence 

implicates a robust structure that enables bacteria to quickly cope with a variety of 

environmental pressures. The organization and regulation of DNA is incredibly 

important to engineer bacteria for biotechnological purposes and to understand bacteria 

that cause disease. However, while bacteria impact almost every aspect of human life, 

we do not fully understand their genomes. In this thesis I investigated genome 

organization with a specific focus in bacteria. To improve our understanding of bacterial 

genomes, I helped design a high-throughput tool, in-vivo protein occupancy display at 

high-resolution (IPOD-HR), that allows resolution of how proteins bind across the whole 

length of a bacterial chromosome. By applying this tool to a number of different bacteria, 

we discovered conserved areas of the genome that are densely bound by proteins but 

are transcriptionally silent – similarly to heterochromatin in eukaryotes. I show that these 

regions, termed extended protein occupancy domains (EPODs), have functional roles in 

bacteria that enable them to use new carbon sources for energy and provide an 

immune defense against viruses in Escherichia coli (E. coli). I show that EPODs are 

occupied by nucleoid associated proteins (NAPs). By performing deletions of single 

NAPs, I identified the key NAPs that bind to specific regulons. In E. coli, I find that 

EPODs silence a number of metabolic pathways and toxic prophages. I induced 

changes of particular EPODs by exposing cells to exotic carbon sources and find that 

EPODs mediate a transcriptional memory affect, where upon a second exposure to an 

exotic carbon source mounts a faster growth rate and de-repression of genes required 

for metabolism. In addition, I show one essential role of the formation of EPODs by 

NAPs in E. coli is to silence harmful genetic elements that have integrated into the 



 xi 

genome, such as mobile elements and prophages, that can be potentially toxic to the 

cell. I define novel prophage silencers, Hfq and Fis that are required for silencing 

specific prophages. In collaboration with the Jakob Lab, I employed biochemistry, 

genetics, and bioinformatics and discovered that Hfq binds with a poly-anion, 

polyphosphate (polyP), to DNA to silence prophages. Biochemical results suggest a 

model in which polyphosphate acts as an Hfq chaperone in order to permit appropriate 

silencing at EPODs. These results provided the first evidence that polyP might act in 

DNA damage control by either directly or indirectly suppressing the expression of 

genetic mobile elements and prophages, and a mechanism by which bacterial 

heterochromatin enables regulation during times of stress. Ultimately, my work defines 

the importance of genome organization in bacteria and provides a scaffold for further 

investigation into mechanisms underlying the establishment heterochromatin-like 

domains in bacteria.
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Chapter 1 

A New Perspective on Bacterial Architecture   

Abstract 

Genome architecture has proven to be incredibly important in determining gene 

regulation across almost all domains of life. While many of the key components and 

mechanisms of eukaryotic genome organization have been described, bacterial DNA 

organization has only begun to be recognized. Only until the early 2000’s has it been 

appreciated that bacteria may have a structured genome, and the tools to better 

understand structure and function are limited. Much of what we know about bacterial 

organization relies on in vitro characterization of nucleoid associated proteins (NAPs), 

however, it remains a mystery as to how these findings translate in vivo. Additionally, 

tools to study individual NAPs have also been incredibly cumbersome, as they 

promiscuously bind nucleic acids and have overlapping binding sites. Here, I summarize 

the importance of genome organization in gene regulation and the state of the field of 

bacterial genome architecture.  

Introduction 

Every cell must solve an incredible challenge: to organize negatively charged genetic 

material, DNA, that is orders of magnitude longer than the width of the cell. The DNA 

must be compacted and neutralized, but accessible to maintain proper physiological 

states and easily changed if environmental stimuli require it. In eukaryotes, the 

compaction of the DNA is mediated by histones- basic proteins that in an octamer form 

tight structural units of DNA called nucleosomes[1], these nucleosomes then wrap to 



 
2 

form chromatin fibers[2,3]. There are two broad categories of chromatin that largely 

relate to the accessibility of DNA to RNA-polymerase binding and transcription: 

euchromatin which is loosely packed and accessible for transcription vs. 

heterochromatin which is inaccessible and silent[4] (Fig. 1.1A,B). Histones, chromatin-

associated proteins, and amino-terminal modifications form the ‘histone code’ that in 

turn impacts chromatin structure and gene regulation[2,3] (Fig. 1.1A,B). The flexibility of 

this code can be appreciated when considering post-translational modifications to 

histones, which can both repress transcription or promote initiation in accessible 

promoter regions[5] (Fig. 1.1A,B).  In addition to maintaining organization, this genome 

architecture facilitates cell-type memory as tissue-specific cells pass information to 

daughter cells. Cell fate decisions are largely determined by gene expression and 

transcription, that may change in response to environmental stimuli[6]. This passage of 

information, often termed ‘transcriptional memory’ is critical for the viability of the 

organism[6,7]. In humans, changes in chromatin lead to global genome misregulation 

and instability have been linked to cancer[8–11], implicating chromosome structure as 

an essential unit of genome maintenance and health.  

 

 

 
Figure 1.1: Key proteins mediate structure across domains of life. (A) A model of 
heterochromatin in eukaryotes exhibiting both histone methylation and DNA 
methylation, which facilitates the assembly of heterochromatin structures[194,195]. (B) 
In contrast, a model of euchromatin exhibits histone acetylation which diminishes 
electrostatic affinity between histones and can lead to accessibility of DNA For 
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transcription[196–198]. (C) Molecules per cell (log2) of nucleoid associated proteins 
(NAPs; green) and the transcription factor LacI (grey) in E. coli grown in rich 
media[199].  

 

In the case of bacteria, DNA organization has only begun to be described, as it was 

previously believed that bacteria have a relatively accessible genome that exists in a 

membrane-free nucleoid[12–14] (Fig. 1.2). With advances in technology, it was 

discovered that bacteria maintain a discrete nucleoid shape that changes through 

different growth phases or conditions[15–17] (Fig. 1.2). The tools that exist to study 

genome architecture in eukaryotes cannot simply be applied to bacteria, so much of our 

understanding of the genome organization in bacteria, and how it may impact gene 

regulation, is incredibly limited. Overall compaction of the DNA has been known to be 

facilitated by highly abundant nucleoid associated proteins (NAPs)[14,18] (Fig. 1.1C, 
Fig. 1.2), however their broad binding specificity and overlapping binding regions make 

it difficult to profile a single NAP’s contribution to gene regulation. Even 

comprehensively studied NAPs such as H-NS remain a mystery in terms with how they 

interact with DNA in the cell. Here, we will explore the current state of the field of 

bacterial genome organization: the many modes by which genome organization impacts 

gene regulation in bacteria, the key proteins that mediate chromosomal organization, 

and the tools that exist to better understand genome regulation. 
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Figure 1.2: Nucleoid associated proteins mediate a variety of DNA conformations 
and are abundant in different stages of growth. Overview of highly abundant NAPs 
and their relative abundance in the different stages of growth in E. coli. Single subunit 
kDs, binding associations, and binding preferences were referenced from [199], binding 
capabilities (filaments, bendings, etc.) were referenced from [14,199]. The H-NS binding 
depicted is an example of a bridged DNA filament formed between Hha, StpA, and H-
NS.  

The organized bacterial nucleoid. 

The hallmark of what defines a prokaryote vs a eukaryote is the absence of membrane 

bound organelles. Instead, the (in most cases) single circular chromosome is contained 

within the nucleoid: an irregularly shaped, organized mixture of negatively charged 

DNA[14,17,19]. The E. coli chromosome contains one origin of replication and is 

organized into four macrodomains: Ori, Ter, Right and Left that mediate the separation 
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of sister chromatids during replication[20,21] (Fig. 1.2). The overall shape of the 

nucleoid is robust, and rearranges during stress, replication, and growth phase[15,16]. 

The determining factors of the overall shape of the nucleoid are nucleoid associated 

proteins (NAPs) and transcription[18,22], intertwining the importance of structure, 

proteins, and transcription for proper cell viability. Many parallels have been drawn 

between histones and NAPs, since NAPs have DNA binding domains, broad specificity, 

and the ability to compact DNA. However, the in vivo interactions NAPs have with DNA 

have not been completely resolved. In E.coli, there are around a dozen NAPs that 

interact with the DNA and other nucleic acids in various ways[13,14,18,23–25] (Fig. 
1.2). While more deeply summarized in the following paragraphs, NAPs facilitate the 

formation of DNA bridges, filaments, bending, supercoiling, RNA mediated interactions, 

puncta, phase separated droplets, and impede RNA polymerase directly [14,26] . These 

interactions can promote and suppress transcription, however, in general NAPs are 

thought to be the major silencers of bacterial DNA[17,18]. NAPs are highly abundant in 

the cell, however their abundance may differ as the nucleoid responds to different 

conditions. For instance, the NAP Dps is highly abundant in stationary phase and 

becomes the main component of the nucleoid[23], sequestering iron and protecting 

DNA from damage[27,28] (Fig. 1.2). In contrast, transcription itself can impact the 

shape of the nucleoid, as transcription generates positive supercoils and can influence 

the binding of NAPs[14]. An experiment to beautifully exhibit the influence transcription 

has on nucleoid shape, is to treat cells with rifampin, an antibiotic that blocks and 

inhibits RNA polymerase. The inhibition of transcription initially results in a compaction 

of the nucleoid due to the reduction in expansion from transcription-translation 

interactions, and then an expansion occurs from ribosomes and chromosome 

mixing[29,30]. Together, NAPs, transcription, and DNA form the organized nucleoid, all 

influencing each other in the process of growth and stress. For the remainder of this 

thesis, the focus will be E. coli, as it is one of the hallmark model microbial organisms, 

harnessed for biotechnology purposes, and pathogenic. 
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Bacterial transcription depends on a single RNA polymerase. 

While the central dogma is conserved across life, bacteria have a specific order of 

events to initiate transcription. Unlike eukaryotes which contain membrane bound 

organelles, prokaryotic transcription, translation, etc. occur in the cytoplasm of the cell 

and transcription relies on a single RNA polymerase (compared to the three present in 

eukaryotic organisms) [31,32]. This single RNA polymerase is composed of four 

subunits: two alpha[33], one beta and one beta’ that bind with a number of sigma 

factors (σ factor) to form a complete RNA polymerase holoenzyme that can bind to a 

promoter sequence and initiate transcription[34]. During exponential growth, sigma 70 is 

the primary σ factor consisting of 60-95% of the total of factors, however in other stages 

of growth and different stressors (heat, osmotic stress, etc.), sigma 70 decreases[35–

37]. The change in the σ factor composition of the cell impacts binding of the RNA 

polymerase holoenzyme, thus leading to large changes in the expression profile of the 

cell[38–40].  

Bacterial chromatin influences transcription. 

Historically, chromatin is defined as a complex of tightly packed DNA made up of 

histones, and found exclusively in eukaryotic cells[3]. However, new technologies have 

uncovered evidence that heterochromatin-like regions- areas that are densely bound by 

protein but transcriptionally silent- exist in bacteria[14,41,42]. If the definition of 

chromatin is expanded to capture regions of the chromosome that are densely packed 

and transcriptionally inert, it is important to begin to define mechanisms that maintain 

and regulate chromatin in bacteria. The structure of bacterial chromatin is largely 

defined by supercoiling and compaction of the DNA mediated by NAPs[19,29,43–46], 

however, much of what occurs in vivo still remains incomplete and will require 

adaptation of tools to capture 3D structure. The five modes by which bacterial chromatin 

impacts transcription (specifically thinking in the lens of how it may impact RNA 

polymerase binding) are summarized in [14], but will briefly be discussed here for its 

relevance: (1) occlusion of RNA polymerase binding: proteins bound to a promoter or 
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transcription start site that prohibit RNA polymerase touch down, (2) blocking RNA 

polymerase progression: RNA polymerase is able to bind and initiate transcription, but 

cannot proceed due to a protein roadblock, (3) DNA topology: (+) supercoiling is 

generated in front of an elongation complex and (-) supercoiling is generated behind; (-) 

supercoiling supports DNA unwinding and thus facilitates transcription initiation and 

inhibits termination, and the opposite is true for (+) supercoiling[47,48], (4) RNA-

mediated silencing: Transcription factors that bind to nascent RNA transcripts can 

interfere with RNA polymerase termination, translocation, and pausing[49,50],(5) phase-

separation: the formation of DNA condensates has been primarily shown in eukaryotes 

to control transcription[51], where DNA is compacted in droplets, however if phase 

separation mediates transcription in bacteria is unclear. Each one of these modes has 

been linked to NAPs, as almost all NAPs influencing DNA topology via supercoiling, 

however specific NAP roles are described in detail below.  

Nucleoid associated proteins mediate the formation of bacterial chromatin. 

NAPs mediate chromosomal structure and DNA compaction across bacterial 

species[18,52,53]. What they all have in common broad DNA binding specificity (usually 

preferring curved DNA and / or AT rich DNA) and high abundance in the cell[18] (Fig. 
1.2). The majority form homodimers, with some, H-NS and StpA, binding together to 

form DNA filaments[14,18](Fig. 1.2)[14,18]. Crystal structures and in vitro experiments 

of NAPs have led to insights into some of the interactions between nucleic acids and 

proteins[54–56], however the method by which particular NAPs bind DNA in vivo has 

largely been uncharacterized. Increasing evidence has implicated NAPs serving 

important functions as regulators of horizontal gene expression and pathogenesis[57–

62]. H-NS (Histone-like nucleoid structuring protein), one of the most well studied NAPs, 

and has been shown to silence horizontally acquired DNA[63–65]. H-NS and it’s paralog 

StpA will be more deeply explored in the next sections. However, even as a 

comprehensively studied NAP, it still remains a mystery of how H-NS binds to DNA 

inside the cell and mediates silencing of foreign DNA. Even less is known about the 
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remaining NAPs of E. coli: Fis, HU, IHF, Dps, Hfq, Lrp, IciA, DnaA, Cbp (Fig. 1.2). 

Proteomic analysis suggests that H-NS, HU, IHF, and Fis activities may be influenced 

by posttranslational modifications, however, the mechanisms underlying that response 

remain unclear[66]. Here, I will briefly summarize what is known for the NAPs that make 

up the main components of the nucleoid (Fis, HU, IHF, Dps, H-NS) and the highly 

conserved RNA chaperone, Hfq.  

 

Factor for inversion stimulation (Fis) was named and first identified for its role in 

inversion of the bacteriophage Mu[67,68], but has a broader role in organization and 

maintenance of nucleoid structure[69,70], primarily acting through binding as a 

homodimer to DNA or modulating gyrase and topoisomerase I[71]. Fis is one of the 

most abundant NAPs in the cell (>60,0000 copies per cell) during exponential growth 

and optimal conditions, however falls to drastically lower amounts during later stages of 

growth (<100 copies per cell)  [23,72] (Fig. 1.2). Fis is largely autoregulated, and it’s 

role in modulating gyrase and topoisomerase I is linked with its induction by high 

supercoiling levels in the cell[73]. Fis is made up of an α-helical core with four helices 

and an N-terminal domain that has a β-hairpin arm that facilitates DNA inversion[74–

77]. As a homodimer, Fis has been shown to bend DNA to as large as a 90° bend, 

which stabilizes DNA looping, thus leading to compaction of DNA and effects on 

transcription[61,78,79]. Fis can have both inducing [80–82]and suppressing effects [83–

85] on gene expression, which can largely depend on Fis intracellular abundance[71]. It 

is one of the major gene regulators of the cell, with 894 Fis associated regions across 

the E. coli genome[69]. The global binding of Fis negatively correlates with 

transcriptional propensity, measured by a randomly inserted reported construct across 

the genome[86]. Authors in [86] show that rather than impact transcriptional propensity 

by interactions at the promoter region, Fis acts on the integration site. In total, it is clear 

that Fis is a major gene regulator of the E. coli cell, impacts transcription through its 

DNA binding capacity, and thus can change the overall shape and gene expression of 

the cell. It remains unclear if Fis binds or interacts with other nucleoid associated 

proteins, however, Fis serves an overlapping role of silencing toxic regions of the 

genome compared to other NAPs[85]. As a general theme with all NAPs, it is becoming 
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increasingly clear that NAPs serve a variety of functions, many overlapping, to maintain 

overall cell viability and health. 

 

Heat-unstable nucleoid protein (HU), the most abundant and highly conserved 

NAP[87], forms a heterodimer with subunits HupA and HupB encoded by hupA and 

hupB, respectively. Homodimers between each subunit can form as well[88]. Like many 

other NAPs, HU is known as a global regulator and organizer of the E. coli nucleoid. HU 

can bind linear dsDNA with low affinity and RNA, but prefers DNA forks, sharp bends, 

bulges, and kinks[14]. In vitro, HU determines polyamine DNA condensates, facilitating 

the formation to rod structures[89], however it is unclear if the same pattern would be 

observed in vivo. HU plays largely a repressive role as an accessory factor that 

regulates key pathways involved in replication initiation[90], stress response[91], the Gal 

respressome[92], and outer membrane maintenance[93]. HU’s ability to bend the DNA 

and form higher order nucleoprotein complexes at promoters stabilizes dense structures 

that prohibit the ability of transcription initiation at that site[92,94,95]. There is no known 

inducer for HU, but similarly to Fis, HU is one of the major components of the nucleoid 

during exponential growth and lowers in content during later stages of growth[23]. HU 

remodels the nucleoid during growth phases and fosters the formation of a dense 

condensed core, hypothesized to facilitate coordinate gene regulation during times of 

growth and environmental changes[96]. One of HU’s main modes of impacting gene 

expression comes from the introduction of negative supercoiling in the presence of 

topoisomerase I[97–99], or in some cases, stimulating topoisomerase I to remove 

negative supercoiling[100] (Fig. 1.2). The wide variety of regulatory roles, binding 

capacity and modes leaves an incomplete picture of how HU and the variety of dimers 

directly mediate nucleoid structure and regulation.  

 

Integration host factor (IHF) similarly to HU forms a heterodimer with subunits IhfA 

and IhfB, contributes to DNA supercoiling, is more abundant in exponential phase of 

growth compared to stationary phase[23], has a preference for curved DNA[101], plays 

a role in polyamine DNA condensation[102], and is largely an accessory factor to 

stabilize nucleoprotein complexes[103]. It has been found to play a role in major 
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processes such as DNA replication, recombination, and gene expression[103–105]. 

IHF, as the name suggests, was initially discovered to be an essential factor for site-

specific recombination of phage λ[106]. The binding and bending (which can be up to a 

160° bend) capacity of IHF positions and stabilizes the DNA, directing bivalent integrase 

molecules to bind to the DNA[107] (Fig. 1.2). This interaction is surprisingly not 

mediated by any direct protein-protein interactions[107]. The crystal structure has been 

resolved, and the binding specificity to DNA seems to be determined by the inherent 

structure of DNA imposed by A/T-rich regions[108–112]. In terms of motif specificity, Fis 

and IHF can bind the same sites across the genome, and can lead to both repressive 

and activated effects[113]. The variation in the regulatory effect, whether it be from the 

mode by which NAPs bind to the proteins or the amount of protein bound, remains 

unclear.  

 

DNA protection during starvation (Dps) forms a ferritin-like dodecamer with a hollow 

core [114], has low sequence specificity for DNA, required for starvation response[28], 

and makes up half of the nucleoid in stationary phase of growth[115]. DNA and Dps 

form a DNA-protein crystal [116] that aids in protection of the DNA[28,117,118]. Dps is a 

main facilitator of DNA compaction during later stages of growth, largely combating the 

actions of Fis, which controls DNA gyrase and topoisomerase I and prevents large-

scale condensation of the nucleoid in exponential phase[70,119–121]. Similarly to 

ferritin, Dps serves an important role in iron acquisition and contributes to oxidative 

damage protection[122–125]. Dps is induced post-transcriptionally in times of carbon or 

nitrogen starvation and oxidative stress[119,126,127], and in pathogenic E. coli, Dps 

promotes acid tolerance[128].The regulation of Dps has been extensively studied and 

summarized[129–135]. During exponential growth, Dps is degraded by proteases 

ClpXP, however in times of carbon starvation proteolysis is halted to maintain proper 

levels of Dps for DNA protection and compaction[126]. The compaction mediated by 

Dps does not repress transcription, supporting the idea that compaction may form 

phase separated droplets that still enables RNA polymerase accessibility[136] (Fig. 
1.2). More exploration into the impact Dps has on genome regulation is required to fully 

appreciate its impact on the cell. 
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Histone-like nucleoid structuring protein (H-NS) is a small basic protein known to be 

a major regulator of the cell[137] as a transcriptional repressor[138,139]. There is no 

known direct inducer of H-NS, however H-NS is thought to be autoregulator and is 

known to regulate transcription of major regulators in response to a number of different 

processes such as acid resistance[140], flagella biogenesis[141], rRNA 

components[142], proteases[143], and metabolism[144]. The wide range of systems H-

NS regulates and sequences it binds suggests that the regulator role of H-NS relies on 

its role in impacting chromosomal structure. H-NS has a strong preference for A/T rich 

regions, horizontally acquired DNA, and regulates newly acquired DNA[140,145]. 

Conversely when compared to Fis, negatively correlated with transcriptional propensity 

and positively correlates with integration of a reporter and A/T content, further showing 

that H-NS silences newly acquired DNA[86]. H-NS contributes to the 

compaction[146,147] and organization[148] of the nucleoid, is capable of supercoiling 

DNA[46,149–151] and forms different types of DNA filaments[14,56]. H-NS can form 

homodimers or heterodimers with its paralog StpA[152]. While sharing similar sequence 

and structural features[56,153], H-NS is more highly abundant in the cell and has a 

lower DNA binding affinity[154]. The loss of hns leads to an increase in expression of 

stpA[154,155], however the loss of stpA shows minimal phenotypic effects largely 

hypothesized to be due to its lower amount in the cell and overlapping regulatory roles 

with H-NS. StpA has been shown to partially compensate[156] for the loss of hns, and 

repress similar genes. In vitro, H-NS forms both linear (binding one DNA fragment) and 

bridge (“bridging” two fragments of DNA) filaments across dsDNA (Fig. 1.2), that have 

the capacity to impede transcription by interfering with RNA polymerase[14,56]. Both 

linear and bridged filaments can impede transcription initiation by binding throughout the 

promoter and transcription start site[56]. Only bridged filaments promote RNA 

polymerase backtrack pausing and subsequent ρ-dependent termination[56]. StpA can 

form these types of filaments with H-NS, and in some species Hha, which belongs to 

the family of H-NS proteins but does not have a DNA binding domain, supports the 

formation of bridged H-NS filaments[56]. StpA has also been linked to RNA chaperone 

activity, further deepening the mechanistic options these proteins have on impacting 
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bacterial chromatin[157]. Along with the other NAPs, the recruitment of H-NS to 

particular regions, the binding mode of H-NS in the cell, and the regulation of H-NS as 

whole is undetermined. 

 

Host factor for phage Q beta (Hfq): RNA chaperone or DNA binding protein? Hfq is 

a well-documented, conserved RNA-binding protein, whose homohexamer ring has the 

propensity to bind RNA in a number of different conformations[158–161]. Sequence 

analysis of Hfq revealed that it was related to Sm proteins found in eukaryotes and 

archaea, which similarly form ring structures that are the main unit of spliceosomal small 

nuclear ribonucleoproteins (snRNPs)[162,163]. These snRNPs are key building blocks 

of the spliceosome, which splice and process RNA[164]. Hfq facilitates and stabilizes 

small RNA interactions that repress mRNA translation and promote degradation for a 

number of RNA transcripts[158,165]. Through these interactions it has been shown that 

Hfq is mediates the translation of RpoS - a stress induced sigma factor in both 

Salmonella typhimurium and E. coli [166–168].The similarities between Sm proteins and 

Hfq, while incredibly fruitful and interesting when considering the evolutionary link 

across domains of life, has led to a bias in studies focusing solely on Hfq’s RNA 

interactions, leaving its DNA binding capabilities largely uncharacterized. Hfq was 

originally identified as a gene required for phage Q beta propagation and RNA-directed 

synthesis of infected E. coli [169,170] but has been connected to a number of different 

processes. For instance, Hfq has been shown to associate with nascent transcripts and 

RNA polymerase, but the connection has not been made in vivo [171,172].The loss of 

hfq exhibits pleiotropic phenotypes, such as impacting cell division and decreasing 

negative supercoiling, osmosensitivity, largely thought to be linked heavily to its RNA 

chaperone activity[173–177]. Hfq has been shown to form foci in response to 

starvation[26] and plays a role in stress-induced mutagenesis[173]. However, Hfq, 

especially with increasing amounts of hexamers, has been shown to compact dsDNA, 

and recently a structure was resolved showing its interaction with DNA molecules[54] 

(Fig. 1.2). Like H-NS, Hfq is able to bridge dsDNA[178]. Understanding Hfq’s role in 

regulating genes at the level of occupancy across the genome will give insight into the 

mechanism behind the wide variety of effects Hfq has on the cell.  
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Understanding the state of the cell: tools to profile genome architecture and 
regulation. 

High-throughput assays have greatly improved our ability to understand gene regulation 

in a variety of species, conditions, and scales. When considering the central dogma of 

life and the tools to profile each level, DNA-sequencing, RNA-sequencing, and mass 

spectrometry begin to tease apart the content of a cell at a given time[179,180]. ChIP-

seq enables the assessment of binding of specific proteins, to gain knowledge on 

binding motifs and regulators such as transcription factors across the entire genome. 

While all of these methods and others have enhanced the understanding of the 

genome, only until recently was there a method to capture the structure of the genome. 

Conceptually, it has only recently been appreciated that the genome structure mattered, 

if it existed at all. Three dimensional analysis of the genome using chromosome 

conformation capture techniques has exploded the ability to understand genome 

domains, folding, and looping [181–183]. Despite having an expansive toolkit, it is still 

poorly understood how structure and function are linked[184].  

 

Employing the proper bioinformatic tools and pipelines is essential to gaining biological 

insight to any high-throughput tool. In the case of both eukaryotes and prokaryotes, this 

involves an intimate understanding of the genome. For instance, when applying high-

throughput assays such as ChIP-seq to eukaryotic organisms, after processing the 

DNA, aligning it to the genome, and taking a glimpse of where peaks of DNA are found 

in a dataset, one would find distinct areas across the genome that always retain an 

obnoxiously high singal[185,186]. These signals are present no matter what condition or 

protein being assessed[186], and are largely attributed to high repetitive sequences 

across the genome. To resolve this issue, in the Appendix I will share my work defining 

the ENCODE Blacklist, areas of the genome that sequester signal due to repetitive 

content, across a variety of eukaryotic species.  

 

In the case of prokaryotic organisms, the tools that exist are limited in comparison to 

their eukaryotic counterparts. While seemingly backwards when considering microbes 

have smaller genomes and are relatively easier to manipulate than, let’s say a human, 
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the focus for genome annotation and downstream tools has a spotlight on eukaryotic 

genomes. As an example, despite being one of the most well studied organisms on the 

planet, to date, ~50% of the genes in Escherichia coli (E. coli) are of unknown 

function[187–189]. Even less information is known about the genome of common 

microbial pathogens and commensals- leaving a pool of genetic information that 

remains, largely, a mystery. Of the tools listed above, DNA-seq, RNA-seq, ChIP-seq 

have all successfully been applied to bacterial contexts. However, implementation of 

genome architecture tools has been challenging. While in some cases, 3D profiling has 

been successfully implemented[190–193], the dynamics of the bacterial genome require 

tools to profile changes in proteins that mediate DNA architecture. 

Conclusions and future perspectives 

Chromatin, here defined as packaging of the DNA, is essential for proper genome 

maintenance and gene regulation across all species[12]. In eukaryotes, this is largely 

mediated by histones and posttranslational modifications[2,3], similarly, bacteria contain 

histone-like proteins that impact DNA structure and compaction[13,14]. The 

organization of the DNA within the nucleoid imposes transcriptional effects that may 

change given environmental cues[26], replication status[22], or growth[15,23], 

reminiscent of heterochromatin in eukaryotes[12]. The histone-like proteins in bacteria 

are nucleoid associated proteins (NAPs) that mediate changes in DNA structure by 

forming linear DNA filaments[56], bridged DNA filaments[56], promote 

supercoiling[12,97], bend and wrap the DNA[12], and may form phase-separated 

condensates[14]. The variety in binding leads to a range of effects on gene expression, 

notably by interfering with RNA polymerase binding, translocation, or progression, and / 

or binding to nascent transcripts[14]. Furthermore, NAPs such as H-NS and StpA 

specifically silence horizontally acquired genes and mediate stress 

responses[14,25,59,63,64], leading to interesting hypotheses about whether a function 

of heterochromatin-like regions in bacteria is to promote diversification of the species, 

while also initially protecting the organism from toxic elements. Hfq, only recently being 
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deeply explored for its DNA binding capacity, also mediates the stress induced 

mutagenesis response[173], and in pathogenic organisms has been shown to play a 

role in virulence[58]. Together, these results show the impact nucleoid associated 

proteins have on DNA organization and gene regulation, but the link between in vitro 

characteristics and in vivo mechanisms has not been fully realized.  

 

The low binding specificity and overlapping binding characteristics of NAPs make them 

especially difficult to study. Assessment of some NAP deletions have also resulted in no 

large changes in transcription and / or physiology, leading to increased confusion as to 

the role of NAPs in binding or compensation[136,156]. To decipher the changes in 

genome-wide binding of NAPs, implementation of a series of ChIP-seq experiments 

seems like the likely next step, however, since there is not an antibody for each NAP, 

we cannot profile each NAP in this manner. Additionally, ChIP-seq may not retain 

information about overall binding profiles of the genome that may provide further 

information on how NAPs impact binding of other proteins. Therefore, I helped create a 

method termed in vivo protein occupancy display at high-resolution (IPOD-HR) 

presented in Chapter 2 that enables genome-wide assessment of protein 

occupancy[42], and reveals heterochromatin-like regions, termed extended protein 

occupancy domains (EPODs) in E. coli. IPOD-HR does not rely on an antibody, and can 

be applied to a number of different organisms to assess the presence of 

heterochromatin-like regions across the genome[42]. In Chapter 3, I will implement 

IPOD-HR to investigate the changes in protein occupancy due to the deletions of key 

NAPs and pair IPOD-HR with RNA-seq to better understand the role of NAPs in gene 

regulation. I identify the key NAPs regulating metabolic pathways and xenogeneic 

silencing in E. coli and the distantly related species Bacillus subtilis. Furthermore, I find 

that induction of metabolic pathways via carbon source exposure may mediate a 

transcriptional memory response, again linking the heterochromatin-like regions in 

bacteria to serve similar functions as seen in eukaryotes. Lastly, I show that Fis and Hfq 

serve overlapping roles in silencing prophages and mobile elements and attempting to 

delete both fis and hfq leads to inviability. In Chapter 4, I investigate the mechanism 

behind Hfq’s role as a prophage silencer in connection to a polyanion, polyphosphate, 
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which seems to mediate Hfq binding to prophages and mobile elements. The work 

presented in the remainder of this thesis provides new functional and mechanistic 

insights into bacterial chromatin in vivo across the genome. The conservation of many 

of these NAPs across species, and as shown here the similar functions of EPODs 

across species, will enable this work to impact biotechnology and health.  
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Chapter 2 

Dynamic Landscape of Protein Occupancy Across the Escherichia coli 
Chromosome  

Abstract 

Free living bacteria adapt to environmental change by reprogramming gene expression 

through precise interactions of hundreds of DNA-binding proteins. A predictive 

understanding of bacterial physiology requires us to globally monitor all such protein-

DNA interactions across a range of environmental and genetic perturbations. Here, we 

show that such global observations are possible using a modification of in vivo protein 

occupancy display technology (IPOD-HR) applied to E. coli. We observe that the E. coli 

protein-DNA interactome organizes into two distinct prototypic features: (1) highly 

dynamic condition-dependent transcription factor occupancy by dedicated 

transcriptional regulators, and (2) condition-invariant kilobase scale occupancy by 

nucleoid factors, forming silencing domains analogous to eukaryotic heterochromatin. 

We show that occupancy dynamics across a range of conditions can rapidly reveal the 

global transcriptional regulatory organization of a bacterium. Beyond discovery of 

previously hidden regulatory logic, we show that these observations can be utilized to 

computationally determine sequence-specificity models for the majority of active 

transcription factors. Our study demonstrates that global observations of protein 

occupancy combined with statistical inference can rapidly and systematically reveal the 
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Thomas J. Goss, and Saeed Tavazoie. Conceptualization, S.T.; Methodology, P.L.F. and S.T.; 
Investigation, P.L.F., T.J.G., and H.A.; Data Analysis and Curation, P.L.F. and S.T.; Writing - Original 
Draft, P.L.F. and S.T.; Writing -- Review & Editing, P.L.F., H.A., and S.T.; Funding Acquisition, P.L.F. and 
S.T. All authors reviewed the manuscript. I specifically performed the no rifampin experiments (IPOD-HR 
assay) as an important control to examine the originally termed silent and active EPODs. I contributed to 
the data analysis, manuscript writing, and manuscript preparation. I also performed extensive validation 
experiments that will be included in the reviewed document of this manuscript, where we utilize a reporter 
to measure activity of the sdaC promoter with scrambled binding sites for yieP.  



 30 

transcriptional regulatory and structural features of a bacterial genome. This capacity is 

particularly crucial for non-model bacteria which are not amenable to routine genetic 

manipulation. 

Introduction 

Transcriptional regulation plays a central role in establishing adaptive gene expression 

states. In bacteria, the dominant regulators are transcription factors (TFs) [1,2] and 

sigma factors, which direct the activity of RNA polymerase holoenzyme to a specific 

subset of promoters [3,4]. The phenotypic state of the bacterial cell is determined in 

large part by its transcriptional regulatory state which, in turn, is dictated by the binding 

pattern of TFs and sigma factors across the chromosome, likely in interplay with 

structural factors such as the local supercoiling state [5]. 

 

At present, however, our knowledge of the complete wiring of bacterial transcriptional 

regulatory networks remains insufficient to fully predict or design regulatory responses 

to arbitrary environmental conditions. The case of Escherichia coli serves as an 

illustrative case study: due to its status as a pre-eminent model organism and human 

pathogen, the E. coli transcriptional regulatory network has been an intense subject of 

investigation for several decades. As a result, researchers have obtained an 

increasingly comprehensive and detailed map of the binding specificities and 

physiological roles of transcriptional regulators in this organism [6]. However, roughly 

one quarter of the ~250 transcription factors in E. coli have no available binding or 

regulatory data [7], and many more are virtual unknowns in terms of the signals that 

might alter their regulatory activity. Likely as a result of this knowledge gap, Larsen and 

colleagues recently found that despite our broad knowledge of the potential regulatory 

targets of E. coli transcription factors, our ability to predict regulatory behavior on the 

basis of expression levels of transcription factors is no better than it would be for 

random networks. The authors attribute this partly to the fact that even when a TF is 

expressed, in many cases it will not bind its targets in the absence of additional signals 
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[8]. Furthermore, E. coli represents a best-case scenario in terms of our knowledge 

state for a bacterial transcriptional regulatory network, and for most species current 

databases lag far behind. 

 

Expanding our capability to predict, and ultimately design, bacterial regulatory 

responses will be critical for controlling bacterial pathogenesis and engineering 

synthetic microbes in biotechnology applications. Achieving such a complete predictive 

understanding, however, requires substantial additional information both on the binding 

sites of as-yet uncharacterized TFs, and the actual physical occupancy of sites for both 

known and uncharacterized factors across conditions. Widely used methods such as 

ChIP-seq pose difficulties on both fronts: they demand a combinatorial explosion of 

experiments to study many transcription factors across a variety of conditions, and 

require either an antibody against each TF of interest or genetic manipulation sufficient 

to add an epitope tag to each target TF.  

 

In order to significantly advance our understanding of transcriptional network dynamics 

and chromosomal structure, we sought to monitor, in parallel, the occupancy states of 

all DNA-binding proteins across a set of genetic and environmental perturbations. We 

argue that such comprehensive observations are critical for defining the global modes of 

transcriptional regulation and determining the regulatory logic that underlies adaptive 

reprogramming of gene expression, particularly given the importance of combinatorial 

logic by many factors and sites in dictating transcriptional output  [9]. In order to achieve 

our goal, we decided to employ the concept of in vivo protein occupancy display (IPOD) 

which we, in a previous proof-of-concept study, demonstrated to reveal global 

occupancy of protein binding sites across the E. coli chromosome  [10]. However, we 

had to introduce critical modifications and enhancements in order to deconvolve distinct 

contributions from sequence-specific TFs and RNA-polymerase and define binding sites 

at high-resolution. We will refer to this second generation IPOD technology as IPOD-

HR. IPOD-HR enables efficient coverage of a large range of physiological conditions in 

relatively few experiments (one experiment per condition, rather than the one 

experiment per TF per condition that would be required for ChIP-seq). As we 
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demonstrate below, a single IPOD-HR experiment can reveal the occupancy dynamics 

of dozens of known and novel active TFs genome-wide, permitting rapid profiling of 

global transcriptional regulatory logic across different conditions. Furthermore, the 

comprehensive nature of IPOD-HR profiles enables efficient statistical inference of  

sequence specificity models (TFBS motifs) for active transcription factors, both 

recapitulating well-known regulatory logic and revealing the presence and condition-

dependent activities of novel regulatory elements. 

 

Here, we characterized the dynamics of the global protein-DNA interactome of E. coli 

across a range of three physiological conditions and three genetic perturbations. Our 

observations allowed us to infer, in parallel, the activities of most annotated transcription 

factors across conditions, and provided a catalogue of many additional likely regulatory 

sites and DNA sequence motifs for uncharacterized TFs. With the compact set of 

experiments, we reveal the dramatic regulatory dynamics of dozens of transcription 

factors that collectively shape the response of E. coli to changing environments. In 

sharp contrast, we find that at the kilobase scale, the genome is characterized by a set 

of relatively static structural domains, which consist of transcriptionally silent loci with 

dense protein occupancy that appear mostly constitutive across a range of physiological 

conditions. These regions, which we refer to as EPODs (extended protein occupancy 

domains) following the nomenclature of Vora et al. [10], appear to act, at least partially, 

to suppress prophages and mobile genetic elements.  

 

Because our approach does not rely on prior knowledge of TFs of interest or genetic 

manipulation of the target organism, but rather only on essential physico-chemical 

properties of protein-DNA complexes, we expect that it will be broadly applicable across 

bacterial species, even those which cannot be cultured or genetically manipulated. Our 

approach lays the technical and analytic foundation to rapidly characterize the 

regulatory and structural features of any bacterial chromosomes. 
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Results 

Global high-resolution profiling of condition-dependent transcription factor 
occupancy across the E. coli chromosome 
 

The IPOD-HR procedure is shown in schematic form in Figure 2.1A: cells are grown 

under a physiological condition of interest, fixed using formaldehyde, and then lysed. 

Heavy digestion of the chromosomal DNA provides minimized DNA fragments that may 

be in either a protein bound or unbound state. The protein bound DNA fragments are 

subsequently isolated using a phenol-chloroform extraction. Under appropriate buffer 

conditions, the amphipathic protein-DNA complexes are depleted from the aqueous 

phase and partition to a robust disc at the aqueous-organic interface [10].  

 

As we will demonstrate below, the measurements enabled by IPOD-HR can 

subsequently be used for a broad range of downstream analyses, such as simultaneous 

monitoring of the activities of characterized TFs, large-scale inference of binding motifs 

for previously uncharacterized DNA-binding proteins, and identification of key 

occupancy sites driving previously unrecognized gene regulatory logic. To accomplish 

these objectives, it is essential to separate out the occupancy signal of RNA polymerase 

from that of specific regulatory factors of interest. Otherwise, the strong occupancy 

signal caused by RNA polymerase could mask changes in protein occupancy that in 

fact provide regulatory information (e.g., if a repressor becomes unbound but RNA 

polymerase subsequently binds to the same location, the occupancy signal would be 

nearly unchanged). To deconvolve occupancy caused by sequence-specific TFs and 

that of RNA polymerase, we subtract the normalized RNA polymerase ChIP-seq signal 

from that of the normalized raw IPOD-HR signal (see Methods for details), generating a 

corrected IPOD-HR profile that is a more precise representation of the cell’s dynamic 

regulatory state (Fig. 2.1B). IPOD-HR is conceptually similar to the original IPOD 

method [10] in terms of overall workflow, but contains critical optimizations and 

extensions designed to permit genome-wide identification of binding by TFs and 

organizing factors such as nucleoid-associated proteins in a condition-specific manner; 

these optimizations arise both in the sample preparation procedure itself (through 
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enhanced washing and additional measures to track and separately factor out RNA 

polymerase occupancy), and an expanded analytical framework for use in inferring both 

existing and new regulatory logic based on whole-genome protein occupancy profiles.  

 

 
Figure 2.1: Schematic of IPOD-HR technology and detection of context-dependent 
binding by transcription factor PurR. (A) Overall workflow for isolation of the IPOD-
HR fraction and quantification of total protein occupancy. (B) The final IPOD-HR signal 
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is obtained by subtracting a normalized RNA polymerase occupancy signal from the raw 
IPOD-HR protein occupancy, resulting in a polymerase-corrected signal. (C) Example of 
RNA-polymerase corrected IPOD-HR profile upstream of the purC gene, where 
subtraction of RNA polymerase occupancy from the raw IPOD-HR signal properly 
reveals a PurR binding site in rich media that is lost upon deletion of purR or transition 
to minimal media. In the schematic above the plots, blue regions show genes, orange 
regions show promoters, and purple regions show annotated transcription factor binding 
sites. 

We note in passing that, at first glance,  IPOD may seem to share superficial similarities 

with FAIRE (formaldehyde-assisted isolation of regulatory elements, originally described 

in [11]). However, FAIRE experiments were designed to detect regions of nucleosome-

depleted DNA in eukaryotic chromosomes. IPOD was independently developed to 

detect occupancy of individual factors in prokaryotic chromosomes [10], and IPOD-HR 

contains further optimizations and additional experimental and computational steps to 

improve performance in detecting both localized and large-scale protein occupancy in 

bacteria. 

 

An illustrative example of the ability of IPOD-HR to identify regulatory protein 

occupancy, its dynamics across conditions, and the importance of factoring out the RNA 

polymerase signal, is shown in Figure 2.1C.  We consider the IPOD-HR occupancy 

profiles for the promoter region upstream of the purC gene in wild type (WT) and ΔpurR 

cells during growth in rich defined medium. Based on the characterized behavior of 

PurR (which binds DNA in response to exogenous purine supplementation [12,13]), 

under this growth condition, transcription of purC should be repressed by binding of 

PurR to its promoter. However, if one considers only the raw IPOD-HR occupancy 

profiles (top panel), binding to the PurR site in this region is apparent in both WT and 

ΔpurR cells. The resolution to this seeming paradox becomes apparent through 

inclusion of the correction for RNA polymerase occupancy (middle panel), which is 

substantially higher in ΔpurR cells. As expected, the resulting corrected IPOD-HR 

occupancy profiles (bottom panel) reveal a protein occupancy peak directly on top of the 

annotated PurR binding site in this region in the WT cells, and no detectable occupancy 

in the ΔpurR cells. This demonstrates the ability of IPOD-HR to reveal condition-

dependent TF occupancy dynamics even in regions that may overlap with RNA 
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polymerase binding.  In the following sections, IPOD-HR refers to the RNA polymerase-

corrected occupancy signal, unless otherwise noted. 

 

Local and large-scale protein occupancy patterns across the E. coli chromosome 
 

To benchmark our ability to quantitatively profile protein occupancy at high spatial 

resolution, we performed IPOD-HR on E. coli cells from mid-exponential growth in rich 

defined medium (Fig. 2.2A). Over the length of the chromosome we observed a large 

number of small peaks, presumably corresponding to protein binding events at 

individual regulatory sites. In addition, we observed many large-scale (> 1 Kb) regions 

of high occupancy which we refer to as extended protein occupancy domains (EPODs), 

following the nomenclature of (Vora et al., 2009).  An example of condition-dependent 

changes in binding of local TFs is shown in Fig. 2.2B-C. Examination of a ~50 kb slice 

of the genome reveals dozens of small occupancy peaks, with a visually apparent 

enrichment in intergenic regions (Fig. 2.2B). Many such peaks, which presumably 

correspond to individual protein binding events, coincide with known TF binding sites 

(TFBSs). For example, the region upstream of argA (Fig. 2.2C) shows strong 

occupancy at known ArgR binding sites, and condition-appropriate occupancy dynamics 

including weakening of binding in arginine-poor conditions [14,15]  and loss of 

occupancy upon deletion of the argR gene.  At the same time, similar occupancy 

patterns can be observed at many sites lacking an annotated TFBS, as seen in Fig. 
2.2D, where conditionally dynamic binding sites are apparent upstream of lgt and rppH. 

These peaks likely indicate the presence of previously unrecognized TFBSs, as we will 

discuss in more detail below. As expected, at a genome-wide scale IPOD-HR signals 

show both higher occupancy in intergenic regions relative to coding regions, and higher 

occupancy at annotated TFBSs relative to other regions of the chromosome (Fig. 2.2E), 

demonstrating a strong overlap of the observed protein occupancy with transcriptional 

regulatory sites. Indeed, applying peak calling to the IPOD-HR signal demonstrates an 

increasingly strong overlap with known TFBSs as the threshold for peak calling is 

increased (Fig. S2.1).  
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Figure 2.2: IPOD-HR profiles reveal rich high-resolution occupancy dynamics and 
large-scale structural features across the chromosome. (A) Outer track: IPOD-HR 
occupancy (robust Z-scores, 5 kb moving average); middle track: total RNA read 
density (5 kb moving average); inner track: locations of inferred EPODs. The outer 
green wedges mark the portion of the chromosome shown in subsequent panels. The 
origin of the coordinate system is oriented at the top of the plot. (B) IPOD-HR 
occupancy measured during growth in glucose rich defined medium, in the vicinity of 
wedge i from panel A. Green segments below the genomic coordinates indicate the 
regions highlighted in panels C-D. (C) Condition-dependent occupancy changes at the 
ArgR binding sites upstream of argA. (D) Identification of condition-specific occupancy 
of likely TFBSs upstream of lgt and rppH. (E) Cumulative histograms showing RNA 
polymerase ChIP-subtracted IPOD-HR occupancy in coding vs. noncoding regions, and 
at sites that match known transcription factor binding sites from RegulonDB [7], 



 38 

compared with the curve that would be expected from a standard normal distribution of 
scores.  (F) Occupancy (blue) and total RNA abundance (orange) for a selected sector 
of the genome (wedge ii from panel A), showing the presence of several EPODs in 
regions corresponding to low RNA abundance; rolling medians over a 5 kb window are 
plotted, with RNA read densities shown in units of reads per million (RPM). (G) 
Magnification of the region highlighted by the green bar in panel F, illustrating a silenced 
region in and around rhsC, alongside flanking areas of low IPOD-HR occupancy and 
high gene expression. A 5 kb rolling median is plotted. 

It is also apparent by inspection of the genome-wide occupancy shown in Fig. 2.2A that 

many extended regions of high protein occupancy coincide with regions of relatively low 

transcription. For example, in Figure 2.2F, we show a typical ~300 kb region with 

alternating segments of high protein occupancy that have relatively low transcription, 

with those of low protein occupancy and relatively high transcription (also apparent in 

the higher-resolution plot in Fig. 2.2G. Thus, in addition to revealing occupancy at the 

level of individual regulatory sites, IPOD-HR enables tracking of the behavior of large, 

densely protein occupied regions of the chromosome that appear to coincide with 

transcriptionally silent loci. We will explore both of these prototypic classes of 

occupancy, in more detail, below. 

 

Transcription factor and sigma factor occupancy dynamics across genetic and 
environmental perturbations 
 

Since IPOD-HR occupancy profiles show highly enriched overlaps with known TFBSs 

(Fig. 2.2E), we asked whether IPOD-HR profiles can be used to reveal the occupancy 

dynamics for known E. coli TFs across a set of conditions. Indeed, we find that IPOD-

HR reveals consistent and condition-appropriate regulatory logic at the level of 

individual regulons, and patterns of regulatory behavior across regulons. As expected, 

strains with each of three single TF deletions (argR, lexA, purR) show global loss of 

occupancy at the ensemble of annotated sites for the corresponding TFs (Fig. 2.3A). 

Analysis of condition-dependent changes in the occupancy of binding sites for single 

transcription factors likewise recapitulates expected behavior; for example, ArgR [16], 

PurR [12,17], and TyrR [18] all show enhanced binding to DNA in the presence of 

amino acid and/or nucleobase ligands which are supplied directly in our rich media 
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conditions, and the IPOD-HR occupancy signal shows global loss of occupancy for 

binding sites of all three of these TFs in nutrient depleted conditions (minimal media and 

stationary phase) when compared with exponential growth in rich media (Fig. 2.3A). In 

contrast, RutR shows increased overall occupancy in minimal media relative to rich 

media conditions, consistent with the known inhibition of RutR binding by thymine and 

uracil [19]. Sites for MetR, which is dependent upon homocysteine as a co-regulator 

[20], likewise show large increases in occupancy in minimal media and in stationary 

phase (Fig. 2.3A). As homocysteine is the final intermediate in methionine biosynthesis 

[21], its levels would naturally be expected to rise upon methionine starvation, and 

consistently, transcript levels of the canonical homocysteine-dependent MetR-activated 

target metE [22] rise six-fold in our stationary phase RNA-seq data and more than 100-

fold in our minimal media RNA-seq data (data not shown).  
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Figure 2.3: IPOD-HR profiles reveal global binding activity of known transcription 
factors and sigma factors. (A) Average (geometric mean) occupancies for all 
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annotated binding sites of the six indicated transcription factors under each indicated 
condition. Error bars indicate a 95% confidence interval based on parametric 
bootstrapping with pessimistic assumptions; see Methods for details. (B) Heat map 
showing the consensus clustering (co-occurrence frequencies) of the pattern of 
occupancy dynamics for the regulons of all considered TFs across the varied nutrient 
conditions in this study (see Methods for details). Consensus division into ten clusters 
via agglomerative clustering is shown at right; for each cluster, representative TFs (on 
matrix) and regulated gene ontology terms (right) are shown, with numbers in 
parentheses indicating the log10 p-value for enrichment of that GO term. (C) Changes in 
occupancy and target gene transcript level for all annotated repressive binding sites of 
ArgR and PurR (for minimal media vs. rich media), in each case demonstrating the 
strong anti-correlation of binding and regulatory effects across the regulons. (D) 
Correlation of promoter-level occupancy changes (measured by RNA polymerase ChIP-
seq) and changes in transcript abundance, shown for the WT stationary phase condition 
compared with exponential phase. Shaded area shows a bootstrap-based 95% 
confidence interval. 

By applying an unsupervised clustering approach (see Methods for details), we 

identified transcriptional regulatory modules that show consistent co-regulation across 

the conditions in our study. We found clustering of TFs with highly similar behavior (Fig. 
2.3B) that coordinate, for example, amino acid metabolism (orange), the core 

translational apparatus (pink), and iron homeostasis (red). We also observe several 

cases where regulatory cascades are clustered together; for example, YjjQ and its 

transcriptional activator LeuO (blue), or the tightly intertwined acid response regulators 

GadE, GadW, and GadX (yellow). We thus find that IPOD-HR occupancy profiles can 

provide detailed, site-level, condition-specific information on regulatory protein 

occupancy across the entire chromosome. By comparing changes in protein occupancy 

with changes in transcript levels across conditions, we can relate changes in protein 

occupancy to their positive or negative regulatory consequences. This can be seen for 

two nutrient sensing transcriptional repressors with sites annotated in RegulonDB, ArgR 

and PurR, across changes in nutrient conditions (Fig. 2.3C). As expected, given the 

annotated repressive role of these sites, in both cases we observe a strong anti-

correlation between changes in protein occupancy and target transcription.  

 

Since each IPOD-HR global protein occupancy data set is performed alongside an RNA 

polymerase ChIP-seq experiment, we can easily track promoter occupancy alongside 

TFBS occupancy. The use of rifampin permits transcriptional initiation, but prevents 
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promoter clearance. Thus, these data sets are ideal for identifying regulation at the level 

of RNA polymerase (e.g. via different sigma factors). The differential patterns of RNA 

polymerase occupancy show strong correlations with transcript levels for each Sigma 

factor’s regulon across a range of conditions. As shown in Figure 2.3D, when 

comparing logarithmic vs. stationary phase conditions, the changes in transcript 

abundance and RNA polymerase promoter occupancy show a Spearman correlation of 

0.83 (p=0.042); a similar comparison for changes in occupancy vs. expression for cells 

grown in minimal media yields equivalent results (data not shown). 

 

Global occupancy dynamics reveals the action of new DNA binding proteins 
 

Despite extensive annotation efforts, at present fewer than 1,100 of the 3,560 annotated 

transcriptional units present in the RegulonDB database have any annotated regulation 

by transcription factors assigned to them [7]. While several recent notable efforts have 

sought to expand the completeness of these regulatory annotations by studying the 

DNA binding preferences of purified TFs [6,23,24], or via computational inference of 

likely additional regulation [25] and regulatory modules [26], none of these methods 

provides either direct evidence for binding in vivo, or information on condition-

dependent changes in occupancy. IPOD-HR, in contrast, can provide both. 

Furthermore, the protein occupancy signals thus obtained provide information on 

occupancy of both well-characterized and uncharacterized proteins. In fact, a large 

fraction of dynamic IPOD-HR peaks occur in promoters with no previous annotation for 

TF binding sites, as we will discuss in detail in the following section.  

 

A representative example of an orphan occupancy peak is seen upstream of the gene 

sdaC (Fig. 2.4). In our RNA-seq data, sdaC transcript levels are nearly twenty-fold 

higher during exponential growth in rich media (317.3 transcripts per million (TPM)) 

compared with either exponential growth in minimal media (17.9 TPM) or stationary 

phase in rich media (16.7 TPM). Despite a lack of annotated TFBSs upstream of sdaC, 

IPOD-HR occupancy profiles (Fig. 2.4A) show a likely transcriptional activator binding 

site upstream of the sdaC core promoter, which shows strong occupancy in the WT 



 43 

M9/RDM/glu conditions but not the related conditions where sdaC expression is lower. 

To identify the transcription factor(s) responsible for that occupancy, we used a 

biotinylated bait DNA matching the sequence of the sdaC promoter region to isolate 

proteins bound to that region from E. coli cells grown in the WT M9/RDM/glu condition 

(Fig. 2.4B). Mass spectrometry on isolated bait-dependent bands revealed two poorly 

characterized transcription factors, UlaR and YieP, that showed highly enriched binding 

to the sdaC promoter (see Table S2.1). While UlaR proved difficult to purify due to poor 

solubility, and was thus excluded from further analysis, we found that purified YieP does 

indeed show specific shifting of the sdaC promoter in an electrophoretic mobility shift 

assay (Fig. 2.4C). Consistently, recent RNA-seq data on a ΔyieP strain shows a 

significant drop in sdaC transcript levels (2.7-fold change; q=7.6 * 10-18) relative to 

isogenic cells with a plasmid-born reintroduction of YieP during growth in LB media (C. 

Bianco and C. Vanderpool, personal communication).  
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Figure 2.4: Experimental identification of the protein bound to a novel occupancy 
peak upstream of the sdaC promoter. (A) IPOD-HR profiles upstream of sdaC in rich 
(M9/RDM/glu) media, minimal (M9/glu) media, and in rich media in stationary phase. No 
annotated transcription factor binding sites are present in the displayed region. (B) 
Schematic of pulldown/mass spectrometry experiments used to identify factors binding 
the sdaC promoter. (C) Gel shift experiments showing specific interaction of YieP with 
the sdaC promoter. Increasing concentrations of purified His6-YieP are incubated with a 
mixture of fluorescein-labeled promoter regions from sdaC and purC and then run on a 
gel, demonstrating specific shifting of the sdaC promoter region. YieP concentrations 
are given as the number of two-fold dilutions relative to full strength. (D) Comparison of 
IPOD-HR occupancy profile (as in panel A) with ChIP-exo data from [25], with the latter 
given as total read counts (parsed from GEO accessions GSM3022131 and 
GSM3022132). The top track of predicted YieP sites shows significant hits for the YieP 
motif identified based on that ChIP-exo data set. Out of 1,025 potential YieP sites in the 
genome, the location highlighted in cyan is tied for 10th highest score (identified using 
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FIMO; see Methods for details). Occupancy signal is given as -log10(p) for the IPOD-HR 
track, or raw counts (averaged across strands) for the ChIP-exo tracks. 

YieP was recently (and independently) selected by Palsson and co-workers as a 

validation case to be used in their consideration of computational methods for 

identifying the binding sites of orphan TFs, and subjected to ChIP-exo analysis on cells 

grown in glucose minimal media using epitope-tagged YieP [25]. Indeed, their data 

demonstrate both strong direct YieP occupancy, and a high confidence YieP motif 

match, at the precise position of the occupancy peak detected in our IPOD-HR data set 

(Fig. 2.4D). Based on the relative intensity at that position across conditions, combined 

with the expression data noted above, we infer that YieP binds to the sdaC promoter in 

nutrient-replete conditions and acts as a transcriptional activator (explaining the solitary 

strong peak in our “WT,rich” condition), whereas in other conditions, YieP binding is 

weakened (but not abolished) and additional factors likely bind downstream of the YieP 

site to repress sdaC transcription. We must emphasize that the discovery of YieP 

binding sites through IPOD-HR and subsequent mass spectrometry experiments (by us) 

occurred in parallel with the ChIP-exo experiments of Gao and colleagues, and indeed, 

represent highly complementary paths for identification of the binding sites for orphan 

transcription factors, with one centered on a candidate protein and the other on 

candidate sites. 

 

The example presented here of regulation of sdaC by the uncharacterized transcription 

factor YieP highlights the broad potential for using IPOD-HR to rapidly identify and 

characterize previously cryptic regulatory connections. IPOD-HR thus complements the 

multitude of other approaches noted above (based on, e.g., promoter libraries or 

computational inference), and provides the unique benefit of directly assessing binding 

to DNA in vivo, at native loci, under physiological conditions of interest.  

 

The utility of IPOD-HR in identifying the activity of previously un-characterized 

transcription factors motivates its extension to a genome-wide scale, providing an in 

vivo complement to high-throughput in vitro screening methods such as genomic 

SELEX [6]. By applying peak calling to our IPOD-HR data sets across the six conditions 
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considered in the present study, we were able to identify thousands of likely TFBSs, 

many of which are not identifiable based on existing databases. To compare the peak 

sets identified from IPOD-HR data with our existing state of knowledge, we divided the 

peak calls obtained from IPOD-HR into a set of annotated TFBSs from RegulonDB, and 

a set of binding sites predicted using all known PWMs available in the SwissRegulon 

database (see Methods for details). We find that across a range of thresholds, 

approximately half of the binding sites identified by IPOD-HR overlap with either known 

or predicted sites, whereas the other half represent novel binding sites which likely (as 

in the case of the YieP site described above) reflect  the activity of poorly annotated or 

orphan TFs. Pooling the newly identified binding sites across conditions, our IPOD-HR 

data sets are able to provide a total of 19,068 putative TFBSs which are occupied in 

vivo under at least one condition (and track the dynamics of occupancy of those sites 

across conditions). This extensive map of chromosomal occupancy and its dynamics 

provides the community with a wealth of known and putative novel regulatory 

interactions that can be further explored and validated by follow-up experiments such as 

those shown in Fig. 2.4. 

 

Global de novo discovery of sequence-specificity motifs for active transcription 
factors 
 

While the peak calls obtained from IPOD-HR data show strong enrichments with known 

TFBSs (Fig. S2.1), roughly half of the called peaks do not match any known or 

predicted transcription factor binding sites (as detailed in Figure 2.5A), and likely 

correspond either to unknown sites for well-characterized TFs or binding sites for 

previously uncharacterized TFs. Given that the majority of the newly inferred binding 

sites appear not to correspond to known or predicted sites for annotated TFs, we 

hypothesized that the regulons corresponding to those motifs would likely show 

enrichments for poorly annotated genes, as we expect here to reveal the regulatory 

logic driving typically under-studied pathways. We thus identified likely regulatory 

targets of each newly called peak, divided them between poorly annotated genes (those 

with UniProt annotation scores of 1 or 2 out of 5 [27]) and well-annotated genes, and 



 47 

then examined the proportion of poorly annotated targets for occupancy peaks matching 

RegulonDB binding sites compared with all other peaks. As shown in Figure 2.5B, 

peaks that do not correspond to RegulonDB-annotated binding sites are strongly 

enriched upstream of poorly annotated genes, whereas those matching annotated 

binding sites are enriched for well-annotated genes. Thus, examination of occupancy 

peaks derived from IPOD-HR enables identification of a large number of new putative 

regulatory sites, with a particular abundance of possible regulators of poorly-annotated 

genes.  
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Figure 2.5: Genome-wide de novo discovery of sequence specificity motifs for 
actively bound transcription factors. (A) At a peak calling threshold of 4 (c.f. Figure 
S2.1), we show the number of identified binding sites that overlap with annotated sites 
in RegulonDB (“RegulonDB”), motif-based predicted binding sites (“SwissRegulon”), or 
novel (“New”). The “Combined” category represents peak sets where the peaks at a 
given threshold identified across all conditions are merged, prior to comparisons with 
the RegulonDB and predicted databases. Qualitatively similar results are observed at all 
tested peak calling thresholds (data not shown). (B) All called IPOD-HR occupancy 
peaks across the conditions shown in panel A were combined, and then partitioned 
based on whether they overlap with a known or inferred binding site in RegulonDB 
(RegulonDB peaks) or not (Other peaks). Peaks were then considered to have 
regulatory potential if they fell within 50 bp of an annotated transcription start site, and 
the fraction of the genes potentially regulated by each peak category plotted across 
different peak calling threshold. Error bars show 95% credible intervals calculated 
assuming that the incidence of poorly annotated genes in the inferred regulon is a 
binomial random variable, using Bayesian inference with a Beta(1,1) prior. The dashed 
line shows the overall fraction of poorly annotated genes included in the analysis (that 
is, those belonging to transcripts regulated by at least one annotated transcription start 
site in RegulonDB). (C) Number of motifs discovered de novo using IPOD-HR 
occupancies under each condition in our study. “All” and “pruned” refer to all discovered 
motifs and those surviving cluster-based filtering by RSAT (see Methods for details), 
respectively. “Real” shows the motif counts discovered in real data, and “Decoy” shows 
the maximum discovered motif count across 20 independent circular permutations of 
the data under each condition. (D) Classification of non-redundant motifs across 
conditions as “Identified” (match to an existing motif from the SwissRegulon database, 
via TOMTOM, with E-value < 0.5) or “Unidentified” (no matches found with E<0.5). 
“Combined” refers to the full set of motifs discovered after pooling all motifs across all 
conditions and redundancy filtering; a horizontal dashed line shows the total number of 
known motifs present in SwissRegulon. (E) Example cases of “Identified” matches of 
IPOD-HR-inferred motifs with motifs from the SwissRegulon database, showing good 
correspondence with annotated IHF (left) and NanR motifs. E values arising from the 
TOMTOM search pairing newly discovered motifs with similar known motifs are shown 
beneath each inferred motif.  y axes for motifs in this and the following panel show 
information content in bits. (F) Examples of two newly inferred motifs that do not have 
identifiable hits in the SwissRegulon database (as assessed using TOMTOM). In each 
case, the gene ontology (GO) terms showing most significant enrichments amidst the 
predicted regulon associated with that motif are shown (see Methods for details). (G) 
Overlap of predicted binding sites for IPOD-HR inferred motifs with either coding 
regions (genes) or promoters (both as annotated in RegulonDB); shown are the log2 
fold enrichment or depletion of the overlap as compared with that expected by chance. 
(H) For the predicted regulon of each newly inferred motif, we show the fraction of 
regulon members that are poorly annotated (Uniprot annotation score of 1 or 2 out of 5); 
for comparison, dashed lines are shown for the values obtained when the same statistic 
is calculated for all annotated TF-gene interactions in RegulonDB (“Annotated TFBS”), 
and for the genome as a whole (“Overall”). 
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Our large-scale identification of new TFBSs also raises the important possibility that 

new TF binding motifs might likewise be identifiable through de novo computational 

motif discovery in the set of all sequences within IPOD-HR peaks. Indeed, the 

application of the FIRE [28] motif discovery algorithm to peak locations obtained from 

IPOD-HR data reveals dozens of de novo discovered sequence motifs that are 

informative of strong occupancy sites, even after pruning of redundant motifs (Fig. 
2.5C). Upon cross-referencing with a database of known E. coli TFBS motifs using 

TOMTOM [29], we find that approximately 25% of the discovered motifs can be 

matched with known motifs (87/97 of the annotated motifs in the E. coli SwissRegulon 

database are matched by at least one inferred motif from the set present prior to 

redundancy pruning, and 63/97 match at least one motif present in our inferred set after 

pruning), while at the same time nearly 200 novel motifs are called with similar 

confidence (Fig. 2.5D). To provide estimates of the false discovery rate (FDR) arising 

from our motif inference, we performed an identical motif discovery procedure for each 

biological condition on 20 “decoy” data sets in which the underlying E. coli genomic 

sequence was rotated by a random distance relative to the peak calls, thus preserving 

the correlation structure of both the data and sequence with respect to themselves (light 

bars in Figure 2.5C). Our decoy data sets gave rise to no more than 11 motifs under 

any condition, and usually far fewer, giving rise to an average effective FDR (across 

shuffles and conditions) of 0.2% for the unpruned motifs or 1.0% for the pruned motifs. 

Using only the novel motifs (that is, motifs which did not have detectable similarity to 

any motifs in the SwissRegulon database) in a genome-wide search for potential 

binding sites using FIMO, we find that 32.1% of all IPOD occupancy peaks at a peak 

calling threshold of 4 can be explained by binding sites for the novel motifs, compared 

with 9.3% that can be explained by annotated binding sites from RegulonDB. Thus, the 

newly inferred motifs provide a substantially expanded ability to assign the observed 

profile of protein binding across the chromosome. Of the occupancy peaks not 

identifiable based on either our novel motifs or RegulonDB binding sites, 43.7% fall in 

EPODs, and thus are attributable to locally concentrated binding of the EPOD 

constituent proteins (likely H-NS and other nucleoid-associated proteins, as discussed 
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elsewhere). Taken together, the combination of newly called motifs, known binding sites 

from RegulonDB, and EPODs accounts for 64.3% of all occupancy peak locations at a 

calling threshold of 4. 

 

In Figure 2.5E we show two representative examples of discovered motifs that show 

strong matches with annotated motifs, demonstrating that the motifs for well-

characterized transcriptional regulators such as IHF and NanR can be inferred directly 

from IPOD-HR data. For comparison, in Figure 2.5F, we show two newly inferred motifs 

that do not match any known motifs in the E. coli SwissRegulon database. Intriguingly, 

the pattern of binding sites across the E. coli chromosome for both of these novel motifs 

illustrates a potential regulatory function, with the first motif associating with a 

substantial fraction of the genes involved in iron ion acquisition, and the second 

apparently involved in alanine metabolism (and in particular synthesis of the cell wall 

constituent D-alanine).  

 

We further assessed the regulatory capacity of all newly called sequence motifs by 

comparing their genome-wide distribution of binding sites with annotated genes (coding 

regions) and promoters. We would expect that binding sites for functional transcriptional 

regulators would be enriched within promoters and depleted from coding regions, as 

was the case for overall IPOD-HR occupancy (Fig. 2.2E). Indeed, the overlap 

distributions of binding sites for our newly inferred motifs are uniformly enriched for 

annotated promoters and depleted for ORFs (Fig. 2.5G), demonstrating that motifs 

inferred directly from IPOD-HR occupancy data occur primarily in likely regulatory 

regions. Equivalent results were obtained even after excluding all of the newly inferred 

motifs with identifiable similarity to SwissRegulon motifs (as assessed using TOMTOM; 

data not shown).  

 

Given that the majority of the newly inferred motifs appear not to correspond to 

annotated TFs, and our findings above regarding the enrichment of poorly annotated 

genes downstream of orphan binding peaks, we hypothesized that the regulons 

corresponding to our newly inferred motifs would likely show enrichments for poorly 
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annotated genes, as we expect here to reveal the regulatory logic driving typically 

under-studied pathways. We thus calculated the fractions of the hypothetical regulons of 

each newly inferred motif that consist of poorly annotated genes (defined as noted 

above). As shown in Figure 2.5H, we found that the regulons of the newly inferred 

motifs were significantly enriched for poorly annotated genes when compared with both 

the annotated E. coli transcriptional regulatory network in RegulonDB (p<2.2*10-16, 

Wilcoxon signed rank test), and the overall average rate of poorly annotated genes 

throughout the chromosome (p<2.2*10-16, Wilcoxon signed rank test). Taken together, 

we see that IPOD-HR enables inference of a large number of sequence motifs, many of 

which likely correspond to functional, but currently under-studied, transcriptional 

regulators in E. coli, providing a substantial resource for ongoing investigation of this 

transcriptional regulatory network. 

 

Extended protein occupancy domains define distinct and largely stable 
transcriptionally silent regions with unique sequence features  
 
One of the most striking findings enabled by the original application of IPOD was the 

discovery of extended protein occupancy domains (EPODs): large regions of the E. coli 

chromosome that show unusually dense levels of protein occupancy over kilobase or 

longer scales [10]. EPODs are also clearly apparent in all our IPOD-HR data sets, and 

appear to correspond functionally to the transcriptionally silent tsEPODs of Vora et al. 

[10]. The profile of protein occupancy and EPODs, along with the accompanying 

impacts on transcript levels, for a representative region of the genome is shown in 

Figure 2.6A. Indeed, we found that many highly protein occupied regions measured 

using the original IPOD method (in particular, the highly expressed extended protein 

occupancy domains, or heEPODs) represent RNA polymerase occupancy, whereas the 

EPODs now revealed by IPOD-HR consist solely of large domains of occupancy by 

proteins other than RNA polymerase (which typically also exclude RNA polymerase). 

We discuss these differences and the details of the approach used in IPOD-HR to 

remove contributions from RNA polymerase in Text S2.1. The specific resolution of 

tsEPODs afforded by the IPOD-HR method, and the coverage of multiple genetic and 
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nutrient perturbations in the present data sets, allow us to fully investigate the nature 

and condition-dependent occupancy of these chromosomal structures. 

 
Figure 2.6: EPODs define stable genomic structures and are associated with 
many distinct features. (A) EPOD calls from a representative genomic region in the 
WT Rich media condition, along with protein occupancy and RNA levels smoothed with 
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a 1 kb rolling median. (B) Number of called EPODs by condition (left) and fraction of the 
genome covered by EPODs (right). (C) IPOD-HR occupancies (shown over a 1 kb 
rolling median) and associated EPOD calls under three different conditions, in the same 
genomic region shown in panel A. EPOD calls are shown above the occupancy, in the 
same order as the data tracks. (D) Upper triangle: Overlap of EPOD calls (see text for 
definition) between each pair of the studied conditions. In the lower triangle, each entry 
shows the fraction of the EPOD calls (at a 5 bp resolution) from the sample defining that 
row that is contained in a relaxed set of EPOD calls (see text) of the sample defining 
that column. (E) Density plots showing normalized histograms (smoothed by a kernel 
density estimator) of the specified quantities for regions of the genome that are in 
EPODs versus those that are not (Background),  as assessed in the WT M9/RDM/glu 
(WT, rich) condition. ‘*’ indicates FDR-corrected p<0.005 via a permutation test (against 
a null hypothesis of no difference in medians). Significance calling and additional 
comparisons are shown in Table S2.2 

The identified EPODs show remarkable stability (Fig. 2.6B), with ~180 EPODs in each 

condition, and similar fractions of the genome contained in EPODs in each case. 

Furthermore, the locations of individual EPODs are likewise well maintained, even 

across very different physiological conditions. For example, in Figure 2.6C we show 

IPOD-HR occupancy across the same region as shown in Figure 2.6A, comparing 

exponential growth in rich vs. minimal media, and stationary phase cells. In contrast 

with the condition-dependent occupancy of individual TFs, at the ~kilobase scale the 

occupancy traces are nearly superimposable, and show that most EPODs called under 

the various conditions overlap.  Furthermore, out of the subset of EPOD calls that are 

missing from the ‘WT,Rich’ condition but present in the others, all but one are also 

present among calls made in the ‘WT,Rich’ condition using a relaxed threshold, 

suggesting that the small differences in EPOD locations that do appear between EPOD 

calls under different conditions are in fact due to thresholding effects. We observe the 

same trends genome-wide: 72-85% of genomic locations (at the base pair level) that 

are called as EPODs under any one condition are likewise EPOD calls under any other 

condition (Fig. 2.6D); furthermore, at least 89% (and typically much more) of the 

EPODs called in one condition are contained within the relaxed threshold calls under 

any other condition (n.b. the ‘relaxed’ threshold used here corresponds with the original 

EPOD definition from [10]). It is also worth noting, in this context, that 90% of the 

tsEPOD-occupied locations from [10] are contained within the new “WT,Rich” relaxed 



 55 

threshold EPOD set, in line with the observed concordance across experimental 

conditions in our new data sets. 

 

Several defining characteristics of EPODs are readily apparent upon cross-referencing 

with other genome-wide datasets (Fig. 2.6E): they represent regions of high AT content, 

which are both associated with low levels of native transcripts and decreased 

transcriptional propensity (that is, expression of standardized integrated reporters [30]). 

Consistent with our original findings [10], EPODs also show high occupancy of H-NS, 

HU, and LRP; low occupancy of Fis; and are associated with high efficiency of Tn5 

integration (Fig. 2.6E). While the latter might seem surprising given that highly protein 

occupied regions on eukaryotic chromatin tend to exclude Tn5 (as is used to great 

effect in ATAC-seq [31]), we note that bacterial H-NS occupancy has previously been 

shown to facilitate Tn5 insertion [32]. Additional characteristics of EPODs, such as 

reduced densities of possible Dam methylation sites (consistent with the expected 

blocking of Dam methylase by bound proteins, previously shown in in vivo methylase 

protection experiments [33]) and a characteristic pattern of DNA structural parameters 

including decreased minor groove width, are shown in Table S2.2.  

 

The remarkable condition-invariance of the locations of EPODs outlined above, even 

across such dramatic changes as transition from exponential to stationary phase, 

suggests that EPODs predominantly represent fixed structural features of the E. coli 

chromosome, rather than highly dynamic regulatory structures. We thus examined the 

classes of genes (assessed using gene ontology, or GO, terms) most strongly enriched 

or depleted in EPODs. As illustrated in Figure 2.7A, EPODs show strong enrichments 

for mobile elements (GO:0006313) and prophage genes (specifically lytic pathways; 

GO:0019835), and are depleted for core metabolic pathways such as ribosome 

components (GO:0030529). Indeed, EPODs are associated with the silencing of many 

prophages (e.g., Fig. 2.7B) and even smaller operons of unknown function (e.g., Fig. 
2.7C).  
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Figure 2.7: EPODs are statistically enriched for genes in specific functional 
categories.  (A) The genome was split into EPOD and background regions as in Figure 
2.6; we then applied iPAGE [45] to identify gene ontology terms showing significant 
mutual information with occupancy in EPODs. All shown GO terms were significant 
according to the built-in tests in iPAGE. (B) Multiple EPODs are associated with 
silencing of the CP4-57 prophage. Shown are the IPOD-HR occupancy and transcript 
levels in the vicinity of the prophage locus during growth in rich defined media with 
glucose, with EPOD locations indicated above the plots. (C) Association of a small 
EPOD with two genes of unknown function, yigE and yigF; data tracks defined as in 
panel B. 
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Our findings regarding EPODs, particularly the high levels of H-NS binding in EPODs, 

and the known role of H-NS as a xenogeneic silencer [34,35], are highly consistent with 

prior information regarding the silencing role of H-NS. In order to determine the extent to 

which H-NS silenced regions and EPODs as defined here overlap, we compared the 

distribution of EPODs across the genome with H-NS ChIP-seq data from [36]. Using an 

unsupervised clustering method to divide genomic intervals into high, medium, and low 

levels of H-NS occupancy. We found that 66.7% of EPODs fall into the high H-NS 

category, compared with 3.9% of non-EPOD regions (Fig. S2.2A). Nevertheless, when 

considering the average transcript levels observed as arising from the same genomic 

intervals, the EPODs from the low H-NS and medium H-NS categories still showed 

significantly lower expression than non-EPOD regions with similar H-NS levels (Fig. 
S2.2B), and the small number of highly H-NS bound regions which are not part of 

EPODs are in fact more silent than highly H-NS bound EPODs. Taken together, we thus 

observe that while many EPODs represent chromosomal regions silenced by H-NS, 

roughly one-third of EPODs do not show the characteristics of highly H-NS occupied 

regions, but are nevertheless transcriptionally silenced by an extended stretch of high 

protein occupancy. The possibility of course exists that H-NS is repositioned in the 

conditions of our study, which differ from those of [36], to cover the remainder of the 

EPODs identified here; however, we have shown in practice that this is not the case, as 

the non H-NS EPODs identified here persist even in a hns/stpA strain (Amemiya and 

Freddolino, manuscript in preparation). The mechanism of silencing at these non-H-NS 

dependent EPODs will likely be a fruitful area for future investigation. 

Discussion 

The study of bacterial transcriptional regulatory networks has long benefitted from 

bottom-up approaches such as DNase footprinting, ChIP-chip, and ChIP-seq to map the 

behavior of individual factors and regulons. At the same time, however, the insight 

provided by such approaches has been inherently limited by the need to specify a priori 

the target of investigation, either in terms of the regulator, regulated gene, or both. 
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However, as we hope to have demonstrated here, a global agnostic strategy (as 

exemplified by IPOD-HR) provides a unique top-down complement to existing methods 

by permitting rapid profiling of the protein occupancy landscape of a bacterial 

chromosome. We have demonstrated that IPOD-HR simultaneously enables resolution 

of individual changes in transcription factor binding at specific sites, inference of new 

regulatory motifs which likely correspond to functional but poorly characterized 

transcriptional regulators, and large-scale patterns of protein occupancy indicative of 

constitutively silenced genomic regions. IPOD-HR thus falls into the same family as 

methods such as DNase I hypersensitivity [37], MNase-seq [38], and ATAC-seq [31], 

but developed, tuned, and validated for the unique molecular and biophysical features 

of bacterial chromosomes. 

 

We expect that all three key capabilities of IPOD-HR highlighted above will prove to be 

of substantial utility in investigating all cultivable bacterial transcriptional regulatory 

networks, and could potentially even be applied to environmental samples to study 

occupancy landscapes in uncultivable bacteria. The ability to directly track the 

occupancy of TFBSs for a large set of transcriptional regulators in parallel provides the 

missing link that has previously stymied efforts to predict the transcriptional output of E. 

coli across conditions, as consideration of only the expression levels of TFs to predict 

the behavior of their regulons has yielded mixed results [8,39]. Furthermore, the ability 

to identify likely regulatory sites even in the absence of prior knowledge, as shown both 

for isolated promoters (Fig. 2.4) and inference of entire regulons (Fig. 2.5), will 

substantially accelerate our ability to complete a wiring diagram for the E. coli 

transcriptional regulatory network and to rapidly approach the networks of other less 

well-characterized bacterial species. Here IPOD-HR provides a powerful high-

throughput in vivo approach tracking occupancy at native sites, complementing 

methods based on screening with purified proteins [23], computational inference [25], or 

reporter assays [24]. 

 

Our study of diverse experimental conditions across different genetic and physiological 

states provides a comprehensive view of the protein-DNA interactome of E. coli. As we 
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have shown, the majority of discovered occupancy events do not correspond to 

previously known or annotated sites of protein-DNA interactions. We have further 

shown that these global occupancy profiles can be used for wholesale discovery of 

sequence specificity for the set of TFs active under these conditions. These occupancy 

maps and the corresponding DNA motifs provide the community with a rich catalogue of 

likely regulatory events to study, targeting either particular genes or larger pathways. 

Indeed, our finding that the novel occupancy sites and DNA motifs are highly enriched 

upstream of genes that are under-studied promises to discover and expand the 

physiological and regulatory modules of E. coli, beyond those that have been targeted 

by decades of previous research. 

 

Our study also provides significant additional evidence for the presence of large, 

transcriptionally silent, high occupancy chromosomal domains in E. coli. Many such 

EPODs clearly correspond to regions of H-NS binding, which has previously been 

shown to form several types of filaments that silence horizontally acquired DNA 

[5,35,40–42]. On the other hand, we also observe a substantial fraction of EPODs that 

do not correspond to H-NS binding, and yet are still associated with transcriptionally 

silent regions of the chromosome. Numerous questions regarding the nature and role of 

those EPODs remain for future work, including: what is the protein composition of non 

H-NS EPODs? What rules dictate their formation on specific sites? We are also tempted 

to speculate that in some contexts non-H-NS EPODs may undergo condition-dependent 

changes in occupancy that drive transcriptional regulation, although no such cases 

could be definitively identified in the conditions studied here. Such behavior has already 

been observed for H-NS filaments in various enterobacteria [43,44]. Ongoing 

application of IPOD-HR to a broader range of physiological conditions in E. coli should 

provide further insight into the overall landscape of large-scale protein occupancy 

across conditions, allowing tracking both of occupancy associated with H-NS (and the 

related protein StpA) and other classes of EPODs in a single experiment.  

 

Our IPOD-HR strategy for mapping the global dynamics of the E. coli protein-DNA 

interactome relies only on simple physico-chemical principles for isolating protein-DNA 
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complexes. As such, it is easily transferable to other bacterial species. The rich and 

comprehensive data sets generated by such studies, and application of statistical 

inference during data processing as exemplified here, will provide particularly important 

regulatory roadmaps in organisms with less well studied transcriptional regulatory 

networks. In the future, more applications to a broader range of physiological conditions 

(in E. coli) and to other bacterial strains and species will provide important information 

on the role of large-scale nucleoprotein assemblies on gene regulation, and pave the 

way for more comprehensive and predictive models of transcriptional regulatory logic, 

particularly for non-model bacterial species of clinical and industrial importance. 

Materials and Methods 

Strain construction 
 

The base strain for all experiments used here is an MG1655 stock obtained from H. 

Goodarzi, which is isogenic with ATCC 700926 [46]. All specified gene knockouts were 

obtained by P1 transduction [47] of the FRT-flanked kanR marker from the 

corresponding knockout strain of the Keio collection [48], followed by Flp recombinase 

mediated excision of the marker using the pCP20 plasmid [49] to leave a small scar in 

place of the original open reading frame. Candidate isolates for each deletion were 

grown overnight at 42o C to drop the pCP20 plasmid, and then replica plated onto 

appropriate selective plates to ensure loss of both the plasmid and kanamycin 

resistance marker. Knockouts were confirmed by PCR fragment sizing and/or 

sequencing across the marker scar. Note that the ΔlexA strain that we refer to is in fact 

ΔlexA/ΔsulA, as loss of lexA is lethal in the presence of a functional sulA gene [50,51].  
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Media/culture conditions 
 

For routine cloning applications and for recovery of cryogenically preserved cells, we 

used LB (Lennox) media (10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl), with 

bacteriological agar (15g/L) added as appropriate. 

 

For physiological experiments, we made use of a variety of supplemented versions of 

M9 defined medium (6 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl, 1 mM 

MgSO4) [47]. Our M9 minimal media condition (M9/min) additionally includes 0.2% (w/v) 

glucose, 0.4 mM CaCl2, 40 μM ferric citrate, and the micronutrient mixture typically 

incorporated in MOPS minimal media [52]. Our M9 rich defined medium condition 

(M9/rdm) instead incorporates into the M9 base 0.4% (w/v) glucose, MOPS 

micronutrients (as above), 4 μM CaCl2, 40 μM ferric citrate, and 1x supplements ACGU 

and EZ as used in MOPS rich defined medium [52].  

 

 

Cell growth and harvest for IPOD-HR 
 
The cells of interest were grown overnight in the media of interest after inoculation from 

an LB plate. In the morning, the culture was back-diluted into fresh, prewarmed media 

to an OD600 of 0.003. The culture was then grown to the target OD600 (0.2, except in 

the case of stationary phase samples, which are described below), at which point a 200 

µL aliquot was removed and preserved in 1 mL of DNA/RNA Shield (Zymo Research) 

following the manufacturer’s instructions.  

 

The remainder of the culture was treated with rifampin to a final concentration of 150 

µg/mL, and incubated for 10 minutes under the same culture conditions as the main 

growth to immobilize initiating RNA polymerase at active promoters and permit 

completion of transcripts in progress. The culture was then rapidly mixed with 

concentrated formaldehyde/sodium phosphate (pH 7.4) buffer sufficient to yield a final 

concentration of 10 mM NaPO4 and 1% v/v formaldehyde. Crosslinking was allowed to 
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proceed for 5 minutes at room temperature with vigorous shaking, followed by 

quenching with an excess of glycine (final concentration 0.333 M) for 5 minutes with 

shaking at room temperature. The crosslinked cells were subsequently chilled on ice, 

and washed twice with ice cold phosphate buffered saline, 10 mL per wash. The fully 

washed pellets were carefully dried, any remaining media pipetted away, and then the 

pellets were snap-frozen in a dry ice-ethanol bath and stored at -80 C. 

 

In the case of our stationary phase samples, cells were grown as described above in 

terms of back-dilution and growth to an OD600 of 0.2, and then grown for an additional 

three hours prior to RNA harvest, rifampin treatment, and crosslinked as described 

above. 

 

Cell lysis and DNA preparation 
 
Frozen cell pellets were resuspended in 1x IPOD lysis buffer (10 mM Tris HCl, pH 8.0; 

50 mM NaCl) containing 1x protease inhibitors (Roche Complete Mini, EDTA free) and 

52.5 kU/mL of ready-lyse (Epicentre); 600 µL per pellet (stationary phase cells were 

diluted 10x prior to lysis, and only 1/10 of the resulting material used, due to the much 

higher biomass of those pellets). We incubated the resuspended pellet for 15 minutes at 

30 C, and then placed it on ice. We then sonicated the cells using a Branson digital 

sonicator at 25% power, using three 10 second bursts with 10 second pauses between 

bursts. The cells were maintained in a wet ice bath throughout sonication. 

 

We then performed a calibrated DNA digestion to sub-200 bp fragments, by adding to 

the sonicated lysates 60 µg RNase A (Thermo Fisher), 6 µL DNase I (Fisher product 

#89835), 5.4 µL 100 mM MnCl2, and 4.5 µL 100 mM CaCl2, and then incubating on ice. 

While the appropriate digestion time must be calibrated for each particular sample type 

and batch of DNase, 30 minutes of digestion proved appropriate for all samples here. 

Reactions were quenched after completion by the addition of 50 µL 500 mM EDTA (pH 

8.0), typically yielding 50-200 bp fragments. 
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IPOD-HR Interface Extraction 
 

Prior to interface extraction, samples were clarified by centrifugation for 10 minutes at 

16,9000xg at 4o C. After clarification, a 50 microliter input sample was diluted 1:9 in 

elution buffer (50 mM Tris, pH 8.0; 10 mM EDTA; 1% SDS) and kept on ice until the 

reverse crosslinking step. The remainder of the lysate was mixed with 1 volume of 100 

mM Tris base and 2 volumes of 25:24:1 phenol:chloroform:isoamyl alcohol, vortexed, 

and then incubated for 10 minutes at room temperature. After incubation, the sample 

was spun at 21,130xg for two minutes at room temperature, allowing formation of a 

white disc at the aqueous-organic interface enriched for protein-DNA complexes 

[10,11].  

 

The complete aqueous phases were removed and discarded, and the remaining disc 

washed again with 350 microliters TE (10 mM Tris, pH 8.0; 1 mM EDTA), 350 

microliters 100 mM Tris base, and 700 microliters 24:1 chloroform:isoamyl alcohol. The 

resulting mixture was vortexed vigorously, and again centrifuged for 2 minutes at 

21,130xg. All liquid was again removed, and the wash was repeated using 700 

microliters TE and 700 microliters 24:1 chloroform:isoamyl alcohol. After vortexing, 

centrifugation, and removal of the final wash (exactly as above), any residual liquid was 

removed by wicking with a laboratory wipe (if any substantial pools of liquid were 

present). Finally, the interface was resuspended in 500 microliters of elution buffer 

(described above), vortexed vigorously, and kept on ice until reverse crosslinking (no 

more than a few hours). 

 

We caution the reader that the separation of the interface layer from the liquid on either 

side of it is crucial to success with this method. We have found it most effective to tilt the 

microcentrifuge tube toward while pipetting out the organic layer from beneath, at which 

point the interface will adhere to the tube wall and allow easy removal of the aqueous 

layer. We have also found that the handling characteristics of the interface vary greatly 

with the plasticware in use. For the work described here, we have used 2 mL 

microcentrifuge tubes from USA Scientific for all interface handling, as the interfaces 
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adhere nicely to the tube wall (other plasticware may yield variable results); at the same 

time, the use of low-retention pipette tips appears to reduce binding of the interface to 

the tip. 

 

RNA polymerase chromatin immunoprecipitation 
 

DNA for RNA polymerase ChIP-seq experiments was prepared as described above for 

IPOD-HR interface extraction up through the lysate clarification stage. Whenever 

possible, we used frozen pellets obtained from the same culture for matched IPOD-HR 

and ChIP-seq experiments, in which case the lysates were pooled and mixed 

immediately prior to removal of a single input sample. ChIP procedures here were 

modeled on those of [53].  

 

The digested lysates were mixed 1:1 with 2x IP buffer (200 mM Tris, pH 8.0; 600 mM 

NaCl; 4% Triton X-100; 2x Roche Complete EDTA-free protease inhibitors), and then 

kept on ice for no more than a few hours prior to antibody addition. We added 10 

microliters of purified anti-E. Coli RNA polymerase antibody (Neoclone WP023), and 

incubated overnight with rocking at 4 C. Near the end of the incubation period, we 

resuspended an aliquot of 50 microliters of protein G dynabeads (Invitrogen) and 

equilibrated the protein G beads with 1x IP buffer lacking protease inhibitors. The bead 

aliquot was added to the antibody-lysate mixture, and then incubated 2 hours with 

rocking at 4o C. The bead-antibody-target complexes were subsequently subjected to 

the following series of washes, with 1 mL used per wash. All washes were at room 

temperature, and involved manual resuspension of the beads in the new wash buffer 

followed by immediate re-separation. 

• 1x Wash buffer A (100 mM Tris, pH 8.0; 250 mM LiCl; 2% Triton X-100; 1 mM 

EDTA) 

• 1x Wash buffer B (100 mM Tris, pH 8.0; 500 mM NaCl; 1% Triton X-100; 0.1% 

sodium deoxycholate; 1 mM EDTA) 

• 1x Wash buffer C (10 mM Tris, pH 8.0; 500 mM NaCl; 1% Triton X-100; 1 mM 

EDTA) 
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● 1x TE (10 mM Tris, pH 8.0; 1 mM EDTA) 
 
The antigens were subsequently eluted by adding 500 microliters of elution buffer 

(composition described above) and incubating 30 minutes at 65o C, with vigorous 

vortexing every 5-10 minutes. 

 

Crosslinking reversal and recovery of DNA 
 

The DNA from the input, IPOD-HR, and ChIP fractions described above was recovered 

using identical procedures: samples diluted in elution buffer (see above) were incubated 

overnight (6--16 hours) at 65o C to reverse formaldehyde crosslinks. After allowing the 

samples to cool to room temperature, we then added 100 𝜇g of RNase A (Thermo-

Fisher), incubated 2 hours at 37o C, then added 200 𝜇g of proteinase K (Fermentas) 

and incubated an additional 2 hours at 50o C. DNA was then recovered via standard 

phenol-chloroform extraction and ethanol precipitation, following protocols from [47]. We 

used Glycoblue (Ambion) as a co-precipitant, NaCl as a precipitating salt (due to the 

presence of SDS in our solution), and washed with ice-cold 95% ethanol to avoid loss of 

low molecular weight DNA. 

 

Recovered DNA was quantified via fluorescent quantitation (using either the Invitrogen 

PicoGreen or Promega QuantIT system), and samples of sufficiently high concentration 

were also run on a 2% agarose gel for fragment size assessment. Typical total yields 

from the procedure above were on the order of 1 μg of DNA for the input samples, 100-

200 ng for the IPOD-HR samples, and 1-10 ng for the ChIP samples. 

 

Preparation of next-generation sequencing (NGS) libraries 
 

Except as otherwise noted, all DNA samples were prepared for Illumina sequencing 

using the NEBNext Ultra DNA Library Prep Kit (NEB product #E7370), with either single 

index or dual index primers also obtained from NEB. We followed the manufacturer’s 

instructions except for the following variations: 
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• Cleanups prior to adapter ligation were performed using a Zymo 

Clean&Concentrator 5 spin column kit or Zymo Oligo Clean&Concentrator spin 

column kit instead of Ampure beads, in order to avoid the loss of low molecular 

weight DNA 

• We used Ampure and Axygen PCR cleanup beads interchangeably, having 

established in side-to-side comparisons that they were functionally identical for 

the steps in the NEB sequencing prep (data not shown). The final cleanup step 

was in some cases repeated to remove obvious populations of adapter dimers. 

 

All libraries were sequenced on either an Illumina HiSeq or NextSeq instrument. A small 

number of samples were prepared for sequencing using an Illumina Truseq Nano kit 

instead of the NEBnext kit noted above; we found that upon calculation of correlations 

between the coverages of a broad range of IPOD, input, and RNA polymerase ChIP-

seq samples prepared using various sequencing preparation kits that the Truseq Nano 

samples were indistinguishable from NEBNext Ultra samples, whereas other 

sequencing preparation methods (notably including standard Illumina Truseq samples) 

lead to detectable non-biological differences in observed coverage. 

 

RNA isolation and RNA-seq sample preparation 
 

As noted above, samples for RNA isolation were preserved immediately prior to 

rifampin addition by dilution in a 5x excess of DNA/RNA Shield (Zymo); the RNA 

samples were then stored at -80o C until purification. RNA was isolated using a Zymo 

QuickRNA microprep kit following the manufacturer’s instructions, including the on-

column DNase digestion. Purified RNA was quantified using RiboGreen (Invitrogen), 

and then ribosome-depleted using the Illumina RiboZero Gram-negative bacteria kit 

according to the manufacturer’s instructions, with the input RNA amount and all reaction 

volumes cut in half. Final recovery of the ribo-depleted RNA was accomplished using 

the modified Zymo spin column protocol present in the RiboZero documentation. Ribo-

depleted RNA was then prepared for sequencing using the NEBNext Ultra Directional 
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RNA kit (NEB product E7420),and sequenced as described above for the DNA 

samples. 

 

Analysis of NGS data 
 

All NGS data was preprocessed using a common pipeline, after which DNA and RNA 

data sets were processed separately. The reference genome in all cases was the most 

recent version of the E. coli MG1655 genome (GenBank U00096.3), with gene, 

transcription factor binding site, and transcription start site annotations from RegulonDB 

[7]. Data processing was automated using in-house python and bash scripts, and 

parallelized where possible using GNU parallel [54] or the python multiprocessing 

library. 

 

Read Quality Control and Preprocessing 
 
All reads were subjected to adapter removal using cutadapt 1.8.1 [55] to cut the 

common sequence of Illumina Truseq adapters, and then trimmed to remove low-quality 

read ends with Trimmomatic 0.33 [56], using the trimming steps ‘TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:10’.  Samples were subjected to additional manual 

quality checks using FastQC [57] and MultiQC [58] to identify any irregularities in terms 

of sequence content, quality, or duplication. 

 
DNA Sequencing and Protein Occupancy Calling 
 
Surviving DNA reads were aligned to the U00096.3 genome using bowtie2 version 2.1.0 

with “very sensitive” end-to-end alignment presets, and dovetail alignments allowed. 

Only concordant paired-end reads were retained for subsequent quantitation. Separate 

occupancy tracks were calculated both for the aligned reads of each sample, using the 

parsing method of Kroner et al. [59], and scaling the basepair-wise contribution of each 

read by the inverse of its length (thus, each read contributed the same total amount of 

occupancy signal to the traces). All sample-wise occupancy data were normalized by 



 68 

quantile-normalizing the original datasets (acting separately for the input, IPOD 

interface, and RNA polymerase ChIP-seq tracks).  In order to correct for copy number 

variations, for each biological condition, we fitted a periodic smoothing spline with four 

evenly spaced knots to the input samples for that condition; all occupancy values were 

divided by the spline-smoothed abundances prior to further processing. After 

abundance normalization, all data tracks were rescaled to have matching means, and 

then all replicates for each sample type/biological condition combination were averaged 

to generate a composite occupancy track (yielding, for example, one input data track for 

the WT M9/RDM/glu condition, one IPOD data track for the WT M9/RDM/glu condition, 

etc.).  

 

The displayed IPOD and ChIP data tracks were then obtained as log2 ratios of the 

extracted (interphase or ChIP) to input samples for each condition; we refer to these 

tracks as the “IPOD” and “ChIP” signals below. Upon viewing the correlation between 

total protein occupancy and RNA polymerase occupancy, two protein-occupied 

subpopulations were apparent (Figure S2.3): a linear subpopulation where total protein 

and RNA polymerase are well-correlated, and a second subpopulation of positions 

where the total protein occupancy is much higher than expected based on the RNA 

polymerase occupancy. We interpret the former set of positions as protein occupancy 

due directly to RNA polymerase binding, and the latter as non-RNA polymerase 

occupancy (as schematized in Fig. 2.1B). To obtain the fully processed IPOD-HR signal 

for non-RNA polymerase occupancy, we applied a LOESS [60] fit to the scatter plot of 

IPOD vs ChIP signal for each sample type (fitting to a 500-fold downsampled data set 

for the sake of efficiency), and subtract from the IPOD signal at each position 1.1 times 

the value predicted from the LOESS model based on the corresponding ChIP 

occupancy signal (an arbitrary scaling factor that makes the calling of non-RNA 

polymerase occupancy more conservative); no subtraction was performed at positions 

where the observed RNA polymerase occupancy was negative. We refer to the 

resulting ChIP-subtracted IPOD signal as the IPOD-HR signal; for analysis and display 

we further standardize the signal by calculating robust z scores, where the robust z-

score zi at position i is defined as 
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zi = (xi - median(X)) / mad(X) 

for a IPOD-HR data vector X, and mad() indicates the median absolute deviation. In 

many cases a more useful signal for visualization is a p-value for enrichment at each 

site; log10 p-values are calculated under the null hypothesis that the distribution of the 

robust z-scores is standard normal. To provide uncertainty estimates grounded in 

observed levels of biological variability across replicates, for each data point we also 

constructed an interval between the lowest and highest values that could have been 

obtained for our occupancy statistics using any combination of biological replicates 

(potentially different replicates for the IPOD, ChIP, and input samples to construct the 

largest possible range). To calculate the error bars shown in Figure 2.3A, we then used 

parametric bootstrapping to generate confidence intervals for the parameters of interest, 

assuming that the occupancy of each TFBS followed a normal distribution with a mean 

of the observed mean and standard deviation of one-quarter the range between the 

highest and lowest replicate-wise values (thus treating the range of the pessimistic 

replicate-wise possible values as an interval expected to contain ~95% of observed 

points); 95% confidence intervals for the average site-wise occupancies were then 

calculated from 1,000 bootstrap replicates. 

 

Feature calling 
 
To identify peaks in the robust z-scaled IPOD-HR data, we applied continuous wavelet-

transform (CWT) peak calling [61] (as implemented in the scipy.signal package), with a 

range of widths from 25 bp to 125 bp (at 5 bp increments) used to generate the CWT 

matrix, and refer to peaks based on the minimum signal-to-noise ratio threshold at 

which they appear as peak calls. Each peak call was padded by 30 bp on each side to 

define the peak region used in subsequent analysis. 

 

Extended protein occupancy domains (EPODs) were called using an approach similar 

to that in (Vora et al., 2009): we identified EPOD seed regions as any region at least 

1,024 bp in length, over which a 512 bp rolling median exceeded the overall kth 

percentile of a 256 bp rolling median across the entire chromosome (in all cases acting 
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on the robust z-scored IPODHR data); we used k=90 for the main EPOD calls made in 

the text, and k=75 for the relaxed version used in threshold analysis. In the case of 

overlapping seeds, only the one with the highest median was retained. Seed regions 

were then expanded in both directions as far as possible while maintaining the median 

over the entire EPOD call above the threshold noted above, and without crossing any 

location with a robust z-score ≤ 0. 

 

Transcription factor co-clustering analysis 
 

For the transcription factor occupancy and co-clustering data, we performed consensus 

clustering (inspired by [62]). For each biological condition, we assigned each 

transcription factor a score given by the geometric mean of the site-level occupancies 

(IPOD-HR -log10 p values) for annotated binding sites of that TF in that condition (using 

a minimum value of 0.01 for each site-level value); the condition-wise average 

occupancies for each TF were then divided by the highest average occupancy for that 

TF across all conditions, yielding an occupancy score on the interval (0,1] for each TF-

condition combination. The occupancy profiles of TFs across conditions were clustered 

100 times using K-means clustering at each number of clusters between 8 and 12 

(inclusive); the ‘co-clustering frequency’ κ is defined as the fraction of those 100 trials in 

which a given pair of TFs were assigned to the same cluster. We then used the quantity 

(1-κ) as a distance measure in a final hierarchical clustering, assigning the TFs to 10 

clusters, to provide the cluster identities shown in Figure 2.3B.  

 
RNA Sequencing and Differential Expression Calling 
 

RNA-seq data sets were subjected to the same initial preprocessing and quality control 

steps as outlined above for the DNA samples, and then gene-level expression was 

quantified using kallisto v0.43 [63] on a version of the MG1655 (GenBank NC_000913) 

genome with all ribosomal RNAs removed. Gene-level transcript per million (TPM) 

values from kallisto were used for all downstream analysis unless otherwise noted. To 

generate high-resolution occupancy plots, reads were instead aligned with bowtie2 as 
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described above for DNA reads, and read occupancies quantified using the genomecov 

command of bedtools2 [64]. 

 
TFBS Comparison 
 

Binding sites identified from IPOD-HR peaks (as described above in the “Feature 

calling” paragraph) were cross-referenced with known and predicted TFBSs using 

bedtools v2.17.0 [64]. “Known” sites comprise all binding sites contained in the 

RegulonDB release 9.4 BindingSetSet.txt file [7]; “predicted” sites are identified by 

scanning the MG1655 (GenBank NC_000913) genome with FIMO [65] using all E. coli 

position weight matrices from SwissRegulon [66] (as distributed by the MEME project); 

each PWM was applied separately, and all sites with a q-value less than 0.2 were 

retained. Default settings were used for FIMO, except that the background was a 

second-order Markov model based on the NC_000913 genome, and the number of 

maximum stored scores was set to 10,000,000. 

 

Motif Identification 
 
Novel sequence motifs implied by IPOD-HR data were identified using an inference 

pipeline built off of FIRE [67]. Occupancy peaks and associated discrete threshold 

scores in the IPOD-HR traces were called using the CWT-based approach described 

above, using a score threshold of 4; each peak was assigned a discrete score 

corresponding to the average IPOD-HR occupancy score within that peak, rounding 

down. We then generated a background distribution of unbound sequences drawn from 

the portion of the genome not included in peaks, matching the length distribution of the 

peaks but with three times as many locations; all such background regions were 

assigned a score of 0 to distinguish them from the various thresholded peak regions. 

 

Motifs were called using FIRE with two separate variations: FIRE_gapped (with 

parameters --kungapped=6 --gap=0-10 --jn_t_gapped=4 --minr=0.5), 

which searches for gapped motifs typical of prokaryotic transcription factor binding sites; 
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and FIRE_maxdeg (with parameters --jn_t=8 --minr=1.5 --maxdeg=1.8), which 

searches for motifs while preserving information content above a specified threshold. 

We applied additional empirical filters to specifically enrich for peaks corresponding to 

binding sites: all peaks identified via FIRE were required to have the motif significantly 

depleted from the background population (p<0.01). To assess the false discovery rate of 

our methods, we also generated 20 decoy peak sets by shuffling the locations of the 

real peaks observed in each condition, along with corresponding randomized unbound 

sets for each, and then applied identical peak calling procedures to each decoy set.  

 

To avoid repeated reporting of very similar motifs which might be identified by our 

pipelines, we applied the matrix-clustering module of RSAT [68] (using recommended 

thresholds -lth cor 0.7 -lth w 5 -lth Ncor 0.4) to obtain non-redundant 

motif sets for downstream analysis. We compared all called motifs with previously 

known motifs from the SwissRegulon database using TOMTOM [29] with default 

parameters, requiring an E-value of 0.5 or lower for ‘Identified’ hits, and labeling other 

identified motif matches as ‘Ambiguous’ (counted together with TFs lacking any hits). 

For the identification of predicted regulons associated with each motif, we applied the 

FIMO program [65] to identify potential binding sites on the E. coli K12 genome, with a 

q-value threshold of 0.2. For the purposes of our analysis of the potential regulatory 

networks of novel motifs), we marked each transcriptional unit in E. coli as being 

regulated by a particular motif if and only if a predicted binding site for that motif 

overlapped the gene’s core promoter.  

 

In vitro pulldown of unidentified transcription factors 
 

In order to identify the protein(s) binding to the sdaC promoter (as in Fig. 2.4), we first 

prepared biotinylated bait DNA by cloning a fragment of the sdaC promoter (running 

from positions 2927790 to 2927975 in the U00096.3 genome) into a pAZ3-based 

cloning vector [69], and then amplifying that region of the plasmid using a primer pair 

where one primer contained a 5’ biotinylation. The resulting 486 bp fragment was 
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treated with Exonuclease I (Affymetrix) according to the manufacturer’s instructions to 

remove unreacted primer, and then purified using a Zymo Clean & Concentrate 25 kit.  

 

The biotinylated bait DNA was then bound to equilibrated Dynabeads MyOne 

Streptavidin C1 beads (Invitrogen). Beads were equilibrated by washing three times 

with 1x B&W buffer (5 mM Tris Cl, pH 7.5; 0.5 mM EDTA; 1 M NaCl) and then 

resuspended in five volumes of 2x B&W buffer, using 42 μL of the original resuspended 

bead solution per reaction. The equilibrated beads were combined with 8 μg of 

biotinylated bait DNA plus an appropriate volume of water to yield a final 1x B&W 

solution, and incubated 15 minutes at room temperature with gentle rocking to allow for 

bait binding. The beads were then washed three times with 500 μL of 1x B&W buffer, 

twice in 500 μL of 1x BMg/THS buffer (5 mM HEPES, pH 7.5; 5 mM MgCl2; 50 mM KCl; 

31 mM NaCl; 1x cOmplete EDTA-free protease inhibitors (Roche)), once with 500 μL of 

1x BMg/THS/EP buffer (1x BMg/THS buffer supplemented with 20 mM EGTA (pH 8.0) 

and 10 μg/mL poly d(IC) (Sigma)). The beads were then resuspended in 200 μL of 

BMg/THS/EP buffer and gently mixed by hand for one minute to complete equilibration.  

 

Cell extracts were prepared by growing to an OD600 of 0.2 in M9/RDM/glucose media 

(following the same procedures as those given for IPOD-HR experiments). Once 

reaching the target OD, the cells were chilled 10 minutes on ice, and then pelleted by 

spinning for 10 minutes at 5,500xg while at 4o C. Supernatant was removed, and the 

cells were flash-frozen in a dry ice/ethanol bath. Cells were then lysed by resuspending 

the frozen pellet resulting from 82 mL of culture in 160 μL of B-PER II bacterial protein 

extraction reagent (Thermo Scientific). We then added 3.8 mL of  1x BMg/THS buffer 

and 0.8 μL of ReadyLyse lysozyme solution (Lucigen), 40 μL of 10 mg/mL RNase A, 20 

μL of CaCl2, and 200 μL of micrococcal nuclease (NEB; 2,000,000 gel units/mL). The 

lysis/digestion reaction was allowed to proceed for 30 minutes at room temperature, and 

then clarified by centrifugation at 30 minutes at 16,100x g held at 4o C. The reaction 

was halted by the addition of 444 μL of 5 M NaCl, and then the entire volume applied to 

a 3 kDa MWCO spin filter (Amicon Ultra; Millipore) and centrifuged at (3,200 x g held at 

4o C) until ~400 μL of retentate remained. We then added 3.6 mL of BMg/THS (lacking 
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NaCl and KCl, but containing 5 mM CaCl2) and filtered to 400 μL of retentate. Retained 

liquid was then recovered, and diluted to a final volume of 4.0 mL with addition of salt-

free BMg/THS + 5 mM CaCl2. The retained lysate was then incubated 30 minutes at 

room temperature to permit further activity of micrococcal nuclease on remaining DNA 

in the sample, and then quenched with 168 μL of 500 mM EGTA. The volume of the 

sample was reduced to approximately 1.6 mL by ultrafiltration as above, and further 

supplemented with 10 μg/mL of poly d(IC) and 1 mM dithiothreitol. 

 

Probing of the lysates was then accomplished by combining the equilibrated bait-bead 

complexes (described above) with the lysates, and incubating 30 minutes with rocking 

at room temperature. The supernatant was then removed, and the beads washed twice 

with 200 μL of BMg/THS/20 mM EGTA/10 μg/mL poly d(IC), and once with 200 μL of 

BMg/THS/20 mM EGTA. Proteins were then eluted from the beads through progressive 

washes of elution buffer (25 mM Tris HCl, pH 7.5) with 100 mM NaCl, 200 mM NaCl, 

400 mM NaCl, and 1 M NaCl, with 50 μL used for each elution.  

 

We successively probed the lysates described here with probes containing promoter 

sequences from lexA, purR, and finally, sdaC (each containing identical plasmid-derived 

flanking sequences).  A ~25 kDa band of interest appeared in the 400 mM and 1 M 

NaCl sdaC eluates but not eluates from a parallel experiment performed under identical 

conditions with a segment of the thiC promoter; these bands were excised from a silver-

stained gel. The 400 mM gel slice was then subjected to proteomic analysis at the 

University of Michigan Proteomics & Peptide Synthesis core facility. The gel slice was 

processed using a ProGest robot (DigiLab) to wash with 25 mM ammonium bicarbonate 

followed by acetonitrile, reduce with 10 mM dithiothreitol at 60o C followed by alkylation 

with 50 mM iodoacetamide at room temperature, digested with trypsin (Promega) at 37o 

C for 4 hours, and then quenched with formic acid. The digest was then analyzed by 

nano LC-MS/MS with a Waters NanoAcquity HPLC system interfaced to a 

ThermoFisher Q Exactive. Peptides were loaded on a trapping column and eluted over 

a 75 µm analytical column at 350 nL/min; both columns were packed with Jupiter Proteo 

resin (Phenomenex). The injection volume was 30 µL. The mass spectrometer was 
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operated in data-dependent mode, with the Orbitrap operating at 60,000 FWHM and 

17,500 FWHM for MS and MS/MS respectively. The fifteen most abundant ions were 

selected for MS/MS. Data were searched using a local copy of Mascot, and Mascot 

DAT files were parsed into the Scaffold software for validation, filtering and to create a 

non-redundant list per sample. Data were filtered using 90% protein and 95% peptide 

probability thresholds (Prophet scores) and requiring at least two unique peptides per 

protein). The resulting mass spectrometry analysis is given in Table S3.1 after manual 

pruning by core staff of common contaminants (e.g. human keratin). 

 

Data Availability 
 

The raw and processed sequencing data used in this study have been deposited in the 

Gene Expression Omnibus under accession GSE142291. 
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Supplementary Text  

Supplementary Text S2.1: Effects of RNA polymerase on large-scale protein 
occupancy 
 

In the IPOD-HR method, we address the contribution of RNA polymerase occupancy to 

the overall protein occupancy signal through two steps: first, immediately prior to 

crosslinking, cells are treated with rifampin for 10 minutes. We have calibrated the 
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rifampin treatment to allow sufficient time for in-progress transcripts to finish while 

minimizing perturbation of cellular physiology (building on data from [70], as well as 

direct calculation of the required time based on the elongation rate of RNA polymerase 

and lengths of E. coli transcripts). As rifampin inhibits promoter clearance but not the 

transcriptional initiation nor completion of already-elongating transcripts [71], the result 

will thus be to cause an accumulation of RNA polymerase at active promoters, while 

clearing the majority of polymerase occupancy from gene bodies, and thus substantially 

simplifying the identification of RNA polymerase occupancy. In addition, all IPOD-HR 

experiments described here were performed in parallel with RNA polymerase ChIP-seq 

experiments under the same conditions, permitting calibrated subtraction of RNA 

polymerase occupancy from active promoters to reveal changes in regulatory protein 

occupancy (as schematized in Figure 2.1B-C). However, the fact that transcriptional 

inhibition is known to affect nucleoid condensation [72–75] prompted us to directly 

inspect the effects of rifampin on genome-wide protein binding, with a particular 

emphasis on the effects on EPOD formation and transcription factor binding. 

 

To illustrate the effects of rifampin treatment on regions of extremely high or low RNA 

polymerase occupancy, we performed IPOD experiments under our baseline growth 

condition (WT cells undergoing exponential growth in M9/RDM/glu medium) following 

the same procedure as used for all other samples in the present study, but omitting the 

rifampin treatment (n.b. the data sets of [10] were obtained under a slightly different 

condition, during exponential growth in LB medium). An overall analysis of the resulting 

EPOD calls (Fig. S2.4) demonstrates that the -RIF EPOD set arising from our methods 

show good correlations with both the heEPOD and tsEPOD calls from [10], whereas the 

+RIF EPOD set from our method (used throughout the rest of text) shows a much 

stronger correlation with the Vora tsEPOD set and a weaker correlation with heEPODs. 

It is also important to note that the fraction of locations from the Vora tsEPOD set that is 

contained within our relaxed +RIF EPOD calls (0.90) is in line with the equivalent 

overlaps between the EPOD sets observed across different conditions in our main data 

sets (lower triangle of Fig. 2.6D), further indicating that the EPODs identified via IPOD-

HR closely resemble the original Vora tsEPODs.  
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To obtain a more detailed picture of the effects of rifampin on protein occupancy in our 

assays, we show an example of a highly expressed EPOD (heEPOD) from the original 

IPOD data sets in Figure S2.5. In the original IPOD data set [10], strong protein 

occupancy was noted throughout the cluster of ribosomal protein operons running from 

rplQ to rpsJ. Here, we see from the rifampin-omitted (-RIF) samples that the protein 

occupancy profile in this region is dominated by RNA polymerase occupancy, closely 

matching the bounds of the originally called heEPOD. On the other hand, in the 

rifampin-treated samples (+RIF), the vast majority of occupancy in this region is lost, 

with peaks only apparent at a few points within the region of interest (likely 

corresponding to highly active promoters). After subtraction of the scaled RNA 

polymerase occupancy to yield the IPOD-HR signal, the only prominent peak remaining 

in the region is in the gspA-gspC intergenic region, which has been demonstrated to be 

repressed by H-NS binding (although the precise binding location was previously 

unknown [76]). 

 

The occupancy observed in the ribosomal protein operon cluster described above 

contrast strongly with that seen in the transcriptionally silent EPODs (tsEPODs) found in 

[10]. In the region of the tsEPOD shown in Figure S2.6, for example, we observe that in 

the -RIF samples, there is continuous protein occupancy but essentially no RNA 

polymerase occupancy throughout the large tsEPOD that was originally observed to 

span the waaQGPSBOJYZU operon, whereas both strong IPOD occupancy and strong 

RNA polymerase occupancy are apparent on a nearby heEPOD covering the rpmBG 

operon. Treatment with rifampin does not substantially alter the high level of overall 

protein occupancy throughout the waa region, whereas it restricts occupancy near 

rpmBG to active promoters only. As a result, in the ChIP-subtract IPOD-HR signal, 

strong occupancy remains throughout the waaQGPSBOJYZU operon, resulting in an 

EPOD call nearly identical to the original tsEPOD in that region from [10]. One feature of 

the +RIF samples that requires consideration is the fact that several RNA polymerase 

occupancy peaks appear in regions such as tsEPODs where no comparable occupancy 

is apparent in -RIF samples. We attribute these additional peaks to the fact that during 
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rifampin treatments, concentrations of free RNA polymerase will rise substantially due to 

the immobilization of polymerase at transcription start sites; thus, occupancy at normally 

weak promoters through the chromosome will increase. We find, however, that the 

ChIP-subtraction step of our IPOD-HR data processing pipeline accurately removes 

RNA polymerase occupancy at both normally-active promoters and those showing RNA 

polymerase binding only in the presence of rifampin treatment (as seen by the well-

calibrated removal of RNA polymerase occupancy in the +RIF tracks of Figures S2.6-
S2.7, for example). Overall, we find that even in the +RIF samples, RNA polymerase 

occupancy remains very well correlated with transcript levels (Figure 2.3D), can be 

cleanly subtracted to yield condition-appropriate changes in transcription factor 

occupancy (Figure 2.1C); furthermore, brief rifampin treatment does not appear to 

substantively alter large-scale protein occupancy other than that directly attributable to 

RNA polymerase binding (Figures S2.5-S2.7). Given that rifampin treatment permits 

cleaner subtraction of RNA polymerase occupancy, while not perturbing either the local 

or large-scale protein binding patterns that are the subject of our interest, we make use 

of it throughout the IPOD-HR data sets shown in the present work. 
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Supplementary Figures 

 
Figure S2.1: Effect of peak calling threshold on coverage and enrichment of 
known transcription factor binding sites (TFBSs). Data are shown for the wild type 
cells in the rich defined medium condition. Shown is the fraction of the entire genome 
contained in peak calls (left vertical axis, blue line) or the enrichment of TFBSs 
overlapping those peak calls relative to that expected by chance (right vertical axis, red 
line). Overlaps at all shown thresholds were statistically significant (p<0.01, permutation 
test in each case). 
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Figure S2.2: Interplay of H-NS occupancy, EPOD locations, and transcription. (A) 
Mean levels of H-NS binding (data from [36]) for all EPODs called in the WT rich media 
condition; each point shows either an EPOD or a single contiguous non-EPOD region. 
Each point is colored by its classification into high, medium, or low H-NS binding using a 
Gaussian mixture model with three groups, after removal of outliers using the local 
outlier factor [77] as implemented in the python scikit-learn module [78], using 25 
neighbors and default settings for other parameters. (B) Distributions of mean RNA read 
density stratified by the H-NS binding categories shown in panel A, with each case 
divided by EPOD status. The median of each group is shown by a dashed line, and the 
25th and 75th quartiles by dotted lines. ‘*’ indicates a significant difference between the 
medians of the EPOD vs. background groups (p<0.05, Mann-Whitney U test).  
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Figure S2.3: Identification of RNA polymerase vs. non-RNA polymerase protein 
occupancy. Shown is a density plot of the log2(IPOD/Input) signal vs. log2(RNA 
polymerase ChIP/Input) signal, demonstrating the presence of three subpopulations of 
genomic positions: unbound positions (without enrichment using either protein 
occupancy profiling method), RNA polymerase occupancy (part of a highly correlated 
region of high IPOD occupancy and high RNA polymerase occupancy), and occupancy 
with other proteins (which shows high IPOD occupancy but low RNA polymerase 
occupancy). Note that there is no corresponding population of high RNA polymerase 
occupancy but low IPOD occupancy; rather, the RNA polymerase-bound regions are a 
subset of the regions detected by IPOD. 
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Figure S2.4: Overlaps of EPOD sets resulting from different calling methods. 
Shown in the heatmap are the fraction of EPODs from the EPOD set defined by the row 
label that overlap the EPOD set defined by the column label. Asterisks reflect p-values 
arising from a Monte Carlo permutation test (1000 random circular permutations; * 
p<0.05, ** p<0.01, *** p<0.001). p-values for the overlaps between the +RIF IPOD-HR 
EPOD set and the Vora heEPODs were >0.8 for both directions of comparisons. 
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Figure S2.5: Effects of rifampin treatment on protein occupancy of a highly 
transcribed region. Shown are occupancy signals for interphase-extracted, RNA 
polymerase ChIP, and ChIP-subtracted IPOD occupancy (IPOD-HR) samples in the 
vicinity of a large cluster of ribosomal protein genes (running from rplQ to rpsJ). Signals 
are log2 extracted:input ratios (for IPOD and ChIP samples), or ChIP-subtracted robust 
z scores (IPOD-HR). 
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Figure S2.6: Effects of rifampin treatment on protein occupancy of a 
transcriptionally silent region. Shown are occupancy signals for interphase-extracted, 
RNA polymerase ChIP, and ChIP-subtracted IPOD occupancy (IPOD-HR) samples in 
the vicinity of the waaQGPSBOJYZU operon, which was identified as a strong tsEPOD 
in [10]. Signals are log2 extracted:input ratios (for IPOD and ChIP samples), or ChIP-
subtracted robust z scores (IPOD-HR). 

Supplementary Tables 

Identified protein Accession Number 
Molecular 
Weight Total Spectrum Count 

UlaR tr|C3SFV2|C3SFV2_ECOLX 28 kDa 16 

YieP tr|E2QHU3|E2QHU3_ECOLX 26 kDa 9 

RpsC tr|C3SQX2|C3SQX2_ECOLX 26 kDa 7 

RpoC tr|C3SIA2|C3SIA2_ECOLX 155 kDa 11 
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RpoB tr|E2QJ13|E2QJ13_ECOLX 151 kDa 7 

RuvA tr|C3T5R2|C3T5R2_ECOLX 22 kDa 10 

FliA tr|C3SDE6|C3SDE6_ECOLX 28 kDa 6 

RpoA tr|C3SR67|C3SR67_ECOLX 37 kDa 7 

RpsD tr|C3SR62|C3SR62_ECOLX 23 kDa 3 

RdgC tr|E2QGD8|E2QGD8_ECOLX 34 kDa 3 

UvrA tr|C3SHF7|C3SHF7_ECOLX 104 kDa 5 

CysB tr|C3TC57|C3TC57_ECOLX 36 kDa 5 

FabR tr|E2QIZ8|E2QIZ8_ECOLX 24 kDa 4 

GroL tr|Q548M1|Q548M1_ECOLX 57 kDa 3 

IhfB tr|Q14F22|Q14F22_ECOLX 11 kDa 4 

RplC tr|C3SQU2|C3SQU2_ECOLX 22 kDa 2 

AccB tr|C3SRL7|C3SRL7_ECOLX 17 kDa 4 

AmiA tr|E2QPR8|E2QPR8_ECOLX 31 kDa 3 

IhfA tr|Q14F23|Q14F23_ECOLX 11 kDa 2 

Ppx tr|C3T027|C3T027_ECOLX 58 kDa 2 

RplB tr|C3SQV7|C3SQV7_ECOLX 30 kDa 2 

RpoE tr|Q0P6M2|Q0P6M2_ECOLX 22 kDa 2 

FabZ tr|C3TPH7|C3TPH7_ECOLX 17 kDa 3 

PolA tr|E2QI51|E2QI51_ECOLX 103 kDa 2 

TufB tr|E2QFJ4|E2QFJ4_ECOLX (+1) 43 kDa 2 

Table S2.1: Mass spectrometry identified peptide counts showing abundances of 
proteins pulled down by biotinylated bait DNA from the sdaC promoter region, 
after pruning of likely contaminants (see Methods for details). 
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Feature Median 
difference  

p value q value Reference 

Transcriptional 

propensity -1.0347 0.001 0.001 
 [30] 

Supercoiling 
density -0.1259 0.766 0.766 

 [80] 

Normalized Tn5 
integration density 4.5285 0.001 0.001 

 [30] 

Fis binding -1.0107 0.001 0.001  [36] 

H-NS binding 11.8366 0.001 0.001  [36] 

HU binding -0.1193 0.042 0.048  [81] 

LRP binding 0.3464 0.268 0.286  [59] 

SeqA binding -0.2629 0.003 0.004  [82] 

Dam sites -0.6745 0.001 0.001 Sequence analysis 

AT content 1.8548 0.001 0.001 Sequence analysis 

RNA -0.6668 0.001 0.001 Present study 

MGW -0.0843 0.001 0.001  
 

Calculated using DNAshapeR 
 [83] 

 
HelT 0.0707 0.001 0.001 

ProT -0.1692 0.001 0.001 

Roll -0.0910 0.001 0.001 

Table S2.2: Summary of EPOD characteristics across experimental conditions. 
The “Median difference” column refers to the difference in median robust Z-scores 
between EPODs and all other sites in the genome, with positive values indicating higher 
levels within EPODs. P-values for a significant difference are obtained using a 
resampling test, with 1000 random circular permutations of the EPOD locations on the 
genome (thus preserving the correlation structure of genomic features); q-values are 
obtained by correction of the p-values using the Benjamini-Hochberg method [79]. All 
sequence features were subjected to a 500 bp rolling mean prior to overlap calculation. 
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Chapter 3 

Distinct Heterochromatin-like Domains Promote Transcriptional Memory and 
Silence Parasitic Genetic Elements in Bacteria 

Abstract 

There is increasing evidence that microbes maintain a structured chromosome, which in 

turn impacts gene expression. However, tools to profile the genome landscape and 

binding of key architectural proteins have been limited. We recently discovered densely 

occupied, multi-kilobase regions in E. coli that are transcriptionally silent, similar to 

eukaryotic heterochromatin. These regions, termed EPODs, overlap metabolic 

pathways and parasitic elements such as prophages. Here, we investigate the 

contributions of nucleoid associated proteins (NAPs) to these domains by examining the 

impacts of deleting NAPs on EPODs genome-wide in E. coli and an evolutionarily 

distant species, Bacillus subtilis. We identify key NAPs contributing to the silencing of 

specific EPODs, where deletion of a particular NAPs opens a chromosomal region to 

RNA polymerase binding. In E. coli, we distinguish novel xenogeneic silencing NAPs, 

Fis and Hfq, that are essential for cell viability in the presence of domesticated 

prophages. Furthermore, we show that changes in EPODs facilitate an extra layer of 

transcriptional regulation to prepare cells for exposure to exotic carbon sources. Our 

findings demonstrate a new suite of mechanisms through which genomic architecture 

primes bacteria for changing metabolic environments and silences harmful genomic 

elements. 
The contents of this chapter have been submitted to Review Commons by Haley M. Amemiya, Thomas J. 
Goss, Taylor M. Nye, Rebecca Hurto, Lyle A. Simmons, and Peter L. Freddolino. H.M.A .and P.L.F.; 
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all experiments from strain construction to assay, to computational analysis with a few exceptions: T.G. 
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samples. T.N. and R.H. performed IPOD-HR in B. subtilis. I created all figures and wrote the manuscript.  
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Introduction 

All organisms must organize immense amounts of genetic information into a relatively 

small physical space within the cell. Paradoxically, the maintenance and accessibility of 

the DNA architecture is required for efficient DNA replication, repair, and transcription, 

and thus for proper cell division required to sustain life. In the bacterium Escherichia coli 

(E. coli), chromosome structure is mediated by roughly a dozen small, basic nucleoid-

associated proteins (NAPs) [1–3] that work in concert to modulate supercoiling, DNA 

looping, and distant chromosomal contacts [4–8]. Despite substantial research effort, it 

is largely unclear how individual NAPs impact the overall structure of the chromosome, 

due in part to their promiscuous and overlapping binding across the genome [3,9]. Our 

previous findings, consistent with many studies in the literature, have implicated H-NS 

as a dominant gene silencer [1,5,10,11]. H-NS has the capacity to form filaments, tightly 

compacting dsDNA. In vitro, it has been shown that the two types of filaments, linear or 

bridged, block transcription initiation, while only bridged filaments block transcription via 

blocking elongation[12–14] . Other proteins, such as Hha and the H-NS paralog StpA, 

promote the formation of H-NS filaments and modulate their structural properties [6,15].  

In addition to H-NS’s role in global gene silencing, it is well documented to specifically 

silence horizontally acquired DNA [11,16–19]. While the dominant form of filaments in 

vivo remains unknown, it is clear that H-NS plays a major role in transcriptional silencing 

in bacteria. 

 

In order to gain a comprehensive understanding of the contribution of NAPs to global 

protein occupancy and gene expression, we used in vivo protein occupancy display at 

high resolution (IPOD-HR). IPOD-HR is a method that provides a global snapshot of 

areas in the genome where proteins are bound to DNA, thus yielding insight into 

genome-wide regulation and structure [11,20]. IPOD-HR revealed approximately two 

hundred regions of the E. coli genome that are densely packed with protein but exclude 

RNA polymerase, inviting striking comparisons to heterochromatin found in eukaryotes 

[11]. We refer to these densely-packed regions as extended protein occupancy domains 

(EPODs) [20]. While EPODs have been shown to be partially occupied by NAPs and in 

some cases overlap with known binding sites for NAPs such as H-NS [11], the 
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contributions of individual NAPs on EPOD formation remains unexplored. Recent data 

suggests that EPODs contribute to both the regulation of metabolic pathways and the 

silencing of horizontally acquired DNA [11,21], however the NAPs mediating this 

response for individual EPODs are unknown. Additionally, evidence suggests that 

bacterial genomes have integration hotspots for horizontally acquired DNA [22]. We 

have found that EPODs have a higher integration frequency compared to the rest of the 

genome[11], perhaps giving insight that EPODs may be the functional unit that serve as 

hotspots for foreign DNA. Understanding the key protein components of EPODs and 

EPODs’ roles in genome organization will shed light on the relationship between the 

regulation of transcription and genome architecture in bacterial genomes.  

 

Here, we investigate the contributions of the major NAPs in E. coli to maintaining the 

pattern of global protein occupancy. By tracking global protein occupancy across the 

chromosome, our approach fundamentally differs from (and complements) what would 

be provided by a series of ChIP-seq experiments. Rather than simply seeing where one 

particular protein binds, we monitor the complete set of changes in protein occupancy 

caused by loss of any single NAP. Loss of a NAP may result in changes across the 

genome due to the combination of its direct binding, physical cooperation and 

competition with other factors, and regulatory effects. In fact, we show that loss of any 

single NAP results in changes to the global landscape of protein occupancy, albeit often 

less dramatic than might be expected. We find that NAPs are able to compensate for 

each other to maintain EPOD structure even after single NAP knockouts, often acting in 

pairings. Deletion of specific combinations of NAPs further supports this hypothesis and 

reveals key silencers for specific processes, such as the combined activities of StpA 

and H-NS in silencing many H-NS targets. We document one particular case where an 

H-NS dependent EPOD both maintains properly silencing of the operon for metabolizing 

a rare carbon source under baseline conditions, and  facilitates a transcriptional 

memory response that enable them to induce the same operon faster upon a second 

exposure to the same carbon source, providing yet another analogy to eukaryotic 

chromatin.  
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In the process, we also uncover additional evidence consistent with the well 

documented contribution of H-NS[11,16] in the silencing of harmful genetic elements 

that have integrated into the genome, such as latent bacteriophages [6,16]. However, 

we show that H-NS is not unique in its role as a xenogeneic silencer, and that a variety 

of other NAPs contribute to the silencing of prophages in a locus-specific manner. Of 

particular importance, the loss of two specific NAPs, Hfq and Fis, leads to inviability in a 

prophage dependent manner, underscoring the importance of different NAPs in 

establishing EPODs to maintain cellular health. 

 

Although originally identified in E. coli, we find that EPOD-like structures exist in a broad 

range of bacteria, including the evolutionarily distinct Gram-positive Firmicute Bacillus 

subtilis. Similarly to E. coli, we show that nucleoid associated proteins in B. subtilis 

facilitate silencing of metabolic pathways and horizontally acquired genes. Overall, we 

present a unifying conceptual framework in which heterochromatin-like domains across 

diverse bacterial species serve both to provide architectural regulation of metabolism 

and as a bacterial ‘innate immune system’ for potentially toxic DNA.  

Results 

Large-scale patterns of protein occupancy are highly maintained across 
conditions and laboratory evolution 
 

The ~200 EPODs identified across the E. coli MG1655 (WT) genome show significantly 

enriched overlaps with loci encoding genes involved in metabolism and silencing of 

mobile elements [11]. As remodeling of nucleoid organization has been previously 

detected in response to environmental changes, such as media richness and growth 

phase [23–25], we tested whether EPODs were one of the functional units that 

mediated changes across growth conditions. To examine the robustness of these 

domains under various physiological conditions, we performed IPOD-HR in MG1655 

strains, varying the media type, growth phase, and parental strain origin. IPOD-HR was 
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performed as previously described [11]; samples were taken at mid-exponential growth 

phase or deep stationary growth phase (D.S.; described in Methods below), in both rich 

defined media and minimal media with glucose (see Methods). For all experiments, we 

used defined media due to maintain consistency in physiological experiments with 

buffer conditions, salts, etc and to avoid the noted variation between Lysogeny Broth 

(LB medium) [26,27].  Even within E. coli MG1655 strains, there are genetic differences 

from variation in parental origin [28] that have led to differences in what is deemed “WT” 

across different laboratories. To examine the robustness of EPODs in a relatively similar 

strain with minor genetic differences, we utilized another MG1655 variant (labeled 

MG1655 (2)) (described in Methods below).  

 

The number and overall genomic coverage EPODs across conditions and genetic 

backgrounds remained relatively stable (Fig. 3.1A,B), with the greatest increases in 

coverage and counts in cells in deep stationary phase and the MG1655 (2) variant. To 

examine the changes in the locations and boundaries of EPODs, we calculated a 

measure that we refer to as the symmetrized overlap distance, given by the difference 

between unity and the geometric mean of the A-B and B-A EPOD overlaps: 

 
Where AB is the fraction of condition B’s EPODs overlapped by the relaxed threshold 

EPODs contained in condition A, and BA is the fraction of condition A EPODs 

overlapped by the relaxed threshold EPODs from condition B. A value of 0 indicates 

identical EPOD locations, since both overlaps would be 1. The use of strict vs. loose 

comparisons avoids overstating the differences between conditions based on minor 

thresholding differences and emphasizes large and systematic changes in occupancy. 

The symmetrized overlap distances between all pairs of conditions examined here are 

shown in Figure 3.1C. Values within the heatmap displayed are calculated using the 

fraction of EPODs contained in the relaxed threshold EPODs, defined as in [11], for 

each condition. Hierarchical clustering analysis of these distances reveal that the major 

differences stem decreasingly from growth phase, genotype, and then media changes 

(Fig. 3.1C). Notably, the EPOD location profiles for the two distinct MG1655 lineages 
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considered here were more similar to each other than the deep stationary phase 

condition, but in all cases a substantial majority of EPODs are conserved across 

conditions. These findings support ongoing research that shows major changes in 

nucleoid composition during later phases of growth[8,9]. Previous investigation of 

EPODs under baseline growth conditions (exponential growth in rich defined media) 

demonstrated that genes contained in EPODs were enriched for several gene 

functionalities, including  DNA transposition, cytolysis, and LPS biosynthesis [11] .To 

identify the pathways maintained across all conditions considered in Figure 3.1, we ran 

iPAGE [29] to associate which gene ontology (GO) terms fell within EPODs relative to 

Background. We found that three GO terms remained highly enriched in EPODs under 

all four conditions shown here: cytolysis, LPS biosynthetic pathway, and cellular 

response to acid chemical, demonstrating that EPOD-mediated regulation of these 

functionalities persists across both physiological condition and even cell lineages (Fig. 
S3.1). 
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Figure 3.1: EPODs are highly robust across growth conditions. (A) EPOD counts 
across WT (MG1655) E. coli cells are similar across different conditions. Cells were 
grown in: Rich (Rich Defined Media (See Methods)), Min (Minimal Media) and collected 
at log phase growth or deep stationary phase (Deep Stat.). WT (2) is another MG1655 
variant that comes from a different lab’s parental strain and has a few genetic 
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differences, as described in Methods. (B) Fractional coverage of EPODs across the 
genome does not largely vary across conditions, however cells grown in the Min 
condition have a slightly larger coverage. (C) To assess the similarity between EPOD 
calls in each condition, we calculated the symmetrized overlap distance of EPODs. A 
value of 0 indicates that the set of EPODs are identical. Hierarchical clustering reveals 
that growth phase impacts EPOD location in this dataset. (D) Specific locations across 
all conditions remain occupied by protein where EPODs were called (left) and 
unoccupied by RNA polymerase (right). The quantile normalized robust z scores of the 
protein occupancy at each 5 bp are represented by the IPOD-HR occupancy. (E) 
Density plots displaying the normalized histograms (smoothed by a kernel density 
estimator) of H-NS ChIP [17] for regions of the genome within EPODs versus 
Background (in which each contiguous non-EPOD block is treated as a single data 
point). H-NS binding shows a strong overlap with EPOD locations measured in all 
conditions. (*) indicates FDR-corrected p<0.005 via permutation test (against a null 
hypothesis of no difference in medians).  

Silencing of the non-functional LPS gene pathway is maintained across 
conditions 

 

To better understand the dynamics of protein occupancy across different conditions at a 

locus that shows a heavily maintained EPOD, we examined the changes in occupancy 

at an LPS biosynthesis locus across conditions (Fig. 3.1D). The LPS pathway was 

noted to be silenced by EPODs in our initial findings [11]. We hypothesize that these 

components of the LPS pathway are silenced due to an insertion element in wbbL in 

MG1655, an upstream component of the LPS pathway. Typically, E. coli express these 

pathways as part of O antigen biosynthesis, a highly beneficial cellular component that 

increases resistance to phage infection and environmental pressures [30–35]. Without 

functional genes in this pathway, there are no biological benefits to expressing 

downstream genes under various physiological conditions, and silencing may have 

been selected for over the course of the subsequent evolution of MG1655. Consistent 

with prior observations, we observe robust protein occupancy and minimal RNA 

polymerase occupancy across all conditions (Fig. 3.1D), although a qualitative change 

in the locations of the high-occupancy regions is apparent in deep stationary phase, 

perhaps reflecting a turnover in the predominant NAPs present under that condition.   

 

Nucleoid associated proteins are the main components of EPODs.  
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We hypothesized that the maintenance of EPODs was largely driven by the NAP 

occupancy. H-NS has been widely described as the major component of the E. coli 

nucleoid in exponential growth, specifically inhibiting transcription and silencing mobile 

elements and prophages [6,10,16]. We compared H-NS binding within EPODs 

compared to background and found significant enrichments of H-NS binding in EPODs 

across all considered conditions (Fig. 3.1E), consistent with previous observations [20]. 

Thus, H-NS is facilitating silencing of regions across the genome robustly in varying 

media, growth phase, and slight genotype differences. However, we also found 

previously that while the majority of EPODs overlap with known H-NS binding regions, a 

substantial fraction do not [11]. In addition, the fact that H-NS is present at a particular 

EPOD does not necessarily mean that it is the only factor (or even a necessary or 

sufficient factor) in forming that EPOD and silencing the genes there. We thus sought to 

assess whether other NAPs facilitate silencing of specific EPODs or if H-NS is the major 

silencing factor of EPODs across the E. coli genome.  

 

The binding locations and biological roles of nucleoid associated proteins (NAPs) have 

been difficult to define largely because of their promiscuous binding across the genome. 

Due to their propensity to bind DNA and their high abundance in the cell, we 

hypothesized that multiple NAPs contribute to EPODs. To examine the contributions of 

a range of E. coli NAPs to EPODs, we performed single deletions of the most abundant 

E. coli NAPs (hns, stpa, fis, hfq, ihfAB, dps, and hupAB) and performed IPOD-HR in the 

deletion strains. Since StpA is a known paralog of H-NS and forms bridged filaments 

across DNA [6,7], we also created an hns/stpA double knock-out and performed IPOD-

HR. As the NAP Dps is primarily expressed during stationary phase of growth [36,37], 

we performed IPOD-HR in WT and ∆dps cells that were collected during deep 

stationary phase stage of growth (defined in Methods) as well as in exponential phase. 

EPOD counts and coverage slightly varied across genotypes tested (Fig. 3.2A,B), with 

the largest loss of coverage observed  in ∆stpA∆hns. To examine shifts in EPOD 

locations, we again measured the symmetrized overlap distance (defined for Fig. 3.1C) 
and performed hierarchical clustering (Fig. 3.2C). The greatest changes in EPOD 

locations relative to the baseline condition (WT cells in exponential phase) occur within 
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∆stpA∆hns and ∆ihf, both of which cause profound changes in the profile of EPOD 

locations. The deep stationary phase samples cluster together, indicating similar shifts 

in EPOD locations. Interestingly, ∆hns and ∆hfq cluster together, perhaps suggesting a 

similar role in silencing at some EPODs. Several other NAP deletions show minimal 

effects on EPODs relative to WT cells, including deletions of hupAB, stpA, and dps (in 

exponential phase), indicating that at least under baseline conditions, these proteins do 

not contribute strongly to defining EPODs.  

 
Figure 3.2: Loss of nucleoid associated proteins (NAPs) leads to changes in 
EPODs. (A) Number of EPODs called in different NAP deletions. D.S. denotes 
genotypes where cells were collected in the deep stationary phase of growth. (B) 
Fractional coverage of EPODs for each genotype across the genome. (C) Symmetrized 
overlap statistic comparing each pair of samples in the NAP deletion dataset. The 
symmetrized overlap denotes similarity between EPOD locations, where a value of 0 = 
identical. Hierarchical clustering was performed to group like-genotypes. (D) 
Distributions of mean protein occupancy at WT EPOD boundaries and background. The 
blue dots denote the median and the black line displays the interquartile ranges in each 
condition. The dashed pink line represents the WT median. (*) indicate the Wilcoxon 
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Rank Sum test p value comparing the change in median vs. WT for each condition that 
has been adjusted using the Benjamini and Hochberg method (against a null hypothesis 
of no difference in medians). The grey line denotes the same comparison between the 
D.S. conditions. Underlined (*)’s indicate a gain in the median compared to baseline 
conditions, while no underline indicates a loss in the median compared to baseline 
conditions. p value < 0.05 = *, <0.005=**, <0.0005=***. (E) Protein occupancy over the 
waa operon. The quantile normalized robust z scores of the protein occupancy at each 
5 bp are represented by the IPODHR occupancy. The EPOD over the waa operon is 
lost in the ∆stpA∆hns condition which results in increased accessibility and RNA polymerase 
occupancy (Fig. S3.3A).  

Different EPODs are comprised of distinct combinations of NAPs 
 

To identify the relative contribution of different NAPs in maintaining a ‘standard’ set of 

EPODs present in WT cells during exponential phase growth, we calculated the 

average of the total protein occupancy signal across every EPOD location and other 

genomic regions for each genotype (Fig. 3.2D). When comparing the WT median (pink 

dashed line) vs. the deletion mutant medians (blue), NAPs contributing to protein 

occupancy at EPODs normally present in exponential phase display a significant dip in 

occupancy. Consistent with our prior observations, the loss of occupancy at normal 

EPOD boundaries in ∆stpa∆hns cells is particularly profound; notably, however, the hns 

single mutant shows only a minor loss of occupancy, indicating that StpA can largely 

compensate for its loss. Several other NAP deletions also showed significant drops in 

occupancy at the standard EPOD locations, often with a bimodal distribution of 

occupancy changes suggesting that only some subset of EPODs were affected in each 

case. At the same time, in many cases, RNA polymerase occupancy at a subset of 

affected EPODs is observed to rise (Fig. S3.2A), indicating a derepression of some 

EPODs upon deletion of hupAB, hfq, hns, ihf, or (especially) in the stpA/hns double 

knockout. Additionally, all NAPs exhibited changes in EPOD locations that impacted the 

overlap of called EPOD regions. We examined the fraction of EPODs contained in the 

relaxed threshold EPODs and found the overlap between EPOD locations among 

different genotypes dipped as low as 38% (Fig. S3.2C). Changes in protein occupancy 

compared to WT at all regions of the genome and downstream hierarchical clustering 

suggests a similar role of Hfq and H-NS in silencing specific regions of the genome 

(Fig. S3.3). 
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Inspection of the patterns of both total protein occupancy and RNA polymerase 

occupancy across the waa operon provides an instructive example. Whereas single 

deletions of hns or stpA show a minor effect on the integrity of the waa EPOD, the 

∆stpa∆hns cells show nearly complete loss of occupancy in this region (Fig. 3.2E). At 

the same time, there is a concomitant gain in RNA polymerase occupancy and induction 

of RNA expression of waa operon genes (Fig. S3A,B), demonstrating that H-NS and 

StpA act jointly to maintain silencing of the waa operon. While either can compensate 

for the other, the loss of both silencers leads to substantial de-repression of genes in 

this region.  

 

Our data thus permit us to identify which NAPs regulate specific EPODs across the 

genome. To provide an automated high-level classification of the regions across the 

genome specific to particular NAPs, we used our IPOD-HR occupancy and RNA 

polymerase ChIP-seq datasets across the NAP deletions and trained a Hidden Markov 

Model (HMM) that split the genome up into six classes (see Methods for details). We 

were able to identify three classes (2, 3, and 5) that were associated with EPODs, which 

exhibited significant enrichments of IHF motifs[38], Hfq binding (See note in Methods), 

H-NS binding[17], and Fis binding[17], as well as a low abundance of motifs for the 

known DNA methylases - Dam and Dcm [38] (Table S3.1). In particular, HMM class 2 is 

especially strongly associated with H-NS binding and likely represents H-NS dependent 

EPODs (with IHF also apparently contributing); HMM class 5 is associated with high 

levels of Hfq and Fis binding and may represent EPODs comprised in part by these two 

factors. In addition, class 5 had a high abundance of transcription factor binding sites 

and promoters[38], further implicating this class serving a regulatory role; HMM class 3 

represents yet another category of EPODs that at present cannot be assigned. The 

utility of the HMM classification is apparent. For example, the waa operon is almost 

entirely associated with HMM class 2 (Fig. 3.2E), which we assign as an H-NS filament. 

On the other hand, the borders of the EPOD instead fall into HMM class 3 or 5, and, 

consistently, show loss of occupancy in an hns deletion strain even if stpA is intact (Fig. 
3.2E). Together, we find that StpA and H-NS together contribute to large protein regions 
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across the genome, and are the main components silencing the LPS biosynthesis 

pathway. At the same time, we observe the presence of two distinct classes of EPOD 

occupancy that appear largely H-NS independent, and likely represent different types of 

large-scale repressive protein occupancy. 

 

Metabolic pressures induce changes in EPODs 
 

Many EPODs overlap operons involved in metabolic pathways, and thus silence 

pathways that may not be actively used in the cell under the conditions that we studied. 

For example, during growth in glucose rich defined media we observed an EPOD, 

associated with HMM class 2 (H-NS filament), overlapping the idnDOTR operon, 

specifically in the promoter of the operon. The idn operon is essential for the 

metabolism of carbon sources such as idonate and 5-keto gluconate, which are not 

present under typical laboratory conditions. In particular the idnD gene codes for the 

enzyme L-idonate 5-dehydrogenase, which catalyzes the oxidation of L-idonate to 5-

ketogluconate [39–41]. The idnDOTR operon and idnK are known to be transcriptionally 

regulated by CRP, IdnR, GlaR, and GntR, but to our knowledge no connection to 

regulation by NAP occupancy has previously been described [42]. Upstream of the 

idnDOTR operon, there is a 215-bp regulatory region that lies in between idnK and idnD 

[39]. In this region, there is a single putative IdnR/GntR binding site, CRP binding site, 

and an UP element [39]. Bausch et al. previously showed that induction of this pathway 

can occur due to exposure to L-idonate or 5-keto-gluconate (5KG)  [39]. The local 

positive regulator, IdnR, is activated by 5KG [41], and promotes the induction of the rest 

of the operon. Following exposure to 5KG in the absence of glucose, IdnT enables 

uptake of the carbon source, IdnD (as previously mentioned) catalyzes the reversible 

reduction of L-idonate to 5-ketogluconate, IdnO catalyzes the oxidation of 5-

ketogluconate to D-gluconate, and idnK catalyzes the phosphorylation of D-gluconate 

which then proceeds through the Entner-Doudoroff pathway to be metabolized [41]. 

Since the idn operon appears to be controlled by three local and one global regulators, 

the question arises of what additional regulatory role might be played by the apparently 

silencing EPOD covering the idn promoter under normal conditions.  



 106 

 

To explore the mechanisms of silencing at the idnDOTR operon, we first referred to our 

NAP deletion dataset to see whether specific NAP(s) silenced the operon. Data from a 

previous H-NS ChIP-seq dataset [17] plus the classification of this region as a type 2 

EPOD in our HMM suggested the presence of H-NS bound to the idn promoter 

region.  We performed RNA-seq in the ∆stpa∆hns background compared with the 

parental cells, and discovered that H-NS and StpA indeed repress expression of the 

idnDOTR operon (Fig. S3.5A,B). We leveraged this knowledge to address whether we 

could induce changes in protein occupancy at the EPOD covering the idn promoter by 

performing a carbon source shift experiment outlined in (Fig. 3.3A; further explanation 

in Methods).  Briefly, cells were grown in minimal media with 0.2% glucose, shifted to 

minimal media with 0.2% 5-keto-D-gluconate (5KDG) as a sole carbon source, and 

shifted back to minimal media with 0.2% glucose as the carbon source. In all conditions, 

cells were collected at an OD600 of ~0.1 for both IPOD-HR to examine changes in 

EPODs and RNA-seq for changes in expression. Notably, there was a severe lag for 

growth in 5KDG. We found that growth in 5KDG led to a reduction in protein occupancy 

and loss of the EPOD within the idnDOTR operon promoter (Fig. 3.3B). Upon shifting 

the cells back to glucose, both the original pattern of protein occupancy and the EPOD 

were restored (Fig. 3.3B). The loss of EPOD occupancy in the 5KDG condition was 

accompanied  by an induction of expression of the idnDOTR operon, and repression 

when EPOD occupancy was restored upon the return to glucose as a carbon source 

(Fig. 3.3C). Due to the long lag in growth during the transfer from glucose to 5KDG as a 

carbon source, we examined the correlation between the expression of all genes in the 

three conditions to see whether there were broad changes in expression when cells 

were forced to metabolize an exotic carbon source (Fig. 3.3D, top panel). The 

Spearman correlation was extremely high when comparing all conditions (>0.9), 

suggesting that changes are localized to the idn operon and the small set of other 

genes specifically regulated in response to the 5KDG carbon source. Similarly, the 

symmetrized overlap distances comparing the variation in EPOD locations across 

conditions were low, again supporting the notion that changes are specific to the 
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induced operon (Fig. 3.3D, bottom panel) and that no global rearrangement of protein 

occupancy occurs.  

 

Figure 3.3: Changes in EPODs are induced in specific conditions. (A) Experimental 
overview. WT, MG1655 cells were grown in M9 Minimal Media with 0.2% glucose, 
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samples were collected at mid log phase of growth (OD600 ~0.2) for RNA-seq and 
IPODHR. The cells were back diluted to an OD600 of ~0.1 in M9 Minimal Media with 
0.2% 5-Keto-D-gluconic-acid (5KDG), grown to an OD600 of ~0.2, collected for RNA-
seq and IPODHR. In the final shift, the cells were back diluted to an OD600 of ~0.003 in 
M9 Minimal Media with 0.2% glucose, grown to OD600 of 0.2 and collected for RNA-
seq and IPODHR. Two biological replicates were performed. (B) Protein occupancy 
over the idn operon for each condition (colors are denoted in (A)). The quantile 
normalized robust z scores of the protein occupancy at each 5 bp are represented by 
the IPODHR occupancy. There is a large loss in protein occupancy when cells are 
shifted to 5KDG, leading to the loss of the called EPOD. Protein occupancy is restored 
once cells are grown in the second glucose condition. (C) To examine the expression of 
the idn operon at each shift, RNA-seq was performed. RNA-seq expression estimates 
(from Rockhopper) log2 scaled for idn operon genes for WT cells grown in each 
condition colored in (A). Comparisons are denoted with colored dots with significance 
stars representing the q-value calculated by Rockhopper [72] using a negative binomial 
distribution (against the null hypothesis that the expression of the transcript in two 
conditions is the same). where (***) signify q-values <0.0005. (D) Spearman correlations 
are represented with the heatmap comparing the expression profiles in each condition, 
where identical expression values for every gene show a spearman correlation of 1. The 
symmetrized overlap distance was calculated for all EPODs for each condition, where a 
value of 0 is identical. The colored squares on the sides of the heatmaps denote the 
condition with the colors represented in (A).  

 

Given the sophisticated regulatory logic implemented at the idn promoter by a 

combination of local (GlaR, GntR, IdnR) and global (CRP) regulators, it is unclear what 

additional function is played by the apparently repressive EPOD covering this region. 

Drawing inspiration from the behavior of chromatin modifications in eukaryotes (e.g. 

[43–46]), we hypothesized that one function of EPODs could be to facilitate 

transcriptional memory. To test this, we measured growth in a new shift experiment, and 

added another shift back to 5KDG (Fig. 3.4A). The median lag time for the first shift into 

5KDG across three biological replicates was 48.6 hrs, with a range of 30.6 - 52.1 hrs. 

The cells were then back diluted into minimal media with 0.2% glucose, grown to mid 

exponential phase (OD600 ~0.2; around 6 doublings), and back diluted into 5KDG 

again. Here, the median lag time for cells previously exposed to 5KDG were 10.2 hrs 

with a range of 6.4-11.5hrs (Fig. 3.4B). This dramatic change in lag time between the 

first and second exposures to KDG suggests that expression of the gene products 

needed to metabolize 5KDG occurs faster upon the second exposure to the carbon 

source, despite the transcriptional regulatory state having reset to be virtually 
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indistinguishable from the original round of growth in glucose minimal media prior to the 

second 5KDG challenge (Fig. 3.3). Given the long outgrowth (5.5-6 doublings) between 

the first and second 5KDG challenges, it is expected that essentially all of the Idn 

proteins would have been diluted to irrelevant levels. While additional direct evidence is 

needed, our findings are consistent with the possibility that the structure of the EPOD in 

this region is such that transcriptional initiation is faster upon second induction within 

some time window after an initial induction, providing a transcriptional memory that 

facilitates responses to repeated stresses. Such a memory could be implemented, for 

example, by formation of bridged (after long timescales) vs. unbridged (for some time 

period after formation) H-NS filaments in this region, or by post-translational 

modification of the H-NS comprising the EPOD (analogous to the histone code[47]). The 

far longer lag time of the cells upon their second growth period in glucose minimal 

media relative to the first exposure (see Fig. 3.4B) also suggests that some of the gene 

products induced to metabolize 5KDG may themselves be detrimental under normal 

conditions, and thus another role of the EPOD at the idn promoter may be to ensure 

sufficiently tight silencing of these genes except when they are needed.  

 

 
Figure 3.4: EPODs mediate transcriptional memory. (A) Experimental overview of 
growth curve shift experiment. At every arrow, there is a back dilution of the previous 
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carbon source to start the growth in the new media type. (B) Lag times in hours for each 
condition, individual values are plotted as dots. (***) is defined as where the mean 
posterior probability of difference >0.999, assessed using a Bayesian model (see 
Methods for details).  

Multiple NAPs contribute to the silencing of prophages  
 

In addition to metabolic processes, we also found that genes within EPODs were 

overrepresented in Gene Ontology (GO) terms associated with annotated prophages 

[11]. Across the E. coli genome, there are a number of xenogeneic elements that have 

been integrated and can be potentially toxic to the cell, although maintenance of these 

elements can also be beneficial, as they can promote resistance in the face of 

antibiotics [48]. H-NS is known to silence cryptic prophages, and is likely to contribute to 

silencing the majority of horizontally acquired DNA [48,49]. IPOD-HR successfully 

resolved known H-NS silenced prophages (e.g. Fig. 3.5A), where large reductions in 

protein occupancy and corresponding increases in accessibility to RNA polymerase are 

observed in an hns knockout strain. However, as noted above, not all EPODs 

correspond to H-NS binding, and likely not all silenced prophages correspond to H-NS 

repressed regions. To examine the role of other nucleoid associated proteins in 

silencing prophages, we calculated the mean protein occupancy across WT EPODs that 

overlap prophages, and how those occupancies changed upon deletion of different 

NAPs. Decreases in median occupancy across prophage-containing EPODs are 

observed upon deletion of dps, hupAB, hfq, stpA, hns, stpa/hns, ihf, and among both 

deep stationary phase samples compared to WT (Fig. 3.5B).  
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Figure 3.5: Nucleoid associated proteins contribute to protein occupancy at 
EPODs that contain prophages. (A) IPODHR occupancy and RNA polymerase 
occupancy over a known H-NS silenced prophage in WT (blue) and ∆hns (red) cells. 
The quantile normalized robust z scores of the protein occupancy at each 5 bp are 
represented by the IPODHR occupancy. (B) The mean protein occupancy (IPODHR 
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occupancy) was calculated over WT EPOD locations that contain prophages. The blue 
dots denote the median and the black line displays the interquartile ranges in each 
condition. The dashed pink line represents the WT median. (*) indicate the Wilcoxon 
Rank Sum p value comparing the change in median vs. WT for each condition that has 
been adjusted using the Benjamini and Hochberg method (against a null hypothesis of 
no difference in medians). The smaller horizontal line denotes the same comparison 
between the D.S. conditions. P value < 0.05 = *, <0.005=**, <0.0005=***. (C) Mean 
protein occupancy was calculated across all WT EPOD locations that contain annotated 
prophages. The change in mean protein occupancy compared to WT was calculated for 
each condition, where anything negative is a loss in occupancy compared to WT. 
Hierarchical clustering was performed to examine which genotypes clustered together 
and were more similar.  

 

The minor loss of occupancy in some genetic backgrounds led us to investigate whether 

there are certain NAPs that work together to silence specific toxic elements. We 

examined the change in occupancy from each condition vs WT at WT EPODs that 

overlap prophages and performed hierarchical clustering analysis (Fig. 3.5C) to identify 

regulators that play similar roles. Interestingly, ∆hns and ∆hfq are clustered together, as 

are ∆stpA and ∆fis. These findings implicate Hfq, a well documented RNA 

chaperone[50,51] and that has only been recently explored as a protein to compress 

dsDNA[52,53], as a novel silencer of prophages at the level of protein occupancy 

across large genomic regions. Since H-NS and StpA are paralogs that bind to similar 

regions of the chromosome, we speculated that Hfq and Fis might play similarly 

complementary roles to each other in terms of silencing some prophages despite their 

lack of structural similarity. In addition, from our HMM analysis, both Fis and Hfq binding 

are enriched in HMM class 5 (Table S3.1), again suggesting a link between the roles 

and binding locations of Fis and Hfq. 

 

Fis and Hfq are required for cell viability in a prophage dependent manner 
 

We screened the genome for EPODs that contained prophages that lost protein 

occupancy upon deletion of fis or hfq individually (e.g., Fig. 3.6A). This also aligned with 

a specific type of class of EPODs associated with high Fis and Hfq binding with an 

example shown in Fig. 6A. RNA-seq analysis revealed that the genes within the 

prophage region depicted in Figure 6A were induced in both a ∆hfq and ∆fis background 
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(Fig. 3.6B). While Fis and Hfq are both NAPs, highly expressed, and bind 

promiscuously across the genome, they are not known to silence genes via the 

formation of densely occupied large-scale binding regions. Fis, while known more in the 

literature as a transcriptional activator [54,55], can inhibit transcription and act as a 

repressor in certain contexts [56,57]. Hfq is well known as a RNA chaperone[58] and 

can bind nucleic acids across the faces of the wheel-like homohexamer [52]. Therefore, 

we were not surprised to find that comparing the log fold-change of expression (relative 

to WT) of ∆hfq and ∆fis cells were not highly correlated among all genes (Fig. 3.6C). 

However, when examining only prophage genes, most genes were induced in one or 

both of the genotypes (Fig. 3.6D). We quantified the number of genes that were up in 

each genotype, both, or down using the quadrant map in Figure 3.6E. We applied this 

map and counted the rate ratios comparing all genes vs prophage genes in each 

quadrant. The rate ratios of all genes vs prophage genes in the quadrant which 

represented induced expression in both ∆hfq and ∆fis was significantly higher in 

prophage genes (Fig. 3.6F). Thus, prophage genes are specifically and significantly 

enriched among the set of genomic loci that are repressed by both Fis and Hfq, 

suggesting that Fis and Hfq bind and silence similar prophages. 
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Figure 3.6: Loss of Fis and Hfq is lethal in a prophage-dependent manner. (A) 
Example prophage region that is annotated with the Fis- and Hfq-associated HMM class 
5 in our genome-wide HMM classification. Modest loss of protein occupancy was 
observed at the same prophage- containing EPOD for ∆fis (light purple-see color key in 
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(B)) and ∆hfq (dark purple-see color key in (B)) conditions compared to WT (gold). The 
quantile normalized robust z scores of the protein occupancy at each 5 bp are 
represented by the IPODHR occupancy. Prophage genes are highlighted with a red 
box. (B) RNA-seq of WT, ∆fis, and ∆hfq were performed. The log fold change compared 
to WT was calculated at prophage genes contained in the dashed box in (A). Induction 
of prophages across the region where loss in occupancy is observed. (*) indicate the 
sleuth  [73] q-value; q value < 0.05 = *, <0.005=**, <0.0005=***. (C) The log fold change 
of all genes for ∆fis and ∆hfq are shown in a hexbin plot. Counts for each gene 
transcript contained in one bin are denoted with the counts bar. (D) The log fold change 
of all prophage genes for ∆fis and ∆hfq are shown in a hexbin plot. (E) Outline of 
quadrant map to calculate the number of genes that fall within each quadrant for (F). 
The symbols represent log fold changes compared to WT in ∆fis / ∆hfq. For instance, 
+/+ denotes a positive log fold change in ∆fis and ∆hfq, -/+ denotes negative log fold 
change in ∆fis and positive in ∆hfq. (F) Rate ratios of all genes (grey) and prophage 
genes (red) in each quadrant outline in (E), showing a higher rate of genes that resided 
in the +/+ category, indicating that many prophages are de-repressed in both ∆fis and 
∆hfq. (*) indicate the p-value calculated from testing the null that the rate ratios are the 
same. P value < 0.05 = *, <0.005=**, <0.0005=***. (G) P1 vir transduction experiment to 
test the viability of ∆fis and ∆hfq. -Hfq indicates deleting Hfq and -CspE indicates 
deleting -CspE as a control. Strain identities are indicated in the box. Number of 
transductions were counted on LB + Kan plates. -R1 indicates that the prophage region 
in (A) was deleted to test whether the loss of prophages silenced by Fis and Hfq 
restored viability of a ∆fis ∆hfq genotype. R2 and R3 were other regions in the genome 
that contained prophages that appeared to have Fis/Hfq dependent EPODs.  

 

Since the expression of genes from lysogenized bacteriophages can be toxic to the cell 

even if they are no longer able to form replication-competent virions (particularly if a lytic 

operon is induced), we asked whether the combined loss of hfq and fis would more 

strongly impact cell physiology. We performed P1 transduction experiments in a WT, 

MG1655 background and a ∆fis background, where we attempted to delete the genomic 

copy of hfq. Interestingly, there was a dramatic loss of transduction efficiency in the ∆fis 

background, and we were not able to create the ∆hfq ∆fis mutant (Fig 3.6G). The 

transduction efficiency for hfq::kan dropped more than 100-fold in the ∆fis  background, 

and the very small number transductants that did form colonies could not be propagated 

upon restreaking. To test whether the deletion of fis impacts transduction efficiency as a 

whole, we attempted the same experiment deleting cspE, another gene that has not 

been associated with prophage silencing, and did not observe a similarly dramatic loss 

in transductants, with simple loss of fis leading to only a ~4-fold loss in transduction 

efficiency. To compliment the experiment in Figure 3.6G, we attempted to complement 
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the combined loss of fis and hfq using a copy of hfq on a temperature sensitive plasmid. 

We thus cloned hfq and its native promoters on a plasmid with a temperature sensitive 

origin of replication [59]. The plasmid was placed into WT and ∆fis cells, and the 

genomic copy of hfq was deleted using P1 vir transduction (See Methods). Cells were 

grown in a permissive temperature (30o C), and spot titers were performed on LB and 

LB + chloramphenicol plates to measure CFUs of the culture and presence of the 

plasmid. Cultures were then shifted to 42o C, which prevents plasmid replication, and 

thus induces dropping of the plasmid containing hfq. After 8hrs of growth at 42o C, spot 

titers were performed to assess CFUs. We found again that the combination of ∆hfq ∆fis 

was not viable (Fig. S3.6). We hypothesized that the expression of prophages silenced 

by Fis and Hfq led to the inviability phenotype. To test this hypothesis, we utilized the 

strain MDS42 [60] , which lacks the mobile elements and prophages in the E. coli K12 

genome. We placed the temperature sensitive plasmid containing hfq in MDS42 and 

MDS42 ∆fis cells and performed the same temperature shift experiment as described 

above. Removal of the prophages from the genome, restored viability (Fig. S3.6). We 

also observed a substantial rescue of transduction efficiency, which reached the same 

level in the ∆fis background as that of the control transduction with cspE::kan (Fig. 3G). 

Since 42 large regions are deleted from MDS42, we wanted to see if we could identify 

specific prophage regions that led to inviability. Since there is loss in occupancy in both 

∆hfq and ∆fis in the Figure 6A region (R1:564815-585633; Table S3.2), we deleted only 

R1:564815-585633, and found a partial rescue of transduction efficiency (Fig. 3.6G). 

We found another region that met the same criteria (R3; Table S3.2), and also saw 

rescuing effects (Fig. 3.6G). Another region that contained prophages, but did not dip in 

occupancy in both genotypes did not impact viability (R2; Table S3.2) (Fig. 3.6G). Thus, 

we were able to define regions that contribute to viability, and hone in on specific 

prophages that are silenced by Fis and Hfq and, in the absence of repression by those 

two NAPs, prevent cell growth.; in particular, loss of either of two prophages (R1 or R3) 

was sufficient to restore the viability of a fis/hfq double mutant. This novel interaction 

defines a new role for NAPs in regulating the expression of prophages, implicating E. 

coli NAPs more broadly in the establishment of defense mechanisms against 

horizontally acquired DNA. 
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Heterochromatin domains silence horizontally acquired DNA across diverse 
species  
 

Because it relies only on elementary physico-chemical principles rather than specific 

affinity reagents, IPOD-HR is an approach that could be implemented in a wide variety 

of bacterial species. To further our understanding of conserved features that regulate 

bacterial genome architecture, we investigated whether a distantly related bacterial 

species contained EPODs. We performed IPOD-HR on the Gram-positive Firmicute 

Bacillus subtilis (B. subtilis)- a soil dwelling bacterium that has the ability to enter a 

number of developmental platforms upon nutrient deprivation or other environmental 

stressors, including the formation of desiccation resistant endospores, biofilm formation, 

genetic competence, and swimming/swarming motility phenotypes [61]. We performed 

IPOD-HR in B. subtilis strain PY79 and found multi-kb regions of protein occupancy 

(EPODs) spanning genes that function in a number of metabolic pathways, suggesting 

a feature conserved with E. coli (Fig. 3.7A). Many of these pathways are activated in 

times of nutrient limitation and stress, similarly to the silenced pathways we observe in 

E. coli. As regions of protein occupancy were observed in horizontally acquired DNA in 

E. coli, we proposed that regions of protein occupancy may play a role in horizontally 

acquired DNA in B.subtilis. As B. subtilis is naturally competent, the tight regulation of 

competence development is especially important to regulate and protect against the 

acquisition of harmful exogenous DNA elements. Surprisingly, we found that many large 

negative occupancy peaks overlapped annotated prophage genes (Fig. 3.7B), 

appearing similar to EPODs but inverted in sign. 
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Figure 3.7: IPODHR in Bacillus subtilis reveals Rok-bound and SMC-bound 
domains. (A) IPOD, RNA polymerase ChIP, and IPOD-HR ChIP-subtracted z-scores in 
the vicinity of a typical extended protein occupancy domain (EPOD). IPOD and ChIP 
tracks are shown as log2 extracted/input ratios; the z-score is the ChIP-subtracted 
robust z-score smoothed with a 512 bp rolling median. (B) IPOD, RNA polymerase 
ChIP, and IPOD-HR tracks in the vicinity of a negative EPOD (nEPOD). (C) Effects of 
deletion of rok in the vicinity of an nEPOD; Rok ChIP data from[63] shows a strong 
overlap with the nEPOD boundary, whereas that occupancy region is lost in Δrok cells. 
(D) Distributions of Rok ChIP occupancies (see Methods) in the EPODs and nEPODs 
called in WT (top) or Δrok (bottom) cells; note that the Rok ChIP occupancy was taken 
only in WT cells. (*) indicates a significant difference from the ‘neither’ distribution (that 
is, genomic sites that are not in an EPOD or nEPOD); p<0.05, permutation test. (E) 
Comparison of IPOD occupancy and SMC ChIP occupancy (see Methods) in the vicinity 
of several typical EPODs. (F) Genome-wide distributions of SMC binding in EPODs vs. 
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nEPODs as assessed in WT cells; (*) indicates a significant difference from the 
background distribution as in panel D. 

 

One of the main regulators of competence in B. subtilis is Rok, which acts as a direct 

repressor of competency genes, regulates several secreted proteins, and is involved in 

repression of mobile genetic elements [61–63]. Due to the impact of Rok on gene 

regulation, coupled with the promiscuous binding activity to A+T-rich DNA, we propose 

that Rok may be a main component of protein occupancy in B. subtilis. Surprisingly, 

while we did not see an enrichment of Rok binding in EPODs using available rok-myc 

ChIP-chip data [63], Rok binding was highly correlated with the negative occupancy 

peaks (Fig. 3.7C,D). To investigate this further, we performed IPOD-HR in ∆rok cells 

and found that indeed, the loss of Rok resulted in an increase in RNA polymerase 

binding at sites correlated with Rok binding, and loss of negative peaks found in the WT 

condition (Fig. 3.7C). We subsequently performed our analysis pipeline to incorporate 

negative occupancy and found that these negative EPODs correlated with Rok binding 

and were enriched for genes known to be regulated by Rok, such as sporulation genes 

and genes involved in competence activation.  

 

Positive (standard) EPODs were also apparent in the B. subtilis data, and we found 

them to be highly correlated with SMC binding (Fig. 3.7E,F), which is known to compact 

the genome in preparation for chromosomal segregation [64–66]. Our findings align with 

known datasets [67], and further our understanding of the role of nucleoid binding 

proteins in defining the genome landscape across species. Without the dependency on 

antibody-based methods, we can explore unknown protein functions across a variety of 

developmental platforms and species. Importantly, we did not observe correlations with 

any suspected nucleoid associated proteins or global regulators in negative peaks in E. 

coli. These findings highlight the broad utility of IPOD-HR, with the ability to detect both 

conserved and novel genome architecture features in a variety of distantly related 

bacterial species. In addition, we see that the general pattern of large regions of high 

protein occupancy apparently silencing genes horizontally acquired DNA is an 
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extremely widespread feature, occurring in at least two bacterial species separated by 

more than 2 billion years of evolution. 

Discussion 

There is increasing evidence of a regulated genome architecture in E. coli, both in terms 

of its three dimensional structure [24,68–70] and in terms of the landscape of protein 

occupancy on the genome. Both of these classes of features are largely supported by 

binding of NAPs [11]. IPOD-HR enabled us to study global changes in chromosomal 

architecture - here defined as highly protein occupied regions of the genome - across 

species and implicated NAPs as the main component of EPODs. Here, we show the 

robustness of these large protein domains across media conditions, growth phase, and 

small genotype differences (Fig. 3.1). The maintenance of EPODs across conditions 

and ancestral strains aligns with the idea that EPODs serve an important regulatory 

silencing role. A variety of questions emerge: How are EPODs maintained through 

replication and growth? What recruits proteins to these regions? Further studies are 

being performed to examine the role of methylation in maintenance and recruitment of 

protein to EPOD regions. As horizontally acquired DNA and methylation have been 

shown to be intertwined in E. coli [71], and we found that dam and dcm sites are 

depleted in EPODs, we believe that methylation plays a role in regulation of EPODs 

containing prophages.  

 

Our study shows that EPODs are partly composed by NAPs in E. coli (Fig. 3.2), with the 

largest contribution clearly made by the major transcriptional silencers H-NS and StpA, 

but other pairs of NAPs making important contributions at a subset of loci. Due to the 

wide binding capacity of NAPs across the genome, the question regarding recruitment 

to EPODs emerges again. IPOD-HR successfully shows losses in occupancy upon 

deletion of NAPs, however, there may be accessory proteins that facilitate recruitment 

and maintenance. IPOD-HR may miss subtle changes in proteins that are not as 
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abundant in the cell, so we have begun to design proteomic analysis of EPODs to 

define the exact composition of EPODs.  

 

We are able to define the key proteins involved in EPOD regulation of metabolic 

pathways (Fig. 3.3,3.4) and silencing of prophages across the genome (Fig. 3.5,3.6). 

EPODs appear to mediate the formation of transcriptional memory (Fig. 3.4), which 

allows for strong repression of a rarely-used metabolic operon when it has not been 

transcribed in recent memory, but aids in faster induction of genes important for 

metabolic response after a single exposure to a relevant nutrient. This type of regulation 

poses exciting ideas for understanding how architectural proteins facilitate a genome 

architecture regulation across the genome. Importantly, understanding bacterial 

genome regulation can be incredibly useful for biotechnology purposes, especially in the 

case where cells can be grown in a number of conditions that may induce changes in 

their overall genome architecture that can impact induction of particular genes.  

 

We have also identified here a novel silencing mechanism for prophages and toxic 

elements across the genome. Together, Hfq and Fis are required to silence some 

prophages, most notably DLP12 (contained in R1 of Fig. 3.6) and Qin prophages (R3 of 

Fig. 3.6). What defines particular prophages to recruit Hfq and Fis remain to be 

explored. However, these findings contribute to an overarching theme of the genome 

structure serving as an immune response to a variety of horizontally acquired DNA. As 

we have previously shown, reports integrate with higher frequency in EPODs and are 

efficiently silenced[11,21]. We propose that EPODs serve as DNA sinks for foreign 

DNA, and quickly silence potentially harmful elements. Further investigation into the 

mechanisms underlying this response will bolster our view of immune responses of 

bacterial species.  

 

Many NAPs and their functions are conserved across bacterial species, and the overall 

roles of NAPs in establishing large regions of silencing protein occupancy appear to be 

conserved even beyond the reach of recognizable homologs of any given NAP. We 

found that the use of genome architecture as a mode of immunity may also be 
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conserved in a distantly related species to E. coli, B. subtilis (Fig. 3.7). The exploitation 

of such a system has a number of promising outcomes. For instance, work established 

here could inform new antibiotic approaches for pathogenic bacteria by targeting 

proteins required to suppress toxic elements already in existence in the genome. In 

addition, understanding how bacteria recruit and build their genome architecture around 

foreign DNA can inform us of how bacteria interact with the environment. The 

manipulation of this process may allow us to utilize bacteria in innovative ways, such as 

novel biosensors or protein engineering.  

Materials and Methods 

Strain construction  
  
The MG1655 “WT” strain used in all figures was obtained from Hani Goodarzi (Tavazoie 

Lab, then at Princeton University) in 2009, and is isogenic with ATCC 700926, with the 

exception of a 9 bp insertion in dcgJ [74]. The MDS42 strain was obtained from Alison 

Hottes in 2009 (Tavazoie Lab, then at Princeton University) and contains a C->T 

mutation in ribD and missing coverage for lysV[60].These modifications may be 

ancestral to MDS42, or specifically present in our MDS42 parental strain. MDS42 

deletions were validated using PCR. The MG1655 (2) strain was obtained from the 

Jakob Lab at the University of Michigan in 2018, and contains a G -> A mutation in 

mntP and C->A mutation in ybhJ. 
  
NAP deletion strains: 
  
All nucleoid associated protein (NAP) gene deletions were performed in the same 

MG1655 “WT” base strain stock discussed above. All NAP deletions were obtained by 

P1 transduction [75] of the FRT-flanked kanR marker from the corresponding knockout 

strain of the Keio collection[75,76]. With the exception of ΔihfA:: Km ΔihfB::Clm(ΔihfAB) 

and ΔhupA ΔhupB::Km (ΔhupAB),the pCP20 plasmid [77] containing Flp recombinase 

was used to excise the kanRmarker, leaving a small scar in the place of the original 
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open reading frame. Once candidates were isolated for each deletion and contained the 

pCP20 plasmid, they were grown overnight at 42°C to drop the temperature sensitive 

pCP20. The overnight cultures were streaked onto LB plates and grown overnight at 

37°C. Individual colonies were replica plated onto appropriate selective plates to ensure 

the loss of both the marker and pCP20 plasmid. The ΔihfAB and ΔhupAB strains were 

not cured due to incredibly low efficiency to excise markers via pCP20, and markers 

were retained to avoid potential suppressor mutations. 

 

Bacillus subtilis strains  

 

The B. subtilis PY79 and rok::kan strains came from the Simmons lab at the University 

of Michigan. Details of the genome sequence can be found in [78] . 

 

Media/culture conditions  
  
LB (Lennox) media (10g/L tryptone, 5g/L yeast extract, 5g/L NaCl) was used for cloning 

and recovery of cryogenically preserved cells, with addition of 15g/L bacteriological agar 

for plating. 
  
In the case of physiological experiments, we used appropriately supplemented versions 

of M9 defined minimal medium (6 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl, 

1 mM MgSO4). Minimal M9 medium (M9/min) contained includes 0.2% (w/v) carbon 

source (glucose, sodium acetate, glutamine or 5-Keto-D-gluconic acid potassium salt), 

0.4 mM CaCl2, 40 μM ferric citrate, and the micronutrient mixture typically incorporated 

in MOPS minimal media[27]. For all IPOD-HR experiments, we used our M9 rich 

defined medium (M9/rdm) incorporated with 0.4% (w/v) glucose, MOPS micronutrients, 

4 μM CaCl2, 40 μM ferric citrate, and 1x supplements ACGU and EZ as used in MOPS 

rich defined medium [27].  

 

For Bacillus subtilis strains were struck from frozen stocks and grown on LB plates 

overnight at 37°C. WT and Δrok strains were inoculated into LB and LB supplemented 

with 5 μg/mL kanamycin, respectively, from a plate wash at a starting an OD600 of 0.025 
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and grown at 37°C with shaking to an OD600 between 0.65 and 0.85. Rifampin was added 

to a final concentration of 150 μg/mL and cultures were incubated for an additional 10 

minutes at 37°C with shaking. Sodium phosphate (final concentration 0.01M) and 

formaldehyde (1% v/v) were added to 30 mL aliquots of culture and cross-linked at 

room temperature for 5 minutes with shaking. Reactions were quenched by the addition 

of 0.333M glycine for 10 minutes at room temperature. Cells were collected via 

centrifugation and watched twice with ice-cold PBS and cell pellets were subsequently 

flash frozen in liquid nitrogen and stored at -80°C. 
  
Cell growth and harvest for IPOD-HR  
  
Cryogenically preserved cells were streaked onto an LB plate and grown in the media of 

interest with 1/10th of the carbon source indicated overnight at a temperature of 37°C and 

shaking at 200 rpm. The culture was back-diluted into fresh, prewarmed media to an 

OD600 of 0.003 the next day. The culture was grown to the target OD600 (0.2, except 

in the case of deep stationary phase samples, described below) and treated with a final 

concentration of 150 μg/mL of rifampin and incubated for 10 minutes under the same 

growth conditions previously described. The cultures were rapidly poured into falcon 

tube and mixed with concentrated formaldehyde/sodium phosphate (pH 7.4) buffer 

sufficient to yield a final concentration of 10 mM NaPO4 and 1% v/v formaldehyde. 

Crosslinking proceeded for 5 minutes at room temperature, and quenched with an 

excess of glycine (final concentration 0.333 M) for 10 minutes with shaking at room 

temperature. The crosslinked cells were chilled on ice for 10 min, and washed twice 

with 10mL ice cold phosphate buffered saline (PBS). The resulting pellets were carefully 

dried, remaining media pipetted and discarded, and snap-frozen in a dry ice-ethanol 

bath and stored at -80°C for no longer than 1 month.  
  
Deep stationary samples followed the same process of being grown in the appropriate 

media overnight and back diluted to an OD600 0.003. Once the cells reached an 

OD600 of 0.2, they were grown for an additional 24 hours, treated with rifampin for 

20min, and proceeded through the same treatment for crosslinking as described above. 
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Cell lysis and DNA preparation, IPOD-HR interface extraction, RNA polymerase 
chromatin immunoprecipitation, and crosslinking reversal and recovery of DNA 
was performed as previously described [11,27]. Due to the high biomass of deep 

stationary phase cells, cells were diluted 10x prior to lysis. In the case of the B. subtilis, 

samples were sonicated 4 times for 5s at 25% power with 15s between pulses. 
  
 
Preparation of next-generation sequencing (NGS) libraries  
 
All DNA samples were prepared for Illumina sequencing using the NEBNext Ultra (or II) 

Library Prep Kit (NEB product #E7370 or #E7103, respectively). The NEBNext Ultra II 

Library Prep Kit was used on the Δhns ΔstpA and biological replicate 2 of the deep 

stationary phase samples (Δdps and corresponding WT). We consulted with NEB to 

confirm that there are no differences between the kits that would impact our results. 

Single index or dual index primers from NEB were used in the prep. The manufacturer’s 

instructions were followed with the same modifications as listed in [11].  

 

All libraries were sequenced on an Illumina NextSeq.  
  
Analysis of NGS data, read quality control and preprocessing, DNA sequencing and 

protein occupancy calling, and feature calling was performed as previously 

described[11]. Rescalling was performed on IPOD-HR occupancy analysis described in 

supplementary text. 
  
5KDG growth experiments 
  
Experimental design for Figure 3: 

 

Cells were grown from a cryogenic stock on LB plates at 37°C, and inoculated into our 

M9 minimal medium including 0.02% glucose at 37°C. In the morning, cultures were 

back diluted to an OD600 0.003 in fresh, pre-warmed M9 minimal medium including 

0.2% glucose at 37°C. Once cells reached a target OD600 0.2, cells were pelleted and 

washed twice with 5 mL of warmed PBS. 1 mL of sample was mixed with 1mL DNA / 
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RNA shield and flash frozen in a dry ice-ethanol bath and stored at -80°C. The 

remainder of the cells were placed in our M9 minimal medium including 0.2% carbon 

source (glucose, sodium acetate, or 5-Keto-D-gluconic acid (5-KDG; Sigma Aldrich: 

Catalog #K4125)) to an estimated OD600 of 0.1 and placed at 37°C. 1 mL samples 

were taken after 10 minutes, 2 hours, 4 hours, 8 hours, 12 hours, 24 hours, and 28 

hours and mixed with 1mL DNA/RNA shield and flash frozen in a dry ice-ethanol bath 

and stored at -80°C.  

 

Experimental design for Figure 4: 

 

Similar as above, cells were grown from a cryogenic stock on LB plates at 37°C, and 

inoculated into our M9 minimal medium including 0.02% glucose at 37°C. In the 

morning, cultures were back diluted to an OD600 0.003 in fresh, pre-warmed M9 

minimal medium including 0.2% glucose at 37°C in a total volume 150uL with 100uL of 

mineral oil in a plate reader. Measurements were taken every 10min at 37C with 

shaking to calculate lag times. Once cells reached an OD600 ~0.2, they were back 

diluted to an OD600 of 0.01 in M9 minimal medium with 0.2% 5KDG. Cells were grown 

to an OD600 ~0.2, then diluted to an OD600 0.003 in M9 minimal medium with 0.2% 

glucose. The cycle was repeated, where cells were diluted to an OD600 of 0.01 in M9 

minimal medium with 0.2% 5KDG after reaching 0.2. The last shift cells were back 

diluted to an OD600 of 0.003 in M9 minimal medium with 0.2% glucose.  

 

Growth curves (using log2-scaled optical densities [ODs]) were smoothed using a cubic 

spline with one knot per five hours (or fraction thereof) in the data; we then identified the 

maximum value of the slope of the resulting spline as the growth rate. The lag time was 

calculated by projecting a line with a slope equal to the growth rate through the point at 

which the most rapid growth was observed, and took the time at which that line 

intercepted a horizontal line at the initially observed log2 OD for that culture. Summary 

statistics were calculated via Bayesian regression as implemented in the brms R 

package, with population-level effects for the experiment under consideration and 

default brm values for all other arguments. 
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RNA isolation and sequencing preparation 
 

All RNA-sequencing samples were collected and prepared for sequencing as follows. 

Once cells were grown to the appropriate OD600, 2.5mL of culture was mixed with 5mL 

of  RNAprotect (Qiagen: Catalog #76506), vortexed and incubated at room temperature 

for 5 min. Cells were spun at 4°C for 10 min at 5,000 x g in a fixed-angle rotor. The 

supernatant was removed, and the pellet was flash frozen in a dry ice-ethanol bath and 

stored at -80°C. For RNA extraction, the pellet was resuspended in 100uL of TE and 

treated with 177kU (1uL) Ready-lyse lysozyme solution (Lucigen: Catalog #R1804) and 

0.2 mg (10uL) proteinase K (Thermo Fisher Scientific: Catalog #EO0492), incubated for 

10 min at room temperature with vortexing every 2 min. The RNA was purified using 

RNA Clean and Concentrator kit-5 (Zymo: Catalog #R1014), treated with 5 units of 

Baseline-ZERO DNase (Epicentre: Catalog #DB0715K) in the presence of RNAse 

inhibitor (NEB: Catalog #M0314L) for 30 min at 37°C. RNA was purified again using 

RNA Clean and Concentrator kit-5 (Zymo: Catalog #R1014). RNA was flash frozen in a 

dry ice-ethanol bath and stored at -80°C.  

 

rRNA depletion was performed using the bacterial rRNA depletion kit following 

manufacturer instructions (New England Biolabs (NEB): Catalog #E7850L). The only 

modification performed was the last step, where instead of a bead clean up, we used 

the RNA Clean and Concentrator kit-5 (Zymo: Catalog #R1014).  

 

Sequencing preparation was performed using the NEBNext Ultra Directional RNA 

Library Prep Kit for Illumina following manufacturer instructions (NEB: Catalog 

#E7420L) for rRNA depleted RNA. Random primers were used and RNA was 

considered intact for the NEBNext Ultra protocol. Slight modifications to the protocol are 

as follows. To purify cDNA, the Oligo clean & concentrator was used (Zymo: Catalog 

#D4061). Following adapter ligation, DNA was purified using DNA Clean & 

Concentrator-5 (Zymo: Catalog #D4014). Dual index primers from NEB were used in 

the prep. Libraries were sequenced on an Illumina NextSeq. 
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RNA-seq analysis began with read preprocessing identical to that described in [11]. 

Expression quantitation and significance calling for the small-scale dataset considered 

in Figure 3.3 was performed using Rockhopper [72] with default parameters. For the 

more complex set of comparisons between different NAP deletions, we instead used 

kallisto [79] for read quantitation and sleuth [73] for differential expression calling.  

 

HMM classes 
 

HMM fits were performed using the hmmlearn python package (version 0.2.4) with 

Gaussian emissions. As input features we used the IPOD-HR robust z scores and RNA 

polymerase log2(extracted/input) ratios, for a total of 2 features per condition at each of 

928,330 sites on the genome (5 bp resolution). We trained a series of HMMs using 20-

fold cross validation (dividing the genome into 20 evenly sized blocks), in which we 

assessed the log-likelihoods for the withheld folds based on an HMM trained on the rest 

of the genome. After training and evaluating models from 2 to 20 components, we found 

that the predictive performance increased sharply with component count up to 6 

components, and after that increased much more gradually. We thus used a six-

component model to provide a balance of interpretability and predictive performance. 

We fitted 20 final models using the entire genome and selected the one with the highest 

likelihood to provide the final HMM; state assignments were then obtained using the 

Viterbi algorithm. Default parameters for hmmlearn were used unless otherwise noted. 

 

Hfq binding was measured by cloning Hfq-PAmCherry from [53] into MG1655 (2) and 

performing ChIP-seq with a monoclonal mCherry antibody (Thermo Fisher M11217) 

(manuscript in preparation). A 500 bp rolling mean of the log2 extracted/input ratio was 

calculated and used for comparison in this paper.  

 

Data visualization and analysis  
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For data analysis as previously described [11], we made heavy use of numpy [11,80], R 

version 3.6.3 [81,82], tidyverse [83],  and ggplot2 [84].  

 

Data Availability 
 

The raw and processed sequencing data used in this study have been deposited in the 

Gene Expression Omnibus with study accession GSE164796. Reviewer access is 

available using the token ozufkmmwddqhrix 
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Supplementary Figures and Tables 

 
Figure S3.1: Pathway analysis of EPODs across WT conditions. iPAGE analysis 
revealed key pathways overrepresented in EPODs compared to background that 
remain across different growth media, harvest growth phase, and parental background 
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(underlined). Color scale represents over- or under-representation of genes with 
particular GO term annotations in the EPODs vs. non-EPOD regions (background). 

 
Figure S3.2: Loss of NAPs results in increases in RNA polymerase occupancy 
and decreases in overlapping EPODs.  (A) Average RNA polymerase occupancy was 
calculated across intergenic regions within WT EPODs and background. Similar to 
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Figure 2D, The blue dots denote the median and the black line displays the interquartile 
ranges in each condition. The dashed pink line represents the WT median. (*) indicate 
the Wilcoxon Rank Sum p value comparing the change in median vs. WT for each 
condition that has been adjusted using the Benjamini and Hochberg method (against a 
null hypothesis of no difference in medians). The grey line denotes the same 
comparison between the D.S. conditions. P value < 0.05 = *, <0.005=**, <0.0005=***. 
(B) Reading left to right: overlap of the relaxed set of EPOD calls (left) over the stringent 
set of EPOD calls (bottom). 

 

 
Figure S3.3: Changes in protein occupancy across the genome. The average 
occupancy was calculated across EPODs and background regions. The change in 
protein occupancy was calculated by subtracting the WT average at each region for 
every mutant. A gain in occupancy in the mutant is represented by a positive change in 
occupancy, while a loss is represented by a negative change in occupancy. Hierarchical 
clustering distinguished NAPs that have similar impacts on protein occupancy across 
the genome. 
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Figure S3.4: Deletion of hns and stpA impact EPODs across the genome. (A) The 
loss in protein occupancy shown in Figure 2E leads to increases in RNA polymerase 
occupancy across the waa operon. (B) RNA-seq analysis shows log fold change 
compared to WT of waa operon expression upon deletion of hns and stpA. (*) indicate 
sleuth [73] q-value; q value < 0.05 = *, <0.005=**, <0.0005=***. (C) Density plots exhibit 
enrichment of H-NS binding within EPODs that is reduced upon deletion of hns and the 
double deletion of stpA and hns. Dashed lines are the median for background (grey) 
and EPODs (red) for each condition. (*) indicates FDR-corrected p<0.005 via 
permutation test (against a null hypothesis of no difference in medians). 
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Figure S3.5: H-NS and StpA mediate silencing of the idn operon. (A) The 500bp 
normalized average of previously published H-NS ChIP-seq [17] exhibits high H-NS 
binding on the idnD promoter region. (B) RNA-seq analysis shows log fold change 
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compared to WT of idn operon expression upon deletion of hns and stpA. (*) indicate 
sleuth q-value  [73]; Q value < 0.05 = *, <0.005=**, <0.0005=***. 

 

 
Figure S3.6: Growth deficiency of Δfis Δhfq cells. WT, MDS42, Δfis, and MDS42 
Δfis cells containing a temperature sensitive plasmid with hfq had their genomic copy of 
hfq deleted. Cells were grown in a permissible temperature (30°C), and then shifted to a 
non-permissible temperature for plasmid replication (42°C), thus removing hfq as the 
plasmid is dropped. The log10 fold change in CFU is displayed. Δfis cells were unable to 
grow with the loss of the temperature sensitive hfq plasmid, however, upon deletion of 
mobile elements and prophages from the genome (MDS42 strain background), viability 
was restored. 
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Table S3.1: HMM class enrichments. Log2 Ratio Enrichment: The ratio of the  number 
of EPODs or motifs in a given HMM class to the total number of EPODs or motifs was 
calculated for each HMM class. A chi-squared test was performed, and all categories 
were significantly associated with each class; values underlined had a p-value <0.05. 
Group-Level Mean: The 500-bp rolling mean for the binding of each NAP was used to 
calculate the group-level means for across each HMM class, and compared with the 
overall average for the genome. Permutation based p-values were calculated 
comparing each class vs. the background. The values underlined had a p-value <0.05. 

 

 
Table S3.2: MDS42 regions containing prophages. 
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Table S3.3: Strains used in this study. 

 

 
Table S3.4: Plasmids used in this study. 
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Table S3.5: Primers used in this study. 
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Supplementary Text 

Rescaling of IPOD-HR occupancy tracks and subsequent EPOD calling 

 

While we have previously shown the robustness of the IPOD-HR analysis pipelines for 

both deletions of local regulators and substantial changes in physiological conditions 

[11], we found that for the nucleoid-associated protein deletions considered here, in 

many cases the assumptions underlying the IPOD-HR normalization methods (that the 

overall shape of the distribution of occupancy values across the genome would not 

change substantively between conditions) was violated.  We thus modified the EPOD 

calling scheme to be able to compare EPOD count, coverage, and  occupancy across 

NAP deletion datasets, where some NAP deletions are sufficient to substantively shift 

the overall score distribution. We rescaled the IPOD-HR occupancy tracks, beginning 

with the robust z score values indicating occupancy at every five base pairs of the 

genome, using the following procedure: We found the intersection of EPODs between 

each NAP deletion and WT with a minimum fractional overlap of 0.2, and plotted the 

mean occupancy of each overlapped EPOD ( NAP deletion vs. WT). We then used a 

robust linear model with Huber’s T for M estimation to estimate the slope of the NAP 

deletion values as a function of the WT values for the same EPODs, and used the slope 

to rescale the NAP deletion dataset by dividing the robust z score values by the slope 

across the genome. These new values were used as input to call EPODs. To call 

EPODs, we set the cutoff of what would be counted as an EPOD using the WT 

thresholds, and applied this to all datasets. In summary, these rescaling and 

thresholding enabled us to make more accurate comparisons between EPODs and 

occupancy across the NAP deletion datasets. By bringing the observed occupancies at 

conserved EPODs into register with each other across the different genotypes in our 

dataset 
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Chapter 4 

Interplay of Hfq and Polyphosphate in Bacterial Heterochromatin Formation 

Abstract and Introduction 

Recent evidence suggests that bacteria contain heterochromatin-like domains, termed 

extended protein occupancy domains (EPODs), that contribute to gene regulation and 

protection against foreign DNA. One of the most prominent classes of EPODs, those 

dependent on the activity of the nucleoid-associated proteins Fis and Hfq, bears a 

strong enrichment for prophages and mobile elements. Further genetic testing indicates 

that complete silencing of Fis/Hfq dependent EPODs are also reliant upon normal levels 

of polyphosphate (polyP), and we find that in fact polyphosphate is essential for 

appropriate silencing activity of Hfq at integrated prophages. Biochemical results 

suggest a model in which polyphosphate acts as an Hfq chaperone in order to permit 

appropriate silencing at EPODs, whereas the well-characterized function of Hfq as an 

RNA chaperone appears polyphosphate independent. We begin to define a model by 

which polyP mediates Hfq prophage regulation, where deletion of ppk dramatically 

changes the binding capacity of Hfq to xenogeneic elements. These results provided 

the first evidence that polyP and Hfq form heterchromatin like regions that suppress the 

expression of genetic mobile elements and prophages. 

The contents of this chapter are in preparation by Francois Beaufay*, Haley M. Amemiya*, Jian Guan, 
Rishav Mitra, Benjamin Meinen, James C. A. Bardwell, Ursula Jakob and Peter L. Freddolino. 
Conceptualization: F.B., H.M.A  U.J. and P.L.F.; Methodology, F.B., H.M.A  U.J. and P.L.F; Investigation, 
F.B., H.M.A., J.G., R.M., B.M., U.J. and P.L.F., and P.L.F.; Data Analysis and Curation, F.B., H.M.A  U.J. 
and P.L.F.; Writing -- Original Draft, F.B., H.M.A  U.J. and P.L.F.; Funding Acquisition, U.J. and P.L.F. (*) 
indicates co-first authors. I aided in the writing of the manuscript, and wrote all portions pertaining to the 
RNA-seq analysis and ChIP-seq experiments. I performed analysis on the RNA-seq datasets. I performed 
the mCherry ChIP experiments and analysis. 
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Results 

Polyphosphate, an extremely simple energy-rich polymer composed of phospho-

anhydride bonded phosphates, is one of the most ancient and conserved molecules on 

earth [1]. Present in every organism tested so far, polyP plays a variety of different 

biological roles, ranging from a virulence and stress resistance factor in bacteria, to a 

blood clotting factor and modulator of amyloidogenic processes in eukaryotes[1–8]. The 

many ascribed activities of polyP have been attributed to its physico-chemical 

properties, acting as a metal chelator, polyanionic buffer, and, as most recently 

discovered, protein scaffolding factor, a function of potentially far-reaching physiological 

consequences[9–12].  

 

Earlier studies in E. coli revealed that polyP protects bacteria against the DNA-

crosslinking reagent cisplatin [13]. This protection was in part mediated by the ability of 

polyP to counteract cisplatin-elicited iron stress. In addition to the significant differences 

in the expression of iron homeostasis genes in E. coli mutants lacking the polyP 

synthesizing polyphosphate kinase (ppk) compared to wild-type E. coli, however, we 

observed that the ppk deletion strain also showed a pronounced enrichment of 

upregulated genes related to “genetic mobile elements” (GME) such as prophages and 

prophage shock genes (Fig. 4.1A). Many of these genes, which are associated with 

transposons and insertion sequence (IS) elements, are known to be induced upon DNA 

damage, and their mobilization contributes to the lethal consequences of DNA-

stress[14–17]. Absence of polyP significantly augmented the cisplatin-induced 

expression of GMEs and prophages, and, even more surprisingly, also increased their 

steady-state expression levels in the absence of stress (Fig. 4.1A). These results 

provided the first evidence that polyP might act in DNA damage control by either directly 

or indirectly suppressing the expression of GMEs and prophages.   
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Figure 4.1: Loss of ppk leads to an induction of prophages and mobile elements 
and sensitivity to DNA damaging agents. (A) Mobilization / increased expression of 
prophages in both dppk and cells exposed to cisplatin. Performed RNA-seq on WT and 
dppk cells exposed to cisplatin at 0, 5, 15min timepoints. The above plot displays a 
dimensional reduction of examining the impact of genotype (WT vs Δppk) and time 
exposed to cisplatin. Displayed are all genes (each dot) and highlighted genes that are 
prophages (purple), phage shock GO term (orange), and viral release from host cell by 
cytolysis GO term (green). Genes positive in PC1, which comprises 74.57% proportion 
of variance, decreases expression in time exposed to cisplatin, but up in Δppk relative 
to WT. Genes positive in PC2, 23.20% proportion of variance, increased expression in 
Δppk relative to WT and with exposure to cisplatin. We zoomed in on specific GO terms 
and analyzed the mean TPM (log2) in each condition. Overall, the deletion of ppk alone 
induces expression of prophages. (B) Survival of WT vs Δppk cells exposed to DNA 
damaging agents. (C) Survival of MDS42 (WT) vs MDS42 Δppk (Δppk) cells exposed to 
DNA damaging agents. (D) Mutagenesis rates in D-cycloserine and Rifampin of WT, 
Δppk (MG1655) and MDS42 (WT), MDS42 Δppk (Δppk) cells. 
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To further investigate this idea, we first conducted phenotypical studies on wild-type and 

the ppk deletion strain using three unrelated DNA-damaging reagents, including 

mitomycin C, phleomycin and UV.  We observed that lack of polyP significantly 

increased the sensitivity of E. coli towards all of these DNA damaging reagents and 

treatments, irrespective of their specific effects on DNA integrity(Fig. 4.1B). We 

hypothesized that the sensitivity was due to the de-repression of mobile elements and 

prophages due to the loss of ppk, leading to an increase in mobilization and lethality 

with the exposure to DNA damaging agents. The E. coli strain MDS42 lacks all 

identifiable prophages and genetic mobile elements [18], was much less sensitive 

towards DNA damaging reagents compared to wild-type E. coli, and, even more 

importantly, much less dependent on the presence of polyP for survival.  Whereas 

deletion of ppk caused a more than 1,000-fold increase in cisplatin sensitivity in E. coli 

MG1655, absence of polyP in MDS42 led to a less than 10-fold increase in sensitivity 

compared to the parental strain (Fig. 4.1C).  As expected, these effects were not 

restricted to cisplatin treatment but applied to all other tested DNA damaging reagents 

(Fig. 4.1C).  These results not only demonstrated that mobilization and transposition of 

GMEs and prophages significantly contributes to the bacterial killing that is elicited by 

various DNA damaging reagents, but implied that polyP serves to prevent this 

mobilization thus protecting bacteria against the lethal effects of DNA damage. 

 

Mobilization of GMEs and prophages inevitably causes chromosomal insertions and 

deletions.  To determine whether polyP’s effects on GMEs and prophages influences 

the mutagenesis rates under non-stress conditions, we compared the bacterial growth 

of MG1655, MDS42 and the respective ppk deletion strains in presence of the inhibitor 

D-cycloserine or rifampin (Fig. 4.1D). Whereas resistance to rifampin is elicited by 

specific point mutations in the rifampin -binding site of RpoB, an essential E. coli protein 

that tolerates neither insertions nor deletions [19,20], resistance to D-cylcoserine is 

acquired by loss of function mutations, including insertions or deletions, in the antibiotic 

transporter CycA[21].  As shown in Figure 4.1D, while polyP did not affect rifampin 

resistance in either strain background, deletion of the ppk gene caused a significantly 

higher rate of resistance to D-cycloserine in wild-type MG1655. In contrast, no 
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significant increase in D-cycloserine growth was observed in the MDS42 background, 

consistent with a lack of transposable GMEs and prophages in this strain. Based on 

these results, we concluded that the protective effect of polyP under DNA damaging 

conditions is mediated by its ability to either directly or indirectly suppress the 

expression of GMEs and prophages, a novel and hitherto unknown activity of polyP. 

 

The silencing of GMEs and prophages have been connected to heterochromatin-like 

domains, termed extended protein occupancy domains (EPODs), composed primary of 

nucleoid associated proteins (Chapter 2 and Chapter 3). All NAPs have similar qualities 

in their DNA binding capacity, such as promiscuous binding across the genome and 

high abundance. H-NS, Hfq and Fis have been shown to silence prophages and mobile 

elements (Chapter 3 and citations within), however their mechanism of binding remains 

elusive.  In addition, previous reports cited a potential role of polyP in DNA 

condensation in both Pseudomonas aeruginosa [22]and Cyanobacteria [23]. These 

reports led us to consider the possibility that polyP represses mobilization of GMEs and 

prophages by contributing to nucleoid formation and chromosomal compaction. To 

genetically interrogate this idea, we individually deleted genes for the six best-

characterized nucleoid-associated proteins (NAPs), that is HupA, HupB, StpA, Hfq, Fis, 

and H-NS, and compared their cisplatin sensitivity to wild-type E. coli MG1655 both in 

the absence and presence of polyP (Fig. S4.2A). Neither hupA, hupB nor stpA deletion 

strains showed any significant increase in the cisplatin sensitivity compared to wild-type 

E. coli, and co-deletion of ppk did not lead to any significant further increase in cisplatin 

sensitivity beyond what we observed in the ppk deletion strain (Fig. S4.2A).  

 

In contrast, however, deletion of either hfq or fis increased the sensitivity of MG1655 to 

an extent that was comparable to the ppk deletion strain (Fig. 4.2A,S4.2A). To 

investigate potential genetic interactions between hfq, fis and ppk, we created double 

deletions and measured sensitivity. Deletion of the ppk gene led to additional 

sensitization in the fis deletion strain background yet did not significantly alter growth or 

cisplatin sensitivity of the hfq deletion strain (Fig. 4.2A,S4.2A), suggesting that hfq and 

ppk may act in similar capacities and pathways to silence prophages and mobile 



 151 

elements. Furthermore, a double deletion of hfq and ppk resulted in no significant 

changes in mutagenesis rates with exposure to D-cycloserine or Rifampin or additive 

sensitivity to DNA damaging agents (Fig. 4.2E, S4.2D). As a control, we tested whether 

there was a change in Hfq abundance due to the loss of ppk, and found that the 

deletion of ppk does not change Hfq abundance in the cell (Fig. S4.3). The epistatic 

masking of the effects of ppk deletion by deletion of hfq suggests that the effects of 

polyphosphate in preventing cisplatin-mediated death occur through Hfq. Indeed, we 

found that overexpression of Hfq rescued the cisplatin-sensitive phenotype of the ppk 

deletion strain, indicating that increasing the steady state levels of Hfq was sufficient to 

compensate for the absence of polyP, and this pattern held true for all DNA damaging 

agents (Fig. 4.2F, S4.2B). The converse experiment was not the case and 

overexpression of PPK was not sufficient to rescue the cisplatin sensitivity of the hfq 

deletion strain (Fig. 4.2F, S4.2B). These results suggest that polyP acts upstream of 

Hfq in terms of resistance to DNA damage. 

 

Similarly to polyP, Hfq has many roles in the cell. Hfq’s DNA binding capacity has only 

been recently described [26, 27], as it is typically considered in the literature to be 

known for its role as RNA chaperone[24,25]. However, studies have shown a direct role 

of Hfq in dsDNA binding and compaction [27], highlighting the critical role Hfq plays in 

silencing specific regions of the chromosome. Furthermore, Hfq form foci in response to 

starvation stress [26], implicating the importance of Hfq sequestration during 

physiological changes. We have recently shown that both Hfq and Fis are required 

silencing prophages across the genome (Chapter 3) and make up the main component 

of heterochromatin-like domains, EPODs, across these regions. Coupled with our 

previous findings that Hfq is a critical component of silencing complexes across 

prophages, and the relationship we have shown between Hfq and polyP, we 

hypothesized that polyP facilitates Hfq’s ability to silence prophages and mobile 

elements in E. coli.  
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Figure 4.2: polyP and Hfq show evidence of epistasis. (A) Survival assay of 
WT, Δppk, Δhfq, and ΔppkΔhfq cells exposed to cisplatin. (B) RNA-sequencing 
differential expression analysis was performed on all genotypes compared to WT. The 
spearman correlation of these differences was calculated for “All Genes” and 
“Prophages”. There was an increase in correlation specifically at prophage genes, 
indicating similar induction of toxic elements. (C) Cell size distribution of WT (n=8670), 
Δppk (n=8089), Δhfq (n=5875), ΔppkΔhfq (n=5954) population (left) and the associate 
space occupied by the nucleoid for each mutant (right) in a MG1655 background under 
non stress condition in MOPS-Glucose medium. (D) Cell size distribution of WT 
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(n=7329), Δppk (n=5577), Δhfq (n=4984), population (left) and the associate space 
occupied by the nucleoid for each mutant (right) in a MDS42 background under non 
stress condition in MOPS-Glucose medium. (E) Resistant mutant frequencies of WT, 
Δppk, Δhfq, ΔppkΔhfq strains to D-cycloserine or rifampycin. (F) Epistatic relation 
between Hfq and polyP to cisplatin exposure (n³3, *, P<0.05; ****, P<0.0001; ns, non-
significant, one-way ANOVA).   

 
To ascertain whether polyP impacts Hfq’s RNA chaperone activity versus its DNA 

binding activity (or both), we performed expression analysis of known targets of Hfq’s 

RNA chaperone activity. Expression analysis of genes previously shown to be 

controlled by the RNA chaperone activity of Hfq, did not reveal any significant 

differences between wild-type MG1655 and the ppk deletion strain (Fig. S4.1). These 

results suggested that absence of polyP does not notably affect the RNA chaperone 

function of Hfq. In addition to its role as RNA chaperone, about 20% of the cellular Hfq 

pool has been found to be associated with DNA, where it appears to be involved in 

bacterial nucleoid formation [26,27]. To directly test the effects of polyP on chromosome 

condensation in the absence or presence of Hfq, we measured and compared cell 

lengths and chromosome occupancy using wild-type MG1655 as well as single and 

double deletions of ppk and hfq. Cells lacking the ppk gene, the hfq gene, or both had 

elongated cell shapes (Fig. 4.2C) and showed a near 20% increase in chromosome 

occupancy compared to wild-type E. coli (Fig. S4.2C). No significant differences 

between the three mutant strains (ppk, hfq, and ppk/hfq) were detected, suggesting that 

polyP and Hfq cooperate in bacterial nucleoid formation (Fig. 4.2C) . We have recently 

found that in addition to its structural role, Hfq (together with Fis) forms extended protein 

occupancy domains that play an essential role in silencing several prophages in wild 

type E. coli K12 (Chapter 3). We thus speculated that the prophage-dependent, Hfq-

mediated effects of polyp on cisplatin survival might likewise arise due to silencing of 

prophages by Hfq, which might be enhanced by the presence of polyP. We thus 

conducted gene expression studies on wild-type E. coli lacking hfq, ppk or hfq/ppk. 

While we observed about 22% of all differentially expressed to be similar in hfq and ppk 

deletion strains, we found an almost 50% overlap in prophage genes (Fig. 4.2B). With 

this knowledge, we wanted to see if the chromosomal occupancy phenotype would be 

rescued in the background MDS42, which lacks many of the mobile elements and 
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prophages. Indeed, we find that the chromosomal occupancy phenotype is rescued 

upon deletion of toxic elements, perhaps indicating a new link to prophage expression 

and phenotypic changes(Fig. 4.2D). Given the well-documented capacity of Hfq to bind 

nucleic acids, and the chemical similarity of polyP to the backbone of DNA/RNA, we 

hypothesized that DNA-like molecule polyP may act as a Hfq chaperone to specifically 

silence areas across the genome. 
  
 

Figure 4.3: Loss of polyphosphate kinase impacts Hfq binding across prophage 
regions. (A) The average Hfq-PAmCherry occupancy was calculated for each 
genotype. A control WT without any PAmCherry tag was used to subtract any mCherry 
ChIP-seq signal that is due to noise. (*) indicate the Wilcoxon Rank Sum p value 
comparing the change in median vs. WT for each condition that has been adjusted 
using the Bonferroni and Hochberg methods (against a null hypothesis of no difference 
in medians) (*, P<0.05 ; **,P <0.005 ; ****, P<0.0005).  (B) Example EPODs that contain 
prophages and Hfq-PAmCherry occupancy. Peak calls are represented by “Peaks”. 
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Blue arrows indicate genes. (C) Meme chip results of ppk dependent Hfq-PAmCherry 
peaks in the entire genome (Background) and at EPODs containing prophages 
(Prophages). (D) The 500-bp rolling mean for the binding of H-NS and the AT content of 
the genome was used to calculate the group-level means for across each peak class, 
and compared with the overall average for the genome. Permutation based p-values 
were calculated comparing each class vs. the background. The values underlined had a 
p-value <0.05. 

  
To examine the impact of the deletion of ppk on Hfq binding, we performed mCherry 

ChIP-seq on Hfq-PAmCherry [28] in WT and Δppk strains. To assess binding across the 

genome, we measured Hfq-PAmCherry binding over three different categories: 

background, EPODs, and EPODs that contained prophages. Hfq binding significantly 

decreased with the deletion of ppk, with an increase in binding of Hfq to background 

regions, indicating that Hfq still has the ability to bind DNA if ppk is deleted, but less 

specifically at EPODs (Fig. 4.3A). Most dramatically, in EPODs containing prophage 

genes there was a severe decrease in Hfq binding (Fig. 4.3A). An example of one of 

the regions containing prophages is displayed in Figure 4.3B, where much of the Hfq 

binding is lost. Thus, the deletion of ppk impacts Hfq binding across prophages, 

specifically in Hfq’s ability to bind and effectively silence toxic elements. We sought to 

determine the binding characteristics of Hfq that were specific to its interaction with 

polyP. Using the peaks called in WT Hfq-PAmCherry and Δppk Hfq-PAmCherry strains, 

we found the peaks that were ppk dependent to discover Hfq motifs in the entire 

genome (Background) and at EPODs containing prophages (Prophages) (Fig. 4.3C). 

Furthermore, we found that ppk dependent Hfq peaks (WT only) had an enrichment for 

H-NS binding association and AT content (Fig. 4.3D). In both cases, the loss of ppk 

shifted Hfq’s binding characteristics. Thus, the loss of ppk dramatically changes the 

binding profile of Hfq, with a dramatic loss of binding specifically at prophage regions. 

 

Building upon the genetic evidence of epistasis between ppk and hfq, and the changes 

in Hfq binding across the genome with the loss of ppk, we investigated the interaction of 

polyP and Hfq in vitro. We found that Hfq has the ability to bind polyphosphate 

molecules (Fig. 4.4A) with a Kd of 2.2uM per phosphate unit of a 300 mer polyP 

species (compared to the Kd of 6.16uM for a HEX-DNA molecule of a size of ~500bp 
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(Fig. 4.4D)). Strikingly, Hfq forms discrete oligomeric species in the presence of 

polyphosphate (Fig. 4.4B,C), suggesting that polyphosphate mediates higher oligomeric 

species of Hfq at certain concentrations. We next sought out the interaction between 

DNA, polyP, and Hfq. Using labeled DNA, we gradually titrated in polyP and found that 

the high chain length polyP species competes with DNA for binding Hfq (Fig. 4.4E,F). 

This supports a hypothesis that polyP facilitates Hfq reservoirs. However, we 

investigated whether the higher oligomeric species would still be detected at different 

chain lengths. Using the same gel shift assay approach in Figure 4.4B, we found that 

the Hfq species was specific to that chain length size (Fig. 4.4G). Combined with our 

findings in Figure 4.3E, where we find that the presence of ppk is critical for efficient 

binding of Hfq, we start to construct a model in which polyphosphate, at basal 

conditions, mediates Hfq binding and silences of prophages and mobile elements (Fig. 
4.4H). Thus, together, polyP and Hfq mediate a heterochromatin-like structure silences 

potentially toxic regions across the cell.  
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Figure 4.4: Polyphosphate facilitates distinct oligomeric species of Hfq hexamers. 
(A) Fluorescence anisotropy of titrated polyP300 with Hfq exhibits a Kd of 2.2uM per Pi. 
(B) Gel shift assay with polyP300  and Hfq at different ratios exhibits a distinct laddering 
pattern of Hfq. (C) Sedimentation Velocity Analytical Ultracentrifugation was performed 
to examine the binding species of Hfq mixed with polyP300, and aligned with the findings 
in (B) that show polyP300 supported the formation of high oligomeric species of Hfq. (D) 
Binding of HEX-DNA to Hfq was measured using the same approach as (A) and has a 
Kd of 6.61uM per DNA molecule. (E) Mixing of HEX-DNA, Hfq, and polyP300 exhibits 
competitive binding for Hfq between polyphosphate and HEX-DNA. (F) The competition 
of Hfq binding was also detected in gel shift assays at different ratios of polyP300 and Hfq. 
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In (E) and (F), Hfq is sequestered away from DNA as there is an increase in polyP300. (B) 
Different polyP species were mixed at distinct ratios with Hfq, and exhibit discrete 
hexamer patterns at different chain lengths. (H) Model for polyphosphate, Hfq, and DNA 
interactions, where polyphosphate facilitates silencing at basal conditions.  

Discussion 

We have discovered a novel mechanism by which Hfq and polyphosphate interact to 

form heterochromatin-like complexes that silence toxic DNA in E. coli. Deletions of hfq 

and ppk result in a sensitivity in DNA damaging agents in a prophage dependent 

manner, and an induction of prophage genes. Assessment of cell physiology, where we 

find that deletions of hfq and ppk result in increases in chromosome occupancy, further 

suggests an epistatic relationship between hfq and ppk. Sensitivity can be rescued by 

either deleting prophages or overexpressing Hfq, suggesting the necessity of Hfq to 

provide the silencing machinery on toxic elements. Our ChIP-seq data reveals that the 

presence of polyphosphate facilitates Hfq’s ability to bind and silence prophages and 

mobile elements. Coupled with our in vitro studies, polyphosphate promotes 

sequestration of Hfq molecules to DNA across the genome and improves Hfq’s ability to 

impact gene expression. This is the first description of a mechanism by which 

heterochromatin-like domains silence foreign DNA in E. coli. 

Materials and Methods 

Bacterial strains and growth conditions. 
 

All strains, plasmids, and oligonucleotides used in this study are listed in Table SX in 

the supplemental material. Null mutations in E. coli MG1655 [30] and MDS42 [18] were 

constructed as previously described [31–33]. E. coli and derivative strains were grown 

at 37°C in lysogenic broth (LB, Fisher) or in MOPS minimal medium (Teknova) 

supplemented with 0.2% glucose and 1.32 mM KH2PO4. 
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Mutagenesis assay 
To detect the rate and spectrum of spontaneous mutations, cells resistant to d-

cycloserine or rifampin were selected. For each strain, 4 independent cultures were 

diluted s into 20 MOPS glucose cultures at 10^3 cells and were grown with agitation to 

saturation at 37 ◦ C for 24h.  Samples from each tube were then spread either on 

minimal plates containing D-cycloserine or LB agar containing rifampin, incubated 

respectively 30 h and overnight   at 37 ◦ C and CFU were scored.  The total number of 

cells in a tube was determined by spreading dilutions from four tubes onto nonselective 

plates. Dividing the number of mutations per tube by the average total number of cells in 

a tube gives the mutational rate [13,21]. 
  
Survival assay to mutagens 
 

Survival assays were performed as described previously [13].  For cisplatin, MMC and 

Phleomycin, E. coli MG1655 and isogenic mutant strains were cultivated in MOPS-G 

medium until an OD600 of 0.5 was reached. Then, the bacteria were 10-fold serially 

diluted and plated onto M9-G plates containing various concentrations of various 

mutagen.  For survival upon UV treatment, cells were grown in LB medium at 37°C until 

an OD600 of 0.5 was reached, washed in ice-cold water and UVC irradiated (25J/m2) 

using a spectrolinker XL-1500 UV crosslinker.  All radiation experiments were 

performed on ice.  Following irradiation, cells were 10x serial diluted plates onto LB agar 

plates and incubated overnight at 37°C. 

  
Flurorescent microscopy 
 

All strains were imaged during exponential growth phase after immobilization on 1% 

agarose pads.  Images were taken using a Zeiss Axiobserver.Z1 microscope equipped 

with an ORCA-Flash 4.0 complementary metaloxide semiconductor (CMOS) camera 

and filter set 00. Images were processed using the MicrobeJ suite for ImageJ. 
  
Protein purification 
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Escherichia coli BL21 (DE3) carrying pET-21a-hfq were cultivated in LB ampicillin at 

37°C until an OD600 of 0.5, induced with IPTG (100ul/l) and shifted at 22°C for 16h.  Cells 

were lysed by sonication at 4°C in lysis buffer (25mM Tris, 300mM NaCl, 5 mg/ml 

DNase I, Benzonase nuclease (Merck), 100uM MgCl2, cOmplete, pH7.5), incubated 

first at room temperature for 30min to ensure DNA degradation, then in boiling water for 

20min, finally in room temperature water for 15min.  Lysates were spun at 30000g, 

30min, 4°C and supernatant loaded on a 5ml HisTrap column (Sigma).  Column was 

washed with 20ml of buffer A (25mM Tris, 300mM NaCl, pH 7.5), with buffer B (6M 

Guanidine HCl, 25mM Tris, 300 mM NaCl, pH7.5), with a gradient of guanidine 0 to 6M 

(25mM Tris, 300 mM NaCl, pH7.5), then with buffer A and protein were elute by Buffer 

C (300mM imidazole, 25mM Tris, 300mM NaCl, pH7.5).  Fractions containing highly 

pure HFQ were pooled and incubated for 1h with MgCL2 and Benzonase nuclease 

before overnight dialysis in buffer A.  After dilution of the sample to obtain a NaCl 

concentration of 150mM.  Samples were load on HiTrap SP HP 5ml column (Sigma), 

washed with 5% of buffer D (25mM Tris, 100mM NaCl, pH7.5) and elute with a gradient 

6 to 40% of buffer E (25mM Tris, 1.0 M NaCl, pH 7.5). Purified samples were pooled 

together in buffer A (25mM Tris, 300mM NaCl, pH 7.5), and stored at -80°C. 
  
Gel shift assay 
 

Hfq, PolyP and DNA were mixed at the indicated concentration in 20mM Hepes, 100mM 

NaCl, pH8.   After adding 10% glycerol (final concentration) and loading dye (NEB), 

samples were run on a TBE gel on ice (100V 16h for PolyP-HFQ interaction; 100V for 

4h for HFQ-DNA). DNA and PolyP were stained by DAPI according to Smith and 

Morrisey, 2007.  Briefly gel was incubated in fixative solution (25% methanol, 5% 

glycerol 50mM Tris, pH11) containing DAPI (2ug/ml) for 30min, de-stained in fixative 

solution for 1hr.  Gels were then exposed to UV-light for 5min then image with UV-

light.  Background, DNA, and RNA will remain fluorescent, while polyP will appear as 

black.  Proteins were visualized by classic Coomassie blue (Brunelle and green, 2014) 

or silver nitrate staining (Thermo) according to the manufacturer protocol. 
  
Fluorescent anisotropy 
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To determine the dissociation binding constant Kd for Hfq and polyP or DNA, 

fluorescence anisotropy was performed.  In a 1 ml cuvette at 37 °C, either 10 uM 

labelled polyP or 25 nM labelled dsDNA in 20mM Hepes, 100mM NaCl, pH8, was 

titrated with a stock (0.5 mM) of Hfq also in 20mM Hepes, 100mM NaCl, 

pH8.  Anisotropy was recorded with a Cary Eclipse Spectrofluorometer (Agilent) using 

an excitation of 640 nm and an emission of 675 nm when monitoring polyP300-AF647 

and using an excitation of 535 nm and an emission of 556 nm for HEX-

DNA.  Competition binding for Hfq was monitored by fluorescence anisotropy conducted 

in a similar manner by titrating labelled DNA and unlabeled polyP. 
  
PolyP and DNA labeling 
 

300 Pi chain length polyP was labeled with Alexa Fluor 647 as described in (Lempart et 

al. 2019).  Briefly, polyP300was incubated with Alexa Fluor 647 cadaverine (Life 

Technologies) and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDAC) (Invitrogen) 

at 60°C for 1 h. The reaction was stopped on ice and labeled polyP300-AF647 was 

separated from free dye and un- labeled polyP using a NAP-5 column (GE Healthcare) 

equilibrated with 40 mM KPi, pH 7.5. The concentration of polyP was determined via a 

toluidine blue assay (Mullan et al, 2002) and the 530/630 nm ratio defined the fraction of 

labelled polyP obtained (Classically between 16.5 to 33% considering one or both 

extremities labelled). HEX-labelled dsDNA fragments were obtained by PCR using a 5’ 

HEX labelled oligo (Sigma) (Table 4.3).    
  
Sedimentation Velocity Analytical Ultracentrifugation (SV-AUC) 
 

Analytical ultracentrifugation was used to determine the behavior of polyphosphate 

bound to HFQ. The experiment was performed by loading 420 μl of sample into epon-

charcoal 2-channel centerpieces with 1.2 cm path-length in an An60Ti rotor in a 

Beckman Optima Xl-I analytical ultracentrifuge. Measurements were completed at 

32,000 rpm for the Hfq-polyphosphate samples and at 48,000 rpm for HFQ alone at 280 

nm in intensity mode. All SV-AUC data were analyzed using UltraScan 4 software, 



 162 

version 4.0 and fitting procedures were completed on XSEDE clusters at the Texas 

Advanced Computing Center (Lonestar, Stampede, Jetstrean) through the UltraScan 

Science Gateway (https://www.xsede.org/web/guest/gateways-listing) (Demeler et al., 

2016). The partial specific volume (vbar) of Hfq was estimated within UltraScan III 

based on the protein sequence (Demeler et al., 2009). Raw intensity data were 

converted to pseudo-absorbance by using the intensity of the air above the meniscus as 

a reference and edited. Next, 2-dimensional sedimentation spectrum analysis (2DSA) 

was performed to subtract time-invariant noise and the meniscus was fit using ten 

points in a 0.05-cm range (Brookes et al., 2010). First arrays with a broad S range were 

fitted to account for possible large oligomeric states. Final arrays were fit using a broad 

S range from 1 – 50 for the complex and 1 -10 for Hfq, an f/f0 range of 1–4 with 64 grid 

points for each, 10 uniform grid repetitions and 400 simulation points. 2DSA was then 

repeated at the determined meniscus to fit radially invariant and time-invariant noise 

together using ten iterations. A second approach to fit the data was utilized by fitting a 

parametric restrained grid to the data (PCSA) (Brookes et al., 2010). In the PCSA 

analysis the same S range was fitted. The root mean square derivation between the 

2DSA-IT method and the PSCA-HL method was comparable low, so that both solutions 

describe the data well. 
  
Electron microscopy 
 

Cells grown to midlog phase in MOPS glucose were prefixed by 2.5% glutaraldehyde in 

0.1 M sodium cacodylate (pH 7.2), and postfixed 1% OsO4 in 0.1 M sodium cacodylate 

(pH 7.2). Samples are then dehydrated through a series of washes with increasing 

concentration of acetone and embedded in an epoxy resin. The samples were then 

sliced by an ultramicrotome into thin sections. Samples were then applied to glow-

discharged carbon-coated grids, stained with 2% uranyl acetate for 1 min, washed with 

a drop of distilled water, blotted, and air-dried. Images were taken at 80 kV on a 

TECNAI 10 transmission electron microscope with a Gatan 967 slow-scan, cooled CCD 

camera. 
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Cell growth and harvest for RNA-sequencing and Hfq-PAmCherry ChIP. Cells (WT, 

WT-Hfq-PAmCherry, and Δppk-Hfq-PAmCherry; two biological replicates for each 

genotype)  were streaked onto an LB plate from cryogenic storage and grown at 37°C. 

Individual colonies were used to inoculate MOPS-G medium, and cultures were 

incubated at 37°C and shaking at 200 rpm. After overnight growth, cells were back 

diluted to an OD600 of 0.003 and grown to a target OD600 of 0.2. Once the target OD 

was reached, 2.5 ml of the culture was mixed with 5 ml of RNA protect (Qiagen: Catalog 

#76506), vortexed, and incubated at room temperature for 5 minutes. The tubes were 

spun at 4°C for 10 min at 5,000 x g in a fixed-in a dry-ice ethanol bath and stored at -

80°C. RNA isolation and sequence preparation is described below. The remaining 

culture was treated with 150 μg/mL of rifampicin for 10 min at 37°C and 200 rpm. The 

cultures were then mixed with concentrated formaldehyde / sodium phosphate, pH 7.4 

buffer in falcon tubes to achieve a final volume of 10 mM NaPO4 and 1% v/v 

formaldehyde. Tubes were placed into a shaker for 5 min at room temperature. Excess 

glycine (final concentration: 0.333 M) was added to quench the crosslinker, and the 

samples were incubated for 10 min at room temperature with shaking. The tubes were 

then placed on ice for 10 min, and spun in a fixed-angle rotor for 4 min at 4°C at 5,000 x 

g. After discarding the supernatant, the respective pellets were washed twice with 10 ml 

of ice-cold phosphate buffered saline (PBS), dried, snap-frozen in a dry-ice ethanol bath 

and stored at -80°C.  

 

Preparation of mCherry ChIP (follows the same protocol as the RNA polymerase ChIP 

procedure in Freddolino et al. 2020). Frozen pellets were resuspended in 600 μL of 1x 

IPOD lysis buffer (10mM Tris HCl pH 8.0; 50mM NaCl) with 1X protease inhibitors 

(cOmplete Mini, EDTA-free Protease Inhibitor: Roche) and 52.5 kU/mL of Ready-Lyse 

(Lucigen), and incubated at 30 C for 15 minutes. After 15 minutes, tubes were placed 

on ice and sonicated with a Branson digital sonicator with 25% power, 10 seconds on, 

10 seconds off, for a total of 30 seconds on at 4C. Tubes were kept in an ice water bath 

for the entirety of the sonication process. The sonicated lysates were then placed on ice 

and digested with 6 μL of RNase A (Thermo Fisher), 6μL DNase I (Fisher: Cat #89835), 

5.4μL 100mM MnCl2, and 4.5μL 100mM CaCl2, mixed by pipetting, and incubated on 
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ice for 30 minutes. The reactions were quenched with 50μL of 500 mM EDTA (pH 8.0), 

thus resulting in 50-200 bp fragments. The digested lysates were placed in a 4C 

centrifuged and spun for 10 minutes at top speed. To reduce potential noise, we pre-

cleared the lysates by mixing with the beads that will be used to pull down protein-

antibody complexes. The lysate (600 μL) was mixed 1:1 with 2X IP buffer (200mM Tris, 

pH 8.0, 600mM NaCl; 4% Triton X-100; 2X protease inhibitors) and 1X molecular grade 

BSA. We prepared NEB protein G beads (50 μL/ sample) by washing with 1mL of 1X IP 

buffer without protease inhibitors but including 1X molecular grade BSA and 

resuspended in the final volume that was started with (50 μL/ sample). Washed beads 

were distributed with lysates and incubated at 4C with rocking for two hours. Using a 

magnetic stand, beads were removed, and pre-cleared lysates were placed into fresh 

tubes. 

 

As an input control, 50μL of pre-cleared lysates were mixed with 450μL of ChIP Elution 

Buffer (50mM Tris, pH 8.0, 10mM EDTA; 1% SDS) and placed at 65C for no more than 

16 hours for crosslink reversal. DNA extraction will be described below. To the 

remainder of the lysate / IP buffer mixture, we added 5μL of mCherryChIP antibody 

(mCherry Monoclonal Antibody: ThermoFisher Cat #M11217) and incubated at 4C 

overnight on a tube rocker. The next morning, we prepared NEB protein G beads (50 

μL/ sample) by washing with 1mL of 1X IP buffer without protease inhibitors and 

resuspended in the final volume that was started with (50 μL/ sample). Washed beads 

were distributed into antibody and lysate mixtures and incubated at 4C with rocking for 

two hours. The mixtures were then washed in the following series below with 1 mL 

washes for each buffer and mixing by inversion. After inversion, tubes were placed on a 

magnetic stand to remove wash, and new wash was added.  

• 1X Wash buffer A (100mM Tris, pH 8.0; 250mM LiCl; 2% Triton X-100; 1mM 

EDTA) 

• 1X Wash buffer B (100mM Tris, pH 8.0; 500mM NaCl; 1% Triton X-100; 0.1% 

sodium deoxycholate; 1mM EDTA) 

• 1X Wash buffer C (10mM Tris, pH 8.0; 500mM NaCl; 1% Triton X-100; 1mM 

EDTA) 
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• 1X TE (10mM Tris, pH 8.0; 1mM EDTA) 

After the lash wash, beads were resuspended in 500μL of ChIP Elution Buffer (recipe 

above) and incubated at 65C for 30min with vortexing every 5-10 minutes. The tubes 

were then placed on a magnetic stand, the supernatant placed in a fresh tube, placed at 

65C for no more than 16 hours for crosslink reversal, and processed for DNA extraction 

as noted below. As a control, mCherry ChIP was performed on MG1655 strains lacking 

any tag, and the resulting signal from non-specific binding was subtracted from analysis. 

 

DNA extraction after crosslink reversal (is the same as described in Freddolino et al. 

2020): Following incubation at 65C, tubes were cooled and 100 𝜇g of RNase A 

(Thermo-Fisher), incubated 2 hours at 37C, then added 200 𝜇g of proteinase K 

(Fermentas) and incubated an additional 2 hours at 5C. Phenol-chloroform extraction 

and ethanol precipitation were performed as described in [cite: Ausubel FM. Current 

Protocols in Molecular Biology. John Wiley & Sons; 1998]. During the ethanol 

precipitation, Glycoblue (Ambion) was used as a co-precipitant, NaCl was the 

precipitating salt, and washes were performed with ice-cold 95% ethanol. Pellets were 

resuspended in 1XTEe and stored in DNA-Lobind tubes at -20C. 
  
Preparation of next-generation sequencing (NGS) libraries (applies to IPOD-HR, 
RNA polymerase ChIP-seq, mCherry ChIP-seq) Samples were prepared using the 

NEBNext Ultra II Library Prep Kit (NEB #E7103) following manufacturer’s instructions, 

with minor modifications: to purify cDNA, the Oligo clean and concentrator kit was used 

(Zymo #D4061). After the ligation of adapters, the DNA clean and concentrator kit – 5 

was used (Zymo #D4014). Dual index primers for NEB were used in the sample 

preparation and the libraries were sequences on an Illumina NextSeq. 
 
RNA isolation and sequencing preparation  
 

RNA isolation 

 

Frozen pellets (described in previous section) were thawed on ice and resuspended in 

100 uL TE and treated with 177kU Ready-lyse lysozyme solution (Lucigen #R1804) and 
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0.2 mg proteinase K (Thermo Fisher Scientific #EO0492). The mixture was incubated 

for 10 minutes at room temperature and vortexed every 2 minutes. The RNA was then 

purified using the RNA Clean and Concentrator kit – 5 (Zymo #R1014) and treated with 

5 units of Baseline-ZERO DNase (Epicentre #DB0715K) in the presence of RNAse 

inhibitor (NEB #M0314L) for 30 minutes at 37C. RNA purification was performed again 

using the RNA Clean and Concentrator kit – 5, flash frozen in a dry ice-ethanol bath, 

and stored at -80C. rRNA depletion was performed on the stored RNA using the 

bacterial rRNA depletion kit following manufacturer instructions (NEB #E7850L), with 

the only modification being the RNA purification step where we used the RNA Clean 

and Concentrator kit -5 instead of bead purification.  
  
Sequencing preparation  

 

Purified, rRNA depleted RNA was then put through the NEBNext Ultra Directional RNA 

Library Prep Kit for Illumina following manufacturer instructions (NEB #E7420L) for 

rRNA depleted RNA. We used random primers and considered the samples to be 

“intact” for the protocol specifications. Minor modifications to the protocol were the same 

as stated in the above NGS library preparation.   

 

Western Blot Analysis  
 

Cells were streaked from cryogenic storage onto LB plates at 37C. A single colony was 

inoculated into M9 Rich Defined Medium (RDM) in 0.04% glucose and grew overnight at 

37C. In the morning, cells were back diluted to an OD600 of 0.003 and grew to an 

OD600 0.2-0.6 in M9 RDM 0.4% glucose at 37C. Once cells reach the desired OD600, 

2mL of cells were pelleted, supernatant removed, flash frozen in a dry ice ethanol bath, 

and stored at -20C. Cell pellets were resuspended in 150uL of a mixture of Laemmli 

buffer, DTT, and PBS ( 1.5mL mix: 375uL 4X Laemmli buffer, 75uL 1M DTT, 1050uL 1X 

PBS). Resuspended cells were incubated at 99C for 10 minutes. After incubation, 10 uL 

was run on a stain-free gradient SDS PAGE gel (Bio-Rad Cat #4568086) at 175V for 40 

minutes. The gel was then imaged, and subsequently transferred to an Immun-Blot 

PVDF Membrane (Bio-Red Cat #1620174) for one hour at 60V at 4C. After transfer, the 



 167 

membrane was imaged to get whole protein abundance. The membrane was soaked in 

3% milk in TBST for 30 minutes, milk was removed, and 10mL was then added with 1uL 

of mCherry antibody (ThermoFisher Cat #M11217) overnight rocking at 4C. The next 

morning, the milk antibody mixture was removed, and the membrane was washed three 

times with 3% milk in TBST. 10mL of 3% millk in TBST was added with 2uL of 

secondary antibody (Goat anti Rat IgG HRP: ThermoFisher Cat #31470) and incubated 

at room temperature for one hour. Milk was removed, membrane was rinsed with water 

twice. TBST was added at room temperature for 10 min and removed three times. The 

washed membrane was then stained with ECL Western Blotting substrate 

(ThermoFisher Cat #32209) and imaged.  

 

Data visualization and analysis tools 
 

We utilized numpy[35], R version 3.6.3[36,37], tidyverse[38], and ggplot2 for high 

through-put data analysis and visualization[39].  
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Supplemental Figures and Tables 

 
Figure S4.1: Hfq RNA chaperone targets are not impacted by loss of ppk. 



 169 

 
Figure S4.2: DNA damage epistatic response is specific to ppk and hfq. (A) 
Cisplatin sensitivity with ppk in combination with deletion of other highly abundant 
nucleoid associated proteins. (B) Plasmids containing ppk or hfq were introduced to 
Δppk and Δhfq cells exposed to DNA damaging agents. The same pattern of rescue for 
Δppk and Δhfq was observed in the presence of (+hfq) similarly to what is observed in 
Figure 4.2F. (C) Chromosomal occupancy measurements for WT and Δppk with 
representative images on the left and pooled calculations on the right, show a significant 
increase in chromosomal occupancy in Δppk. (D) Survival of WT, Δppk, Δhfq, and 
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ΔhfqΔppk across all DNA damaging agents does not exhibit a complete additive effect 
with ΔhfqΔppk, suggesting an epistatic response.  

 
Figure S4.3: Loss of ppk does not change the amount of Hfq protein in the cell. 
WT, WT Hfq-PAmCherry, and Δppk Hfq-PAmCherry cells were collected at exponential 
phase of growth for western blot analysis. Two biological replicates were performed for 
each genotype. The left image shows the stain-free blot with all protein. The right shows 
the western blot of Hfq-PAmCherry with mCherry antibody, indicating the absence of 
signal without the PAmCherry tag, and the equivalent amount of Hfq-PAmCherry in both 
strains containing the tag.  
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Table S4.1: Strains used in this study. 

 

 
Table S4.2: Plasmids used in this study. 
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Table S4.3: Primers used in this study.  
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Chapter 5 
 

Concluding Remarks and Future Research 
 

Introduction 

It is becoming increasingly clear that architectural proteins not only contribute to 

genome compaction, but gene regulation and organization across all domains of life. 

However in bacteria, architectural proteins, termed nucleoid associated proteins (NAPs) 

have been difficult to study, largely due to their promiscuous binding throughout the 

genome and many modes of transcriptional impact[1]. In this dissertation, I present a 

tool, in vivo protein occupancy display at high resolution (IPOD-HR), that is an antibody-

free method to visualize changes in protein binding across the entire genome (Chapter 

2 [2]). In Escherichia coli (E. coli), the utility of IPOD-HR is demonstrated in detecting 

changing of transcription factors, novel binding motifs, and the presence of extended 

protein occupancy domains (EPODs), areas of the genome with dense protein 

occupancy but are transcriptionally silent, similar to heterochromatin in eukaryotes. 

EPODs overlap a number of different metabolic pathways and annotated prophages, 

and have an enrichment of H-NS binding, a widely known NAP and silencer of the 

cell[2]. To understand the individual contribution of NAPs to EPODs, IPOD-HR was 

performed on NAP deletions, uncovering novel silencers of metabolic pathways and 

prophages (Chapter 3). I show that EPOD repression can be relieved under metabolic 

stress, and detect a transcriptional memory response at a specific operon (Chapter 3). 

This serves as the first indication that EPODs may be present at particular loci to 

facilitate a memory response, similar to what is seen in heterochromatin in eukaryotes. I 

identify novel xenogeneic silences, Hfq and Fis that are required for cell viability in a 
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prophage dependent manner (Chapter 3). Hfq, which is highly conserved across 

species [3–5], has only begun to be explored for its DNA binding capacity[6], and 

therefore I show some of the first findings of the role of Hfq in silencing particular 

prophages via binding to the chromosome (Chapter 3 & Chapter 4). Furthermore, I 

show a novel mechanism by which Hfq binding occurs through cooperative binding of a 

poly anion, polyphosphate (Chapter 4). Loss of hfq or ppk results in an induction of 

prophage genes and mobile elements, and sensities the cells to DNA damaging agents 

(Chapter 4). Hfq binding in vivo is impacted by the loss of ppk, resulting in a decrease in 

binding at prophage regions (Chapter 4). Together, these reveal a novel mechanism by 

which Hfq and polyphosphate participate in cooperative binding to silence toxic 

elements in the genome. Although originally identified in E. coli, I show that EPOD-like 

structures exist in the distantly related Gram-Positive Firmicute Bacillus subtilis and are 

both composed of NAPs and overlap metabolic pathways and annotated prophage 

regions (Chapter 3). Thus, EPODs may serve conserved functional roles linked to gene 

regulation and structure. My thesis serves as a strong foundation for understanding 

NAPs, genome organization, and gene regulation in bacteria. Here, I share proposed 

follow up methods and experiments to further elucidate bacterial heterochromatin-like 

domains. 

Investigating the impact of methylases on EPOD maintenance. 

I show in Chapter 3 the enrichment of Dam and Dcm methylation sites outside of 

silenced regions, implicating that these two methylases may play a role in establishing 

sites that remain accessible. DNA adenine methyltransferase (Dam) methylates almost 

all GATC sequences in E. coli, and plays roles in gene expression, DNA replication, 

mismatch repair, and transposon / mobile element transposition [7–9]. Similarly, DNA 

cytosine methyltransferase (Dcm), which mehtaltes sites of 5’C-MeC-T 3’, likewise 

impacts transposition, indicated by a loss in transposition upon dcm deletion [10]. It was 

previously detected that certain areas of the genome remain methylation resistant, 

perhaps linked to the presence of EPODs[11]. To test whether the presence of 
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methylases impact EPOD maintenance, I created knockout strains of dam, dcm, and 

both dam dcm in E. coli and performed IPOD-HR. Currently, data analysis and 

processing of these mutants are currently underway, but early evidence suggests that 

these mutants do in fact impact RNA polymerase accessibility and EPOD maintenance. 

Elucidating the mechanism underlying transcriptional memory response in exotic 
carbon source exposure. 

The findings presented in Chapter 3 reveal a potential functional aspect to EPODs: to 

promote transcriptional memory. However, the response detected in Chapter 3 could be 

the result of many different modes of memory (as mentioned in Chapter 3), such as the 

presence of residual proteins, local regulators that stay bound to the promoter, or even 

post translational modifications (PTMs). To better understand whether the presence of 

the EPOD leads to the memory effect, one could attempt to delete the existing EPOD 

that remains on idnD and perform the same set of memory experiments. The 

expectation would be that there will be no memory detected (no change in lag time) 

upon a second exposure of the exoctic carbon source. The difficulty of such an 

experiment is the pleiotropic effects NAP deletions have that lead to growth and 

replication defects across the cell. In the case of the EPOD that overlaps the idnD 

operon that is mediated by the presence of StpA and H-NS, there is a wide variety of 

effects by deleting both of these NAPs. I attempted to repeat the experiment in the 

double deletion of stpA and hns, and as expected, the strain was too sick to grow in the 

exotic carbon source even after two weeks (data not shown). Thus, we could try a 

single deletion of H-NS that may partially destabilize the EPOD, or use the experimental 

approaches in the next session to see if we can identify any changes in proteins upon 

the second exposure to the exotic carbon source that may give insight to the 

mechanisms underlying the response.  
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Identify the proteins and post-translational modifications that define the structure 
of EPODs. 

EPODs have varying functional roles and NAP configurations, as assessed by loss of 

occupancy only upon deletion of specific NAP combinations (Chapter 3). In addition, the 

findings presented and previous RNA-seq datasets [12–14] support a compensatory 

mechanism in which NAPs maintain proper EPOD distribution in the presence of the 

loss of any single factor. Based on our NAP deletion IPOD-HR datasets, I have 

identified a number of EPOD subtypes based on NAP occupancy (Chapter 3). However, 

the exact composition of EPODs is unknown. Furthermore, I show a transcriptional 

memory response due to carbon source exposure that may be directly mediated by 

EPODs, but minimal changes in EPOD locations at the site, indicating that there may be 

other factors leading to the memory effect such as accessory proteins or post 

translational modifications (PTMs). PTMs have already been shown to play a role in 

regulation of global regulators in bacteria[15], further supporting the idea that complex 

gene regulation can be at play. It is likely that there are also accessory proteins, such as 

Hha that promotes bridged filaments with H-NS and StpA [16], that may not show 

dramatic changes in IPOD-HR due to lower abundance, or may be novel binding 

proteins all together. Therefore, I have begun to develop a method to pull down specific 

EPODs using a catalytically dead dCas9 [17]and send regions for un-targeted mass 

spectrometry (MS) analysis (Fig. 5.1). The analysis will provide insight into protein 

composition and their associated PTMs. The unbiased approach will allow us to identify 

key regulators of silencing. Follow up experiments described in Figure 5.1 will 

functionally test the roles of PTMs and accessory proteins in EPOD maintenance. The 

comprehensive assessment of EPOD formation will allow us to define the mechanisms 

of maintenance of different EPOD subtypes. 
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Figure 5.1. Workflow for assessing presence of PTMs and accessory factors. (A) 
A single guide RNA (sgRNA) dCas9+3xFLAG will be targeted to the region of interest 
allowing pull down of a specific region (using Anti-FLAG antibody to dCac9+3xFLAG) 
and its associated proteins. (B) Employ un-targeted mass spectrometry to identify 
bound NAPs, novel factors, and any associated post-translational modifications (PTM). 
(C) Investigation of the roles identified by either introducing PTM mimics or deletion of 
novel factors. In both instances, examine the impact of EPOD formation and expression 
of the locus using IPODHR and RT-PCR. 
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Investigate the mechanism of EPODs in the silencing of harmful genetic 
elements. 

Across the genome, EPOD locations are highly robust and reproducible, indicating 

specific recruitment of proteins to particular sites. At the same time, recent work from 

our laboratory has also demonstrated that the chromosomal position itself also has 

profound effects on the ability of cells to transcribe different genomic regions[18]. It is 

unclear how EPOD recruitment occurs and if the surrounding genome context impacts 

silencing. To address this gap in knowledge, it will be important to select and shift 

EPODs into varying genetic and chromosomal contexts and assess whether normal 

protein occupancy is established in the transplanted EPODs. We propose that the 

genome context, such as transcriptional propensity[18], will substantially impact EPOD 

establishment. To study this, one would insert a Kanamycin (Kan) resistance marker 

next to each region using lambda red recombineering[19,20], in order to provide a 

selectable marker for subsequent transplant (Fig. 5.2A). Amplification of the region and 

adjacent marker using PCR on purified genomic DNA would obtain DNA corresponding 

to the EPOD sequence lacking any existing proteins from the fragment that would be 

inserted (Fig. 5.2A). The fragment would be selectively recomined (Fig. 5.2B), here 

denoted EPOD A, into five regions to determine which characteristics are necessary for 

silencing to occur. Importantly, a set of combinations in which EPOD A is the H-NS / 

StpA dependent EPOD and EPOD B is the Fis / Hfq dependent EPOD and vice versa 

would be performed: 1. EPOD B’s location, 2. Into the center of EPOD B, 3. EPOD A’s 

original location: For locations 1, 2, and 3, there are three predicted outcomes: no 

silencing occurring, silencing of region by original NAPs, and silencing of region by 

other NAPs. To further examine the universality of EPOD formation across E. coli 

strains, the Fis / Hfq dependent EPOD should also be introduced into UTI89, a 

pathogenic distantly related E. coli strain which lacks the prophage genes encompassed 

in these EPODs(Fig. 5.2C). Follow up for both approaches would be IPOD-HR, ChIP-

seq, and RNA-seq of NAPs to understand binding dynamics and expression 

changes(Fig. 5.2D). This approach allows examining whether there are inherent 

properties of EPOD A that promote specific NAP binding, and whether there is influence 
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on EPOD B’s location, presence of NAPs in promoting silencing, or specific genome 

features that promote recruitment of silencing proteins. 

 
Figure 5.2. Examining the impact of genome location in EPOD formation. A,B,D) 
Experimental workflow. Example of EPOD A being inserted in the center of EPOD B. C) 
The process will be identical in UTI89. 

Conclusion  

In this thesis I explored the impact of genome organization has on gene regulation. In 

the appendix, I provide a resource for high-throughput data analysis on eukaryotic 

genomes, where filtering of highly repetitive regions is essential in order to properly 

process genomics datasets. This resource, the ENCODE Blacklist, further highlights the 

importance of understanding each step in high-throughput experiments, biology, and 
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downstream processing[21]. In Chapter 2, I describe a new method, in vivo protein 

occupancy display at high resolution (IPOD-HR) that enables genome wide profiling of 

protein occupancy across bacterial species without the need for an antibody. IPOD-HR 

resolves individual changes in transcription factors, discovery of new transcription factor 

motifs, and the refining of extended protein occupancy domains (EPODs) - highly 

protein occupied, large, and transcriptionally silent regions of the E. coli genome[2]. In 

Chapter 3, I connect specific NAPs to novel regulatory roles in EPODs. H-NS and StpA 

are main components of an EPOD overlapping the idnDOTR operon, and may mediate 

a transcriptional memory effect after exposure to an exotic carbon source. I discover 

that together Fis and Hfq serve essential roles in silencing prophages in E. coli. I also 

show that the silencing functionality of EPODs, mainly regulating metabolism and 

horizontally acquired DNA, is conserved across distant species, from E. coli to B. 

subtilis. Lastly, in Chapter 4, I show the mechanism by which Hfq silences prophages is 

mediated by a polyphosphate, a poly anion that sequesters Hfq to regions for effective 

silencing. This is the first example by which polyphosphate has been shown to interact 

with Hfq, and participate in silencing mobile elements and prophages. 

 

While the key proteins are different across species and are not identical to eukaryotic 

histones, we find that, overall, organisms have similar strategies to organizing their 

genomes. All use non-specific nucleic acid binding proteins that facilitate dynamic 

changes across the DNA, allowing a cell to cope with their environment, pass 

information, and regulate their metabolism. Much of what we know about how structure 

impacts gene regulation is in eukaryotes, with many studies in bacteria needing the 

connection of in vitro and in vivo studies of gene organizers and regulators. The 

silencing of mobile elements and prophages via EPODs provides interesting 

hypotheses to whether heterochromatin-like domains in bacteria play a role in antibiotic 

resistance, as mobile elements have been linked to increased resistance[22,23]. As 

many of the NAPs are conserved[3–5], I predict that many of their functions would also 

be conserved. Further study in defining the maintenance and recruitment of proteins to 

these regions in bacteria will provide insights into gene regulation and will contribute to 

the development of novel antimicrobial interventions.  
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Appendix 

The ENCODE Blacklist: Identification of Problematic Regions of the Genome  

Abstract 

Functional genomics assays based on high-throughput sequencing greatly expand our 

ability to understand the genome. Here, we define the ENCODE blacklist- a 

comprehensive set of regions in the human, mouse, worm, and fly genomes that have 

anomalous, unstructured, or high signal in next-generation sequencing experiments 

independent of cell line or experiment. The removal of the ENCODE blacklist is an 

essential quality measure when analyzing functional genomics data. 

Introduction 

The coupling of high-throughput technology with classic genomics assays enables us to 

study genome-wide architecture and regulation. Assays using high-throughput 

sequencing as a read-out of a genomic signal rely on an accurate genomic annotation 

and mapping. Inconsistencies in the underlying annotation exist at regions where 

assembly has been difficult. For instance, repetitive regions may be collapsed or under-

represented in the reference sequence relative to the actual underlying genomic 

sequence. Resulting analysis of these regions can lead to inaccurate interpretation, as 

there may be significant enrichment of signal because of amplification of noise [1,2]. 

Problematic regions such as these have generally been ignored and unfiltered because 
The contents of this chapter were published in Scientific Reports by Haley M. Amemiya, Anshul Kundaje, 
and Alan P. Boyle. I wrote the manuscript and prepared the figures. A.P.B. and A.K. conceived of the 
work. A.P.B. developed the software application. All authors reviewed the manuscript. 
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they have not been found to affect the signal in the final analyses. However, in 

functional genomics assays such as chromatin immunoprecipitation followed by 

genome sequencing (ChIP-seq), accuracy in peak calling and downstream analyses is 

essential. Alignments in these problematic regions should be identified and filtered 

before application of any threshold, normalization, or peak calling as they can 

dramatically bias the results2. 

 

The use of exclusive regions of “blacklists”, or regions where genome assembly results 

in erroneous signal, to remove signal-artifact regions in ChIP-seq experiments has been 

employed throughout the ENCODE project production phase [1,3,4]. The original 

ENCODE blacklist, termed the Duke Excluded Regions (DER), was manually curated 

on the Homo sapiens (human) genome assembly GRCh37 (hereafter referred to as 

hg19) to cover a large number of repeat elements in the genome, particularly rRNA, 

alpha satellites, and other simple repeats. This list was further updated, now referred to 

as ENCODE Data Analysis Center (DAC) blacklisted regions, to include regions of high 

signal that presumably represent unannotated repeats in the genome. The removal of 

these regions eliminated significant background noise that otherwise would have been 

thought to have been due to biological variation2. While this list was comprehensive, a 

significant amount of manual annotation was required to generate the final set of 

regions that would be laborious to apply to updated builds. The affected regions were 

broad, covering on average 45 kb with the largest being 1.4 Mb. Additionally, artifact 

regions are not human genome specific, and there was a need for identification of 

organism-specific regions. 

Results 

The generation of the ENCODE Blacklists. To generate blacklists in an objective and 

systematic manner, we developed an automatic procedure to flag regions that appear to 

have artifact signal. Regions are flagged using uniform criteria applied across a large 

number of samples. All ENCODE, mouse ENCODE, and modENCODE input ChIP-seq 
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samples (control data for ChIP-seq) were used for ENCODE (Homo sapiens: hg19 and 

the updated assembly GRCh38/hg38), mouse ENCODE (Mus musculus: mm9 and 

mm10), and modENCODE (Caenorhabditis elegans: ce10 and ce11, Drosophila 

melanogaster: dm3 and dm6) analyses, respectively. To identify regions for inspection, 

our method searches for regions that provide the signature of existing in multiple copies 

and are thus overrepresented in control “input” sequences. These “input” datasets were 

generated as controls for ChIP-seq experiments using randomly sheared DNA regions 

from non-immunoprecipitated chromatin. We examined all 1 kb windows with 100 bp 

overlap to identify such regions. Input samples are scored with input read depth and 

mappability, quantile normalized, and the median signal is selected (See methods). This 

defines a comprehensive and cell-type agnostic signal across the genome that is 

unaffected by high signal from a particular cell-line (eg. CNVs) or low signal due to 

differential processing of input data. Regions with read depths or multi-mapping read 

rates in the top 1% are considered likely artifacts (Fig. A.3). In all cases, the 

mitochondrial DNA and any reads mapping to these sequences are pre-filtered from 

analysis and are considered part of the blacklist. 

 

A blacklist was built for the human, mouse, worm, and fly genomes using all reads from 

input samples. In each organism, only a small portion of the genome was flagged as 

containing artifact sequence signal (Fig. A.1 and A.2A). However, these regions were 

enriched for ChIP-seq reads in ChIP experiment for transcription factors (Fig. A.1) and 

are particularly enriched for reads and peaks from lower quality experiments. In fact, 

ENCODE uses this as a quality control metric with some experiments having up to 87% 

of reads falling into blacklisted regions [5]. In Figure A.1 we show the distribution of all 

input reads mapped across chromosome 1, where reads mapping to blacklist regions 

are represented in red. The signal at blacklist regions are extremely high even though 

they account for a small fraction of the mappable chromosome (Fig. A.1B). For 

example, this represented 582 million of 2.5 billion uniquely aligning reads mapping to 

blacklisted regions in the human ENCODE ChIP-seq data in hg19. These findings 

emphasize the extreme nature of these artifact regions and highlight the importance of 

filtering these regions to avoid incorrect biological conclusions. 
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Figure A.1.Blacklist regions are tightly distributed across the chromosome and 
sequester high read mapping signals. (A) Distribution of mapped reads along human 
chromosome 1 in hg19. (B) An example blacklisted region on chromosome 1. Displayed 
are pre-filtered ENCODE ChIP-seq peak calls, quantile normalized median read signal 
(Reads), and quantile normalized median multimapped read signal (Multi). Axes are 
scaled for illustrative purposes and signal values are truncated at approximately 10-fold 
enrichment. Signal in these regions are up to 6400× background levels. (C) An example 
“normal” ENCODE ChIP-seq peak region on chromosome 1 selected as a region 
containing ChIP-seq peaks. 
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Figure A.2. Blacklist regions account for a significant portion of ChIP-seq reads, 
are driven by artifacts in genome assemblies, and removal of these regions is 
essential to removing noise in genomics assays. (A) The number of blacklisted 
regions across species with their average size, genomic coverage, and input datasets 
excluding assembly gaps used for hg38, mm10, dm6, and ce11 respectively. (B) An 
UpSet plot displaying the breakdown of uniquely annotated regions in hg19 and hg38, 
and the shared regions between them. Low-mappability (Low-Map.) regions account for 
the majority of unique regions in both hg19 and hg38. (C) Applying the blacklist to ChIP-
seq peaks results in an overall reduced correlation and, in the highlighted example, 
results in a more biologically meaningful interpretation of the data. 
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Figure A.3. Justification of thresholds for automated blacklist generation. The 
initial motivation behind the blacklist was to identify large artifact regions. These regions 
were envisioned as collapsed repeats in the genome that led to incredibly high numbers 
of reads. Early manual observations of these regions showed high levels of 
multimapping reads, high levels of reads, and multiple identical reads, and these 
manual observations generated what became the DAC blacklisted regions. Often these 
regions were at signal levels several orders of magnitude higher than the rest of the 
genome. As a result, in our automated method, we implemented a 1kb window with 
100bp overlaps. In an attempt to not significantly overshoot the borders of these 
regions, this approach maintains a large enough region to identify the high signal in 
these often multi-kb regions. Here we have generated histograms of all 1kb windows 
from chromosome 1 and marked the 1% thresholds (black line) used to demonstrate the 
very long tail and conservative nature of this selection. Blue regions in this plot 
represent all 1kb windows from chromosome one not annotated by the manual blacklist 
and red regions represent all windows annotated by the DAC blacklist. Note that these 
histograms represent overall density in each class so that distinctions can be seen in 
the sets, but that the blue set represents 2,488,826 windows while the red set 
represents only 1,671. There is a very clear delineation between the 1kb windows 
manually identified as artifacts from the rest of the genome, and this transition occurs at 
the 1% mark. Therefore, this threshold was selected as being optimal for automated 
genome-wide identification of blacklist regions. 

 

We investigated the underlying characteristics of our automated hg19 blacklisted 

regions and their agreement with previously published lists [6], which included our 

manually curated hg19 blacklist (DAC) (Fig. A.4). Though satellite repeats were used in 

the original ENCODE blacklists, they represent a small portion of the automated hg19 
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blacklist and are generally repeated in the genome annotation (Fig. A.4C). Additionally, 

they are not uniquely mapped with the algorithms used which prevents alignments to 

these regions. The automated hg19 and DAC blacklists detect the vast majority of 

regions flagged by a similar and complementary technique [6] (Fig. A.4B). Of the 

regions unique to the automated hg19 blacklist, all cover gaps in the genome assembly 

(Fig. A.4C), lending evidence that these regions of the genome are incomplete in the 

hg19 assembly. Indeed, a large number of these regions were patched in the next 

iteration of hg19 or dropped in the GRCh38 assembly (Fig. A.4C). Almost all of the 

flagged regions also included nuclear mitochondrial DNA segments (NUMTs, Fig. 
A.4C), a criterion that was overlooked in the initial manual blacklists. There are many 

mitochondrial genomes in comparison to the singular nuclear genome, leading to a high 

read depth of NUMTs. Additionally, NUMT sequences are scattered throughout the 

genome, contributing to overrepresentation of NUMTs in the input sequence. For these 

reasons, it is critical to include these sequences in the blacklist. A majority of the 

regions that were flagged by the DAC blacklist but missed in the automated hg19 

blacklist were defined by repeatmasker class annotations as Satellite repeats (Fig. 
A.4D). While many of these repeat regions contain anomalous signal, those that were 

excluded from the automated hg19 blacklist do not show high signal and are uniquely 

mapped in hg19. None of the regions unique to the DAC blacklist were patched or 

removed in the new assembly. 
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Figure A.4. Comparison across different “blacklists”. In order to better understand 
the types of regions being annotated, we studied the similarities and differences across 
our automated and manual blacklists in hg19 as well as an analysis done by Pickrell et 
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al. to identify high-signal sites. (A) In order to compare across disparate genomic 
intervals, we first merged lists of regions. Following merging, many of the lists became 
shorter due to many small regions overlapping larger annotations. (B) An UpSet plot 
displays the number of unique regions when comparison across the sets. Notably, both 
the DAC and automated hg19 lists contained the most unique regions which we 
explored further. (C) The automated hg19 unique regions consist of assembly changes 
and gaps, as well as a large number of nuclear mitochondrial DNA segments. These 
indicate regions that were problematic in the assembly and were changed in the more 
updated build of the genome. Furthermore, nuclear copies of mtDNA (numts) were not 
considered in the initial manual annotation and because of their duplicative nature in the 
genome are likely to also have high signal. (D) The unique regions in the DAC manual 
blacklist are primarily annotated as satellite repeats. While these regions are repetitive 
areas, they are mappable in the genome and do not display an aberrant signal. These 
were likely included from the original DER manual list that was primarily based on 
satellite annotations and not aberrant signal. 

 

We next sought to characterize the differences between regions blacklisted from the 

automated pipeline in hg19 compared to the blacklist from the hg38 genome assembly. 

Generally, the same classes of regions are enriched in both assemblies. Many regions 

do not overlap due to assembly differences such as the expanded centromere and 

satellite sequences that are features of the hg38 assembly as well as fixed/new gaps 

that vary in both builds (Fig. A.2B). A large portion of the differences occurs at low-

mappability (Low Map.) annotations which represent short repetitive elements in the 

genome assembly that are poorly mappable and as a consequence do not map well 

between assemblies (Fig. A.2B). Overall, these differences lead to the conclusion that 

the major differences between blacklists are due to underlying changes in the sequence 

assemblies. Consequently, this lends to the hypothesis that the driving factor behind 

artifact regions in the genome are due to issues in the assembly rather than other 

factors. 

 

Finally, to demonstrate the artificial correlation created by these peak regions, we 

performed a correlation analysis of the ENCODE peak regions in the human genome 

using a blacklist-filtered set as well as an unfiltered set of peaks (Fig. A.2C). In the 

unfiltered set of peaks, blacklist regions sequester a large portion of ChIP-seq reads, 

leading to an illusion of high correlation of these regions with others. After blacklist 

filtering, the correlation structure is more distinct. As a specific example, the correlation 
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of REST (a known repressor) auto correlates with other TFs (most of them activating) 

without the filtering of the blacklist. The removal of the blacklist regions removes 

spurious correlations seen with REST has essentially disappeared as would be 

expected given the known biology. We highlight the clear case of removing the noise in 

REST correlation, but the same standard holds true for the remaining factors in Figure 
A.2C. The ENCODE blacklists have been used to filter all of the ChIP-seq data from the 

ENCODE project and improvements in data from the application of the blacklist to these 

data are a key evaluation metric used by the consortium. For a complete list of artifact 

effects on peaks from all ChIP experiments used in ENCODE, we have provided a 

reference to the ENCODE quality control metric spreadsheet [5]. Furthermore, another 

detailed analysis of the detrimental effects of not excluding these artifact regions has 

been previously described2. Biological validations of the most robust signal regions will 

likely result in testing of these artifact regions, potentially resulting in incorrect biological 

conclusions. Therefore, identification of these regions and subsequent filtering lead to 

more accurate and stable results across experiments. 

Discussion 

The method implemented here requires a significant amount of input sequencing data 

from different sources in order to generate an accurate blacklist. For our analyses, we 

use all available ENCODE ChIP-seq input datasets to estimate the genomic regions 

that have these artifact properties, and the use of multiple cell-types is important to 

avoid blacklisting regions that are specific to a single cell-type or tissue. We also caution 

that the blacklists are specific to each genome assembly and a lift over from an old 

assembly is not meaningful or valid. Finally, those studying genes in unmappable 

regions of the genome will find their data filtered by the blacklist. These regions account 

for ~3% of human protein coding genes that have previously been shown to be 

unmappable using short-read technologies [7]. 
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We present a resource of genomic regions that should be identified and either filtered 

from study or analyzed independently for better understanding as to their potential 

regulatory function. It is important to note that we do not propose a single blacklist that 

can encapsulate error defined across all NGS based assays. The presented blacklist 

shows high concordance between chromatin-based filtering (DNase/ATAC-DAC 

blacklist) and ChIP-seq input based filtering. This is not surprising given that the input 

DNA for ChIP-seq has been shown to be a proxy for lightly digested open chromatin 

assays [8]. However, the same criteria cannot be applied for whole genome sequencing 

(WGS) filtering and RNA-seq filtering. WGS filtering does not result in poorer 

annotations if there are higher read depths in regions, and therefore this method would 

be counterproductive to genome assembly. In the case of RNA-seq, more cell-type 

specific corrections for copy number are appropriate as there is virtually no overlap of 

coding regions with existing blacklist regions. The method presented is employed by the 

ENCODE project, as well as many other established analysis pipelines, and allows for a 

noise filtering on DNase-seq, ATAC-seq, and ChIP-seq datasets to help improve the 

accuracy of studies using these data. The removal of blacklists differs from the typical 

removal of signals from duplicate reads since these regions are problematic across 

different cell types and individual experiments. Ultimately, the removal of blacklists 

should be integrated within genomic assay analysis pipelines that incorporate high-

throughput sequencing in order to assess biologically relevant and true signals. 

Materials and Methods 

Selection of input datasets. All data were acquired from the ENCODE Data 

Coordination Center. Using a previously published perl script (https://github.com/Boyle-

Lab/ENCODE-API-Apps) [9], we queried the ENCODE DCC API for unfiltered bam files 

labeled “input” that were released for the correct genome assembly. In the case of 

humans, these bam files were merged based on ENCODE assigned donor accession 

numbers to collapse data by cell type or individual. This was performed using ‘samtools 
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sort’ to first sort all samples, ‘samtools merge’ to merge, and finally ‘samtools index’ to 

generate a new index of the resulting bam files [10]. 
 

Generation of mappability data. The Umap tool was used to identify all positions on 

both strands of a target genome for which reads of a desired length starting at that 

position are uniquely mappable [11]. 

 

Building the blacklist. For each input dataset (or merged input for human) from 

ENCODE, the number of reads per mappable base and the number of multimapping 

reads per million reads is calculated for each bin of 1 kb with 100 bp overlap across all 

chromosomes. The values across bins are then quantile normalized and a standard 

value at the 50% quantile is selected to represent each bin. This threshold was selected 

to avoid high signal outliers from individual cell types (for example, from copy number 

variants) and to avoid low signal from failed or incorrectly labeled input datasets. The 

standard values across the genome are then flagged if they are in the top 0.1% of signal 

for either read depth or mappability. Neighboring regions are merged if they maintain a 

signal in the top 1% of all signal or if they have no signal due to no mappability in the 

genome and any flagged regions within 20 kb were combined. This generates 

contiguous regions of abnormal signal across the genome. 

 

Data Availability. The blacklist software and called regions for multiple species are 

made available at https://github.com/Boyle-Lab/Blacklist/ and at the ENCODE DCC for 

human and mouse (https://www.encodeproject.org/annotations/ENCSR636HFF/). 

 

 

 

 

 

 

 

 



 199 

References 

1. ENCODE Project Consortium et al. An integrated encyclopedia of DNA elements 
in the human genome. Nature 489, 57–74 (2012). 

2. Carroll, T. S., Liang, Z., Salama, R., Stark, R. & de Santiago, I. Impact of artifact 
removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front. Genet. 5, 
75 (2014). 

3. Boyle, A. P. et al. Comparative analysis of regulatory information and circuits 
across distant species. Nature 512, 453–456 (2014). 

4. Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse 
genome. Nature 515, 355–364 (2014). 

5. https://docs.google.com/spreadsheets/d/1G4SkqUMiGcUlvR6homc7RW33nSOf4
mS9QYJifsd4qo0/. 

6. Pickrell, J. K., Gaffney, D. J., Gilad, Y. & Pritchard, J. K. False positive peaks in 
ChIP-seq and other sequencing-based functional assays caused by unannotated 
high copy number regions. Bioinformatics 27, 2144–2146 (2011). 

7. Li, W. & Freudenberg, J. Characterizing regions in the human genome 
unmappable by next-generation-sequencing at the read length of 1000 bases. 
Comput Biol Chem 53, 108–117 (2014). 

8. Auerbach, R. K. et al. Mapping accessible chromatin regions using Sono-Seq. 
Proc Natl Acad Sci USA 106, 14926–14931 (2009). 

9. Diehl, A. G. & Boyle, A. P. Deciphering ENCODE. Trends Genet 32, 238–249 
(2016). 

10. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 
25, 2078–2079 (2009). 

11. Karimzadeh, M., Ernst, C., Kundaje, A. & Hoffman, M. M. Umap and Bismap: 
quantifying genome and methylome mappability.Nucleic Acids Research, gky677 
(2018) 


